WO2010140498A1 - 照明装置 - Google Patents
照明装置 Download PDFInfo
- Publication number
- WO2010140498A1 WO2010140498A1 PCT/JP2010/058700 JP2010058700W WO2010140498A1 WO 2010140498 A1 WO2010140498 A1 WO 2010140498A1 JP 2010058700 W JP2010058700 W JP 2010058700W WO 2010140498 A1 WO2010140498 A1 WO 2010140498A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light
- led module
- color
- control
- led
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B45/00—Circuit arrangements for operating light-emitting diodes [LED]
- H05B45/20—Controlling the colour of the light
Definitions
- the present invention relates to a lighting device having a light source such as a light emitting diode, and more particularly to a lighting device having a light bulb shape.
- LEDs light emitting diodes
- Many illumination devices using light emitting diodes as light sources employ a switching circuit such as a PWM control system in order to adjust the lighting state of the light source.
- an illumination device having a function for adjusting a light source to a desired illumination color has been developed.
- an illumination device installed in a loop portion in a vehicle compartment, which includes LEDs having different emission colors and a control circuit for controlling the lighting state of each LED, and the light emitted from each LED is mixed.
- An illumination device that can obtain a desired illumination color is disclosed (see Patent Document 1).
- the present invention has been made in view of such circumstances, and an object of the present invention is to provide an illuminating device that can adjust the emission color without changing the current supplied to the light source.
- the illumination device includes a control unit that controls a lighting state for each light source having a different emission color.
- the control unit includes a PWM control circuit, and the PWM of each light source having a different emission color is provided. It is characterized in that control is performed so that the on-time of control does not overlap.
- the control unit includes a PWM control circuit, and controls the on-times of the PWM control of the light sources having different emission colors so as not to overlap.
- a white LED and a light bulb color LED are used as the light source
- the LED when adjusting the lighting color to white, daylight color, and light bulb color by changing the on-time ratio of PWM control of each LED, When the LED is on, the light bulb color LED is turned off, and when the light bulb color LED is on, the white LED is turned off.
- the emission color can be adjusted without causing the current supplied to the LED to fluctuate above a predetermined value.
- the illumination device is characterized in that the control unit is configured to perform color adjustment by controlling the length of on-time of PWM control of each light source having a different emission color.
- the control unit performs color adjustment by controlling the length of the on-time of the PWM control for each light source having a different emission color. For example, when a white LED and a light bulb color LED are used as the light source, the illumination color can be changed to a desired light emission color within the range of white, daylight color, and light bulb color by changing the on-time ratio of PWM control of each LED. It is possible to realize an optimal lighting environment according to the usage scene of the lighting device and the user's preference.
- the illumination device includes a current supply circuit that supplies current to the light source, and the control unit performs the PWM control while keeping the length of the on-time of the PWM control of each of the light sources having different emission colors constant. It is characterized in that dimming is performed by controlling the amount of current supplied during the on-time.
- a current supply circuit for supplying current to the light source is provided, and the control unit supplies the PWM control on-time to the on-time of the PWM control while keeping the length of the on-time of the PWM control constant for each of the light sources having different emission colors. Dimming is performed by controlling the amount of current. Thereby, toning and light control can be performed simultaneously, and a more optimal lighting environment can be realized according to the usage scene of the lighting device and the user's preference.
- the control unit performs light control by controlling a length of the PWM control on-time while maintaining a constant PWM control on-time ratio of the light sources having different emission colors. It is configured.
- control unit performs dimming by controlling the length of the on-time of the PWM control while keeping the ratio of the on-time of the PWM control constant for each of the light sources having different emission colors.
- the emission color can be adjusted without changing the current supplied to the LED.
- FIG. 1 is an external view of a lighting device according to Embodiment 1.
- FIG. FIG. 3 is an exploded perspective view of a main part of the lighting device according to the first embodiment.
- FIG. 3 is a cross-sectional view of the lighting device according to the first embodiment. It is a top view which shows the structural example of the light emission surface of a light source module.
- FIG. 6 is a cross-sectional view of a main part of a light transmitting part according to a second embodiment. 6 is a schematic diagram illustrating an installation example of a lighting device according to Embodiment 3.
- FIG. It is sectional drawing of the illuminating device of Embodiment 4.
- FIG. 10 is a plan view illustrating a structure example of a light emitting surface of a light source module according to a fourth embodiment.
- FIG. 10 is a block diagram illustrating a configuration of a power supply unit according to a fourth embodiment. It is explanatory drawing which shows an example of the signal received with a remote control light-receiving part. It is explanatory drawing which shows an example of the signal received with a remote control light-receiving part. It is explanatory drawing which shows the relationship between a PWM frequency and the reach
- FIG. 10 is a plan view showing a structural example of a light emitting surface of a light source module according to a fifth embodiment. It is principal part sectional drawing which shows an example of arrangement
- FIG. 10 is a plan view showing a structural example of a light emitting surface of a light source module according to a fifth embodiment. It is principal part sectional drawing which shows an example of arrangement
- FIG. 1 is an external view of the illumination device 100 according to the first embodiment
- FIG. 2 is an exploded perspective view of a main part of the illumination device 100 according to the first embodiment
- FIG. 3 is a cross-sectional view of the illumination device 100 according to the first embodiment.
- the lighting device 100 is an LED bulb having a bulb type such as 40 W, 60 W, etc., and as a power supply connection portion that fits into an external socket and is electrically connected to a commercial power source in appearance.
- the base 10, the heat radiating portion 13, the coupling body 11 that connects the base 10 and the heat radiating portion 13, the hollow, substantially hemispherical translucent portion 50, and the LED module to be described later are placed and thermally connected to the heat radiating portion 13.
- the disc-shaped heat sink 20 is provided.
- a light source module 40 in which an LED module 42 is mounted on the surface of a substrate 41 is attached to the heat radiating plate 20 with screws 21. Between the light source module 40 and the heat radiating plate 20, heat generated in the light source module 40 is radiated from the heat radiating plate 20 and the heat radiating unit by applying a heat conductive sheet or a highly heat conductive resin in order to improve the heat conduction efficiency. The heat can be radiated to the outside through 13.
- the heat dissipating part 13 is made of, for example, a lightweight and highly heat conductive metal such as aluminum and has a substantially cylindrical shape.
- the heat dissipating part 13 has a plurality of heat dissipating grooves on the outer peripheral surface of the cylinder, and heat transmitted from the light source module 40 to the heat dissipating part 13 is dissipated from the outer peripheral surface to the outside air using the heat dissipating grooves.
- a waterproof packing 19 made of synthetic rubber is provided between the heat radiating portion 13 and the heat radiating plate 20 so that moisture does not enter the inside.
- the heat radiating portion 13 has a cavity formed therein, and a power supply portion for supplying required power (voltage, current) to the LED module 42 of the light source module 40 via the wiring 22 inside the heat radiating portion 13. 30 and an accommodating portion 15 for accommodating the power source portion 30 are arranged. Further, a power line 17 for supplying commercial power to the power supply unit 30 is provided between the power supply unit 30 and the base 10.
- a waterproof ring 12 made of synthetic rubber is provided between the heat radiating portion 13 and the connecting body 11 so that moisture does not enter the inside.
- the heat radiating portion 13 and the connecting body 11 are fixed by screws 14. Yes.
- synthetic resin 25 for example, polyurethane resin.
- the synthetic resin 25 preferably has high electrical insulation, low water permeability, and flame retardancy.
- the synthetic resin 25 is filled in the heat radiating portion 13 in a state where the electrical wiring inside the heat radiating portion 13 is finished and the heat radiating portion 13 and the base 10 are mechanically joined.
- the synthetic resin 25 is in a liquid state when filled. After filling with the synthetic resin 25, it is cured at a required temperature.
- the cured synthetic resin 25 adheres to the inner surface of the base 10 and also to the inner surface of the heat radiating portion 13. Thereby, it is possible to more reliably prevent moisture from entering from the joint portion of the base 10.
- the synthetic resin 25 has high electrical insulation, it is possible to reliably prevent the heat dissipation part 13 and the charging part of the power supply part 30 from being broken down due to dielectric breakdown. Further, since the synthetic resin 25 has a high thermal conductivity, the heat generated in the power supply unit 30 is dissipated not only from the heat radiating unit 13 but also from the base 10 thermally connected through the synthetic resin 25. Thus, the temperature rise of the power supply unit 30 can be suppressed, and the reliability of the electrical components used in the power supply unit 30 can be improved.
- a reflection plate 23 is attached to the light emitting surface side of the light source module 40 with screws 21.
- the reflection plate 23 is provided with an insertion hole having a dimension substantially the same as the dimension of the LED module 42 at a position corresponding to the position where the LED module 42 is disposed, and the LED module 42 is inserted into the insertion hole. It is supposed to be.
- the reflecting plate 23 is not essential and can be omitted.
- the translucent part 50 is made of milky white glass, and is fixed to the heat sink 20 with an adhesive.
- the translucent part 50 is not limited to glass, Milky white polycarbonate resin etc. can also be used.
- the translucent part 50 when it is a product made from polycarbonate resin, it can be screwed and locked to the heat sink 20 by cutting a screw.
- a light diffusing member 50 a for diffusing light from the LED module 42 (light source module 40) is added to the light transmitting part 50.
- the light diffusing member 50a has, for example, a crystal structure, and its optical properties may be, for example, those having a large refractive index, a small light absorption ability, and a high light scattering ability.
- a pigment having a crystal structure such as a phosphor can be added.
- the addition ratio of the light diffusing member 50a may be about several percent, for example.
- 3Ca 3 (PO 4 ) 2 Ca (F, Cl) 2 SbMn can be used as the phosphor.
- the light emitted from the LED module 42 passes through the light transmitting part 50 even when the light directivity of the LED module 42 is narrow. Therefore, the light distribution characteristic can be widened with a simple configuration.
- the light diffusing member 50a is a phosphor, a material that diffuses light and is excited by the light to emit light may be used. The light diffusing member 50a itself also emits light, so that the light distribution can be further expanded.
- the light transmitting part 50 forms a hollow, substantially hemispherical shell, it is possible to provide a bulb-type lighting device having a wide light distribution characteristic using the LED module 42 (light emitting diode).
- the light-transmitting part 50 and the heat sink 20 are joined at a position slightly smaller than the maximum diameter of the light-transmitting part 50 having a substantially hemispherical shell, the light emitted from the LED module 42 is transmitted through the light-transmitting part.
- the light distribution characteristic can be widened.
- FIG. 4 is a plan view showing a structural example of the light emitting surface of the light source module 40.
- a plurality of LED modules 42 are annularly arranged on a substantially circular substrate 41 made of an aluminum alloy or the like and separated in an appropriate length.
- six LED modules 42 are arranged.
- the number and arrangement of the LED modules 42 are not limited to the example of FIG. 4, and depend on the specifications and applications of the lighting device. Thus, the number can be changed as appropriate, and the arrangement can be appropriately made, for example, rectangular.
- the substrate 41 may be ceramic.
- the LED module 42 can be of a required emission color, for example, a white one.
- the emission color is not limited to white, and may be daylight white or a light bulb color.
- Embodiment 2 In the example of FIG. 3 described above, the light diffusing member 50a is added to the light transmitting portion 50.
- the present invention is not limited to this, and a light diffusing member may be applied.
- FIG. 5 is a cross-sectional view of a main part of the translucent part 51 of the second embodiment.
- the translucent part 51 is made of milky white glass, like the translucent part 50 of the first embodiment, and is fixed to the heat sink 20 with an adhesive.
- the translucent part 51 is not limited to glass, and milky white polycarbonate resin or the like can also be used.
- the translucent part 50 when it is a product made from polycarbonate resin, it can be screwed and locked to the heat sink 20 by cutting a screw.
- a light diffusing member 52 is applied to the inner side surface of the translucent part 50 (for example, baking application or electrostatic application).
- a light diffusing material 52 that is a phosphor is applied to the surface of the light transmitting portion 51, heated from room temperature to 100 ° C. over about 30 minutes, and further heated. Application is performed by heating at 150 ° C. for about 30 minutes.
- the light diffusing member 52 has, for example, a crystal structure, and its optical properties are, for example, high refractive index, low light absorption ability, and high light scattering ability. That's fine.
- the coating thickness of the light diffusing member 52 may be about 1 mm to 2 mm.
- the thickness of the light diffusing member 52 is too thick, light is difficult to transmit. Therefore, by setting the above range, light can be transmitted and diffused. As a result, when the LED module 42 having the surface emission property is used as the light source, the light emitted from the LED module 42 passes through the light transmitting portion 51 even when the directivity of light of the LED module 42 is narrow.
- the light diffusing member 52 diffuses the light distribution characteristics with a simple configuration.
- the coating thickness is not limited to the range of 1 mm to 2 mm, and can be, for example, about several tens of ⁇ m.
- the light diffusing member 52 is applied to the inner side surface of the light transmitting part 50, but is not limited to this, and can be applied to the outer side surface of the light transmitting part 50.
- the translucent part 50 may have a double structure, and the translucent part 50 may be configured with a layer made of the light diffusion member 52 interposed therebetween.
- the lighting device 100 has the structure of an LED bulb having a specific emission color, but the lighting device 100 may be provided with a dimming function.
- a dimmer (not shown) is interposed in the power line between the commercial power source and the lighting device 100, and the brightness of the illumination light of the lighting device 100 is adjusted by the dimmer. Can be configured.
- FIG. 6 is a schematic diagram illustrating an installation example of the lighting device 100 according to the third embodiment.
- the commercial power source is provided with a dimmer 200, and a plurality of lighting devices 100 are connected to the power line on the output side of the dimmer 200.
- the lighting device 100 can be replaced with an existing light bulb by replacing the lighting device 100 with a light bulb shape incorporating the LED module 42.
- the lighting device 100 installed over a wide range can be dimmed at once by turning a dimming knob (such as an operation switch) of the dimmer 200.
- the lighting device 100 can be dimmed by transmitting a signal to the dimmer 200 using a remote control for remote operation.
- the lighting device 100 may have a configuration in which the dimmer 200 is housed and housed in the housing portion 15 inside the heat radiating portion 13, similarly to the power supply unit 30.
- the dimmer 200 outputs a phase-controlled AC voltage to each lighting device 100 according to the dimming degree (for example, 100% to 25%).
- the phase angle of the input voltage is detected, and the LED module 42 is turned on with a light amount corresponding to the phase angle. For example, when the phase angle is small, the current flowing through the LED module 42 is increased, and the current flowing through the LED module 42 is decreased as the phase angle increases, thereby performing dimming according to the phase angle. be able to.
- the description of the same parts as in the first and second embodiments is omitted.
- the light can be accurately adjusted even with respect to the AC voltage that is phase-controlled as described above. It can also be used in combination with existing light bulbs.
- Embodiment 4 In the first embodiment, there is no dimming function. In the second embodiment, dimming is performed using an external dimmer. However, not only dimming but also dimming can be performed using a remote control for remote operation. A configuration having a color (adjusting the emission color to a desired color) function may be employed.
- FIG. 7 is a cross-sectional view of the illumination device 100 of the fourth embodiment
- FIG. 8 is a plan view showing an example of the structure of the light emitting surface of the light source module 40 of the fourth embodiment.
- LED modules 42 and 43 having different emission colors
- a remote control light receiving unit 45 that receives a signal from a remote terminal such as a remote control, and the like are provided. Details of the fourth embodiment will be described below.
- the light source module 40 includes a plurality of LED modules 42 and 43 having different emission colors, which are alternately separated in appropriate lengths on a substantially circular substrate 41 made of an aluminum alloy or the like. It is. In the example of FIG. 8, three LED modules 42 and 43 are used, but the number and arrangement of the LED modules 42 and 43 are not limited to the example of FIG. Depending on the case, it is possible to appropriately change the number or make the arrangement substantially rectangular.
- the substrate 41 may be ceramic.
- the LED module 42 can emit white light, for example, and the LED module 43 can emit light bulb color.
- the emission color is not limited to these, and may be other colors such as red, green, and blue.
- a remote control light receiving unit 45 is disposed at the center of the substantially circular substrate 41. As shown in FIG. 8, in the light bulb-type lighting device 100, the portion that can be visually recognized in a state of being attached to a lighting fixture or the like is only the translucent portion 50. For example, in order for a user to perform a remote operation with a remote controller, the remote controller light receiving unit 45 needs to be provided in an area that is visually recognized as the translucent unit 50. Then, by providing the LED modules 42 and 43 around the remote control light receiving unit 45 so as to surround the remote control light receiving unit 45, the lighting device 100 can be reduced in size.
- FIG. 9 is a block diagram illustrating a configuration of the power supply unit 30 according to the fourth embodiment.
- the power supply unit 30 requires a noise filter circuit 31 for removing noise intruding from a commercial power supply, etc., a rectifier circuit 32 that rectifies an AC voltage and converts it into a DC voltage, and a DC voltage output from the rectifier circuit 32
- a DC / DC converter 33 for converting the direct current voltage into a direct current voltage
- a PWM control circuit 34 for controlling the current supplied to the LED modules 42 and 43 by performing pulse width modulation on the direct current voltage output from the DC / DC converter 33
- a control microcomputer 35 that controls the power supply unit 30, a current-voltage detection circuit 36 that detects a current flowing through the LED module 42 and an applied voltage, and a current voltage that detects a current flowing through the LED module 43 and an applied voltage
- a detection circuit 37 and the like are provided.
- the remote control light receiving unit 45 receives infrared rays from an infrared LED incorporated in a remote control (not shown) operated by the user, extracts a signal transmitted from the remote control, and outputs the extracted signal to the control microcomputer 35. .
- the signal transmitted from the remote controller is, for example, turning on and off the light source, dimming (for example, 70%, 50%, 30%, etc.), and toning (for example, adjusting the emission color stepwise from white to light bulb color) Is to do.
- FIG. 10A and 10B are explanatory diagrams showing an example of signals received by the remote control light receiving unit 45.
- FIG. FIG. 10A shows a signal transmitted from the remote controller on the signal transmission side, that is, a signal received by the remote controller light receiving unit 45
- FIG. 10B shows an output state of the remote controller light receiving unit 45.
- the signal transmitted from the remote controller has a carrier frequency of 38 kHz and a period of about 26 ⁇ s.
- the carrier frequency is not limited to 38 kHz, and may be another frequency, for example, 40 kHz.
- the remote control light receiving unit 45 On the remote control side, when the blinking of the infrared LED is repeated at a period of 26 ⁇ s for a predetermined time T, the remote control light receiving unit 45 outputs a high level (H) electric signal. On the remote control side, when the infrared LED is turned off for a predetermined time T, the remote control light receiving unit 45 outputs a low level (L) electric signal.
- H high level
- L low level
- the control microcomputer 35 outputs, to the DC / DC converter 33 and the PWM control circuit 34, control signals for turning on, off, dimming, and adjusting the light source based on the signal output from the remote control light receiving unit 45. .
- control microcomputer 35 generates a control signal for maintaining the light source at a predetermined light intensity based on the detection result output from the current / voltage detection circuits 36 and 37, and the DC / DC converter 33 and the PWM control circuit 34. Output to.
- the PWM control circuit 34 acquires the control signal output from the control microcomputer 35 and performs PWM control on the LED modules 42 and 43 in accordance with the acquired control signal.
- the structure which provides a PWM control circuit separately with respect to each LED module 42 and 43 may be sufficient.
- the PWM control circuit 34 performs PWM control using an arbitrary PWM frequency within a range of 300 Hz to 3 kHz, for example, which is a frequency band in which interference is unlikely to occur with a carrier frequency (for example, 38 kHz) of a signal transmitted by the remote controller using infrared rays. It can be carried out.
- a carrier frequency for example, 38 kHz
- FIG. 11 is an explanatory diagram showing the relationship between the PWM frequency and the reach of the signal from the remote controller.
- the horizontal axis indicates the PWM frequency
- the vertical axis indicates the reach distance of the signal from the remote controller.
- the reach distance is the distance between the remote controller and the remote controller light receiving unit 45 when the signal from the remote controller can be reliably received, and is preferably 7 m or more in actual use.
- the reachable distance can be secured at 7 m or more. Further, if the PWM frequency is 200 kHz or more, the reach distance can be ensured to be 7 m or more.
- the PMW frequency be in the range of 300 Hz to 3 kHz.
- the PWM frequency is set to 300 Hz to 3 kHz.
- the remote control light receiving unit 45 is provided so as to receive an infrared signal for remote operation from the side from which the light is emitted from the LED modules 42 and 43, malfunction of remote operation using infrared rays is prevented. Can be prevented.
- the lighting device can be reduced in size, and the signal for remote operation is turned on by the PWM control. It is possible to suppress the influence of the operation and to prevent the malfunction of the remote operation.
- the PWM frequency can be set to 200 kHz or higher, there is a possibility that heat generated by a switching element such as an FET used in the PWM control circuit 34 may increase, and the above-described range of 300 Hz to 3 kHz is more preferable.
- FIG. 12 is an explanatory diagram illustrating an example of toning of the illumination device 100 according to the fourth embodiment.
- the horizontal axis indicates time
- the vertical axis indicates the current flowing through each LED module 42, 43.
- the LED module 42 is a white LED module
- the LED module 43 is a light bulb color LED module.
- the white LED module The (LED module 42) is turned on at a duty ratio of 100%, and the light bulb color LED module (LED module 43) is turned off.
- the control microcomputer 35 accepts an operation to change the illumination color (the emission color of the entire illumination device 100) from white to a light bulb color side through the remote control light receiving unit 45, state A2 in FIG. As shown, the white LED module (LED module 42) is lit at a duty ratio of 75%, and the light bulb color LED module (LED module 43) is lit at a duty ratio of 25%.
- the duty ratio is a ratio of a period during which a current flows through the LED module in one cycle.
- the illumination color is an intermediate color between white and white.
- the control microcomputer 35 accepts an operation to change the illumination color (the emission color of the illumination device 100 as a whole) to neutral white via the remote control light receiving unit 45, as shown in the state A3 in FIG.
- the white LED module (LED module 42) is lit at a duty ratio of 50%
- the light bulb color LED module (LED module 43) is lit at a duty ratio of 50%.
- the illumination color is neutral white.
- the control microcomputer 35 receives an operation via the remote control light-receiving unit 45 to change the illumination color (the emission color of the entire illumination device 100) from the neutral white to the light bulb color side, the state shown in FIG. As shown in A4, the white LED module (LED module 42) is lit at a duty ratio of 25%, and the light bulb color LED module (LED module 43) is lit at a duty ratio of 75%. In this state, the illumination color becomes an intermediate color between the daylight white color and the light bulb color.
- the control microcomputer 35 receives an operation for changing the illumination color (the emission color of the entire illumination device 100) to the light bulb color via the remote control light receiving unit 45, as shown in a state A5 in FIG.
- the white LED module (LED module 42) is turned off, and the light bulb color LED module (LED module 43) is turned on with a duty ratio of 100%. In this state, the illumination color becomes a light bulb color.
- the control microcomputer 35 performs control so that the LED modules 42 and 43 having different emission colors do not light up at the same time (lighting time, that is, PWM control on-time does not overlap). That is, when the white LED module is on, the light bulb color LED module is turned off, and when the light bulb color LED module is on, the white LED module is turned off. Thereby, the light emission color can be adjusted without changing the current supplied to the LED modules 42 and 43 to a predetermined value (current value supplied to the LED module of one light emission color) or more.
- the lighting color can be changed to a desired emission color (color temperature) in the range of white, daylight, light bulb, etc. by changing the proportion of lighting time of each color LED module.
- a desired emission color color temperature
- An optimal lighting environment can be realized according to the scene and user's preference.
- FIG. 13 is an explanatory diagram illustrating an example of light control of the illumination device 100 according to the fourth embodiment.
- the horizontal axis represents time
- the vertical axis represents the current flowing through each LED module 42, 43.
- the LED module 42 is a white LED module
- the LED module 43 is a light bulb color LED module.
- the control microcomputer 35 When the control microcomputer 35 receives an operation to set the brightness to all lamps (100% dimming) after setting the illumination color to, for example, neutral white through the remote control light receiving unit 45, the control microcomputer 35 in FIG. As shown in state B1, the white LED module (LED module 42) is lit at a duty ratio of 50%, and the light bulb color LED module (LED module 43) is lit at a duty ratio of 50%. In this state, since the LED module of any color is lit for one cycle, the dimming is 100%.
- the white LED module (LED module 42) is lit at a duty ratio of 35% as shown in state B2 of FIG.
- the LED module (LED module 43) is lit at a duty ratio of 35%. In this state, since the LED module of any color is lit and the period is 70% for one cycle, the dimming is 70%.
- the control microcomputer 35 When the control microcomputer 35 accepts an operation to further reduce the brightness, as shown in the state B3 of FIG. 13, the control microcomputer 35 lights the white LED module (LED module 42) with a duty ratio of 25% and also the light bulb color.
- the LED module (LED module 43) is lit at a duty ratio of 25%. In this state, the LED module of any color is lit for one period and the period is 50%, so that the light control is 50%. The same applies to other emission colors.
- control microcomputer 35 performs light control by controlling the length of the lighting time while keeping the ratio of the lighting times of the light sources having different emission colors constant. Thereby, toning and light control can be performed simultaneously, and a more optimal lighting environment can be realized according to the usage scene of the lighting device 100 and the user's preference.
- FIG. 14 is an explanatory diagram showing another example of light control of the lighting device 100 according to the fourth embodiment.
- the horizontal axis represents time
- the vertical axis represents the current flowing through the LED modules 42 and 43.
- the LED module 42 is a white LED module
- the LED module 43 is a light bulb color LED module.
- the control microcomputer 35 When the control microcomputer 35 accepts an operation for setting the brightness to all lamps (100% light control) after setting the illumination color to, for example, daylight white via the remote control light receiving unit 45, the control microcomputer 35 in FIG. As shown in the state C1, a predetermined value of current is passed through the white LED module (LED module 42) and the light bulb color LED module. In this state, dimming is 100%.
- the duty ratio is 50%, but is not limited to this.
- the control microcomputer 35 When the control microcomputer 35 receives an operation to slightly reduce the brightness, the control microcomputer 35 causes the white LED module (LED module 42) and the light bulb color LED module (LED module 43) to flow as shown in the state C2 of FIG.
- the current is made smaller than a predetermined value. In this state, since the current flowing through each LED module is 75% of the predetermined value, the dimming is 75%.
- control microcomputer 35 When the control microcomputer 35 receives an operation to further reduce the brightness, as shown in a state C3 in FIG. 14, the control microcomputer 35 flows the white LED module (LED module 42) and the light bulb color LED module (LED module 43). Reduce the current further. In this state, since the current flowing through each LED module is 50% of the predetermined value, dimming is 50%. The same applies to other emission colors.
- control microcomputer 35 performs light control by controlling the amount of current supplied during the lighting time while keeping the length of the lighting time of the LED modules 42 and 43 having different emission colors constant. Thereby, toning and light control can be performed simultaneously, and a more optimal lighting environment can be realized according to the usage scene of the lighting device and the user's preference.
- the remote control light receiving unit 45 is provided on the surface of the substrate 41.
- the influence of heat generated in the LED modules 42 and 43 being transmitted to the remote control light receiving unit 45 through the substrate 41 It can be set as the structure which prevents.
- FIG. 15 is a plan view showing an example of the structure of the light emitting surface of the light source module 40 of the fifth embodiment
- FIG. 16 is a cross-sectional view of the main part showing an example of the arrangement of the remote control light receiving section 45 of the fifth embodiment.
- the substrate 41 of the light source module 40 is provided with a circular hole 44 in the center, and a plurality of LED modules 42 and 43 having different emission colors are alternately and annularly arranged around the hole 44 on the substrate 41. Long-separated. Further, the diameter of the hole 44 is larger than the dimension of the remote control light receiving unit 45.
- the remote control light receiving unit 45 is arranged in the center of the hole 44 so as to be isolated from the substrate 41.
- the remote control light receiving unit 45 is mounted on the heat radiating plate 20 and provided on the substrate 46 separated from the substrate 41.
- the remote control light receiving unit 45 that receives an external signal is thermally separated from the LED modules 42 and 43 and physically separated so that the heat from the LED modules 42 and 43 is received by the remote control.
- the portion 45 can be prevented from conducting heat. Further, even when the remote control light receiving unit 45 and the LED modules 42 and 43 are physically connected, heat is conducted from the LED modules 42 and 43 to the remote control light receiving unit 45 through the heat sink 20 between them. It is possible to prevent heat from being transmitted to the remote control light receiving unit 45 by being radiated on the way. Thereby, deterioration or failure of the remote control light receiving unit 45 can be prevented.
- the remote control light receiving unit 45 is provided separately from the substrate 41 on which the LED modules 42 and 43 are mounted, heat generated in the LED modules 42 and 43 is transferred to the remote control light receiving unit 45 through the substrate 41. It becomes difficult to conduct, and deterioration or failure of the remote control light receiving unit 45 can be prevented.
- FIG. 17 is a cross-sectional view of the main part showing another example of the arrangement of the remote control light receiving unit 45 of the fifth embodiment.
- a plurality of LED modules 42 and 43 are alternately separated on one surface of the substrate 41 and mounted in an annular shape, and the substrate 41 is approximately at the center of the region surrounded by the LED modules 42 and 43.
- An opening 48 is provided, and a remote control light receiving unit 45 provided on a separate substrate 46 physically separated from the substrate 41 is provided in the vicinity of the opening 48.
- the substrate 46 is supported by an appropriate support material.
- the remote control light receiving unit 45 can be provided at substantially the center of the area where the LED modules 42 and 43 are disposed without being physically connected to the substrate 41 on which the LED modules 42 and 43 are mounted.
- the remote control light receiving unit 45 can be provided on the light emitting surface 100, and the apparatus can be downsized.
- the remote control light receiving unit 45 When the remote control light receiving unit 45 is provided in the vicinity of the opening 48, the remote control light receiving unit 45 can be provided at a position surrounded by the inner peripheral surface of the substrate 41 and the heat sink 20, or the plate surface of the substrate 41 or the heat sink 20. It can also be provided at a position separated from the opening 48 toward the power supply unit 30 along the direction intersecting the direction. Thereby, the remote control light-receiving part 45 can be separated further from the LED modules 42 and 43 and the board
- FIG. 18 is a cross-sectional view of the main part showing another example of the arrangement of the remote control light receiving unit 45 of the fifth embodiment.
- a light guide member 47 for guiding infrared light from the remote control to the remote control light receiving unit 45 is provided.
- the light guide member 47 is made of glass or synthetic resin and has a substantially cylindrical shape.
- One side has a curved surface (spherical surface) that protrudes outward so as to receive light from the remote control, and the other side.
- the light guide member 47 (the end surface on the remote control light receiving unit 45 side) is not limited to a concave curved surface, and may be planar.
- the emission color can be adjusted without changing the current supplied to the LED to a predetermined value or more.
- the light bulb type lighting device has been described.
- the shape of the lighting device is not limited to the light bulb type, and may be another shape.
- the illuminating device provided with the LED module as the light source has been described, the light source is not limited to the LED module, and other light sources such as an organic EL may be used as long as the light emitting element has surface light emission.
Landscapes
- Circuit Arrangement For Electric Light Sources In General (AREA)
Abstract
光源に供給する電流を変動させることなく発光色を調整することができる照明装置を提供する。 制御用マイクロコンピュータ35は、発光色の異なるLEDモジュール42、43同士が同時に点灯しないように制御する。すなわち、白色のLEDモジュール42が点灯している時間は、電球色のLEDモジュール43を消灯させ、電球色のLEDモジュール43が点灯している時間は白色のLEDモジュール42を消灯させる。これにより、LEDモジュール42、43に供給する電流を所定値以上に変動させることなく発光色を調整することができる。
Description
本発明は、発光ダイオードなどの光源を有する照明装置に関し、特に電球型の形状をなした照明装置に関する。
近年、発光ダイオード(LED)を光源とする照明装置が様々な用途向けに開発されており、白熱電球や蛍光灯等の従来の光源を用いた照明装置に対する置換えが行われつつある。発光ダイオードを光源とする照明装置では、光源の点灯状態を調整するためにPWM制御方式などのスイッチング回路を採用しているものが多い。また、光源を所望の照明色に調整するための機能を備えた照明装置が開発されている。
例えば、車両室内のループ部に設置される照明装置であって、お互いに発光色の異なるLEDと各LEDの点灯状態を制御する制御回路とを備え、それぞれのLEDから放出される光が混色されて所望の照明色を得ることができる照明装置が開示されている(特許文献1参照)。
しかしながら、特許文献1の照明装置にあっては、所望の照明色を得ることができるものの、各LEDに流れる電流については、考慮されておらず、制御回路で混色制御を行う過程において、LEDの点灯状態によってはLEDに流れる電流の合計が変動するため、電流変動に対応すべく電流容量を大きくする必要があった。
本発明は斯かる事情に鑑みてなされたものであり、光源に供給する電流を変動させることなく発光色を調整することができる照明装置を提供することを目的とする。
本発明に係る照明装置は、発光色の異なる光源夫々に対して点灯状態を制御する制御部を備える照明装置において、前記制御部は、PWM制御回路を備え、前記発光色の異なる光源夫々のPWM制御のオン時間が重複しないように制御すべくなしてあることを特徴とする。
本発明にあっては、制御部は、PWM制御回路を備え、発光色の異なる光源夫々のPWM制御のオン時間が重複しないように制御する。例えば、光源として白色LEDと電球色LEDとを用いる場合、各LEDのPWM制御のオン時間の割合を変更して照明色を白色、昼光色、電球色と調整して調色を行うときに、白色LEDが点灯している時間は電球色LEDを消灯させ、電球色LEDが点灯している時間は白色LEDを消灯させる。これにより、LEDに供給する電流を所定値以上に変動させることなく発光色を調整することができる。
本発明に係る照明装置は、前記制御部は、前記発光色の異なる光源夫々のPWM制御のオン時間の長短を制御して調色を行うように構成してあることを特徴とする。
本発明にあっては、制御部は、発光色の異なる光源夫々のPWM制御のオン時間の長短を制御して調色を行う。例えば、光源として白色LEDと電球色LEDとを用いる場合、各LEDのPWM制御のオン時間の割合を変更して照明色を白色、昼光色、電球色の範囲で所望の発光色に変えることができ、照明装置の利用シーンやユーザの好みに合わせて最適な照明環境を実現することができる。
本発明に係る照明装置は、前記光源に電流を供給する電流供給回路を備え、前記制御部は、前記発光色の異なる光源夫々のPWM制御のオン時間の長さを一定にしつつ該PWM制御のオン時間に供給する電流の多少を制御して調光を行うように構成してあることを特徴とする。
本発明にあっては、光源に電流を供給する電流供給回路を備え、制御部は、発光色の異なる光源夫々のPWM制御のオン時間の長さを一定にしつつPWM制御のオン時間に供給する電流の多少を制御して調光を行う。これにより、調色と調光を同時に行うことができ、照明装置の利用シーンやユーザの好みに合わせて一層最適な照明環境を実現することができる。
本発明に係る照明装置は、前記制御部は、前記発光色の異なる光源夫々のPWM制御のオン時間の比率を一定にしつつ該PWM制御のオン時間の長短を制御して調光を行うように構成してあることを特徴とする。
本発明にあっては、制御部は、発光色の異なる光源夫々のPWM制御のオン時間の比率を一定にしつつPWM制御のオン時間の長短を制御して調光を行う。これにより、調色と調光を同時に行うことができ、照明装置の利用シーンやユーザの好みに合わせて一層最適な照明環境を実現することができる。
本発明によれば、LEDに供給する電流を変動させることなく発光色を調整することができる。
実施の形態1
以下、本発明をその実施の形態を示す図面に基づいて説明する。図1は実施の形態1の照明装置100の外観図であり、図2は実施の形態1の照明装置100の要部分解斜視図であり、図3は実施の形態1の照明装置100の断面図である。図1に示すように、照明装置100は、40W、60Wなどの電球型をなすLED電球であり、外観視において、外部のソケットに嵌めて商用電源に電気的に接続するための電源接続部としての口金10、放熱部13、口金10と放熱部13とを連結する連結体11、中空の略半球殻の透光部50、後述するLEDモジュールを載置し、放熱部13と熱的に接続された円板状の放熱板20などを備えている。
以下、本発明をその実施の形態を示す図面に基づいて説明する。図1は実施の形態1の照明装置100の外観図であり、図2は実施の形態1の照明装置100の要部分解斜視図であり、図3は実施の形態1の照明装置100の断面図である。図1に示すように、照明装置100は、40W、60Wなどの電球型をなすLED電球であり、外観視において、外部のソケットに嵌めて商用電源に電気的に接続するための電源接続部としての口金10、放熱部13、口金10と放熱部13とを連結する連結体11、中空の略半球殻の透光部50、後述するLEDモジュールを載置し、放熱部13と熱的に接続された円板状の放熱板20などを備えている。
図2及び図3に示すように、放熱板20には、基板41の表面にLEDモジュール42が実装された光源モジュール40をねじ21で取り付けてある。光源モジュール40と放熱板20との間は、熱伝導効率を向上させるために熱伝導シートや高熱伝導性の樹脂を塗布することにより、光源モジュール40で発生した熱を放熱板20、及び放熱部13を介して外部へ放熱することができる。
放熱部13は、例えば、アルミニウム等の軽量かつ熱伝導性の高い金属からなり、略円筒形状をしている。また、放熱部13は、円筒の外周面に複数の放熱溝を有しており、光源モジュール40から放熱部13に伝達される熱は放熱溝を利用して外周面から外部の空気に放熱される。なお、放熱部13と放熱板20との間には、水分が内部に侵入しないように合成ゴム製の防水用パッキン19を設けている。
放熱部13は、内部に空洞が形成されており、放熱部13の内部には、配線22を介して光源モジュール40のLEDモジュール42へ所要の電力(電圧、電流)を供給するための電源部30、電源部30を収容する収容部15などを配設してある。また、電源部30と口金10との間には、商用電源を電源部30に供給するための電源線17を設けている。
放熱部13と連結体11との間には、水分が内部に侵入しないように合成ゴム製の防水用リング材12を設けてあり、放熱部13と連結体11は、ねじ14により固定されている。
また、図3に示すように、収容部15に収容された電源部30の周囲には、電源部30で発生した熱を放熱部13及び口金10へ効率よく熱伝導させるために、高伝導率の合成樹脂25(例えば、ポリウレタン樹脂など)を充填してある。また、合成樹脂25は、高い電気絶縁性、低い透水性、難燃性を有するものが好ましい。
合成樹脂25は、放熱部13内部の電気的配線が終了し、放熱部13と口金10が機械的に接合された状態で、放熱部13の内部に充填する。なお、合成樹脂25は、充填時には液体状をなす。合成樹脂25を充填した後、所要の温度で硬化させる。硬化後の合成樹脂25は、口金10の内面と接着するとともに、放熱部13の内面とも接着する。これにより、口金10の接合部分からの水分の浸入を一層確実に防止することができる。
また、合成樹脂25は、高い電気的絶縁性を有しているので、放熱部13と電源部30の充電部とが絶縁破壊して短絡することを確実に防止することができる。また、合成樹脂25は、高熱伝導率を有しているので、電源部30で発生した熱は、放熱部13のみならず、合成樹脂25を介して熱的に接続された口金10からも放熱されるので、電源部30の温度上昇を抑制して、電源部30で使用されている電気部品の信頼性を向上させることができる。
光源モジュール40の発光面側には、ねじ21で反射板23を取り付けてある。反射板23は、LEDモジュール42が配置された位置に対応する箇所に、LEDモジュール42の寸法と略同寸法の挿通穴を設けてあり、該挿通穴にLEDモジュール42を挿通させた状態で取り付けられるようになっている。なお、反射板23は必須ではなく省略することもできる。
透光部50は、乳白色のガラス製であって放熱板20に接着剤により固定されている。なお、透光部50は、ガラス製に限定されるものではなく、乳白色のポリカーボネート樹脂などを用いることもできる。なお、透光部50がポリカーボネート樹脂製である場合には、ネジを切ることにより、放熱板20に螺合係止することができる。
透光部50には、LEDモジュール42(光源モジュール40)からの光を拡散させるための光拡散部材50aを添加してある。光拡散部材50aは、例えば、結晶構造を有し、その光学的性質は、例えば、屈折率が大きく、光吸収能が小さく、光散乱能が高いものであればよい。例えば、蛍光体などの結晶構造を有する顔料を添加することができる。また、光拡散部材50aの添加比率は、例えば、数%程度でよい。蛍光体は、例えば、3Ca3 (PO4 )2 Ca(F、Cl)2 SbMnを用いることができる。
これにより、光源として面発光の性質を有するLEDモジュール42を用いる場合に、LEDモジュール42の光の指向性が狭いときでも、LEDモジュール42から発せられた光は、透光部50を透過する際に光拡散部材50aで拡散されるので、簡便な構成で配光特性を広くすることができる。なお、光拡散部材50aが蛍光体である場合には、光を拡散させるとともに当該光で励起されて発光する材料でもよい。光拡散部材50a自体も発光することにより、配光をより広げることが可能となる。
また、透光部50は、中空の略半球殻をなすので、LEDモジュール42(発光ダイオード)を使用した配光特性の広い電球型の照明装置を提供することができる。
特に、略半球殻の透光部50の最大径よりも若干縮径した箇所で、透光部50と放熱板20とが接合されているので、LEDモジュール42から発せられた光が、透光部50の表面のうち、透光部50と放熱板20との接合箇所から最大径までの部分から透過することにより、放熱部13から口金10の方へ向かう方向に沿って放射されるので、さらに配光特性を広くすることができる。
図4は光源モジュール40の発光面の構造例を示す平面図である。光源モジュール40は、アルミニウム合金などからなる略円形の基板41上に複数のLEDモジュール42を環状に適長隔離して配設してある。図4の例では、6個のLEDモジュール42を配設した構成であるが、LEDモジュール42の数や配置は、図4の例に限定されるものではなく、照明装置の仕様や用途に応じて、個数を変更することや、配置を略矩形状にするなど適宜行うことができる。なお、基板41は、セラミックなどであってもよい。
LEDモジュール42は、所要の発光色のものを使用することができ、例えば、白色のものを用いることができる。なお、発光色は、白色に限定されるものではなく、昼白色や電球色であってもよい。
実施の形態2
上述の図3の例では、透光部50に光拡散部材50aを添加する構成であったが、これに限定されるものではなく、光拡散部材を塗布する構成とすることもできる。
上述の図3の例では、透光部50に光拡散部材50aを添加する構成であったが、これに限定されるものではなく、光拡散部材を塗布する構成とすることもできる。
図5は実施の形態2の透光部51の要部断面図である。透光部51は、実施の形態1の透光部50と同様に、乳白色のガラス製であって放熱板20に接着剤により固定されている。なお、透光部51は、ガラス製に限定されるものではなく、乳白色のポリカーボネート樹脂などを用いることもできる。なお、透光部50がポリカーボネート樹脂製である場合には、ネジを切ることにより、放熱板20に螺合係止することができる。
透光部50の内側面には、光拡散部材52を塗布(例えば、焼付け塗布又は静電塗布など)してある。なお、焼付け塗布する場合には、例えば、蛍光体である光拡散材52を透光部51の表面に塗布し、常温から100℃まで約30分間かけて温度を上昇させて加熱した後に、さらに150℃で約30分間加熱することによって塗布がなされる。また、光拡散部材52は、実施の形態1と同様、例えば、結晶構造を有し、その光学的性質は、例えば、屈折率が大きく、光吸収能が小さく、光散乱能が高いものであればよい。光拡散部材52の塗布厚みは1mm~2mm程度でよい。光拡散部材52の厚みが厚すぎると光が透過し難くなるので、上記範囲とすることにより、光を透過させるとともに、拡散も可能となる。これにより、光源として面発光の性質を有するLEDモジュール42を用いる場合に、LEDモジュール42の光の指向性が狭いときでも、LEDモジュール42から発せられた光は、透光部51を透過する際に光拡散部材52で拡散されるので、簡便な構成で配光特性を広くすることができる。なお、光拡散部材52の材料や組成によっては、塗布厚みは、1mm~2mmの範囲に限定されるものではなく、例えば、数10μm程度にすることもできる。
なお、図5の例では、光拡散部材52を透光部50の内側面に塗布しているが、これに限定されるものではなく、透光部50の外側面に塗布することもできる。あるいは、透光部50を二重構造とし、光拡散部材52よりなる層を間に挟んで透光部50を構成することもできる。
実施の形態3
上述の実施の形態1、2においては、照明装置100は、特定の発光色を有するLED電球の構造を有するものであったが、照明装置100に調光機能を設けることもできる。実施の形態3においては、商用電源と照明装置100との間の電源線に調光器(不図示)を介装し、該調光器により照明装置100の照明光の明るさを調整するように構成することができる。
上述の実施の形態1、2においては、照明装置100は、特定の発光色を有するLED電球の構造を有するものであったが、照明装置100に調光機能を設けることもできる。実施の形態3においては、商用電源と照明装置100との間の電源線に調光器(不図示)を介装し、該調光器により照明装置100の照明光の明るさを調整するように構成することができる。
図6は実施の形態3の照明装置100の設置例を示す模式図である。商用電源には調光器200を設けてあり、調光器200の出力側の電源線には、複数の照明装置100を接続してある。上述したように、照明装置100は、LEDモジュール42を内蔵した電球形状とすることにより、既存の電球に代えて、照明装置100を置き換えることが可能である。図6において、調光器200の調光用のつまみ(操作スイッチなど)を回すことにより、広範囲に設置された照明装置100を一括して調光することができる。また、遠隔操作用のリモコンを用いて、調光器200に対して信号を送信して照明装置100を調光させることもできる。なお、照明装置100は、電源部30と同様に放熱部13内部の収容部15に調光器200を収容して内蔵する構成としてもよい。
次に、実施の形態3における調光方式について説明する。調光器200は、調光度合い(例えば、100%~25%など)に応じて、位相制御された交流電圧を各照明装置100へ出力する。各照明装置100では、入力電圧の位相角を検出し、位相角に応じた光量でLEDモジュール42を点灯させる。例えば、位相角が小さい場合には、LEDモジュール42に流す電流を増加させ、位相角が大きくなるに応じて、LEDモジュール42に流す電流を減少させることで、位相角に応じた調光を行うことができる。
なお、実施の形態1、2と同様の箇所(例えば、図1~図5で示す構成)については、説明を省略する。実施の形態4の照明装置100では、上述したように位相制御された交流電圧に対しても正確に調光することができるので、既存の位相制御による調光式の電球に置き換えることも、あるいは、既存の電球とともに併用して用いることもできる。
実施の形態4
実施の形態1では、調光機能はなく、実施の形態2では、外部の調光器を用いて調光する構成であったが、遠隔操作用のリモコンを用いて、調光のみならず調色(発光色を所望の色に調整すること)機能を備えた構成とすることもできる。
実施の形態1では、調光機能はなく、実施の形態2では、外部の調光器を用いて調光する構成であったが、遠隔操作用のリモコンを用いて、調光のみならず調色(発光色を所望の色に調整すること)機能を備えた構成とすることもできる。
図7は実施の形態4の照明装置100の断面図であり、図8は実施の形態4の光源モジュール40の発光面の構造例を示す平面図である。実施の形態1~3との相違点は、発光色の異なるLEDモジュール42、43、リモコン等の遠隔端末から信号を受信するリモコン受光部45などを備える点である。以下、実施の形態4の詳細について説明する。
図7及び図8に示すように、光源モジュール40は、アルミニウム合金などからなる略円形の基板41上に複数の発光色の異なるLEDモジュール42、43を交互に環状に適長隔離して配設してある。図8の例では、LEDモジュール42、43をそれぞれ3個用いる構成であるが、LEDモジュール42、43の数や配置は、図8の例に限定されるものではなく、照明装置の仕様や用途に応じて、個数を変更することや、配置を略矩形状にするなど適宜行うことができる。なお、基板41は、セラミックなどであってもよい。
LEDモジュール42は、例えば、白色の光を発光することができ、LEDモジュール43は、電球色の光を発光することができる。なお、発光色は、これらに限定されるものではなく、他の色、例えば、赤色、緑色、青色などであってもよい。
略円形状の基板41の中央には、リモコン受光部45を配設してある。図8に示すように、電球型の照明装置100では、照明器具等に取り付けられた状態で視認することができる部分は、ほぼ透光部50のみである。例えば、ユーザがリモコンで遠隔操作を行うためには、リモコン受光部45は透光部50として視認される領域内に設ける必要がある。そして、リモコン受光部45を囲むようにしてリモコン受光部45の周囲にLEDモジュール42、43を設けることにより、照明装置100を小型化することができる。
図9は実施の形態4の電源部30の構成を示すブロック図である。電源部30は、商用電源などから侵入してくるノイズを除去するためのノイズフィルタ回路31、交流電圧を整流して直流電圧に変換する整流回路32、整流回路32から出力された直流電圧を所要の直流電圧に変換するDC/DCコンバータ33、DC/DCコンバータ33から出力された直流電圧に対してパルス幅変調を行うことによりLEDモジュール42及び43に供給する電流を制御するPWM制御回路34、電源部30の制御を行う制御用マイクロコンピュータ35、LEDモジュール42に流れる電流や印加された電圧を検出する電流電圧検出回路36、並びにLEDモジュール43に流れる電流や印加された電圧を検出する電流電圧検出回路37などを備えている。
リモコン受光部45は、ユーザが操作するリモコン(不図示)に内蔵された赤外線LEDからの赤外線を受光し、リモコンから送信された信号を抽出し、抽出した信号を制御用マイクロコンピュータ35へ出力する。リモコンから送信される信号は、例えば、光源を点灯、消灯、調光(例えば、70%、50%、30%など)、調色(例えば、白色から電球色まで段階的に発光色を調整)するためのものである。
図10A及び図10Bはリモコン受光部45で受信する信号の一例を示す説明図である。図10Aは信号の送信側であるリモコンから送信される信号、すなわち、リモコン受光部45で受信される信号を示し、図10Bはリモコン受光部45の出力状態を示す。図10Aに示すように、リモコンから送信される信号はキャリア周波数が38kHzであり、周期は約26μsである。なお、キャリア周波数は、38kHzに限定されるものではなく他の周波数、例えば、40kHzなどでもよい。
リモコン側では、赤外線LEDの点滅を所定時間Tの間、周期26μsで繰り返した場合、リモコン受光部45は、ハイレベル(H)の電気信号を出力する。また、リモコン側では、所定時間Tの間、赤外線LEDを消灯した場合、リモコン受光部45は、ローレベル(L)の電気信号を出力する。
制御用マイクロコンピュータ35は、リモコン受光部45から出力された信号に基づいて、光源を点灯、消灯、調光、調色するための制御信号をDC/DCコンバータ33、PWM制御回路34へ出力する。
また、制御用マイクロコンピュータ35は、電流電圧検出回路36、37から出力された検出結果に基づいて、光源を所定の光量で点灯維持させるための制御信号をDC/DCコンバータ33、PWM制御回路34へ出力する。
PWM制御回路34は、制御用マイクロコンピュータ35から出力された制御信号を取得し、取得した制御信号に応じたPWM制御を各LEDモジュール42、43に対して行う。なお、各LEDモジュール42、43に対して、それぞれ個別にPWM制御回路を設ける構成でもよい。
PWM制御回路34は、リモコンが赤外線で送信する信号のキャリア周波数(例えば、38kHz)と混信が生じ難い周波数帯域である、例えば、300Hz~3kHzの範囲内の任意のPWM周波数を用いてPWM制御を行うことができる。以下、PWM周波数とリモコン受光部45で受光する信号のキャリア周波数との関係について説明する。
図11はPWM周波数とリモコンからの信号の到達距離との関係を示す説明図である。図11において、横軸はPWM周波数を示し、縦軸はリモコンからの信号の到達距離を示す。到達距離は、リモコンからの信号が確実に受信することができるときのリモコンとリモコン受光部45との距離であり、実使用上は、7m以上であることが望ましい。
図11からわかるように、PWM周波数が約3kHz以下であれば、到達距離は7m以上確保することができる。また、PWM周波数が200kHz以上であれば、到達距離は7m以上確保することができる。
しかし、PWM周波数を300Hz以下にすると光源のちらつきが視認されるようになる。従って、PMW周波数は、300Hz~3kHzの範囲内にすることが望ましい。このように、PWM周波数と遠隔操作用の信号の周波数(キャリア周波数)とを異なる帯域に分離することにより、遠隔操作用の信号がPWM制御による光源の点灯動作による影響を受けることを抑制し、遠隔操作の誤作動を防止することができる。特に、PWM周波数を300Hz~3kHzとすることにより、赤外線を用いた遠隔操作の誤動作を防止することができる。よって、リモコン受光部45を、前記LEDモジュール42、43から光が出射される側から遠隔操作のための赤外線の信号を受信するように設けてあっても、赤外線を用いた遠隔操作の誤動作を防止することができる。
また、リモコン受光部45を、環状に配置されたLEDモジュール42、43の略中央部に設けることにより、照明装置を小型化することができるとともに、遠隔操作用の信号がPWM制御による光源の点灯動作による影響を受けることを抑制し、遠隔操作の誤作動を防止することができる。
なお、PWM周波数を200kHz以上にすることもできるが、PWM制御回路34に使用されるFETなどのスイッチング素子の発熱が増加する可能性もあり、上述の300Hz~3kHzの範囲がより好ましい。
次に、実施の形態4の照明装置100の調色方法について説明する。図12は実施の形態4の照明装置100の調色の例を示す説明図である。図12において、横軸は時間を示し、縦軸は各LEDモジュール42、43に流れる電流を示す。LEDモジュール42は白色LEDモジュールであり、LEDモジュール43は電球色LEDモジュールである。
制御用マイクロコンピュータ35は、リモコン受光部45を介して照明色(照明装置100全体としての発光色)を白色にすべく操作を受け付けた場合、図12の状態A1に示すように、白色LEDモジュール(LEDモジュール42)をデューティ比100%で点灯するとともに、電球色LEDモジュール(LEDモジュール43)を消灯する。
制御用マイクロコンピュータ35は、リモコン受光部45を介して照明色(照明装置100全体としての発光色)を白色から少しだけ電球色側にすべく操作を受け付けた場合には、図12の状態A2に示すように、白色LEDモジュール(LEDモジュール42)をデューティ比75%で点灯するとともに、電球色LEDモジュール(LEDモジュール43)をデューティ比25%で点灯する。ここで、デューティ比は、一周期のうち、LEDモジュールに電流を流す期間の割合である。この状態で、照明色は、白色と昼白色との中間の色になる。
制御用マイクロコンピュータ35は、リモコン受光部45を介して照明色(照明装置100全体としての発光色)を昼白色にすべく操作を受け付けた場合には、図12の状態A3に示すように、白色LEDモジュール(LEDモジュール42)をデューティ比50%で点灯するとともに、電球色LEDモジュール(LEDモジュール43)をデューティ比50%で点灯する。この状態で、照明色は昼白色になる。
制御用マイクロコンピュータ35は、リモコン受光部45を介して照明色(照明装置100全体としての発光色)を昼白色から少しだけ電球色側にすべく操作を受け付けた場合には、図12の状態A4に示すように、白色LEDモジュール(LEDモジュール42)をデューティ比25%で点灯するとともに、電球色LEDモジュール(LEDモジュール43)をデューティ比75%で点灯する。この状態で、照明色は、昼白色と電球色との中間の色になる。
制御用マイクロコンピュータ35は、リモコン受光部45を介して照明色(照明装置100全体としての発光色)を電球色にすべく操作を受け付けた場合には、図12の状態A5に示すように、白色LEDモジュール(LEDモジュール42)を消灯するとともに、電球色LEDモジュール(LEDモジュール43)をデューティ比100%で点灯する。この状態で、照明色は電球色になる。
図12の例においては、制御用マイクロコンピュータ35は、発光色の異なるLEDモジュール42、43同士が同時に点灯しない(点灯時間、すなわちPWM制御のオン時間が重複しない)ように制御する。すなわち、白色LEDモジュールが点灯している時間は、電球色LEDモジュールを消灯させ、電球色LEDモジュールが点灯している時間は白色LEDモジュールを消灯させる。これにより、LEDモジュール42、43に供給する電流を所定値(一方の発光色のLEDモジュールに供給する電流値)以上に変動させることなく発光色を調整することができる。
また、PWM制御により、各色のLEDモジュールの点灯時間の割合を変更して照明色を白色、昼光色、電球色などの範囲で所望の発光色(色温度)に変えることができ、照明装置の利用シーンやユーザの好みに合わせて最適な照明環境を実現することができる。
次に、実施の形態4の照明装置100の調光方法について説明する。図13は実施の形態4の照明装置100の調光の一例を示す説明図である。図13において、横軸は時間を示し、縦軸は各LEDモジュール42、43に流れる電流を示す。LEDモジュール42は白色LEDモジュールであり、LEDモジュール43は電球色LEDモジュールである。
制御用マイクロコンピュータ35は、リモコン受光部45を介して照明色を、例えば、昼白色に設定した後、明るさを全灯(100%調光)にすべく操作を受け付けた場合、図13の状態B1に示すように、白色LEDモジュール(LEDモジュール42)をデューティ比50%で点灯するとともに、電球色LEDモジュール(LEDモジュール43)をデューティ比50%で点灯する。この状態で、一周期に亘って、いずれの色のLEDモジュールが点灯しているので、調光は100%になる。
制御用マイクロコンピュータ35は、明るさを少し暗くすべく操作を受け付けた場合、図13の状態B2に示すように、白色LEDモジュール(LEDモジュール42)をデューティ比35%で点灯するとともに、電球色LEDモジュール(LEDモジュール43)をデューティ比35%で点灯する。この状態で、一周期に対して、いずれか色のLEDモジュールが点灯して期間が70%であるので、調光は70%になる。
制御用マイクロコンピュータ35は、さらに明るさを暗くすべく操作を受け付けた場合、図13の状態B3に示すように、白色LEDモジュール(LEDモジュール42)をデューティ比25%で点灯するとともに、電球色LEDモジュール(LEDモジュール43)をデューティ比25%で点灯する。この状態で、一周期に対して、いずれか色のLEDモジュールが点灯して期間が50%であるので、調光は50%になる。なお、他の発光色でも同様である。
このように、制御用マイクロコンピュータ35は、発光色の異なる光源夫々の点灯時間の比率を一定にしつつ点灯時間の長短を制御して調光を行う。これにより、調色と調光を同時に行うことができ、照明装置100の利用シーンやユーザの好みに合わせて一層最適な照明環境を実現することができる。
図14は実施の形態4の照明装置100の調光の他の例を示す説明図である。図14において、横軸は時間を示し、縦軸は各LEDモジュール42、43に流れる電流を示す。LEDモジュール42は白色LEDモジュールであり、LEDモジュール43は電球色LEDモジュールである。
制御用マイクロコンピュータ35は、リモコン受光部45を介して照明色を、例えば、昼白色に設定した後、明るさを全灯(100%調光)にすべく操作を受け付けた場合、図14の状態C1に示すように、白色LEDモジュール(LEDモジュール42)及び電球色LEDモジュールに所定値の電流を流す。この状態で、調光は100%になる。なお、デューティ比は50%であるが、これに限定されるものではない。
制御用マイクロコンピュータ35は、明るさを少し暗くすべく操作を受け付けた場合、図14の状態C2に示すように、白色LEDモジュール(LEDモジュール42)及び電球色LEDモジュール(LEDモジュール43)に流す電流を所定値よりも少なくする。この状態で、各LEDモジュールに流れる電流が所定値の75%であるので、調光は75%になる。
制御用マイクロコンピュータ35は、さらに明るさを暗くすべく操作を受け付けた場合、図14の状態C3に示すように、白色LEDモジュール(LEDモジュール42)及び電球色LEDモジュール(LEDモジュール43)に流す電流をさらに少なくする。この状態で、各LEDモジュールに流れる電流が所定値の50%であるので、調光は50%になる。なお、他の発光色でも同様である。
このように、制御用マイクロコンピュータ35は、発光色の異なるLEDモジュール42、43夫々の点灯時間の長さを一定にしつつ、点灯時間中に供給する電流の多少を制御して調光を行う。これにより、調色と調光を同時に行うことができ、照明装置の利用シーンやユーザの好みに合わせて一層最適な照明環境を実現することができる。
実施の形態5
上述の実施の形態4では、基板41の表面上にリモコン受光部45を設ける構成であったが、LEDモジュール42、43で発生する熱が基板41を介してリモコン受光部45に伝わることによる影響を防止する構成とすることができる。
上述の実施の形態4では、基板41の表面上にリモコン受光部45を設ける構成であったが、LEDモジュール42、43で発生する熱が基板41を介してリモコン受光部45に伝わることによる影響を防止する構成とすることができる。
図15は実施の形態5の光源モジュール40の発光面の構造例を示す平面図であり、図16は実施の形態5のリモコン受光部45の配置の一例を示す要部断面図である。光源モジュール40の基板41は、中央部に円形状の穴44を設けてあり、基板41上には、穴44を中心にして複数の発光色の異なるLEDモジュール42、43を交互に環状に適長隔離して配設してある。また、穴44の径はリモコン受光部45の寸法よりも大きい。
リモコン受光部45は、穴44のほぼ中央に基板41と隔離して配置されている。リモコン受光部45は、放熱板20上に取り付けられ、基板41とは分離した基板46上に設けられている。
上述のように、外部からの信号を受信するリモコン受光部45をLEDモジュール42、43から熱的に分離して設け、物理的に分離することで、LEDモジュール42、43からの熱がリモコン受光部45に熱伝導しないようにすることができる。また、リモコン受光部45とLEDモジュール42、43とが物理的に繋がっている場合でも、両者の間に放熱板20を介することで、LEDモジュール42、43からリモコン受光部45へ熱が伝導する途中で放熱されてリモコン受光部45に熱が伝わらないようにすることができる。これにより、リモコン受光部45の劣化や故障を防止することができる。
また、リモコン受光部45を、LEDモジュール42、43が実装された基板41から隔離して設けてあることにより、LEDモジュール42、43で発生した熱が基板41を介してリモコン受光部45へ熱伝導しにくくなり、リモコン受光部45の劣化や故障を防止することができる。
図17は実施の形態5のリモコン受光部45の配置の他の例を示す要部断面図である。図17の例では、基板41の一面に複数のLEDモジュール42、43を交互に隔離させて環状に実装してあり、基板41は、各LEDモジュール42、43で囲まれた領域の略中央に開口部48を設けてあり、そして、基板41とは物理的に分離した別個の基板46に設けられたリモコン受光部45を開口部48の近傍に設けてある。なお、基板46は適宜の支持材で支持されている。これにより、LEDモジュール42、43が実装された基板41に物理的に繋がることなく、リモコン受光部45をLEDモジュール42、43が配設された領域の略中央に設けることができるので、照明装置100の発光面にリモコン受光部45を設けることができ、装置を小型化することができる。
リモコン受光部45を開口部48の近傍に設ける場合、リモコン受光部45を基板41及び放熱板20の内周面で囲まれる位置に設けることもでき、あるいは、基板41や放熱板20の板面方向と交差する方向に沿って開口部48から電源部30側へ隔離した位置に設けることもできる。これにより、リモコン受光部45をLEDモジュール42、43及び基板41から一層離すことができ、熱による影響を少なくすることができる。
図18は実施の形態5のリモコン受光部45の配置の他の例を示す要部断面図である。図18の例では、リモコンからの赤外光をリモコン受光部45に導くための導光部材47を備えている。導光部材47は、ガラス製又は合成樹脂性であって、略円筒状をなし、一方側はリモコンからの光を取り入れるように外側に向かって凸状の曲面(球面)を有し、他方側はリモコン受光部45の形状に合わせて外側に向かって凹状の曲面を有する。これにより、照明装置100の発光面である透光部50に対して信号(赤外光)を外部から送信する場合に、確実に信号をリモコン受光部45へ導くことができる。なお、導光部材47の上記他方側(リモコン受光部45側の端面)は、凹状の曲面に限定されるものではなく、平面状であってもよい。
以上説明したように、本発明によれば、発光色の異なる光源同士が同時に点灯しないように制御するので、LEDに供給する電流を所定値以上に変動させることなく発光色を調整することができる。
上述の実施の形態では、電球型の照明装置について説明したが、照明装置の形状は電球型に限定されるものでなく、他の形状であってよい。また、光源としてLEDモジュールを備える照明装置について説明したが、光源はLEDモジュールに限定されるものではなく、面発光を有する発光素子であれば、有機ELなど他の光源でもよい。
30 電源部
33 DC/DCコンバータ(電流供給回路)
34 PWM制御回路
35 制御用マイクロコンピュータ(制御部)
40 光源モジュール
41 基板
42、43 LEDモジュール(光源)
33 DC/DCコンバータ(電流供給回路)
34 PWM制御回路
35 制御用マイクロコンピュータ(制御部)
40 光源モジュール
41 基板
42、43 LEDモジュール(光源)
Claims (4)
- 発光色の異なる光源夫々に対して点灯状態を制御する制御部を備える照明装置において、
前記制御部は、
PWM制御回路を備え、
前記発光色の異なる光源夫々のPWM制御のオン時間が重複しないように制御すべくなしてあることを特徴とする照明装置。 - 前記制御部は、
前記発光色の異なる光源夫々のPWM制御のオン時間の長短を制御して調色を行うように構成してあることを特徴とする請求項1に記載の照明装置。 - 前記光源に電流を供給する電流供給回路を備え、
前記制御部は、
前記発光色の異なる光源夫々のPWM制御のオン時間の長さを一定にしつつ該PWM制御のオン時間に供給する電流の多少を制御して調光を行うように構成してあることを特徴とする請求項2に記載の照明装置。 - 前記制御部は、
前記発光色の異なる光源夫々のPWM制御のオン時間の比率を一定にしつつ該PWM制御のオン時間の長短を制御して調光を行うように構成してあることを特徴とする請求項2に記載の照明装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-135437 | 2009-06-04 | ||
JP2009135437A JP2010282839A (ja) | 2009-06-04 | 2009-06-04 | 照明装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010140498A1 true WO2010140498A1 (ja) | 2010-12-09 |
Family
ID=43297634
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/058700 WO2010140498A1 (ja) | 2009-06-04 | 2010-05-24 | 照明装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2010282839A (ja) |
WO (1) | WO2010140498A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220217825A1 (en) * | 2011-12-02 | 2022-07-07 | Lynk Labs, Inc. | Color temperature controlled and low thd led lighting devices and systems and methods of driving the same |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5331581B2 (ja) * | 2009-06-04 | 2013-10-30 | シャープ株式会社 | 照明装置 |
JP5535284B2 (ja) * | 2012-08-03 | 2014-07-02 | 三菱電機株式会社 | 制御装置、制御方法およびプログラム |
JP5463431B2 (ja) * | 2013-07-29 | 2014-04-09 | シャープ株式会社 | 照明装置 |
US9788375B2 (en) | 2013-11-28 | 2017-10-10 | Panasonic Intellectual Property Management Co., Ltd. | Lighting device and illumination apparatus using same |
JP6390901B2 (ja) * | 2014-09-18 | 2018-09-19 | 日本精機株式会社 | 照明装置 |
JP6236114B2 (ja) * | 2016-04-22 | 2017-11-22 | 三菱電機株式会社 | 照明装置 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002324685A (ja) * | 2001-04-25 | 2002-11-08 | Sony Corp | 照明装置 |
JP2008305759A (ja) * | 2007-06-11 | 2008-12-18 | Rohm Co Ltd | Led照明装置およびその駆動方法 |
JP2009032497A (ja) * | 2007-07-26 | 2009-02-12 | Denso Corp | バックライト制御装置 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5063187B2 (ja) * | 2007-05-23 | 2012-10-31 | シャープ株式会社 | 照明装置 |
JP5141874B2 (ja) * | 2007-06-28 | 2013-02-13 | 東芝ライテック株式会社 | 照明装置 |
-
2009
- 2009-06-04 JP JP2009135437A patent/JP2010282839A/ja active Pending
-
2010
- 2010-05-24 WO PCT/JP2010/058700 patent/WO2010140498A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002324685A (ja) * | 2001-04-25 | 2002-11-08 | Sony Corp | 照明装置 |
JP2008305759A (ja) * | 2007-06-11 | 2008-12-18 | Rohm Co Ltd | Led照明装置およびその駆動方法 |
JP2009032497A (ja) * | 2007-07-26 | 2009-02-12 | Denso Corp | バックライト制御装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220217825A1 (en) * | 2011-12-02 | 2022-07-07 | Lynk Labs, Inc. | Color temperature controlled and low thd led lighting devices and systems and methods of driving the same |
US12028947B2 (en) * | 2011-12-02 | 2024-07-02 | Lynk Labs, Inc. | Color temperature controlled and low THD LED lighting devices and systems and methods of driving the same |
Also Published As
Publication number | Publication date |
---|---|
JP2010282839A (ja) | 2010-12-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5331581B2 (ja) | 照明装置 | |
JP4586098B1 (ja) | 照明装置 | |
WO2010140480A1 (ja) | 照明装置 | |
ES2315528T3 (es) | Lampara modular basada en led. | |
US7661852B2 (en) | Integrated LED bulb | |
TWI567325B (zh) | 包含固態光發射器的發光裝置 | |
WO2010140498A1 (ja) | 照明装置 | |
US8686663B2 (en) | Lighting system and control method thereof | |
JP2011513913A (ja) | Led照明燈装置 | |
US9903576B2 (en) | Lighting apparatus with electrical connector and control module | |
US20130082623A1 (en) | Lighting system and control method thereof | |
US11353201B2 (en) | Lighting apparatus | |
JP2009302008A (ja) | 照明装置 | |
US9759389B2 (en) | LED based candelabra lamp | |
JP2011108597A (ja) | 照明装置及び照明システム | |
JP2004103444A (ja) | 照明器具 | |
JP6649998B2 (ja) | 照明装置 | |
JP2015181124A (ja) | 照明装置 | |
JP5463431B2 (ja) | 照明装置 | |
JP2018022702A (ja) | 照明装置 | |
US11326745B2 (en) | LED light tube apparatus | |
JP2014063766A (ja) | 照明装置 | |
JP2011228151A (ja) | 照明装置及び照明システム | |
JP2019009056A (ja) | 照明装置 | |
US20130235571A1 (en) | Recessed multicolored led lamp |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10783282 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 10783282 Country of ref document: EP Kind code of ref document: A1 |