WO2010140209A1 - 回転電機 - Google Patents
回転電機 Download PDFInfo
- Publication number
- WO2010140209A1 WO2010140209A1 PCT/JP2009/059993 JP2009059993W WO2010140209A1 WO 2010140209 A1 WO2010140209 A1 WO 2010140209A1 JP 2009059993 W JP2009059993 W JP 2009059993W WO 2010140209 A1 WO2010140209 A1 WO 2010140209A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- rotor
- teeth
- rotor teeth
- coil
- end surface
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K19/00—Synchronous motors or generators
- H02K19/02—Synchronous motors
- H02K19/10—Synchronous motors for multi-phase current
- H02K19/12—Synchronous motors for multi-phase current characterised by the arrangement of exciting windings, e.g. for self-excitation, compounding or pole-changing
Definitions
- the present invention relates to a rotating electrical machine, and more particularly to a rotating electrical machine with improved output.
- Patent Document 1 Japanese Patent Application Laid-Open No. 2005-080479
- Patent Document 1 includes an amateur rotatably provided inside a motor housing and a 1 provided on the inner surface of the motor housing so as to face the amateur. With a pair of magnets.
- the amateur has an amateur core fixed to the rotating shaft, and windings are accommodated in 10 slots formed in the amateur core. There are four types of slots having different shapes.
- the rotating electrical machine described in Japanese Utility Model Laid-Open No. 61-084744 includes a stator and a rotor provided rotatably.
- a field winding is mounted on the rotor, and an exciter winding and an armature winding are mounted on the stator.
- a voltage is induced in the field winding by the magnetic flux from the exciter winding and the armature winding, and an induced current flows in the field winding.
- the voltage of the said armature winding and the exciter winding is raised with the magnetic flux which generate
- the rotating electrical machine described in Japanese Patent Application Laid-Open No. 2008-086161 includes a stator and a rotor, the stator is provided with a stator coil, and the rotor is provided with a rotor coil. ing.
- the stator coil is supplied with an armature current obtained by superimposing a rotor exciting current on a synchronous current.
- JP 2005-080479 A Japanese Utility Model Publication No. 61-084744 JP 2008-086161 A
- an induction current is generated in the rotor coil using spatial harmonics from the stator.
- this spatial harmonic contains the fundamental wave which makes the distance between rotor teeth a half wavelength, and the double wave which makes the distance between rotor teeth one wavelength.
- the rotor teeth are provided at equal intervals. For this reason, a double long wave magnetic flux becomes the same direction in all the rotor teeth. As a result, the double long wave magnetic fluxes repel each other in the rotor core, do not enter the rotor core, and are pushed out to the outside at the tip of the rotor teeth.
- the present invention has been made in view of the above problems, and an object of the present invention is to provide a rotating electrical machine that can efficiently use spatial harmonics and has high driving efficiency.
- a rotating electrical machine includes a rotor core having a plurality of rotor teeth formed on a peripheral surface, and a rotor coil mounted on the rotor teeth, and is disposed so as to face a rotor provided rotatably and the rotor.
- the stator is provided.
- the rotor teeth include a first rotor tooth, a second rotor tooth adjacent to the first rotor tooth, and a third rotor tooth provided on the opposite side of the first rotor tooth with respect to the second rotor tooth.
- the first rotor teeth include a first end surface facing the stator
- the second rotor teeth include a second end surface facing the stator
- the third rotor teeth include a third end surface facing the stator.
- the rotor coil is attached to the first rotor teeth, and the first rotor coil for causing the first magnetic pole to be magnetized with the first magnetic pole and the second rotor teeth are attached to the first rotor coil, and the second magnetic pole is magnetized to the second end face.
- a third rotor coil that is attached to the third rotor teeth and has a third end face that is magnetized by the first magnetic pole. Furthermore, the distance between the circumferential center part of the first end face and the circumferential center part of the second end face is made different from the distance between the second end face and the third end face.
- the rotor includes a rotor yoke portion formed in an annular shape, and the first rotor teeth, the second rotor teeth, and the third rotor teeth are provided at equal intervals on the circumferential surface of the rotor yoke portion, and A first projecting portion that projects toward the second rotor teeth is formed on one end surface, and a second projecting portion that projects away from the two rotor teeth is formed on the third end surface.
- the rotor includes a rotor yoke portion formed in an annular shape, and the first rotor teeth and the second rotor teeth are formed narrower than the second rotor teeth and the third rotor teeth.
- the rotor includes a rotor yoke portion formed in an annular shape, and the first rotor teeth, the second rotor teeth, and the third rotor teeth are formed at equal intervals on the circumferential surface of the rotor yoke portion,
- the rotor teeth are formed so as to be closer to the second rotor teeth as they are separated from the peripheral surface of the rotor yoke portion, and the third rotor teeth are formed so as to be separated from the second rotor teeth as they are separated from the peripheral surface of the rotor yoke portion.
- a plurality of the first rotor teeth and the first rotor coils, the second rotor teeth and the second rotor coils, and the third rotor teeth and the third rotor coils are provided. Furthermore, the first rotor coil and the third rotor coil are connected to each other, the second rotor coils are connected to each other, and a first rectifier that rectifies the flow direction of the current flowing in the first rotor coil and the third rotor coil; And a second rectifier for connecting the second rotor coils to each other.
- the rotating electrical machine it is possible to efficiently use the spatial high and long waves from the stator, and to improve the driving efficiency of the rotating electrical machine.
- FIG. 5 is a development view of the rotor 110 showing a modification of the rotor 110 shown in FIG. 4.
- FIG. 1 is a cross-sectional view schematically showing a rotating electrical machine according to the present invention.
- the rotating electrical machine 100 is fixed to a rotating shaft 140 and is formed in an annular shape so as to surround the rotor 110 and a rotor 110 that is rotatably provided around a rotation center line O. And a stator 130.
- the inner peripheral surface of the stator 130 faces the outer peripheral surface of the rotor 110, and the inner peripheral surface of the stator 130 and the outer peripheral surface of the rotor 110 are slightly separated from each other.
- the stator 130 includes a stator core 150 formed in an annular shape and a stator coil 152 attached to the stator core 150.
- the stator core 150 includes a stator yoke portion 153 formed in an annular shape and a plurality of stator teeth 151 formed on the inner peripheral surface of the stator yoke portion 153 at intervals.
- the stator coil 152 is wound around each stator tooth 151.
- Stator coil 152 is a three-phase coil including a U-phase coil, a V-phase coil, and a W-phase coil.
- the rotor 110 includes a rotor core 111 formed in an annular shape, and rotor coils 113 and 123 attached to the rotor core 111.
- the rotor core 111 includes a rotor yoke portion 109 formed in an annular shape, and a plurality of rotor teeth 112 and 122 formed on the outer peripheral surface of the rotor yoke portion 109 at intervals.
- a rotor coil 113 is wound around each rotor tooth 112, and a rotor coil 123 is attached to each rotor tooth 122.
- a plurality of rotor teeth 112 and rotor coils 113 are provided, and the rotor coils 113 are connected to each other in series.
- the rotor coils 113 are short-circuited via a diode (rectifier) 114.
- a plurality of rotor teeth 122 and rotor coils 123 are provided, and the rotor coils 123 are connected to each other in series.
- the rotor coils 123 are short-circuited via a diode (rectifier) 124.
- the direction of current flowing through the rotor coil 113 is defined by the diode 114.
- the direction of current flowing through the rotor coil 123 is defined by the diode 124.
- current flows in a direction in which the outer peripheral end surface of the rotor tooth 122 is magnetized by the N magnetic pole (first magnetic pole), while no current flows in a direction in which the outer peripheral end surface of the rotor tooth 122 is magnetized by the S magnetic pole.
- the rotating electrical machine 100 is provided with 12 rotor teeth and 18 stator teeth.
- FIG. 2 is a developed view schematically showing the rotating electrical machine 100 according to the present invention.
- a development view of the stator 130 is shown in the upper stage
- a development view of the rotor 110 of the rotating electrical machine 100 according to the present embodiment is shown in the lower stage.
- stator teeth 151 of the stator 130 are arranged at equal intervals.
- the rotor 110 includes a rotor tooth (first rotor tooth) 122A, a rotor tooth (second rotor teeth) 112B adjacent to the rotor tooth 122A, and a rotor positioned on the opposite side of the rotor teeth 112B from the rotor teeth 122A. Teeth (third rotor teeth) 122B. Further, a rotor tooth 112A is provided on the opposite side of the rotor tooth 122B from the rotor tooth 122A.
- the rotor teeth 112A, 112B, 122A, 122B all extend from the rotor yoke portion 109 in the radial direction of the rotor 110.
- the radial end faces 115A, 115B, 125A, 125B of the rotor teeth 112A, 112B, 122A, 122B are arranged so as to face the inner peripheral surface of the stator 130.
- the virtual axial line extending in the radial direction through the circumferential center portion of the radial end surface 115A of the rotor teeth 112A is defined as the circumferential center line 116A, and the circumferential axis of the radial end surface 125A is passed through the circumferential center portion of the rotor 110.
- a virtual axis extending in the radial direction is defined as a circumferential center line 126A.
- a virtual axis extending in the radial direction of the rotor 110 through the circumferential center of the radial end face 115B is defined as a circumferential center line 116B.
- a virtual axis extending in the radial direction of the rotor 110 through the circumferential center of the radial end face 125B is defined as a circumferential center line 126B.
- the distance L1 between the circumferential center line 126A and the circumferential center line 116B and the distance L2 between the circumferential center line 116B and the circumferential center line 126B are different from each other,
- the rotor teeth are arranged.
- the distance L1 is smaller than the distance L2.
- the distance between the circumferential center line 116A and the circumferential center line 126A is the same as the distance between the circumferential center line 116B and the circumferential center line 126B, and is the distance L2. ing.
- dividing points D0 to D3 are part of dividing points that equally divide the rotor yoke portion 109 into the number of rotor teeth (divided into 12 equal parts).
- a distance between the division points D is set as a distance L.
- the circumferential center line 116A passes through the dividing point D0, and the circumferential center line 116B passes through the dividing point D2.
- the circumferential center line 126A is located on the opposite side to the dividing point D0 with respect to the dividing point D1
- the circumferential center line 126B is located on the opposite side to the dividing point D2 with respect to the dividing point D3.
- the rotor 110 includes a plurality of rotor teeth (reference rotor teeth) 112 ⁇ / b> A provided so that the radial end faces 115 ⁇ / b> A and 115 ⁇ / b> B are arranged at equal intervals in the circumferential direction of the rotor core 111. , 112B. Further, the rotor 110 further includes a rotor tooth 122A provided between the rotor teeth 112A and 112B, and disposed so that a radial end surface 125A is close to one of the rotor teeth 112A and 112B.
- FIG. 3 is a graph paying attention to the fundamental wave magnetic flux component and the double wave magnetic flux component among the spatial harmonics generated by the three-phase stator coil 152.
- the horizontal axis of FIG. 3 indicates the circumferential position of the rotor 110, and the vertical axis indicates the direction of magnetic flux and the amount of magnetic flux.
- the distance L is a half wavelength of the fundamental wave magnetic flux P1
- the distance L is the full wavelength of the double wave magnetic flux P2.
- the abdomen of the fundamental wave magnetic flux P1 is located at the dividing points D0, D1, D2, and D3.
- the direction of the fundamental wave magnetic flux P1 at the division points D0 and D2 and the direction of the fundamental wave magnetic flux P1 at the division points D1 and D3 are reversed.
- the dividing points D0, D1, D2, and D3 are the abdomen of the double long wave magnetic flux P2. And the direction of the double long wave magnetic flux P2 in each division
- segmentation point D0, D1, D2, D3 corresponds.
- the direction of the fundamental wave magnetic flux P1 in the circumferential centerline 126A and the circumferential centerline 126B is opposite to the direction of the fundamental magnetic flux P1 in the circumferential centerlines 116A and 116B. Yes.
- the fundamental magnetic flux P1 flows into the rotor 110 from, for example, the radial end faces 115A and 115B and flows so as to exit from the radial end face 125A and the radial end face 125B.
- the fundamental wave magnetic flux P1 flows, an induced voltage is generated in the rotor coils 113, 123A, and 123B, and a current flows in each coil.
- the directions of the double long wave magnetic flux P2 in the circumferential center line 116A, the circumferential center line 116B, the circumferential center line 126A, and the circumferential center line 126B are all the same.
- the double double wave magnetic flux P2 on the circumferential center lines 116A and 116B has a magnitude of the circumferential center line 126A and It is larger than the double long wave magnetic flux P2 at the circumferential center line 126B.
- the magnetic flux amount of double wave flux P2 entering the rotor 110 from the radial end faces 115A and 115B is larger than the magnetic flux amount of double wave flux P2 entering the rotor 110 from the radial end face 125A.
- the double long wave magnetic flux P2 that has entered the rotor 110 from the radial end face 115B passes through the rotor yoke portion 109 and is radiated from the radial end faces 125A and 125B to the outside of the rotor 110 as shown in FIG.
- a part of the double long wave magnetic flux P2 entering from the radial end face 115A passes through the rotor yoke portion 109 and is radiated to the outside from the radial end face 125A.
- the rotating electrical machine 100 according to the present embodiment, not only the fundamental wave magnetic flux P1 but also the double long wave magnetic flux P2 can be used to induce a voltage in each rotor coil.
- the drive efficiency can be improved.
- the rotor coil can be excited using the fundamental wave magnetic flux P1 and the double wave magnetic flux P2, the number of turns of each rotor coil can be reduced, and the rotor 110 and the rotating electrical machine 100 can be downsized. Can do.
- FIG. 4 A rotating electrical machine according to the second embodiment will be described with reference to FIG. 4 that are the same as or correspond to the configurations shown in FIGS. 1 to 2 described above may be denoted by the same reference numerals and description thereof may be omitted.
- FIG. 4 is an exploded view of a part of the rotor provided in the rotating electrical machine according to the second embodiment. As shown in FIG. 4, the rotor teeth 112A, 112B, 122A, 122B are provided at equal intervals.
- the circumferential center line 118A of the root portion of the rotor teeth 112A located on the rotor yoke 109 side passes through the dividing point D0, and the circumferential center line 128A placed at the root portion of the rotor teeth 122A has the dividing point D1. Pass through.
- overhanging portions 127A and 127B are formed on the radial end surfaces 125A and 125B of the rotor teeth 122A and the rotor teeth 122B, respectively.
- the overhanging portion 127A protrudes toward the rotor teeth 112B, and the overhanging portion 127B is formed so as to be separated from the rotor teeth 112B.
- Each of the overhanging portions 127A and 127B extends in the direction of the rotation center line O, and extends from one end surface of the rotor teeth 122A and 122B arranged in the rotation center line O direction to the other end surface.
- the distance L3 between the circumferential center line 126A of the radial end face 125A and the circumferential center line 116B of the radial end face 115B is smaller than the distance L between the dividing point D1 and the dividing point D2, and is the circumferential center.
- a distance L4 between the line 116B and the circumferential center line 126B is larger than the distance L.
- the circumferential center line 126A and the circumferential center line 126B are out of the abdomen of the double wave magnetic flux P2, while the circumferential center line 116B is located at the abdomen of the double wave magnetic flux P2.
- the double long wave magnetic flux P2 that has entered the rotor 110 from the radial end face 115B passes through the rotor yoke portion 109 and is radiated to the outside from the radial end faces 125A and 125B.
- the configuration in which the circumferential center line 126A and the circumferential center line 126B are located at positions away from the abdomen of the double wave magnetic flux P2 is not limited to the configuration shown in FIG.
- the configuration shown in FIG. 5 can also be employed.
- FIG. 5 is a development view of the rotor 110 showing a modification of the rotor 110 shown in FIG.
- the rotor teeth 112A, 112B, 122A, 122B are provided at equal intervals.
- the rotor teeth 122A are formed so as to approach the rotor teeth 112B as the distance from the peripheral surface of the rotor yoke portion 109 increases.
- the rotor teeth 122B are formed so as to be separated from the rotor teeth 112B as they are separated from the peripheral surface of the rotor yoke portion 109.
- the circumferential center line 126A and the circumferential center line 126B are separated from the abdomen of the double wave magnetic flux P2, and the circumferential center line 116B is located at the abdomen of the double wave magnetic flux P2.
- the double long wave magnetic flux P2 enters from the radial end face 115B, passes through the rotor yoke portion 109, and is radiated to the outside from the radial end face 125A or the radial end face 125B.
- the present invention relates to a rotating electrical machine, and is particularly suitable for a rotating electrical machine including a rotor tooth and a rotor coil.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Iron Core Of Rotating Electric Machines (AREA)
- Synchronous Machinery (AREA)
Abstract
回転電機は、ロータコイルは、第1ロータティース(122A)に装着され、第1端面(125A)に第1磁極の磁気を帯びさせる第1ロータコイル(123A)と、第2ロータティース(112B)に装着され、第2端面(115B)に第2磁極の磁気を帯びさせる第2ロータコイル(113B)と、第3ロータティース(122B)に装着され、第3端面(125B)に第1磁極の磁気を帯びさせる第3ロータコイル(123B)とを含み、第1端面(125A)の周方向中央部と第2端面(115B)の周方向中央部との間の距離(L1)と、第2端面(115B)の周方向中央部と第3端面(125B)の周方向中央部との間の距離(L2)とを異ならせた。
Description
本発明は、回転電機に関し、特に、出力の向上が図られた回転電機に関する。
従来から各種の回転電機が提案されている。たとえば、特開2005-080479号公報(特許文献1)に記載された電動モータは、モータハウジングの内部に回転可能に設けられたアマチュアと、アマチュアと対向してモータハウジングの内面に設けられた1対のマグネットとを備えている。
そして、アマチュアは回転軸に固定されたアマチュアコアを有しており、アマチュアコアに形成された10個のスロットには、巻線が収容されている。スロットは形状が相違する4種類を有している。
実開昭61-084674号公報(特許文献2)に記載された回転電機は、固定子と、回転可能に設けられた回転子とを備える。回転子には、界磁巻線が装着され、固定子には、エキサイタ巻線と、電機子巻線とが装着されている。そして、エキサイタ巻線および電機子巻線からの磁束によって、界磁巻線内に電圧が誘起され、界磁巻線内に誘導電流が流れる。そして、誘導電流が界磁巻線内を流れることで発生する磁束によって、上記電機子巻線およびエキサイタ巻線の電圧を高めている。
さらに、特開2008-086161号公報(特許文献3)に記載された回転電機は、ステータとロータとを備え、ステータには、ステータコイルが設けられており、ロータには、ロータコイルが設けられている。そして、ステータコイルには、同期電流にロータ励磁用電流を重畳させた電機子電流が供給されている。
ロータにロータコイルを装着した回転電機において、ステータからの空間高調波を利用して、ロータコイルに誘導電流を発生させている。そして、この空間高調波は、ロータティース間距離を半波長とする基本波と、ロータティース間の距離を1波長とする倍長波とを含む。
ここで、上記実開昭61-084674号公報に記載された回転電機および特開2008-086161号公報に記載された回転電機においては、各ロータティースは等間隔に設けられている。このため、倍長波磁束は、全てのロータティース内で同じ方向となる。これにより、倍長波磁束はロータコア内で互いに反発し、ロータコア内部にまで入り込まず、ロータティースの先端部で外部に押し出されてしまう。
このため、ステータからの空間高調波を十分に利用することができず、ロータコイルが誘起される誘起電圧が小さく、十分な励磁を得ることが困難なものとなっていた。
本発明は、上記のような課題に鑑みてなされたものであって、その目的は、空間高調波を効率よく利用することができ、駆動効率の高い回転電機を提供することである。
本発明に係る回転電機は、周面に複数のロータティースが形成されたロータコアと、ロータティースに装着されたロータコイルとを含み、回転可能に設けられたロータと、ロータと対向するように配置されたステータとを備える。そして、上記ロータティースは、第1ロータティースと、第1ロータティースと隣り合う第2ロータティースと、第2ロータティースに対して第1ロータティースと反対側に設けられた第3ロータティースとを含む。さらに、上記第1ロータティースは、ステータと対向する第1端面を含み、第2ロータティースは、ステータと対向する第2端面を含み、第3ロータティースは、ステータと対向する第3端面を含む。そして、上記ロータコイルは、第1ロータティースに装着され、第1端面に第1磁極の磁気を帯びさせる第1ロータコイルと、第2ロータティースに装着され、第2端面に第2磁極の磁気を帯びさせる第2ロータコイルと、第3ロータティースに装着され、第3端面に第1磁極の磁気を帯びさせる第3ロータコイルとを含む。さらに、上記第1端面の周方向中央部と第2端面の周方向中央部との間の距離と、第2端面と第3端面との間の距離とを異ならせる。
好ましくは、上記ロータは、環状に形成されたロータヨーク部を含み、第1ロータティースと、第2ロータティースと、第3ロータティースとは、ロータヨーク部の周面に等間隔に設けられると共に、第1端面には、第2ロータティースに向けて張り出す第1張出部が形成され、第3端面には、2ロータティースから離れるように張り出す第2張出部が形成される。
好ましくは、上記ロータは、環状に形成されたロータヨーク部を含み、第1ロータティースと第2ロータティースとの間は、第2ロータティースと第3ロータティースとの間よりも狭く形成される。
好ましくは、上記ロータは、環状に形成されたロータヨーク部を含み、第1ロータティースと、第2ロータティースと、第3ロータティースとは、ロータヨーク部の周面に等間隔に形成され、第1ロータティースは、ロータヨーク部の周面から離れるにつれて、第2ロータティースに近接するように形成され、第3ロータティースは、ロータヨーク部の周面から離れるにつれて、第2ロータティースから離れるように形成される。
好ましくは、上記第1ロータティースおよび第1ロータコイルと、第2ロータティースおよび第2ロータコイルと、第3ロータティースおよび第3ロータコイルとは、複数設けられる。さらに、上記第1ロータコイルおよび第3ロータコイルは互いに接続され、第2ロータコイル同士は互いに接続され、第1ロータコイルおよび第3ロータコイル内を流れる電流の流通方向を整流する第1整流器と、第2ロータコイル同士を接続する第2整流器とをさらに備える。
本発明に係る回転電機によれば、ステータからの空間高長波を効率よく利用することができ、回転電機の駆動効率の向上を図ることができる。
図1から図5を用いて、本発明に係る回転電機について説明する。
図1は、本発明に係る回転電機を模式的に示す断面図である。この図1に示すように、回転電機100は、回転シャフト140に固定され、回転中心線Oを中心に回転可能に設けられたロータ110と、このロータ110の周囲を取り囲むように環状に形成されたステータ130とを備えている。
図1は、本発明に係る回転電機を模式的に示す断面図である。この図1に示すように、回転電機100は、回転シャフト140に固定され、回転中心線Oを中心に回転可能に設けられたロータ110と、このロータ110の周囲を取り囲むように環状に形成されたステータ130とを備えている。
ステータ130の内周面は、ロータ110の外周面と対向しており、ステータ130の内周面とロータ110の外周面とは僅かに離れている。
ステータ130は、環状に形成されたステータコア150と、このステータコア150に装着されたステータコイル152とを備えている。
ステータコア150は、環状に形成されたステータヨーク部153と、ステータヨーク部153の内周面に間隔を隔てて形成された複数のステータティース151とを備えている。そして、ステータコイル152は、各ステータティース151に巻回されている。
このように、この図1に示す回転電機100は集中巻型の回転電機である。そして、ステータコイル152は、U相コイルと、V相コイルと、W相コイルとを含み、3相コイルとされている。
ロータ110は、環状に形成されたロータコア111と、このロータコア111に装着されたロータコイル113,123とを備えている。ロータコア111は、環状に形成されたロータヨーク部109と、このロータヨーク部109の外周面に間隔を隔てて形成された複数のロータティース112,122とを備えている。
そして、各ロータティース112には、ロータコイル113が巻回されており、各ロータティース122にはロータコイル123が装着されている。ロータティース112およびロータコイル113は、複数設けられており、各ロータコイル113同士は互いに直列に接続されている。なお、ロータコイル113同士は、ダイオード(整流器)114を介して短絡されている。そして、ロータティース122およびロータコイル123は、複数設けられており、各ロータコイル123同士は互いに直列に接続されている。そして、ロータコイル123同士は、ダイオード(整流器)124を介して短絡されている。
そして、ロータコイル113を流れる電流方向は、ダイオード114によって規定されている。その結果、ロータティース112の外周端面がS磁極(第2磁極)の磁気を帯びる方向に電流がロータコイル113内を流れる一方で、ロータティース112の外周端面がN磁極の磁気を帯びる方向に電流は流れない。
また、ロータコイル123を流れる電流方向は、ダイオード124によって規定されている。その結果、ロータティース122の外周端面がN磁極(第1磁極)の磁気を帯びる方向に電流が流れる一方で、ロータティース122の外周端面がS磁極の磁気を帯びる方向に電流は流れない。
なお、本実施の形態に係る回転電機100は、ロータティースは、12個、ステータティースは、18個、設けられている。
図2は、本発明に係る回転電機100を模式的に展開した展開図である。なお、この図2において、上段には、ステータ130の展開図が示されており、下段には、本実施の形態に係る回転電機100のロータ110の展開図が示されている。
この図2に示すように、ステータ130のステータティース151は、等間隔に配置されている。
そして、ロータ110は、ロータティース(第1ロータティース)122Aと、ロータティース122Aと隣り合うロータティース(第2ロータティース)112Bと、ロータティース112Bに対してロータティース122Aと反対側に位置するロータティース(第3ロータティース)122Bとを備えている。さらに、ロータティース122Aに対してロータティース112Bと反対側には、ロータティース112Aが設けられている。
各ロータティース112A,112B,122A,122Bは、いずれも、ロータヨーク部109からロータ110の径方向に延びている。各ロータティース112A,112B,122A,122Bの径方向端面115A,115B,125A,125Bは、ステータ130の内周面と対向するように配置されている。
ここで、ロータティース112Aの径方向端面115Aの周方向中央部をとおり、径方向に延びる仮想軸線を周方向中心線116Aとすると共に、径方向端面125Aの周方向中央部を通り、ロータ110の径方向に延びる仮想軸線を周方向中心線126Aとする。さらに、径方向端面115Bの周方向中央部をとおり、ロータ110の径方向に延びる仮想軸線を周方向中心線116Bとする。そして、径方向端面125Bの周方向中央部をとおり、ロータ110の径方向に延びる仮想軸線を周方向中心線126Bとする。
そして、周方向中心線126Aと周方向中心線116Bとの間の距離L1と、周方向中心線116Bと周方向中心線126Bとの間の距離L2との距離とは、互いに異なるように、各ロータティースが配置されている。なお、この図2に示す例においては、距離L1の方が距離L2より小さくなっている。
その一方で、周方向中心線116Aと、周方向中心線126Aとの間の距離は、周方向中心線116Bと、周方向中心線126Bとの間の距離と一致しており、距離L2とされている。この図2において、分割点D0~D3は、ロータヨーク部109をロータティースの数に等分(12等分)する分割点の一部である。そして、各分割点D間の距離を距離Lとする。
この図2に示す例においては、周方向中心線116Aは、分割点D0をとおり、周方向中心線116Bは分割点D2を通る。そして、周方向中心線126Aは、分割点D1に対して分割点D0と反対側に位置し、周方向中心線126Bは分割点D3に対して分割点D2と反対側に位置している。
すなわち、この図2からも明らかなように、ロータ110は、各径方向端面115A,115Bがロータコア111の周方向に等間隔に配列するように設けられた複数のロータティース(基準ロータティース)112A,112Bを備えている。さらに、ロータ110は、上記ロータティース112A,112B間に設けられ、径方向端面125Aが、上記ロータティース112A,112Bの一方に近接するように配置されたロータティース122Aをさらに備えている。
図3は、三相のステータコイル152が作る空間高調波のうち、基本波磁束成分と、倍長波磁束成分とに着目したグラフである。この図3の横軸は、ロータ110の周方向の位置を示し、縦軸は、磁束の方向および磁束量を示す。
この図3に示すように、距離Lが基本波磁束P1の半波長となっており、距離Lが倍長波磁束P2の全波長となっている。
そして、基本波磁束P1の腹部は、分割点D0,D1,D2,D3に位置している。分割点D0,D2での基本波磁束P1の方向と、分割点D1および分割点D3での基本波磁束P1の方向は反転している。
また、分割点D0,D1,D2,D3は、倍長波磁束P2の腹部となっている。そして、各分割点D0,D1,D2,D3における倍長波磁束P2の方向は一致している。
ここで、図3に示すように、周方向中心線126Aおよび周方向中心線126Bにおける基本波磁束P1の方向は、周方向中心線116A,116Bにおける基本波磁束P1の方向と反対方向となっている。
上記図2に示すように、基本波磁束P1は、たとえば、径方向端面115A,115Bからロータ110内に入り込み、径方向端面125Aおよび径方向端面125Bから出て行くように流れる。このように、基本波磁束P1が流れることで、ロータコイル113,123A,123Bに誘起電圧が生じ、各コイル内に電流が流れる。
そして、周方向中心線116A、周方向中心線116B、周方向中心線126Aおよび周方向中心線126Bにおける倍長波磁束P2の方向は、いずれも、一致している。
その一方で、周方向中心線116A,116Bには、倍長波磁束P2の腹部が位置しているため、周方向中心線116A,116Bにおける倍長波磁束P2の大きさは、周方向中心線126Aおよび周方向中心線126Bにおける倍長波磁束P2の大きさよりも大きい。
このため、図2に示すように、径方向端面115A,115Bからロータ110内に入り込む倍長波磁束P2の磁束量は、径方向端面125Aからロータ110内に入り込む倍長波磁束P2の磁束量よりも多い。
そして、径方向端面115Bからロータ110内に入り込んだ倍長波磁束P2は、ロータヨーク部109内をとおり、図2に示すように、径方向端面125A,125Bからロータ110外部に放射される。同様に、径方向端面115Aから入り込んだ倍長波磁束P2の一部は、ロータヨーク部109内をとおり、径方向端面125Aから外部に放射される。
このように、倍長波磁束P2が流れることで、各ロータコイル113A,113B,123Aに誘起電圧が発生し、各ロータコイル113A,113B,123Aが励起する。
このように、本実施の形態に係る回転電機100によれば、基本波磁束P1のみならず、倍長波磁束P2をも利用して、各ロータコイルに電圧を誘起させることができ、回転電機100の駆動効率の向上を図ることができる。
さらに、基本波磁束P1および倍長波磁束P2を用いて、ロータコイルを励起させることができるので、各ロータコイルの巻回数を低減することができ、ロータ110および回転電機100の小型化を図ることができる。
(実施の形態2)
図4を用いて、本実施の形態2に係る回転電機について説明する。なお、図4に示す構成のうち、上記図1から図2に示された構成と同一または相当する構成については、同一の符号を付してその説明を省略する場合がある。
図4を用いて、本実施の形態2に係る回転電機について説明する。なお、図4に示す構成のうち、上記図1から図2に示された構成と同一または相当する構成については、同一の符号を付してその説明を省略する場合がある。
図4は、本実施の形態2に係る回転電機に設けられロータの一部を展開した展開図である。この図4に示すように、各ロータティース112A,112B,122A,122Bは、等間隔に設けられている。
具体的には、ロータヨーク部109側に位置するロータティース112Aの付根部の周方向中心線118Aは、分割点D0をとおり、ロータティース122Aの付根部に置ける周方向中心線128Aは分割点D1を通る。
同様に、ロータティース112Bの付根部の周方向中心線118Bは、分割点D2をとおり、ロータティース122Bの付根部の周方向中心線128Bは、分割点D3を通る。
そして、ロータティース122Aおよびロータティース122Bの各径方向端面125A,125Bには、張出部127A,127Bが形成されている。張出部127Aは、ロータティース112Bに向けて張り出しており、張出部127Bは、ロータティース112Bから離れるように形成されている。各張出部127Aおよび張出部127Bは、回転中心線O方向に延びており、回転中心線O方向に配列するロータティース122A,122Bの一方の端面から他方の端面に亘って延びている。
このため、径方向端面125Aの周方向中心線126Aと、径方向端面115Bの周方向中心線116Bとの間の距離L3は、分割点D1および分割点D2間の距離Lより小さく、周方向中心線116Bと周方向中心線126Bとの間の距離L4は、距離Lより大きくなっている。
このため、周方向中心線126Aおよび周方向中心線126Bは、倍長波磁束P2の腹部から外れており、その一方で、周方向中心線116Bは、倍長波磁束P2の腹部に位置している。これにより、径方向端面115Bからロータ110内に入り込んだ倍長波磁束P2は、ロータヨーク部109内を通り、径方向端面125A,125Bから外部に放射される。
このように、倍長波磁束P2が流れることで、各ロータコイルに誘起電圧を起こすことができ、回転電機100の駆動効率の向上を図ることができる。
このように、周方向中心線126Aおよび周方向中心線126Bが、倍長波磁束P2の腹部から離れた位置に位置させる構成としては、上記図4に示すような構成に限られない。たとえば、図5に示す構成をも採用することができる。
図5は、上記図4に示されたロータ110の変形例を示すロータ110の展開図である。この図4に示すように、各ロータティース112A,112B,122A,122Bは、等間隔に設けられている。その一方で、ロータティース122Aは、ロータヨーク部109の周面から離れるにしたがって、ロータティース112Bに近接するように形成されている。さらに、ロータティース122Bは、ロータヨーク部109の周面から離れるにしたがって、ロータティース112Bから離れるように形成されている。
このような例においても、周方向中心線126Aおよび周方向中心線126Bが倍長波磁束P2の腹部から離れると共に、周方向中心線116Bが倍長波磁束P2の腹部に位置する。
これにより、倍長波磁束P2が、径方向端面115Bから入り込み、ロータヨーク部109を通って、径方向端面125Aまたは径方向端面125Bから外部に放射される。
このように、倍長波磁束P2が流れることで、各ロータコイルに誘起電圧を起こすことができ、回転電機100の駆動効率の向上を図ることができる。
以上、本発明の実施の形態について説明したが、今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
本発明は、回転電機に関し、特に、ロータティースおよびロータコイルを備えた回転電機に好適である。
100 回転電機、110 ロータ、112,122 ロータティース、113,123 ロータコイル、114、124 ダイオード。
Claims (5)
- 周面に複数のロータティース(122A,112B,122B)が形成されたロータコア(111)と、前記ロータティース(122A,112B,122B)に装着されたロータコイル(123A,113B,123B)とを含み、回転可能に設けられたロータ(110)と、
前記ロータ(110)と対向するように配置されたステータ(130)と、
を備え、
前記ロータティースは、第1ロータティース(122A)と、前記第1ロータティース(122A)と隣り合う第2ロータティース(112B)と、前記第2ロータティース(112B)に対して前記第1ロータティース(122A)と反対側に設けられた第3ロータティース(122B)とを含み、
前記第1ロータティース(122A)は、前記ステータと対向する第1端面(125A)を含み、
前記第2ロータティース(112B)は、前記ステータと対向する第2端面(115B)を含み、
前記第3ロータティース(122B)は、前記ステータと対向する第3端面(125B)を含み、
前記ロータコイルは、前記第1ロータティース(122A)に装着され、前記第1端面(125A)に第1磁極の磁気を帯びさせる第1ロータコイル(123A)と、前記第2ロータティース(112B)に装着され、前記第2端面(115B)に第2磁極の磁気を帯びさせる第2ロータコイル(113B)と、前記第3ロータティース(122B)に装着され、前記第3端面(125B)に第1磁極の磁気を帯びさせる第3ロータコイル(123B)とを含み、
前記第1端面(125A)の周方向中央部と前記第2端面(115B)の周方向中央部との間の距離(L1)と、前記第2端面(115B)の周方向中央部と前記第3端面(125B)の周方向中央部との間の距離(L2)とを異ならせた、回転電機。 - 前記ロータコアは、環状に形成されたロータヨーク部(109)を含み、
前記第1ロータティース(122A)と、前記第2ロータティース(112B)と、前記第3ロータティース(122B)とは、前記ロータヨーク部の周面に等間隔に設けられると共に、
前記第1端面(125A)には、前記第2ロータティース(112B)に向けて張り出す第1張出部が形成され、前記第3端面(125B)には、前記第2ロータティース(112B)から離れるように張り出す第2張出部が形成された、請求の範囲第1項に記載の回転電機。 - 前記ロータコアは、環状に形成されたロータヨーク部(109)を含み、
前記第1ロータティース(122A)と前記第2ロータティース(112B)との間は、前記第2ロータティース(112B)と前記第3ロータティース(122B)との間よりも狭くされた、請求の範囲第1項に記載の回転電機。 - 前記ロータコアは、環状に形成されたロータヨーク部(109)を含み、
前記第1ロータティース(122A)と、前記第2ロータティース(112B)と、前記第3ロータティース(122B)とは、前記ロータヨーク部(109)の周面に等間隔に形成され、
前記第1ロータティース(122A)は、前記ロータヨーク部(109)の周面から離れるにつれて、前記第2ロータティース(112B)に近接するように形成され、前記第3ロータティース(122B)は、前記ロータヨーク部(109)の周面から離れるにつれて、前記第2ロータティース(112B)から離れるように形成された、請求の範囲第1項に記載の回転電機。 - 前記第1ロータティース(122A)および前記第1ロータコイル(123A)と、前記第2ロータティース(112B)および前記第2ロータコイル(113B)と、前記第3ロータティース(122B)および前記第3ロータコイル(123B)とは、複数設けられ、
前記第1ロータコイル(123A)および前記第3ロータコイル(123B)は互いに接続されると共に、前記第2ロータコイル(113B)同士は互いに接続され、
前記第1ロータコイル(123A)および前記第3ロータコイル(123B)内を流れる電流の流通方向を整流する第1整流器(124)と、前記第2ロータコイル(113B)同士を接続する第2整流器(114)とをさらに備えた、請求の範囲第1項に記載の回転電機。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011518093A JP5298190B2 (ja) | 2009-06-01 | 2009-06-01 | 回転電機 |
PCT/JP2009/059993 WO2010140209A1 (ja) | 2009-06-01 | 2009-06-01 | 回転電機 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2009/059993 WO2010140209A1 (ja) | 2009-06-01 | 2009-06-01 | 回転電機 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010140209A1 true WO2010140209A1 (ja) | 2010-12-09 |
Family
ID=43297355
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/059993 WO2010140209A1 (ja) | 2009-06-01 | 2009-06-01 | 回転電機 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5298190B2 (ja) |
WO (1) | WO2010140209A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120313492A1 (en) * | 2011-06-13 | 2012-12-13 | Toyota Jidosha Kabushiki Kaisha | Electromagnetic rotary electric machine |
CN105811738A (zh) * | 2016-04-15 | 2016-07-27 | 东南大学 | 一种直驱式波浪发电用全超导初级励磁直线发电机 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6184674U (ja) * | 1984-11-09 | 1986-06-04 | ||
JP2008086161A (ja) * | 2006-09-28 | 2008-04-10 | Denso Corp | 回転電機装置 |
JP2009112091A (ja) * | 2007-10-29 | 2009-05-21 | Toyota Central R&D Labs Inc | 回転電機及びその駆動制御装置 |
-
2009
- 2009-06-01 WO PCT/JP2009/059993 patent/WO2010140209A1/ja active Application Filing
- 2009-06-01 JP JP2011518093A patent/JP5298190B2/ja not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6184674U (ja) * | 1984-11-09 | 1986-06-04 | ||
JP2008086161A (ja) * | 2006-09-28 | 2008-04-10 | Denso Corp | 回転電機装置 |
JP2009112091A (ja) * | 2007-10-29 | 2009-05-21 | Toyota Central R&D Labs Inc | 回転電機及びその駆動制御装置 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120313492A1 (en) * | 2011-06-13 | 2012-12-13 | Toyota Jidosha Kabushiki Kaisha | Electromagnetic rotary electric machine |
US9124159B2 (en) * | 2011-06-13 | 2015-09-01 | Toyota Jidosha Kabushiki Kaisha | Electromagnetic rotary electric machine |
CN105811738A (zh) * | 2016-04-15 | 2016-07-27 | 东南大学 | 一种直驱式波浪发电用全超导初级励磁直线发电机 |
CN105811738B (zh) * | 2016-04-15 | 2018-02-02 | 东南大学 | 一种直驱式波浪发电用全超导初级励磁直线发电机 |
Also Published As
Publication number | Publication date |
---|---|
JP5298190B2 (ja) | 2013-09-25 |
JPWO2010140209A1 (ja) | 2012-11-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5492458B2 (ja) | モータ | |
JP5478136B2 (ja) | 永久磁石式同期モータ | |
JP5299679B2 (ja) | モータジェネレータ | |
CN108365717B (zh) | 旋转电机 | |
JP2010178442A (ja) | 外転型永久磁石回転電機およびそれを用いたエレベータ装置 | |
JP2021503870A (ja) | 軸方向磁束モータ、半径方向磁束モータ及び横方向磁束モータ用回転子 | |
JP2016192886A (ja) | 磁石レス回転電機 | |
JP5687417B2 (ja) | 回転電機 | |
JP2018061379A (ja) | 回転電機 | |
JP2010098931A (ja) | モータ | |
JP5298190B2 (ja) | 回転電機 | |
JP2009027849A (ja) | 永久磁石式回転電機 | |
JP2006280190A (ja) | ステータ | |
WO2016174730A1 (ja) | 回転電機 | |
JP2013215028A (ja) | 単相誘導モータ | |
JP5668181B1 (ja) | 磁石式発電機 | |
JP2013219906A (ja) | 単相誘導モータ | |
JP2010081670A (ja) | 交流発電機 | |
KR100932687B1 (ko) | 고 토크밀도 하이브리드 스테핑 모터 | |
JP5478619B2 (ja) | 回転電機 | |
EP4329160A1 (en) | Magnetic geared rotary machine, power generation system, and drive system | |
WO2021149753A1 (ja) | 磁気ギアード回転電機、及びステータの製造方法 | |
JP2010166787A (ja) | 回転電機 | |
JP5798456B2 (ja) | 回転電機用ロータ | |
JP2007135290A (ja) | 高周波発電機 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09845494 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2011518093 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09845494 Country of ref document: EP Kind code of ref document: A1 |