WO2010137619A1 - 高強度成形品及びその製造方法 - Google Patents

高強度成形品及びその製造方法 Download PDF

Info

Publication number
WO2010137619A1
WO2010137619A1 PCT/JP2010/058915 JP2010058915W WO2010137619A1 WO 2010137619 A1 WO2010137619 A1 WO 2010137619A1 JP 2010058915 W JP2010058915 W JP 2010058915W WO 2010137619 A1 WO2010137619 A1 WO 2010137619A1
Authority
WO
WIPO (PCT)
Prior art keywords
strength
strength molded
molded article
tensile steel
molded product
Prior art date
Application number
PCT/JP2010/058915
Other languages
English (en)
French (fr)
Inventor
中西 栄三郎
昌幸 三宅
長井 寿
早川 正夫
孟彦 板垣
隆彦 金井
宗久 八田
川嵜 一博
Original Assignee
日産自動車株式会社
独立行政法人物質・材料研究機構
高周波熱錬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社, 独立行政法人物質・材料研究機構, 高周波熱錬株式会社 filed Critical 日産自動車株式会社
Priority to CN2010800332666A priority Critical patent/CN102482740B/zh
Priority to EP10780574.9A priority patent/EP2436796A4/en
Priority to US13/375,156 priority patent/US8932416B2/en
Publication of WO2010137619A1 publication Critical patent/WO2010137619A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/02Stamping using rigid devices or tools
    • B21D22/022Stamping using rigid devices or tools by heating the blank or stamping associated with heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • B21D22/208Deep-drawing by heating the blank or deep-drawing associated with heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D37/00Tools as parts of machines covered by this subclass
    • B21D37/16Heating or cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/34Methods of heating
    • C21D1/42Induction heating
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/673Quenching devices for die quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a high-strength molded product molded by, for example, high ductility die quenching, that is, hot pressing, and a manufacturing method thereof.
  • hot press members formed by hot pressing (also referred to as die quench or press quench) have been widely used as car body skeleton members for automobiles.
  • Such a hot press member is pressed while a member heated by a furnace or the like is transported into a mold by a transport device using a robot or the like while pressurizing the mold.
  • a hot press member is produced by cooling and quenching the member heated by the furnace etc. with the metal mold
  • the material structure remains so-called martensite and the elongation is small, so, for example, the application site of the hot press member is carefully selected in consideration of the load at the time of a vehicle collision. .
  • the application site of the hot press member is carefully selected in consideration of the load at the time of a vehicle collision. .
  • only a few parts are applicable to the body frame system member of the hot press member, and the application site has not been expanded.
  • Patent Document 1 discloses the use of a high-strength member for improving tough ductility
  • Patent Document 2 discloses the application of a steel sheet for hot rolling. .
  • the high-strength member according to Patent Document 1 is intended to improve toughness and ductility after molding cannot be said to be sufficient, and the use site is limited.
  • the hot-rolled steel sheet for hot pressing according to Patent Document 2 is a hot-rolled steel sheet suitable for hot pressing applications with reduced hardness variation, but does not have a strength comparable to that of a high-strength steel sheet. It is unsuitable for use as a vehicle body skeleton member.
  • an object of the present invention is to provide a high-strength molded product having high ductility and a method for producing the same.
  • the first configuration of the present invention is a high-strength molded product obtained by heating a high-tensile steel plate to an austenite region, press-molding and cooling in a mold,
  • the metal structure is characterized by having a martensite structure in which carbides are finely dispersed in the entire region including the pre-austenite grain boundary.
  • the second configuration of the present invention is a high-strength molded product obtained by heating a high-tensile steel plate to an austenite region, press-molding and cooling in a mold, and the structure of the high-tensile steel plate
  • the pre-austenite particle size is 10 ⁇ m or less
  • the metal structure of the high-strength molded product has a martensite structure in which carbides are finely dispersed in the entire region including the pre-austenite grain boundary.
  • the third configuration of the present invention is a high-strength molded product obtained by heating a high-tensile steel plate to an austenite region, press-molding and cooling in a mold, and the structure of the high-tensile steel plate
  • the pre-austenite particle size is 10 ⁇ m or less
  • the metal structure of the high-strength molded product has a martensite structure in which carbides are finely dispersed in the entire region including the pre-austenite grain boundary.
  • the particle diameter of the carbide is preferably 10 nm or more.
  • the particle volume fraction of the carbide is preferably in the range of 1% to 10%.
  • the high-tensile steel plate is C (indicating carbon, the same applies hereinafter): 0.1 to 0.4%, Si (indicating silicon, the same applies hereinafter): 0.2 to 3%, Cr ( Chrome is shown. The same applies hereinafter): 0.1 to 5% is contained.
  • the high-tensile steel plate is C: 0.1 to 0.4%, Si: 0.2 to 3%, Cr: 0.1 to 5%, Mo (molybdenum; the same applies hereinafter. ): 0.1 to 0.5% is contained.
  • the high-tensile steel plate further contains B (indicating boron; the same applies hereinafter): 0.0005 to 0.005%.
  • the metal structure of the high-strength molded product has a martensite structure in which carbides are finely dispersed in the entire region including the pre-austenite grain boundary. Therefore, the tensile strength is high and the ductility is high. is doing.
  • the method for producing a high-strength molded product of the present invention is to rapidly heat a high-tensile steel plate by energization heating or high-frequency heating, to heat to an austenite region, and to perform press molding and cooling in a mold. It is characterized by producing a high-strength molded product.
  • a high-strength molded article is obtained by subjecting a high-tensile steel plate in which carbide is finely dispersed in advance to a rapid heating treatment and quenching from a temperature of ⁇ 50 K to +50 K with respect to the Ac3 transformation temperature of the high-tensile steel plate. To leave undissolved carbides. Rapid heating from room temperature to the quenching temperature is preferably performed within 10 to 20 seconds.
  • a high-tensile steel sheet having a pre-austenite particle size of 10 ⁇ m or less in the structure is heated to the austenite region, and is press-formed and cooled in the mold, thereby having high tensile strength and high ductility. High strength molded articles can be produced.
  • a high-strength molded article having high ductility and a method for producing the same are provided.
  • FIG. 1 It is a perspective view which shows the body structure of a motor vehicle as an application example of the high strength molded article which concerns on embodiment of this invention. It is a figure which shows an example of a structure of the heating apparatus for the electrical heating used with the manufacturing method of the high intensity
  • FIG. 10 is a stress / strain diagram of the high-strength molded product of Example 10. It is a figure showing the electron microscope image which shows the metal structure of the high intensity
  • the high-strength molded article of the present invention is manufactured by heating a high-tensile steel plate to the austenite region, press-molding and cooling in a mold.
  • the high-tensile steel sheet has a martensite structure in which carbides are finely dispersed, and the pre-austenite particle size in the structure is preferably 10 ⁇ m or less.
  • the metal structure of the high-tensile steel plate is finely dispersed in the entire region including the pre-austenite grain boundary. For this reason, the finely dispersed carbide fine particles in the metal structure are not deposited in a film form on the pre-austenite grain boundary. By setting it as such a structure, it becomes a high strength molded article which improved ductility.
  • the heating of the high-tensile steel sheet to the austenite region is not particularly limited as long as a desired high-strength molded product is obtained, but (Ac3 transformation temperature ⁇ 50K) to (Ac3 transformation temperature + 50K). It is preferable to heat to the extent.
  • the metal structure of a high-strength molded product obtained by press-forming and cooling in a mold after heating a high-tensile steel plate becomes a martensite structure consisting of a refined pre-austenite grain size of 10 ⁇ m or less.
  • this martensite structure was found to be finely dispersed in the entire region of the metal structure including the pre-austenite grain boundary without carbides being deposited in a film form at the pre-austenite grain boundary as in the prior art. did. Thereby, a high-strength molded product having excellent ductility can be obtained.
  • Constituent element C C is the most effective element for increasing the strength. In order to obtain a strength of 980 MPa or more, it is preferable to contain 0.1% or more of C. However, if it exceeds 0.4%, it tends to cause toughness deterioration. It was supposed to contain.
  • the component element Si Si is an element effective for deoxidation and strength increase. Therefore, the content of Si is preferably 0.2% or more including that added as a deoxidizer and remaining in the steel. However, since excessive addition may cause toughness deterioration, the upper limit is preferably made 3%.
  • Component Element Cr Cr is an element effective for improving the hardenability, and is an element effective for increasing the strength of the steel sheet by dissolving in cementite. Therefore, in order to ensure hardenability and strength, the content is 0.1% or more. On the other hand, if Cr is added excessively, the effect is saturated and the toughness is lowered, so the upper limit was made 5%.
  • Mo Mo is an important element in the high-tensile steel sheet to be used, and is effective in stably generating martensite by cooling after heating the steel sheet. Moreover, Mo is effective for atomization by forming an alloy carbide. Such an effect appears at 0.1% or more. On the other hand, Mo is an expensive alloy element. Therefore, the content is 0.1 to 0.5%.
  • component element B B is an element effective in improving hardenability. In order to ensure hardenability and strength, the content is 0.0005% or more. On the other hand, when B is added excessively, the effect is saturated and the toughness is lowered, so the upper limit was made 0.005%.
  • the alloy carbide in the high-strength molded product obtained after reheating and cooling is used for the entire member.
  • a uniform fine structure is obtained, and ductility can be further improved.
  • the particle size of the metal carbide in the high-tensile steel plate is less than 0.01 ⁇ m, the effect cannot be expected, and if it exceeds 5 ⁇ m, it is too coarse and the ductility is lowered.
  • the pre-austenite particle size in the structure of the high-strength molded product is preferably 10 ⁇ m or less. Thereby, ductility can be further improved.
  • the pre-austenite particle size exceeds 10 ⁇ m, the effect of improving moldability such as deep drawability, stretchability, and shape freezeability is small.
  • the high-tensile steel plate include C: 0.1 to 0.4%, Si: 0.2 to 3%, Cr: 0.1 to 5%, with the balance being substantially iron (Fe ) And inevitable impurities.
  • the high-tensile steel plate may have a composition in which Mo is further added to the above composition.
  • high-tensile steel sheets contain C: 0.1 to 0.4%, Si: 0.2 to 3%, Cr: 0.1 to 5%, Mo: 0.1 to 0.5%
  • the balance can be substantially iron (Fe) and inevitable impurities.
  • These high-tensile steel sheets may further contain B in a proportion of 0.0005 to 0.005% in the above composition.
  • the composition of the high-tensile steel plate is not necessarily limited to these compositions.
  • the method for producing a high-strength molded product according to the present invention heats the high-tensile steel sheet rapidly by applying current heating or high-frequency heating using a heating device described later, thereby heating the austenite region,
  • This is a method of press molding and cooling in a mold.
  • the steel sheet can be heated uniformly, in a short time with high temperature accuracy, and in a state in which oxidation of the steel sheet surface is suppressed. It is not limited to what was produced by the simple manufacturing method.
  • FIG. 1 is a graph showing the relationship between the tensile strength and elongation of a hot-pressed member made of a high-strength molded product and a current steel plate according to an embodiment of the present invention.
  • the high-strength molded article manufactured by the above method has higher tensile strength and elongation as compared with the current steel plate (see reference B), for example, as shown by reference A in FIG. Have.
  • the hot press member (die quench) obtained by processing the present steel plate has a high tensile strength of about 1500 MPa as indicated by the symbol C, but its elongation is slightly over 5%.
  • the high-strength molded article according to the embodiment of the present invention has an elongation of 15% or more while having a tensile strength of about 1500 MPa or less than 1400 MPa, as indicated by symbols D and E. .
  • the elongation after cold press forming is about 10%. Therefore, the high-strength molded product according to the embodiment of the present invention is a conventional 980 MPa steel plate. It is also possible to apply to the part where is used.
  • the pre-austenite particle size becomes finer as the heating attainment temperature is lower as a feature of the microstructure obtained by heating for a short time.
  • the pre-austenite grain size of the steel sheet before die quenching is smaller than 10 ⁇ m.
  • FIG. 2 is an electron microscopic image showing a finely dispersed state of undissolved carbide when the heating temperature is low in an example of a high-strength molded product according to an embodiment of the present invention.
  • the electron acceleration voltage is 15 kV, and the magnification is 20,000 times. As shown in FIG.
  • the pre-austenite particle size in the high-strength molded product is, for example, about 3 ⁇ m.
  • the white grains shown in FIG. 2 are carbides dispersed in the martensite structure. It can be seen that the carbide is not deposited in the form of a film at the pre-austenite grain boundary and is finely dispersed in the entire region of the metal structure including the pre-austenite grain boundary. That is, in the metal structure of the high-strength molded article of the present invention, it is an important characteristic that the carbides are finely dispersed including the pre-austenite grain boundary, which is not found in the prior art. Conventionally, it has been difficult to suppress the precipitation of carbide in the form of a film at the pre-austenite grain boundary. When the heating temperature is high, undissolved carbides do not remain in the metal structure of the high-strength molded product.
  • the carbide dispersion state of the high-strength molded product in which the carbide is finely dispersed to obtain a martensite structure will be described.
  • the particle dispersion index of the carbide is defined by the following equation (1).
  • the particle dispersion index is an amount proportional to the strain hardening rate based on Ashby's strain hardening theory.
  • “Fine” in the fine dispersion means that the particle dispersion index of the carbide represented by the formula (1) is 0.02 or more.
  • 3A and 3B are diagrams showing the relationship of the intensity increment with respect to the particle spacing L, and FIG.
  • the horizontal axis indicates the particle spacing L (nm).
  • the vertical axis in FIG. 3A indicates (d) 1/2
  • the vertical axis in FIG. 3B indicates intensity increment (relative scale).
  • equation (1) is a linear gradient passing through the origin. The strain hardening rate is proportional to this linear gradient. For this reason, higher ductility can be obtained by increasing the linear gradient of the carbide particle dispersion, that is, by increasing the particle dispersion index.
  • the particle volume ratio is indicated by a dotted line, if the volume ratio is too large, it becomes a factor of ductility reduction, and if it is too small, the effect of improving strain hardening rate cannot be exhibited and ductility is not improved, so the upper limit is 10%, At least 1% is desirable.
  • the particle diameter is 10 nm or less, there is no effect of increasing the stress of the high-strength molded product. For this reason, the particle diameter is set to 10 nm or more for increasing the stress.
  • the intensity increase due to particle dispersion depends only on the particle interval, and is larger as the particle interval is smaller. Accordingly, the particle dispersion index needs to be 0.02 or more.
  • the particle dispersion index can be measured by the following procedure.
  • FIG. 4 is a diagram schematically showing a dispersion state of carbides. As shown in the figure, the carbide 2 is dispersed in the high-strength molded article 1. The particle diameter d and the particle interval L of the dispersed carbide 2 are obtained by the intercept method shown in FIG. Here, observation is made excluding carbide particles having a particle diameter d of 10 nm or less (d ⁇ 10 nm).
  • the metal structure of the high-strength molded article 1 for electron microscope observation can be flattened by the electropolishing method disclosed in Patent Document 3 and Non-Patent Document 1.
  • the case where the average value of each visual field has a so-called Bi-modal distribution is not applicable.
  • the particle diameter d and the particle interval L obtained by the equation (1) and the above measurement method are effective for obtaining a particle dispersion index that serves as an index for obtaining higher ductility.
  • the high-strength molded article according to the embodiment of the present invention can be applied to all machine parts, and can be used for various parts of a transportation vehicle, for example. Examples of such parts include various pillars used in the body structure, reinforcing members for bumpers, reinforcing materials for door guards such as guard bars, and the like.
  • FIG. 5 is a perspective view showing a body structure of an automobile as an application example of the high-strength molded product according to the embodiment of the present invention.
  • the high-strength molded article according to the embodiment of the present invention can be suitably used for pillars that require strength, particularly the front pillar 6 and the center pillar 7 in the body structure 5.
  • FIG. 6 is a diagram illustrating an example of a configuration of a heating device for energization heating used in the method for manufacturing a high-strength molded product according to the embodiment of the present invention.
  • a heating apparatus 10 includes two electrodes 12 and 13 configured to be able to sandwich a high-tensile steel plate 11 to be heated at both ends, and pressurizing cylinders 14 and 15 that pressurize these electrodes 12 and 13 respectively. And a transformer 16 whose secondary side is connected to these electrodes 12 and 13, and an AC power source 18 connected to the primary side of this transformer 16 via a thyristor 17 for phase control.
  • the power from the AC power source 18 is phase-controlled by the thyristor 17, the power is controlled to the electrodes 12 and 13 through the transformer 16, and the high-tensile steel plate 11 is energized.
  • the dimensions of the high-tensile steel plate 11 are, for example, a width of 400 mm, a length of 800 mm, and a height of 1.6 mm.
  • the reciprocating length from the output lead wire 19 of the transformer 16 to the high-tensile steel plate 11 is the same.
  • the transformer 16 is arranged above the high-tensile steel plate 11 and wired so that the left and right output lead wires 19 have the same length.
  • FIG. 7 is a diagram showing an example of the configuration of a heating device for high-frequency induction heating used in the method for manufacturing a high-strength molded product according to the embodiment of the present invention.
  • the heating device 20 includes a heating coil 21 disposed so as to surround the high-tensile steel plate 11 to be heated, a transformer 22 whose secondary side is connected to the heating coil 21, and a primary side of the transformer 22.
  • the inverter 23 energizes the inverter 23 and the high-frequency power source 24 that feeds power to the inverter 23.
  • the heating coil 21 is preferably such that both ends are wound more densely than the center so that the high-tensile steel plate 11 can be uniformly heated to both ends.
  • a high-frequency current supplied from the high-frequency power source 24 via the inverter 23 is supplied to the heating coil 21 via the transformer 22 to inductively heat the high-tensile steel plate 11 disposed in the heating coil 21.
  • the high-tensile steel plate 11 is heated to about 950 ° C., for example.
  • rapid heating is possible as compared with the heating method in the conventional hot press working, that is, the method in which a high-tensile steel plate is sandwiched between heated steel materials.
  • the high-tensile steel plate 11 rapidly heated to about 950 ° C. by the heating device 10 or 20 is then mounted on a press mold by a robot or the like, pressed, and die-cooled, thereby achieving high ductility.
  • a high-strength molded article having the following is produced.
  • FIG. 8 is a graph showing a heating state of quenching by the heating device 20 of FIG.
  • the high-tensile steel plate is rapidly heated to the temperature T1 in 10 seconds by the heating device 20, and then is brought into the atmosphere or an inert gas atmosphere at a predetermined pressure, and is transferred into the mold to be used for the mold. By pressing while pressing, it is cooled by the mold and quenched.
  • helium (He) or nitrogen can be used as the inert gas.
  • the pressure is, for example, 0.5 MPa.
  • FIG. 9 is a graph showing a modification of quenching by the heating device 20 of FIG.
  • the high-tensile steel plate is again heated to the temperature T ⁇ b> 2 in 5 seconds with the heating device 20 and allowed to cool for 5 seconds.
  • the atmosphere or in an inert gas atmosphere of a predetermined pressure it is transferred into the mold and pressed while pressing the mold, so that the mold is cooled and quenched.
  • He or nitrogen can be used as the inert gas.
  • the pressure is, for example, 0.5 MPa.
  • the base material of the high-strength molded product is a high-tensile steel plate containing C: 0.18%, Mn: 0.4%, Mo: 0.30%. Furthermore, a high-tensile steel plate containing Si and Cr is used. The high-tensile steel plate has a width of 400 mm, a length of 800 mm, and a height of 1.6 mm.
  • the high-strength molded article of each Example was produced by the heating method of FIG. 8 or FIG. 9 described above.
  • FIG. 10 is a diagram showing the composition of Si and Cr of the high-tensile steel plate, the production conditions of the high-strength molded product of the example by the heating device 20, and the hardness of the high-strength molded product after production.
  • Si: 0.2% and Cr: 1% are further added to the above composition.
  • T1 was set to 1000 ° C., heating was performed for 5 seconds until T1, and die quenching was performed to produce a high-strength molded product.
  • the hardness of this high-strength molded product was 411 HV.
  • FIG. 11 is a diagram showing the results of measuring the heating temperature, the pre-austenite grain size ( ⁇ m), the ⁇ -forming lower limit temperature, and the Ac3 transformation temperature of Examples 1, 4, 7, and 10.
  • the pre-austenite particle sizes at heating temperatures of 900 ° C., 950 ° C., and 1000 ° C. were 10.5 ⁇ m, 14.8 ⁇ m, and 17.6 ⁇ m, respectively.
  • the lower ⁇ -forming temperature was 975 ° C.
  • the Ac3 transformation temperature was 878 ° C.
  • Example 4 the pre-austenite particle sizes at heating temperatures of 850 ° C., 900 ° C., 950 ° C., and 1000 ° C. were 5.2 ⁇ m, 6.2 ⁇ m, 7.4 ⁇ m, and 8.8 ⁇ m, respectively.
  • the lower ⁇ -forming temperature was 820 ° C
  • the Ac3 transformation temperature was 873 ° C.
  • Example 7 the pre-austenite particle sizes at heating temperatures of 900 ° C., 950 ° C., and 1000 ° C. were 6.2 ⁇ m, 7.4 ⁇ m, and 10.5 ⁇ m, respectively.
  • the lower ⁇ -forming temperature was 925 ° C.
  • the Ac3 transformation temperature was 980 ° C.
  • Example 10 the pre-austenite particle sizes at heating temperatures of 850 ° C., 900 ° C., 950 ° C., and 1000 ° C. were 5.2 ⁇ m, 6.2 ⁇ m, 7.4 ⁇ m, and 8.8 ⁇ m, respectively.
  • the lower ⁇ -forming temperature was 925 ° C.
  • the Ac3 transformation temperature was 972 ° C.
  • FIG. 12 is a graph showing the relationship between tensile strength and elongation in Examples 1 to 10.
  • the horizontal axis of FIG. 12 is the tensile strength (MPa), and the vertical axis is the elongation (%).
  • the tensile strength was evaluated by a tensile test based on JISZ2241, using a JIS Z2201 No. 5 test piece as the tensile strength (TS) of the portion corresponding to the bottom of the press punch.
  • TS tensile strength
  • Examples 4 and 7 show an elongation of 15% or more, indicating that the ductility is better.
  • the quenching temperature is as high as 1000 ° C. with respect to the Ac3 transformation temperature of 878 ° C., no insoluble carbides remain, and the pre-austenite particle size is 10 ⁇ m or more, so the ductility is low. It is thought that it has become.
  • the quenching temperature T1 is within the temperature range of ⁇ 50K to + 50K with respect to the Ac3 transformation temperature.
  • the tensile strength ⁇ elongation is considerably decreased in Example 1, but is maintained at about 25000 in Examples 4 and 7. In other Examples 2, 3, 5, 6, 8 to 10, it is about 15000.
  • FIG. 13 is a stress / strain diagram of the high-strength molded product of Example 3.
  • the horizontal axis of FIG. 13 is tensile strain (%), and the vertical axis is tensile stress (MPa).
  • MPa tensile stress
  • FIG. 14 is an electron microscope image showing the metal structure of the high-strength molded product of Example 3.
  • the electron acceleration voltage is 15 kV, and the magnification is 20,000 times.
  • a martensite structure in which carbides are finely dispersed is observed.
  • the carbide is not precipitated in the form of a film at the pre-austenite grain boundary and is finely dispersed in the entire region of the metal structure including the pre-austenite grain boundary.
  • T1 900 ° C.
  • the Ac3 transformation temperature 868 ° C.
  • FIG. 15 is a diagram showing the results of examining the particle dispersion of the high-strength molded product of Example 3.
  • the horizontal axis in FIG. 15 is the average particle size (nm) of the carbide, and the vertical axis is the frequency.
  • the measurement results are shown below.
  • Number of particles 215 Average particle size d: 32.5 nm
  • Particle spacing L 291 nm
  • the particle dispersion index was determined from the average particle diameter d and the particle interval L, it was 0.02. The elongation at break of this sample was 8%.
  • FIG. 16 is a stress / strain diagram of the high-strength molded product of Example 4.
  • the horizontal and vertical axes in FIG. 16 are the same as those in FIG.
  • the high-strength molded product of Example 4 showed uniform elongation up to a high tensile stress of 1300 MPa or higher, and then fractured at a tensile strain of 16%. Thereby, it turns out that the test piece of Example 4 has high ductility.
  • Example 4 As shown in FIG. 10, it was quenched at a temperature T1 (850 ° C.) lower than the Ac3 transformation temperature (873 ° C.) and higher than the ⁇ -forming lower limit temperature 820 ° C., and the pre-austenite particle size was 5.2 ⁇ m.
  • FIG. 17 is a diagram showing the results of examining the particle dispersion of the high-strength molded product of Example 4.
  • the horizontal and vertical axes in FIG. 17 are the same as those in FIG. The measurement results are shown below.
  • the particle dispersion index was determined from the average particle diameter d and the particle interval L, it was 0.03.
  • the elongation of this sample was 16%.
  • the particle dispersion index of Example 4 was larger than that of Example 3, and accordingly, it was found that the elongation at break was twice that of Example 3. From this, it was found that the particle dispersion index of the formula (1) is effective for evaluating the ductility of a high-strength molded article.
  • FIG. 18 is a stress / strain diagram of the high-strength molded product of Example 10.
  • the horizontal and vertical axes in FIG. 18 are the same as those in FIG.
  • the high-strength molded product of Example 10 showed uniform elongation up to a high tensile stress of 1300 MPa or higher, and then fractured with a tensile strain of less than 13%. Thereby, it turns out that the test piece of Example 10 also has high ductility.
  • FIG. 19 is an electron microscope image showing the metal structure of the high-strength molded product of Example 10.
  • the electron acceleration voltage is 15 kV, and the magnification is 5,000 times.
  • FIG. 19 it is observed that a martensite structure in which carbides are finely dispersed is formed.
  • the carbide is not precipitated in the form of a film at the pre-austenite grain boundary and is finely dispersed in the entire region of the metal structure including the pre-austenite grain boundary. I understand.
  • Example 10 as shown in FIG.
  • quenching was performed at a temperature T1 (950 ° C.) lower than the Ac3 transformation temperature (972 ° C.) and higher than the ⁇ -forming lower limit temperature 925 ° C., and the pre-austenite grain size was 7 .4 ⁇ m.
  • the ductility is improved in Examples 2 to 9, especially Examples 4 and 7. More specifically, in Examples 2 to 9, the initially prepared steel sheets have a martensite structure in which carbides are finely dispersed, the main phase, other residual austenite and alloy precipitates, and an Ac3 transformation temperature of 858 to It is a material at 980 ° C.
  • the heating temperature is preferably in the range of ⁇ 50 K to +50 K with respect to the Ac3 transformation temperature from the viewpoint of refining the pre-austenite grain size and finely dispersing the alloy precipitation, so that the effect of sufficiently improving the ductility can be obtained. It is thought that.
  • rapid heating of the high-tensile steel plate is performed by the high-frequency heating device 20 shown in FIG. 7.
  • the present invention is not limited to this embodiment.
  • rapid heating to a desired heating temperature is performed in about 10 seconds. If possible, rapid heating may be performed using the energizing heating device 10 shown in FIG. 6 or another heating device.
  • a hot press member can provide a high-strength molded product having high ductility and a method for manufacturing the same.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

 高張力鋼板(11)をオーステナイト域に加熱し、金型内でプレス成形及び冷却して成る高強度成形品(1)であり、金属組織は前オーステナイト粒界を含む全領域において炭化物(2)が微細分散されたマルテンサイト組織を有している。さらに、母材となる高張力鋼板の組織中の前オーステナイト粒径が10μm以下であるようにすることが好ましい。高強度成形品は、上記のマルテンサイト組織を有しているので、引張り強度が高く、且つ高い延性を有している。

Description

高強度成形品及びその製造方法
 本発明は、例えば高延性ダイクエンチ、すなわち熱間プレスにより成形した高強度成形品及びその製造方法に関するものである。
 従来、自動車用の車体骨格系部材等として、熱間プレス(ダイクエンチ又はプレスクエンチとも呼ばれている。)で成形された部材(以下、熱間プレス部材と呼ぶ。)が広く使用されている。このような熱間プレス部材は、炉等により加熱した部材をロボットなどを用いた搬送装置で金型内に搬送して金型を加圧しながらプレスする。金型で炉等により加熱した部材を冷却して焼入れを行うことで、熱間プレス部材が作製される。
 しかしながら、炭素を添加した高張力鋼板では材料組織が所謂マルテンサイトのままであり伸びが小さいため、例えば車体衝突時の負荷などを勘案し、熱間プレス部材の適用部位を慎重に選定している。その結果、熱間プレス部材の車体骨格系部材への適用部品も幾つかに留まり、適用部位の拡大に至っていない。
 これに対して、熱間プレスで焼入れが施された部材の延性を向上させるため、熱処理で焼き戻しを行う方法も考えられるが、従来の冷間プレスよりコストが嵩む。これでは、高強度な部材を安価に製造できるという熱間プレスのメリットが失われ、現実的ではない。
 熱間プレスした部材に打ち抜きや切断などの後加工を施す場合、その加工端部が脆化し易いため、後加工工法には特別の配慮を払う必要がある。しかし、例えば、レーザなどでの後加工工法では、加工コストが非常に嵩む問題がある。
 熱間プレス用の鋼板としては、特許文献1には靭延性を向上させるための高強度部材を使用することが開示され、特許文献2には熱延用鋼板を適用することが開示されている。
特開2007-308745号公報 特開2006-265583号公報 特許第4006513号公報
早川正夫、松岡三郎、「原子間力顕微鏡による焼戻しマルテンサイトの組織解析」、まてりあ 43巻、第9号、pp.717-723、2004年
 しかしながら、特許文献1による高強度部材は、靭延性の向上を目的としており、成形後の延性は十分とはいえず、使用部位が限定されてしまう。
 特許文献2による熱間プレス用熱延鋼板は、硬度バラツキを小さくして熱間プレス用途に好適な熱延鋼板であるが、高強度鋼板に匹敵するような強度を有しておらず、従って車体骨格系部材として使用するには不適である。
 本発明は、上記課題に鑑み、高延性を有する高強度成形品及びその製造方法を提供することを目的としている。
 上記目的を達成するため、本発明の第一の構成は、高張力鋼板をオーステナイト域に加熱し、金型内でプレス成形及び冷却して成る高強度成形品であって、高強度成形品の金属組織は、前オーステナイト粒界を含む全領域において炭化物が微細分散されたマルテンサイト組織を有することを特徴とする。
 上記目的を達成するため、本発明の第二の構成は、高張力鋼板をオーステナイト域に加熱し、金型内でプレス成形及び冷却して成る高強度成形品であって、高張力鋼板の組織中の前オーステナイト粒径が10μm以下であり、高強度成形品の金属組織は、前オーステナイト粒界を含む全領域において炭化物が微細分散されたマルテンサイト組織を有していることを特徴とする。
 上記目的を達成するため、本発明の第三の構成は、高張力鋼板をオーステナイト域に加熱し、金型内でプレス成形及び冷却して成る高強度成形品であって、高張力鋼板の組織中の前オーステナイト粒径が10μm以下であり、高強度成形品の金属組織は、前オーステナイト粒界を含む全領域において炭化物が微細分散されたマルテンサイト組織を有しており、微細分散させた炭化物の粒子直径をdとし、粒子間の間隔をLとしたときに、下記(1)式で表わされる炭化物の粒子分散指数が、0.02以上であることを特徴とする。
 粒子分散指数=(粒子径の平方根)/粒子間隔=(d)1/2/L   (1)
 上記構成において、炭化物の粒子直径は、好ましくは、10nm以上である。炭化物の粒子体積率は、好ましくは、1%~10%の範囲内である。
 上記構成において、好ましくは、高張力鋼板は、C(炭素を示す。以下同じ):0.1~0.4%、Si(珪素を示す。以下同じ):0.2~3%、Cr(クロムを示す。以下同じ):0.1~5%を含有する。
 上記構成において、好ましくは、前記高張力鋼板が、C:0.1~0.4%、Si:0.2~3%、Cr:0.1~5%、Mo(モリブデンを示す。以下同じ):0.1~0.5%を含有する。
 上記構成において、好ましくは、高張力鋼板が、さらにB(ホウ素を示す。以下同じ):0.0005~0.005%を含有する。
 上記構成によれば、高強度成形品の金属組織は、前オーステナイト粒界を含む全領域において炭化物が微細分散されたマルテンサイト組織を有しているので、引張り強度が高く、且つ高い延性を有している。
 上記目的を達成するため、本発明の高強度成形品の製造方法は、高張力鋼板を通電加熱又は高周波加熱により急速加熱して、オーステナイト域に加熱し、金型内でプレス成形及び冷却して高強度成形品を製造することを特徴とする。
 上記構成において、前もって炭化物を微細分散させた高張力鋼板を、好ましくは、急速加熱処理し、高張力鋼板のAc3変態温度に対して-50K~+50Kの温度から焼入れすることによって、高強度成形品に未固溶炭化物を残存させる。室温から焼入れ温度までの急速加熱は、好ましくは、10~20秒以内で行う。
 上記構成によれば、組織中の前オーステナイト粒径が10μm以下である高張力鋼板をオーステナイト域に加熱し、金型内でプレス成形及び冷却することにより、引張り強度が高く、且つ高い延性を有する高強度成形品を生成することができる。
 以上のように、本発明によれば、高延性を有する高強度成形品及びその製造方法が提供されることになる。
本発明の実施形態に係る高強度成形品及び現行鋼板による熱間プレス部材の引張り強さと伸びの関係を示すグラフである。 本発明の実施形態に係る高強度成形品の一例における加熱温度が低い場合の未固溶炭化物の微細分散状態を示す像である。 (A)が(1)式を、(B)が粒子間隔Lに対する強度増分の関係を示す図である。 炭化物の分散状態を模式的に示す図である。 本発明の実施形態に係る高強度成形品の応用例として自動車のボデー構造を示す斜視図である。 本発明の実施形態に係る高強度成形品の製造方法で使用する通電加熱のための加熱装置の構成の一例を示す図である。 本発明の実施形態に係る高強度成形品の製造方法で使用する高周波加熱のための加熱装置の構成の一例を示す図である。 図7の加熱装置による焼入れの加熱状態を示すグラフである。 図7の加熱装置による焼入れの変形例を示すグラフである。 高張力鋼板のSi及びCrの組成と加熱装置による実施例の高強度成形品の作製条件及び作製後の高強度成形品の硬さを示す図である。 実施例1,4,7,10について、加熱温度と母材の前オーステナイト粒径(μm),γ化下限温度,Ac3変態温度を測定した結果を示す図である。 実施例1~10の引張り強度と伸びの関係を示すグラフである。 実施例3の高強度成形品の応力・歪線図である。 実施例3の高強度成形品の金属組織を示す電子顕微鏡像を表した図である。 実施例3の高強度成形品の粒子分散を調べた結果を示す図である。 実施例4の高強度成形品の応力・歪線図である。 実施例4の高強度成形品の粒子分散を調べた結果を示す図である。 実施例10の高強度成形品の応力・歪線図である。 実施例10の高強度成形品の金属組織を示す電子顕微鏡像を表した図である。
  1  高強度成形品
  2  炭化物
  5  ボデー構造
  6  フロントピラー
  7  センターピラー
 10  加熱装置(通電加熱装置)
 11  高張力鋼板
 12,13  電極
 14,15  加圧シリンダ
 16  トランス
 17  サイリスタ
 18  交流電源
 19  出力リード線
 20  加熱装置(高周波加熱装置)
 21  加熱コイル
 22  トランス
 23  インバータ
 24  高周波電源
 以下、本発明の高強度成形品について詳細に説明する。なお、本明細書及び特許請求の範囲において、濃度,含有量等についての「%」表記は、特記しない限り質量百分率を表わすものとする。
 本発明の高強度成形品は、高張力鋼板をオーステナイト域に加熱し、金型内でプレス成形及び冷却して製造される。そして、この高張力鋼板は、炭化物を微細分散させたマルテンサイト組織を有し、好ましくはその組織中の前オーステナイト粒径が10μm以下である。
 ここで、高張力鋼板の金属組織は、炭化物が前オーステナイト粒界を含む全領域において微細分散されている。このため、金属組織中の微細分散された炭化物微粒子は、前オーステナイト粒界上にフィルム状には析出していない状態となる。
 このような構成とすることにより、延性を向上させた高強度成形品となる。
 ここで、高張力鋼板のオーステナイト域への加熱は、所望の高強度成形品が得られれば加熱方法について特に限定されるものではないが、(Ac3変態温度-50K)~(Ac3変態温度+50K)程度に加熱することが好ましい。
 加熱温度が(Ac3変態温度-50K)未満である場合には、高張力鋼板の金属組織を逆変態させることができず、優れた延性を有する高強度成形品が得られにくい。
 一方、加熱温度が(Ac3変態温度+50K)より高い場合には、高張力鋼板の金属組織に残存する未固溶炭化物が著しく減少するため好ましくない。
 高張力鋼板を加熱後に金型内でプレス成形及び冷却することで得た高強度成形品の金属組織は、微細化された10μm以下の前オーステナイト粒径からなるマルテンサイト組織となる。
 このマルテンサイト組織は、驚くべきことには、従来のように炭化物が前オーステナイト粒界にフィルム状に析出せず、前オーステナイト粒界を含む金属組織の全領域において微細分散されていることが判明した。これにより、優れた延性を有する高強度成形品を得ることができる。
 以下に、高張力鋼板の成分元素等について説明する。
 成分元素Cについて
 Cは強度増加に最も有効な元素である。980MPa以上の強度を得るためには、Cを0.1%以上含有することが好適であるが、0.4%を超えると、靭性劣化を招き易いことから、0.1~0.4%含有するものとした。
 成分元素Siについて
 Siは脱酸及び強度増加に有効な元素である。従って、Siは、脱酸材として添加したもので鋼中に残るものを含め、含有量を0.2%以上とすることがよい。但し、過剰な添加は靭性劣化を起こす場合があるため、上限を3%とすることがよい。
 成分元素Crについて
 Crは焼入れ性向上に有効な元素であると共に、セメンタイト中に固溶して鋼板の強度上昇に有効な元素である。従って、焼入れ性と強度を確保するため、0.1%以上含有するものとした。一方、Crを過剰に添加すると、その効果が飽和すると共に、靭性が低下してしまうため、上限を5%とした。
 成分元素Moについて
 Moは用いる高張力鋼板において重要な元素であり、鋼板の加熱後の冷却によって、安定してマルテンサイトを生成させるのに有効である。また、Moは合金炭化物を形成することで微細粒化に有効である。このような効果は、0.1%以上で現われる。一方、Moは高価な合金元素である。そのため、0.1~0.5%含有するものとした。
 成分元素Bについて
 Bは焼入れ性向上に有効な元素である。焼入れ性と強度を確保するため、0.0005%以上含有するものとした。一方、Bを過剰に添加すると、その効果が飽和すると共に、靭性が低下してしまうため、上限を0.005%とした。
 熱間プレス前の高張力鋼板中の組織を金属(合金)炭化物が微細分散化したマルテンサイトとすることにより、再加熱し、冷却した後に得られる高強度成形品中の合金炭化物が、部材全体で均一微細構造になり、より延性を向上させることができる。但し、高張力鋼板中の金属炭化物の粒径は0.01μm未満では、その効果が期待できず、5μmを超えると、粗大過ぎて延性を低下させることになる。
 また、本発明においては、当該高強度成形品の組織中の前オーステナイト粒径が10μm以下であることが好ましい。これにより、さらに延性を向上させることができる。前オーステナイト粒径が10μmを超えると、深絞り性,張出し性,形状凍結性等の成形性の向上効果が小さいものとなる。
 高張力鋼板には、上述した成分元素以外にも、所期の効果を妨げない範囲で各種元素を添加することができる。
 高張力鋼板の好適例として、C:0.1~0.4%、Si:0.2~3%、Cr:0.1~5%の割合で含有し、残部は実質的に鉄(Fe)及び不可避的不純物であるものを挙げることができる。高張力鋼板は、上記組成にさらにMoを添加した組成としてもよい。例えば、高張力鋼板は、C:0.1~0.4%、Si:0.2~3%、Cr:0.1~5%、Mo:0.1~0.5%の割合で含有し、残部は実質的に鉄(Fe)及び不可避的不純物であるものを挙げることができる。これらの高張力鋼板には、上記組成にさらにBを0.0005~0.005%の割合で含有させてもよい。高張力鋼板の組成は、必ずしもこれらの組成に限定されるものではない。
 次に、本発明の高強度成形品の製造方法について詳細に説明する。
 上述のごとく、本発明の高強度成形品の製造方法は、後述する加熱装置を利用して通電加熱又は高周波加熱を施して上記高張力鋼板を急速加熱することで、オーステナイト域に加熱し、金型内でプレス成形及び冷却する方法である。
 このような方法を実施することで、鋼板を均一に、しかも短時間で温度精度良く、さらに鋼板表面の酸化を抑制した状態で加熱することができるが、本発明の高強度成形品はこのような製造方法によって作製されたものに限定されるものではない。
 図1は、本発明の実施形態に係る高強度成形品及び現行鋼板による熱間プレス部材の引張り強さと伸びの関係を示すグラフである。
 図1に示すように、上記方法で製造された高強度成形品は、例えば図1に符号Aで示すように、現行の鋼板(符号B参照)と比較して、より高い引張り強度及び伸びを有している。そして、現行の鋼板を処理して得られる熱間プレス部材(ダイクエンチ)は、符号Cで示すように、1500MPa程度の高い引張り強さを有しているが、その伸びは5%強である。これに対して、本発明の実施形態に係る高強度成形品は、符号D,Eで示すように、1500MPa程度又は1400MPa弱の引張り強さを備えつつ、15%以上の伸びを有している。
 ちなみに、現行の所謂980MPa鋼板(符号F参照)では、冷間プレス成形後(符号G参照)の伸びは10%程度になるので、本発明の実施形態に係る高強度成形品は、従来980MPa鋼板が使用される部位にも適用することが可能である。
 本発明の実施形態に係る高強度成形品は、短時間加熱で得られるミクロ組織の特徴として、加熱到達温度が低いほど、前オーステナイト粒径が微細になる。ここで、ダイクエンチ前の鋼板の前オーステナイト粒径は10μmよりも小さい。
 図2は、本発明の実施形態に係る高強度成形品の一例における加熱温度が低い場合の未固溶炭化物の微細分散状態を示す電子顕微鏡像である。電子の加速電圧は15kVであり、倍率は2万倍である。
 図2に示すように、高強度成形品中の前オーステナイト粒径は例えば3μm程度になる。図2に示す白い粒がマルテンサイト組織中に分散している炭化物である。炭化物は、前オーステナイト粒界にフィルム状に析出していないことと、前オーステナイト粒界を含む金属組織の全領域において微細分散されていることが分かる。つまり、本発明の高強度成形品の金属組織では、炭化物が前オーステナイト粒界を含めて微細分散していることが、従来技術にはない重要な特徴である。従来、炭化物を前オーステナイト粒界にフィルム状に析出するのを抑制することが困難であった。
 なお、加熱温度が高いと、高強度成形品の金属組織には未固溶炭化物が残存しなくなってしまう。
 炭化物を微細分散させ、マルテンサイト組織とした高強度成形品の炭化物の分散状態について説明する。
 分散した炭化物の粒子直径をdとし、粒子間の間隔(粒子間隔)をLとすると、下記(1)式で炭化物の粒子分散指数を定義する。
 粒子分散指数=(粒子径の平方根)/粒子間隔=(d)1/2/L   (1)
 粒子分散指数は、Ashbyの歪硬化理論に基づけば、歪硬化率に比例する量である。
 微細分散における「微細」とは(1)式で表わされる炭化物の粒子分散指数が、0.02以上であることを意味する。
 図3は、(A)が(1)式を、(B)が粒子間隔Lに対する強度増分の関係を示す図である。横軸は、粒子間隔L(nm)を示している。図3(A)の縦軸は(d)1/2を、図3(B)の縦軸は強度増分(相対目盛)を示している。
 図3(A)においては、(1)式は原点を通る直線勾配となる。歪硬化率はこの直線勾配に比例する。このため、炭化物の粒子分散は直線勾配が大きくなるように、つまり、粒子分散指数を大きくするとより高延性が得られる。粒子体積率を点線で示しているが、体積率が大きすぎると延性低下の要因になり、少なすぎると歪硬化率向上の効果が発揮できず延性向上に至らないため、上限は10%とし、最低でも1%以上が望ましい。粒子径が10nm以下では、高強度成形品の応力増加の効果がない。このため、応力増加のためには、粒子径は10nm以上とする。
 図3(B)に示すように、粒子分散による強度増分は粒子間隔にのみ依存し、粒子間隔が小さいほど大きい。従って、上記粒子分散指数としては、0.02以上が必要である。
(粒子分散指数の測定方法)
 粒子分散指数は、以下の手順で測定することができる。
(イ)高強度成形品の金属組織を、電子顕微鏡で観察する。例えば、倍率は2万倍の視野とする。図4は、炭化物の分散状態を模式的に示す図である。図示するように、高強度成形品1中に炭化物2が分散している。図4に示す切片法で、分散した炭化物2の粒子直径dと粒子間隔Lを求める。ここで、粒子直径dが10nm以下(d<10nm)の炭化物の粒子は除外して観察する。電子顕微鏡観察のための高強度成形品1の金属組織は、特許文献3及び非特許文献1に開示されている電解研磨方法で平坦化することができる。
(ロ)一視野毎に、炭化物2の粒子直径dと粒子間隔Lの平均値を、それぞれ求める。
 ここで、複数の視野で、それぞれの視野の平均値が、いわゆるBi-modal分布となる場合は適用外とする。
(ハ)少なくとも三視野以上の値の平均値を持って、粒子分散指数を計算する。
 (1)式及び上記測定方法で求める粒子直径dと粒子間隔Lは、あくまでもより高延性を得ようとする際の指標となる粒子分散指数を求めるために有効なものである。
 本発明の実施形態に係る高強度成形品は、あらゆる機械部品に適用でき、例えば輸送用車両の各種部品に用いることができる。このような部品としては、ボデー構造で使用される各種ピラー、バンパーの補強部材、ガードバー等のドアガード用の補強材等が挙げられる。
 図5は、本発明の実施形態に係る高強度成形品の応用例として、自動車のボデー構造を示す斜視図である。本発明の実施形態に係る高強度成形品は、ボデー構造5の内、強度が必要なピラー、特にフロントピラー6やセンターピラー7に好適に使用することができる。
 図6は、本発明の実施形態に係る高強度成形品の製造方法で使用する通電加熱のための加熱装置の構成の一例を示す図である。
 図6において、加熱装置10は、加熱すべき高張力鋼板11を両端でそれぞれ挟持可能に構成された二つの電極12,13と、これらの電極12,13をそれぞれ加圧する加圧シリンダ14,15と、これらの電極12,13に二次側が接続されるトランス16と、このトランス16の一次側に位相制御のためのサイリスタ17を介して接続される交流電源18と、から構成されている。
 交流電源18からの電力を、サイリスタ17により位相制御して、トランス16を介して電極12,13に対して電力制御を行い、高張力鋼板11に通電する。
 高張力鋼板11の寸法は、例えば幅400mm,長さ800mm,高さ1.6mmである。この高張力鋼板11を例えば通電電流20000A,通電時間10秒で加熱を行うことで、高張力鋼板11は、加圧シリンダ14,15により加圧された状態で、例えば約950℃程度まで加熱される。
 高張力鋼板11を均一に加熱するためにトランス16の出力リード線19から高張力鋼板11までの往復長さを同じにすることが好ましい。このため、図示するように、トランス16を高張力鋼板11の上方に配置し、左右の出力リード線19の長さが同一となるように配線をしている。このような配線をすることで、出力リード線19の各ポイントの電流密度を同様にして、高張力鋼板11に均一電流を流すことができる。このように、高張力鋼板11の均熱化を図っている。
 図7は本発明の実施形態に係る高強度成形品の製造方法で使用する高周波誘導加熱のための加熱装置の構成の一例を示す図である。
 図7において、加熱装置20は、加熱すべき高張力鋼板11を包囲するように配置された加熱コイル21と、この加熱コイル21に二次側が接続されるトランス22と、このトランス22の一次側に通電を行うインバータ23と、インバータ23に給電する高周波電源24と、から構成されている。
 ここで、上記加熱コイル21は、好ましくは、高張力鋼板11が両端まで均一に加熱され得るように、両端部分が中央部分と比較して巻線が密に巻回される。
 高周波電源24からインバータ23を介して供給される高周波電流が、トランス22を介して加熱コイル21に対して供給され、加熱コイル21内に配置された高張力鋼板11を誘導加熱する。
 ここで、例えば電源周波数400kHz,電源容量500kW,通電時間10秒で誘導加熱を行うことで、高張力鋼板11は例えば約950℃程度まで加熱される。
 この場合、従来の熱間プレス加工における加熱方法、即ち加熱した鋼材で高張力鋼板を挟んで加熱する方法と比較して、急速加熱が可能である。
 このようにして、加熱装置10又は20により約950℃まで急速加熱された高張力鋼板11が、その後ロボット等によりプレス用型に装着され、プレス加工されると共に型冷されることで、高い延性を有する高強度成形品が製造される。
 図8は図7の加熱装置20による焼入れの加熱状態を示すグラフである。図8に示す加熱サイクルでは、加熱装置20によって高張力鋼板を10秒間で温度T1まで急速加熱した後、大気中又は所定の圧力の不活性ガス雰囲気にし、金型内に搬送して金型を加圧しながらプレスすることで、金型によって冷却され、焼入れが行われる。ここで、不活性ガスとしてはヘリウム(He)や窒素を用いることができる。圧力は例えば0.5MPaである。
 図9は図7の加熱装置20による焼入れの変形例を示すグラフである。図9に示す加熱サイクルでは、図7に示した方法と同様に焼入れを行った後、再び加熱装置20で、高張力鋼板を5秒間で温度T2まで加熱し、5秒間放冷してから、大気中又は所定の圧力の不活性ガス雰囲気にし、金型内に搬送し、金型を加圧しながらプレスすることで、金型によって冷却され、焼入れが行われる。ここで、不活性ガスとしてはHeや窒素を用いることができる。圧力は例えば0.5MPaである。
 以下、本発明を実施例によってさらに詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
 各実施例に共通な項目として、高強度成形品の母材は、C:0.18%,Mn:0.4%,Mo:0.30%を含有する高張力鋼板である。さらに、Si及びCrを含む高張力鋼板を用いる。高張力鋼板の寸法は、幅400mm,長さ800mm,高さ1.6mmである。上述した図8又は図9の加熱方法によって、各実施例の高強度成形品を作製した。
 図10は、高張力鋼板のSi及びCrの組成と加熱装置20による実施例の高強度成形品の作製条件及び作製後の高強度成形品の硬さを示す図である。
 実施例1の高張力鋼板は、上記組成にさらにSi:0.2%,Cr:1%が添加されている。T1を1000℃とし、T1まで5秒間で加熱し、ダイクエンチをして高強度成形品を作製した。この高強度成形品の硬さは411HVであった。
 実施例2の高張力鋼板は、上記組成に、さらにSi:0.2%,Cr:2%が添加されている。T1を950℃として、実施例1と同様にダイクエンチをして高強度成形品を作製した。この高強度成形品の硬さは448HVであった。
 実施例3の高張力鋼板は、上記組成に、さらにSi:0.2%,Cr:3%が添加されている。T1を900℃として、実施例1と同様にダイクエンチをして高強度成形品を作製した。この高強度成形品の硬さは431HVであった。
 実施例4の高張力鋼板は、上記組成に、さらにSi:0.2%,Cr:4%が添加されている。T1を850℃として、実施例1と同様にダイクエンチをして高強度成形品を作製した。この高強度成形品の硬さは419HVであった。
 実施例5の高張力鋼板は、上記組成に、さらにSi:1.0%,Cr:1%が添加されている。T1を1000℃として、実施例1と同様にダイクエンチをして高強度成形品を作製した。この高強度成形品の硬さは452HVであった。
 実施例6の高張力鋼板は、上記組成に、さらにSi:1.5%,Cr:1%が添加されている。T1を950℃として、実施例1と同様にダイクエンチをして高強度成形品を作製した。この高強度成形品の硬さは453HVであった。
 実施例7の高張力鋼板は、上記組成に、さらにSi:2.0%,Cr:1%が添加されている。T1を950℃として、実施例1と同様にダイクエンチをして高強度成形品を作製した。この高強度成形品の硬さは412HVであった。
 実施例8の高張力鋼板は、上記組成に、さらにSi:1.0%,Cr:2%が添加されている。T1を950℃として、実施例1と同様にダイクエンチをして高強度成形品を作製した。この高強度成形品の硬さは461HVであった。
 実施例9の高張力鋼板は、上記組成に、さらにSi:1.5%,Cr:3%が添加されている。T1を950℃として、実施例1と同様にダイクエンチをして高強度成形品を作製した。この高強度成形品の硬さは448HVであった。
 実施例10の高張力鋼板は、上記組成に、さらにSi:2.0%,Cr:4%が添加されている。T1を950℃として、実施例1と同様にダイクエンチをして高強度成形品を作製した。この高強度成形品の硬さは450HVであった。
 各実施例の硬さから、目標硬さ420~450Hvに対して、実施例1を除いて、何れも良好な硬さであった。
 図11は、実施例1,4,7,10について、加熱温度と母材の前オーステナイト粒径(μm),γ化下限温度,Ac3変態温度を測定した結果を示す図である。
 実施例1では、加熱温度900℃,950℃,1000℃における前オーステナイト粒径は、それぞれ、10.5μm,14.8μm,17.6μmであった。γ化下限温度は975℃であり、Ac3変態温度は878℃であった。
 実施例4では、加熱温度850℃,900℃,950℃,1000℃における前オーステナイト粒径は、それぞれ、5.2μm,6.2μm,7.4μm,8.8μmであった。γ化下限温度は820℃であり、Ac3変態温度は873℃であった。
 実施例7では、加熱温度900℃,950℃,1000℃における前オーステナイト粒径は、それぞれ、6.2μm,7.4μm,10.5μmであった。γ化下限温度は925℃であり、Ac3変態温度は980℃であった。
 実施例10では、加熱温度850℃,900℃,950℃,1000℃における前オーステナイト粒径は、それぞれ、5.2μm,6.2μm,7.4μm,8.8μmであった。γ化下限温度は925℃であり、Ac3変態温度は972℃であった。
 実施例1~10における引張り強さと伸びとの関係を測定した。
 図12は、実施例1~10の引張り強度と伸びの関係を示すグラフである。図12の横軸は引張り強度(MPa)であり、縦軸は伸び(%)である。ここで、引張り強さは、プレス型ポンチ底にあたる部位の引張り強度(TS)として、JIS Z2201の5号試験片を用い、JISZ2241に準拠した引張り試験により、評価を行った。
 図12によれば、実施例1を除いて、現行鋼板を用いた熱間プレス部材と比較して、より大きい伸びを示しており、延性が向上していることが分かる。特に、実施例4及び7では、15%以上の伸びを示しており、より良好な延性を有していることが分かる。
 なお、実施例1では、Ac3変態温度878℃に対して、焼入れ温度が1000℃と高く、未固溶炭化物が残存しておらず、また前オーステナイト粒径が10μm以上であるため、延性が低くなっていると考えられる。
 これに対して、実施例3,4,6,7,9,10においては、焼入れ温度T1は、Ac3変態温度に対して、-50K~+50Kの温度範囲に収まっている。
 より詳細には、引張り強さ×伸びに関して、図12に示すように、実施例1ではかなり低下するものの、実施例4及び7では、25000程度を維持している。また、他の実施例2,3,5,6,8~10では、15000程度である。
 次に、実施例3,4,10について、引張り試験結果と、熱間プレス成形後の金属組織の状態について説明する。板状試験片(例えばJIS Z2201に規定される5号試験片又は13号試験片)を用いた引張り試験を行い、応力・歪線図を作製した。
 図13は、実施例3の高強度成形品の応力・歪線図である。図13の横軸は引張歪(%)であり、縦軸は引張応力(MPa)である。図13から明らかなように、実施例3の高強度成形品は、1300MPa以上の高い引張り応力まで一様な伸びを示した後、引張り歪10%弱で破断している。
 図14は、実施例3の高強度成形品の金属組織を示す電子顕微鏡像である。電子の加速電圧は15kVであり、倍率は2万倍である。図14から明らかなように、炭化物が微細分散したマルテンサイト組織が観察される。さらに、図2で示した金属組織と同様に、炭化物は、前オーステナイト粒界にフィルム状に析出していないことと、前オーステナイト粒界を含む金属組織の全領域において微細分散されていることが分かる。
 ここで、実施例3では、図10に示すように、Ac3変態温度(868℃)より高い温度T1(900℃)で焼入れされている。
 図15は、実施例3の高強度成形品の粒子分散を調べた結果を示す図である。図15の横軸は、炭化物の平均粒径(nm)であり、縦軸が頻度である。
 測定結果を以下に示す。
        粒子数:215個
        平均粒径d:32.5nm
        粒子間隔L:291nm
 平均粒径dと粒子間隔Lから粒子分散指数を求めると、0.02となった。この試料の破断時の伸びは8%であった。
 図16は、実施例4の高強度成形品の応力・歪線図である。図16の横軸及び縦軸は図13と同じである。図16から明らかなように、実施例4の高強度成形品は、1300MPa以上の高い引張り応力まで一様な伸びを示した後、引張り歪16%で破断している。これにより、実施例4の試験片では、高い延性を有していることが分かる。
 実施例4の試験片の金属組織においても、炭化物が微細分散したマルテンサイト組織が形成されていることが観察された。炭化物は、前オーステナイト粒界にフィルム状に析出していないことと、前オーステナイト粒界を含む金属組織の全領域において微細分散されていることが分かった(図2参照)。
 ここで、実施例4では、図10に示すように、Ac3変態温度(873℃)より低く且つγ化下限温度820℃より高い温度T1(850℃)で焼入れされており、前オーステナイト粒径が5.2μmである。
 図17は実施例4の高強度成形品の粒子分散を調べた結果を示す図である。図17の横軸及び縦軸は図15と同じである。
 測定結果を以下に示す。
        粒子数:289個
        平均粒径d:42.9nm
        粒子間隔L:216nm
 平均粒径dと及び粒子間隔Lから粒子分散指数を求めると、0.03となった。この試料の伸びは16%であった。実施例4の粒子分散指数は、実施例3の場合よりも大きく、それに伴い、破断時の伸びが実施例3の2倍となることが判明した。これから、高強度成形品の延性を評価するには、(1)式の粒子分散指数が有効であることが分かった。
 図18は実施例10の高強度成形品の応力・歪線図である。図18の横軸及び縦軸は図13と同じである。図18から明らかなように、実施例10の高強度成形品は、1300MPa以上の高い引張り応力まで一様な伸びを示した後、引張り歪13%弱で破断している。これにより、実施例10の試験片も高い延性を有していることが分かる。
 図19は実施例10の高強度成形品の金属組織を示す電子顕微鏡像である。電子の加速電圧は15kVであり、倍率は5千倍である。図19から明らかなように、炭化物が微細分散したマルテンサイト組織が形成されていることが観察される。さらに、図2で示した金属組織と同様に、炭化物は、前オーステナイト粒界にフィルム状に析出していないことと、前オーステナイト粒界を含む金属組織の全領域において微細分散されていることが分かる。
 ここで、実施例10では、図10に示すようにAc3変態温度(972℃)より低く且つγ化下限温度925℃より高い温度T1(950℃)で焼入れされており、前オーステナイト粒径が7.4μmである。
 上記結果から、実施例2~9、特に実施例4及び7は、延性が向上していることが分かる。より具体的には、実施例2~9は、最初に準備された鋼板は炭化物を微細分散させたマルテンサイト組織を主相とし、その他残留オーステナイトや合金析出物を含み、Ac3変態温度が858~980℃の材料である。
 加熱時の温度をAc3変態温度の直上から一定の温度範囲に加熱保持した実施例3,6,9では、逆変態したオーステナイトはそれほど粗粒化せず、また合金析出物も完全に再固溶せず微細分散する。このため、この状態から焼入れた高強度成形品は、細粒で微細な炭化物からなる合金が析出した延性に優れる組織となり、部材の引張り試験においても高い伸び率を有する結果となった。このように合金析出物が炭化物として微細に残存する場合、母相の固溶炭素量を実質的に下げることになり、延性向上に寄与する。
 また、Ac3変態温度-50℃の範囲で加熱した実施例4,7,10では、合金析出物があまり粗大化しないので、延性が向上する。これに対して、Ac3変態温度-50℃以下に加熱した場合に、合金析出物が粗大化するので、延性はそれほど向上しない。
 従って、加熱温度は、前オーステナイト粒径の微細化と合金析出を微細分散させる観点から、好ましくはAc3変態温度に対して-50K~+50Kの範囲であれば、十分に延性を向上させる効果が得られると考えられる。
 上述した実施形態においては、高張力鋼板の急速加熱を図7に示した高周波加熱装置20で行うようにしているが、この実施形態に限らず、例えば10秒程度で所望の加熱温度まで急速加熱できるものであれは、図6に示した通電方式の加熱装置10や他の方式の加熱装置を使用して、急速加熱するようにしてもよい。
 本発明によれば、熱間プレス部材であっても、高延性を有する高強度成形品及びその製造方法を提供することができる。
 本発明は、上記実施の形態に限定されることなく、特許請求の範囲に記載した発明の範囲内で種々の変形が可能であり、それらも本発明の範囲内に含まれることはいうまでもない。

Claims (12)

  1.  高張力鋼板をオーステナイト域に加熱し、金型内でプレス成形及び冷却して成る高強度成形品であって、
     上記高張力鋼板の組織中の前オーステナイト粒径が10μm以下であり、
     上記高強度成形品の金属組織が、前オーステナイト粒界を含む全領域において炭化物が微細分散されたマルテンサイト組織を有しており、
     上記微細分散させた炭化物の粒子直径をdとし、該粒子間の間隔をLとしたときに、下記(1)式で表わされる上記炭化物の粒子分散指数が、0.02以上であることを特徴とする、高強度成形品。
     粒子分散指数=(粒子径の平方根)/粒子間隔=(d)1/2/L  (1)
  2.  高張力鋼板をオーステナイト域に加熱し、金型内でプレス成形及び冷却して成る高強度成形品であって、
     上記高張力鋼板の組織中の前オーステナイト粒径が10μm以下であり、
     上記高強度成形品の金属組織が、前オーステナイト粒界を含む全領域において炭化物が微細分散されたマルテンサイト組織を有していることを特徴とする、高強度成形品。
  3.  金属組織が、前オーステナイト粒界を含む全領域において炭化物が微細分散されたマルテンサイト組織を有することを特徴とする、高強度成形品。
  4.  前記炭化物の粒子直径が、10nm以上であることを特徴とする、請求項1に記載の高強度成形品。
  5.  前記炭化物の粒子体積率が、1%~10%の範囲内であることを特徴とする、請求項1に記載の高強度成形品。
  6.  前記高張力鋼板が、C:0.1~0.4%、Si:0.2~3%、Cr:0.1~5%を含有することを特徴とする、請求項1~2,4~5の何れかに記載の高強度成形品。
  7.  前記高張力鋼板が、C:0.1~0.4%、Si:0.2~3%、Cr:0.1~5%、Mo:0.1~0.5%を含有することを特徴とする、請求項1~2,4~5の何れかに記載の高強度成形品。
  8.  前記高張力鋼板が、さらにB:0.0005~0.005%を含有することを特徴とする、請求項6に記載の高強度成形品。
  9.  前記高張力鋼板が、さらにB:0.0005~0.005%を含有することを特徴とする、請求項7に記載の高強度成形品。
  10.  金属組織が、前オーステナイト粒界を含む全領域において炭化物が微細分散されたマルテンサイト組織を有する高強度成形品を製造する方法であって、
     高張力鋼板を通電加熱又は高周波加熱により急速加熱してオーステナイト域に加熱し、金型内でプレス成形及び冷却して高強度成形品を製造することを特徴とする、高強度成形品の製造方法。
  11.  前もって炭化物を微細分散させた前記高張力鋼板を、急速加熱処理し、
     前記高張力鋼板のAc3変態温度に対して-50K~+50Kの温度から焼入れすることによって、前記高強度成形品に未固溶炭化物を残存させることを特徴とする、請求項10に記載の高強度成形品の製造方法。
  12.  室温から前記焼入れ温度までの前記急速加熱を、10~20秒以内で行うことを特徴とする、請求項10又は請求項11に記載の高強度成形品の製造方法。
PCT/JP2010/058915 2009-05-29 2010-05-26 高強度成形品及びその製造方法 WO2010137619A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2010800332666A CN102482740B (zh) 2009-05-29 2010-05-26 高强度成形品及其制造方法
EP10780574.9A EP2436796A4 (en) 2009-05-29 2010-05-26 High-strength molded article and process for production thereof
US13/375,156 US8932416B2 (en) 2009-05-29 2010-05-26 High-strength and high-ductility die-quenched parts and method of manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-131469 2009-05-29
JP2009131469A JP6010730B2 (ja) 2009-05-29 2009-05-29 高延性ダイクエンチによる高強度成形品及びその製造方法

Publications (1)

Publication Number Publication Date
WO2010137619A1 true WO2010137619A1 (ja) 2010-12-02

Family

ID=43222726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/058915 WO2010137619A1 (ja) 2009-05-29 2010-05-26 高強度成形品及びその製造方法

Country Status (5)

Country Link
US (1) US8932416B2 (ja)
EP (1) EP2436796A4 (ja)
JP (1) JP6010730B2 (ja)
CN (1) CN102482740B (ja)
WO (1) WO2010137619A1 (ja)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102575310B (zh) * 2009-10-16 2013-11-20 丰田自动车株式会社 通电加热方法以及通电加热装置
US20140137619A1 (en) * 2011-05-26 2014-05-22 Toyota Jidosha Kabushiki Kaisha Hot-pressing apparatus
CN102744575A (zh) * 2012-07-23 2012-10-24 武汉钢铁(集团)公司 一种钢质头盔壳的制备方法
KR101482395B1 (ko) * 2013-04-19 2015-01-13 주식회사 포스코 도금 강재의 열간 프레스 성형 장치 및 이를 이용한 성형 방법
ES2662381T3 (es) 2013-09-18 2018-04-06 Nippon Steel & Sumitomo Metal Corporation Pieza estampada en caliente y método de fabricación de la misma
JP6432276B2 (ja) * 2014-10-22 2018-12-05 新日鐵住金株式会社 熱間プレス方法
JP6240844B2 (ja) * 2015-12-28 2017-12-06 国立研究開発法人物質・材料研究機構 高強度成形品用高張力鋼板の選定方法及び高強度成形品
US10385415B2 (en) 2016-04-28 2019-08-20 GM Global Technology Operations LLC Zinc-coated hot formed high strength steel part with through-thickness gradient microstructure
US10619223B2 (en) 2016-04-28 2020-04-14 GM Global Technology Operations LLC Zinc-coated hot formed steel component with tailored property
US10288159B2 (en) 2016-05-13 2019-05-14 GM Global Technology Operations LLC Integrated clutch systems for torque converters of vehicle powertrains
US10240224B2 (en) 2016-08-12 2019-03-26 GM Global Technology Operations LLC Steel alloy with tailored hardenability
CN106282912B (zh) * 2016-08-23 2018-05-08 南京工程学院 一种高强度预渗铝低碳马氏体钢板加压硬化成型方法
BR112019013393A2 (pt) * 2017-01-17 2020-03-03 Nippon Steel Corporation Peça estampada a quente e método de fabricação da mesma
US10260121B2 (en) 2017-02-07 2019-04-16 GM Global Technology Operations LLC Increasing steel impact toughness
RU2677645C1 (ru) * 2018-02-02 2019-01-18 федеральное государственное автономное образовательное учреждение высшего образования "Казанский (Приволжский) федеральный университет" (ФГАОУ ВО КФУ) Способ получения литых биметаллических штампов системы "ферритокарбидная сталь - аустенитно-бейнитный чугун"
WO2019222950A1 (en) 2018-05-24 2019-11-28 GM Global Technology Operations LLC A method for improving both strength and ductility of a press-hardening steel
US11612926B2 (en) 2018-06-19 2023-03-28 GM Global Technology Operations LLC Low density press-hardening steel having enhanced mechanical properties
CN111197145B (zh) 2018-11-16 2021-12-28 通用汽车环球科技运作有限责任公司 钢合金工件和用于制造压制硬化钢合金部件的方法
US11530469B2 (en) 2019-07-02 2022-12-20 GM Global Technology Operations LLC Press hardened steel with surface layered homogenous oxide after hot forming
CN113025876A (zh) 2019-12-24 2021-06-25 通用汽车环球科技运作有限责任公司 高性能压制硬化钢组件
KR102608373B1 (ko) * 2021-10-26 2023-11-30 현대제철 주식회사 핫 스탬핑 부품

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH046513B2 (ja) 1986-07-09 1992-02-06 Mohr Wolfgang
JP2003253385A (ja) * 2002-02-28 2003-09-10 Jfe Steel Kk 高速変形特性および曲げ特性に優れた冷延鋼板およびその製造方法
JP2006051543A (ja) * 2004-07-15 2006-02-23 Nippon Steel Corp 冷延、熱延鋼板もしくはAl系、Zn系めっき鋼板を使用した高強度自動車部材の熱間プレス方法および熱間プレス部品
JP2006183139A (ja) * 2004-11-30 2006-07-13 Jfe Steel Kk 自動車用部材およびその製造方法
JP2006265583A (ja) 2005-03-22 2006-10-05 Sumitomo Metal Ind Ltd 熱間プレス用熱延鋼板およびその製造方法ならびに熱間プレス成形部材の製造方法
JP2007016296A (ja) * 2005-07-11 2007-01-25 Nippon Steel Corp 成形後の延性に優れたプレス成形用鋼板及びその成形方法、並びにプレス整形用鋼板を用いた自動車用部材
JP2007308745A (ja) 2006-05-17 2007-11-29 Nissan Motor Co Ltd 高強度部材及びその製造方法
JP2008038247A (ja) * 2006-07-14 2008-02-21 Kobe Steel Ltd 高強度鋼板およびその製造方法
JP2008266721A (ja) * 2007-04-20 2008-11-06 Nippon Steel Corp 高強度部品の製造方法および高強度部品

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4067756A (en) * 1976-11-02 1978-01-10 The United States Of America As Represented By The United States Department Of Energy High strength, high ductility low carbon steel
EP0600421B1 (en) * 1992-11-30 1997-10-08 Sumitomo Electric Industries, Limited Low alloy sintered steel and method of preparing the same
US5409554A (en) * 1993-09-15 1995-04-25 The Timken Company Prevention of particle embrittlement in grain-refined, high-strength steels
KR100513991B1 (ko) * 2001-02-07 2005-09-09 제이에프이 스틸 가부시키가이샤 박강판의 제조방법
JP4006513B2 (ja) 2002-06-13 2007-11-14 独立行政法人物質・材料研究機構 材料評価方法
CN100471595C (zh) * 2004-07-15 2009-03-25 新日本制铁株式会社 使用钢板的高强度部件的热压方法和热压部件
US20090277547A1 (en) 2006-07-14 2009-11-12 Kabushiki Kaisha Kobe Seiko Sho High-strength steel sheets and processes for production of the same
JP5382421B2 (ja) * 2009-02-24 2014-01-08 株式会社デルタツーリング 高強度高靱性薄肉鋼の製造方法及び熱処理装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH046513B2 (ja) 1986-07-09 1992-02-06 Mohr Wolfgang
JP2003253385A (ja) * 2002-02-28 2003-09-10 Jfe Steel Kk 高速変形特性および曲げ特性に優れた冷延鋼板およびその製造方法
JP2006051543A (ja) * 2004-07-15 2006-02-23 Nippon Steel Corp 冷延、熱延鋼板もしくはAl系、Zn系めっき鋼板を使用した高強度自動車部材の熱間プレス方法および熱間プレス部品
JP2006183139A (ja) * 2004-11-30 2006-07-13 Jfe Steel Kk 自動車用部材およびその製造方法
JP2006265583A (ja) 2005-03-22 2006-10-05 Sumitomo Metal Ind Ltd 熱間プレス用熱延鋼板およびその製造方法ならびに熱間プレス成形部材の製造方法
JP2007016296A (ja) * 2005-07-11 2007-01-25 Nippon Steel Corp 成形後の延性に優れたプレス成形用鋼板及びその成形方法、並びにプレス整形用鋼板を用いた自動車用部材
JP2007308745A (ja) 2006-05-17 2007-11-29 Nissan Motor Co Ltd 高強度部材及びその製造方法
JP2008038247A (ja) * 2006-07-14 2008-02-21 Kobe Steel Ltd 高強度鋼板およびその製造方法
JP2008266721A (ja) * 2007-04-20 2008-11-06 Nippon Steel Corp 高強度部品の製造方法および高強度部品

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
M. HAYAKAWA; S. MATSUOKA: "Materia", vol. 43, 2004, THE JAPAN INSTITUTE OF METALS, article "Microstructural analysis of tempered martensite with an atomic force microscope", pages: 717 - 723
See also references of EP2436796A4 *

Also Published As

Publication number Publication date
US8932416B2 (en) 2015-01-13
US20120118440A1 (en) 2012-05-17
EP2436796A4 (en) 2017-07-26
EP2436796A1 (en) 2012-04-04
JP6010730B2 (ja) 2016-10-19
CN102482740B (zh) 2013-11-13
CN102482740A (zh) 2012-05-30
JP2010275612A (ja) 2010-12-09

Similar Documents

Publication Publication Date Title
JP6010730B2 (ja) 高延性ダイクエンチによる高強度成形品及びその製造方法
Kolleck et al. Investigation on induction heating for hot stamping of boron alloyed steels
KR100961022B1 (ko) 열간 성형강 제품의 제조 방법
KR101833655B1 (ko) 열간 프레스 강판 부재, 그 제조 방법 및 열간 프레스용 강판
JP6001883B2 (ja) プレス成形品の製造方法およびプレス成形品
JP5382421B2 (ja) 高強度高靱性薄肉鋼の製造方法及び熱処理装置
Eskandari et al. An investigation into the room temperature mechanical properties of nanocrystalline austenitic stainless steels
KR20180001590A (ko) 열간 성형용 강판
CN102482750A (zh) 热压构件、热压构件用钢板、热压构件的制造方法
JP6318971B2 (ja) 熱間プレス成形方法
JP2013185246A (ja) プレス成形品の製造方法およびプレス成形品
EP2562272B1 (en) Method for producing steel product or steel component having excellent mechanical properties, steel product produced by the method and use of steel pipe made of strain hardened steel
JP2017214648A (ja) 高強度鋼板およびその製造方法
WO2015037059A1 (ja) プレス成形品の製造方法およびプレス成形品
CN109804098A (zh) 高伸长度加压硬化钢和其制造
JP2014019941A (ja) 熱間成形鋼板部材およびその製造方法
JP5802155B2 (ja) プレス成形品の製造方法およびプレス成形品
JP5605272B2 (ja) 高強度かつ強度傾斜を有する鋼製熱間加工品の製造方法
Samadian et al. Determination of proper austenitization temperatures for hot stamping of AISI 4140 steel
JP6240844B2 (ja) 高強度成形品用高張力鋼板の選定方法及び高強度成形品
RU2710485C1 (ru) Способ для производства закаленной прессованной детали, способ для производства стального материала для горячего прессования и стальной материал для горячего прессования
WO2017208763A1 (ja) 高強度鋼板およびその製造方法
JP2017214646A (ja) 高強度鋼板およびその製造方法
CN105051236B (zh) 新类别的温成形先进高强度钢
Heinze et al. Functionally graded high-alloy CrMnNi TRIP steel produced by local heat treatment using high-energy electron beam

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080033266.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10780574

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010780574

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13375156

Country of ref document: US