WO2010140279A1 - 半導体装置及びその製造方法 - Google Patents

半導体装置及びその製造方法 Download PDF

Info

Publication number
WO2010140279A1
WO2010140279A1 PCT/JP2010/000286 JP2010000286W WO2010140279A1 WO 2010140279 A1 WO2010140279 A1 WO 2010140279A1 JP 2010000286 W JP2010000286 W JP 2010000286W WO 2010140279 A1 WO2010140279 A1 WO 2010140279A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
metal element
insulating film
interlayer insulating
semiconductor device
Prior art date
Application number
PCT/JP2010/000286
Other languages
English (en)
French (fr)
Inventor
可部達也
松本晋
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2010140279A1 publication Critical patent/WO2010140279A1/ja
Priority to US13/271,835 priority Critical patent/US8536704B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/5329Insulating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76801Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
    • H01L21/76829Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers
    • H01L21/76831Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing characterised by the formation of thin functional dielectric layers, e.g. dielectric etch-stop, barrier, capping or liner layers in via holes or trenches, e.g. non-conductive sidewall liners
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • H01L21/76846Layer combinations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76853Barrier, adhesion or liner layers characterized by particular after-treatment steps
    • H01L21/76861Post-treatment or after-treatment not introducing additional chemical elements into the layer
    • H01L21/76864Thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/53204Conductive materials
    • H01L23/53209Conductive materials based on metals, e.g. alloys, metal silicides
    • H01L23/53228Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being copper
    • H01L23/53238Additional layers associated with copper layers, e.g. adhesion, barrier, cladding layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/532Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
    • H01L23/5329Insulating materials
    • H01L23/53295Stacked insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a semiconductor device and a manufacturing method thereof, and more particularly to a semiconductor device having a damascene wiring structure and a manufacturing method thereof.
  • the current process technology requires a barrier film having a thickness of 10 nm or more.
  • it is required to reduce the thickness of the barrier film for each generation.
  • the conventional barrier film forming method it is difficult to form the barrier film uniformly and uniformly on the side walls of the wiring trench and the via hole (wiring connection hole). For this reason, the problems of the reliability of the wiring structure such as the barrier property of the barrier film, the interfacial adhesion between the barrier film and the Cu layer, and the electromigration resistance due to interfacial diffusion cannot be ensured.
  • the metal added to the Cu layer is diffused to the interface between the Cu layer and the insulating film by heat treatment, and the diffused metal reacts with the insulating film to stabilize the barrier film.
  • a configuration in which a compound is formed and used as a barrier film has been proposed.
  • a method for forming a barrier film in a self-aligning manner using an element such as manganese (Mn) that has a high diffusion rate in Cu and reacts with oxygen in an insulating film has been proposed in Patent Document 1 and the like. .
  • the dielectric constant of the interlayer insulating film is required to be reduced, the ratio of carbon (C) contained in the elements constituting the interlayer insulating film is increased. It may contain the above carbon.
  • these insulating films there may be a region where the oxygen (O) concentration is locally low, which is formed when the barrier film is formed in a self-aligning manner using a metal element as described above. Therefore, there is a possibility that a uniform film may not be formed.
  • a highly volatile substance containing carbon and hydrogen (H) as main components is added to a film called an ultra-low dielectric constant film (see, for example, Patent Document 2). When such a substance is present at the interface between the insulating film and the Cu layer, it is extremely difficult to form a barrier film in a self-aligning manner.
  • the object of the present invention is to improve the reliability of a wiring structure in which a barrier film is formed in a self-aligned manner even when an insulating film having a large carbon content is used. There is in doing so.
  • a barrier film in a semiconductor device has a structure mainly composed of a compound of at least two kinds of metal elements and a constituent element of an interlayer insulating film.
  • a semiconductor device is formed on a semiconductor substrate, and includes an interlayer insulating film having a groove, a barrier film formed on the bottom surface and the side wall of the groove, and a groove on the barrier film.
  • the barrier film is formed so as to be embedded and includes a wiring main body layer containing copper as a main component, and the barrier film contains a compound of at least two kinds of metal elements and a constituent element of the interlayer insulating film as a main component.
  • the semiconductor device of the present invention even when an insulating film having a large carbon content is provided, a highly reliable barrier film can be obtained in a self-aligning manner, so that the reliability of the wiring structure can be improved.
  • the semiconductor device according to the present invention further includes a conductive layer formed below the wiring body layer and having a connection portion connected to a part of the wiring body layer, and the barrier film includes a conductive layer and a wiring body layer. It is preferable not to intervene in the connection part.
  • the barrier film is also formed on the upper surface of the wiring body layer.
  • the at least two kinds of metal elements include a first metal element that easily forms a compound with silicon, oxygen, and carbon and a compound that easily forms a compound with silicon, oxygen, and carbon, and diffusion in copper. It is preferable to include a second metal element that is slower than the first metal element.
  • the oxide of the first metal element and the carbide of the second metal element have a diffusion barrier property against copper.
  • the second metal element is preferably an element that does not form an intermetallic compound with the first metal element.
  • the first metal element is at least one element selected from the group consisting of manganese, niobium, zirconium, chromium, vanadium, yttrium, technetium, and rhenium
  • the second metal element is preferably at least one element of tantalum or titanium.
  • the interlayer insulating film is a low dielectric constant film containing silicon and oxygen as main components and 20% or more of carbon in atomic%, and a film having a locally high carbon concentration portion. It is preferable that
  • the interlayer insulating film is a low dielectric constant film having vacancies mainly composed of silicon and oxygen, and a volatile compound mainly composed of carbon in order to form vacancies. It is preferable to contain.
  • the method for manufacturing a semiconductor device includes a step (a) of forming an interlayer insulating film containing oxygen and carbon on a semiconductor substrate, and forming a groove in the interlayer insulating film, and on the bottom surface and the side wall of the groove. Forming the auxiliary film containing the predetermined first metal element and the predetermined second metal element in the step (b), and after the step (b), the wiring main body layer containing copper as a main component is formed in the groove portion.
  • the first metal element in the auxiliary film Is diffused into the interlayer insulating film facing the auxiliary film, and the first barrier mainly composed of a compound of the first metal element and the oxygen element of the interlayer insulating film is formed on the interlayer insulating film on the bottom and side walls of the trench.
  • the second metal element in the auxiliary film is opposed to the auxiliary film. It is diffused into the insulating film, forming a second barrier film composed mainly of the compound of the carbon element of the second metal element and the interlayer insulating film.
  • a highly reliable barrier film can be formed in a self-aligned manner even when an insulating film having a large carbon content is formed. It can be improved.
  • the method for manufacturing a semiconductor device further includes a step (e) of forming an upper insulating film on the wiring body layer after the step (c), and the step (d) is performed after the step (e). Then, the first metal element and the second metal element in the auxiliary film are diffused also in the upper part of the wiring body layer, and the compound of the first metal element and the second metal element and the constituent element of the upper insulating film is formed. It is preferable to form a film made of a reaction product containing as a main component on the wiring body layer.
  • the step (d) is performed in an oxygen-containing atmosphere, and the first metal element and the second metal element in the auxiliary film are transferred to the wiring body. It is preferable that a film made of a reaction product mainly composed of the oxide of the first metal element and the oxide of the second metal element is formed on the upper part of the wiring main body layer to be diffused also on the upper part of the layer.
  • the first metal element and the second metal element are contained only in the auxiliary film.
  • the auxiliary film is a single layer film containing the first metal element and the second metal element, or a film containing the first metal element and not containing the second metal element. And a film that does not contain the first metal element and contains the second metal element.
  • a highly reliable barrier film can be formed in a self-aligned manner, so that the reliability of the wiring structure can be improved.
  • 1A to 1D are cross-sectional views showing a method of manufacturing a semiconductor device according to the first embodiment of the present invention in the order of steps.
  • 2A to 2C are cross-sectional views showing a method of manufacturing a semiconductor device according to a modification of the first embodiment of the present invention in the order of steps.
  • FIG. 3A to FIG. 3C are cross-sectional views showing a method of manufacturing a semiconductor device according to the second embodiment of the present invention in the order of steps.
  • FIG. 4 is a sectional view showing the structure of a semiconductor device according to the third embodiment of the present invention.
  • 5A to 5D are cross-sectional views showing a method of manufacturing a semiconductor device according to the third embodiment of the present invention in the order of steps.
  • FIG. 6A to 6C are cross-sectional views showing a method of manufacturing a semiconductor device according to the third embodiment of the present invention in the order of steps.
  • FIG. 7 is a cross-sectional view showing a method for manufacturing a semiconductor device according to a modification of the third embodiment of the present invention.
  • a wiring trench is formed in an interlayer insulating film 11 made of carbon-containing silicon oxide (SiOC) including a carbon high concentration region 12 that is a region where the concentration of carbon (C) is locally high. 13 is formed.
  • an alloy auxiliary film 14 made of copper (Cu), manganese (Mn), and tantalum (Ta) is formed on the bottom and side walls of the wiring groove 13 and on the interlayer insulating film 11 around the wiring groove 13. .
  • the alloy auxiliary film 14 is formed to a thickness of about 5 nm to 100 nm by, for example, sputtering.
  • the Mn content in the alloy auxiliary film 14 is about 0.05% to 20% in atomic%, and the Ta content is about 0.05% to 5% in atomic%.
  • the alloy auxiliary film 14 functions as a seed layer when a Cu layer 19 described later is subjected to electrolytic plating.
  • the alloy auxiliary film 14 may be a laminated film of a film made of an alloy of Cu and Mn and a film made of an alloy of Cu and Ta.
  • heat treatment is performed at about 100 ° C. to 400 ° C. for about 5 minutes to 30 minutes, for example, 300 ° C. for 5 minutes.
  • Mn and Ta in the alloy auxiliary film 14 receive a force in the direction of being discharged from the Cu. Since Mn has a faster diffusion rate in Cu than Ta, first, Mn in the alloy auxiliary film 14 diffuses into the interlayer insulating film 11 facing the alloy auxiliary film 14. In this way, Mn supplied from the alloy auxiliary film 14 reacts with oxygen (O) which is one of the constituent elements of the interlayer insulating film 11.
  • O oxygen
  • the first barrier film 15 mainly composed of manganese oxide (MnO), which is a very stable compound having a thickness of about 5 nm or less, for example, 2 nm, is formed on the bottom and side walls of the wiring groove 13 and the wiring groove 13. Are formed in a self-aligned manner on the peripheral interlayer insulating film 11.
  • the formation of the first barrier film 15 is inhibited in the vicinity of the high carbon concentration region 12.
  • the first barrier film 15 is formed, and the portion of the alloy auxiliary film 14 opposite to the interlayer insulating film 11 is an alloy film 16 of Cu and Ta.
  • the second barrier film 17 mainly composed of tantalum carbide (TaC), which is a very stable compound having a thickness of about 5 nm or less, for example, 2 nm, is an area where the formation of the first barrier film 15 is inhibited. Formed in a self-aligned manner. Note that a portion of the alloy film 16 opposite to the interlayer insulating film 11 becomes a Cu film 18 having a low content of Mn and Ta.
  • TaC tantalum carbide
  • the Cu layer 19 is embedded in the wiring groove 13 by forming a Cu layer 19 to be a wiring main body layer by electrolytic plating.
  • the low resistance wiring main body which is the Cu layer 19 is obtained by polishing and removing the Cu layer 19 outside the wiring groove 13 by a planarization process such as a chemical mechanical polishing (CMP) method.
  • CMP chemical mechanical polishing
  • a highly reliable barrier film can be formed in a self-aligned manner even when an insulating film having a large carbon content is formed. Can be improved.
  • a Cu layer 19 to be a wiring main body layer is formed by an electrolytic plating method, and the Cu layer 19 is embedded in the wiring groove 13.
  • heat treatment is performed at about 100 ° C. to 400 ° C. for about 5 minutes to 30 minutes, for example, 300 ° C. for 5 minutes.
  • Mn and Ta in the alloy auxiliary film 14 receive a force in the direction of being discharged from the Cu. Since Mn has a faster diffusion rate in Cu than Ta, first, Mn in the alloy auxiliary film 14 diffuses into the interlayer insulating film 11 facing the alloy auxiliary film 14. Thus, Mn supplied from the auxiliary alloy film 14 reacts with oxygen which is one of the constituent elements of the interlayer insulating film 11.
  • the first barrier film 15 mainly composed of manganese oxide (MnO), which is a very stable compound having a thickness of about 5 nm or less, for example, 2 nm, is formed on the bottom and side walls of the wiring groove 13 and the wiring groove 13. Are formed in a self-aligned manner on the peripheral interlayer insulating film 11.
  • the formation of the first barrier film 15 is inhibited in the vicinity of the high carbon concentration region 12.
  • the first barrier film 15 is formed, and the portion of the alloy auxiliary film 14 opposite to the interlayer insulating film 11 is an alloy film 16 of Cu and Ta.
  • the second barrier film 17 mainly composed of tantalum carbide (TaC), which is a very stable compound having a thickness of about 5 nm or less, for example, 2 nm, is an area where the formation of the first barrier film 15 is inhibited. Formed in a self-aligned manner. Note that the portion of the alloy film 16 opposite to the interlayer insulating film 11 has a reduced content of Mn and Ta, and is substantially integrated with the wiring body layer that is the Cu layer 19.
  • TaC tantalum carbide
  • the Cu layer 19 outside the wiring groove 13 is polished and removed by a CMP method or the like to form a low resistance wiring main body layer as the Cu layer 19 in the wiring groove 13.
  • a highly reliable barrier film can be formed in a self-aligned manner even when an insulating film having a large carbon content is formed. Reliability can be improved.
  • a Cu layer 19 to be a wiring body layer is formed by electrolytic plating, and the Cu layer 19 is embedded in the wiring groove 13. Subsequently, the Cu layer 19 and the alloy auxiliary film 14 outside the interlayer insulating film 11 are polished and removed by a CMP method or the like, and a low resistance wiring body layer which is the Cu layer 19 is formed in the wiring groove 13. Next, the upper insulating layer containing carbon, for example, silicon carbide (SiC), nitrogen-containing silicon carbide (SiCN), or silicon nitride (SiN) so as to cover the interlayer insulating film 11, the alloy auxiliary film 14, and the Cu layer 19 is covered. A film 20 is formed.
  • SiC silicon carbide
  • SiCN nitrogen-containing silicon carbide
  • SiN silicon nitride
  • heat treatment is performed at about 100 ° C. to 400 ° C. for about 5 minutes to 30 minutes, for example, 300 ° C. for 5 minutes.
  • Mn and Ta in the alloy auxiliary film 14 receive a force in the direction of being discharged from the Cu. Since Mn has a faster diffusion rate in Cu than Ta, first, Mn in the alloy auxiliary film 14 diffuses into the interlayer insulating film 11 facing the alloy auxiliary film 14. Thus, Mn supplied from the auxiliary alloy film 14 reacts with oxygen which is one of the constituent elements of the interlayer insulating film 11.
  • the first barrier film 15 mainly composed of manganese oxide (MnO), which is a very stable compound having a thickness of about 5 nm or less, for example, 2 nm, is self-aligned on the bottom surface and the sidewall of the wiring trench 13. Formed. On the other hand, the formation of the first barrier film 15 is inhibited in the vicinity of the high carbon concentration region 12. In addition, the first barrier film 15 is formed, and the portion of the alloy auxiliary film 14 opposite to the interlayer insulating film 11 is an alloy film 16 of Cu and Ta.
  • MnO manganese oxide
  • Ta in the alloy film 16 diffuses into the interlayer insulating film 11 facing the alloy film 16 and also diffuses into the upper surface of the Cu layer 19.
  • Ta reacts with carbon which is one of the constituent elements of the interlayer insulating film 11 in the region where the formation of the first barrier film 15 is inhibited.
  • Ta also reacts with carbon, which is one of the constituent elements of the upper insulating film 20.
  • the second barrier film 17 mainly composed of tantalum carbide (TaC), which is a very stable compound having a thickness of about 5 nm or less, for example, 2 nm, is an area where the formation of the first barrier film 15 is inhibited.
  • the portion of the alloy film 16 opposite to the interlayer insulating film 11 has a reduced content of Mn and Ta, and is substantially integrated with the wiring body layer that is the Cu layer 19.
  • a highly reliable barrier film can be formed in a self-aligned manner even when an insulating film having a large carbon content is formed. Can be improved.
  • a lower barrier film 22 is formed on the bottom surface and the side wall of the groove portion of the lower interlayer insulating film 21 made of, for example, SIOC and having the groove portion.
  • a lower Cu layer (lower wiring body layer) 23 which is a conductive layer, is formed so as to fill the groove portion of the lower interlayer insulating film 21.
  • a lower diffusion preventing film (upper insulating film) 24 is formed on the lower interlayer insulating film 21, the lower barrier film 22, and the lower Cu layer 23, and a groove is provided on the lower diffusion preventing film 24.
  • An upper interlayer insulating film 25 including a high carbon concentration region 26 having a locally high carbon concentration is formed.
  • a wiring connection hole 27 a that penetrates the lower diffusion prevention film 24 and reaches the lower Cu layer 23 is formed on the bottom surface of the groove portion of the upper interlayer insulating film 25.
  • a first upper barrier film 29 and a second upper barrier film 31 are formed on the bottom surface and the side wall of the groove portion of the upper interlayer insulating film 25 and on the side wall of the wiring connection hole 27a.
  • An upper Cu layer (upper wiring main body layer) 33 is formed on 29 and the second upper barrier film 31 so as to fill the groove portions of the wiring connection hole 27 a and the upper interlayer insulating film 25.
  • the second upper barrier film 31 in the region in contact with the lower diffusion prevention film 24 and the region in the vicinity of the high carbon concentration region 26 is made of TaC, and the first upper barrier film 29 in the region in contact with the upper interlayer insulating film 25 is MnO. Consists of. Further, an upper diffusion prevention film (upper insulating film) 34 is formed so as to cover the upper interlayer insulating film 25, the first upper barrier film 29 and the upper Cu layer 33.
  • the semiconductor device of the third embodiment it is possible to obtain a highly reliable barrier film in a self-aligning manner while having an insulating film having a large carbon content, thereby improving the reliability of the wiring structure. be able to.
  • the semiconductor device manufacturing method according to this embodiment is obtained by applying the first embodiment to a method for manufacturing a dual damascene wiring structure.
  • a wiring groove is formed in a lower interlayer insulating film 21 made of, for example, a SiOC film, and a lower barrier film 22 is formed on the bottom surface and side wall of the wiring groove to form a lower barrier.
  • a lower Cu layer (lower wiring body layer) 23 is formed so as to cover the film 22 and fill the wiring groove.
  • the lower barrier film 22 and the lower Cu layer 23 can be formed by the method according to the first embodiment, a modification of the first embodiment, and the second embodiment, and the description thereof is omitted here.
  • a lower diffusion prevention film 24 made of SiN or SiCN is formed so as to cover the lower interlayer insulating film 21, the lower barrier film 22, and the lower Cu layer 23.
  • a carbon high concentration region 26 made of SiOC and having a locally high carbon concentration is included on the lower diffusion prevention film 24, and the thickness is 100 nm to 600 nm.
  • the upper interlayer insulating film 25 is formed to the extent.
  • a wiring groove 27 b is formed in the upper interlayer insulating film 25, and a wiring connection hole 27 a that penetrates the lower diffusion prevention film 24 and exposes the lower Cu layer 23 is formed.
  • An alloy auxiliary film 28 of Cu, Mn and Ta having a thickness of about 5 nm to 100 nm is formed by chemical vapor deposition (Chemical Vapor Deposition: CVD).
  • CVD Chemical Vapor Deposition
  • the alloy auxiliary film 28 can be formed not only by the CVD method but also by a method such as a physical vapor deposition (PVD) method or an electroless plating method.
  • a source gas containing Mn and Ta is used, and in the case of the electroless plating method, a plating solution containing Mn and Ta is used.
  • the alloy auxiliary film 28 of Cu, Mn, and Ta desirably contains about 0.05% to 20% of Mn and about 0.05% to 5% of Ta in atomic%.
  • the heat treatment for diffusing Mn and Ta into the upper interlayer insulating film 25 is preferably performed at a temperature of about 50 ° C. to 400 ° C. for about 60 minutes or less.
  • heat treatment is performed at about 100 ° C. to 400 ° C. for about 5 minutes to 30 minutes, for example, 300 ° C. for 5 minutes.
  • Mn and Ta in the alloy auxiliary film 28 receive a force in the direction of being discharged from the Cu. Since Mn has a faster diffusion rate in Cu than Ta, first, Mn in the alloy auxiliary film 28 diffuses into the upper interlayer insulating film 25 facing the alloy auxiliary film 28. In this way, Mn supplied from the auxiliary alloy film 28 reacts with oxygen which is one of the constituent elements of the upper interlayer insulating film 25.
  • the first upper barrier film 29 mainly composed of manganese oxide (MnO), which is a very stable compound having a thickness of about 5 nm or less, for example, 2 nm, is formed on the upper interlayer insulating film 25 on the side wall of the wiring connection hole 27a. Is formed in a self-aligned manner on the portion in contact with each other, on the bottom and side walls of the wiring groove 27b, and on the upper interlayer insulating film 25 around the wiring groove 27b. On the other hand, the formation of the first upper barrier film 29 is inhibited in the vicinity of the high carbon concentration region 26. In addition, the first upper barrier film 29 is formed, and the part of the alloy auxiliary film 28 opposite to the upper interlayer insulating film 25 is an alloy film 30 of Cu and Ta.
  • MnO manganese oxide
  • Ta in the alloy film 30 diffuses into the upper interlayer insulating film 25 and the lower diffusion prevention film 24 facing the alloy film 30.
  • the lower diffusion prevention film 24 and the upper interlayer insulation are formed. It reacts with carbon which is one of the constituent elements of the film 25.
  • the second upper barrier film 31 mainly composed of tantalum carbide (TaC), which is a very stable compound having a thickness of about 5 nm or less, for example, 2 nm, is formed in the lower diffusion prevention film 24 on the side wall of the wiring connection hole 27a. And a region where formation of the first upper barrier film 29 is inhibited is formed in a self-aligned manner.
  • a portion of the alloy film 30 opposite to the upper interlayer insulating film 25 and the lower diffusion prevention film 24 is a Cu film 32 with a low content of Mn and Ta.
  • the lower diffusion prevention film 24 and the upper interlayer insulating film 25 are not formed on the bottom surface of the wiring connection hole 27a, the first upper barrier film 29 and the second upper barrier film 31 are not formed. Only the Cu film 32 is formed. Therefore, the upper Cu layer (upper wiring main body layer) 33 to be formed later passes through the first upper barrier film 29 and the second upper barrier film 31 with respect to the lower Cu layer (lower wiring main body layer) 23. There is virtually no direct connection.
  • an upper Cu layer having a thickness of 0.8 ⁇ m to 1 ⁇ m is deposited on the entire surface by electrolytic plating, and the inside of the wiring connection hole 27 a and the wiring groove 27 b is formed by the upper Cu layer 33. Embed.
  • the upper Cu layer 33 outside the wiring groove 27b is removed by CMP to planarize the surface.
  • an upper diffusion prevention film 34 made of SiC, SiCN, SiN or the like is formed so as to cover the upper interlayer insulating film 25 and the upper Cu layer 33.
  • the film 29 and the second upper barrier film 31 mainly composed of TaC are formed in a self-aligned manner.
  • the upper Cu layer 33 serving as the upper wiring body layer and the lower Cu layer 23 serving as the lower wiring body layer are substantially in direct contact without the first upper barrier film 29 and the second upper barrier film 31 being interposed. Therefore, the contact resistance between these wiring layers can be lowered. Accordingly, Cu wiring can be formed by a self-forming process of the barrier film without increasing the electric resistance of the wiring, and the reliability of the wiring structure can be improved and the resistance can be reduced.
  • the first embodiment is used.
  • the same effect can be obtained by using a modification of the first embodiment and the second embodiment.
  • This modification is an application of the first embodiment to a single damascene wiring structure.
  • the basic manufacturing method of this apparatus is substantially the same as that of the third embodiment, but different points will be described below.
  • the structure shown in FIG. 5A is formed as in the third embodiment.
  • an intermediate interlayer insulating film 35 made of SiOC and including a high carbon concentration region 36 is deposited on the lower diffusion preventing film 24, and the lower Cu layer 23 is formed on the intermediate interlayer insulating film 35.
  • a wiring connection hole 37 for connection is formed.
  • an alloy film made of Cu, Mn, and Ta having a thickness of about 5 nm to 100 nm is formed on the side wall of the wiring connection hole 37 by, eg, CVD.
  • a first middle barrier film 38 made of MnO and a second middle barrier film 39 made of TaC are formed on the side wall of the wiring connection hole 37.
  • the middle Cu layer 40 is formed so as to cover the first middle barrier film 38 and the second middle barrier film 39 and to embed the wiring connection hole 37, and the middle Cu layer 40 outside the wiring connection hole 37 is formed. It is removed by the CMP method.
  • the upper interlayer insulating film 41 including the high carbon concentration region 42, the upper wiring trench 43, the first upper barrier film 44 made of MnO, and the second upper barrier film made of TaC. 45 is formed, and the upper Cu layer 46 is embedded in the upper wiring groove 43.
  • the first upper barrier film 44 and the second upper barrier film 45 are not formed on the middle Cu layer 40, and the upper Cu layer 46 and the middle Cu layer 40 are connected.
  • an upper diffusion prevention film (upper insulating film) is formed so as to cover the upper interlayer insulating film 41, the first upper barrier film 44, and the upper Cu layer 46. ) 47 is formed.
  • the middle Cu layer 40 and the upper Cu layer 46 embedded in the wiring connection hole 37 and the upper wiring groove 43, and the middle interlayer insulating film 35 and the upper interlayer insulating film 41 are made of MnO.
  • the first middle barrier film 38, the first upper barrier film 44, and the second middle barrier film 39 and the second upper barrier film 45 made of TaC are formed. Further, the lower Cu layer 23 and the middle Cu layer 40 that is the connection plug are directly connected, and the middle Cu layer 40 and the upper Cu layer 46 that is the upper wiring body layer are directly connected. Therefore, the same effect as that of the third embodiment can be obtained in a modification of the third embodiment.
  • the first embodiment is used.
  • the same effect can be obtained by using one modification of the first embodiment and the second embodiment.
  • the wiring body layer is mainly composed of Cu (that is, 50% or more).
  • the same effect as described above can be obtained.
  • the metal element (first metal element) that has a high diffusion rate in Cu and reacts with oxygen is not limited to Mn, but Mn, niobium (Nb), zirconium (Zr), chromium You may provide at least 1 element selected from the group which consists of (Cr), vanadium (V), yttrium (Y), technetium (Tc), and rhenium (Re).
  • the metal element (second metal element) that has a slow diffusion rate in Cu and reacts with carbon is not limited to Ta, but at least one element of Ta or Ti (titanium) You may have.
  • the second metal element By adding the metal elements listed above as the second metal element, the following advantages are obtained as compared with the conventional structure composed only of the first metal element.
  • the first metal element diffuses rapidly in Cu and easily forms an oxide, and the oxide functions as a stable barrier film.
  • the proportion of carbon in the constituent elements of the interlayer insulating film is large (that is, including 20% or more in terms of atomic%), there is a region where oxygen is not locally present or a region where oxygen is very small. To do. In that region, since the barrier film mainly composed of the oxide of the first metal element is not formed, it is difficult to ensure the reliability of the wiring.
  • the second metal element has a slow diffusion in Cu and tends to form carbides. By adding the second metal element, the formation of the oxide by the first metal element is not inhibited, and further, the carbide by the second metal element is formed in the region where the oxide is not formed. Can do.
  • the carbide functions as a barrier film.
  • the material of the interlayer insulating film is not necessarily limited to SiOC, and various insulating films containing oxygen and carbon can be used, and the ratio of carbon is 20% or more in terms of atomic%.
  • examples of the material for the interlayer insulating film include SiO x C y and SiO x C y H z .
  • the barrier film is selected from the group consisting of ⁇ x O y , ⁇ x ⁇ y O z , ⁇ x Si y O z , ⁇ x ⁇ y Si z O w , ⁇ x Cy and ⁇ x C y O z. It is possible to use the material as a main component.
  • ⁇ and ⁇ represent the predetermined first metal element and the second metal element described above, and w, x, y, and z represent positive real numbers.
  • Cu is used as the material of the wiring body layer
  • SiOC is used as the interlayer insulating film containing 20% or more of carbon in atomic%
  • the first metal element for the barrier film is used as the first metal element for the barrier film.
  • Mn is used as the barrier film and MnO and TaC are used.
  • the method of embedding the Cu film in the wiring groove or the like is not limited to the electrolytic plating method, and a CVD method, a PVD method, an electroless plating method, a film forming method using a critical liquid, or the like can also be used. Whichever method is used, the same effects as described above can be obtained as long as Cu can be embedded in the wiring grooves and wiring connection holes formed in the interlayer insulating film.
  • the above-described embodiment can be applied to all the wirings at the uppermost position from the wiring at the lowermost position on the semiconductor substrate in the multilayer wiring structure. That is, in the third embodiment and the modification of the third embodiment, the case where each embodiment is applied to the second-stage wiring is described. The same configuration can be applied.
  • the dual damascene and single damascene wiring structures are illustrated, but the present invention is also applicable to various embedded wiring structures other than the damascene wiring structures. be able to.
  • the semiconductor device and the manufacturing method thereof according to the present invention can improve the reliability of a wiring structure in which a barrier film is formed in a self-aligning manner, and is particularly useful for a semiconductor device having a damascene wiring structure and a manufacturing method thereof. is there.

Abstract

 半導体基板の上に酸素及び炭素を含む層間絶縁膜(11)を形成し、該層間絶縁膜に溝部(13)を形成し、形成した溝部の底面上及び側壁上に所定の第1の金属元素及び第2の金属元素を含む補助膜(14)を形成する。その後、熱処理を行い、銅を主成分とする配線本体層(19)を溝部の内部を埋め込むように形成する。熱処理を行うことにより、補助膜中の第1の金属元素を補助膜と対向する層間絶縁膜に拡散させ、溝部の底面及び側壁における層間絶縁膜の上において、第1の金属元素と層間絶縁膜の酸素元素との化合物を主成分とする第1のバリア膜(15)を形成する。続いて、補助膜中の第2の金属元素が補助膜と対向する層間絶縁膜に拡散させ、第2の金属元素と層間絶縁膜の炭素元素との化合物を主成分とする第2のバリア膜(17)を形成する。

Description

半導体装置及びその製造方法
 本発明は、半導体装置及びその製造方法に関し、特に、ダマシン配線構造を有する半導体装置及びその製造方法に関する。
 近年、シリコン(Si)を用いた半導体集積回路において、高速化及び高集積化のために銅(Cu)と低誘電率絶縁膜とを用いた配線構造が開発されている。Cuを用いた配線構造の場合、集積回路の製造に用いられる種々の熱処理中に、Cu層(配線本体層)と周辺の絶縁膜とによる相互拡散が生じ易く、また、Cu層は酸素雰囲気において容易に酸素(O)と反応してCu酸化膜を形成する。このため、Cu層を形成する前に、タンタル(Ta)及び窒化タンタル(TaN)等からなるバリア膜を形成することが必要である。特に、ダマシン配線構造のように、層間絶縁膜の内部にCu層を埋め込む場合、Cu原子が層間絶縁膜の中に拡散することがより顕著となるため、拡散バリア膜の形成が必須である。
 Cuを用いた配線構造の信頼性を確保するために、現状のプロセス技術では、厚さが10nm以上のバリア膜が必要である。また、今後の配線幅の縮小化に伴う配線抵抗の低減を図るために、バリア膜の厚さを世代毎に薄膜化することが要求されている。しかしながら、従来のバリア膜の形成方法では、バリア膜を配線溝及びビアホール(配線接続孔)の側壁に均一且つ均質に形成することが難しい。このため、バリア膜のバリア性、バリア膜とCu層との界面密着性及び界面拡散によるエレクトロマイグレーション耐性が確保できない等の配線構造の信頼性の問題が顕在化している。
 これらの問題を解決しつつ、バリア膜を薄くするための方法として、Cu層に添加した金属を熱処理によってCu層と絶縁膜との界面に拡散させ、拡散した金属と絶縁膜と反応させて安定化合物を形成し、これをバリア膜とする構成が提案されている。
 これまでにCu中における拡散速度が速く、且つ絶縁膜中の酸素と反応するマンガン(Mn)等の元素を用いてバリア膜を自己整合的に形成する方法が特許文献1等に提示されている。
特開2005-277390号公報 米国特許第6846515号明細書
 近年の半導体開発においては、層間絶縁膜の低誘電率化が求められているため、層間絶縁膜を構成する元素に含まれる炭素(C)の割合が増加しており、原子%にして20%以上の炭素を含んでいる場合もある。これらの絶縁膜の中には局所的に酸素(O)濃度が低い領域が存在することが考えられ、前記のように金属元素を用いて自己整合的にバリア膜を形成する際に、形成されるバリア膜が薄くなること等が起こるため、均一な膜が形成されないおそれがある。また、超低誘電率膜といわれる膜には、炭素と水素(H)とを主成分とする揮発性が高い物質が添加されている(例えば、特許文献2等を参照。)。このような物質が絶縁膜とCu層との界面に存在している場合、自己整合的にバリア膜を形成させることは極めて困難である。
 そこで、本発明は、前記の問題に鑑み、その目的は、炭素の含有量が大きい絶縁膜を使用する場合であっても、自己整合的にバリア膜を形成する配線構造の信頼性を向上できるようにすることにある。
 前記の目的を達成するため、本発明は、半導体装置におけるバリア膜を少なくとも2種類の金属元素と層間絶縁膜の構成元素との化合物を主成分とする構成とする。
 具体的に、本発明に係る半導体装置は、半導体基板の上に形成され、溝部を有する層間絶縁膜と、溝部の底面上及び側壁上に形成されたバリア膜と、バリア膜の上に溝部を埋め込むように形成され、銅を主成分とする配線本体層とを備え、バリア膜は、少なくとも2種類の金属元素と層間絶縁膜の構成元素との化合物を主成分とする。
 本発明に係る半導体装置によると、炭素の含有量が大きい絶縁膜を有する場合にも、自己整合的に信頼性が高いバリア膜を得ることができるため、配線構造の信頼性を向上できる。
 本発明に係る半導体装置は、配線本体層の下側に形成され、配線本体層の一部と接続される接続部を有する導電層をさらに備え、バリア膜は、導電層と配線本体層との接続部には介在しないことが好ましい。
 本発明に係る半導体装置において、バリア膜は、配線本体層の上面にも形成されていることが好ましい。
 本発明に係る半導体装置において、少なくとも2種類の金属元素は、シリコン、酸素及び炭素と化合物を作りやすい第1の金属元素と、シリコン、酸素及び炭素と化合物を作りやすく且つ銅の中における拡散が第1の金属元素よりも遅い第2の金属元素を含むことが好ましい。
 この場合、第1の金属元素の酸化物及び第2の金属元素の炭化物は、銅に対する拡散バリア性を有することが好ましい。
 さらに、この場合、第2の金属元素は、第1の金属元素との間に金属間化合物を作らない元素であることが好ましい。
 さらに、この場合、第1の金属元素は、マンガン、ニオブ、ジルコニウム、クロム、バナジウム、イットリウム、テクネチウム及びレニウムからなる群から選択された少なくとも1つの元素であり、
 第2の金属元素は、タンタル又はチタンの少なくとも1つの元素であることが好ましい。
 本発明に係る半導体装置において、層間絶縁膜は、シリコン及び酸素を主成分とし、炭素を原子%にして20%以上含む低誘電率膜であり、局所的に炭素の濃度が高い部分を有する膜であることが好ましい。
 本発明に係る半導体装置において、層間絶縁膜は、シリコン及び酸素を主成分とする空孔を有する低誘電率膜であり、且つ空孔を形成するために炭素を主成分とする揮発性の化合物を含むことが好ましい。
 本発明に係る半導体装置の製造方法は、半導体基板の上に酸素及び炭素を含む層間絶縁膜を形成し、該層間絶縁膜に溝部を形成する工程(a)と、溝部の底面上及び側壁上に所定の第1の金属元素及び所定の第2の金属元素を含む補助膜を形成する工程(b)と、工程(b)よりも後に、銅を主成分とする配線本体層を、溝部を埋め込むように形成する工程(c)と、工程(b)よりも後に、補助膜に対して熱処理を行う工程(d)とを備え、工程(d)において、補助膜中の第1の金属元素を補助膜と対向する層間絶縁膜に拡散させ、溝部の底面及び側壁における層間絶縁膜の上において、第1の金属元素と層間絶縁膜の酸素元素との化合物を主成分とする第1のバリア膜を形成した後、補助膜中の第2の金属元素が補助膜と対向する層間絶縁膜に拡散させ、第2の金属元素と層間絶縁膜の炭素元素との化合物を主成分とする第2のバリア膜を形成する。
 本発明に係る半導体装置の製造方法によると、炭素の含有量が大きい絶縁膜を形成しても、自己整合的に信頼性が高いバリア膜を形成することができるため、配線構造の信頼性を向上できる。
 本発明に係る半導体装置の製造方法は、工程(c)の後に、配線本体層の上に上側絶縁膜を形成する工程(e)をさらに備え、工程(e)の後に工程(d)を行って、補助膜中の第1の金属元素及び第2の金属元素を配線本体層の上部にも拡散させて、第1の金属元素及び第2の金属元素と上側絶縁膜の構成元素との化合物を主成分とする反応生成物からなる膜を配線本体層の上部に形成することが好ましい。
 本発明に係る半導体装置の製造方法は、工程(c)の後に、酸素を含む雰囲気内において工程(d)を行って、補助膜中の第1の金属元素及び第2の金属元素を配線本体層の上部にも拡散させ、第1の金属元素の酸化物及び第2の金属元素の酸化物を主成分とする反応生成物からなる膜を配線本体層の上部に形成することが好ましい。
 本発明に係る半導体装置の製造方法において、第1の金属元素及び第2の金属元素は、補助膜にのみ含まれていることが好ましい。
 本発明に係る半導体装置の製造方法において、補助膜は、第1の金属元素及び第2の金属元素を含む単層膜、又は第1の金属元素を含み且つ第2の金属元素を含まない膜と第1の金属元素を含まず且つ第2の金属元素を含む膜との積層膜により構成されていることが好ましい。
 本発明に係る半導体装置及びその製造方法によると、自己整合的に信頼性が高いバリア膜を形成することができるため、配線構造の信頼性を向上することができる。
図1(a)~図1(d)は、本発明の第1の実施形態に係る半導体装置の製造方法を工程順に示す断面図である。 図2(a)~図2(c)は、本発明の第1の実施形態の一変形例に係る半導体装置の製造方法を工程順に示す断面図である。 図3(a)~図3(c)は、本発明の第2の実施形態に係る半導体装置の製造方法を工程順に示す断面図である。 図4は本発明の第3の実施形態に係る半導体装置の構造を示す断面図である。 図5(a)~図5(d)は、本発明の第3の実施形態に係る半導体装置の製造方法を工程順に示す断面図である。 図6(a)~図6(c)は、本発明の第3の実施形態に係る半導体装置の製造方法を工程順に示す断面図である。 図7は本発明の第3の実施形態の一変形例に係る半導体装置の製造方法を示す断面図である。
 (第1の実施形態)
 本発明の第1の実施形態に係る半導体装置の製造方法について、図1(a)~図1(d)を参照しながら説明する。
 まず、図1(a)に示すように、局所的に炭素(C)の濃度が大きい領域である炭素高濃度領域12を含む、炭素含有酸化シリコン(SiOC)からなる層間絶縁膜11に配線溝13を形成する。次に、この配線溝13の底面上及び側壁上並びに配線溝13の周辺の層間絶縁膜11の上に銅(Cu)、マンガン(Mn)及びタンタル(Ta)からなる合金補助膜14を形成する。合金補助膜14は、例えばスパッタ法により厚さを5nm~100nm程度に形成する。合金補助膜14におけるMnの含有量は、原子%にして約0.05%~20%であり、Taの含有量は、原子%にして約0.05%~5%である。合金補助膜14は、後述するCu層19を電解めっき法を行う際のシード層として機能する。また、合金補助膜14はCuとMnとの合金からなる膜とCuとTaとの合金からなる膜の積層膜でもよい。
 次に、図1(b)に示すように、約100℃~400℃で5分~30分程度、例えば300℃で5分の熱処理を行う。これにより、合金補助膜14中のMn及びTaはCuの中から排出される方向の力を受ける。Mnの方がTaよりもCu中の拡散速度が速いため、まず、合金補助膜14中のMnが、合金補助膜14と対向する層間絶縁膜11に拡散する。このようにして合金補助膜14から供給されたMnが、層間絶縁膜11の構成元素のうちの1つである酸素(O)と反応する。その結果、厚さが約5nm以下、例えば2nmの極めて安定な化合物である酸化マンガン(MnO)を主成分とする第1のバリア膜15が、配線溝13の底面上及び側壁上並びに配線溝13の周辺の層間絶縁膜11の上に自己整合的に形成される。一方、炭素高濃度領域12の付近では第1のバリア膜15の形成が阻害される。また、第1のバリア膜15が形成されると共に、合金補助膜14における層間絶縁膜11と反対側の部分は、CuとTaとの合金膜16となる。
 続いて、図1(c)に示すように、合金膜16中のTaが、合金膜16と対向する層間絶縁膜11に拡散する。第1のバリア膜15の形成が阻害された領域では層間絶縁膜11の構成元素のうちの1つである炭素と反応する。その結果、厚さが約5nm以下、例えば2nmの極めて安定な化合物である炭化タンタル(TaC)を主成分とする第2のバリア膜17が、第1のバリア膜15の形成が阻害された領域に自己整合的に形成される。なお、合金膜16における層間絶縁膜11と反対側の部分は、Mn及びTaの含有量の少ないCu膜18となる。
 次に、図1(d)に示すように、電解めっき法により配線本体層となるCu層19を形成することにより、配線溝13にCu層19を埋め込む。これ以降は図示しないが、化学機械研磨(Chemical Mechanical Polishing:CMP)法等の平坦化処理によって配線溝13の外部のCu層19を研磨除去することにより、Cu層19である低抵抗の配線本体層を配線溝13に形成する。
 第1の実施形態に係る半導体装置の製造方法によると、炭素の含有量が大きい絶縁膜を形成しても、自己整合的に信頼性が高いバリア膜を形成できるため、配線構造の信頼性を向上することができる。
 (第1の実施形態の一変形例)
 本発明の第1の実施形態の一変形例に係る半導体装置の製造方法について、図2(a)~(c)を参照しながら説明する。層間絶縁膜11~合金補助膜14の製造方法は、第1の実施形態における図1(a)と同一であるため、説明を省略する。
 まず、図2(a)に示すように、電解めっき法により配線本体層となるCu層19を形成し、配線溝13にCu層19を埋め込む。
 次に、図2(b)に示すように、約100℃~400℃で5分~30分程度、例えば300℃で5分の熱処理を行う。これにより、合金補助膜14中のMn及びTaはCuの中から排出される方向の力を受ける。Mnの方がTaよりもCu中の拡散速度が速いため、まず、合金補助膜14中のMnが、合金補助膜14と対向する層間絶縁膜11に拡散する。このようにして合金補助膜14から供給されたMnが、層間絶縁膜11の構成元素のうちの1つである酸素と反応する。その結果、厚さが約5nm以下、例えば2nmの極めて安定な化合物である酸化マンガン(MnO)を主成分とする第1のバリア膜15が、配線溝13の底面上及び側壁上並びに配線溝13の周辺の層間絶縁膜11の上に自己整合的に形成される。一方、炭素高濃度領域12の付近では第1のバリア膜15の形成が阻害される。また、第1のバリア膜15が形成されると共に、合金補助膜14における層間絶縁膜11と反対側の部分は、CuとTaとの合金膜16となる。
 続いて、図2(c)に示すように、合金膜16中のTaが、合金膜16と対向する層間絶縁膜11に拡散する。第1のバリア膜15の形成が阻害された領域では層間絶縁膜11の構成元素のうちの1つである炭素と反応する。その結果、厚さが約5nm以下、例えば2nmの極めて安定な化合物である炭化タンタル(TaC)を主成分とする第2のバリア膜17が、第1のバリア膜15の形成が阻害された領域に自己整合的に形成される。なお、合金膜16における層間絶縁膜11と反対側の部分は、Mn及びTaの含有量が少なくなり、実質的にCu層19である配線本体層と一体となる。
 これ以降は図示しないが、CMP法等によって配線溝13の外部のCu層19を研磨除去することにより、Cu層19である低抵抗の配線本体層を配線溝13に形成する。
 第1の実施形態の一変形例に係る半導体装置の製造方法によると、炭素の含有量が大きい絶縁膜を形成しても、自己整合的に信頼性が高いバリア膜を形成できるため、配線構造の信頼性を向上することができる。
 (第2の実施形態)
 本発明の第2の実施形態に係る半導体装置の製造方法について、図3(a)~(c)を参照しながら説明する。層間絶縁膜11~合金補助膜14の製造方法は、第1の実施形態における図1(a)と同一であるため、説明を省略する。
 図3(a)に示すように、電解めっき法により配線本体層となるCu層19を形成し、配線溝13にCu層19を埋め込む。続いて、層間絶縁膜11の外部のCu層19及び合金補助膜14をCMP法等により研磨除去し、Cu層19である低抵抗の配線本体層を配線溝13に形成する。次に、層間絶縁膜11、合金補助膜14及びCu層19を覆うように、炭素を含む、例えば、炭化シリコン(SiC)、窒素含有炭化シリコン(SiCN)又は窒化シリコン(SiN)からなる上側絶縁膜20を形成する。
 次に、図3(b)に示すように、約100℃~400℃で5分~30分程度、例えば300℃で5分の熱処理を行う。これにより、合金補助膜14中のMn及びTaはCuの中から排出される方向の力を受ける。Mnの方がTaよりもCu中の拡散速度が速いため、まず、合金補助膜14中のMnが、合金補助膜14と対向する層間絶縁膜11に拡散する。このようにして合金補助膜14から供給されたMnが、層間絶縁膜11の構成元素のうちの1つである酸素と反応する。その結果、厚さが約5nm以下、例えば2nmの極めて安定な化合物である酸化マンガン(MnO)を主成分とする第1のバリア膜15が、配線溝13の底面上及び側壁上に自己整合的に形成される。一方、炭素高濃度領域12の付近では第1のバリア膜15の形成が阻害される。また、第1のバリア膜15が形成されると共に、合金補助膜14における層間絶縁膜11と反対側の部分はCuとTaとの合金膜16となる。
 続いて、図3(c)に示すように、合金膜16中のTaが、合金膜16と対向する層間絶縁膜11に拡散すると共に、Cu層19の上面にも拡散する。Taは第1のバリア膜15の形成が阻害された領域では層間絶縁膜11の構成元素の1つである炭素と反応する。また、Taは上側絶縁膜20の構成元素のうちの1つである炭素とも反応する。その結果、厚さが約5nm以下、例えば2nmの極めて安定な化合物である炭化タンタル(TaC)を主成分とする第2のバリア膜17が、第1のバリア膜15の形成が阻害された領域及びCu層19の上面に自己整合的に形成される。なお、合金膜16における層間絶縁膜11と反対側の部分は、Mn及びTaの含有量が少なくなり、実質的にCu層19である配線本体層と一体となる。
 第2の実施形態に係る半導体装置の製造方法によると、炭素の含有量が大きい絶縁膜を形成しても、自己整合的に信頼性が高いバリア膜を形成できるため、配線構造の信頼性を向上することができる。
 (第3の実施形態)
 本発明の第3の実施形態に係る半導体装置について、図4を参照しながら説明する。
 図4に示すように、例えばSIOCからなり、溝部を有する下部層間絶縁膜21の溝部の底面上及び側壁上には下部バリア膜22が形成されている。下部バリア膜22の上には、下部層間絶縁膜21の溝部を埋め込むように導電層である下部Cu層(下部配線本体層)23が形成されている。さらに、下部層間絶縁膜21、下部バリア膜22及び下部Cu層23の上に下部拡散防止膜(上側絶縁膜)24が形成されており、下部拡散防止膜24の上には、溝部を有し、局所的に炭素の濃度が高い炭素高濃度領域26を含む上部層間絶縁膜25が形成されている。上部層間絶縁膜25の溝部の底面には、下部拡散防止膜24を貫通し、下部Cu層23に達する配線接続孔27aが形成されている。上部層間絶縁膜25の溝部の底面上及び側壁上並びに配線接続孔27aの側壁には、第1の上部バリア膜29及び第2の上部バリア膜31が形成されており、第1の上部バリア膜29及び第2の上部バリア膜31の上には、配線接続孔27a及び上部層間絶縁膜25の溝部を埋め込むように上部Cu層(上部配線本体層)33が形成されている。下部拡散防止膜24と接する領域及び炭素高濃度領域26付近の領域における第2の上部バリア膜31は、TaCからなり、上部層間絶縁膜25と接する領域における第1の上部バリア膜29は、MnOからなる。さらに、上部層間絶縁膜25、第1の上部バリア膜29及び上部Cu層33を覆うように上部拡散防止膜(上側絶縁膜)34が形成されている。
 第3の実施形態に係る半導体装置によると、炭素の含有量が大きい絶縁膜を有しながら、自己整合的に信頼性が高いバリア膜を得ることができるため、配線構造の信頼性を向上することができる。
 次に、本発明の第3の実施形態に係る半導体装置の製造方法について、図5(a)~(d)及び図6(a)~(c)を参照しながら説明する。本実施形態に係る半導体装置の製造方法は、第1の実施形態をデュアルダマシン配線構造の製造方法に適用したものである。
 まず、図5(a)に示すように、例えばSiOC膜からなる下部層間絶縁膜21に配線溝を形成し、この配線溝の底面上及び側壁上に、下部バリア膜22を形成し、下部バリア膜22を覆って且つ配線溝を埋め込むように下部Cu層(下部配線本体層)23を形成する。なお、下部バリア膜22及び下部Cu層23は、第1の実施形態、第1の実施形態の一変形例及び第2の実施形態に係る方法によって形成でき、ここでは、説明を省略する。続いて、下部層間絶縁膜21、下部バリア膜22及び下部Cu層23を覆うように、SiN又はSiCN等からなる下部拡散防止膜24を形成する。
 次に、図5(b)に示すように、下部拡散防止膜24の上にSiOCからなり、局所的に炭素の濃度が大きい領域である炭素高濃度領域26を含み、厚さが100nm~600nm程度である上部層間絶縁膜25を形成する。続いて、上部層間絶縁膜25に配線溝27bを形成し、さらに、下部拡散防止膜24を貫通し、下部Cu層23を露出する配線接続孔27aを形成する。
 次に、図5(c)に示すように、配線接続孔27aの底面上及び側壁上、配線溝27bの底面上及び側壁上並びに配線溝27bの周辺の上部層間絶縁膜25の上に、例えば化学気相成長(Chemical Vapor Deposition:CVD)法により厚さ5nm~100nm程度のCu、Mn及びTaの合金補助膜28を形成する。ここで、合金補助膜28は、CVD法に限らず、物理気相成長(Physical Vapor Deposition:PVD)法又は無電解めっき法等の方法によっても形成することができる。CVD法の場合にはMn及びTaを含む原料ガスを用い、無電解めっき法の場合にはMn及びTaを含むめっき液を用いる。Cu、Mn及びTaの合金補助膜28は、原子%にしてMnを約0.05%~20%、Taを約0.05%~5%含むことが望ましい。Mn及びTaを上部層間絶縁膜25にまで拡散させる熱処理は、約50℃~400℃の温度で、60分以下程度で行うことが望ましい。
 次に、図5(d)に示すように、約100℃~400℃で5分~30分程度、例えば300℃で5分の熱処理を行う。これにより、合金補助膜28中のMn及びTaはCuの中から排出される方向の力を受ける。Mnの方がTaよりもCu中の拡散速度が速いため、まず、合金補助膜28中のMnが、合金補助膜28と対向する上部層間絶縁膜25に拡散する。このようにして合金補助膜28から供給されたMnが、上部層間絶縁膜25の構成元素のうちの1つである酸素と反応する。その結果、厚さが約5nm以下、例えば2nmの極めて安定な化合物である酸化マンガン(MnO)を主成分とする第1の上部バリア膜29が、配線接続孔27aの側壁における上部層間絶縁膜25と接する部分、配線溝27bの底面上及び側壁上並びに配線溝27bの周辺の上部層間絶縁膜25の上に自己整合的に形成される。一方、炭素高濃度領域26の付近では第1の上部バリア膜29の形成が阻害される。また、第1の上部バリア膜29が形成されると共に、合金補助膜28における上部層間絶縁膜25と反対側の部分はCuとTaとの合金膜30となる。
 続いて、図6(a)に示すように、合金膜30中のTaが、合金膜30と対向する上部層間絶縁膜25及び下部拡散防止膜24に拡散する。これにより、拡散されたTaが、配線接続孔27aの側壁における下部拡散防止膜24と接する領域及び第1の上部バリア膜29の形成が阻害された領域において、下部拡散防止膜24及び上部層間絶縁膜25の構成元素の1つである炭素と反応する。その結果、厚さが約5nm以下、例えば2nmの極めて安定な化合物である炭化タンタル(TaC)を主成分とする第2の上部バリア膜31が、配線接続孔27aの側壁における下部拡散防止膜24と接する領域及び第1の上部バリア膜29の形成が阻害された領域に自己整合的に形成される。なお、合金膜30における上部層間絶縁膜25及び下部拡散防止膜24と反対側の部分は、Mn及びTaの含有量の少ないCu膜32となる。このとき、配線接続孔27aの底面には、下部拡散防止膜24及び上部層間絶縁膜25が形成されていないため、第1の上部バリア膜29及び第2の上部バリア膜31は形成されず、Cu膜32のみが形成される。従って、後に形成される上部Cu層(上部配線本体層)33は、下部Cu層(下部配線本体層)23に対して、第1の上部バリア膜29及び第2の上部バリア膜31を介することなく実質的に直接に接続することとなる。
 次に、図6(b)に示すように、電解めっき法により全面に厚さ0.8μm~1μmの上部Cu層を堆積し、配線接続孔27a及び配線溝27bの内部を上部Cu層33により埋め込む。
 次に、図6(c)に示すように、配線溝27bの外部の上部Cu層33をCMP法により除去して表面を平坦化する。続いて、上部層間絶縁膜25及び上部Cu層33を覆うようにSiC、SiCN、又はSiN等からなる上部拡散防止膜34を形成する。
 第3の実施形態に係る半導体装置の製造方法によると、上部配線本体層となる上部Cu層33とSiOCからなる上部層間絶縁膜25との界面に、MnOを主成分とする第1の上部バリア膜29及びTaCを主成分とする第2の上部バリア膜31がそれぞれ自己整合的に形成される。また、上部配線本体層となる上部Cu層33と下部配線本体層となる下部Cu層23とは第1の上部バリア膜29及び第2の上部バリア膜31を介在することなく実質的に直接接触しているため、これらの配線層間のコンタクト抵抗を低くすることができる。従って、配線の電気抵抗を上昇させることなく、バリア膜の自己形成プロセスによりCu配線を形成することができ、配線構造の信頼性の向上及び低抵抗化を可能とする。
 なお、本実施形態では、第1の実施形態を利用したが、第1の実施形態の一変形例及び第2の実施形態を利用しても同様の効果が得られる。
 (第3の実施形態の一変形例)
 本発明の第3の実施形態の一変形例に係る半導体装置の製造方法について、図7を参照しながら説明する。
 本変形例は、第1の実施形態をシングルダマシン配線構造に適用したものである。この装置の基本的な製造方法は、第3の実施形態と概ね同一であるが、以降に異なる点について説明する。
 まず、第3の実施形態と同様に、図5(a)に示す構造を形成する。
 次に、図7に示すように、下部拡散防止膜24の上にSiOCからなり、炭素高濃度領域36を含む中部層間絶縁膜35を堆積し、中部層間絶縁膜35に下部Cu層23との接続のための配線接続孔37を形成する。次に、配線接続孔37の側壁上に、例えばCVD法により厚さが約5nm~100nmのCu、Mn及びTaからなる合金膜を形成する。次に、熱処理を行うことにより、配線接続孔37の側壁にMnOからなる第1の中部バリア膜38及びTaCからなる第2の中部バリア膜39を形成する。次に、第1の中部バリア膜38及び第2の中部バリア膜39を覆って且つ配線接続孔37を埋め込むように中部Cu層40を形成し、配線接続孔37の外部の中部Cu層40をCMP法により除去する。
 次に、前記と同様の工程を行って、炭素高濃度領域42を含む上部層間絶縁膜41、上部配線溝43及びMnOからなる第1の上部バリア膜44及びTaCからなる第2の上部バリア膜45を形成し、上部配線溝43に上部Cu層46を埋め込む。ここで、第1の上部バリア膜44及び第2の上部バリア膜45は、中部Cu層40の上には形成せず、上部Cu層46と中部Cu層40とは接続される。次に、配線溝の外部の上部Cu層46をCMP法により除去した後に、上部層間絶縁膜41、第1の上部バリア膜44及び上部Cu層46を覆うように上部拡散防止膜(上側絶縁膜)47を形成する。
 このような構成においても、配線接続孔37及び上部配線溝43に埋め込まれた中部Cu層40及び上部Cu層46と中部層間絶縁膜35及び上部層間絶縁膜41との間にはMnOからなる第1の中部バリア膜38及び第1の上部バリア膜44並びにTaCからなる第2の中部バリア膜39及び第2の上部バリア膜45が形成される。また、下部Cu層23と接続プラグである中部Cu層40とが直接に接続し、中部Cu層40と上部配線本体層である上部Cu層46とが直接に接続する。従って、第3の実施形態の一変形例においても第3の実施形態と同様の効果が得られる。
 なお、本変形例では、第1の実施形態を利用したが、第1の実施形態の一変形例及び第2の実施形態を利用しても同様の効果が得られる。
 以上の第1の実施形態~第3の実施形態の一変形例において、配線本体層としてCuを用いた場合を例示しているが、配線本体層は、Cuを主成分(すなわち、50%以上を含む。)とする、例えば、一般に配線として用いられるCu合金からなる場合も、上述と同様の効果が得られる。
 バリア膜を形成する際に、Cu中の拡散速度が速く酸素と反応する金属元素(第1の金属元素)は、Mnに限るものではなく、Mn、ニオブ(Nb)、ジルコニウム(Zr)、クロム(Cr)、バナジウム(V)、イットリウム(Y)、テクネチウム(Tc)、及びレニウム(Re)からなる群から選択された少なくとも1つの元素を備えていても構わない。
 また、バリア膜を形成する際に、Cu中の拡散速度が遅く炭素と反応する金属元素(第2の金属元素)は、Taに限るものではなく、Ta又はTi(チタン)の少なくとも1つの元素を備えていても構わない。
 第2の金属元素として上に挙げた金属元素を加えることによって、従来の第1の金属元素のみにより構成される構造と比べて、次のような利点を有する。
 第1の金属元素はCu中における拡散が速くて且つ酸化物を形成しやすく、その酸化物は安定なバリア膜として機能する。一方、層間絶縁膜の構成元素の中で炭素の占める割合が大きく(すなわち、原子%にして20%以上を含む。)なると、局所的に酸素が存在しない領域又は酸素が非常に少ない領域が存在する。その領域では第1の金属元素の酸化物を主成分とするバリア膜は形成されないため、配線の信頼性を確保することが難しくなる。第2の金属元素はCu中における拡散が遅く、炭化物を形成しやすい。第2の金属元素を追加することにより、第1の金属元素による酸化物の形成を阻害することなく、さらに、酸化物が形成されていない領域においては第2の金属元素による炭化物を形成することができる。その炭化物はバリア膜として機能する。
 また、層間絶縁膜の材料としては必ずしもSiOCに限らず、酸素及び炭素を含む種々の絶縁膜を用いることができ、原子%にして炭素の割合は20%以上である。具体的には、層間絶縁膜の材料として、SiO又はSiO等を挙げることができる。また、バリア膜は、α、αβ、αSi、αβSi、β及びβからなる群から選択された材料を主成分とすることができる。ここで、α及びβは上述の所定の第1の金属元素及び第2の金属元素を表し、w、x、y及びzは正の実数を表す。説明を簡単にするために、各実施形態においては、配線本体層の材料としてCuを、炭素を原子%にして20%以上含む層間絶縁膜としてSiOCを、バリア膜用の第1の金属元素としてMnを、バリア膜としてMnO及びTaCを、それぞれ用いる。
 Cu膜を配線溝等に埋め込む方法は、電解めっき法に限るものではなく、CVD法、PVD法、無電解めっき法又は臨界液体を用いた製膜法等を用いることもできる。いずれの方法を用いても、層間絶縁膜に形成した配線溝及び配線接続孔にCuの埋め込みが可能であれば、上述と同様な効果が得られる。
 また、上述の実施形態は、多層配線構造において、半導体基板の上の最下位置の配線から最上位置の配線の全てに対して適用することができる。すなわち、第3の実施形態及び第3の実施形態の一変形例においては、第2段目の配線に対して各実施形態を適用した場合について説明しているが、第1段目の配線に対しても同様に構成することができる。
 また、第3の実施形態及び第3の実施形態の一変形例において、デュアルダマシン及びシングルダマシン配線構造を例示しているが、本発明はダマシン配線構造以外の種々の埋め込み配線構造にも適用することができる。
 その他、本発明の技術思想の範疇において、当業者であれば、種々の変形例及び修正例に想到し得るものであり、それら変形例及び修正例についても本発明の範囲に属するものと了解される。
 本発明に係る半導体装置及びその製造方法は、自己整合的にバリア膜を形成する配線構造の信頼性を向上することができ、特に、ダマシン配線構造を有する半導体装置及びその製造方法等に有用である。
11  層間絶縁膜
12  炭素高濃度領域
13  配線溝
14  合金補助膜
15  第1のバリア膜
16  合金膜
17  第2のバリア膜
18  銅(Cu)膜
19  銅(Cu)層(配線本体層)
20  上側絶縁膜
21  下部層間絶縁膜
22  下部バリア膜
23  下部銅(Cu)層(導電層、下部配線本体層)
24  下部拡散防止膜(上側絶縁膜)
25  上部層間絶縁膜
26  炭素高濃度領域
27a 配線接続孔
27b 配線溝
28  合金補助膜
29  第1の上部バリア膜
30  合金膜
31  第2の上部バリア膜
32  銅(Cu)膜
33  上部銅(Cu)層(上部配線本体層)
34  上部拡散防止膜(上側絶縁膜)
35  中部層間絶縁膜
36  炭素高濃度領域
37  配線接続孔
38  第1の中部バリア膜
39  第2の中部バリア膜
40  中部銅(Cu)層(接続プラグ)
41  上部層間絶縁膜
42  炭素高濃度領域
43  上部配線溝
44  第1の上部バリア膜
45  第2の上部バリア膜
46  上部銅(Cu)層(上部配線本体層)
47  上部拡散防止膜(上側絶縁膜)

Claims (14)

  1.  半導体基板の上に酸素及び炭素を含む層間絶縁膜を形成し、該層間絶縁膜に溝部を形成する工程(a)と、
     前記溝部の底面上及び側壁上に所定の第1の金属元素及び所定の第2の金属元素を含む補助膜を形成する工程(b)と、
     前記工程(b)よりも後に、銅を主成分とする配線本体層を、前記溝部を埋め込むように形成する工程(c)と、
     前記工程(b)よりも後に、前記補助膜に対して熱処理を行う工程(d)とを備え、
     前記工程(d)において、前記補助膜中の前記第1の金属元素を前記補助膜と対向する前記層間絶縁膜に拡散させ、前記溝部の底面及び側壁における前記層間絶縁膜の上において、前記第1の金属元素と前記層間絶縁膜の酸素元素との化合物を主成分とする第1のバリア膜を形成した後、前記補助膜中の前記第2の金属元素が前記補助膜と対向する前記層間絶縁膜に拡散させ、前記第2の金属元素と前記層間絶縁膜の炭素元素との化合物を主成分とする第2のバリア膜を形成する半導体装置の製造方法。
  2.  請求項1において、
     前記工程(c)の後に、前記配線本体層の上に上側絶縁膜を形成する工程(e)をさらに備え、
     前記工程(e)の後に前記工程(d)を行って、前記補助膜中の前記第1の金属元素及び第2の金属元素を前記配線本体層の上部にも拡散させて、前記第1の金属元素及び第2の金属元素と前記上側絶縁膜の構成元素との化合物を主成分とする反応生成物からなる膜を前記配線本体層の上部に形成する半導体装置の製造方法。
  3.  請求項1において、
     前記工程(c)の後に、酸素を含む雰囲気内において前記工程(d)を行って、前記補助膜中の前記第1の金属元素及び第2の金属元素を前記配線本体層の上部にも拡散させ、前記第1の金属元素の酸化物及び第2の金属元素の酸化物を主成分とする反応生成物からなる膜を前記配線本体層の上部に形成する半導体装置の製造方法。
  4.  請求項3において、
     前記第1の金属元素及び第2の金属元素は、前記補助膜にのみ含まれている半導体装置の製造方法。
  5.  請求項4において、
     前記補助膜は、前記第1の金属元素及び第2の金属元素を含む単層膜、又は前記第1の金属元素を含み且つ前記第2の金属元素を含まない膜と前記第1の金属元素を含まず且つ前記第2の金属元素を含む膜との積層膜により構成されている半導体装置の製造方法。
  6.  半導体基板の上に形成され、溝部を有する層間絶縁膜と、
     前記溝部の底面上及び側壁上に形成されたバリア膜と、
     前記バリア膜の上に前記溝部を埋め込むように形成され、銅を主成分とする配線本体層とを備え、
     前記バリア膜は、少なくとも2種類の金属元素と前記層間絶縁膜の構成元素との化合物を主成分とする半導体装置。
  7.  請求項6において、
     前記配線本体層の下側に形成され、前記配線本体層の一部と接続される接続部を有する導電層をさらに備え、
     前記バリア膜は、前記導電層と前記配線本体層との接続部には介在しない半導体装置。
  8.  請求項7において、
     前記バリア膜は、前記配線本体層の上面にも形成されている半導体装置。
  9.  請求項8において、
     少なくとも2種類の前記金属元素は、シリコン、酸素及び炭素と化合物を作りやすい第1の金属元素と、シリコン、酸素及び炭素と化合物を作りやすく且つ銅の中における拡散が前記第1の金属元素よりも遅い第2の金属元素を含む半導体装置。
  10.  請求項9において、
     前記第1の金属元素の酸化物及び前記第2の金属元素の炭化物は、銅に対する拡散バリア性を有する半導体装置。
  11.  請求項10において、
     前記第2の金属元素は、前記第1の金属元素との間に金属間化合物を作らない元素である半導体装置。
  12.  請求項11において、
     前記第1の金属元素は、マンガン、ニオブ、ジルコニウム、クロム、バナジウム、イットリウム、テクネチウム及びレニウムからなる群から選択された少なくとも1つの元素であり、
     前記第2の金属元素は、タンタル又はチタンの少なくとも1つの元素である半導体装置。
  13.  請求項12において、
     前記層間絶縁膜は、シリコン及び酸素を主成分とし、炭素を原子%にして20%以上含む低誘電率膜であり、局所的に炭素の濃度が高い部分を有する膜である半導体装置。
  14.  請求項13において、
     前記層間絶縁膜は、シリコン及び酸素を主成分とする空孔を有する低誘電率膜であり、且つ前記空孔を形成するために炭素を主成分とする揮発性の化合物を含む半導体装置。
PCT/JP2010/000286 2009-06-04 2010-01-20 半導体装置及びその製造方法 WO2010140279A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/271,835 US8536704B2 (en) 2009-06-04 2011-10-12 Semiconductor device and method for fabricating the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-134742 2009-06-04
JP2009134742A JP5190415B2 (ja) 2009-06-04 2009-06-04 半導体装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/271,835 Continuation US8536704B2 (en) 2009-06-04 2011-10-12 Semiconductor device and method for fabricating the same

Publications (1)

Publication Number Publication Date
WO2010140279A1 true WO2010140279A1 (ja) 2010-12-09

Family

ID=43297422

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000286 WO2010140279A1 (ja) 2009-06-04 2010-01-20 半導体装置及びその製造方法

Country Status (3)

Country Link
US (1) US8536704B2 (ja)
JP (1) JP5190415B2 (ja)
WO (1) WO2010140279A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5860861B2 (ja) * 2013-10-11 2016-02-16 日本電信電話株式会社 焦点推定装置、モデル学習装置、方法、及びプログラム
US9613856B1 (en) * 2015-09-18 2017-04-04 Taiwan Semiconductor Manufacturing Company, Ltd. Method of forming metal interconnection
US10256191B2 (en) * 2017-01-23 2019-04-09 International Business Machines Corporation Hybrid dielectric scheme for varying liner thickness and manganese concentration

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003152077A (ja) * 2001-11-15 2003-05-23 Hitachi Ltd 半導体装置および半導体装置の製造方法
JP2004006822A (ja) * 2002-04-17 2004-01-08 Air Products & Chemicals Inc ポロゲン、ポロゲン化された前駆体および低誘電率をもつ多孔質有機シリカガラス膜を得るためにそれらを使用する方法
JP2004356315A (ja) * 2003-05-28 2004-12-16 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法
JP2006019325A (ja) * 2004-06-30 2006-01-19 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6798043B2 (en) * 2001-06-28 2004-09-28 Agere Systems, Inc. Structure and method for isolating porous low-k dielectric films
JP4478038B2 (ja) 2004-02-27 2010-06-09 株式会社半導体理工学研究センター 半導体装置及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003152077A (ja) * 2001-11-15 2003-05-23 Hitachi Ltd 半導体装置および半導体装置の製造方法
JP2004006822A (ja) * 2002-04-17 2004-01-08 Air Products & Chemicals Inc ポロゲン、ポロゲン化された前駆体および低誘電率をもつ多孔質有機シリカガラス膜を得るためにそれらを使用する方法
JP2004356315A (ja) * 2003-05-28 2004-12-16 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法
JP2006019325A (ja) * 2004-06-30 2006-01-19 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法

Also Published As

Publication number Publication date
JP2010283103A (ja) 2010-12-16
US20120025381A1 (en) 2012-02-02
JP5190415B2 (ja) 2013-04-24
US8536704B2 (en) 2013-09-17

Similar Documents

Publication Publication Date Title
JP4478038B2 (ja) 半導体装置及びその製造方法
JP2007059660A (ja) 半導体装置の製造方法および半導体装置
JP2009147137A (ja) 半導体装置およびその製造方法
JP5089244B2 (ja) 半導体装置
TWI423387B (zh) 形成具有擴散阻障堆疊之半導體裝置之方法及其結構
TWI376015B (en) Semiconductor device and semiconductor device production method
US7816789B2 (en) Germanium-containing dielectric barrier for low-k process
US20080012134A1 (en) Metal interconnection structures and methods of forming the same
JP2008047719A (ja) 半導体装置の製造方法
JP5353109B2 (ja) 半導体装置の製造方法
KR100790452B1 (ko) 다마신 공정을 이용한 반도체 소자의 다층 금속배선형성방법
JP2009141058A (ja) 半導体装置およびその製造方法
JP5396854B2 (ja) 半導体装置の製造方法
JP5190415B2 (ja) 半導体装置
JP2009164471A (ja) 高信頼性銅配線及びその製造方法
US7531902B2 (en) Multi-layered metal line of semiconductor device having excellent diffusion barrier and method for forming the same
JP2007180408A (ja) 半導体装置およびその製造方法
KR20090074510A (ko) 반도체 소자의 금속배선 및 그 형성방법
US20090001577A1 (en) Metal line of semiconductor device with a triple layer diffusion barrier and method for forming the same
US7633161B2 (en) Semiconductor device and method of forming metal interconnection layer thereof
JP2005347511A (ja) 半導体装置及びその製造方法
JP2006253666A (ja) 半導体装置およびその製造方法
JP2007335578A (ja) 半導体装置及びその製造方法
JP2006196642A (ja) 半導体装置およびその製造方法
JP2010080607A (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10783067

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10783067

Country of ref document: EP

Kind code of ref document: A1