WO2010140667A1 - チオフェン化合物及びその製造方法、並びにこれを用いて得られる重合体 - Google Patents

チオフェン化合物及びその製造方法、並びにこれを用いて得られる重合体 Download PDF

Info

Publication number
WO2010140667A1
WO2010140667A1 PCT/JP2010/059474 JP2010059474W WO2010140667A1 WO 2010140667 A1 WO2010140667 A1 WO 2010140667A1 JP 2010059474 W JP2010059474 W JP 2010059474W WO 2010140667 A1 WO2010140667 A1 WO 2010140667A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituent
general formula
represented
formula
Prior art date
Application number
PCT/JP2010/059474
Other languages
English (en)
French (fr)
Inventor
敬郎 山下
尚 杉岡
浩一 金平
Original Assignee
国立大学法人東京工業大学
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京工業大学, 株式会社クラレ filed Critical 国立大学法人東京工業大学
Priority to JP2010526492A priority Critical patent/JPWO2010140667A1/ja
Publication of WO2010140667A1 publication Critical patent/WO2010140667A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F5/00Compounds containing elements of Groups 3 or 13 of the Periodic Table
    • C07F5/02Boron compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • H01B1/124Intrinsically conductive polymers
    • H01B1/127Intrinsically conductive polymers comprising five-membered aromatic rings in the main chain, e.g. polypyrroles, polythiophenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/344Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/52Luminescence
    • C08G2261/522Luminescence fluorescent
    • C08G2261/5222Luminescence fluorescent electrofluorescent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/92TFT applications
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/94Applications in sensors, e.g. biosensors

Definitions

  • the present invention relates to a novel compound having a thiophene skeleton, a method for producing the same, and a novel polymer obtained using the same.
  • a polymer obtained by polymerizing a compound having a five-membered ring structure containing a heteroatom such as pyrrole, thiophene, aniline or a compound having an aromatic ring structure is suitable as a conductive material.
  • the conductivity of these polymers can be controlled freely by changing the amount of doping, so use in various electrodes, various sensors, primary batteries, secondary batteries, solid electrolytic capacitors, antistatic agents, etc.
  • a ⁇ -conjugated polymer having redox activity is essentially electrochromic and can be used as an electrochromic material because different color states can be switched electrochemically or chemically. It has been.
  • poly (3,4-alkylenedioxythiophene) compounds are known to have high conductivity and excellent coloring efficiency and high-speed switching ability.
  • 4-Alkylenedioxythiophene) compounds have been reported (Non-patent Document 1).
  • the resulting poly (3,4-alkylenedioxythiophene) compound is not so high in solubility that it is difficult to perform operations such as film formation, and improvement has been desired.
  • the present invention has been made to solve the above problems, and provides a novel polymer that is highly soluble and excellent in workability and suitable as a conductive material, a novel compound that is a raw material thereof, and a method for producing the same. It is the purpose.
  • R 1 is a hydrocarbon group having 1 to 20 carbon atoms which may have a substituent
  • R 2 and R 3 may each independently have a hydrogen atom or a substituent
  • a hydrocarbon group having 1 to 20 carbon atoms, and R 4 and R 5 each independently have a hydrogen atom, an optionally substituted hydrocarbon group having 1 to 20 carbon atoms, or a substituent. It may be a heteroaromatic ring group.
  • R 2 and R 3 are preferably hydrogen atoms, and R 1 is preferably an aryl group which may have a substituent.
  • a preferred embodiment of the present invention is a process for producing a 2,3-dihydro-1H-1,3,2-thieno [3,4-d] diazaborol compound characterized by reacting with a boronic acid compound represented by the formula: It is.
  • R 1 is a hydrocarbon group having 1 to 20 carbon atoms which may have a substituent
  • R 2 and R 3 may each independently have a hydrogen atom or a substituent
  • a hydrocarbon group having 1 to 20 carbon atoms, and the bond of (A 1 ) and (A 2 ) each independently has a divalent heteroaromatic ring group which may have a substituent, or a substituent. They may be bonded via an arylene group, and n is an integer of 2 or more.
  • R 1 is a hydrocarbon group having 1 to 20 carbon atoms which may have a substituent
  • R 2 and R 3 may each independently have a hydrogen atom or a substituent
  • a hydrocarbon group having 1 to 20 carbon atoms, and the bond of (A 1 ) and (A 2 ) each independently has a divalent heteroaromatic ring group which may have a substituent, or a substituent. It may be bonded via an arylene group, and p + q 1, 0 ⁇ p ⁇ 1, 0 ⁇ q ⁇ 1, and Y ⁇ is an anion.
  • a conductive material comprising a ⁇ -conjugated polymer having structural units represented by the general formulas (7) to (9) is also a preferred embodiment of the present invention.
  • a novel compound and a novel polymer obtained using the compound can be provided.
  • the polymer thus obtained has high solubility and excellent processability and good conductivity, and is suitable as a conductive material.
  • the 2,3-dihydro-1H-1,3,2-thieno [3,4-d] diazaborol compound represented by the general formula (1) and the general formula (4) obtained by using this compound are shown.
  • a ⁇ -conjugated polymer represented by the general formula (7) can be provided.
  • a ⁇ -conjugated polymer represented by the general formula (4) a ⁇ -conjugated polymer represented by the general formula (5) and a ⁇ -conjugated polymer represented by the general formula (6) are used.
  • the compound represented by the general formula (1) is a novel compound, and any of the ⁇ -conjugated polymers represented by the general formulas (4) to (7) is a novel polymer. Details will be described below.
  • R 1 is a hydrocarbon group having 1 to 20 carbon atoms which may have a substituent
  • R 2 and R 3 may each independently have a hydrogen atom or a substituent
  • a hydrocarbon group having 1 to 20 carbon atoms, and R 4 and R 5 each independently have a hydrogen atom, an optionally substituted hydrocarbon group having 1 to 20 carbon atoms, or a substituent. It may be a heteroaromatic ring group.
  • R 1 is a hydrocarbon group having 1 to 20 carbon atoms which may have a substituent
  • R 2 and R 3 may each independently have a hydrogen atom or a substituent
  • a hydrocarbon group having 1 to 20 carbon atoms, and the bond of (A 1 ) and (A 2 ) each independently has a divalent heteroaromatic ring group which may have a substituent, or a substituent. They may be bonded via an arylene group, and n is an integer of 2 or more.
  • R 1 , R 2 and R 3 have the same meanings as in the general formula (4), and n is an integer of 2 or more. ]
  • R 1 , R 2 and R 3 have the same meanings as those in the general formula (4), and R 6 , R 7 , R 8 and R 9 each independently have a hydrogen atom or a substituent. And an organic group having 1 to 20 carbon atoms, and n is an integer of 2 or more. ]
  • R 1 is a hydrocarbon group having 1 to 20 carbon atoms which may have a substituent
  • R 2 and R 3 may each independently have a hydrogen atom or a substituent
  • a hydrocarbon group having 1 to 20 carbon atoms, and the bond of (A 1 ) and (A 2 ) each independently has a divalent heteroaromatic ring group which may have a substituent, or a substituent. It may be bonded via an arylene group, and p + q 1, 0 ⁇ p ⁇ 1, 0 ⁇ q ⁇ 1, and Y ⁇ is an anion.
  • R 1 is a hydrocarbon group having 1 to 20 carbon atoms which may have a substituent
  • R 2 And R 3 each independently represents a hydrogen atom or a hydrocarbon group having 1 to 20 carbon atoms which may have a substituent
  • R 6 , R 7 , R 8 and R 9 are each independently a hydrogen atom or an organic group having 1 to 20 carbon atoms which may have a substituent.
  • the hydrocarbon group having 1 to 20 carbon atoms which may have a substituent may be, for example, an alkyl group which may have a substituent, an alkenyl group which may have a substituent, or a substituent. Examples thereof include a good alkynyl group and an aryl group which may have a substituent.
  • the alkyl group used in the present invention may be a linear or branched alkyl group or a cyclic cycloalkyl group.
  • the alkyl group may have a substituent.
  • substituents include an aryl group such as a phenyl group, a naphthyl group, an anthryl group, and a phenanthryl group; a pyridyl group, a thienyl group, a furyl group, a pyrrolyl group, Heteroaromatic groups such as imidazolyl, pyrazinyl, oxazolyl, thiazolyl, pyrazolyl, benzothiazolyl, benzoimidazolyl; methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, sec-butoxy , Alkoxy groups such as tert-butoxy group, pentyloxy group, isopentyloxy group, neopentyloxy group, hexyloxy group, cyclohexyloxy group, heptyloxy group, octyloxy group, non
  • Nyl group alkylsulfinyl group such as methylsulfinyl group and ethylsulfinyl group; arylsulfinyl group such as phenylsulfinyl group; methylsulfonyloxy group, ethylsulfonyloxy group, phenylsulfonyloxy group, methoxysulfonyl group, ethoxysulfonyl group, phenyloxy A sulfonic acid ester group such as a sulfonyl group; an amino group; a hydroxyl group; a cyano group; a nitro group; a halogen atom such as a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom;
  • the amino group may be a primary amino group (—NH 2 ), a secondary amino group, or a tertiary amino group.
  • the secondary amino group is a mono-substituted amino group represented by —NHR 10 (R 10 is an arbitrary monovalent substituent), and R 10 includes an alkyl group, an aryl group, an acetyl group, a benzoyl group, Examples thereof include a benzenesulfonyl group and a tert-butoxycarbonyl group.
  • the secondary amino group examples include a secondary amino group in which R 10 is an alkyl group such as a methylamino group, an ethylamino group, a propylamino group, and an isopropylamino group, a phenylamino group, and a naphthylamino group.
  • R 10 is an alkyl group such as a methylamino group, an ethylamino group, a propylamino group, and an isopropylamino group, a phenylamino group, and a naphthylamino group.
  • R 10 is an alkyl group such as a methylamino group, an ethylamino group, a propylamino group, and an isopropylamino group, a phenylamino group, and a naphthylamino group.
  • R 10 is an aryl group such as a group.
  • the tertiary amino group is a di-substituted amino group represented by —NR 10 R 11 (R 10 and R 11 are any monovalent substituent), and R 11 is the same as R 10.
  • R 10 and R 11 may be the same or different from each other.
  • Specific examples of the tertiary amino group include a dimethylamino group, a diethylamino group, a dibutylamino group, an ethylmethylamino group, a diphenylamino group, a methylphenylamino group, and the like, wherein R 10 and R 11 are alkyl groups and aryl groups.
  • a tertiary amino group which is at least one selected from the group consisting of
  • the alkenyl group used in the present invention may be linear or branched.
  • Examples of the alkenyl group include a vinyl group, an allyl group, a methylvinyl group, a propenyl group, a butenyl group, a pentenyl group, a hexenyl group, a cyclopropenyl group, a cyclobutenyl group, a cyclopentenyl group, and a cyclohexenyl group.
  • These alkenyl groups may have a substituent, and as the substituent, those similar to the substituents exemplified in the description of the alkyl group can be used.
  • the alkynyl group used in the present invention may be linear or branched.
  • Examples of the alkynyl group include ethynyl group, propynyl group, propargyl group, butynyl group, pentynyl group, hexynyl group, and phenylethynyl group.
  • These alkynyl groups may have a substituent, and as the substituent, those similar to the substituents exemplified in the description of the alkyl group can be used.
  • aryl group used in the present invention examples include a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group, and a biphenyl group. These aryl groups may have a substituent, and as such a substituent, a substituent other than the aryl group exemplified in the description of the alkyl group, the above-described alkyl group, alkenyl group, alkynyl group, or the like is used. be able to.
  • R 2 and R 3 from the viewpoint of the flatness of the chemical structure and the ease of raw material synthesis.
  • Is preferably a hydrogen atom, and both R 2 and R 3 are preferably hydrogen atoms.
  • R 1 is preferably an aryl group which may have a substituent.
  • R 4 and R 5 may each independently have a hydrogen atom, a hydrocarbon group having 1 to 20 carbon atoms which may have a substituent, or a substituent. Good heteroaromatic ring group.
  • Examples of the hydrocarbon group having 1 to 20 carbon atoms which may have a substituent used for R 4 and R 5 are the same as the substituents exemplified in the description of R 1 , R 2 and R 3 above. Among them, an arylene group which may have a substituent is preferably used.
  • Examples of the heteroaromatic ring group which may have a substituent include, for example, pyridyl group, thienyl group, furyl group, pyrrolyl group, imidazolyl group, pyrazinyl group, oxazolyl group, thiazolyl group, pyrazolyl group, benzothiazolyl group, benzoimidazolyl group Group etc.
  • R 4 and R 5 may have an arylene group. And at least one selected from the group consisting of optionally substituted heteroaromatic ring groups.
  • R 4 and R 5 a plurality of at least one substituent selected from the group consisting of an arylene group which may have a substituent and a heteroaromatic ring group which may have a substituent are bonded. The actual situation is also preferably adopted.
  • (A 1) and (A 2) is the presence or absence any binding structural unit having a specific chemical structure, configured to A 1 or A 2
  • a 1 and A 2 are each independently a bond via a divalent heteroaromatic ring group that may have a substituent, or an arylene group that may have a substituent. If there is no structure units a 1 or a 2, a 1 or a 2 is a direct bond - the (carbon-carbon bonds).
  • the ⁇ -conjugated polymer represented by the general formula (4) and the ⁇ -conjugated polymer represented by the general formula (7) are respectively represented by the general formula (5).
  • a 1 and A 2 may be the same as or different from each other. That is, the ⁇ -conjugated polymer represented by the general formula (4) and the ⁇ -conjugated polymer represented by the general formula (7) are obtained from a monomer compound having only one of A 1 and A 2. It may be a polymer, a homopolymer obtained by bonding monomer compounds having the same structure to each other, or a copolymer obtained by bonding monomer compounds having different structures to each other.
  • Y ⁇ is an anion.
  • the heteroaromatic ring group may divalent to have a substituent used in the A 1 and A 2, for example, carbazole derivatives such as N- alkyl carbazole; pyridine, pyrimidine, pyridazine, triazine, pyrazine, quinoline, purine Pyridine derivatives such as furan, furan derivatives such as furan and 3-alkyl furan; pyrrole derivatives such as pyrrole, N-alkyl pyrrole, ethylene-3,4-dioxypyrrole, propylene-3,4-dioxypyrrole; thiophene, thiophene Thiophene derivatives such as vinylene, alkylthiophene, ethylene-3,4-dioxythiophene, propylene-3,4-dioxythiophene, thienothiophene, thienofuran, thienopyrazine, isothianaphthene; oxadiazol
  • Examples of the arylene group which may have a substituent used for A 1 and A 2 include phenylene, 2,3-dialkylphenylene, 2,5-dialkylphenylene, 2,3,5,6-tetraalkylphenylene. 2,3-alkoxyphenylene, 2,5-alkoxyphenylene, 2,3,5,6-tetraalkoxyphenylene, 2- (N, N, -dialkylamino) phenylene, 2,5-di (N, N, -Dialkylamino) phenylene, 2,3-di (N, N, -dialkylamino) phenylene, p-phenylene oxide, p-phenylene sulfide, p-phenyleneamino, p-phenylene vinylene, fluorenylene, naphthylene, anthrylene, tetrasenylene, Pentasenylene, hexasenylene, heptasenylene
  • Y ⁇ is an anion which functions as a dopant.
  • Y ⁇ include halogenated anions of Group 5B elements such as PF 6 ⁇ , SbF 6 ⁇ and AsF 6 ⁇ , halogenated anions of Group 3B elements such as BF 4 ⁇ , I ⁇ (I 3 ⁇ ), Halogen anions such as Br ⁇ and Cl 2 ⁇ , halogen acid anions such as ClO 4 ⁇ , metal halide anions such as AlCl 4 ⁇ , FeCl 4 ⁇ and SnCl 5 ⁇ , nitrate anions represented by NO 3 ⁇ , SO 4 2 ⁇ sulfate anion represented, p- toluenesulfonate anion, a naphthalenesulfonic acid anion, CH 3 SO 3 -, CF 3 SO 3 - and the like organic sulfonic acid anion, CF 3 COO -, C 6 H 5 COO - carb
  • anions may be used alone or in combination of two or more. Moreover, it does not specifically limit about the addition method of an anion, For example, a desired anion may be added suitably after superposition
  • R 6 , R 7 , R 8 and R 9 are each independently a hydrogen atom or an organic group having 1 to 20 carbon atoms which may have a substituent.
  • the organic group having 1 to 20 carbon atoms that may have a substituent include bonds other than carbon-carbon bonds such as ether bond, ester bond, amide bond, sulfonyl bond, urethane bond, and thioether bond in the structure. It may be contained, and a double bond, a triple bond, an alicyclic hydrocarbon, a heterocyclic ring, an aromatic hydrocarbon, a heteroaromatic ring and the like may be contained.
  • substituents such as a halogen atom, a hydroxyl group, an amino group, a cyano group, and a nitro group.
  • organic group having 1 to 20 carbon atoms that may have a substituent include an alkyl group that may have a substituent, an alkenyl group that may have a substituent, and a substituent.
  • Examples of the alkyl group that may have the above-described substituent used for R 6 , R 7 , R 8, and R 9 , the alkenyl group that may have a substituent, and the aryl group that may have a substituent include The same substituents as those exemplified in the description of R 1 , R 2 and R 3 described above can be used.
  • As the good heteroaromatic ring group which may have a substituent it may be the same as the substituents exemplified in the description of R 4 and R 5 above.
  • alkoxy group used in the present invention examples include a methoxy group, an ethoxy group, an n-propoxy group, an isopropoxy group, an n-butoxy group, an isobutoxy group, a sec-butoxy group, a tert-butoxy group, an n-pentyloxy group, Isopentyloxy group, neopentyloxy group, n-hexyloxy group, isohexyloxy group, 2-ethylhexyloxy group, n-heptyloxy group, n-octyloxy group, n-nonyloxy group, n-decyloxy group, etc. Can be mentioned.
  • These alkoxy groups may have a substituent, and as such a substituent, a substituent other than the alkoxy group exemplified in the description of the alkyl group can be used.
  • acyl group used in the present invention examples include an acetyl group, a propionyl group, a butyryl group, an isobutyryl group, a benzoyl group, a dodecanoyl group, and a pivaloyl group.
  • These acyl groups may have a substituent, and as the substituent, those similar to the substituents exemplified in the description of the alkyl group can be used.
  • arylalkyl group used in the present invention examples include benzyl group, 4-methoxybenzyl group, phenethyl group, diphenylmethyl group and the like. These arylalkyl groups may have a substituent, and as the substituent, those similar to the substituents exemplified in the description of the alkyl group can be used.
  • alkylsilyl group used in the present invention examples include a trimethylsilyl group, a triethylsilyl group, a triisopropylsilyl group, a tert-butyldimethylsilyl group, and a tert-butyldiphenylsilyl group.
  • These alkylsilyl groups may have a substituent, and as the substituent, those similar to the substituents exemplified in the description of the alkyl group can be used.
  • alkoxycarbonyl group used in the present invention examples include a methoxycarbonyl group, ethoxycarbonyl group, 2,2,2-trichloroethoxycarbonyl group, n-propoxycarbonyl group, isopropoxycarbonyl group, allyloxycarbonyl group, n- Examples include butoxycarbonyl group, isobutoxycarbonyl group, sec-butoxycarbonyl group, tert-butoxycarbonyl group, pentyloxycarbonyl group, hexyloxycarbonyl group, heptyloxycarbonyl group, octyloxycarbonyl group, and benzyloxycarbonyl group.
  • These alkoxycarbonyl groups may have a substituent, and as such a substituent, a substituent other than the alkoxycarbonyl group exemplified in the description of the alkyl group can be used.
  • the 2,3-dihydro-1H-1,3,2-thieno [3,4-d] diazaborol compound represented by the general formula (1) is represented by the step 1 represented by the following chemical reaction formula (I).
  • the diaminothiophene compound represented by the general formula (2) is represented by the boronic acid compound represented by the general formula (3).
  • R 1 , R 2 , R 3 , R 4 and R 5 have the same meaning as in the general formula (1). ]
  • the diaminothiophene compound represented by the general formula (2) used in Step 1 is not particularly limited, and examples thereof include 3,4-diaminothiophene, 3,4-diamino-2,5-dimethylthiophene, 3 ′, 4.
  • '-Diamino-2,2' primary amine compounds such as 5 ', 2 "-terthiophene, N, N'-dimethyl-3,4-diaminothiophene, N, N'-diphenyl-3,4- Tertiary amine compounds such as diaminothiophene can be used, which are represented by 3,4-diaminothiophene and 3 ′, 4′-diamino-2,2 ′: 5 ′, 2 ′′ -terthiophene from the viewpoint of reaction rate.
  • Primary amine compounds are preferably used, and 3,4-diaminothiophene compounds are more preferably used among them.
  • 3,4-Diaminothiophene and 3 ′, 4′-diamino-2,2 ′: 5 ′, 2 ′′ -terthiophene are, for example, C. Kitamura et al., Chem. Mater. 1996, Vol.8. , P.570-578.
  • alkyl borons such as methyl boronic acid, butyl boronic acid, cyclopropyl boronic acid, cyclopentyl boronic acid, cyclohexyl boronic acid Acid
  • phenylboronic acid tolylphenylboronic acid, phenethylboronic acid, fluorophenylboronic acid, hydroxyphenylboronic acid, methoxyphenylboronic acid, cyanophenylboronic acid, trifluoromethylphenylboronic acid, diphenylaminophenylboronic acid, biphenylboron
  • Aryl boronic acids that are hydrocarbon aromatics such as acids and naphthyl boronic acids; pyridyl boronic acid, indolyl boronic acid, quinolyl boronic acid, N-Boc-pyrrolyl boronic
  • the amount of the boronic acid compound represented by the general formula (3) used in the above step 1 is not particularly limited, and is 0.5 to 10 mol with respect to 1 mol of the diaminothiophene compound represented by the general formula (2). It is preferable that From the viewpoint of reaction efficiency and ease of post-treatment, the amount of the boronic acid compound represented by the general formula (3) used is 0.8 to 5 mol with respect to 1 mol of the diaminothiophene compound represented by the general formula (2). More preferably.
  • step 1 represented by the chemical reaction formula (I) is a diaminothiophene compound represented by the general formula (2) and the general formula (2) in the presence of a solvent in an inert gas atmosphere such as nitrogen or argon.
  • the boronic acid compound represented by 3) is reacted.
  • the resulting 2,3-dihydro-1H-1,3,2-thieno [3,4-d] diazabolol compound represented by the general formula (1) From the viewpoint of improving stability and yield, it is preferable to carry out the reaction while removing such water.
  • Examples of the method for removing water include a method of distilling water out of the reaction system by azeotropic dehydration, a method of using a dehydrating agent such as molecular sieve, anhydrous magnesium sulfate, and anhydrous sodium sulfate.
  • a method of removing water by azeotropic dehydration is preferably employed from the viewpoint of reaction efficiency and ease of operation.
  • a method of distilling water out of the reaction system by azeotropic dehydration a method of distilling water produced as the reaction proceeds as an azeotropic mixture with a solvent is simple and preferable. In this case, it is desirable to separate water from the distillate using a water separator such as a Dean-Stark trap, and return the solvent after separating the water to the reaction system again.
  • the step 1 is preferably performed in the presence of a solvent.
  • a solvent solvent capable of azeotropic dehydration
  • the solvent include aromatic hydrocarbons such as benzene, toluene, xylene, ethylbenzene, and mesitylene; aliphatic hydrocarbons such as pentane, hexane, heptane, octane, nonane, and decane; and alicyclic groups such as cyclohexane and cyclooctane.
  • Hydrocarbons Halogenated hydrocarbons such as methylene chloride, chloroform, 1,2-dichloroethane, carbon tetrachloride, chlorobenzene, trifluoromethylbenzene; ethers such as diethyl ether, diisopropyl ether, dibutyl ether, anisole, tetrahydrofuran; ethyl acetate, Esters such as butyl acetate; nitriles such as acetonitrile and benzonitrile; aprotic polar solvents such as N, N-dimethylformamide and dimethyl sulfoxide; and mixed solvents thereof It is.
  • ethers such as diethyl ether, diisopropyl ether, dibutyl ether, anisole, tetrahydrofuran
  • ethyl acetate Esters such as butyl acetate
  • nitriles such as acetonitrile and benzonitrile
  • aromatic hydrocarbons typified by toluene are preferably used in consideration of the reaction temperature and the like.
  • the amount of the solvent used is preferably 1 to 500 parts by mass, more preferably 1 to 100 parts by mass with respect to 1 part by mass of the diaminothiophene compound represented by the general formula (2).
  • the reaction in the above step 1 is usually carried out under normal pressure or reduced pressure, preferably in the range of 15 to 760 mmHg, more preferably in the range of 100 to 760 mmHg.
  • the reaction temperature is appropriately set according to the reaction pressure, but is preferably in the range of ⁇ 30 ° C. to 200 ° C.
  • an acid catalyst may be added from the viewpoint of smoothly promoting the reaction.
  • the acid catalyst include mineral acids (inorganic acids) such as sulfuric acid, hydrochloric acid and nitric acid; organic acids such as methanesulfonic acid, p-toluenesulfonic acid and camphorsulfonic acid; Amberlyst 15 (Tokyo Organic Chemical Co., Ltd.) Acid type ion exchange resins such as Amberlite IR-118 (manufactured by Tokyo Organic Chemical Industry Co., Ltd.).
  • the amount of the acid catalyst used is preferably in the range of 0.001 to 100 mol% with respect to the diaminothiophene compound represented by the general formula (2). The range is more preferable.
  • the solvent can be distilled off from the reaction mixture obtained in the above step 1, and the resulting residue can be used in the polymerization step as it is. Furthermore, 2,3-dihydro-1H-1,3,2-thieno [3,4-d] represented by the general formula (1) having a high purity can be obtained by recrystallization or column chromatography if necessary. A diazaborol compound can be obtained and then used in the polymerization step.
  • Step 2 is a step of obtaining a ⁇ -conjugated polymer represented by the general formula (7) from the monomer compound represented by the general formula (1) by a polymerization reaction.
  • the ⁇ -conjugated polymer represented by the general formula (7) represents a doped state, and thus has conductivity. Further, an anion Y - is functioning as a dopant.
  • the dedope neutral polymer obtained in step 3 to be described later functions as an insulator.
  • the doped state refers to a state in which the main chain of the ⁇ -conjugated polymer is positively charged
  • the dedope state refers to the charge in the main chain of the ⁇ -conjugated polymer. The state that became neutral.
  • the polymerization reaction in step 2 is not particularly limited, but a suitable polymerization reaction is chemical oxidation polymerization or electrolytic polymerization.
  • a suitable polymerization reaction is chemical oxidation polymerization or electrolytic polymerization.
  • chemical oxidative polymerization a method in which a polymer is obtained by dehydrogenation from a monomer compound using an oxidizing agent is suitably employed.
  • transition metal salt examples include ferric chloride (FeCl 3 ), ferric sulfate (Fe 2 (SO 4 ) 3 ), iron alkoxybenzene sulfonate having 1 to 16 carbon atoms, and alkylbenzene having 1 to 16 carbon atoms.
  • Ferric salts such as ferric acid, and those that have become cerium (IV) salts, copper (II) salts, manganese (VII) salts, ruthenium (III) salts instead of the iron (III) salts of these compounds Can be used.
  • iron (III) salts are preferably used.
  • the above-mentioned oxidant-derived anion Y ⁇ functions as a dopant.
  • Y ⁇ those listed above are preferably used.
  • an electrolytic solution in which a monomer as a polymerization raw material is dissolved is prepared, and an anodized polymer is applied by applying a voltage between the electrodes through the electrolytic solution.
  • the method obtained on the anode is preferably employed.
  • the solvent used in the electrolytic solution include nitromethane, acetonitrile, propylene carbonate, nitrobenzene, cyanobenzene, o-dichlorobenzene, dimethyl sulfoxide, and ⁇ -butyrolactone.
  • Supporting electrolyte used in the electrolyte includes cations such as alkali metal ions such as lithium ions, potassium ions and sodium ions, and quaternary ammonium ions, perchlorate ions, boron tetrafluoride ions, phosphorus hexafluoride ions, halogen atom ions It is preferable to add a supporting salt composed of a combination of anions such as arsenic hexafluoride ion, antimony hexafluoride ion, sulfate ion and hydrogen sulfate ion.
  • alkali metal ions such as lithium ions, potassium ions and sodium ions
  • quaternary ammonium ions perchlorate ions
  • boron tetrafluoride ions boron tetrafluoride ions
  • phosphorus hexafluoride ions phosphorus hexafluoride ions
  • an ionic liquid such as an alkyl imidazolium salt or an alkyl pyridinium salt can also be used.
  • Platinum, gold, nickel, ITO or the like can be used as the electrode material.
  • Y ⁇ which is an anion derived from the supporting electrolyte described above functions as a dopant.
  • Y ⁇ those listed above are preferably used, and of these, halogenate ions represented by perchlorate ions are more preferably used.
  • the ⁇ -conjugated polymer represented by the general formula (7) obtained by the above step 3 is further reduced using an alkaline solution such as ammonia or hydrazine as in the step 3 represented by the following chemical reaction formula (III).
  • an alkaline solution such as ammonia or hydrazine
  • a dedope polymer represented by the following general formula (4) can also be obtained.
  • the number average molecular weight (Mn) of the ⁇ -conjugated polymer represented by the general formula (7) and the general formula (4) is usually 500 to 1,000,000, and the weight average molecular weight (Mw) ) Is usually 500 to 1,000,000.
  • the ⁇ -conjugated polymer of the present invention represented by the general formula (7) and the general formula (4) has high planarity, it can be highly self-assembled or can form a precise layer structure. In addition, it has high solubility in a solvent, and particularly has high solubility and excellent workability compared to poly (3,4-ethylenedioxythiophene) (PEDOT). Therefore, for example, suitable for conductive materials, electrochromic materials, photoelectric conversion materials, electroluminescence materials, nonlinear optical materials, field effect transistor materials, RF-ID materials, memory materials, sensor materials, conductive print pastes, inkjet paints, etc. Among them, it is more preferably used as a conductive material.
  • PEDOT poly (3,4-ethylenedioxythiophene)
  • Example 1 [Synthesis of 4,6-di (2-thienyl) -2-phenyl-2,3-dihydro-1H-1,3,2-thieno [3,4-d] diazaborol represented by the formula (1a)]
  • phenyl tolueneboronic acid 438 mg (3.60 mmol) and toluene 20 ml were charged, and the mixture was reacted for 6 hours under a nitrogen atmosphere under reflux conditions while removing the generated water azeotropically.
  • Example 2 [Synthesis of ⁇ -conjugated polymer represented by formula (9a)] 0.1M perchlorine was placed in an electrolytic cell with an ITO film-coated glass plate (surface resistance: 10 ⁇ / ⁇ ) as the anode, platinum wire as the cathode, and silver / silver perchlorate (0.1M acetonitrile solution) as the reference electrode. 30 mL of lithium acid / acetonitrile solution was added, and 4,6-di (2-thienyl) -2-phenyl-2,3-dihydro-1H-1,3,2-thieno represented by the formula (1a) [3,4 -D] Diazaborol (109 mg, 0.3 mmol) was dissolved, and nitrogen substitution was performed.
  • ITO film-coated glass plate surface resistance: 10 ⁇ / ⁇
  • platinum wire platinum wire
  • silver / silver perchlorate 0.1M acetonitrile solution
  • a potentiostat / galvanostat HAB-151 manufactured by Hokuto Denko Co., Ltd. was connected to each electrode of this electrolytic cell.
  • a voltage was applied at a constant potential of 0.6 V in the potentiostat mode and electrolytic polymerization was performed, a film-like black polymer represented by the following formula (9a) was formed on the anode.
  • the chemical reaction formula is shown below.
  • the formed film was washed with dehydrated acetonitrile and then dried, and the conductivity was measured by a four-terminal method. As a result, it was 120 S / cm. From this result, it was found that the ⁇ -conjugated polymer of the present invention represented by the formula (9a) is an excellent conductive material.
  • Example 3 [4,6-Di (2-thienyl) -2- (4-nonylphenyl) -2,3-dihydro-1H-1,3,2-thieno represented by the formula (1b) [3,4-d] Synthesis of diazaborol]
  • Example 1 except that 438 mg (3.60 mmol) of phenylboronic acid represented by the formula (3a) was changed to 893 mg (3.60 mmol) of 4-nonylphenylboronic acid represented by the formula (3b), Example 1 The reaction and post-treatment were carried out in the same manner as described above, and 4,6-di (2-thienyl) -2- (4-nonylphenyl) -2,3-dihydro-1H represented by the formula (1b) having the following physical properties 848 mg (1.73 mmol, isolated yield 48%) of -1,3,2-thieno [3,4-d] diazaborol was obtained.
  • the chemical reaction formula is shown below.
  • Example 4 [Synthesis of ⁇ -conjugated polymer represented by formula (9b)]
  • Example 2 4,6-di (2-thienyl) -2-phenyl-2,3-dihydro-1H-1,3,2-thieno [3,4-d] diazaborol represented by the formula (1a)
  • diazaborol was used to obtain a ⁇ -conjugated polymer represented by the formula (9b).
  • the chemical reaction formula is shown below. The conductivity was measured by the four probe method in the same manner as in Example 2, and it was 100 S / cm. From this result, it was found that the ⁇ -conjugated polymer of the present invention represented by the formula (9b) is an excellent conductive material.
  • Example 5 [4,6-Di (2-thienyl) -2- (2-naphthyl) -2,3-dihydro-1H-1,3,2-thieno [3,4-d] diazaborol represented by the formula (1c) Synthesis]
  • Example 1 except that 438 mg (3.60 mmol) of phenylboronic acid represented by the formula (3a) was changed to 620 mg (3.60 mmol) of 2-naphthylboronic acid represented by the formula (3c), The reaction and post-treatment were performed in the same manner, and 4,6-di (2-thienyl) -2- (2-naphthyl) -2,3-dihydro-1H-1 represented by the formula (1c) having the following physical properties: , 3,2-thieno [3,4-d] diazaborol (820 mg, 1.98 mmol, isolated yield 55%) was obtained.
  • the chemical reaction formula is shown below.
  • Example 6 [Synthesis of ⁇ -conjugated polymer represented by formula (9c)]
  • Electropolymerization was performed in the same manner as in Example 2 except that diazaborol was used to obtain a ⁇ -conjugated polymer represented by the formula (9c).
  • the chemical reaction formula is shown below.
  • the conductivity was measured by the four probe method in the same manner as in Example 2, and it was 40 S / cm. From this result, it was found that the ⁇ -conjugated polymer of the present invention represented by the formula (9c) is an excellent conductive material.
  • Example 7 [4,6-Di (2-thienyl) -2- (4-biphenyl) -2,3-dihydro-1H-1,3,2-thieno [3,4-d] diazaborol represented by the formula (1d) Synthesis]
  • Example 1 except that 438 mg (3.60 mmol) of phenylboronic acid represented by the formula (3a) was changed to 713 mg (3.60 mmol) of 4-biphenylboronic acid represented by the formula (3d), The reaction and the post-treatment were performed in the same manner, and 4,6-di (2-thienyl) -2- (4-biphenyl) -2,3-dihydro-1H-1 represented by the formula (1d) having the following physical properties: , 3,2-thieno [3,4-d] diazaborol (649 mg, 1.48 mmol, isolated yield 41%) was obtained.
  • the chemical reaction formula is shown below.
  • Example 8 [Synthesis of ⁇ -conjugated polymer represented by formula (9d)]
  • Electropolymerization was carried out in the same manner as in Example 2 except that diazaborol was used to obtain a ⁇ -conjugated polymer represented by the formula (9d).
  • the chemical reaction formula is shown below.
  • the conductivity was measured by the four probe method in the same manner as in Example 2 and found to be 70 S / cm. From this result, it was found that the ⁇ -conjugated polymer of the present invention represented by the formula (9d) is an excellent conductive material.
  • Example 9 [Synthesis of 2-phenyl-2,3-dihydro-1H-1,3,2-thieno [3,4-d] diazabolol represented by the formula (1e)]
  • 500 mg (1.80 mmol) of 3 ′, 4′-diamino-2,2 ′: 5 ′, 2 ′′ -terthiophene represented by the formula (2a) was converted to 3,4 represented by the formula (2b).
  • Example 10 Synthesis of ⁇ -conjugated polymer represented by formula (8a)]
  • electrolytic polymerization was performed in the same manner as in Example 2 except that a voltage was applied at a constant potential of 0.9 V, and expressed by the formula (8a).
  • a ⁇ -conjugated polymer was obtained.
  • the chemical reaction formula is shown below.
  • the conductivity was measured by the four probe method in the same manner as in Example 2, and was 90 S / cm. From this result, it was found that the ⁇ -conjugated polymer of the present invention represented by the formula (8a) is an excellent conductive material.
  • Example 11 [De-doping reaction of ⁇ -conjugated polymer represented by formula (9a)]
  • a polymer represented by the following formula (6a) is obtained by subjecting 50 mg of the polymer represented by the formula (9a) obtained in Example 2 to reduction treatment using 200 mg of hydrazine monohydrate for 24 hours. 31 mg of a dark red powder was obtained.
  • the number average molecular weight (Mn) of the obtained polymer represented by the following formula (6a) was 1520, and the weight average molecular weight (Mw) was 3450.
  • the chemical reaction formula is shown below.
  • the NMR data of the polymer represented by the formula (6a) were as follows. 1 H-NMR (270 MHz, CDCl 3 , TMS) ⁇ : 7.76-7.40 (bs, 4H), 7.28-6.89 (bs, 5H), 6.70-6.26 (bs, 2H).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

 溶解性が高く加工性が優れるとともに導電材料として好適な新規重合体、並びにその原料である下記一般式(1)で示される新規化合物及びその製造方法が提供される。[式中、Rは、置換基を有してもよい炭素数1~20の炭化水素基であり、R及びRは、それぞれ独立して水素原子又は置換基を有してもよい炭素数1~20の炭化水素基であり、R及びRは、それぞれ独立して水素原子、置換基を有してもよい炭素数1~20の炭化水素基、又は置換基を有してもよい複素芳香環基である。]

Description

チオフェン化合物及びその製造方法、並びにこれを用いて得られる重合体
 本発明は、チオフェン骨格を有する新規化合物及びその製造方法、並びにこれを用いて得られる新規重合体に関する。
 ピロール、チオフェン、アニリン等のヘテロ原子を含む五員環構造を有する化合物又は芳香環構造を有する化合物を重合して得られる重合体は導電性材料として好適なため、近年盛んに研究が進められている。これらの重合物は一般にドーピング量を変えることにより導電率を自在にコントロールすることができるため、各種電極、各種センサー、一次電池、二次電池、固体電解コンデンサー、帯電防止剤等への用途が検討されている。また、酸化還元活性を有するπ共役ポリマーは、本質的にエレクトロクロミックであり、異なる色の状態を電気化学的にあるいは化学的に切り替えることができることから、エレクトロクロミック材料としても有用であることが知られている。
 その中でも、ポリ(3,4-アルキレンジオキシチオフェン)化合物は、高い導電性を有すると共に、優れた着色効率と高速スイッチング能力を有していることが知られており、様々なポリ(3,4-アルキレンジオキシチオフェン)化合物が報告されている(非特許文献1)。しかしながら、得られるポリ(3,4-アルキレンジオキシチオフェン)化合物の溶解性がそれほど高くなく、成膜等の操作が困難な面があり改善が望まれていた。
L. Groenendaal et al.,Electrochemistry of Poly(3,4-alkylenedioxythiophene) Derivatives, AdvancedMaterials 2003, Vol.15, No.11, p.855-879
 本発明は上記課題を解決するためになされたものであり、溶解性が高く加工性が優れるとともに導電材料として好適な新規重合体、並びにその原料である新規化合物及びその製造方法を提供することを目的とするものである。
 上記課題は、下記一般式(1):
Figure JPOXMLDOC01-appb-C000010
[式中、Rは、置換基を有してもよい炭素数1~20の炭化水素基であり、R及びRは、それぞれ独立して水素原子又は置換基を有してもよい炭素数1~20の炭化水素基であり、R及びRは、それぞれ独立して水素原子、置換基を有してもよい炭素数1~20の炭化水素基、又は置換基を有してもよい複素芳香環基である。]
で示される2,3-ジヒドロ-1H-1,3,2-チエノ[3,4-d]ジアザボロール化合物を提供することによって解決される。
 このとき、R及びRが水素原子であることが好適であり、Rが置換基を有してもよいアリール基であることが好適である。
 下記一般式(2):
Figure JPOXMLDOC01-appb-C000011
[式中、R、R、R及びRは、前記一般式(1)と同義である。]
で示されるジアミノチオフェン化合物と下記一般式(3):
Figure JPOXMLDOC01-appb-C000012
[式中、Rは、前記一般式(1)と同義である。]
で示されるボロン酸化合物とを反応させることを特徴とする2,3-ジヒドロ-1H-1,3,2-チエノ[3,4-d]ジアザボロール化合物の製造方法が本発明の好適な実施態様である。
 また、このとき、前記反応の際に生成される水を除去しながら反応させることが好適であり、前記反応の際に生成される水を共沸脱水により除去しながら反応させることが好適である。
 また、上記課題は、下記一般式(4):
Figure JPOXMLDOC01-appb-C000013
[式中、Rは、置換基を有してもよい炭素数1~20の炭化水素基であり、R及びRは、それぞれ独立して水素原子又は置換基を有してもよい炭素数1~20の炭化水素基であり、(A)及び(A)の結合は、それぞれ独立して置換基を有してもよい2価の複素芳香環基、又は置換基を有してもよいアリーレン基を介して結合していてもよく、nは2以上の整数である。]
で示される構成単位を有するπ共役系重合体を提供することによっても解決される。
 このとき、下記一般式(5):
Figure JPOXMLDOC01-appb-C000014
[式中、R、R及びRは、前記一般式(4)と同義であり、nは2以上の整数である。]
で示される構成単位を有するπ共役系重合体が本発明の好適な実施態様である。
 また、このとき、下記一般式(6):
Figure JPOXMLDOC01-appb-C000015
[式中、R、R及びRは、前記一般式(4)と同義であり、R、R、R及びRは、それぞれ独立して水素原子又は置換基を有してもよい炭素数1~20の有機基であり、nは2以上の整数である。]
で示される構成単位を有するπ共役系重合体が本発明の好適な実施態様である。
 更に上記課題は、下記一般式(7):
Figure JPOXMLDOC01-appb-C000016
[式中、Rは、置換基を有してもよい炭素数1~20の炭化水素基であり、R及びRは、それぞれ独立して水素原子又は置換基を有してもよい炭素数1~20の炭化水素基であり、(A)及び(A)の結合は、それぞれ独立して置換基を有してもよい2価の複素芳香環基、又は置換基を有してもよいアリーレン基を介して結合していてもよく、p+q=1、0<p<1、0<q<1であり、Yはアニオンである。]
で示される構成単位を有するπ共役系重合体を提供することによっても解決される。
 このとき、下記一般式(8):
Figure JPOXMLDOC01-appb-C000017
[式中、R、R、R及びYは、前記一般式(7)と同義であり、p+q=1、0<p<1、0<q<1である。]
で示される構成単位を有するπ共役系重合体が本発明の好適な実施態様である。
 また、このとき、下記一般式(9):
Figure JPOXMLDOC01-appb-C000018
[式中、R、R、R及びYは、前記一般式(7)と同義であり、p+q=1、0<p<1、0<q<1である。]
で示される構成単位を有するπ共役系重合体が本発明の好適な実施態様である。
 また、このとき、一般式(7)~(9)で示される構成単位を有するπ共役系重合体からなる導電材料も本発明の好適な実施態様である。
 本発明により、新規化合物及びこれを用いて得られる新規な重合体を提供することができる。こうして得られた重合体は、溶解性が高く加工性が優れるとともに導電性が良好であり、導電材料として適している。
 本発明によれば、一般式(1)で示される2,3-ジヒドロ-1H-1,3,2-チエノ[3,4-d]ジアザボロール化合物、及びこれを用いて得られる一般式(4)で示されるπ共役系重合体や一般式(7)で示されるπ共役系重合体を提供することができる。また、一般式(4)で示されるπ共役系重合体の好適な実施態様として、一般式(5)で示されるπ共役系重合体や一般式(6)で示されるπ共役系重合体を提供することができる。一般式(1)で示される化合物は新規な化合物であり、一般式(4)~(7)で示されるπ共役系重合体はいずれも新規な重合体である。以下詳細について述べる。
Figure JPOXMLDOC01-appb-C000019
[式中、Rは、置換基を有してもよい炭素数1~20の炭化水素基であり、R及びRは、それぞれ独立して水素原子又は置換基を有してもよい炭素数1~20の炭化水素基であり、R及びRは、それぞれ独立して水素原子、置換基を有してもよい炭素数1~20の炭化水素基、又は置換基を有してもよい複素芳香環基である。]
Figure JPOXMLDOC01-appb-C000020
[式中、Rは、置換基を有してもよい炭素数1~20の炭化水素基であり、R及びRは、それぞれ独立して水素原子又は置換基を有してもよい炭素数1~20の炭化水素基であり、(A)及び(A)の結合は、それぞれ独立して置換基を有してもよい2価の複素芳香環基、又は置換基を有してもよいアリーレン基を介して結合していてもよく、nは2以上の整数である。]
Figure JPOXMLDOC01-appb-C000021
[式中、R、R及びRは、前記一般式(4)と同義であり、nは2以上の整数である。]
Figure JPOXMLDOC01-appb-C000022
[式中、R、R及びRは、前記一般式(4)と同義であり、R、R、R及びRは、それぞれ独立して水素原子又は置換基を有してもよい炭素数1~20の有機基であり、nは2以上の整数である。]
Figure JPOXMLDOC01-appb-C000023
[式中、Rは、置換基を有してもよい炭素数1~20の炭化水素基であり、R及びRは、それぞれ独立して水素原子又は置換基を有してもよい炭素数1~20の炭化水素基であり、(A)及び(A)の結合は、それぞれ独立して置換基を有してもよい2価の複素芳香環基、又は置換基を有してもよいアリーレン基を介して結合していてもよく、p+q=1、0<p<1、0<q<1であり、Yはアニオンである。]
 上記一般式(1)、(4)、(5)、(6)及び(7)において、Rは、置換基を有してもよい炭素数1~20の炭化水素基であり、R及びRは、それぞれ独立して水素原子又は置換基を有してもよい炭素数1~20の炭化水素基である。また、上記一般式(6)において、R、R、R及びRは、それぞれ独立して水素原子又は置換基を有してもよい炭素数1~20の有機基である。
 置換基を有してもよい炭素数1~20の炭化水素基は、例えば、置換基を有してもよいアルキル基、置換基を有してもよいアルケニル基、置換基を有してもよいアルキニル基、置換基を有してもよいアリール基等が挙げられる。
 本発明で用いられるアルキル基は、直鎖や分岐鎖のアルキル基であってもよいし、環状のシクロアルキル基であってもよい。例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、ヘキシル基、イソヘキシル基、2-エチルヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ドデシル基等の直鎖や分岐鎖のアルキル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプタニル基、シクロオクタニル基、シクロノナニル基、シクロデカニル基、シクロウンデカニル基、シクロドデカニル基等のシクロアルキル基が挙げられる。
 上記アルキル基は置換基を有していてもよく、かかる置換基としては、例えば、フェニル基、ナフチル基、アントリル基、フェナントリル基等のアリール基;ピリジル基、チエニル基、フリル基、ピロリル基、イミダゾリル基、ピラジニル基、オキサゾリル基、チアゾリル基、ピラゾリル基、ベンゾチアゾリル基、ベンゾイミダゾリル基等の複素芳香環基;メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、ペンチルオキシ基、イソペンチルオキシ基、ネオペンチルオキシ基、ヘキシルオキシ基、シクロヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、ノニルオキシ基、デシルオキシ基、ドデシルオキシ基等のアルコキシ基;メチルチオ基、エチルチオ基、プロピルチオ基、ブチルチオ基等のアルキルチオ基;フェニルチオ基、ナフチルチオ基等のアリールチオ基;tert-ブチルジメチルシリルオキシ基、tert-ブチルジフェニルシリルオキシ基等の三置換シリルオキシ基;アセトキシ基、プロパノイルオキシ基、ブタノイルオキシ基、ピバロイルオキシ基、ベンゾイルオキシ基等のアシロキシ基;メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、イソプロポキシカルボニル基、ブトキシカルボニル基、イソブトキシカルボニル基、sec-ブトキシカルボニル基、tert-ブトキシカルボニル基、ペンチルオキシカルボニル基、ヘキシルオキシカルボニル基、ヘプチルオキシカルボニル基、オクチルオキシカルボニル基等のアルコキシカルボニル基;メチルスルフィニル基、エチルスルフィニル基等のアルキルスルフィニル基;フェニルスルフィニル基等のアリールスルフィニル基;メチルスルフォニルオキシ基、エチルスルフォニルオキシ基、フェニルスルフォニルオキシ基、メトキシスルフォニル基、エトキシスルフォニル基、フェニルオキシスルフォニル基等のスルフォン酸エステル基;アミノ基;水酸基;シアノ基;ニトロ基;フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;などが挙げられる。
 上記アミノ基としては、1級アミノ基(-NH)の他、2級アミノ基、3級アミノ基であっても良い。2級アミノ基は、-NHR10(R10は任意の一価の置換基である)で示されるモノ置換アミノ基であり、R10としては、アルキル基、アリール基、アセチル基、ベンゾイル基、ベンゼンスルホニル基、tert-ブトキシカルボニル基等が挙げられる。2級アミノ基の具体例としては、例えば、メチルアミノ基、エチルアミノ基、プロピルアミノ基、イソプロピルアミノ基等のようにR10がアルキル基である2級アミノ基や、フェニルアミノ基、ナフチルアミノ基等のようにR10がアリール基である2級アミノ基等が挙げられる。また、R10におけるアルキル基やアリール基の水素原子が、更にアセチル基、ベンゾイル基、ベンゼンスルホニル基、tert-ブトキシカルボニル基等で置換されていてもよい。
 3級アミノ基は、-NR1011(R10及びR11は任意の一価の置換基である)で示されるジ置換アミノ基であり、R11としては、R10と同様のものを用いることができ、R10及びR11は互いに同じでも異なっていてもよい。3級アミノ基の具体例としては、ジメチルアミノ基、ジエチルアミノ基、ジブチルアミノ基、エチルメチルアミノ基、ジフェニルアミノ基、メチルフェニルアミノ基等のようにR10及びR11がアルキル基及びアリール基からなる群から選択される少なくとも1種である3級アミノ基等が挙げられる。
 本発明で用いられるアルケニル基は、直鎖であっても分岐鎖であってもよい。アルケニル基としては、例えば、ビニル基、アリル基、メチルビニル基、プロペニル基、ブテニル基、ペンテニル基、ヘキセニル基、シクロプロペニル基、シクロブテニル基、シクロペンテニル基、シクロヘキセニル基等が挙げられる。これらアルケニル基は置換基を有していてもよく、かかる置換基としては、アルキル基の説明のところで例示された置換基と同様のものを用いることができる。
 本発明で用いられるアルキニル基は、直鎖であっても分岐鎖であってもよい。アルキニル基としては、例えば、エチニル基、プロピニル基、プロパルギル基、ブチニル基、ペンチニル基、ヘキシニル基、フェニルエチニル基等が挙げられる。これらアルキニル基は置換基を有していてもよく、かかる置換基としては、アルキル基の説明のところで例示された置換基と同様のものを用いることができる。
 本発明で用いられるアリール基は、例えば、フェニル基、ナフチル基、アントリル基、フェナントリル基、ビフェニル基等が挙げられる。これらアリール基は置換基を有していてもよく、かかる置換基としては、アルキル基の説明のところで例示されたアリール基以外の置換基や、上述のアルキル基、アルケニル基、アルキニル基等を用いることができる。
 ここで、上記一般式(1)、(4)、(5)、(6)及び(7)において、化学構造の平面性や原料合成の容易性の観点から、R又はRの少なくとも一方が水素原子であることが好ましく、R及びRの両方ともが水素原子であることが好ましい。また、ジアザボロール環の安定性および重合体の溶解性の観点から、Rが置換基を有してもよいアリール基であることが好ましい。
 また、上記一般式(1)において、R及びRは、それぞれ独立して水素原子、置換基を有してもよい炭素数1~20の炭化水素基、又は置換基を有してもよい複素芳香環基である。
 R及びRに用いられる置換基を有してもよい炭素数1~20の炭化水素基としては、上述のR、R及びRの説明のところで例示された置換基と同様のものを用いることができ、中でも置換基を有してもよいアリーレン基が好適に使用される。また、置換基を有してもよい複素芳香環基としては、例えば、ピリジル基、チエニル基、フリル基、ピロリル基、イミダゾリル基、ピラジニル基、オキサゾリル基、チアゾリル基、ピラゾリル基、ベンゾチアゾリル基、ベンゾイミダゾリル基等が挙げられ、これらから選択される少なくとも1種が好適に用いられる。後述する工程2で示されるように、一般式(1)で示される化合物から重合反応によりπ共役系重合体を得る観点から、R及びRが、置換基を有してもよいアリーレン基及び置換基を有してもよい複素芳香環基からなる群から選択される少なくとも1種であることが好ましい。また、R及びRとしては、置換基を有してもよいアリーレン基及び置換基を有してもよい複素芳香環基からなる群から選択される少なくとも1種の置換基が複数結合された実態態様も好適に採用される。
 上記一般式(4)及び(7)において、(A)及び(A)は具体的な化学構造を有する構成単位の存在又は不存在が任意の結合であり、A又はAに構成単位が存在する場合、A及びAは、それぞれ独立して置換基を有してもよい2価の複素芳香環基、又は置換基を有してもよいアリーレン基を介した結合であり、A又はAに構成単位が存在しない場合、A又はAは直接結合(炭素-炭素結合)となる。A及びAに構成単位が共に存在しない場合、一般式(4)で示されるπ共役系重合体及び一般式(7)で示されるπ共役系重合体は、それぞれ上記一般式(5)で示される構造及び上記一般式(8)で示される構造である。A及びAは互いに同じでも異なっていてもよい。すなわち、一般式(4)で示されるπ共役系重合体及び一般式(7)で示されるπ共役系重合体は、A及びAのいずれか一方のみを有するモノマー化合物から得られた重合体であってもよく、同じ構造のモノマー化合物が互いに結合されて得られる単独重合体であってもよいし、異なる構造のモノマー化合物が互いに結合されて得られる共重合体であってもよい。また、上記一般式(7)において、Yはアニオンである。
 A及びAに用いられる置換基を有してもよい2価の複素芳香環基としては、例えば、N-アルキルカルバゾール等のカルバゾール誘導体;ピリジン、ピリミジン、ピリダジン、トリアジン、ピラジン、キノリン、プリン等のピリジン誘導体;フラン、3-アルキルフラン等のフラン誘導体;ピロール、N-アルキルピロール、エチレン-3,4-ジオキシピロール、プロピレン-3,4-ジオキシピロール等のピロール誘導体;チオフェン、チオフェンビニレン、アルキルチオフェン、エチレン-3,4-ジオキシチオフェン、プロピレン-3,4-ジオキシチオフェン、チエノチオフェン、チエノフラン、チエノピラジン、イソチアナフテン等のチオフェン誘導体;オキサジアゾール、チアジル、セレノフェン、テルロフェン、イミダゾール、オキサゾール、チアゾール、ピラゾール、イソキサゾール、イソチアゾール、ベンゾトリアゾール、ピラン、ベンゾチアジアゾール、ベンゾオキサジアゾール等の複素環誘導体等が挙げられ、これらから選択される少なくとも1種が好適に用いられる。中でもチオフェン誘導体がより好適に用いられる。
 A及びAに用いられる置換基を有してもよいアリーレン基としては、例えば、フェニレン、2,3-ジアルキルフェニレン、2,5-ジアルキルフェニレン、2,3,5,6-テトラアルキルフェニレン、2,3-アルコキシフェニレン、2,5-アルコキシフェニレン、2,3,5,6-テトラアルコキシフェニレン、2-(N,N,-ジアルキルアミノ)フェニレン、2,5-ジ(N,N,-ジアルキルアミノ)フェニレン、2,3-ジ(N,N,-ジアルキルアミノ)フェニレン、p-フェニレンオキシド、p-フェニレンスルフィド、p-フェニレンアミノ、p-フェニレンビニレン、フルオレニレン、ナフチレン、アントリレン、テトラセニレン、ペンタセニレン、ヘキサセニレン、ヘプタセニレン、ナフチレンビニレン、ペリナフチレン、アミノピレニレン、フェナントレニレン等が挙げられ、これらから選択される少なくとも1種が好適に用いられる。
 Yはアニオンであり、ドーパントとして機能するものである。Yの具体例としては、PF 、SbF 、AsF 等の5B族元素のハロゲン化アニオン、BF 等の3B族元素のハロゲン化アニオン、I(I )、Br、Cl等のハロゲンアニオン、ClO 等のハロゲン酸アニオン、AlCl 、FeCl 、SnCl 等の金属ハロゲン化物アニオン、NO で示される硝酸アニオン、SO 2-示される硫酸アニオン、p-トルエンスルホン酸アニオン、ナフタレンスルホン酸アニオン、CHSO 、CFSO 等の有機スルホン酸アニオン、CFCOO、CCOO等のカルボン酸アニオン、および、上記のアニオン種を主鎖または側鎖に有する変性ポリマー等が挙げられる。これらのアニオンは単独で用いてもよいし、2種以上を併用してもよい。また、アニオンの添加方法については特に限定されず、例えば、重合後に所望のアニオンを適宜添加してもよいし、電解重合により重合させる場合には、電解質由来のアニオンをそのまま用いることができる。また、化学酸化重合により重合させる場合には、用いられる酸化剤由来のアニオンをそのまま用いることができる。
 また、上記一般式(6)において、R、R、R及びRは、それぞれ独立して水素原子又は置換基を有してもよい炭素数1~20の有機基である。置換基を有してもよい炭素数1~20の有機基としては、その構造中にエーテル結合、エステル結合、アミド結合、スルホニル結合、ウレタン結合、チオエーテル結合等の炭素-炭素結合以外の結合が含まれていてもよく、また、二重結合、三重結合、脂環式炭化水素、複素環、芳香族炭化水素、複素芳香環等が含まれていてもよい。更に、ハロゲン原子、水酸基、アミノ基、シアノ基、ニトロ基等の置換基を有していてもよい。置換基を有してもよい炭素数1~20の有機基としては、例えば、置換基を有してもよいアルキル基、置換基を有してもよいアルケニル基、置換基を有してもよいアリール基、置換基を有してもよいアルコキシ基、置換基を有してもよいアシル基、置換基を有してもよいアリールアルキル基、置換基を有してもよいアルキルシリル基、置換基を有してもよいアルコキシカルボニル基、置換基を有してもよい複素芳香環基等が挙げられる。
 R、R、R及びRに用いられる上記置換基を有してもよいアルキル基、置換基を有してもよいアルケニル基、及び置換基を有してもよいアリール基としては、上述のR、R及びRの説明のところで例示された置換基と同様のものを用いることができる。また、置換基を有してもよい複素芳香環基としては、上述のR及びRの説明のところで例示された置換基と同様のものを用いることができる。
 本発明で用いられるアルコキシ基は、例えば、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、sec-ブトキシ基、tert-ブトキシ基、n-ペンチルオキシ基、イソペンチルオキシ基、ネオペンチルオキシ基、n-ヘキシルオキシ基、イソヘキシルオキシ基、2-エチルヘキシルオキシ基、n-ヘプチルオキシ基、n-オクチルオキシ基、n-ノニルオキシ基、n-デシルオキシ基等が挙げられる。これらアルコキシ基は置換基を有していてもよく、かかる置換基としては、アルキル基の説明のところで例示されたアルコキシ基以外の置換基を用いることができる。
 本発明で用いられるアシル基としては、例えば、アセチル基、プロピオニル基、ブチリル基、イソブチリル基、ベンゾイル基、ドデカノイル基、ピバロイル基等が挙げられる。これらアシル基は置換基を有していてもよく、かかる置換基としては、アルキル基の説明のところで例示された置換基と同様のものを用いることができる。
 本発明で用いられるアリールアルキル基としては、例えば、ベンジル基、4-メトキシベンジル基、フェネチル基、ジフェニルメチル基等が挙げられる。これらアリールアルキル基は置換基を有していてもよく、かかる置換基としては、アルキル基の説明のところで例示された置換基と同様のものを用いることができる。
 本発明で用いられるアルキルシリル基としては、例えば、トリメチルシリル基、トリエチルシリル基、トリイソプロピルシリル基、tert-ブチルジメチルシリル基、tert-ブチルジフェニルシリル基等が挙げられる。これらアルキルシリル基は置換基を有していてもよく、かかる置換基としては、アルキル基の説明のところで例示された置換基と同様のものを用いることができる。
 本発明で用いられるアルコキシカルボニル基としては、例えば、メトキシカルボニル基、エトキシカルボニル基、2,2,2-トリクロロエトキシカルボニル基、n-プロポキシカルボニル基、イソプロポキシカルボニル基、アリルオキシカルボニル基、n-ブトキシカルボニル基、イソブトキシカルボニル基、sec-ブトキシカルボニル基、tert-ブトキシカルボニル基、ペンチルオキシカルボニル基、ヘキシルオキシカルボニル基、ヘプチルオキシカルボニル基、オクチルオキシカルボニル基、ベンジルオキシカルボニル基等が挙げられる。これらアルコキシカルボニル基は置換基を有していてもよく、かかる置換基としては、アルキル基の説明のところで例示されたアルコキシカルボニル基以外の置換基を用いることができる。
 本発明において、一般式(1)で示される2,3-ジヒドロ-1H-1,3,2-チエノ[3,4-d]ジアザボロール化合物は、下記化学反応式(I)で示される工程1のように、一般式(2)で示されるジアミノチオフェン化合物と一般式(3)で示されるボロン酸化合物とを反応させることにより好適に合成される。
Figure JPOXMLDOC01-appb-C000024
[式中、R、R、R、R及びRは、前記一般式(1)と同義である。]
 上記工程1で用いられる一般式(2)で示されるジアミノチオフェン化合物としては特に限定されず、例えば、3,4-ジアミノチオフェン、3,4-ジアミノ-2,5-ジメチルチオフェン、3’,4’-ジアミノ-2,2’:5’,2”-ターチオフェン等の1級アミン化合物や、N,N’-ジメチル-3,4-ジアミノチオフェン、N,N’-ジフェニル-3,4-ジアミノチオフェン等の3級アミン化合物を用いることができる。反応速度の観点から3,4-ジアミノチオフェンや3’,4’-ジアミノ-2,2’:5’,2”-ターチオフェンに代表される1級アミン化合物が好適に用いられ、中でも3,4-ジアミノチオフェン化合物がより好適に用いられる。なお、3,4-ジアミノチオフェンや3’,4’-ジアミノ-2,2’:5’,2”-ターチオフェンは、例えば、C. Kitamura et al., Chem. Mater. 1996, Vol.8, p.570-578に記載の方法により合成することができる。
 また、上記工程1で用いられる一般式(3)で示されるボロン酸化合物としては特に限定されず、例えば、メチルボロン酸、ブチルボロン酸、シクロプロピルボロン酸、シクロペンチルボロン酸、シクロヘキシルボロン酸等のアルキルボロン酸;フェニルボロン酸、トリルフェニルボロン酸、フェネチルボロン酸、フルオロフェニルボロン酸、ヒドロキシフェニルボロン酸、メトキシフェニルボロン酸、シアノフェニルボロン酸、トリフルオロメチルフェニルボロン酸、ジフェニルアミノフェニルボロン酸、ビフェニルボロン酸、ナフチルボロン酸等の炭化水素系芳香族であるアリールボロン酸;ピリジルボロン酸、インドリルボロン酸、キノリルボロン酸、N-Boc-ピロリルボロン酸、チエニルボロン酸、メチルチエニルボロン酸、ベンゾチオフェン-2-ボロン酸、フリルボロン酸、ベンゾフラン-2-ボロン酸等の複素芳香環基を有するボロン酸を用いることができる。
 上記工程1で用いられる一般式(3)で示されるボロン酸化合物の使用量については特に限定されず、一般式(2)で示されるジアミノチオフェン化合物1モルに対して、0.5~10モルであることが好ましい。反応の効率および後処理の簡便性の観点から、一般式(2)で示されるジアミノチオフェン化合物1モルに対する一般式(3)で示されるボロン酸化合物の使用量が、0.8~5モルであることがより好ましい。
 上記化学反応式(I)で示される工程1の好適な実施態様は、窒素、アルゴンなどの不活性ガス雰囲気下、溶媒の存在下において一般式(2)で示されるジアミノチオフェン化合物と一般式(3)で示されるボロン酸化合物とを反応させる方法である。このとき、反応の進行に伴い水が生成されるため、得られる一般式(1)で示される2,3-ジヒドロ-1H-1,3,2-チエノ[3,4-d]ジアザボロール化合物の安定性向上および収率向上の観点から、かかる水を除去しながら反応させることが好ましい。水を除去する方法としては、共沸脱水により水を反応系外に留去する方法、モレキュラーシーブ、無水硫酸マグネシウム、無水硫酸ナトリウム等の脱水剤を使用する方法などが挙げられる。中でも反応効率および操作の簡便性の観点から、共沸脱水により水を除去する方法が好ましく採用される。ここで、共沸脱水により水を反応系外に留去する方法としては、反応の進行に伴い生成される水を溶媒との共沸混合物として留出させる方法が簡便であり好ましい。この場合、Dean-Starkトラップなどの水分離器を利用して留出物から水を分離し、水を分離した後の溶媒を再度反応系に戻すことが望ましい。
 上記工程1は、溶媒の存在下で行われることが好ましい。用いられる溶媒としては、反応の進行に伴い生成される水と共沸し、かつ水と分液可能な溶媒(共沸脱水可能な溶媒)を使用することが好ましい。かかる溶媒としては、例えば、ベンゼン、トルエン、キシレン、エチルベンゼン、メシチレンなどの芳香族炭化水素;ペンタン、ヘキサン、ヘプタン、オクタン、ノナン、デカンなどの脂肪族炭化水素;シクロヘキサン、シクロオクタンなどの脂環式炭化水素;塩化メチレン、クロロホルム、1,2-ジクロロエタン、四塩化炭素、クロロベンゼン、トリフルオロメチルベンゼンなどのハロゲン化炭化水素;ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、アニソール、テトラヒドロフランなどのエーテル;酢酸エチル、酢酸ブチルなどのエステル;アセトニトリル、ベンゾニトリルなどのニトリル;N,N-ジメチルホルムアミド、ジメチルスルホキシドなどの非プロトン性極性溶媒;およびこれらの混合溶媒などが挙げられる。これらの中でも反応温度などを考慮して、トルエンに代表される芳香族炭化水素が好適に用いられる。かかる溶媒の使用量は、一般式(2)で示されるジアミノチオフェン化合物1質量部に対して、1~500質量部であることが好ましく、1~100質量部であることがより好ましい。
 上記工程1における反応は、通常、常圧または減圧下で実施されるが、好ましくは15~760mmHgの範囲、より好ましくは100~760mmHgの範囲内で実施される。また、反応温度は、反応圧力に応じて適宜設定されるが、-30℃~200℃の範囲であることが好ましい。
 また、上記工程1では、反応を円滑に進める観点から酸触媒を添加しても良い。かかる酸触媒としては、例えば、硫酸、塩酸、硝酸などの鉱酸(無機酸);メタンスルホン酸、p-トルエンスルホン酸、カンファスルホン酸などの有機酸;アンバーリスト15(東京有機化学工業株式会社製)、アンバーライトIR-118(東京有機化学工業株式会社製)などの酸型イオン交換樹脂などが使用される。これらの中でも、反応温度、操作性、触媒の経済性などを考慮すれば、p-トルエンスルホン酸に代表される有機酸を使用することが好ましい。酸触媒の使用量は、一般式(2)で示されるジアミノチオフェン化合物に対して0.001~100モル%の範囲であることが好ましく、反応効率を考慮すれば0.1~10モル%の範囲であるのことがより好ましい。
 上記工程1により得られた反応混合物から溶媒を留去して、得られた残留物をそのまま重合工程に用いることができる。さらに、必要に応じて再結晶やカラムクロマトグラフィーにより精製することで純度の高い一般式(1)で示される2,3-ジヒドロ-1H-1,3,2-チエノ[3,4-d]ジアザボロール化合物を得ることができ、次いで重合工程に用いることができる。
 続いて、上記工程1により得られた一般式(1)で示される1,3,2-チエノ[3,4-c]ジアザボロール化合物を重合して、一般式(7)で示されるπ共役系重合体を得る下記化学反応式(II)で示される工程2について説明する。
Figure JPOXMLDOC01-appb-C000025
[式中、R、R、R、R、R、A、A及びYは、前記一般式(1)及び(7)と同義であり、p+q=1、0<p<1、0<q<1である。]
 上記工程2は、一般式(1)で示されるモノマー化合物から重合反応により一般式(7)で示されるπ共役系重合体を得る工程である。上記一般式(7)で示されるπ共役系重合体は、ドーピングされた状態を表しており、このことにより導電性を有している。また、アニオンであるYはドーパントとして機能している。一方、後述する工程3により得られる脱ドーピングされた中性状態の重合体は、絶縁体として機能することとなる。ここで、本発明においてドーピングされた状態とは、π共役系重合体の主鎖がプラスにチャージされた状態をいい、脱ドーピングされた状態とは、π共役系重合体の主鎖の電荷が中性となった状態をいう。
 上記工程2の重合反応としては特に限定されないが、好適な重合反応は、化学酸化重合又は電解重合である。化学酸化重合としては、酸化剤を用いてモノマー化合物から脱水素することにより重合体を得る方法が好適に採用される。
 化学酸化重合で用いられる酸化剤としては特に限定されないが、遷移金属塩であることが好ましい。遷移金属塩としては、例えば、塩化第二鉄(FeCl)、硫酸第二鉄(Fe(SO)、炭素数1~16のアルコキシベンゼンスルホン酸鉄、炭素数1~16のアルキルベンゼンスルホン酸鉄、ナフタレンスルホン酸鉄、フェノールスルホン酸鉄、スルホイソフタル酸鉄ジアルキルエステル、アルキルスルホン酸鉄、ナフタレンスルホン酸鉄、アルコキシナフタレンスルホン酸鉄、テトラリンスルホン酸鉄、炭素数1~12のテトラリンスルホン酸鉄などの第二鉄塩や、これら前記化合物の鉄(III)塩の代わりにセリウム(IV)塩、銅(II)塩、マンガン(VII)塩、ルテニウム(III)塩になったもの等を用いることができる。中でも、鉄(III)塩が好適に用いられる。化学酸化重合により得られるπ共役系重合体は、上述した酸化剤由来のアニオンであるYがドーパントとして機能することとなる。Yとしては、前述に挙げられたものが好適に使用される。
 上記工程2において、電解重合により重合させる場合、重合原料となる単量体を溶解させた電解液を作製し、この電解液を介して電極間に電圧印加することによって陽極酸化された重合物を陽極上に得る方法が好適に採用される。電解液に用いる溶媒としてはニトロメタン、アセトニトリル、プロピレンカーボネート、ニトロベンゼン、シアノベンゼン、o-ジクロロベンゼン、ジメチルスルホオキシド、γ-ブチロラクトン等が例示される。電解液に用いる支持電解質としてリチウムイオン、カリウムイオン、ナトリウムイオン等のアルカリ金属類のイオンや四級アンモニウムイオンといったカチオンと、過塩素酸イオン、四フッ化ホウ素イオン、六フッ化リンイオン、ハロゲン原子イオン、六フッ化ヒ素イオン、六フッ化アンチモンイオン、硫酸イオン、硫酸水素イオンといったアニオンの組み合わせからなる支持塩が添加されることが好ましい。また電解液としてはアルキルイミダゾリウム塩、アルキルピリジニウム塩などのイオン液体を用いることもできる。電極材料としては白金、金、ニッケル、ITO等を用いることができる。電解重合により得られるπ共役系重合体は、上述した支持電解質由来のアニオンであるYがドーパントとして機能することとなる。Yとしては、前述に挙げられたものが好適に使用され、中でも過塩素酸イオンに代表されるハロゲン酸イオンがより好適に使用される。
 上記工程3により得られた一般式(7)で示されるπ共役系重合体は、更に下記化学反応式(III)で示される工程3のようにアンモニア、ヒドラジン等のアルカリ溶液を用いて還元することにより、下記一般式(4)で示される脱ドーピングされた重合体を得ることもできる。
Figure JPOXMLDOC01-appb-C000026
[式中、R、R、R、A、A及びYは、前記一般式(4)及び(7)と同義であり、p+q=1、0<p<1、0<q<1であり、nは2以上の整数である。]
 ここで、上記一般式(7)及び上記一般式(4)で示されるπ共役系重合体の数平均分子量(Mn)は、通常、500~1,000,000であり、重量平均分子量(Mw)は、通常、500~1,000,000である。
 上記一般式(7)及び上記一般式(4)で示される本発明のπ共役系重合体は平面性が高いため、高度に自己集積化したり、精密な層構造を形成したりできるなどの特性を有するともに、溶剤への溶解性が高く、特にポリ(3,4-エチレンジオキシチオフェン)(PEDOT)と比較して溶解性が高く加工性に優れるものである。したがって、例えば、導電材料、エレクトロクロミック材料、光電変換材料、エレクトロルミネッセンス材料、非線形光学材料、電界効果トランジスタ材料、RF-ID材料、メモリ材料、センサー材料、導電性プリントペースト、インクジェット塗料等に好適に用いられ、中でも、導電材料としてより好適に用いられる。
 以下、実施例を用いて本発明を更に具体的に説明する。
実施例1
[式(1a)で示される4,6-ジ(2-チエニル)-2-フェニル-2,3-ジヒドロ-1H-1,3,2-チエノ[3,4-d]ジアザボロールの合成]
 水分離器を備えた100mlの3口フラスコに式(2a)で示される3’,4’-ジアミノ-2,2’:5’,2”-ターチオフェン500mg(1.80mmol)、式(3a)で示されるフェニルボロン酸438mg(3.60mmol)およびトルエン20mlを仕込み、窒素雰囲気下、還流条件下にて、生成された水を共沸によって反応系外に除去しながら6時間反応させた。反応終了後、反応液を氷浴を用いて冷却し、析出した固体を濾別した。得られた固体を減圧乾燥して、下記の物性を有する式(1a)で示される4,6-ジ(2-チエニル)-2-フェニル-2,3-ジヒドロ-1H-1,3,2-チエノ[3,4-d]ジアザボロール420mg(1.15mmol、単離収率64%)を得た。化学反応式を以下に示す。
Figure JPOXMLDOC01-appb-C000027
 式(1a)で示される4,6-ジ(2-チエニル)-2-フェニル-2,3-ジヒドロ-1H-1,3,2-チエノ[3,4-d]ジアザボロールのNMRデータは以下のとおりであった。
 H-NMR(270MHz、CDCl、TMS) δ:7.76-7.72(m,2H),7.50-7.43(m,3H),7.28-7.23(m,2H),7.11-7.06(m,4H),6.66(bs,2H)
実施例2
[式(9a)で示されるπ共役系重合体の合成]
 ITO膜付ガラス板(表面抵抗値:10Ω/□)を陽極、白金線を陰極、銀/過塩素酸銀(0.1Mアセトニトリル溶液)を参照極として配置した電解槽に、0.1M過塩素酸リチウム/アセトニトリル溶液30mLを加え、式(1a)で示される4,6-ジ(2-チエニル)-2-フェニル-2,3-ジヒドロ-1H-1,3,2-チエノ[3,4-d]ジアザボロール109mg(0.3mmol)を溶解させて、窒素置換を行った。この電解槽の各電極に、北斗電工(株)製ポテンショスタット/ガルバノスタットHAB-151を接続した。ポテンショスタットモードにて0.6Vの定電位で電圧印加し、電解重合を行ったところ、陽極上に下記式(9a)で示される膜状の黒色重合体が生成した。化学反応式を以下に示す。生成した膜を脱水アセトニトリルで洗浄後、乾燥させて導電率を四端子法で測定したところ、120S/cmであった。この結果から、式(9a)で示される本発明のπ共役系重合体は、優れた導電材料であることが分かった。
Figure JPOXMLDOC01-appb-C000028
実施例3
[式(1b)で示される4,6-ジ(2-チエニル)-2-(4-ノニルフェニル)-2,3-ジヒドロ-1H-1,3,2-チエノ[3,4-d]ジアザボロールの合成]
 実施例1において、式(3a)で示されるフェニルボロン酸438mg(3.60mmol)を式(3b)で示される4-ノニルフェニルボロン酸893mg(3.60mmol)に変更した以外は、実施例1と同様にして反応、後処理を行い、下記の物性を有する式(1b)で示される4,6-ジ(2-チエニル)-2-(4-ノニルフェニル)-2,3-ジヒドロ-1H-1,3,2-チエノ[3,4-d]ジアザボロール848mg(1.73mmol、単離収率48%)を得た。化学反応式を以下に示す。
Figure JPOXMLDOC01-appb-C000029
 式(1b)で示される4,6-ジ(2-チエニル)-2-(4-ノニルフェニル)-2,3-ジヒドロ-1H-1,3,2-チエノ[3,4-d]ジアザボロールのNMRデータは以下のとおりであった。
 H-NMR(270MHz、CDCl、TMS) δ:7.81(d,2H),7.43-7.23(m,4H),7.10-7.01(m,4H),6.57(bs,2H),2.78(t,2H),1.82-1.36(m,14H),0.90(t,3H)
実施例4
[式(9b)で示されるπ共役系重合体の合成]
 実施例2において、式(1a)で示される4,6-ジ(2-チエニル)-2-フェニル-2,3-ジヒドロ-1H-1,3,2-チエノ[3,4-d]ジアザボロールの代わりに、式(1b)で示される4,6-ジ(2-チエニル)-2-(4-ノニルフェニル)-2,3-ジヒドロ-1H-1,3,2-チエノ[3,4-d]ジアザボロールを用いた以外は、実施例2と同様にして電解重合を行って、式(9b)で示されるπ共役系重合体を得た。化学反応式を以下に示す。実施例2と同様にして導電率を四端子法で測定したところ、100S/cmであった。この結果から、式(9b)で示される本発明のπ共役系重合体は、優れた導電材料であることが分かった。
Figure JPOXMLDOC01-appb-C000030
実施例5
[式(1c)で示される4,6-ジ(2-チエニル)-2-(2-ナフチル)-2,3-ジヒドロ-1H-1,3,2-チエノ[3,4-d]ジアザボロールの合成]
 実施例1において、式(3a)で示されるフェニルボロン酸438mg(3.60mmol)を式(3c)で示される2-ナフチルボロン酸620mg(3.60mmol)に変更した以外は、実施例1と同様にして反応、後処理を行い、下記の物性を有する式(1c)で示される4,6-ジ(2-チエニル)-2-(2-ナフチル)-2,3-ジヒドロ-1H-1,3,2-チエノ[3,4-d]ジアザボロール820mg(1.98mmol、単離収率55%)を得た。化学反応式を以下に示す。
Figure JPOXMLDOC01-appb-C000031
 式(1c)で示される4,6-ジ(2-チエニル)-2-(2-ナフチル)-2,3-ジヒドロ-1H-1,3,2-チエノ[3,4-d]ジアザボロールのNMRデータは以下のとおりであった。
 H-NMR(270MHz、CDCl、TMS) δ:8.85(s,1H),8.30(d,1H),8.16(d,1H),8.01(d,1H),7.90(d,1H),7.60(m,2H),7.42-7.31(m,2H),7.19-7.08(m,4H),6.99(bs,2H)
実施例6
[式(9c)で示されるπ共役系重合体の合成]
 実施例2において、式(1a)で示される4,6-ジ(2-チエニル)-2-フェニル-2,3-ジヒドロ-1H-1,3,2-チエノ[3,4-d]ジアザボロールの代わりに、式(1c)で示される4,6-ジ(2-チエニル)-2-(2-ナフチル)-2,3-ジヒドロ-1H-1,3,2-チエノ[3,4-d]ジアザボロールを用いた以外は、実施例2と同様にして電解重合を行って、式(9c)で示されるπ共役系重合体を得た。化学反応式を以下に示す。実施例2と同様にして導電率を四端子法で測定したところ、40S/cmであった。この結果から、式(9c)で示される本発明のπ共役系重合体は、優れた導電材料であることが分かった。
Figure JPOXMLDOC01-appb-C000032
実施例7
[式(1d)で示される4,6-ジ(2-チエニル)-2-(4-ビフェニル)-2,3-ジヒドロ-1H-1,3,2-チエノ[3,4-d]ジアザボロールの合成]
 実施例1において、式(3a)で示されるフェニルボロン酸438mg(3.60mmol)を式(3d)で示される4-ビフェニルボロン酸713mg(3.60mmol)に変更した以外は、実施例1と同様にして反応、後処理を行い、下記の物性を有する式(1d)で示される4,6-ジ(2-チエニル)-2-(4-ビフェニル)-2,3-ジヒドロ-1H-1,3,2-チエノ[3,4-d]ジアザボロール649mg(1.48mmol、単離収率41%)を得た。化学反応式を以下に示す。
Figure JPOXMLDOC01-appb-C000033
 式(1d)で示される4,6-ジ(2-チエニル)-2-(4-ビフェニル)-2,3-ジヒドロ-1H-1,3,2-チエノ[3,4-d]ジアザボロールのNMRデータは以下のとおりであった。
 H-NMR(270MHz、CDCl、TMS) δ:8.30(d,2H),7.90-7.59(m,4H),7.52-7.40(m,3H),7.23-7.14(m,2H),7.09-6.99(m,4H),6.69(bs,2H)
実施例8
[式(9d)で示されるπ共役系重合体の合成]
 実施例2において、式(1a)で示される4,6-ジ(2-チエニル)-2-フェニル-2,3-ジヒドロ-1H-1,3,2-チエノ[3,4-d]ジアザボロールの代わりに、式(1d)で示される4,6-ジ(2-チエニル)-2-(4-ビフェニル)-2,3-ジヒドロ-1H-1,3,2-チエノ[3,4-d]ジアザボロールを用いた以外は、実施例2と同様にして電解重合を行って、式(9d)で示されるπ共役系重合体を得た。化学反応式を以下に示す。実施例2と同様にして導電率を四端子法で測定したところ、70S/cmであった。この結果から、式(9d)で示される本発明のπ共役系重合体は、優れた導電材料であることが分かった。
Figure JPOXMLDOC01-appb-C000034
実施例9
[式(1e)で示される2-フェニル-2,3-ジヒドロ-1H-1,3,2-チエノ[3,4-d]ジアザボロールの合成]
 実施例1において、式(2a)で示される3’,4’-ジアミノ-2,2’:5’,2”-ターチオフェン500mg(1.80mmol)を式(2b)で示される3,4-ジアミノチオフェン206mg(1.80mmol)に変更した以外は実施例1と同様にして反応を行い、得られた固体を減圧乾燥して、下記の物性を有する式(1e)で示される2-フェニル-2,3-ジヒドロ-1H-1,3,2-チエノ[3,4-d]ジアザボロール209mg(1.04mmol、単離収率58%)を得た。化学反応式を以下に示す。
Figure JPOXMLDOC01-appb-C000035
 式(1e)で示される2-フェニル-2,3-ジヒドロ-1H-1,3,2-チエノ[3,4-d]ジアザボロールのNMRデータは以下のとおりであった。
 H-NMR(270MHz、CDCl、TMS) δ:7.67-7.62(m,2H),7.44-7.37(m,3H),6.39(bs,2H)、6.21(s,2H)
実施例10
[式(8a)で示されるπ共役系重合体の合成]
 実施例2において、0.6Vの定電位で電圧印加する代わりに、0.9Vの定電位で電圧印加した以外は、実施例2と同様にして電解重合を行って、式(8a)で示されるπ共役系重合体を得た。化学反応式を以下に示す。実施例2と同様にして導電率を四端子法で測定したところ、90S/cmであった。この結果から、式(8a)で示される本発明のπ共役系重合体は、優れた導電材料であることが分かった。
Figure JPOXMLDOC01-appb-C000036
実施例11
[式(9a)で示されるπ共役系重合体の脱ドープ化反応]
 実施例2で得られた式(9a)で示される重合体50mgを、ヒドラジン・一水和物200mgを用いて24時間還元処理を行うことにより、下記式(6a)で示される重合体である暗赤色の粉末状物31mgを得た。得られた下記式(6a)で示される重合体の数平均分子量(Mn)は1520であり、重量平均分子量(Mw)は3450であった。化学反応式を以下に示す。
Figure JPOXMLDOC01-appb-C000037
 式(6a)で示される重合体のNMRデータは以下のとおりであった。
 H-NMR(270MHz、CDCl、TMS) δ:7.76-7.40(bs,4H),7.28-6.89(bs,5H),6.70-6.26(bs,2H).

Claims (13)

  1.  下記一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    [式中、Rは、置換基を有してもよい炭素数1~20の炭化水素基であり、R及びRは、それぞれ独立して水素原子又は置換基を有してもよい炭素数1~20の炭化水素基であり、R及びRは、それぞれ独立して水素原子、置換基を有してもよい炭素数1~20の炭化水素基、又は置換基を有してもよい複素芳香環基である。]
    で示される2,3-ジヒドロ-1H-1,3,2-チエノ[3,4-d]ジアザボロール化合物。
  2.  R及びRが水素原子である請求項1記載の2,3-ジヒドロ-1H-1,3,2-チエノ[3,4-d]ジアザボロール化合物。
  3.  Rが置換基を有してもよいアリール基である請求項1又は2記載の2,3-ジヒドロ-1H-1,3,2-チエノ[3,4-d]ジアザボロール化合物。
  4.  下記一般式(2):
    Figure JPOXMLDOC01-appb-C000002
    [式中、R、R、R及びRは、前記一般式(1)と同義である。]
    で示されるジアミノチオフェン化合物と下記一般式(3):
    Figure JPOXMLDOC01-appb-C000003
    [式中、Rは、前記一般式(1)と同義である。]
    で示されるボロン酸化合物とを反応させることを特徴とする請求項1~3のいずれか記載の2,3-ジヒドロ-1H-1,3,2-チエノ[3,4-d]ジアザボロール化合物の製造方法。
  5.  前記反応の際に生成される水を除去しながら反応させる請求項4記載の2,3-ジヒドロ-1H-1,3,2-チエノ[3,4-d]ジアザボロール化合物の製造方法。
  6.  前記反応の際に生成される水を共沸脱水により除去しながら反応させる請求項4又は5記載の2,3-ジヒドロ-1H-1,3,2-チエノ[3,4-d]ジアザボロール化合物の製造方法。
  7.  下記一般式(4):
    Figure JPOXMLDOC01-appb-C000004
    [式中、Rは、置換基を有してもよい炭素数1~20の炭化水素基であり、R及びRは、それぞれ独立して水素原子又は置換基を有してもよい炭素数1~20の炭化水素基であり、(A)及び(A)の結合は、それぞれ独立して置換基を有してもよい2価の複素芳香環基、又は置換基を有してもよいアリーレン基を介して結合していてもよく、nは2以上の整数である。]
    で示される構成単位を有するπ共役系重合体。
  8.  下記一般式(5):
    Figure JPOXMLDOC01-appb-C000005
    [式中、R、R及びRは、前記一般式(4)と同義であり、nは2以上の整数である。]
    で示される構成単位を有する請求項7記載のπ共役系重合体。
  9.  下記一般式(6):
    Figure JPOXMLDOC01-appb-C000006
    [式中、R、R及びRは、前記一般式(4)と同義であり、R、R、R及びRは、それぞれ独立して水素原子又は置換基を有してもよい炭素数1~20の有機基であり、nは2以上の整数である。]
    で示される構成単位を有する請求項7記載のπ共役系重合体。
  10.  下記一般式(7):
    Figure JPOXMLDOC01-appb-C000007
    [式中、Rは、置換基を有してもよい炭素数1~20の炭化水素基であり、R及びRは、それぞれ独立して水素原子又は置換基を有してもよい炭素数1~20の炭化水素基であり、(A)及び(A)の結合は、それぞれ独立して置換基を有してもよい2価の複素芳香環基、又は置換基を有してもよいアリーレン基を介して結合していてもよく、p+q=1、0<p<1、0<q<1であり、Yはアニオンである。]
    で示される構成単位を有するπ共役系重合体。
  11.  下記一般式(8):
    Figure JPOXMLDOC01-appb-C000008
    [式中、R、R、R及びYは、前記一般式(7)と同義であり、p+q=1、0<p<1、0<q<1である。]
    で示される構成単位を有する請求項10記載のπ共役系重合体。
  12.  下記一般式(9):
    Figure JPOXMLDOC01-appb-C000009
    [式中、R、R、R及びYは、前記一般式(7)と同義であり、p+q=1、0<p<1、0<q<1である。]
    で示される構成単位を有する請求項10記載のπ共役系重合体。
  13.  請求項10~12のいずれか記載のπ共役系重合体からなる導電材料。
PCT/JP2010/059474 2009-06-04 2010-06-03 チオフェン化合物及びその製造方法、並びにこれを用いて得られる重合体 WO2010140667A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010526492A JPWO2010140667A1 (ja) 2009-06-04 2010-06-03 チオフェン化合物及びその製造方法、並びにこれを用いて得られる重合体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-134980 2009-06-04
JP2009134980 2009-06-04

Publications (1)

Publication Number Publication Date
WO2010140667A1 true WO2010140667A1 (ja) 2010-12-09

Family

ID=43297800

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/059474 WO2010140667A1 (ja) 2009-06-04 2010-06-03 チオフェン化合物及びその製造方法、並びにこれを用いて得られる重合体

Country Status (2)

Country Link
JP (1) JPWO2010140667A1 (ja)
WO (1) WO2010140667A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111620899A (zh) * 2020-07-20 2020-09-04 九江学院 一种苯并硼氮萘噻吩衍生物的合成方法
CN114497743A (zh) * 2022-02-23 2022-05-13 珠海市赛纬电子材料股份有限公司 应用于碱金属电池的电解液及其碱金属电池

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002214734A (ja) * 2001-01-16 2002-07-31 Konica Corp 光熱写真画像形成材料

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002214734A (ja) * 2001-01-16 2002-07-31 Konica Corp 光熱写真画像形成材料

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ADVANCED MATERIALS, vol. 15, no. 11, 2003, pages 855 - 879 *
ELECTROCHIMICA ACTA, vol. 50, 2005, pages 1469 - 1474 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111620899A (zh) * 2020-07-20 2020-09-04 九江学院 一种苯并硼氮萘噻吩衍生物的合成方法
CN114497743A (zh) * 2022-02-23 2022-05-13 珠海市赛纬电子材料股份有限公司 应用于碱金属电池的电解液及其碱金属电池
CN114497743B (zh) * 2022-02-23 2022-09-27 珠海市赛纬电子材料股份有限公司 应用于碱金属电池的电解液及其碱金属电池

Also Published As

Publication number Publication date
JPWO2010140667A1 (ja) 2012-11-22

Similar Documents

Publication Publication Date Title
JP4587274B2 (ja) 3,4−アルキレンジオキシチオフェン、その使用、ポリチオフェン、これらの製造方法およびこれらの使用
KR100817701B1 (ko) 치환된 티에노티오펜 단량체 및 전도성 중합체
KR100736194B1 (ko) 펜타플루오로설파닐 치환된 티에노티오펜 단량체 및 전도성중합체
KR20070018072A (ko) 모노-, 올리고- 및 폴리티에노[3,2-b]티오펜
JP5054788B2 (ja) π電子系共役化合物及びその製造方法、並びにこれを用いて得られるπ電子系共役重合体
JP6040615B2 (ja) チオフェン化合物、水溶性導電性ポリマー及びその水溶液、並びにそれらの製造法
US7829660B1 (en) Bis(thienyl)isopyrazoles and process for preparing and method for using bis(thienyl)isopyrazoles
US6130339A (en) Electro-active monomers comprised of aniline-thiophene units
WO2010140667A1 (ja) チオフェン化合物及びその製造方法、並びにこれを用いて得られる重合体
Yasuda et al. New luminescent 1, 2, 4-triazole/thiophene alternating copolymers: Synthesis, characterization, and optical properties
US7094365B2 (en) Pentafluorosulfanyl-substituted thienothiophene monomers and conducting polymers
JP2012214730A (ja) チエノチオフェン共重合体及びその製造方法
JP4835026B2 (ja) ジフェニルキノキサリン骨格を有する化合物を含む導電性組成物
JP5294255B2 (ja) 新規化合物及びその製造方法、並びにこれを用いて得られる新規重合体
KR20120043016A (ko) 티오펜 유도체 및 그 제조방법, 티오펜 유도체의 중합체
Culver Examining Thieno [3, 4-b] Pyrazine Through a Multifaceted Lens: From Extended Ring Functionalization to Ambipolar-Acceptor Copolymers
JP2010095485A (ja) π電子系共役化合物及びその製造方法、並びにこれを用いて得られるπ電子系共役重合体
US20130005979A1 (en) Thienopyridine derivative, method for producing same and organic semiconductor device using same
JPWO2011090026A1 (ja) レジオレギュラーポリチオフェン類及びその製造方法
Piron et al. Electropolymerizable 3Dπ-conjugated architectures with ethylenedioxythiophene (EDOT) end-groups as precursors of electroactive conjugated networks
KR20240079908A (ko) 셀레노페노티아졸 셀레노펜을 이용한 전도성 고분자 전극 제조 및 커패시터 응용
JP2013234265A (ja) π骨格平面性を有する重合体及びその用途
CN113423755A (zh) 导电氧化还原低聚物
JP2012246272A (ja) チエノチオフェン化合物とその製造方法、及びチエノチオフェン共重合体の製造方法
JP2010138222A (ja) チオフェン骨格を有する新規重合体及びその用途

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2010526492

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10783449

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10783449

Country of ref document: EP

Kind code of ref document: A1