WO2010143266A1 - 粒子線照射装置 - Google Patents

粒子線照射装置 Download PDF

Info

Publication number
WO2010143266A1
WO2010143266A1 PCT/JP2009/060530 JP2009060530W WO2010143266A1 WO 2010143266 A1 WO2010143266 A1 WO 2010143266A1 JP 2009060530 W JP2009060530 W JP 2009060530W WO 2010143266 A1 WO2010143266 A1 WO 2010143266A1
Authority
WO
WIPO (PCT)
Prior art keywords
particle beam
irradiation
charged particle
inverse mapping
scanning
Prior art date
Application number
PCT/JP2009/060530
Other languages
English (en)
French (fr)
Inventor
高明 岩田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US12/989,767 priority Critical patent/US8217364B2/en
Priority to PCT/JP2009/060530 priority patent/WO2010143266A1/ja
Priority to JP2010500593A priority patent/JP4478753B1/ja
Priority to EP12161263.4A priority patent/EP2471579B1/en
Priority to CN200980159045.0A priority patent/CN102414760B/zh
Priority to EP09845791.4A priority patent/EP2442317B1/en
Publication of WO2010143266A1 publication Critical patent/WO2010143266A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/08Deviation, concentration or focusing of the beam by electric or magnetic means
    • G21K1/093Deviation, concentration or focusing of the beam by electric or magnetic means by magnetic means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/103Treatment planning systems
    • A61N5/1031Treatment planning systems using a specific method of dose optimization
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1042X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy with spatial modulation of the radiation beam within the treatment head
    • A61N5/1043Scanning the radiation beam, e.g. spot scanning or raster scanning
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • A61N2005/1087Ions; Protons

Definitions

  • This invention relates to a particle beam irradiation apparatus used for medical treatment such as cancer treatment and research.
  • the present invention relates to a particle beam irradiation apparatus that performs scanning irradiation such as spot scanning and raster scanning.
  • the broad irradiation method is a method of expanding a charged particle beam using a scatterer or a wobbler electromagnet, and reducing irradiation to a place other than an affected part using a collimator or a bolus.
  • Non-Patent Document 1 A further application of the conventional particle beam irradiation apparatus that performs scanning irradiation shown in Non-Patent Document 1, by placing a scanning electromagnet upstream of the final deflection electromagnet, thereby significantly reducing the radius of the gantry ( Patent Document 1) and those that show that a scanning electromagnet can be omitted (Patent Document 2) have also been proposed. Further, although not a medical or research particle beam irradiation apparatus, a means for correcting a deflection scanning position deviation in a charged particle beam scanning apparatus intended to irradiate a sample has been proposed (Patent Document 3).
  • the scanning irradiation method generally has no parts such as a collimator or a bolus used for the broad irradiation method to prevent irradiation to normal tissues other than the affected part, the beam position accuracy is required more than the broad irradiation method.
  • the scanning irradiation method requires a beam position accuracy higher than that of the broad irradiation method, a device for compensating the beam position accuracy is not so much disclosed.
  • a charged particle beam such as protons or carbon ions
  • a range a specific depth
  • the energy of the charged particle beam it travels through the substance to a specific depth (referred to as a range) according to the energy of the charged particle beam, and is applied to the substance near the range end
  • a peak that gives the maximum energy referred to as a Bragg peak
  • the Bragg peak has a feature that forms a very sharp deep dose distribution compared to other radiation such as X-rays.
  • the particle beam irradiation apparatus uses this property to suppress the influence on normal tissue as much as possible and to irradiate the affected area with a concentrated dose.
  • the body depth direction (Z direction) of the target irradiation position is adjusted by adjusting the energy of the charged particle beam, Assuming that the X direction and the Y direction orthogonal to the Z direction can be separated by controlling the scanning means such as a scanning electromagnet, the control amounts of the scanning means and the accelerator have been calculated.
  • the z coordinate of the beam irradiation position can be uniquely determined only by the energy of the charged particle beam.
  • a charged particle beam is a fan beam that spreads in a fan shape (one-dimensional scanning) or a cone beam that spreads in a cone shape (two-dimensional scanning). Therefore, the z coordinate of the beam irradiation position cannot be uniquely determined by the energy of the charged particle beam.
  • the influence of the fan beam on the irradiation position is called a fan beam effect
  • the influence of the cone beam on the irradiation position is called a cone beam effect.
  • FIG. 8 is a diagram for explaining the fan beam effect and the cone beam effect.
  • 1 is a charged particle beam
  • 31 is a patient's body
  • 32 is the body surface.
  • FIG. 8A illustrates the fan beam effect.
  • the z coordinate of the end portion 33 and the z coordinate of the central portion 34 at the irradiation position are not constant.
  • FIG. 8B illustrates the cone beam effect.
  • the z coordinate of the end portion 33 and the z coordinate of the central portion 34 at the irradiation position are not constant.
  • the present invention has been made to solve the above-described problems, and an object thereof is to obtain a particle beam irradiation apparatus capable of realizing a highly accurate beam irradiation position.
  • the particle beam irradiation apparatus is a particle beam irradiation apparatus that irradiates an irradiation target by scanning a charged particle beam accelerated by an accelerator with a scanning electromagnet, and irradiates the irradiation from a target irradiation position coordinate of the charged particle beam in the irradiation target.
  • a reverse mapping means having a reverse mapping model for generating a command value of the scanning electromagnet and a command value of the kinetic energy of the charged particle beam, and the reverse mapping model from the target irradiation position coordinates of the charged particle beam in the irradiation target.
  • the inverse mapping model is a polynomial of an inverse mapping mathematical model, and unknown coefficients existing in the polynomial are inputted with a plurality of command values set in advance in the scanning electromagnet.
  • the charged particle beam is controlled, and the actual data of each irradiation position coordinate actually irradiated is obtained by the least square method or the weighted least square method. It is what you want.
  • the particle beam irradiation apparatus from the target irradiation position coordinates of the charged particle beam on the irradiation target, the inverse mapping model that generates the command value of the scanning electromagnet that realizes the irradiation and the command value of the kinetic energy of the charged particle beam Therefore, a particle beam irradiation apparatus capable of realizing a highly accurate beam irradiation position can be obtained.
  • the inverse mapping model is a polynomial of an inverse mapping mathematical model, and the unknown coefficient existing in the polynomial is a plurality of command values set in advance in the scanning electromagnet.
  • a plurality of command values of preset kinetic energy are input to the accelerator to control the charged particle beam, and the least square method or the weighted least squares is calculated from the actual data of each irradiation position coordinate actually irradiated. Since it is obtained by multiplication, since it is based on actual data, a particle beam irradiation apparatus capable of realizing a highly accurate beam irradiation position is obtained. Therefore, it is possible to realize a high-accuracy beam irradiation position that also takes into account fluctuations in the irradiation position coordinates depending on the fan beam effect and the cone beam effect.
  • it is a figure explaining the method of calculating a coefficient (unknown parameter) from the actual data at the time of calibration.
  • it is a block diagram which calculates
  • It is a block diagram which shows the particle beam irradiation apparatus in Embodiment 1 of this invention.
  • FIG. 1 is a block diagram showing a particle beam irradiation apparatus that performs scanning irradiation in the technology that is the basis of the present invention.
  • the particle beam irradiation apparatus includes an accelerator 11 that accelerates a charged particle beam 1 to a charged particle beam 1 having a desired kinetic energy, a beam transport duct 2 that transports the charged particle beam 1, a scanning electromagnet that scans the charged particle beam 1 (scanning).
  • Electromagnet) 3 a beam extraction window 4 for extracting a beam, a scanning controller 10 for sending a command value to the scanning electromagnet 3, and the like.
  • the beam transport system having the beam transport duct 2 is provided with a deflection electromagnet, a beam monitor, a shielding electromagnet, a beam damper, an irradiation path deflection electromagnet, and the like.
  • the particle beam irradiation apparatus in the technology on which the invention is based has a scanning controller 10 having an inverse mapping mathematical model from the beam irradiation position coordinate space 7 to the scanning electromagnet command value space 6.
  • the scanning controller 10 has reverse mapping means 9 for generating an estimated value of the command value of the scanning electromagnet 3 that realizes the target beam irradiation position coordinates.
  • the charged particle beam 1 accelerated to the charged particle beam 1 having a desired kinetic energy by the accelerator 11 passes through the beam transport duct 2 and is guided to the irradiation unit.
  • the charged particle beam 1 is further designed to be extracted from the beam extraction window 4 and irradiated toward the isocenter 5 that is the irradiation reference point.
  • the charged particle beam 1 is obtained by using an X-direction scanning electromagnet (X-direction scanning electromagnet) 3a and Y provided outside the beam transport duct 2.
  • the XY direction of the beam irradiation position is controlled by the direction scanning electromagnet (Y direction scanning electromagnet) 3b, and the kinetic energy of the charged particle beam 1 is changed by the accelerator 11 to change the Z direction of the beam irradiation position (the depth of the affected area).
  • Direction is controlled.
  • These beam irradiation positions are controlled by controlling the kinetic energy of the charged particle beam 1 of the accelerator, the method of centralized control by the irradiation controller 23 (see FIG. 5) for controlling the entire particle beam irradiation apparatus, the scanning electromagnet, and the accelerator. There is a method of performing distributed control by the scanning controller 10 to be controlled.
  • the scanning controller 10 that controls the irradiation position of the charged particle beam 1 includes an inverse mapping means 9 having an inverse mapping mathematical model from the beam irradiation position coordinate space 7 to the scanning electromagnet command value space 6.
  • the Z direction (depth direction) of the beam irradiation position is uniquely determined by the kinetic energy of the charged particle beam, and a plurality of inverse mapping mathematical models have different kinetic energies. Create for.
  • a 00 , a 01 , a 02 ,..., B 00 , b 01 , b 02 ,... are coefficients (unknown parameters) that determine the characteristics of the inverse mapping mathematical model.
  • I ae and I be are estimated values of X, Y direction scanning electromagnet command values at which the irradiation position coordinates of the charged particle beam are (x, y).
  • Coefficients (unknown parameters) that determine the characteristics of the inverse mapping mathematical model may be obtained by performing trial irradiation for calibration in advance and using the least square method or the like from the actual data of the trial irradiation.
  • FIG. 2 is a diagram for explaining a method of calculating a coefficient (unknown parameter) from actual data at the time of calibration.
  • 8 of FIG. 1 has shown the direction of the normal mapping (real physical phenomenon).
  • FIG. 3 is a block diagram illustrating a method for calculating coefficients (unknown parameters).
  • FIG. 4 is a flowchart illustrating a method for calculating a coefficient (unknown parameter).
  • reference numeral 12 denotes a first beam profile monitor which is installed perpendicular to the charged particle beam reference irradiation axis 15 and outputs two-dimensional passage position coordinates (x a , y a ) of the irradiated charged particle beam.
  • Reference numeral 13 denotes a second beam profile monitor, which is installed perpendicularly to the reference irradiation axis 15 of the charged particle beam with a predetermined interval between the first beam profile monitor 12 and two-dimensional passage of the irradiated charged particle beam.
  • the position coordinates (x b , y b ) are output.
  • 14 is a water phantom whose surface is aligned with the patient's body surface 16 and arranged perpendicular to the reference irradiation axis 15 of the charged particle beam, and the coordinate z p in the depth direction of the position coordinate to which the irradiated charged particle beam reaches is set. Output.
  • the first and second beam profile monitors 12 and 13 and the water phantom 14 are arranged when calculating unknown parameters or when calibrating and confirming the charged particle beam, and are moved when the patient is irradiated with the charged particle beam. It is something to be made.
  • Calibration test irradiation is performed by the scanning controller 10 with the following values.
  • the irradiated charged particle beam 1 passes through the first and second beam profile monitors 12 and 13, and is passed position coordinates measured by the first and second beam profile monitors 12 and 13, respectively.
  • (X a , y a ) and (x b , y b ) are output.
  • the irradiation direction coordinate z of the irradiated charged particle beam 1 is uniquely determined from the position reached from the kinetic energy of the charged particle. From these values (x a , y a ), (x b , y b ) and z, the data processing means 17 (FIG. 3) calculates the irradiation position coordinates (x, y, z).
  • the calibration test irradiation is performed using the values of the command values. For example, it shakes the command value I a in the X-direction scanning electromagnet I a + [Delta] I a, ... a, the command value I b in the Y-direction scanning electromagnet I b + [Delta] I b, ... to.
  • a reverse mapping coefficient unknown parameter
  • the polynomial model expressed by Equation 1 can be expressed as follows using a matrix and a vector.
  • the matrix Ac is an inverse mapping input matrix composed of the irradiation position coordinates
  • the matrix Xc is an inverse mapping unknown parameter matrix
  • the matrix Be is an inverse mapping output matrix composed of command value estimation values.
  • the unknown parameter matrix Xc has not yet been obtained at this stage.
  • the actual data of the command value Bcarib and the obtained irradiation position Acarib at the time of trial irradiation of calibration are arranged vertically so as to form a vertically long matrix according to the form of Equation 2.
  • the subscript number means a trial irradiation number for calibration (in the above example, it means that n-point trial irradiation has been performed).
  • the inverse mapping unknown parameter matrix Xc is obtained by the following least square method.
  • the superscript T represents a transposed matrix.
  • the order of the nonlinear model may be increased as appropriate depending on the characteristics of the particle beam irradiation apparatus to be handled.
  • Several polynomial models (inverse mapping mathematical model) may be prepared in advance so that the operator can select a polynomial model. Note that the method disclosed in Patent Document 3 and the like calculates the correction amount, but the inverse mapping mathematical model in the present invention is different in that the command value itself is obtained.
  • the particle beam irradiation apparatus is required to irradiate a charged particle beam three-dimensionally.
  • (x, y, z) of target beam irradiation position coordinates is (x 0 , y 0 , z 0 ) (x 1 , y 1 , z 1 ) (x 2 , y 2 , z 2 )... are sent to the scanning controller 10.
  • FIG. 5 is a block diagram for obtaining the command value of the scanning electromagnet and the command value of the kinetic energy of the charged particle beam from the treatment plan value.
  • the inverse mapping mathematical model and the kinetic energy command value E be shown in FIG. 5 will be described in the first embodiment.
  • the beam incident point on the scanning electromagnet 3a does not vary.
  • the transmitted target beam irradiation position coordinates (x 0 , y 0 ) (x 1 , y 1 ) (x 2 , y 2 )... Are respectively the inverse mapping mathematical model (Formula 1) of the scanning controller 10. ) And the estimated values (I ae , I be ) (... Of the scanning electromagnet command values are calculated for each target beam irradiation position coordinate.
  • inverse mapping is obtained for each of a plurality of different charged particle beam kinetic energies.
  • the inverse mapping mathematical model to the plane A 0 -A 0 including the isocenter 5 that is the irradiation reference, but also the kinetic energy of the charged particle beam is changed by ⁇ E b (equal intervals). It is not necessary)
  • the plane A ⁇ 1 -A ⁇ 1 , A ⁇ 2 ⁇ A ⁇ 2 ,... In front of the fixed isocenter 5.
  • the isocenter fixed by changing the kinetic energy of the charged particle beam by + ⁇ E b.
  • Inverse mapping mathematical models from planes A 1 -A 1 , A 2 -A 2 ,... Deeper than 5 are also prepared, and linear interpolation is performed when the beam irradiation position coordinates on the irradiation target are between the planes. I tried to do it.
  • a calculation means inverse mapping means for calculating.
  • the inverse mapping means has a 2-input 2-output polynomial model. Therefore, the beam position accuracy is compensated according to the individual difference of the target particle beam irradiation apparatus, the use environment, and the secular change, and a highly accurate and highly reliable particle beam irradiation apparatus can be obtained.
  • FIG. 6 is a configuration diagram illustrating the particle beam irradiation apparatus according to the first embodiment.
  • the inverse mapping mathematical model is regarded as two inputs and two outputs.
  • I ae , I be , and E be are the estimated values of the command values to the X and Y direction scanning electromagnets whose charged particle beam irradiation position coordinates are (x, y, z), and the kinetic energy of the charged particle beam to the accelerator. This is an estimated value of the command value.
  • the coefficient (unknown parameter) that determines the characteristics of the inverse mapping mathematical model is preliminarily subjected to test irradiation for calibration (calibration) in the same manner as the technology that forms the basis of the invention, and the least square method is obtained from the actual data of the test irradiation. Ask for.
  • Calibration test irradiation is performed by the scanning controller 10 with the following values.
  • the irradiated charged particle beam 1 Upon receiving the command value, referring to FIGS. 2, 3, and 4, the irradiated charged particle beam 1 passes through the first and second beam profile monitors 12 and 13, and the first and second beams are transmitted. The passing position coordinates (x a , y a ) and (x b , y b ) measured from the profile monitors 12 and 13 are output. Further, the irradiated charged particle beam 1 reaches the water phantom 14 and outputs the coordinate z p in the depth direction of the position coordinate to reach it.
  • the data processing means 17 (FIG.
  • the calibration test irradiation is performed using the values of the command values.
  • an example of a method for obtaining the inverse mapping coefficient (unknown parameter) in the case of 3 inputs and 3 outputs from actual data of trial irradiation will be shown.
  • the polynomial model expressed by Equation 5 can be expressed as follows using a matrix and a vector.
  • the matrix Ac is an inverse mapping input matrix composed of the irradiation position coordinates
  • the matrix Xc is an inverse mapping unknown parameter matrix
  • the matrix Be is an inverse mapping output matrix composed of command value estimation values.
  • the unknown parameter matrix Xc has not yet been obtained at this stage.
  • the command value and the actual data of the irradiation position obtained during the calibration test irradiation are arranged vertically to form a vertically long matrix according to the form of Equation 6.
  • the actual data of the command value Bcarib and the obtained irradiation position Acarib at the time of calibration test irradiation are arranged vertically so as to form a vertically long matrix according to the form of Equation 6.
  • the subscript number means a trial irradiation number for calibration (in the above example, it means that n-point trial irradiation has been performed).
  • the unknown parameter matrix Xc of the inverse mapping is obtained by Equation 4 of the least square method, as in the technology that forms the basis of the invention.
  • the main irradiation is performed. First, it is confirmed by a beam monitor (not shown) provided in the beam transport duct 1 that the beam incident point on the scanning electromagnet 3a has not changed since the calibration. At this time, when it is recognized that the beam incident point is fluctuating, the calibration procedure is performed again, and each coefficient may be obtained again.
  • the order of the polynomial model which is the inverse mapping mathematical model, can be appropriately increased if the degree of nonlinearity is strong, depending on the characteristics of the particle beam irradiation apparatus to be handled. Absent. Also in the first embodiment, several polynomial models may be prepared in advance so that the operator can select a polynomial model.
  • target beam irradiation position coordinates (x 0 , y 0 , z 0 ) (x 1 , y 1 , z 1 ) (x 2 , y 2 , z 2 )... are sent to the scanning controller 10 via the data server 22 and the irradiation controller 23. If the beam incident point on the scanning electromagnet 3a is not changed, the transmitted target beam irradiation position coordinates (x 0 , y 0 , z 0 ) (x 1 , y 1 , z 1 ) (x 2 , y 2 , z 2 )...
  • Control of the position of the charged particle beam is roughly performed by the scanning electromagnet 3 in the XY direction and by adjusting the kinetic energy of the charged particle beam in the Z direction. .
  • the charged particle beam is controlled by the scanning electromagnet 3, not only the XY direction but also the Z direction is affected.
  • the kinetic energy of the charged particle beam is controlled, not only the Z direction but also the XY direction may be affected.
  • Such an effect is referred to herein as “the influence of the interference term between XY and Z”.
  • the 3-input 3-output inverse mapping mathematical model can generate a command value in consideration of the influence of the interference term between XY and Z.
  • the conventional deflection correction method (for example, Patent Document 3) does not consider the Z direction, but in the first embodiment, by preparing a plurality of inverse mapping mathematical models in this way, the Z direction is obtained. Can also be considered.
  • the inverse mapping mathematical model in the scanning controller 10 is a three-input three-output consisting of the target irradiation position coordinates, the command value to the scanning electromagnet 3 and the kinetic energy command value of the charged particle beam 1 are obtained at a time. Since the command value is generated in consideration of the influence of the interference term between XY and Z, more accurate beam position control can be realized.
  • a conversion table is prepared as an inverse mapping model for generating a command value of the scanning electromagnet that realizes the irradiation and a command value of the kinetic energy of the charged particle beam,
  • the charged particle beam is scanned by controlling the kinetic energy of the scanning electromagnet and the charged particle beam according to the command value generated using the conversion table from the target irradiation position coordinates of the charged particle beam on the irradiation target and irradiating the irradiation target. You may make it do.
  • FIG. 7 is a configuration diagram illustrating the particle beam irradiation apparatus according to the second embodiment.
  • 31 is a final deflection electromagnet provided in the beam transport system, which is arranged upstream of the Y-direction scanning electromagnet 3b and deflects the charged particle beam in the A, B and C paths.
  • FIG. 1 of the technology that forms the basis of the invention a simple case in which the scanning electromagnet 3 is located at the most downstream side is shown.
  • the present invention can also be applied to such a configuration example. Rather, in these cases, the normal mapping from the command value coordinate space 6 to the beam irradiation position coordinate space 7 becomes more complicated, and thus the effect of the present invention is achieved. Is big.
  • the Y-direction scanning electromagnet 3b is used, and the final deflection electromagnet 31 has the function of the X-direction scanning electromagnet.
  • a command value I a from the final deflection electromagnet 31 to the X-direction scanning electromagnet is generated, the charged particle beam is scanned, and an estimated value I ae of the command value of the X-direction scanning electromagnet is input to the final deflection electromagnet 31.
  • the final deflection electromagnet 31 has the same function as the X-direction scanning electromagnet.
  • Embodiment 3 the least square method has been described as a method for obtaining a coefficient (unknown parameter) of a polynomial.
  • a weighted least square method may be used in the method of obtaining the coefficient (unknown parameter) of this polynomial.
  • each data is weighted and calculated in the original data (actual data at the time of calibration) for obtaining a polynomial coefficient (unknown parameter).
  • unreliable data may be obtained for some reason (for example, electrical noise). In this case, the influence of this data can be suppressed by applying a weight close to 0 to data with low reliability.
  • the irradiation target may be divided into several areas, and polynomial unknown parameters may be obtained for each area.
  • the data belonging to the area A in the actual data of the calibration test irradiation is weighted 1 and the data not belonging to the area A is multiplied by a weight close to 0. Therefore, it is possible to realize irradiation that is closer to the actual phenomenon, that is, highly accurate irradiation.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Pathology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

 高精度なビーム照射位置を実現できる粒子線照射装置を得る。照射対象における荷電粒子ビームの目標照射位置座標から、その照射を実現するスキャニング電磁石の指令値及び荷電粒子ビームの運動エネルギーの指令値を生成する逆写像数式モデルを有する逆写像手段を備え、照射対象における荷電粒子ビームの目標照射位置座標から、前記逆写像数式モデルを使用して生成した前記指令値により前記スキャニング電磁石及び荷電粒子ビームの運動エネルギーを制御して荷電粒子ビームを走査し照射対象に照射するようにしたものである。

Description

粒子線照射装置
 この発明は、がん治療等の医療用や研究用に用いられる粒子線照射装置に関する。特にスポットスキャニングやラスタスキャニングなどの走査式照射を行う粒子線照射装置に関する。
 がん治療等の医療用や研究用に用いられる粒子線照射装置において、もっとも広く用いられている照射方式はブロード照射方式である。ブロード照射方式は、散乱体やワブラー電磁石を使って荷電粒子ビームを広げ、コリメータやボーラスを使って患部以外の場所への照射を減らす方法である。
 この一気に照射対象領域を照射するブロード照射方式に対して、スポットスキャニングやラスタスキャニングといった、荷電粒子ビームを走査して照射対象である患部を小領域ずつ照射する走査式照射方法が提案されている(例えば非特許文献1)。非特許文献1に示された走査式照射を行う従来の粒子線照射装置を更に応用して、最終偏向電磁石よりも上流側に走査電磁石を置くことにより、ガントリの半径を著しく減少させたもの(特許文献1)や、走査電磁石を省略できることを示したもの(特許文献2)も提案されている。また、医療用や研究用の粒子線照射装置ではないが、試料上に照射する目的の荷電粒子ビーム走査式装置において、偏向走査位置ずれを補正する手段が提案されている(特許文献3)。
 走査式照射方法は、ブロード照射方式で用いるコリメータやボーラスといった患部以外の正常組織への照射を防ぐ部品がないのが一般的なため、ブロード照射方式以上にビーム位置精度が要求される。このように、走査式照射方法はブロード照射方式以上にビーム位置精度が要求されているにもかかわらず、そのビーム位置精度を補償する装置はあまり開示されていない。
 また、陽子、炭素イオンなどの荷電粒子ビームは、体内など物質に入射すると、荷電粒子ビームのエネルギーに応じた特定の深さ(飛程という)まで物質中を進み、飛程終端付近で物質に対するエネルギー付与が最大となるピークがあり(ブラッグピークと呼ぶ)、X線など他の放射線に比べてブラッグピークがとてもシャープな深部線量分布を形成する特徴を有する。粒子線照射装置はこの性質を利用して、正常組織への影響を極力抑え、患部に線量を集中照射させるものである。このことから、スポットスキャニングやラスタスキャニングを行う走査型の粒子線照射装置や治療計画装置において従来は、目標照射位置の体内深さ方向(Z方向)は荷電粒子ビームのエネルギーを調整することで、Z方向と直交するX方向とY方向は走査電磁石等の走査手段を制御することで、というふうに分離して行えると仮定して、走査手段と加速器それぞれの制御量を計算していた。
特表2007-534391号公報(第4図) 特開2006-166947号公報 国際公開第WO01/69643号パンフレット
Tatsuaki Kanai, et al., "Spot scanning system for proton radiotherapy", Medical Physics, Jul./Aug. 1980, Vol.7, No.4, pp365-369
 たしかに、荷電粒子ビームが常に進行方向が一定な平行ビームであれば、ビーム照射位置のz座標は荷電粒子ビームのエネルギーのみによって一意に決めることができる。しかし、実際の走査電磁石等の走査手段によってビームの向きが制御される粒子線照射装置においては、荷電粒子ビームは扇状に広がるファンビーム(1次元走査)や円錐状に広がるコーンビーム(2次元走査)となるため、ビーム照射位置のz座標は荷電粒子ビームのエネルギーによって一意に決められない。このファンビームであることによる照射位置への影響はファンビーム効果と呼ばれ、コーンビームであることによる照射位置への影響はコーンビーム効果と呼ばれている。
 図8はファンビーム効果とコーンビーム効果を説明する図である。図中、1は荷電粒子ビーム、31は患者の体、32はその体表面を示す。図8(a)はファンビーム効果を説明しており、荷電粒子ビーム1が1次元走査されると照射位置の端部33のz座標と中心部34のz座標が一定にならない。図8(b)はコーンビーム効果を説明しており、荷電粒子ビーム1が2次元走査されると照射位置の端部33のz座標と中心部34のz座標が一定にならない。
 この発明は前述のような課題を解決するためになされたものであり、高精度なビーム照射位置を実現できる粒子線照射装置を得ることを目的とする。
 この発明の粒子線照射装置は、加速器により加速された荷電粒子ビームをスキャニング電磁石で走査して照射対象に照射する粒子線照射装置において、照射対象における荷電粒子ビームの目標照射位置座標から、その照射を実現する前記スキャニング電磁石の指令値及び荷電粒子ビームの運動エネルギーの指令値を生成する逆写像モデルを有する逆写像手段を備え、照射対象における荷電粒子ビームの目標照射位置座標から、前記逆写像モデルを使用して生成した前記指令値により前記スキャニング電磁石及び荷電粒子ビームの運動エネルギーを制御して荷電粒子ビームを走査し照射対象に照射するようにしたものである。
 また、この発明の粒子線照射装置は、前記逆写像モデルが逆写像数式モデルの多項式であり、前記多項式に存在する未知の係数は、前記スキャニング電磁石に予め設定した複数組の指令値を入力すると共に、前記加速器に予め設定した運動エネルギーの複数の指令値を入力して、荷電粒子ビームを制御し、実際に照射されたそれぞれの照射位置座標の実データから最小二乗法又は重み付け最小二乗法により求めるようにしたものである。
 この発明に係る粒子線照射装置よれば、照射対象における荷電粒子ビームの目標照射位置座標から、その照射を実現するスキャニング電磁石の指令値及び荷電粒子ビームの運動エネルギーの指令値を生成する逆写像モデルを有する逆写像手段を備えたので、高精度なビーム照射位置を実現できる粒子線照射装置が得られる。
 また、この発明に係る粒子線照射装置よれば、前記逆写像モデルが逆写像数式モデルの多項式であり、前記多項式に存在する未知の係数は、前記スキャニング電磁石に予め設定した複数組の指令値を入力すると共に、前記加速器に予め設定した運動エネルギーの複数の指令値を入力して、荷電粒子ビームを制御し、実際に照射されたそれぞれの照射位置座標の実データから最小二乗法又は重み付け最小二乗法により求めるようにしたので、実データに基づいているため、高精度なビーム照射位置を実現できる粒子線照射装置が得られる。従って、ファンビーム効果やコーンビーム効果に依存する照射位置座標の変動も考慮された高精度なビーム照射位置を実現できる。
この発明の基礎となる技術における粒子線照射装置を示す構成図である。 この発明において、キャリブレーション時の実データから、係数(未知パラメータ)を計算する手法を説明する図である。 この発明において、係数(未知パラメータ)を計算する手法を説明するブロック図である。 この発明において、係数(未知パラメータ)を計算する手法を説明するフローチャートである。 この発明において、治療計画値よりスキャニング電磁石の指令値と荷電粒子ビームの運動エネルギーの指令値を求めるブロック図である。 この発明の実施の形態1における粒子線照射装置を示す構成図である。 この発明の実施の形態2における粒子線照射装置を示す構成図である。 ファンビーム効果とコーンビーム効果を説明する図である。
発明の基礎となる技術
 図1はこの発明の基礎となる技術における走査式照射をする粒子線照射装置を示す構成図である。粒子線照射装置は、荷電粒子ビーム1を所望の運動エネルギーを有する荷電粒子ビーム1に加速する加速器11、荷電粒子ビーム1を輸送するビーム輸送ダクト2、荷電粒子ビーム1を走査するスキャニング電磁石(走査電磁石)3、ビームを取出すビーム取出し窓4、及び、スキャニング電磁石3へ指令値を送るスキャニング制御器10などから構成されている。ビーム輸送ダクト2を有するビーム輸送系には、偏向電磁石、ビームモニタ、遮蔽電磁石、ビームダンパ、照射路偏向電磁石などが設けられている。発明の基礎になる技術における粒子線照射装置は、スキャニング制御器10にビーム照射位置座標空間7からスキャニング電磁石指令値空間6への逆写像数式モデルを有するものである。換言すれば、スキャニング制御器10には目標ビーム照射位置座標に対して、それを実現するスキャニング電磁石3の指令値の推定値を生成する逆写像手段9を有している。
 次に粒子線照射装置の動作について説明する。加速器11により所望の運動エネルギーを有する荷電粒子ビーム1にまで加速された荷電粒子ビーム1は、ビーム輸送ダクト2の中をとおり、照射部へと導かれる。荷電粒子ビーム1はさらにビーム取出し窓4から取出され、照射基準点であるアイソセンタ5に向けて照射されるように設計されている。一般的に、照射対象である患部を選択的に走査して照射するために、荷電粒子ビーム1は、ビーム輸送ダクト2の外側に設けられたX方向スキャニング電磁石(X方向走査電磁石)3aとY方向スキャニング電磁石(Y方向走査電磁石)3bとによって、ビーム照射位置のXY方向が制御されると共に、加速器11で荷電粒子ビーム1の運動エネルギーを変えることによってビーム照射位置のZ方向(患部の深さ方向)が制御される。これらのビーム照射位置の制御を行うのは、粒子線照射装置全体を制御する照射制御装置23(図5参照)により集中制御する方法と、スキャニング電磁石と、加速器の荷電粒子ビーム1の運動エネルギーを制御するスキャニング制御器10によって分散制御する方法がある。
 発明の基礎になる技術において、荷電粒子ビーム1の照射位置制御を行うスキャニング制御器10には、ビーム照射位置座標空間7からスキャニング電磁石指令値空間6への逆写像数式モデルを有する逆写像手段9を設けた。逆写像数式モデルの好適な一例は多項式モデルである。以下の数式1に最高次数=2の場合の多項式モデルを示す。なお、発明の基礎になる技術では、ビーム照射位置のZ方向(深さ方向)は、荷電粒子ビームの運動エネルギーにより一意に決まると仮定し、逆写像数式モデルは複数個、異なった運動エネルギーに対して作成する。
Figure JPOXMLDOC01-appb-M000001
 ただし、a00,a01,a02,…,b00,b01,b02,…は逆写像数式モデルの特性を決定する係数(未知パラメータ)である。Iae,Ibeは荷電粒子ビームの照射位置座標が(x,y)となるX,Y方向スキャニング電磁石指令値の推定値である。逆写像数式モデルの特性を決定する係数(未知パラメータ)は、あらかじめキャリブレーション(calibration)用に試し照射を行い、その試し照射の実データから最小二乗法などにより求めればよい。
 図2はキャリブレーション時の実データから、係数(未知パラメータ)を計算する手法を説明する図である。なお、図1の8は正写像(実物理現象)の方向を示している。図3は係数(未知パラメータ)を計算する手法を説明するブロック図である。図4は係数(未知パラメータ)を計算する手法を説明するフローチャートである。なお、各図において、同一符号は同一又は相当部分を示す。図において、12は第1ビームプロファイルモニタで、荷電粒子ビームの基準照射軸15に垂直に設置され、照射される荷電粒子ビームの2次元の通過位置座標(xa,ya)を出力する。13は第2ビームプロファイルモニタで、第1ビームプロファイルモニタ12との間に所定の間隔を空けて荷電粒子ビームの基準照射軸15に垂直に設置され、照射される荷電粒子ビームの2次元の通過位置座標(xb,yb)を出力する。14は水ファントムで、その表面を患者の体表面16に合わせ荷電粒子ビームの基準照射軸15に垂直に配置され、照射される荷電粒子ビームの到達する位置座標の深さ方向の座標zpを出力する。なお、第1,第2ビームプロファイルモニタ12,13及び水ファントム14は、未知パラメータを計算するときや、荷電粒子ビームの校正,確認のときに配置し、患者への荷電粒子ビーム照射時は移動させるものである。
 キャリブレーションの試し照射は、スキャニング制御器10により、以下の値をふって行う。
X方向スキャニング電磁石への指令値Ia(=電流値,ヒステリシスを考慮して補正計算した電流値や設定磁場強度等)。
Y方向スキャニング電磁石への指令値Ib(=電流値,ヒステリシスを考慮して補正計算した電流値や設定磁場強度等)。
加速器への運動エネルギー指令値Eb
 前記指令値を受けて、照射された荷電粒子ビーム1は、第1,第2ビームプロファイルモニタ12,13を通過し、第1,第2ビームプロファイルモニタ12,13よりそれぞれ測定された通過位置座標(xa,ya),(xb,yb)を出力する。また、照射された荷電粒子ビーム1は、荷電粒子の運動エネルギーから到達する位置の深さ方向座標zが一意に決まると仮定する。これらの値(xa,ya),(xb,yb)及びzから、データ処理手段17(図3)は、照射位置座標(x,y,z)を算出する。
 前述したように、キャリブレーションの試し照射は、各指令値の値をふって行う。例えば、X方向スキャニング電磁石への指令値IaをIa+ΔIa、…に、Y方向スキャニング電磁石への指令値IbをIb+ΔIb、…にふる。ここで、試し照射の実データから、逆写像の係数(未知パラメータ)を求める方法の一例を示す。数式1で示した多項式モデルは、行列とベクトルを用いると以下のように表現できる。
Figure JPOXMLDOC01-appb-M000002
ここで、行列Acは照射位置座標からなる逆写像の入力行列、行列Xcは逆写像の未知パラメータ行列、行列Beは指令値の推定値からなる逆写像の出力行列である。ただし、未知パラメータ行列Xcは、まだこの段階では値が求まっていない。キャリブレーションの試し照射のときの指令値Bcaribおよび得られた照射位置Acaribの実データは、数式2の形にしたがって、縦長行列をつくるように縦にならべていく。
Figure JPOXMLDOC01-appb-M000003
ここで、下添えの数字は、キャリブレーションの試し照射番号を意味する(上の例では、n箇所試し照射を行ったことを意味する)。逆写像の未知パラメータ行列Xcは、以下の最小二乗法の式により求まる。
Figure JPOXMLDOC01-appb-M000004
ただし、上添え字のTは、転置行列であることを表す。
以上のキャリブレーションにより多項式の各係数を求めた後、本照射を実施する。まずスキャニング電磁石3aへのビーム入射点がキャリブレーション時から変動していないことを、ビーム輸送ダクト1に設けられたビームモニタ(図示しない)により確認する。この時ビーム入射点が変動していることが認められた場合には、前記キャリブレーション手順を再度行い、各係数を再び求めればよい。
 数式1等の多項式モデルの次数は、扱う粒子線照射装置の特性によって、非線形性が強いものは適宜次数を上げていけばよく、数式1に示した次数=2のものである必要はない。いくつかの多項式モデル(逆写像数式モデル)をあらかじめ用意し、オペレータが多項式モデルを選択できるようにするとよい。なお、特許文献3等に開示されている方法は、補正量を計算するものであるが、この発明における逆写像数式モデルは指令値そのものを求めるものである点が異なる。
 粒子線照射装置は、3次元的に荷電粒子ビームを照射することが求められ、図1に示すように、一般的に、目標ビーム照射位置座標の(x,y,z)は(x0,y0,z0)(x1,y1,z1)(x2,y2,z2)……という形でスキャニング制御器10に送られる。
 図5は治療計画値よりスキャニング電磁石の指令値と荷電粒子ビームの運動エネルギーの指令値を求めるブロック図である。患者に対する治療計画装置21より目標ビーム照射位置座標(x0,y0,z0)(x1,y1,z1)(x2,y2,z2)……が、データサーバ22,照射制御装置23を経由して、スキャニング制御器10に送られる。なお、図5の、逆写像数式モデルと運動エネルギー指令値Ebeについては実施の形態1で説明する。発明の基礎になる技術では、前述したように、加速器の荷電粒子ビームの運動エネルギーを設定値としてビーム照射位置のZ方向の制御を含めていないため、スキャニング電磁石3aへのビーム入射点が変動しないようにすると、送られた目標ビーム照射位置座標(x0,y0)(x1,y1)(x2,y2)……が、それぞれスキャニング制御器10の逆写像数式モデル(数式1)に代入され、それぞれ各目標ビーム照射位置座標について、スキャニング電磁石指令値の推定値(Iae,Ibe)(……が算出される。
 発明の基礎になる技術においては、異なる複数の荷電粒子ビーム運動エネルギーごとに逆写像を求めた。具体的には、例えば、照射基準であるアイソセンタ5を含む平面A0-A0への逆写像数式モデルだけではなく、荷電粒子ビームの運動エネルギーを-ΔEbずつ変更して(等間隔である必要はない)固定したアイソセンタ5よりも手前の平面A-1-A-1,A-2-A-2,…、逆に、荷電粒子ビームの運動エネルギーを+ΔEbずつ変更して固定したアイソセンタ5よりも奥の平面A1-A1,A2-A2,…、からの逆写像数式モデルも準備し、照射対象におけるビーム照射位置座標が平面と平面との間にある場合は線形補間するようにした。
 このように、発明の基礎となる技術では、照射基準平面上の目標照射位置座標(x,y)に対して、それを実現するスキャニング電磁石への指令値の推定値(Iae,Ibe)を計算する計算手段(逆写像手段)を設けている。具体的には、その逆写像手段は2入力2出力の多項式モデルを有している。そのため、対象とする粒子線照射装置の個体差、使用環境や経年変化に応じてビーム位置精度を補償し、高精度、高信頼度の粒子線照射装置が得られる。
実施の形態1.
 図6は実施の形態1における粒子線照射装置を示す構成図である。発明の基礎となる技術では、逆写像数式モデルを2入力2出力として捉えたが、実施の形態1では、図6,数式5(後述)に示すように、逆写像数式モデルを目標照射位置座標からなる3入力3出力とした。以下の数式5に3入力3出力、最高次数=2の場合の多項式モデルを示す。
Figure JPOXMLDOC01-appb-M000005
 ただし、a000,a001,a002,…,b000,b001,b002,…,c000,c001,c002,…は逆写像数式モデルの特性を決定する係数(未知パラメータ)である。Iae,Ibe,Ebeは荷電粒子ビームの照射位置座標が(x,y,z)となるX,Y方向スキャニング電磁石への指令値の推定値、加速器への荷電粒子ビームの運動エネルギーの指令値の推定値である。逆写像数式モデルの特性を決定する係数(未知パラメータ)は、発明の基礎となる技術と同様に、あらかじめキャリブレーション(calibration)用に試し照射を行い、その試し照射の実データから最小二乗法などにより求める。
 キャリブレーションの試し照射は、スキャニング制御器10により、以下の値をふって行う。
X方向スキャニング電磁石への指令値Ia(=電流値,ヒステリシスを考慮して補正計算した電流値や設定磁場強度等)。
Y方向スキャニング電磁石への指令値Ib(=電流値,ヒステリシスを考慮して補正計算した電流値や設定磁場強度等)。
加速器への運動エネルギー指令値Eb
 前記指令値を受けて、図2,図3,図4を参照して、照射された荷電粒子ビーム1は、第1,第2ビームプロファイルモニタ12,13を通過し、第1,第2ビームプロファイルモニタ12,13よりそれぞれ測定された通過位置座標(xa,ya),(xb,yb)を出力する。さらに、照射された荷電粒子ビーム1は、水ファントム14に到達し、その到達する位置座標の深さ方向の座標zpを出力する。これらの出力値を得たデータ処理手段17(図3)は、(xa,ya),(xb,yb)とzpから到達位置座標の(xp,yp)を求め、到達位置座標(xp,yp,zp)を決定する。
 前述したように、キャリブレーションの試し照射は、各指令値の値をふって行う。例えば、X方向スキャニング電磁石への指令値IaをIa+ΔIa、…に、Y方向スキャニング電磁石への指令値IbをIb+ΔIb、…に、加速器への運動エネルギー指令値EbをEb+ΔEb、…にふる。ここで、試し照射の実データから、3入力3出力の場合の逆写像の係数(未知パラメータ)を求める方法の一例を示す。数式5で示した多項式モデルは、行列とベクトルを用いると以下のように表現できる。
Figure JPOXMLDOC01-appb-M000006
 ここで、行列Acは照射位置座標からなる逆写像の入力行列、行列Xcは逆写像の未知パラメータ行列、行列Beは指令値の推定値からなる逆写像の出力行列である。ただし、未知パラメータ行列Xcは、まだこの段階では値が求まっていない。キャリブレーションの試し照射のときに得られた指令値および照射位置の実データは、数式6の形にしたがって、縦長行列をつくるように縦にならべていく。キャリブレーションの試し照射のときの指令値Bcaribおよび得られた照射位置Acaribの実データは、数式6の形にしたがって、縦長行列をつくるように縦にならべていく。
Figure JPOXMLDOC01-appb-M000007
ここで、下添えの数字は、キャリブレーションの試し照射番号を意味する(上の例では、n箇所試し照射を行ったことを意味する)。逆写像の未知パラメータ行列Xcは、発明の基礎となる技術と同様、最小二乗法の数式4により求まる。以上のキャリブレーションにより多項式の各係数を求めた後、本照射を実施する。まずスキャニング電磁石3aへのビーム入射点がキャリブレーション時から変動していないことを、ビーム輸送ダクト1に設けられたビームモニタ(図示しない)により確認する。この時ビーム入射点が変動していることが認められた場合には、前記キャリブレーション手順を再度行い、各係数を再び求めればよい。
 逆写像数式モデルである多項式モデルの次数は、扱う粒子線照射装置の特性によって、非線形性が強いものは適宜次数を上げていけばよく、数式5に示した次数=2のものである必要はない。実施の形態1でも、いくつかの多項式モデルをあらかじめ用意し、オペレータが多項式モデルを選択できるようにてもよい。
 実施の形態1においても、図5を参照して、患者に対する治療計画装置21より目標ビーム照射位置座標(x0,y0,z0)(x1,y1,z1)(x2,y2,z2)……が、データサーバ22,照射制御装置23を経由して、スキャニング制御器10に送られる。スキャニング電磁石3aへのビーム入射点が変動しないようにすると、送られた目標ビーム照射位置座標(x0,y0,z0)(x1,y1,z1)(x2,y2,z2)……が、それぞれスキャニング制御器10の逆写像数式モデル(数式5)に代入され、それぞれ各目標ビーム照射位置座標について、スキャニング電磁石の指令値の推定値(Iae,Ibe)(……と運動エネルギー指令値の推定値(Ebe)(……が算出される。
 荷電粒子ビームの位置の制御は、おおよそ、XY方向はスキャニング電磁石3により、Z方向は荷電粒子ビームの運動エネルギー調整により行うが、厳密にはこのようにきれいにXYとZとを分離できるわけではない。スキャニング電磁石3により荷電粒子ビームを制御すると、XY方向だけではなく、Z方向をも影響を受ける。同様に、荷電粒子ビームの運動エネルギーを制御すると、Z方向だけではなく、XY方向をも影響を受ける場合がある。このような影響をここでは「XYとZとの干渉項の影響」と呼ぶことにする。3入力3出力の逆写像数式モデルは、このXYとZとの干渉項の影響も考慮して指令値を生成することができる。
 従来の偏向補正による方法(例えば特許文献3)においては、Z方向を考慮しているものをみないが、実施の形態1ではこのように複数の逆写像数式モデルを用意することにより、Z方向をも考慮することができる。
 このように、スキャニング制御器10における逆写像数式モデルを目標照射位置座標からなる3入力3出力としたので、スキャニング電磁石3への指令値と荷電粒子ビーム1の運動エネルギー指令値を一度に求めることができ、XYとZとの干渉項の影響をも考慮して指令値を生成するので、より高精度なビーム位置制御を実現できる。また、ファンビーム効果やコーンビーム効果に依存する照射位置座標の変動も考慮された高精度なビーム照射位置を実現できる。また、照射対象における荷電粒子ビームの目標照射位置座標から、その照射を実現するスキャニング電磁石の指令値及び荷電粒子ビームの運動エネルギーの指令値を生成する逆写像モデルとして、変換テーブルを用意して、照射対象における荷電粒子ビームの目標照射位置座標から、前記変換テーブルを使用して生成した前記指令値により前記スキャニング電磁石及び荷電粒子ビームの運動エネルギーを制御して荷電粒子ビームを走査し照射対象に照射するようにしてもよい。
実施の形態2.
 図7は実施の形態2における粒子線照射装置を示す構成図である。31はビーム輸送系に設けられた最終偏向電磁石で、Y方向スキャニング電磁石3bより上流に配置され、荷電粒子ビームをA,B、C経路に偏向する。発明の基礎となる技術の図1では、スキャニング電磁石3が最下流にある単純な場合を示したが、特許文献1の粒子線照射装置のように、スキャニング電磁石(スキャニング電磁石,ワブラー電磁石)の下流に偏向電磁石があるような場合や、特許文献2の粒子線照射装置のように、偏向電磁石をうまく利用してスキャニング電磁石を省略したものがある。かような構成例にもこの発明を適用することができ、むしろ、これらの場合は、指令値座標空間6からビーム照射位置座標空間7への正写像がより複雑になるため、この発明の効果は大きい。
 図7では、Y方向スキャニング電磁石3bは使用し、最終偏向電磁石31にX方向スキャニング電磁石の機能を持たせたものである。最終偏向電磁石31からX方向スキャニング電磁石への指令値Ia、を発生させ、荷電粒子ビームを走査し、最終偏向電磁石31にX方向スキャニング電磁石の指令値の推定値Iaeを入力する。このように、最終偏向電磁石31にX方向スキャニング電磁石と同様な機能をも持たせるものである。
実施の形態3.
 実施の形態1において、多項式の係数(未知パラメータ)の求め方として、最小二乗法について説明した。この多項式の係数(未知パラメータ)の求め方において、重み付け最小二乗法を用いてもよい。この重み付け最小二乗法とは、多項式の係数(未知パラメータ)を求めるもとのデータ(キャリブレーション時の実データ)において、各データに重みをつけて計算するものである。例えば、キャリブレーションの試し照射を行う際、何らかの理由により(例えば電気的ノイズ等)、信頼性の低いデータが得られる場合がある。この場合、信頼性の低いデータには0に近い重みをかけることによって、このデータの影響を抑えることができる。
 また、照射対象をいくつかのエリアに分割して、それぞれのエリアごとに多項式の未知パラメータを求めても良い。この場合、あるエリアAの多項式を計算する場合、キャリブレーションの試し照射の実データにおいてエリアAに属するデータは重み1を、エリアAに属さないデータは0に近い重みをかけて計算することによって、より実現象に近い、すなわち高精度な照射を実現することができる。

Claims (7)

  1.  加速器により加速された荷電粒子ビームをスキャニング電磁石で走査して照射対象に照射する粒子線照射装置において、
    照射対象における荷電粒子ビームの目標照射位置座標から、その照射を実現する前記スキャニング電磁石の指令値及び荷電粒子ビームの運動エネルギーの指令値を生成する逆写像モデルを有する逆写像手段を備え、
    照射対象における荷電粒子ビームの目標照射位置座標から、前記逆写像モデルを使用して生成した前記指令値により前記スキャニング電磁石及び荷電粒子ビームの運動エネルギーを制御して荷電粒子ビームを走査し照射対象に照射するようにしたことを特徴とする粒子線照射装置。
  2.  前記逆写像モデルは逆写像数式モデルであることを特徴とする請求項1記載の粒子線照射装置。
  3.  前記逆写像数式モデルは多項式であり、かつ、3入力3出力であることを特徴とする請求項2記載の粒子線照射装置。
  4.  前記逆写像数式モデルは前記目標照射位置座標からなる多項式であることを特徴とする請求項2記載の粒子線照射装置。
  5.  前記逆写像数式モデルは多項式であり、前記多項式に存在する未知の係数は、
    前記スキャニング電磁石に予め設定した複数組の指令値を入力すると共に、前記加速器に予め設定した運動エネルギーの複数の指令値を入力して、
    荷電粒子ビームを制御し、
    実際に照射されたそれぞれの照射位置座標の実データから最小二乗法又は重み付け最小二乗法により求めるようにした請求項2~請求項4のいずれか1項に記載の粒子線照射装置。
  6.  前記逆写像数式モデルは複数個であり、前記複数の逆写像数式モデルを選択できるようにしたことを特徴とする請求項2~請求項4のいずれか1項に記載の粒子線照射装置。
  7.  偏向電磁石に、前記スキャニング電磁石の機能を持たせたことを特徴とする請求項1~請求項4のいずれか1項に記載の粒子線照射装置。
PCT/JP2009/060530 2009-06-09 2009-06-09 粒子線照射装置 WO2010143266A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US12/989,767 US8217364B2 (en) 2009-06-09 2009-06-09 Particle beam irradiation apparatus
PCT/JP2009/060530 WO2010143266A1 (ja) 2009-06-09 2009-06-09 粒子線照射装置
JP2010500593A JP4478753B1 (ja) 2009-06-09 2009-06-09 粒子線照射装置
EP12161263.4A EP2471579B1 (en) 2009-06-09 2009-06-09 Particle beam irradiation apparatus
CN200980159045.0A CN102414760B (zh) 2009-06-09 2009-06-09 粒子射线照射装置
EP09845791.4A EP2442317B1 (en) 2009-06-09 2009-06-09 Particle beam irradiation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/060530 WO2010143266A1 (ja) 2009-06-09 2009-06-09 粒子線照射装置

Publications (1)

Publication Number Publication Date
WO2010143266A1 true WO2010143266A1 (ja) 2010-12-16

Family

ID=42333474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060530 WO2010143266A1 (ja) 2009-06-09 2009-06-09 粒子線照射装置

Country Status (5)

Country Link
US (1) US8217364B2 (ja)
EP (2) EP2471579B1 (ja)
JP (1) JP4478753B1 (ja)
CN (1) CN102414760B (ja)
WO (1) WO2010143266A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103200991A (zh) * 2011-03-10 2013-07-10 三菱电机株式会社 剂量监视装置的灵敏度修正方法及粒子射线治疗装置
US8563943B2 (en) 2010-12-24 2013-10-22 Mitsubishi Electric Corporation Particle beam irradiation apparatus, particle beam therapy system, and data display program
JPWO2013069379A1 (ja) * 2011-11-08 2015-04-02 三菱電機株式会社 粒子線治療システムおよびそのビーム位置補正方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4499185B1 (ja) * 2009-08-27 2010-07-07 三菱電機株式会社 粒子線照射装置及び粒子線治療装置
JP5562133B2 (ja) * 2010-06-16 2014-07-30 三菱電機株式会社 粒子線治療装置および粒子線治療装置の調整方法
US20150306427A1 (en) * 2012-12-26 2015-10-29 Mitsubishi Electric Corporation Dose distribution measurement device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11142600A (ja) * 1997-11-12 1999-05-28 Mitsubishi Electric Corp 荷電粒子線照射装置及び照射方法
WO2001069643A1 (fr) 2000-03-13 2001-09-20 Hitachi, Ltd. Dispositif de balayage a faisceau de particules chargees
JP2002141199A (ja) * 2000-10-31 2002-05-17 Sumitomo Heavy Ind Ltd 電子ビームの軌道補正装置及び軌道補正方法
JP2005296162A (ja) * 2004-04-08 2005-10-27 Hitachi Ltd 粒子線治療装置
JP2006166947A (ja) 2004-12-13 2006-06-29 Natl Inst Of Radiological Sciences 荷電粒子線照射装置および回転ガントリ
JP2007132902A (ja) * 2005-11-14 2007-05-31 Hitachi Ltd 粒子線照射システム
JP2007534391A (ja) 2004-04-27 2007-11-29 パウル・シェラー・インスティトゥート 陽子放出治療用システム
JP2009000347A (ja) * 2007-06-22 2009-01-08 Hitachi Ltd 粒子線照射システム

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69729151T2 (de) * 1996-08-30 2005-05-04 Hitachi, Ltd. Vorrichtung für einen geladenen Teilchenstrahl
US6403972B1 (en) * 1999-07-08 2002-06-11 Varian Semiconductor Equipment Associates, Inc. Methods and apparatus for alignment of ion beam systems using beam current sensors
JP2003126278A (ja) * 2001-10-22 2003-05-07 Hitachi Ltd 粒子線治療装置及び治療計画装置及び荷電粒子ビーム照射方法
FR2841790A1 (fr) * 2002-07-02 2004-01-09 Commissariat Energie Atomique Dispositif d'irradiation d'une cible par un faisceau de hadrons charges, application a la hadrontherapie
JP4299269B2 (ja) * 2005-06-06 2009-07-22 株式会社日立製作所 粒子線治療システム
JP4713282B2 (ja) 2005-09-01 2011-06-29 株式会社日立製作所 放射線治療装置
JP4591356B2 (ja) * 2006-01-16 2010-12-01 三菱電機株式会社 粒子線照射装置及び粒子線治療装置
WO2008003527A1 (en) * 2006-07-06 2008-01-10 Ion Beam Applications S.A. Method for treating a target volume with a particle beam and device implementing same
JP5288542B2 (ja) * 2008-07-30 2013-09-11 独立行政法人放射線医学総合研究所 照射線量確認システム及び照射線量確認方法
JP4499829B1 (ja) * 2009-06-09 2010-07-07 三菱電機株式会社 粒子線治療装置および粒子線治療装置の調整方法
JP4499185B1 (ja) * 2009-08-27 2010-07-07 三菱電機株式会社 粒子線照射装置及び粒子線治療装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11142600A (ja) * 1997-11-12 1999-05-28 Mitsubishi Electric Corp 荷電粒子線照射装置及び照射方法
WO2001069643A1 (fr) 2000-03-13 2001-09-20 Hitachi, Ltd. Dispositif de balayage a faisceau de particules chargees
JP2002141199A (ja) * 2000-10-31 2002-05-17 Sumitomo Heavy Ind Ltd 電子ビームの軌道補正装置及び軌道補正方法
JP2005296162A (ja) * 2004-04-08 2005-10-27 Hitachi Ltd 粒子線治療装置
JP2007534391A (ja) 2004-04-27 2007-11-29 パウル・シェラー・インスティトゥート 陽子放出治療用システム
JP2006166947A (ja) 2004-12-13 2006-06-29 Natl Inst Of Radiological Sciences 荷電粒子線照射装置および回転ガントリ
JP2007132902A (ja) * 2005-11-14 2007-05-31 Hitachi Ltd 粒子線照射システム
JP2009000347A (ja) * 2007-06-22 2009-01-08 Hitachi Ltd 粒子線照射システム

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KEN'ICHI OGAWA ET AL.: "Denshisen Chiryo Keikaku ni Okeru Kyushu Senryo Tokako (AET)-ho to Pencil Beam-ho", JAPANESE JOURNAL OF RADIOLOGICAL TECHNOLOGY, vol. 42, no. 5, 9 September 1986 (1986-09-09), pages 628 - 634, XP009160261 *
See also references of EP2442317A4
TATSUAKI KANAI,ET AL.: "Spot scanning system for proton radiotherapy", MEDICAL PHYSICS, vol. 7, no. 4, July 1980 (1980-07-01) - August 1980 (1980-08-01), pages 365 - 369, XP002294902, DOI: doi:10.1118/1.594693

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8563943B2 (en) 2010-12-24 2013-10-22 Mitsubishi Electric Corporation Particle beam irradiation apparatus, particle beam therapy system, and data display program
CN103200991A (zh) * 2011-03-10 2013-07-10 三菱电机株式会社 剂量监视装置的灵敏度修正方法及粒子射线治疗装置
CN103200991B (zh) * 2011-03-10 2015-08-19 三菱电机株式会社 剂量监视装置的灵敏度修正方法及粒子射线治疗装置
JPWO2013069379A1 (ja) * 2011-11-08 2015-04-02 三菱電機株式会社 粒子線治療システムおよびそのビーム位置補正方法

Also Published As

Publication number Publication date
EP2442317A4 (en) 2012-08-08
EP2471579A3 (en) 2012-08-08
EP2471579A2 (en) 2012-07-04
JPWO2010143266A1 (ja) 2012-11-22
US20110174994A1 (en) 2011-07-21
US8217364B2 (en) 2012-07-10
CN102414760A (zh) 2012-04-11
EP2442317A1 (en) 2012-04-18
JP4478753B1 (ja) 2010-06-09
EP2442317B1 (en) 2013-12-18
EP2471579B1 (en) 2015-10-14
CN102414760B (zh) 2014-04-16

Similar Documents

Publication Publication Date Title
JP4509218B1 (ja) 粒子線照射装置
JP4499829B1 (ja) 粒子線治療装置および粒子線治療装置の調整方法
Furukawa et al. Performance of the NIRS fast scanning system for heavy‐ion radiotherapy
JP4478753B1 (ja) 粒子線照射装置
JP4673450B1 (ja) 粒子線照射装置及び粒子線治療装置
US8716679B2 (en) Beam irradiation apparatus and beam irradiation control method
EP2685462B1 (en) Particle beam therapy device
JP4981940B2 (ja) 粒子線照射装置
JP5574803B2 (ja) 粒子線照射装置
CN103768730A (zh) 粒子射线照射装置
JP2014150880A (ja) 荷電粒子線治療装置
JP2012000232A (ja) 粒子線治療装置および粒子線治療装置の調整方法
JP7220403B2 (ja) 粒子線治療システム、計測粒子線ct画像生成方法、およびct画像生成プログラム
JP5432038B2 (ja) 粒子線治療装置
JP5511699B2 (ja) 粒子線照射装置及び粒子線治療装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980159045.0

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2010500593

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12989767

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09845791

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009845791

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE