CN113423755A - 导电氧化还原低聚物 - Google Patents

导电氧化还原低聚物 Download PDF

Info

Publication number
CN113423755A
CN113423755A CN202080012404.6A CN202080012404A CN113423755A CN 113423755 A CN113423755 A CN 113423755A CN 202080012404 A CN202080012404 A CN 202080012404A CN 113423755 A CN113423755 A CN 113423755A
Authority
CN
China
Prior art keywords
redox
independently selected
occurrence
polymer
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202080012404.6A
Other languages
English (en)
Inventor
马丁·舍丁
克里斯蒂安·斯特里策尔
里卡德·埃曼努埃尔松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ke LisidianSiteliceer
Li KadeAimannuaiersong
Ma DingSheding
Original Assignee
Ke LisidianSiteliceer
Li KadeAimannuaiersong
Ma DingSheding
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ke LisidianSiteliceer, Li KadeAimannuaiersong, Ma DingSheding filed Critical Ke LisidianSiteliceer
Publication of CN113423755A publication Critical patent/CN113423755A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D519/00Heterocyclic compounds containing more than one system of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring system not provided for in groups C07D453/00 or C07D455/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • H01M4/602Polymers
    • H01M4/606Polymers containing aromatic main chain polymers
    • H01M4/608Polymers containing aromatic main chain polymers containing heterocyclic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/26Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D333/30Hetero atoms other than halogen
    • C07D333/32Oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D495/00Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
    • C07D495/02Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
    • C07D495/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D165/00Coating compositions based on macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Coating compositions based on derivatives of such polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/663Selection of materials containing carbon or carbonaceous materials as conductive part, e.g. graphite, carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/11Homopolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/12Copolymers
    • C08G2261/124Copolymers alternating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1422Side-chains containing oxygen containing OH groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1424Side-chains containing oxygen containing ether groups, including alkoxy
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1426Side-chains containing oxygen containing carboxy groups (COOH) and/or -C(=O)O-moieties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1428Side-chains containing oxygen containing acyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/143Side-chains containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/145Side-chains containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/148Side-chains having aromatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/18Definition of the polymer structure conjugated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/22Molecular weight
    • C08G2261/226Oligomers, i.e. up to 10 repeat units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/22Molecular weight
    • C08G2261/228Polymers, i.e. more than 10 repeat units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3243Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more sulfur atoms as the only heteroatom, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/414Stille reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/415Sonogashira / Hagihara reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • C08G2261/514Electron transport
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/70Post-treatment
    • C08G2261/79Post-treatment doping
    • C08G2261/794Post-treatment doping with polymeric dopants
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/94Applications in sensors, e.g. biosensors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • H01B1/12Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/48Conductive polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/66Current collectors
    • H01G11/68Current collectors characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)

Abstract

本公开内容涉及作为导电氧化还原聚合物的制造中的中间体的式IVa或IVb的化合物、或其盐。L为共价连接基团部分以及R为可逆氧化还原基团。本公开内容还涉及由这样的化合物生产的导电氧化还原聚合物、以及涂覆有这样的导电氧化还原聚合物的基底和包含这样的导电氧化还原聚合物的有机电池。式(I)

Description

导电氧化还原低聚物
技术领域
本发明涉及用于制造导电氧化还原聚合物的导电氧化还原低聚物和由这样的低聚物制造的导电氧化还原聚合物。本发明还涉及包含导电氧化还原低聚物的涂覆组合物和涂覆有导电氧化还原聚合物的基底。
背景技术
部分地在朝向小型化、柔性和便携式产品的趋势以及对用于向这样的产品供电的薄的柔性能量存储系统的需求的驱动下,对薄的柔性电池的需求不断增加。例如,在快速扩大的智能包装细分市场中需要传感器、印刷显示器、电路、防盗装置、RFID标签和智能标签,所有的这些将需要通过薄的柔性电池供电。柔性电池通常利用常规的电池化学组成例如锂离子或锌碳,并且可以通过使用布置在柔性电极基底之间的聚合物电解质来生产。
还研究了所谓的导电氧化还原聚合物以应用于柔性电子产品中。这些导电氧化还原聚合物包含导电聚合物主链和氧化还原活性侧基。导电聚合物使材料具有导电性,这是材料用作电池材料的先决条件,同时氧化还原活性侧基允许材料存储电荷。尽管这种类型的聚合物的主要应用为电池,但是具有氧化还原部分的导电聚合物还可以应用于其他领域例如催化和燃料电池。
仍然需要用于柔性能量存储应用的改进的材料和制造这样的材料的改进的方法。
发明内容
本发明的发明人确定了现有技术柔性能量源和用于制造这种柔性能量源的材料的许多缺点。
使用常规的电池化学组成例如锂离子或锌碳化学组成制造的柔性电池不易燃并且包含大量的金属,这意味着这样的电池不可以被轻易丢弃。相反,这样的电池需要回收或小心存放。由于电池的回收或存放不总是经济可行或技术可行的,因此其限制了这样的电池的市场。
由导电氧化还原聚合物构成的电池没有遭遇这些问题并且可以作为普通的家庭垃圾处理,例如通过焚烧处理,因此显著扩大了这样的电池的潜在市场。然而,已知的导电氧化还原聚合物难以制造并且具有差的可加工性,因此限制了其可用性。改进聚合物的可加工性的方法产生了具有差的原子经济性、较低的每单位质量的容量的聚合物,并因此使经济可行性变差。
本发明的一个目的是提供克服或至少减轻上述缺点中的一者或更多者的用于制造柔性能量存储装置的方法。特别地,本发明的一个目的是提供有利于导电氧化还原聚合物的制造和可加工性的方法。
这些目的通过根据所附独立权利要求的化合物、或其盐来实现。
所述化合物具有式IVa或IVb:
Figure BDA0003194285220000021
各情况的-L-独立地选自直接键或共价连接基团部分。
各情况的-R独立地为可逆氧化还原基团。
各情况的-X2独立地选自-L-H、-L-T、或-L(-R)m
各情况的T独立地选自-CN或-N3
各情况的m独立地选自1至5。
各情况的r独立地选自0、1或2。
在此之后,将这样的化合物称为导电氧化还原低聚物。导电氧化还原低聚物在一系列溶剂中容易溶解,因此易于加工。例如,导电氧化还原低聚物可以容易地涂覆或印刷在基底上。此外,导电氧化还原低聚物通过温和的化学氧化、或相对低的电位下的氧化电聚合容易聚合成导电氧化还原聚合物。它们可以聚合成固态,意味着材料可以首先作为低聚物进行加工然后聚合一次,不需要进一步加工。因此,本发明绕过了导电氧化还原聚合物的可加工性差的问题。
另一方面,对应于导电氧化还原低聚物的单体(即式I的化合物,n=1)需要苛刻的氧化条件来实现聚合,并且它们通常不能聚合成固态。由这样的聚合产生的聚合物基本上不溶解并且不易加工。
根据本发明的又一个方面,本发明的目的通过根据所附独立权要求的聚合物来实现。
聚合物包含式RIVa、或其盐的重复单元:
Figure BDA0003194285220000031
n为2至5,例如为3或5,优选为3。
各情况的-X2独立地选自-L-H、-L-T、或-L(-R)m
各情况的-L-独立地选自直接键或共价连接基团部分。
各情况的-T独立地选自-CN或-N3
各情况的-R独立地为可逆氧化还原基团。
各情况的r独立地选自0、1或2。
各情况的m独立地选自1至5。
根据本发明的又一个方面,本发明的目的通过由如本文中所述的一种或更多种化合物的氧化聚合而获得的聚合物来实现。
在适当的情况下,以下特征可容易地适用于如本文中所述的所有化合物和聚合物。这包括但不限于式IVa或IVb的化合物以及由这样的化合物的氧化聚合而获得的聚合物、或者包含重复单元RIVa的聚合物。
各情况的-X2可以独立地选自-H、C1-C12烷基、或-L(-R)m。例如,各情况的X2可以独立地选自H或C1-C12烷基。
化合物可以具有式IVa:
Figure BDA0003194285220000041
其中各情况的r独立地选自0、1或2。
各情况的-L-可以独立地选自具有结构-(CH2)s-G1-(CH2)t-G2-或-G2-(CH2)t-G1-(CH2)s-的共价连接基团部分,其中s为0至6,t为0至6,以及-G1-和-G2-各自独立地选自直接键、-O-、-S-、-SO2-、-SO3-、-O3S-、-SO2NH-、-NHSO2-、-NH-、-N(C1-C6烷基)-、-C(O)-、-CO2-、-O2C-、-C(O)NH-、-NHC(O)-、-OC(O)O-、-NHC(O)NH-、-NHC(O)O-、-OC(O)NH--C≡C-、-CH=CH-、-Ph-和-Hy-。
各情况的R可以独立地为有机氧化还原基团。
各情况的R可以独立地选自对苯二甲酸酯、萘醌、蒽醌、儿茶酚、醌、醌茜、萘茜、靛蓝、TEMPO(2,2,6,6-四甲基哌啶-1-氧基)、加尔万氧基自由基(galvinoxyl)、苯酚、萘二酰亚胺、芘二酰亚胺苝二酰亚胺、二苯并噻吩砜、或其经取代的衍生物。
或者,各情况的R可以为有机金属氧化还原催化剂。
根据本发明的又一个方面,本发明的目的通过根据所附独立权利要求的制造经聚合物涂覆的基底的方法来实现。
所述方法包括以下步骤:
a)提供基底;
b)将根据权利要求1至9中任一项的化合物涂覆在基底上以产生具有低聚物涂层的基底;以及
c)通过氧化聚合使低聚物涂层聚合以提供经聚合物涂覆的基底。
与尝试对具有有限的溶解度且难以利用的导电氧化还原聚合物进行加工不同,该方法允许用如本文中所述的导电氧化还原低聚物代替来涂覆基底。这显著促进了基底的涂层的可加工性。一旦提供了涂层,导电氧化还原低聚物容易聚合成固态以提供涂覆有导电氧化还原聚合物的基底。
可以通过电聚合技术或通过化学氧化聚合技术来进行聚合。
根据本发明的又一个方面,本发明的目的通过用于聚合反应的原材料(包含如本文中所述的氧化还原低聚物的原材料)来实现。聚合反应可以是化学氧化聚合反应或氧化电聚合反应。
根据本发明的又一个方面,本发明的目的通过包含如本文中所述的化合物的涂覆组合物来实现。
根据本发明的又一个方面,本发明的目的通过包含如本文中所述的聚合物的经聚合物涂覆的基底来实现。基底可以为导电集流体材料例如石墨。基底可以为多孔基底,例如多孔导电基底,例如多孔石墨基底。
根据本发明的又一个方面,本发明的目的通过包含如本文中所述的化合物、和/或如本文中所述的聚合物、和/或如本文中所述的经聚合物涂覆的基底的有机电池来实现。
有机电池可以具有水性电解质,例如水性酸性电解质。
根据以下详细描述,本发明的其他目的、优点和新特征对于本领域技术人员将变得明显。
附图说明
为了更完全地理解本发明和本发明的其他目的和优点,应结合附图阅读以下阐述的详细描述,在附图中,相同的参考符号在不同的图中表示相同的条目,在附图中:
图1示出了一系列包含用于连接侧基的官能柄(functional handle)的导电低聚物主链;
图2示出了用于制造包含官能柄的低聚物主链的合成方法;
图3示出了用于通过将氧化还原基团连接至包含官能柄的低聚物主链来制造导电氧化还原低聚物的合成方法;
图4示出了用于由已经包含氧化还原基团的单体来制造导电氧化还原低聚物的合成方法;
图5示出了一系列可通过图2至4中所示的方法获得的导电氧化还原低聚物;
图6a是聚-E-PMeSHQ-E在0.5M硫酸中的循环伏安图;
图6b是示出作为电位(氧化还原状态)和温度的函数的使用叉指阵列电极测量聚-E-PMeSHQ-E的电导率的测量结果图;
图7是示出E-PMeSHQ-E的逐步电聚合的循环伏安图;
图8a是聚-E-PMeO(C=O)NQ-E在0.5M硫酸中的循环伏安图;
图8b是示出作为电位(氧化还原状态)和温度的函数的使用叉指阵列电极测量聚-E-PMeO(C=O)NQ-E的电导率的测量结果图;
图9a是比较单体EMeCCHQ与低聚物E-PMeSHQ-E的氧化电位的循环伏安图;
图9b是示出一系列噻吩单体和三聚体的氧化电位的图;以及
图10是多孔导电氧化还原聚合物复合材料的循环伏安图。
具体实施方式
本发明的导电氧化还原低聚物促进了制造用于包含导电氧化还原聚合物的能量存储的部件。他们通过允许材料作为导电氧化还原低聚物加工然后容易地固态聚合成导电氧化还原聚合物来实现这一点。以这种方式,在很大程度上避免了与导电氧化还原聚合物有关的可加工性问题。
本发明人确定了以下方面在寻求实现适合用作电池活性材料的功能性导电氧化还原聚合物时值得考虑。
可加工性:为了能够在没有粘合剂的情况下实现更厚的电极层,聚合物的前体应容易地涂覆在表面上并随后聚合。优选聚合可以在水性介质中进行,从而减少对有机溶剂的需求并简化生产过程。
电位匹配:由于所有的导电特性由导电聚合物主链提供,因此在导电聚合物实际导电的电位区域中,侧基应具有氧化还原特性。这被称为电位匹配。
根据侧链明确限定的电压输出:连接至导电聚合物的侧基应提供明确限定的电压输出,以便其可以用作电池中的有效电极。
与水性电解质的相容性:由于导电氧化还原聚合物旨在用作水性有机电池中的电极活性材料,因此侧基应当i)在水的电位窗口内以消除副反应并且ii)充分亲水使得可以发生离子传输。
噻吩低聚物主链
导电氧化还原低聚物的主链基于经取代或未经取代的噻吩的低聚物。经取代或未经取代的噻吩是指可以用作导电聚合物中的主链的任何噻吩部分。这样的噻吩包括但不限于噻吩和二氧噻吩,例如MDOT(亚甲基3,4-二氧噻吩)、EDOT(亚乙基3,4-二氧噻吩)、ProDOT(亚丙基3,4-二氧噻吩)、BueDOT(亚丁基3,4-二氧噻吩)和PheDOT(亚苯基3,4-二氧噻吩)。注意,术语“未经取代的噻吩”表示低聚物主链基于噻吩本身,而不是经取代的噻吩衍生物例如二氧噻吩。然而,“未经取代的噻吩”低聚物仍然包含如由本文中的式表示的侧基。
导电氧化还原低聚物的外部噻吩部分选自MDOT、EDOT和/或ProDOT。中心噻吩部分是噻吩或亚烷基二氧噻吩部分,例如ProDOT。侧链氧化还原基团直接或间接共价结合至中心噻吩部分。
低聚物主链是三聚体。氧化至一定程度的难易对应于低聚物的长度,因此单体或二聚体将需要比相应的三聚体更苛刻的聚合条件。
低聚物主链中的所有噻吩可以相同或不同。例如,噻吩可以在第一噻吩与第二噻吩之间交替(例如包含M2-M1-M2主链的三聚体,其中M1和M2是不同的噻吩)。在这样的情况下,中心噻吩可以优选为EDOT或ProDOT以容易合成导电氧化还原低聚物。
侧链氧化还原基团
至少一个侧链氧化还原基团-R直接或间接共价键合至低聚物主链。侧链氧化还原基团可以为具有可逆氧化还原活性的任何氧化还原基团。可逆氧化还原基团是指“游离”的氧化还原基团(即溶液中的氧化还原分子,未与任何聚合物或低聚物结合)在还原/氧化步骤中没有被消耗或破坏,并且该步骤可以逆转和重复用于复数个氧化还原循环(即两个或更多个氧化还原循环)。例如,基团应能够以至少80%或更高,例如至少90%或更高、至少95%或更高、或者至少99%或更高的产率承受每个氧化还原循环(还原然后氧化或者氧化然后还原)。
可逆氧化还原基团可以在标准温度和压力(STP 0℃,1巴)下在水溶液中在相对于NHE(标准氢电极,normal hydrogen electrode)为-3.25V至1.5V的电位区间内被还原/氧化。为此目的,相对于NHE的电位被认为等同于相对于SHE(标准氢电极,standard hydrogenelectrode)的电位。例如,当在STP下在0.5M H2SO4水溶液中测量时,相对于NHE的还原/氧化电位为-1.5V至1.5V。当在标准温度和压力(0℃,1巴)下在1M NaCl水溶液中测量时,相对于NHE的还原/氧化电位为-1.5V至1.5V。当在STP下在有机溶液例如碳酸丙烯酯(PC)、乙腈或1M LiPF6中进行测量时,相对于Li的还原/氧化电位为0V至4.75V。在该上下文中,意指的是“游离”的氧化还原基团的氧化还原电位,而不是与低聚物或聚合物结合的氧化还原基团的氧化还原电位。用于测量氧化还原电位的电化学技术是本领域已知的,并且标准还原电位(Er 0)和氧化电位(Eo 0)的列表容易获得。注意,电位可以相对于另一个参比电极例如饱和甘汞电极(SCE)来测量,并且通过参比电极之间的已知相关性而与NHE相关。例如,SCE相对于SHE的电位为+0.241V,Ag/AgCl参比电极相对于SHE的电位为+0.197。
氧化还原基团可以优选为有机氧化还原基团或氧化还原催化剂,例如有机金属氧化还原催化剂。有机氧化还原基团具有不含金属的优点,因此对环境相对良好,并且在家庭垃圾中容易处理。氧化还原催化剂,例如有机金属氧化还原催化剂,在聚合物主链上提供化学可寻址位点(chemically addressable site),并产生潜在的应用例如在传感器和燃料电池技术中。
优选地,有机氧化还原基团选自对苯二甲酸酯、萘醌、蒽醌、儿茶酚、醌、醌茜、萘茜、靛蓝、TEMPO、加尔万氧基自由基、苯酚、萘二酰亚胺、芘二酰亚胺、苝二酰亚胺、和二苯并噻吩砜基、或其经取代的衍生物。其经取代的衍生物是指包含一个或更多个合适的有机取代基例如来自一至五个独立选择的有机取代基的衍生物。合适的有机取代基包括但不限于-F、-Cl、-Br、-I、-C1-C6烷基、-OH、-SH、-O(C1-C6烷基)、-S(C1-C6烷基)、-SO2H、-SO3H、-SO2NH2、-NH2、-NH(C1-C6烷基)、-N(C1-C6烷基)2、-C(O)H、-CO2H、-CO2(C1-C6烷基)、-C(O)NH2、-NHC(O)H、-NHC(O)-C1-C6烷基、-NHC(O)NH2、-OC(O)NH--C≡CH、-CH=CH2、-Ph和-Hy。如本领域已知的,诸如给电子、吸电子或位阻取代基的取代基可以用于有机氧化还原基团上以调节基团的氧化还原特性。
侧链氧化还原基团通过连接基团部分-L-共价连接至低聚物主链。每个单独的连接基团部分可以将多于一个侧链氧化还原基团连接至低聚物主链,每个连接基团多至五个氧化还原基团的限值。连接基团部分可以为直接键,即氧化还原基团可以直接键合至低聚物主链,或者连接基团部分可以为包含选自C、H、N、O和S的原子并将低聚物主链与一个或更多个氧化还原基团连接的直链、支链或环状共价部分。例如,连接基团部分可以具有结构-(CH2)s-G1-(CH2)t-G2-或-G2-(CH2)t-G1-(CH2)s-。在这样的情况下,s可以为0至6,t可以为0至6,以及-G1-和-G2-可以各自独立地选自直接键、-O-、-S-、-SO2-、-SO3-、-O3S-、-SO2NH-、-NHSO2-、-NH-、-N(C1-C6烷基)-、-C(O)-、-CO2-、-O2C-、-C(O)NH-、-NHC(O)-、-OC(O)O-、-NHC(O)NH-、-NHC(O)O-、-OC(O)NH--C≡C-、-CH=CH-、-Ph-和-Hy-。
本文中缩写“Hy”表示杂环部分。如本文中所使用的,术语“杂环”是指在环结构内包含至少一个碳原子和至少一种除碳之外的元素例如硫、氧或氮的有机化合物。这些结构可以包括简单的芳族环或非芳族环。环结构可以为单环或双环或多环。各个单环可以是芳族的、饱和或部分不饱和的。双环系统可以包含与另外的单环杂环、环烷基或碳芳基稠合的含有一个或更多个杂原子的单环。
导电氧化还原低聚物包含至少一个侧链氧化还原基团,但是可以包含多个侧链氧化还原基团。导电氧化还原低聚物中的氧化还原基团可以相同或者其可以不同。低聚物主链中的各个经取代或未经取代的噻吩可以包含多至两个连接基团部分,并且每个连接基团部分可以包含多至五个氧化还原基团。因此,低聚物可以包含的氧化还原基团的最大数量为10n,其中n为低聚物主链中的噻吩单元的数量。然而,优选低聚物每个连接基团包含不超过一个氧化还原基团,即2n个氧化还原基团,或者每个噻吩不超过一个氧化还原基团,即1n个氧化还原基团,或者最优选每个低聚物不超过一个氧化还原基团。
单个氧化还原基团R可以用于连接两个或更多个低聚物,每个低聚物通过如上所述的连接基团部分-L-与氧化还原基团连接。以这种方式连接的低聚物可以并入到导电氧化还原聚合物中以提供所形成的聚噻吩链之间的交联。因此,通过使用非交联与交联低聚物的期望的比率,可以调整形成的聚合物的机械特性。
另外的基团
低聚物主链还可以经一个或更多个另外的基团取代。这些基团可以用于调整低聚物或所得聚合物的特性,或者它们可以简单地存在以为导电氧化还原低聚物提供方便的合成路线。这些另外的基团可以例如包含由氢原子-H-或端基-T封端的如上所述的连接基团部分。合适的端基包括但不限于腈基或叠氮基。另外的基团可以例如为C1-C12烷基。
导电氧化还原低聚物的加工
如上所述的导电氧化还原低聚物可溶于多种溶剂中,包括但不限于极性非质子溶剂例如乙腈、NMP、DMSO和DMF。所得溶液可以直接聚合以提供适合进一步使用的导电氧化还原聚合物悬浮液,或者所得溶液可以在最终聚合步骤之前首先进行加工。例如,导电氧化还原聚合物的分散体可以通过涂覆或印刷至基底来进行加工。基底可以例如为导电集流体材料例如石墨。在将导电氧化还原低聚物沉积之后,其可以聚合成固态。这可以通过用温和的化学氧化剂例如N-氧代铵盐处理来完成,或者可以通过使用基底作为电极的电聚合来进行。导电氧化还原低聚物的氧化电位低于相应单体的氧化电位,意味着可以使用相对温和的化学氧化剂(例如N-氧代铵盐)或低氧化电位。根据本发明的导电氧化还原低聚物具有适当低的氧化电位,使得其可以在水性介质中聚合。这允许低聚物作为有机溶液沉积在基底上,然后干燥以提供导电氧化还原低聚物的涂层。随后导电氧化还原低聚物涂层可以在水性介质中电聚合而没有涂层的溶解或分层。这极大地促进了使用导电氧化还原低聚物生产有机电子设备例如电池。
导电氧化还原聚合物
通过导电氧化还原低聚物的聚合获得的导电氧化还原聚合物显示出如预期的良好导电性和通过氧化还原活性基团的氧化还原反应存储电荷的可能性二者。还未确定所获得的聚合物的精确结构。然而,通过类似于相应单体的聚合,可以假设获得了线性聚噻吩。一个例外是当在交联时在待聚合的低聚物混合物中提供如上所述的低聚物。在此,可以假设线性聚噻吩链通过桥接氧化还原基团而交联至相关程度。
注意,当主链中的噻吩彼此不同时(例如,包含M2-M1-M2主链的三聚体,其中M1和M2是不同的噻吩),或者当连接至噻吩的侧基彼此不同时(例如,低聚物包含排列在奇数低聚物的中心噻吩上的单个-L-R基团),则获得了周期性共聚物,即聚合物具有以重复顺序排列的单元。使用相应的单体单元通过常规的聚合技术可以生产这样的周期性聚合物是非常不可能的。
聚合物包含式RI或RIII的至少两个重复单元,优选至少5个重复单元,更优选至少10个重复单元。由于重复单元本身为噻吩n聚体,因此聚合物中的噻吩单元的数量通过n×重复单元的数量给出。
应用
导电氧化还原聚合物或涂覆有这样的聚合物的基底可以在多种应用中找到实用性。聚合物可以用于能量存储应用,例如电池或赝电容器。另外的潜在用途包括例如在传感器、电催化反应器(例如燃料电池)、太阳能电池和晶体管中的应用。聚合物具有便宜、易于处理和柔性的优点,意味着存在多种潜在应用。
导电氧化还原聚合物在相对低的开始电位下显示出电导。这与匹配聚合物的电导特性的侧链氧化还原基团一起使用,允许在有机电池中使用水性电解质。水性电解质的使用降低了制造成本并提高了这样的电池的处理容易性。
实施例
现在将参考某些示例性实施方案和附图更详细地描述本发明。然而,本发明不限于本文中所述和/或附图中示出的示例性实施方案,而是可以在所附权利要求的范围内进行改变。
导电氧化还原低聚物的一般合成
合成多种低聚物主链,如图1所示。还提供了使用本文中所用的命名约定的每个主链的名称。每个主链都配有合适的柄用于进一步连接一个或更多个氧化还原基团。
使用本领域已知的如图2a对各种主链和柄所示的标准有机合成方法来合成如图1所示的低聚物主链。具有羟基柄的低聚物通过Stille偶联由单独噻吩组装而成。然后柄可以通过甲磺酰化转化成硫醇,通过硫代乙酸盐的亲核取代和硫代乙酸盐的还原转化为硫醇。或者,柄可以通过甲磺酰化、通过叠氮化物的亲核取代和施陶丁格(Staudinger)反应转化为胺以提供胺。
图3示出了通过已经存在的柄将各种氧化还原侧基偶联至低聚物主链的主链的进一步加工。这些偶联使用本领域中已知的标准方法来进行。
图4示出了合成导电氧化还原低聚物的替代方法,首先通过Sonogashira偶联将氧化还原基团偶联至噻吩单体,然后通过Stille偶联组装低聚物单元。
图5示出了通过描述的方法合成的一系列导电氧化还原低聚物,以及用于这些导电氧化还原低聚物中的一些的命名约定。
羟基官能化的噻吩三聚体的一般过程:
作为实例,通过以下方法组装E-PMeOH-E、Th-EMeOH-E、E-ThMeOH-E、Th-PMeOH-Th和Th-ThMeOH-Th。简而言之,羟基官能化的噻吩链段的2,5-位的二溴化以及随后的二溴试样与2-(三丁基甲锡烷基)噻吩、2-(三丁基甲锡烷基)亚乙基二氧噻吩或2-(三丁基甲锡烷基)亚丙基二氧噻吩的Stille偶联得到了羟基官能化的三聚体。
将中心链段(10mmol,1当量)溶解在脱气的DCM(100mL)中并添加NBS(21mmol,2.1当量)。将反应搅拌直至原材料消耗(对于EDOT或ProDOT的衍生物为1小时至2小时,对于噻吩为14小时至18小时)。将反应混合物直接添加至二氧化硅中,通过添加Et3N使其失活,并通过柱色谱法(戊烷:EtOAc梯度0%EtOAc至20%)纯化。起始的白色固体在长期存储后变暗以得到黑色/带蓝色的固体。产率(80%至90%)。所述固体在下一步骤中立即使用。
将二溴中心单元(10mmol,1当量)和甲锡烷基侧翼单元(22mmol,2.2当量)放在含有无水DMF(75mL)的圆瓶烧瓶中,并通过将Ar鼓泡通过溶液20分钟进行脱气。然后,添加Pd(PPh3)4(0.75mmol,7.5mol%)并将反应烧瓶放在预热的金属块(120℃)中。将溶液在Ar下搅拌16小时。在减压下除去DMF并将剩余物溶解在EtOAc(150mL)中并通过硅藻土过滤。将有机物用1M HCl(水溶液)、盐水萃取,并将有机物用MgSO4干燥。添加二氧化硅并在真空下除去溶剂。将剩余物通过柱色谱法(戊烷:EtOAc,梯度为5%EtOAc至80%)纯化。蒸发包含产物的级分,用最少量的DCM(10mL)再溶解并滴加到搅拌的戊烷溶液(300mL)中。将沉淀物过滤并在真空下干燥。
Figure BDA0003194285220000131
E-PMeOH-E[CAS nr:1202754-49-1]
黄色固体。产率:64%
1H NMR(500MHz,CDCl3)δ6.26(2H,s),4.35(4H,s),4.23(4H,m),4.21(2H,d,J=11.9)3.87(2H,s),3.77(2H,d,J=11.9),0.96(3H,s)
13C NMR(126MHz,CDCl3)δ145.2,141.0,137.2,112.8,109.7,97.6,76.9,65.5,64.2,63.5,43.5,15.6.
与Macromolecules 2010,43,1,37-43一致。
Figure BDA0003194285220000132
E-ThMeOH-E
2,5-双(2,3-二氢噻吩并[3,4-b][1,4]二
Figure BDA0003194285220000133
英-5-基)噻吩-3-基]甲醇棕色固体。产率:60%。
1H NMR(500MHz,CDCl3)67.28(1H,s),6.39(1H,s),6.23(1H,s),4.61(2H,s),4.33(2H,m),4.28(2H,m),4.25(4H,m).
13C NMR(126MHz,CDCl3)δ142.0,141.7,139.2,138.2,138.0,135.0,128.3,125.0,112.0,109.9,100.0,97.4,65.2,65.1,64.7,64.6,59.5.
对[C17H14O5S3+H,M+H]+计算的HRMS(ES+TOF):395.0082;实测:395.0090。
Figure BDA0003194285220000141
Th-ThMeOH-Th
3′-(羟甲基)-2,2′:5′,2″-三联噻吩
棕色固体。产率:62%。
1H NMR(500MHz,CDCl3)δ7.23(4H,m),7.03(2H,m),4.45(2H,m),4.27(1H,dd,J=12.0,8.2Hz),3.97(2H,m).
13C NMR(126MHz,CDCl3)138.2,136.8,135.9,134.7,132.0,128.0,127.9,126.4,126.1,125.7,124.7,123.7,59.0
与Tet Lett,2001,49,8733一致
Figure BDA0003194285220000142
Th-EMeOH-Th
(5,7-二(噻吩-2-基)-2,3-二氢噻吩并[3,4-b][1,4]二
Figure BDA0003194285220000143
英-2-基)甲醇棕色固体。产率:55%。
1H NMR(500MHz,CDCl3)δ7.34(1H,dd,J=5.1,1.2Hz),7.24(2H,m),7.21(1H,dd,J=3.6,1.2Hz),7.18(1H,dd,J=3.6,1.1Hz),7.09(1H,dd,J=5.1,3.6Hz),7.02(1H,dd,J=5.1,3.6Hz),4.76(2H,s).
13C NMR(126MHz,CDCl3)δ137.1,137.1,134.4,134.4,128.0,127.4,127.3,124.2,124.1,123.2,123.0,109.8,109.8,74.7,66.1,61.7.
与Org.Biomol.Chem.2015,13,8505-8511一致
Figure BDA0003194285220000144
Th-PMeOH-Th
米黄色固体。产率:65%
1H NMR(500MHz,CDCl3)δ7.24(2H,d,J=5.0Hz),7.22(2H,d,J=3.7Hz),7.02(2H,dd,J=5.0,3.7Hz),4.27(2H d,J=12.1Hz,2H),3.87(d,J=12.1Hz,2H),3.85(2H,s),1.03(3H,s).
13C NMR(126MHz,CDCl3)δ145.3,134.6,127.0,124.7,123.1,114.7,76.7,65.7,44.2,17.1.
对[C17H16O3S3+H,M+H]+计算的HRMS(ES+TOF):365.0340;实测:365.0354。
Figure BDA0003194285220000151
E-PMeOMs-E
将E-PMeOH-E(4.05g,8.4mmol,1当量)溶解在DCM(100mL)中并添加三乙胺(1.29mL,9.3mmol,1.1当量)。将溶液使用冰/水浴冷却并滴加甲磺酰氯(0.72mL,9.3mmol,1.1当量)。在20分钟之后,除去冰/水浴并允许反应在2小时内达到室温。通过添加NaHCO3(饱和)将反应淬灭。将有机物分离并用盐水洗涤,用MgSO4干燥,过滤并添加至二氧化硅中。在真空下除去溶剂并将产物通过柱色谱法(戊烷:DCM,梯度为5%DCM至80%)纯化。蒸发包含产物的级分,以最少量的DCM(40mL)再溶解并缓慢添加至搅拌的戊烷溶液(200mL)中。将浅黄色沉淀物过滤并在真空下干燥。产率:90%。
1H NMR(500MHz,CDCl3)δ6.28(2H,s),4.52(2H,s),4.36(4H,m),4.24(4H,m),4.22(2H,d,J=12.1Hz),3.70(2H,d,J=12.1Hz),3.10(3H,s),1.01(3H,s).
13C NMR(126MHz,CDCl3)δ144.2,141.4,137.6,114.2,110.1,98.4,76.7,72.0,653,64.8,43.2,37.1,16.5.
对[C22H22O9S4+H,M+H]+计算的HRMS(ES+TOF):559.0225;实测:559.0241。
Figure BDA0003194285220000161
E-PMeSAc-E
将E-PMeOMs-E(2.8g,5.0mmol,1当量)溶解在DMSO(50mL)中,并添加NaI(1.1g,7.5mmol,1.5当量)和KSAc(1.7g,15mmol,3当量)。将溶液在100℃下加热14小时,冷却并通过硅藻土过滤。在减压下除去大多数DMF并将剩余物溶解在EtOAc中。将有机物随后用1MHCl和盐水洗涤,用MgSO4干燥并过滤。添加二氧化硅并在真空下除去溶剂。并将产物通过柱色谱法(戊烷:DCM,梯度为5%DCM至80%)纯化。蒸发包含产物的级分,用最少量的DCM(5mL至10mL)再溶解并缓慢添加至搅拌的戊烷溶液(200mL)中。将浅黄色沉淀物过滤并在真空下干燥。产率:85%。
1H NMR(500MHz,CDCl3)δ6.27(2H,s),4.35(4H,m),4.23(4H,m),4.06(2H,d,J=12.1Hz),3.80(2H,d,J=12.1Hz),3.25(2H,s)2.39(3H,s),0.99(3H,s).
13C NMR(126MHz,CDCl3)δ195.1,144.5,141.3,137.4,113.5,110.4,98.2,78.3,65.3,64.8,42.9,33.3,30.8,18.2.
对[C23H22O7S4+H,M+H]+计算的HRMS(ES+TOF):539.0321;实测:539.0201。
Figure BDA0003194285220000162
三-PMeSH-E
将E-PMeOMs-E(810mg,1.5mmol,1当量)溶解在干DCM中并使用丙酮/干冰浴冷却至-78℃。缓慢添加DIBAL-H(6mL,1M在己烷中,4当量)并将溶液在-78℃下搅拌1小时。通过添加2M HCl(水溶液)淬灭反应并允许混合物升温至室温。添加水并将有机物分离,用水和盐水洗涤。将有机层用MgSO4干燥,过滤并与二氧化硅混合。在真空下除去溶剂,并将产物通过柱色谱法(戊烷:DCM,梯度为5%DCM至80%)纯化。蒸发包含产物的级分,用最少量的DCM再溶解并缓慢添加至搅拌的戊烷溶液中。将浅黄色沉淀物过滤并在真空下干燥。产率:90%。
1H NMR(500MHz,CDCl3)δ6.27(2H,s),4.35(4H,m),4.23(4H,m),4.20(2H,d,J=12.1Hz),3.76(2H,d,J=12.1Hz),2.90(2H,d,J=9.0Hz)1.39(1H,t,J=9.0Hz),0.96(3H,s).
13C NMR(126MHz,CDCl3)δ144.6,141.4,137.4,113.6,110.4,98.2,77.8,65.3,64.8,42.9,29.4,17.7.
对[C21H20O6S4+H,M+H]+计算的HRMS(ES+TOF):497.0221;实测:497.0234。
Figure BDA0003194285220000171
E-PMeSHQ-E
将E-PMeSH-E(990mg,2mmol,1当量)与TIPS保护的溴甲基-2,5-二羟基苯(1.1g,2.2mmol,1.1当量)一起溶解在THF(50mL)中。滴加TBAF(2.2mL,1M在THF中,2.2mmol,2.2当量)并将反应在室温下搅拌过夜。在真空下除去挥发物,并将剩余物用DCM稀释,用1M HCl和盐水洗涤。将有机物用MgSO4干燥,过滤并与二氧化硅混合。在真空下除去溶剂,并将产物通过柱色谱法(戊烷:DCM,梯度为5%DCM至80%)纯化。蒸发包含产物的级分,用最少量的DCM再溶解并缓慢添加至搅拌的戊烷溶液中。将浅黄色沉淀物过滤并在真空下干燥。产率:60%。
1H NMR(500MHz,CDCl3)δ6.75(1H,d,J=8.4Hz),6.64(2H,m)6.27(2H,s),5.90(2H,br),4.34(4H,m),4.23(4H,m),4.17(2H,d,J=11.9Hz),3.82(2H,s),3.71(2H,d,J=11.9Hz),2.80(2H,s),0.96(3H,s).
13C NMR(126MHz,CDCl3)δ149.3,149.1,144.5,141.4,137.5,124.0,118.3,117.7,115.9,113.7,110.3,98.3,78.1,65.3,64.8,43.4,35.7,34.3,18.6.
对[C28H26O8S4+H,M+H]+计算的HRMS(ES+TOF):619.0589;实测:619.0596。
Figure BDA0003194285220000181
E-PMe-S儿茶酚-E
将E-PMeSH-E(990mg,2mmol,1当量)与3,4-双((叔丁基二甲基甲硅烷基)氧基)苄基溴(1.1g,2.2mmol,1.1当量,如J.Org.Chem.1995,60,5,1233中报道的制备)一起溶解在THF(50mL)中。滴加TBAF(2.2mL,1M在THF中,2.2mmol,2.2当量)并将反应在室温下搅拌过夜。在真空下除去挥发物,并将剩余物用DCM稀释,用1M HCl和盐水洗涤。将有机物用MgSO4干燥,过滤并与二氧化硅混合。在真空下除去溶剂,并将产物通过柱色谱法(戊烷:DCM,梯度为5%DCM至80%)纯化。蒸发包含产物的级分,用最少量的DCM再溶解并缓慢添加至搅拌的戊烷溶液中。将浅黄色沉淀物过滤并在真空下干燥。产率:60%。
1H NMR(500MHz,CDCl3)δ6.90(1H,s),6.77(2H,m),6.27(2H,s),5.10(1H,s),5.08(1H,s),4.35(4H,m),4.24(4H,m),4.16(2H,d,J=11.8Hz),3.72(d,J=11.8Hz),3.71(2H,s),2.78(2H,s),0.96(3H,s).
13C NMR(126MHz,CDCl3)δ144.7,143.4,142.8,141.4,137.4,131.5,122.0,116.2,115.5,113.5,110.4,98.2,78.3,65.3,64.8,43.3,37.6,36.6,18.8.
对[C28H26O8S4+H,M+H]+计算的HRMS(ES+TOF):619.0589;实测:619.0570。
Figure BDA0003194285220000182
E-EMeCCHQ-E
将THP保护的pyEDOT衍生物(2.92g,6.4mmol,1当量)溶解在DCM(100ml)中。通过用氩气吹扫几分钟使溶液脱气。添加N-溴代琥珀酰亚胺(2.41g,13.4mmol,2.1当量),并将溶液在室温下搅拌25分钟。在减压下去除溶剂。柱色谱法(戊烷:EtOAc 0%至5%EtOAc)得到白色粉末(76%),将其直接用于以下步骤中。
1H-NMR(500MHz,CDCl3)δ7.07(1H,d,J=2.9Hz,1H),7.03(1H,d,J=9.0Hz,1H),6.95(1H,dd,J=9.0,2.9Hz,),5.37(1H,m),5.30(1H,m),7.03(1H,dt,J=11.6,2.1Hz,),4.45-4.36(1H,m),4.28-4.19(1H,m),3.92(2H,m),3.64-3.54(2H,m),3.01(1H,ddd,J=17.0,4.7,1.2Hz),2.81(1H,ddd,J=17.0,8.8,1.0Hz),2.03-1.92(2H,m),1.91-1.78(4H,m),1.74-1.53(6H,m).
将THP保护的二溴pyEDOT(3.1g,5mmol,1当量)和2-(三丁基甲锡烷基)亚乙基二氧噻吩(4.7g,11mmol,2.2当量)放在含有无水DMF(50mL)的圆瓶烧瓶中,并通过将Ar鼓泡通过溶液20分钟进行脱气。然后,添加Pd(PPh3)4(867mg,0.75mmol,7.5mol%)并将反应烧瓶放在预热的金属块(120℃)中。将溶液在Ar下搅拌16小时。在减压下除去DMF并将剩余物溶解在EtOAc(150mL)中并通过硅藻土过滤。将有机物用1M HCl(水溶液)、盐水萃取,并将有机物用MgSO4干燥。添加二氧化硅并在真空下除去溶剂。将剩余物通过柱色谱法(戊烷:EtOAc,梯度为5%EtOAc至80%)粗纯化。将包含产物的级分溶解在DCM/MeOH混合物(3∶1,50mL)中并添加对甲苯磺酸吡啶
Figure BDA0003194285220000191
(30mg)。将溶液在室温下搅拌2小时,然后添加二氧化硅并在真空下除去溶剂。将产物通过柱色谱法(戊烷:DCM,梯度为5%DCM至80%)纯化。蒸发包含产物的级分,用最少量的DCM(10mL)再溶解并缓慢添加至搅拌的戊烷溶液(150mL)中。将浅黄色沉淀物过滤并在真空下干燥。产率:40%。
1H NMR(500MHz,CDCl3)δ6.79(2H,m),6.74(1H,dd,J=8.7,2.9Hz),6.28(1H,s),6.27(1H,s),5.43(1H,s),4.65(1H,s),4.57(1H,d,J=6.6Hz),4.49(1H,dd,J=11.5,1.9Hz),4.35(4H,m),4.24(5H,m),3.04(1H m),2.97(1H,m).
13C NMR(126MHz,CDCl3)δ151.3,148.8,141.4,137.1,136.0,118.0,117.8,115.7,110.2,110.1,109.8,108.6,108.4,98.0,98.0,91.3,77.7,72.4,67.7,65.5,64.8,22.5.
对[C27H20O8S3+H,M+H]+计算的HRMS(ES+TOF):569.0399;实测:569.0402。
Figure BDA0003194285220000201
E-PMeO(C=O)NQ-E
将E-PMeOH-E(360mg,0.75mmol,1当量)与4-3N-(1,4-二氧-1,4-二氢萘-2-基)丙酸(490mg,2.0mmol,2.7当量,如在Molecules 2014,19,9,13188中所制备的)、DMAP(244mg,2.0mmol,2.7当量)和DCC(412mg,2.0mmol,2.7当量)一起溶解在THF(25mL)中。将溶液在室温下搅拌过夜然后过滤。添加二氧化硅并在真空下除去溶剂。将剩余物通过柱色谱法(戊烷:EtOAc,梯度为5%EtOAc至60%)纯化。蒸发包含产物的级分,用最少量的DCM(10mL)再溶解并缓慢添加至搅拌的戊烷溶液(150mL)中。将浅黄色沉淀物过滤并在真空下干燥。作为黄色粉末产率65%。
1H NMR(500MHz,CDCl3)δ8.10(1H,d,J=7.8Hz),8.03(1H,d,J=7.8Hz,),7.72(1H,t,J=7.5Hz),7.61(1H,t,J=7.5Hz),6.24(2H,s),6.18(1H,brs),5.75(1H,s),4.36(2H,s),4.34(4H,m),4.28-4.16(6H,m),3.81(2H,d,J=12.1Hz),3.54(m,2H),2.76(2H,t,J=6.3Hz),1.00(3H,s).
13C NMR(126MHz,CDCl3)δ183.2,181.7,171.2,147.7,144.3,141.4,137.5,134.9,133.6,132.2,132.1,130.7,126.5,126.3,113.5,110.3,101.5,98.3,76.5,67.3,65.2,64.7,42.8,39.0,34.1,17.2.
对[C34H29NO10S3+H,M+H]+计算的HRMS(ES+TOF):708.1026;实测:708.1053。
Figure BDA0003194285220000202
E-PMeO(C=O)TEMPO-E
将E-PMeOH-E(360mg,0.75mmol,1当量)与4-羧基-TEMPO、自由基(400mg,2.0mmol,2.7当量)、DMAP(244mg,2.0mmol,2.7当量)和DCC(412mg,2.0mmol,2.7当量)一起溶解在THF(25mL)中。将溶液在室温下搅拌过夜然后过滤。添加二氧化硅并在真空下除去溶剂。将剩余物通过柱色谱法(戊烷:EtOAc,梯度为5%EtOAc至60%)纯化。蒸发包含产物的级分,用最少量的DCM(10mL)再溶解并缓慢添加至搅拌的戊烷溶液(150mL)中。将浅黄色沉淀物过滤并在真空下干燥。作为黄色粉末产率65%。
由于自由基的存在而不能获得NMR数据。
对[C31H36NO9S3+H,M+H]+计算的HRMS(ES+TOF):663.1630;实测:663.1650
Figure BDA0003194285220000211
E-PMeO(C=O)BHT-E
将E-PMeOH-E(360mg,0.75mmol,1当量)与3,5-二-叔丁基-4-羟基苯甲酸(500mg,2.0mmol,2.7当量)、DMAP(244mg,2.0 mmol,2.7当量)和DCC(412mg,2.0mmol,2.7当量)一起溶解在THF(25mL)中。将溶液在室温下搅拌过夜然后过滤。添加二氧化硅并在真空下除去溶剂。将剩余物通过柱色谱法(戊烷:EtOAc,梯度为5%EtOAc至60%)纯化。蒸发包含产物的级分,用最少量的DCM(10mL)再溶解并缓慢添加至搅拌的戊烷溶液(150mL)中。将浅黄色沉淀物过滤并在真空下干燥。作为米黄色粉末产率50%。
1H NMR(500MHz,CDCl3)δ7.93(2H,s),6.26(2H,d,J=2.7Hz),5.68(1H,s),4.48(2H,s),4.35(4H,m),4.27(2H,d,J=12.1Hz),4.24(4H,m),3.91(2H,d,J=12.1Hz),1.46(18H,s),1.12(3H,s).
13C NMR(126MHz,CDCl3)6167.0,158.5,144.5,141.3,137.4,135.9,127.3,121.1,113.3,110.4,98.2,76.8,66.5,65.3,64.8,43.3,34.5,34.1,30.1,25.7,25.1,17.4.
对[C36H40O9S3+H,M+H]+计算的HRMS(ES+TOF):713.1913;实测:713.1930
用于合成经取代的1,4-二羟基蒽醌类的一般步骤
向配备有磁体的500ml圆瓶烧瓶中添加AlCl3(35g)和NaCl(7g)。使用190℃下的金属块加热烧瓶直到固体熔化。然后快速添加酸酐(25mmol,1当量)和氢醌(或1,4-二甲氧基苯)(25mmol,1当量)。在金属块的温度降低至100℃之前,继续加热15分钟。以小份缓慢添加碎冰(300mL)直至剧烈的反应平息。最后,将水一起添加至亮红色溶液中,其后添加5mL的浓HCl。将溶液加热2小时,产生亮红色沉淀物,趁热将其过滤出。将红色粉末用水洗涤并在真空下干燥。化合物无需进一步纯化而用于随后步骤中。
Figure BDA0003194285220000221
1,4-二羟基-2-甲基蒽醌
红色固体,产率62%
1H NMR(500MHz,d6-DMSO)613.19(1H,s),12.79(1H,s),8.25(2H,m),7.95(2H,m),7.35(1H,m),2.35(3H,d,J=0.9Hz).
与Chem Nat Compd 2017,53,949一致
Figure BDA0003194285220000222
1,4-二羟基-2,3-二甲基蒽醌
红色固体,产率65%
1H NMR(500MHz,d6-DMSO)δ13.50(2H,s),8.25(2H,m),7.95(2H,m),2.26(6H,s).
与J.Am.Chem.Soc.1981,103,8,1992一致
Figure BDA0003194285220000223
5,12-二羟基-8-甲基-1,2,3,4-四氢-1,4-亚甲基并四苯-6,11-二酮
红色固体,产率60%
1H NMR(500MHz,CDCl3)δ13.14(1H,s),13.11(1H,s),8.21(1H,d,J=7.9Hz),8.11(1H,s),7.59(1H,d,J=7.9Hz),3.81(2H,s),2.54(3H,s),2.02(2H,m),1.81(1H,d,J=9.0Hz),1.60(1H,d,J=9.0Hz),1.27(2H,m).
对[C20H16O4+H,M+H]+计算的HRMS(ES+TOF):321.1127;实测:321.1119。
乙酰基保护的一般过程
将醌溶解在乙酸酐(75ml)和吡啶(25ml)的混合物中并在70℃加热14小时。在真空下除去溶剂并添加甲苯以通过共蒸发除去痕量的吡啶。重复此过程直至吡啶气味消失。深色固体在NMR上是纯的,然而通过结晶的进一步纯化产生了浅黄色粉末。
Figure BDA0003194285220000231
1,4-二乙酰氧基-2-甲基蒽醌
浅黄色粉末,从CCl4中重结晶。产率:79%。
1H NMR(500 MHz,CDCl3)δ8.16(2H,m),7.74(2H,m),7.31(1H,s),2.52(3H,s),2.49(3H,s),2.33(3H,s).
13C NMR(126MHz,CDCl3)δ182.0,181.6,169.7,169.2,147.8,147.0,141.3,134.1,134.1,133.6,133.5,132.1,127.0,126.9,21.3,21.1,16.9.
对[C19H14O6+H,M+H]+计算的HRMS(ES+TOF):339.0874;实测:339.0869。
Figure BDA0003194285220000241
1,4-二乙酰氧基-2,3-二甲基蒽醌
浅黄色粉末,从丙酮中重结晶。产率:80%。
1H NMR(500MHz,CDCl3)δ8.15(2H,m),7.72(2H,m),2.53(6H,s),2.27(6H,s).
13C NMR(126MHz,CDCl3)δ182.0,169.5,146.4,140.0,134.0,133.7,126.9,123.5,21.2,13.8.
对[C20H16O6+H,M+H]+计算的HRMS(ES+TOF):353.1021;实测:353.1025。
Figure BDA0003194285220000242
8-甲基-6,11-二氧-1,2,3,4,6,11-六氢-1,4-亚甲基并四苯-5,12-二基二乙酸酯
浅黄色粉末,从丙酮中重结晶。产率:85%。
1H NMR(500MHz,CDCl3)δ8.03(1H,d,J=7.9Hz),7.93(1H,s),7.51(1H,d,J=7.9Hz),3.60(2H,s),2.51(6H,s),2.48(3H,s),1.98(2H,m),1.88(1H,d,J=9.4Hz),1.62(1H,d,J=9.4Hz),1.32(2H,m).
13C NMR(126MHz,CDCl3)δ182.8,182.3,169.6,169.6,149.9,149.7,145.0,141.6,141.5,134.8,133.5,131.4,127.0,125.1,125.1,48.7,41.4,41.4,25.7,21.9,21.2.
对[C24H20O6+H,M+H]+计算的HRMS(ES+TOF):405.1338;实测:421.1340。
Figure BDA0003194285220000251
8-(溴甲基)-6,11-二氧-1,2,3,4,6,11-六氢-1,4-亚甲基并四苯-5,12-二基二乙酸酯
在Ar下将1,4-二乙酰氧基-2-甲基蒽醌(3.39g,10mmol,1当量)溶解在干CCl4(75mL)中并加热至70℃,以一份添加NBS(1.78g,11mmol,1.1当量)和AIBN(164mg,1mmol,0.1当量)并将反应加热16小时。将反应冷却至室温,将固体过滤并用CCl4洗涤。该固体包含琥珀酰亚胺和大部分产物。将固体溶解在EtOAc中并用NaHCO3(饱和)溶液和盐水重复洗涤,在用MgSO4干燥并除去溶剂之后得到纯产物。滤液含有未反应的原材料和产物的混合物,产物可以通过从CCl4中重复结晶而富集。产率60%。
1H NMR(500MHz,CDCl3)δ8.16(2H,m),7.74(2H,m),7.52(1H,s),4.44(2H,br s),2.55(3H,s),2.49(3H,s).
对[C19H13O6Br+H,M+H]+计算的HRMS(ES+TOF):416.9974;实测:416.9980。
Figure BDA0003194285220000252
2-溴甲基-1,4-二乙酰氧基-3-甲基蒽醌
在Ar下将1,4-二乙酰氧基-2,3-二甲基蒽醌(2.70g,7.7mmol,1当量)溶解在干CCl4(75mL)中并加热至70℃,以一份添加NBS(1.50g,8.4mmol,1.1当量)和AIBN(185mg,0.77mmol,0.1当量)并将反应搅拌16小时。将反应冷却至室温,将固体过滤并用CCl4洗涤。固体包含琥珀酰亚胺以及产物和2,3-二溴甲基-1,4-二乙酰氧基蒽醌,而滤液包含原材料和产物的混合物。将固体溶解在EtOAc中并用NaHCO3(饱和)溶液重复洗涤除去琥珀酰亚胺并从CCl4中重复结晶得到含有10%的二溴衍生物的2-溴甲基-1,4-二乙酰氧基-3-甲基蒽醌。产率40%。
1H NMR(500MHz,CDCl3)δ8.15(2H,m),7.72(2H,m),4.50(2H,br s)2.57(3H,s),2.53(3H,s),2.39(3H,s).
对[C20H15O6Br+H,M+H]+计算的HRMS(ES+TOF):431.0130;实测:431.0144。
Figure BDA0003194285220000261
8-(溴甲基)-6,11-二氧-1,2,3,4,6,11-六氢-1,4-亚甲基并四苯-5,12-二基二乙酸酯
将8-甲基-6,11-二氧-1,2,3,4,6,11-六氢-1,4-亚甲基并四苯-5,12-二基二乙酸酯(2.56g,6.3mmol,1当量)添加至干四氯乙烯(100mL)中并加热至80℃。以一份添加NBS(1.24g,7.0mmol,1.1当量)和AIBN(103mg,0.63mmol,0.1当量)并将溶液在80℃下加热16小时。将溶液冷却并过滤以除去琥珀酰亚胺。将有机物用DCM稀释并顺序地用NaHCO3(饱和)洗涤并用MgSO4干燥。在减压下除去溶剂之后,保留了原材料、单溴化的产物和少量9,9-二溴甲基-2,3-降冰片烷-1,4-二乙酰氧基蒽醌的混合物。单溴化的产物证明难以分离,并且混合物无需进一步纯化用于随后步骤。
1H NMR(500MHz,CDCl3)δ8.14(1H,s),8.12(1H,d,J=7.5Hz),7.73(1H,d,J=7.5Hz)4.53(2H,s),3.60(2H,s),2.51(6H,s),1.99(2H,m),1.88(1H,d,J=9.4Hz),1.62(1H,d,J=9.4Hz),1.32(2H,m).
注意:二溴化合物在6.69(1H,s)ppm处具有特征质子。
对[C24H19O6Br+H,M+H]+计算的HRMS(ES+TOF):483.0443;实测:483.0464。
Figure BDA0003194285220000271
E-PMeS(醌茜-Me)-E
将E-PMeSH-E(260mg,0.52mmol,1当量)和2-溴甲基-1,4-二乙酰氧基蒽醌(225mg,0.52mmol,1当量)在脱气无水DCM(20mL)中混合。添加DBU(0.11mL,0.75mmol,1.5当量)并将溶液在40℃下加热3小时。向反应混合物中添加二氧化硅,并在真空下除去溶剂,将产物通过柱色谱法(戊烷:EtOAc,梯度为在戊烷中的10%EtoAc至100%EtOAc)纯化。这得到米黄色固体。
通过将二乙胺(10当量)添加至溶解在DCM(20m1)中的固体(1当量)中并在40℃下加热2小时来除去乙酰基。随后,向混合物中添加二氧化硅并在真空下除去挥发物。柱色谱法(戊烷:DCM,梯度为30%DCM至100%)得到红色固体。以最少量的DCM(5mL)溶解固体并滴加至搅拌的戊烷溶液(150mL)中以沉淀红色粉末,随后将红色粉末过滤出并干燥。产率30%。
1H NMR(500MHz,CDCl3)δ13.45(1H,s),12.83(1H,s),8.31(2H,m),7.80(2H,m),7.31(1H,s),6.17(2H,s),4.33(4H,m),4.22(4H,m),4.20(2H,d,J=11.8Hz),3.90(2H,s),3.67(2H,d,J=11.8Hz),3.01(2H,s),0.95(3H,s).
13C NMR(126MHz,CDCl3)δ187.2,186.4,157.6,156.6,144.5,141.3,141.2,140.5,137.3,134.4,134.3,133.7,133.6,128.6,127.1,126.9,113.7,112.8,112.1,110.4,98.2,98.2,78.1,65.2,64.7,46.3,43.7,43.3,37.5,32.0,18.5.
对[C36H28O10S4+H,M+H]+计算的HRMS(ES+TOF):749.0644;实测:749.0650。
Figure BDA0003194285220000281
E-PMeS(醌茜--Me)-E
将E-PMeSH-E(409mg,0.83mmol,1.1当量)和2-溴甲基-3-甲基-1,4-二乙酰氧基蒽醌(323mg,0.75mmol,1当量)在脱气无水DCM(20mL)中混合。添加DBU(0.17mL,1.1mmol,1.5当量)并将溶液在40℃下加热3小时。向反应混合物中添加二氧化硅,并在真空下除去溶剂,将产物通过柱色谱法(戊烷:EtOAc,梯度为在戊烷中的10%EtoAc至100%EtOAc)纯化。这得到米黄色固体
通过将二乙胺(10当量)添加至溶解在DCM(20ml)中的固体(1当量)中并在40℃下加热2小时来除去乙酰基。随后,向混合物中添加二氧化硅并在真空下除去挥发物。柱色谱法(戊烷:DCM,梯度为30%DCM至100%)得到红色固体。以最少量的DCM(5mL)溶解固体并滴加至搅拌的戊烷溶液(150mL)中以沉淀红色粉末,随后将红色粉末过滤出并干燥。产率20%。
1H NMR(500MHz,CDCl3)δ13.70(1H,s),13.50(1H,s),8.32(2H,m),7.80(2H,m),6.21(2H,s),4.33(4H,m),4.22(4H,m),4.20(2H,d,J=12.3Hz),4.05(2H,s),3.70(2H,d,J=12.3Hz),3.11(2H,s),2.46(3H,s),0.95(3H,s).
13C NMR(126MHz,CDCl3)δ186.8,186.6,157.3,156.8,144.6,141.3,139.4,138.2,137.3,134.3,134.2,133.8,127.0,127.0,113.7,111.1,110.7,110.5,98.2,78.1,65.2,64.8,43.5,42.3,38.1,28.8,18.4,12.8,11.4.
对[C37H30O10S4+H,M+H]+计算的HRMS(ES+TOF):763.0800;实测:763.0800。
Figure BDA0003194285220000291
E-PMeS(醌茜-降冰片烷)-E
将包含8-(溴甲基)-6,11-二氧-1,2,3,4,6,11-六氢-1,4-亚甲基并四苯-5,12-二基二乙酸酯(1当量)的混合物溶解在DCM(25mL)中并通过将Ar鼓泡通过溶液进行脱气。添加DBU(1.2当量),溶液变暗,其后添加E-PMeSH-E(1.1当量)并将溶液在40℃下加热2小时,在室温下持续另外的14小时。向混合物中添加二氧化硅并在真空下除去挥发物。通过柱色谱法(戊烷:EtOAc,梯度为5%EtOAc至80%)将产物与非溴化和二溴化化合物分离以得到棕色固体。
通过将二乙胺(1O当量)添加至溶解在DCM(20ml)中的固体(1当量)中并在40℃下加热2小时来除去乙酰基。随后,向混合物中添加二氧化硅并在真空下除去挥发物。柱色谱法(戊烷:DCM,梯度为30%DCM至100%)得到红色固体。以最少量的DCM(5mL)溶解固体并滴加至搅拌的戊烷溶液(150mL)中以沉淀红色粉末,随后将红色粉末过滤出并干燥。产率25%。
1H NMR(500MHz,CDCl3)δ13.09(1H,s),13.06(1H,s),8.32(1H,s),8.19(1H,d,J=8.0Hz),7.73(1H,d,J=8.0Hz),6.20(2H,s),4.34(4H,m),4.23(4H,m),4.15(2H,d,J=11.2Hz),3.94(2H,s),3.80(2H,s),3.62(2H,d,J=11.2Hz),2.90(2H,s),2.01(2H,m),1.81(1H,d,J=9.4Hz),1.61(1H,d,J=9.4Hz),1.30(2H,m),0.91(3H,s).
13C NMR(126MHz,CDCl3)δ187.1,186.8,152.9,152.8,148.1,147.9,145.8,144.4,141.3,137.4,134.7,134.0,132.5,127.5,127.5,113.8,112.6,112.4,110.3,110.3,98.2,98.2,78.0,65.2,64.7,49.2,43.2,40.8,40.8,37.7,36.5,25.7,18.5.
对[C41H34O10S4+H,M+H]+计算的HRMS(ES+TOF):815.1113;实测:815.1120.
聚-E-PMeSHQ-E的实验数据
E-PMeSHQ-E的化学聚合
将10mg的E-PMeSHQ-E溶解在500μl乙腈中,并将甲苯磺酸2,2,6,6-四甲基-1-氧代哌啶
Figure BDA0003194285220000301
(2当量,12mg)单独溶解在500μl二氯甲烷中。将低聚物溶液和氧化剂溶液混合,产生聚-E-PMeSHQ-E的稳定悬浮液。注意,用这样的温和氧化剂氧化相应的单体溶液通常是不可能的或进行得不切实际得慢。
聚-PMeSHQ-E的电化学研究
将获得的聚合物悬浮液(10μl,对应于0.1mg的低聚物)滴铸在电极(玻碳、石墨或金叉指阵列电极)上。允许所得聚合物膜在真空下在室温下干燥。
在0.5M硫酸溶液中研究了膜的电化学特性。图6a示出了涂覆有如上所述的聚E-PMeSHQ-E的玻碳电极的循环伏安图。可以看出获得的氧化还原峰对应于侧链氢醌基团的氧化还原反应,并且出现在预期的氢醌氧化还原电位处。观察到的容量接近理论容量的100%。
用聚-E-PMeSHQ-E涂覆如上所述的叉指阵列电极允许待测量的聚合物的电导率作为电位(氧化还原状态)和温度二者的函数。图6b示出了从叉指阵列电极研究中获得的图。可以看出,至少对于一些氧化还原状态,电导率与温度呈负相关。这表明通过材料的电子传输方法是非热激活的。
E-PMeSHQ-E的电化学后沉积聚合
将E-PMeSHQ-E(10mg)溶解在100μl NMP中,并将10μl的所得溶液滴铸在石墨基底上。通过基底的循环伏安法以电化学方式进行聚合以将上限电位连续提高至相对于Ag/AgCl至1V的电位。图7示出了获得的循环伏安图。随着进行循环的次数进展,可以看出来自醌的容量明显增加。这表明,由于E-PMeSHQ-E低聚物的氧化聚合以提供聚E-PMeSHQ-E,在进行循环伏安法时,组合物变得越来越导电。随着循环伏安法进行,沉积的膜变黑,这进一步表明发生了聚合。
聚-E-PMeO(C=O)NQ-E的实验数据
如上所述,通过甲苯磺酸2,2,6,6-四甲基-1-氧代哌啶
Figure BDA0003194285220000302
氧化合成了聚-E-PMeO(C=O)NQ-E,并以与聚-E-PMeSHQ-E相似的方式研究其电化学特性。图8a示出了由涂覆有聚-E-PMeO(C=O)NQ-E(在0.5M硫酸中进行)的玻碳电极获得的循环伏安图,图8b示出了叉指阵列电极实验的结果。从这些实验中得出的结论与如对聚E-PMeSHQ-E得出的结论非常吻合(进行必要的修改)。
E-EMeCCHQ-E的实验数据
通过从0.05M三聚体的MeCN溶液滴铸将E-EMeCCHQ-E施加至金圆盘电极上。将材料在0.5M H2SO4(水溶液)中通过循环伏安法进行后沉积聚合。从循环伏安法中,可以观察到电化学活性的连续累积。容量累积相对于Ag/AgCl从0.6V开始。起始容量在醌峰上累积并下降至-0.2V。然而,随着聚合进行,来自聚合物的容量向下延伸至-0.3V并低于-0.3V,表明聚合物掺杂随着共轭长度变大而变慢,如在聚合期间所预期的。
单体与低聚物的比较
图9a示出了单体EMeCCHQ(图中标记的M,如Electrochimica Acta 2017 235,356-364中所报道的合成)的聚合电位如与低聚物E-PMeSHQ-E(图中标记的O)的聚合电位的比较。电聚合在乙腈溶液中用0.1M TBAPF6作为支持电解质来进行。与单体EMeCCHQ的0.6V相比,三聚体(E-PMeSHQ-E)的氧化发生在相对于二茂铁的0V处。因此,可以看出低聚物的氧化发生在比单体氧化所需的电位显著低的电位处。这证实了低聚物的聚合可以在比单体聚合所需的条件更温和的条件下进行。
图9b示出了多个噻吩单体和三聚体的氧化电位。三聚体和单体按氧化电位升高的顺序列在图中的图例中,其中EDOT-ProDOT-EDOT具有最低氧化电位,Th具有最高氧化电位。可以看出单体具有最高的氧化电位并因此最难聚合。对于三聚体,可以看出每个另外的亚烷基二氧噻吩部分降低了氧化电位,并且包含至少两个亚烷基二氧噻吩部分的三聚体具有低氧化电位。这允许这样的三聚体在温和条件下聚合。例如,这样的三聚体可以在水性电解质中聚合而没有电解质降解和形成活性氧物质的风险。
多孔复合材料
多孔材料也可以使用本文中所述的方法进行涂覆。制备溶解在NMP中的相关导电氧化还原低聚物(E-P(QH2)-E或E-P(NQ)-E)的溶液。将碳毡基底(AvCarb G200 SoftGraphite Battery Felt,FuelCellStore)在溶液中浸涂并在真空下干燥。将电流导体(Pt线)附接至涂覆的基底上,并将涂覆的基底浸入电解质溶液(0.5M H2SO4)中。对基底施加氧化电位,导致导电氧化还原低聚物的聚合,从而提供了涂覆有相关导电氧化还原聚合物的多孔毡基底。在随后使用之前将涂覆的样品洗涤并干燥。
从涂覆有相关导电氧化还原聚合物的碳海绵基底中获得的循环伏安图在图10中示出。
有机电池
使用如本文中所述的材料和方法构建有机电池。阴极材料由通过EP(QH2)E的氧化聚合而形成的pEP(QH2)E组成。类似地,阳极材料pEP(NQ)E由EP(NQ)E形成。电极材料在没有导电添加剂或粘合剂的情况下直接沉积。导电性由例如用HSO4-氧化/掺杂的聚噻吩主链来实现。电池使用0.5M H2SO4(水溶液)水性电解质组装为全有机质子电池,这使得质子能够进行摇椅式运动。阳极和阴极氧化还原活性依赖于侧基Q和NQ的双电子双质子(2e2H)氧化还原过程。当电池充电时,侧基对正电极(阴极)和负电极(阳极)来说分别处于Q和NQH2状态。在放电期间,将活性阴极材料转换成QH2同时将阳极转换成NQ。
E=3,4-亚乙基二氧噻吩;NQ=萘醌;NQH2=萘氢醌;P=3,4-亚丙基二氧噻吩;p=聚合的;Q=苯醌;QH2=氢醌。
发现通过两种单独的电极材料的组合特性很好地捕获电池特性。即,平均电池电压(0.4V)对应于pEP(QH2)E与pEP(NQ)E之间的充电/放电平台的差异,并且容量与限制性pEP(NQ)E电极的容量相当。电池可以以恒定的电流(恒电流)或以恒定的电压(CV)充电。当以0.6V的电压使用CV充电100秒时,对应于三电极设置中的电位阶跃充电,随着pEP(QH2)E被氧化成pEP(Q)E同时pEP(NQ))E被还原成pEP(NQH2)E,电池充电。在充电步骤期间观察到的最高电流为约30A/g,其略低于单独电极的电流;电池充满电需要100秒。这归因于纽扣电池内部较高的压力,较高的压力防止了聚合物在充电时膨胀。然而,电池在10秒内充电至50%并且在25秒后充电至80%。所得放电容量在3C下为约60mAh/g,其为pEP(NQ)E电极理论容量(理论容量75mAh/g)的约80%。在使用恒压充电然后恒电流放电500个循环之后,电池保持其初始容量的85%。
由于电池能够以恒压充电,因此其可以通过与在全日照下具有6mA至10mA下0.6V的额定输出的商用有机光伏电池直接集成来进行充电而无需另外的电子设备。通过将电池简单地连接至暴露于一个太阳当量的光的太阳能电池,电池在100秒内充满电。
还探讨了在零下温度下使用电池用于低温应用的可能性。为了防止电解质冻结,将硫酸浓度从0.5M增加至3.3M,从而导致凝固点降低至-27℃。用电池在-24℃下较高的电解质浓度恒电流循环获得了60mAh/g直至1.1A/g和3A/g下40mAh/g的放电容量。因此,容量和倍率性能基本上不受温度降低的影响。
最后,电池用于为温度计供电,选择该温度计以证明例如在运输期间监测包装温度的应用。将两个电池(含有约1mg材料/电极)串联耦合以实现更高的电压。电池为温度计供电大于一个小时,显示强度逐渐减弱。

Claims (15)

1.一种式IVa或IVb的化合物、或其盐:
Figure FDA0003194285210000011
其中
各情况的-L-独立地选自直接键或共价连接基团部分;
各情况的-R独立地为可逆氧化还原基团;
各情况的-X2独立地选自-L-H、-L-T、或-L(-R)m
各情况的T独立地选自-CN或-N3
各情况的m独立地选自1至5;以及
各情况的r独立地选自0、1或2。
2.根据权利要求1所述的化合物,其中各情况的-X2独立地选自-H、C1-C12烷基、或-L(-R)m
3.根据前述权利要求中任一项所述的化合物,其中各情况的-X2独立地选自H或C1-C12烷基。
4.根据前述权利要求中任一项所述的化合物,其中各情况的-L-独立地选自具有结构-(CH2)s-G1-(CH2)t-G2-或-G2-(CH2)t-G1-(CH2)s-的共价连接基团部分,其中s为0至6,t为0至6,以及-G1-和-G2-各自独立地选自直接键、-O-、-S-、-SO2-、-SO3-、-O3S-、-SO2NH-、-NHSO2-、-NH-、-N(C1-C6烷基)-、-C(O)-、-CO2-、-O2C-、-C(O)NH-、-NHC(O)-、-OC(O)O-、-NHC(O)NH-、-NHC(O)O-、-OC(O)NH--C≡C-、-CH=CH-、-Ph-和-Hy-。
5.根据前述权利要求中任一项所述的化合物,其中R为有机氧化还原基团。
6.根据前述权利要求中任一项所述的化合物,其中R选自对苯二甲酸酯、萘醌、蒽醌、儿茶酚、醌、醌茜、萘茜、靛蓝、TEMPO、加尔万氧基自由基、苯酚、萘二酰亚胺、芘二酰亚胺、苝二酰亚胺、二苯并噻吩砜、或其经取代的衍生物。
7.根据权利要求1至4中任一项所述的化合物,其中R为有机金属氧化还原催化剂。
8.一种聚合物,包含式RIVa、或其盐的重复单元:
Figure FDA0003194285210000021
其中:
n为2至5,例如为3或5,优选为3;
各情况的-X2独立地选自-L-H、-L-T、或-L(-R)m
各情况的-L-独立地选自直接键或共价连接基团部分;
各情况的-T独立地选自-CN或-N3
各情况的-R独立地为可逆氧化还原基团;
各情况的r独立地选自0、1或2;以及
各情况的m独立地选自1至5。
9.根据权利要求8所述的聚合物,其中各情况的X2独立地选自H或C1-C12烷基。
10.一种制造经聚合物涂覆的基底的方法,所述方法包括以下步骤:
a)提供基底;
b)将根据权利要求1至7中任一项所述的化合物涂覆在所述基底上以产生具有低聚物涂层的基底;以及
c)通过氧化聚合使所述低聚物涂层聚合以提供经聚合物涂覆的基底。
11.一种涂覆组合物,包含分散在载液中的根据权利要求1至7中任一项所述的化合物。
12.一种经聚合物涂覆的基底,包含根据权利要求8至9中任一项所述的聚合物,其中所述基底优选为导电集流体材料例如石墨。
13.根据权利要求12所述的经聚合物涂覆的基底,其中所述基底是多孔的。
14.一种有机电池,包含根据权利要求1至7中任一项所述的化合物、和/或根据权利要求8至9中任一项所述的聚合物、和/或根据权利要求12至13中任一项所述的经聚合物涂覆的基底。
15.根据权利要求14所述的有机电池,还包含水性电解质。
CN202080012404.6A 2019-02-07 2020-02-07 导电氧化还原低聚物 Pending CN113423755A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
SE1950142A SE543571C2 (en) 2019-02-07 2019-02-07 Conducting redox oligomers
SE1950142-8 2019-02-07
PCT/SE2020/050121 WO2020162824A1 (en) 2019-02-07 2020-02-07 Conducting redox oligomers

Publications (1)

Publication Number Publication Date
CN113423755A true CN113423755A (zh) 2021-09-21

Family

ID=71947659

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202080012404.6A Pending CN113423755A (zh) 2019-02-07 2020-02-07 导电氧化还原低聚物

Country Status (5)

Country Link
US (1) US20220109157A1 (zh)
EP (1) EP3921359A4 (zh)
CN (1) CN113423755A (zh)
SE (1) SE543571C2 (zh)
WO (1) WO2020162824A1 (zh)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1329652A (zh) * 1998-10-06 2002-01-02 拜尔公司 利用质子实现电致变色转换的基于聚(3,4-二氧基噻吩)衍生物的组件
US6452711B1 (en) * 1998-05-29 2002-09-17 Bayer Aktiengesellschaft Electro chromic assembly based on poly (3,4-ethylenedioxythiophene derivatives in the electrochromic layer and the ion-storage layer
CN1615352A (zh) * 2001-11-21 2005-05-11 佛罗里达州立大学 电致变色聚合物和聚合物电致变色装置
WO2007066353A2 (en) * 2005-06-28 2007-06-14 Indian Institute Of Technology Bombay Novel polymers of 3,4-propylenedioxythiophene derivatives with pendant functional groups
CN1989169A (zh) * 2004-07-30 2007-06-27 住友化学株式会社 高分子化合物、高分子薄膜和使用了其的高分子薄膜元件
US20110127516A1 (en) * 2008-07-29 2011-06-02 Sumitomo Chemical Company ,Limited Polymer compound and light-emitting element using same
WO2012121417A1 (en) * 2011-03-09 2012-09-13 Waseda University Conducting polymer / redox polymer blends via in-situ oxidative polymerization - preparation methods and application as an electro-active polymeric materials
CN104479114A (zh) * 2014-11-28 2015-04-01 武汉工程大学 异氮杂茚氧化氮自由基改性聚噻吩及其合成方法和用途
US20150295229A1 (en) * 2012-10-31 2015-10-15 Toyota Motor Europe Nv/Sa Organic active materials for electrochemical energy storage
US20160028070A1 (en) * 2013-03-11 2016-01-28 Fluidic, Inc. Integrable redox-active polymer batteries
US20160244554A1 (en) * 2013-10-09 2016-08-25 The University Of Akron Integrated zwitterionic conjugated polymers for bioelectronics, biosensing, regenerative medicine, and energy applications
US20170267811A1 (en) * 2014-05-23 2017-09-21 University Of Florida Research Foundation, Inc. Broadly Absorbing Electrochromic Polymers
WO2018039585A1 (en) * 2016-08-25 2018-03-01 Hitachi Chemical Co. America, Ltd. Redox mediator-functionalized water-soluble polymer
US20180223035A1 (en) * 2015-07-16 2018-08-09 Georgia Tech Research Corporation Processable polymers and methods of making and using therof
WO2019012271A1 (en) * 2017-07-10 2019-01-17 Uea Enterprises Limited CONDUCTIVE POLYMERS

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4795687A (en) * 1986-09-12 1989-01-03 Mitsubishi Kasei Corp. Electrically conductive material and a process for the preparation of same and secondary battery using the electrically conductive material
DE10229218A1 (de) * 2002-06-28 2004-01-22 H.C. Starck Gmbh Alkylendioxythiophen-Dimere und Trimere
DE10302086A1 (de) * 2003-01-21 2004-07-29 Bayer Ag Alkylendioxythiophene und Poly(alkylendioxythiophene) mit mesogenen Gruppen
AU2003900404A0 (en) * 2003-01-31 2003-02-13 Massey University Conducting polymers with porphyrin cross-linkers
EP2402955B1 (en) * 2006-01-26 2013-07-03 University of Florida Research Foundation, Incorporated Chemical defunctionalization of polymeric alkylenedioxyheterocyclics - the monomers
CN101842410B (zh) * 2007-10-30 2014-08-06 佛罗里达大学研究基金公司 绿色至透射的可溶性电致变色聚合物
CN102575154A (zh) * 2009-12-14 2012-07-11 海洋王照明科技股份有限公司 含噻吩有机光电材料、其制造方法和太阳能电池器件
SE536793C2 (sv) * 2012-07-02 2014-08-19 Richter Life Science Dev Ab Detektion av kolhydrater

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6452711B1 (en) * 1998-05-29 2002-09-17 Bayer Aktiengesellschaft Electro chromic assembly based on poly (3,4-ethylenedioxythiophene derivatives in the electrochromic layer and the ion-storage layer
CN1329652A (zh) * 1998-10-06 2002-01-02 拜尔公司 利用质子实现电致变色转换的基于聚(3,4-二氧基噻吩)衍生物的组件
CN1615352A (zh) * 2001-11-21 2005-05-11 佛罗里达州立大学 电致变色聚合物和聚合物电致变色装置
CN1989169A (zh) * 2004-07-30 2007-06-27 住友化学株式会社 高分子化合物、高分子薄膜和使用了其的高分子薄膜元件
WO2007066353A2 (en) * 2005-06-28 2007-06-14 Indian Institute Of Technology Bombay Novel polymers of 3,4-propylenedioxythiophene derivatives with pendant functional groups
US20110127516A1 (en) * 2008-07-29 2011-06-02 Sumitomo Chemical Company ,Limited Polymer compound and light-emitting element using same
WO2012121417A1 (en) * 2011-03-09 2012-09-13 Waseda University Conducting polymer / redox polymer blends via in-situ oxidative polymerization - preparation methods and application as an electro-active polymeric materials
US20150295229A1 (en) * 2012-10-31 2015-10-15 Toyota Motor Europe Nv/Sa Organic active materials for electrochemical energy storage
US20160028070A1 (en) * 2013-03-11 2016-01-28 Fluidic, Inc. Integrable redox-active polymer batteries
US20160244554A1 (en) * 2013-10-09 2016-08-25 The University Of Akron Integrated zwitterionic conjugated polymers for bioelectronics, biosensing, regenerative medicine, and energy applications
US20170267811A1 (en) * 2014-05-23 2017-09-21 University Of Florida Research Foundation, Inc. Broadly Absorbing Electrochromic Polymers
CN104479114A (zh) * 2014-11-28 2015-04-01 武汉工程大学 异氮杂茚氧化氮自由基改性聚噻吩及其合成方法和用途
US20180223035A1 (en) * 2015-07-16 2018-08-09 Georgia Tech Research Corporation Processable polymers and methods of making and using therof
WO2018039585A1 (en) * 2016-08-25 2018-03-01 Hitachi Chemical Co. America, Ltd. Redox mediator-functionalized water-soluble polymer
WO2019012271A1 (en) * 2017-07-10 2019-01-17 Uea Enterprises Limited CONDUCTIVE POLYMERS

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ANNA M. ÖSTERHOLM: "Solution Processed PEDOT Analogues in Electrochemical Supercapacitors" *
AUGUSTUS W. LANG: "Flexible, aqueous-electrolyte supercapacitors based on water-processable dioxythiophene polymer/carbon nanotube textile electrodes" *
JAMES F. PONDER: "Designing a Soluble PEDOT Analogue without Surfactants or Dispersants" *

Also Published As

Publication number Publication date
WO2020162824A1 (en) 2020-08-13
EP3921359A4 (en) 2022-05-25
SE543571C2 (en) 2021-03-30
US20220109157A1 (en) 2022-04-07
SE1950142A1 (en) 2020-08-08
EP3921359A1 (en) 2021-12-15

Similar Documents

Publication Publication Date Title
Sun et al. X‐Shaped electroactive molecular materials based on oligothiophene architectures: facile synthesis and photophysical and electrochemical properties
Bäuerle et al. Specific recognition of nucleobase‐functionalized polythiophenes
Gunbas et al. A Unique Processable Green Polymer with a Transmissive Oxidized State for Realization of Potential RGB‐Based Electrochromic Device Applications
Yamamoto et al. Copolymers of thiophene and thiazole. Regioregulation in synthesis, stacking structure, and optical properties
Data et al. Unusual properties of electropolymerized 2, 7-and 3, 6-carbazole derivatives
TWI429633B (zh) Thiophene compound having sulfonyl group and method for producing the same
WO2007066353A2 (en) Novel polymers of 3,4-propylenedioxythiophene derivatives with pendant functional groups
WO2004031192A1 (en) 3,4-alkylenedioxythiophene compounds and polymers thereof
Tarkuc et al. Electrochromic properties of a soluble conducting polymer of 1-benzyl-2, 5-di (thiophene-2-yl)-1H-pyrrole
Tamilavan et al. Synthesis of conjugated polymers with broad absorption bands and photovoltaic properties as bulk heterojuction solar cells
EP2616472A2 (en) Substituted 3,4-propylenedioxythiophene monomers and 3,4-propylenedioxythiophene-based crosslinkers and polymers thereof
Chen et al. Electropolymerization of DA type EDOT-based monomers consisting of camphor substituted quinoxaline unit for electrochromism with enhanced performance
Handoko et al. Effect of cyano substituent on photovoltaic properties of quinoxaline-based polymers
US7829660B1 (en) Bis(thienyl)isopyrazoles and process for preparing and method for using bis(thienyl)isopyrazoles
WO2012121417A1 (en) Conducting polymer / redox polymer blends via in-situ oxidative polymerization - preparation methods and application as an electro-active polymeric materials
Cheon et al. Synthesis and characterization of new TPD-based copolymers and applications in bulk heterojunction solar cells
Yasa et al. Selenophene-bearing low-band-gap conjugated polymers: tuning optoelectronic properties via fluorene and carbazole as donor moieties
Livi et al. Thiophene in conducting polymers: synthesis of poly (thiophene) s and other conjugated polymers containing thiophenes, for application in polymer solar cells
Idzik et al. Electrochemical and spectral properties of meta-linked 1, 3, 5-tris (aryl) benzenes and 2, 4, 6-tris (aryl)-1-phenoles, and their polymers
US7094865B2 (en) Thiophenes and polymers derived therefrom
Yasuda et al. New luminescent 1, 2, 4-triazole/thiophene alternating copolymers: Synthesis, characterization, and optical properties
Sarker et al. Synthesis and characterization of a series of fluorine-substituted phenylene-thienyl polymers for battery applications
Welterlich et al. Electrochemical polymerization of 1, 3, 4, 6-tetraarylpyrrolo [3, 2-b] pyrrole-2, 5-dione (isoDPP) derivatives
CN113423755A (zh) 导电氧化还原低聚物
KR102265032B1 (ko) 축합 헤테로 다환식 화합물 및 그 화합물을 사용한 도전성 폴리머의 제조 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20210921

WD01 Invention patent application deemed withdrawn after publication