WO2010137235A1 - 液晶パネルおよびその製造方法並びに液晶表示装置 - Google Patents

液晶パネルおよびその製造方法並びに液晶表示装置 Download PDF

Info

Publication number
WO2010137235A1
WO2010137235A1 PCT/JP2010/003007 JP2010003007W WO2010137235A1 WO 2010137235 A1 WO2010137235 A1 WO 2010137235A1 JP 2010003007 W JP2010003007 W JP 2010003007W WO 2010137235 A1 WO2010137235 A1 WO 2010137235A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
electrode
comb
insulating layer
electrodes
Prior art date
Application number
PCT/JP2010/003007
Other languages
English (en)
French (fr)
Inventor
村田充弘
神崎修一
石原將市
櫻井猛久
大竹忠
中村正子
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to EP10780197A priority Critical patent/EP2437111A1/en
Priority to RU2011144167/28A priority patent/RU2011144167A/ru
Priority to JP2011515856A priority patent/JP5335907B2/ja
Priority to BRPI1015071A priority patent/BRPI1015071A2/pt
Priority to US13/257,752 priority patent/US20120008074A1/en
Priority to CN2010800193964A priority patent/CN102439517A/zh
Publication of WO2010137235A1 publication Critical patent/WO2010137235A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133742Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers for homeotropic alignment
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134381Hybrid switching mode, i.e. for applying an electric field with components parallel and orthogonal to the substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1393Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the birefringence of the liquid crystal being electrically controlled, e.g. ECB-, DAP-, HAN-, PI-LC cells
    • G02F1/1395Optically compensated birefringence [OCB]- cells or PI- cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/12Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode
    • G02F2201/124Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 electrode interdigital
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/40Arrangements for improving the aperture ratio

Definitions

  • the present invention relates to a liquid crystal panel, a method for manufacturing the same, and a liquid crystal display device, and more specifically, by applying a lateral electric field to a vertical alignment type liquid crystal cell in which liquid crystal molecules are aligned in a vertical direction when no voltage is applied.
  • the present invention relates to a liquid crystal panel that controls transmission of light, a manufacturing method thereof, and a liquid crystal display device.
  • Liquid crystal display devices have the advantage of being thin, light and low in power consumption among various display devices.
  • CRT Cathode Ray Ray Tube
  • mobile devices such as TV (Television), monitors, mobile phones, etc. It is widely used in various fields such as.
  • the display method of the liquid crystal display device is determined by how the liquid crystals are arranged in the liquid crystal cell.
  • an MVA (Multi-domain Vertical Alignment) mode liquid crystal display device is conventionally known.
  • a slit is provided in the pixel electrode of the active matrix substrate, and a protrusion (rib) for controlling the alignment of liquid crystal molecules is provided in the counter electrode of the counter substrate, thereby applying an electric field in the vertical direction, and the alignment direction by the rib or slit.
  • This is a method in which the orientation directions of liquid crystal molecules are arranged in a plurality of directions while regulating the above.
  • the MVA mode liquid crystal display device realizes a wide viewing angle by dividing the direction in which the liquid crystal molecules fall when an electric field is applied into a plurality of directions. Moreover, since it is a vertical alignment mode, a high contrast can be obtained as compared with a horizontal alignment mode such as an IPS (In-Plain-Switching) mode. However, the manufacturing process is complicated.
  • IPS In-Plain-Switching
  • a comb-like electrode is used in a vertical alignment type liquid crystal cell (vertical alignment cell) in which liquid crystal molecules are aligned in the vertical direction when no voltage is applied, and parallel to the substrate surface.
  • a display method for applying an electric field (so-called lateral electric field) has been proposed (see, for example, Patent Document 1).
  • the orientation direction of liquid crystal molecules is defined by being driven by a horizontal electric field while maintaining high contrast by vertical alignment. Since the above display method does not require alignment control by protrusions such as MVA, the pixel configuration is simple and has excellent viewing angle characteristics.
  • Japanese Patent Publication Japanese Patent Laid-Open No. 10-186351 (published July 14, 1998)”
  • FIG. 40 is a diagram schematically showing a director distribution of liquid crystal molecules in the liquid crystal cell when a display method in which a lateral electric field is applied to the above-described vertical alignment type liquid crystal cell is used.
  • a liquid crystal panel 102 using the above display method has a pair of comb teeth as a pixel electrode and a common electrode on one substrate 110 of a pair of substrates 110 and 120 facing each other with a liquid crystal layer 130 interposed therebetween. It has the structure in which the electrode 112 * 113 was provided.
  • a pair of comb-shaped electrodes 112 and 113 are typically provided on a glass substrate 111, and an alignment film is formed so as to cover the pair of comb-shaped electrodes 112 and 113.
  • a vertical alignment film (not shown) is provided.
  • liquid crystal panel 102 As shown in FIG. 40, by applying a lateral electric field between the pair of comb-shaped electrodes 112 and 113, the director distribution of the liquid crystal molecules 131 is changed to an electrode by the comb-shaped electrodes. A symmetric structure is formed around the central portion of the line, and a bow-like (bend-like) liquid crystal alignment distribution is formed in the cell. For this reason, the liquid crystal molecules 131 are vertically aligned as described above when the power is turned off, and are arranged so that the self-director compensates for the center portion of the electrode line when the power is turned on.
  • the above display method can realize high-speed response based on bend alignment, a wide viewing angle due to the self-director cancellation compensation arrangement, and high contrast due to vertical alignment.
  • the above display method has a problem that the drive voltage is high.
  • liquid crystal molecules 131 do not operate on the comb-like electrodes 112 and 113 and dark lines are formed, so that the aperture ratio is low and the transmittance is low.
  • a liquid crystal material having a high dielectric anisotropy ( ⁇ ) has a relatively high viscosity. If such a liquid crystal material is used, the viscosity of the liquid crystal layer 130 increases and a high-speed response cannot be achieved.
  • the liquid crystal molecules 131 do not rotate uniformly within the display surface as described above.
  • a large number of dark lines formed in the display area become a kind of wall, and the rotation of liquid crystal molecules is restricted. For this reason, a sufficient phase difference is not expressed with a normal drive voltage.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a driving voltage in a liquid crystal panel and a liquid crystal display device using a display method in which a lateral electric field is applied to a vertical alignment cell as described above. It is to reduce more.
  • a further object of the present invention is to reduce drive voltage and improve transmittance in a liquid crystal panel and a liquid crystal display device using the above display method.
  • Another object of the present invention is to provide a method of manufacturing a liquid crystal panel having a low driving voltage and a liquid crystal panel having a high transmittance using a display method in which a lateral electric field is applied to a vertically aligned cell. .
  • the inventors of the present invention have set a special condition in the liquid crystal panel and the liquid crystal display device using the above display method that the voltage can be lowered and further the voltage can be lowered while keeping the transmittance high. Found by simulation and experiment. As a result, the inventors of the present application succeeded in reducing the voltage of the liquid crystal panel and the liquid crystal display device using the above display method.
  • the liquid crystal panel according to the present invention is provided with the upper layer electrode and the lower layer electrode overlapped with one of the pair of substrates facing each other with the liquid crystal layer interposed therebetween with an insulating layer interposed therebetween.
  • the upper electrode is composed of a comb-like electrode, and is 0.1 ⁇ m from the surface of the other substrate in a portion overlapping with the comb-like electrode when the liquid crystal layer is viewed from a direction perpendicular to the substrate surface.
  • the average electric energy at the position is 0.44 J / m 3 or more.
  • a liquid crystal display device is characterized by including the liquid crystal panel.
  • the method for manufacturing a liquid crystal panel according to the present invention provides an upper layer composed of comb-like electrodes on one of a pair of substrates facing each other with a liquid crystal layer interposed therebetween, with an insulating layer interposed therebetween.
  • the electrode and the lower layer electrode are formed so as to overlap each other, and the position where the liquid crystal layer overlaps with the comb-like electrode when viewed from the direction perpendicular to the substrate surface is a position of 0.1 ⁇ m from the surface of the other substrate.
  • the combination of the electrode spacing of the comb electrodes, the thickness of the insulating layer, the relative dielectric constant of the insulating layer, and the driving method is determined so that the average electric energy at 4 is 0.44 J / m 3 or more. It is characterized by that.
  • the liquid crystal panel and the liquid crystal display device according to the present invention are driven by a so-called lateral electric field parallel to the substrate surface while maintaining high contrast due to vertical alignment, thereby achieving high-speed response and a wide viewing angle with a simple pixel configuration. Characteristics as well as high contrast characteristics can be realized.
  • the liquid crystal panel and the liquid crystal display device can drive the liquid crystal molecules located on the comb-like electrode by providing the upper layer electrode and the lower layer electrode so as to overlap each other with an insulating layer interposed therebetween. . For this reason, an aperture ratio can be made larger than the liquid crystal panel which is not provided with the said lower layer electrode.
  • the electric energy 0.44 J / m 3 or more, it is possible to reduce the rising voltage of the liquid crystal molecules, and in the vertical alignment cell, which has been considered difficult conventionally, a lateral electric field In the display method in which is applied, the drive voltage can be reduced. Furthermore, a reduction in driving voltage and an improvement in transmittance could be realized at the same time.
  • a liquid crystal panel having high-speed response, wide viewing angle characteristics, and high contrast characteristics, capable of being driven with a practical driving voltage, and having high transmittance, and its manufacture.
  • a method and a liquid crystal display device can be provided.
  • (c) is a top view which shows the display state of 1 pixel at the time of a power supply OFF and a power supply ON.
  • (A) is a figure which shows the voltage application conditions to the upper layer electrode and lower layer electrode in Example 2
  • (b) is the 1st comb-tooth-shaped electrode and 2nd comb-tooth in an upper-layer electrode in (a).
  • (c) is a top view which shows the display state of 1 pixel at the time of a power supply OFF and a power supply ON.
  • (A) is a figure which shows the voltage application conditions to the upper layer electrode and lower layer electrode in Example 5,
  • (b) is the 1st comb-tooth-shaped electrode and 2nd comb-tooth in an upper-layer electrode in (a).
  • (c) is a top view which shows the display state of 1 pixel at the time of a power supply OFF and a power supply ON.
  • (A) is a figure which shows the voltage application conditions to the upper layer electrode and lower layer electrode in Example 7,
  • (b) is the 1st comb-tooth-shaped electrode and 2nd comb-tooth in an upper-layer electrode in (a).
  • (c) is a top view which shows the display state of 1 pixel at the time of a power supply OFF and a power supply ON.
  • (A) is a figure which shows the voltage application conditions to the 1st comb-tooth-shaped electrode and 2nd comb-tooth-shaped electrode in the comparative example 1,
  • (b) is a 1st comb-tooth shape by (a).
  • (c) is a top view which shows the display state of 1 pixel at the time of a power supply OFF and a power supply ON It is.
  • (A) is a figure which shows the voltage application conditions to the upper layer electrode and lower layer electrode in the comparative example 2
  • (b) is the 1st comb-tooth electrode and 2nd comb tooth in an upper layer electrode in (a).
  • (c) is a top view which shows the display state of 1 pixel at the time of a power supply OFF and a power supply ON.
  • (A) is a figure which shows the voltage application conditions to the 1st comb-tooth-shaped electrode and 2nd comb-tooth-shaped electrode in the comparative example 3
  • (b) is a 1st comb-tooth-shaped in (a).
  • (c) is a top view which shows the display state of 1 pixel at the time of a power supply OFF and a power supply ON It is.
  • (A) is a figure which shows the voltage application conditions to the upper layer electrode and lower layer electrode in the comparative example 4,
  • (b) is the 1st comb-tooth-shaped electrode and 2nd comb-tooth in an upper-layer electrode in (a).
  • (c) is a top view which shows the display state of 1 pixel at the time of a power supply OFF and a power supply ON.
  • (A) is a figure which shows the voltage application conditions to the upper layer electrode and lower layer electrode in Example 10, (b) applies the voltage of 6V to the 1st comb-tooth-shaped electrode in (a).
  • (c) is a top view which shows the display state of 1 pixel at the time of a power supply OFF and a power supply ON.
  • (A) is a figure which shows the voltage application conditions to the upper layer electrode in Example 11, and a lower layer electrode, (b) applies the voltage of 6V to the 1st comb-tooth-shaped electrode in (a).
  • (c) is a top view which shows the display state of 1 pixel at the time of a power supply OFF and a power supply ON.
  • (A) is a figure which shows the voltage application conditions to the upper layer electrode in Example 12, and a lower layer electrode, (b) applies the voltage of 6V to the 1st comb-tooth-shaped electrode in (a).
  • (c) is a top view which shows the display state of 1 pixel at the time of a power supply OFF and a power supply ON.
  • (A) is a figure which shows the voltage application conditions to the upper layer electrode in Example 13, and a lower layer electrode, (b) applies the voltage of 6V to the 1st comb-tooth-shaped electrode in (a). It is a figure which shows the transmittance
  • (A) is a figure which shows the voltage application conditions to the upper layer electrode and lower layer electrode in Example 14, (b) is the 1st comb-tooth-shaped electrode and 2nd comb-tooth in an upper-layer electrode in (a).
  • (c) is a top view which shows the display state of 1 pixel at the time of a power supply OFF and a power supply ON.
  • (A) is a figure which shows the voltage application conditions to the upper layer electrode and lower layer electrode in the comparative example 6,
  • (b) is the 1st comb-tooth-shaped electrode and 2nd comb-tooth in an upper-layer electrode in (a).
  • (c) is a top view which shows the display state of 1 pixel at the time of a power supply OFF and a power supply ON.
  • (A) is a figure which shows the voltage application conditions to the upper layer electrode and lower layer electrode in the comparative example 7,
  • (b) is the 1st comb-tooth-shaped electrode and 2nd comb-tooth in an upper-layer electrode in (a).
  • (c) is a top view which shows the display state of 1 pixel at the time of a power supply OFF and a power supply ON.
  • (A) is a figure which shows the voltage application conditions to the upper layer electrode and lower layer electrode in the comparative example 8
  • (b) is the 1st comb-tooth-shaped electrode and 2nd comb-tooth in an upper-layer electrode in (a).
  • (c) is a top view which shows the display state of 1 pixel at the time of a power supply OFF and a power supply ON.
  • (A) is a figure which shows the voltage application conditions to the upper layer electrode and lower layer electrode in the comparative example 9, (b) applies the voltage of 6V to the 1st comb-tooth-shaped electrode in (a).
  • (c) is a top view which shows the display state of 1 pixel at the time of a power supply OFF and a power supply ON.
  • (A) is a figure which shows the voltage application conditions to the upper layer electrode in Example 16, and a lower layer electrode, (b) applies the voltage of 6V to the 1st comb-tooth-shaped electrode in (a).
  • (c) is a top view which shows the display state of 1 pixel at the time of a power supply OFF and a power supply ON.
  • (A) is a figure which shows the voltage application conditions to the upper layer electrode and lower layer electrode in Example 17,
  • (b) is the 1st comb-tooth-shaped electrode and 2nd comb-tooth in an upper-layer electrode in (a).
  • (c) is a top view which shows the display state of 1 pixel at the time of a power supply OFF and a power supply ON. It is a graph which shows the relationship between the electrical energy EL at the time of using FFS drive, and the thickness d of an insulating layer. It is a graph which shows the relationship between the electrical energy EL at the time of using a comb drive, and the thickness d of an insulating layer. It is a graph which shows the relationship between the electrical energy EL at the time of using FFS drive, and the electrode space
  • FIG. 3 is a graph showing a relationship between an aperture ratio and an electrode interval S. It is a graph which shows the relationship between the substantial transmittance
  • sectional drawing which shows typically schematic structure of the principal part of the liquid crystal panel concerning the other form of implementation of this invention. It is a figure which shows typically the director distribution of the liquid crystal molecule in this liquid crystal cell when the display system which applies a horizontal electric field to the conventional vertical alignment type liquid crystal cell is used.
  • FIGS. 1 to 40 An embodiment of the present invention will be described with reference to FIGS. 1 to 40 as follows.
  • FIG. 2 is a cross-sectional view schematically showing a schematic configuration of the liquid crystal display device according to the present embodiment.
  • the liquid crystal display device 1 includes a liquid crystal panel 2 (liquid crystal display element), a drive circuit 3, and a backlight 4 (illumination device) as shown in FIG.
  • the configuration of the drive circuit 3 and the backlight 4 is the same as the conventional one. Therefore, the description of these configurations is omitted.
  • FIG. 1 is a cross-sectional view schematically showing a schematic configuration of a main part of the liquid crystal panel 2.
  • FIG. 3 is a diagram showing a director distribution of liquid crystal molecules in the liquid crystal cell shown in FIG.
  • the liquid crystal panel 2 includes a pair of substrates 10 and 20 provided to face each other as an electrode substrate and a counter substrate.
  • a liquid crystal layer 30 is sandwiched between the pair of substrates 10 and 20 as a display medium layer.
  • At least one of the pair of substrates 10 and 20, that is, at least the viewer side substrate includes a transparent substrate such as a glass substrate as an insulating substrate (liquid crystal layer holding member, base substrate). Further, alignment films 15 and 22 called so-called vertical alignment films are respectively provided on the surfaces of the pair of substrates 10 and 20 facing the other substrate.
  • the vertical alignment film is an alignment film that aligns the liquid crystal molecules of the liquid crystal layer perpendicularly to the substrate surface when no electric field is applied.
  • the “vertical” includes “substantially vertical”.
  • the substrate 10 for example, an array substrate such as a TFT array substrate can be used.
  • the substrate 20 for example, a color filter substrate or the like can be used.
  • the substrate 10 may include a TFT or the like (not shown).
  • the substrate 20 may include a color filter (CF) (not shown) in addition to the alignment film 22.
  • CF color filter
  • the present embodiment is not limited to this.
  • the substrates 10 and 20 may include an undercoat film or an overcoat film (not shown).
  • the display surface side (observer side substrate) will be described as an upper substrate, and the other substrate will be described as a lower substrate. 1 and 2, the substrate 10 is described as a lower substrate, but the present embodiment is not limited to this.
  • the substrate 10 has a configuration in which an upper layer electrode 14 and a lower layer electrode 12 are arranged so as to overlap each other with an insulating layer 13 interposed therebetween.
  • the “upper layer electrode” refers to an electrode on the liquid crystal layer 30 side that is adjacent to the liquid crystal layer 30 via the alignment film 22, and the “lower layer electrode” refers to a glass substrate that is a base substrate. The electrode on the 11th side is shown.
  • the substrate 10 has a configuration in which a lower electrode 12, an insulating layer 13, an upper electrode 14, and an alignment film 15 are provided in this order on a glass substrate 11.
  • the lower layer electrode 12 is a solid electrode, and is opposed to the substrate 20 in the glass substrate 11 so as to cover the display region (that is, the region surrounded by the sealant 34) on the glass substrate 11 on the glass substrate 11. It is formed over almost the entire surface.
  • the lower layer electrode 12 functions as a common electrode.
  • the insulating layer 13 is formed on the lower electrode 12 so as to cover the lower electrode 12.
  • the upper layer electrode 14 is a comb-like electrode.
  • the liquid crystal panel 2 has a comb-like electrode 14A (first comb-like electrode) and a comb-like electrode 14B (adjacent to each other) so that the driving method can be switched in an experiment described later. And a second comb-like electrode) are provided so as to be driven independently of each other.
  • the comb-like electrodes 14A and 14B may each be linear, or may be formed in a V shape or a zigzag shape.
  • the comb-like electrodes 14A and 14B provided so as to be driven independently of each other are alternately arranged so that the branch electrodes (branch lines) extending from the respective trunk electrodes (trunk lines) are engaged with each other. Opposed to each other.
  • the present embodiment is not limited to this, and may be configured such that the comb-like electrodes 14A and 14B adjacent to each other can be driven independently of each other regardless of the driving method. Further, when “comb driving” described later is used as a driving method, it is not always necessary to provide the two comb-shaped electrodes 14A and 14B. That is, the upper layer electrode 14 may be a single comb-like electrode.
  • the alignment film 15 is provided on the insulating layer 13 so as to cover the comb-like electrodes 14A and 14B.
  • polarizing plates 35 and 36 are provided on the surfaces of the pair of substrates 10 and 20 opposite to the surfaces facing the liquid crystal layer 30, respectively.
  • retardation plates 37 and 38 are provided between the substrates 10 and 20 and the polarizing plates 35 and 36, respectively, as necessary.
  • the retardation plates 37 and 38 may be provided only on one surface of the liquid crystal panel 2.
  • the phase difference plates 37 and 38 are not necessarily essential.
  • the liquid crystal cell 5 in the liquid crystal panel 2 includes, for example, as shown in FIG. 1, the substrate 10 and the substrate 20 are bonded together with a sealant 34 via a spacer 33, and a gap between the substrates 10 and 20 is formed. It is formed by enclosing a medium containing a liquid crystal material.
  • the liquid crystal material may be a p (positive) type liquid crystal material or an n type (negative) type liquid crystal material.
  • a case where a p-type liquid crystal material is used as the liquid crystal material will be mainly described as an example, as shown in FIG. 2 and an experimental example described later.
  • this embodiment mode is not limited to this, and even when an n-type liquid crystal material is used as the liquid crystal material, the same principle is applied to the case where a p-type liquid crystal material is used. Result can be obtained.
  • a p-type liquid crystal material for example, a p-type nematic liquid crystal material can be used, but the present embodiment is not limited to this.
  • the liquid crystal panel 2 and the liquid crystal display device 1 are configured to form a distribution of electric field strength in the liquid crystal cell 5 by applying an electric field, thereby realizing a bend alignment of the liquid crystal material.
  • a liquid crystal material having a large refractive index anisotropy ⁇ n or a liquid crystal material having a large dielectric anisotropy ⁇ is preferably used.
  • p-type liquid crystal materials include CN (cyano) liquid crystal materials (chiral nematic liquid crystal materials) and F (fluorine) liquid crystal materials.
  • the liquid crystal panel 2 is formed by bonding the retardation plates 37 and 38 and the polarizing plates 35 and 36 to the liquid crystal cell 5 as described above.
  • the transmission axes of the polarizing plates 35 and 36 are orthogonal to each other, and the direction in which the comb electrodes 14A and 14B are extended and the transmission axis of the polarizing plates 35 and 36 are 45. It is arranged to make an angle of °.
  • the liquid crystal panel 2 is similar to the electrode configuration of a liquid crystal panel using a so-called FFS (Fringe Field Switching) mode display system in which the common electrode and the pixel electrode are arranged to overlap with each other through the insulating layer. It has a configuration. Therefore, hereinafter, the liquid crystal panel having the above configuration is referred to as an FFS structure liquid crystal panel.
  • FFS Frringe Field Switching
  • liquid crystal panel 2 simply adopts the above-described FFS structure in the electrode configuration, and is similar to the so-called FFS mode liquid crystal panel and is completely different. .
  • the liquid crystal panel 2 according to the present invention when no voltage is applied, is homeo in which the major axis direction of the liquid crystal molecules 31 sandwiched between the pair of substrates 10 and 20 is perpendicular to the substrate surface, as shown in FIG. A tropic orientation is shown. For this reason, the liquid crystal panel 2 according to the present invention is completely different from the FFS mode in the behavior of liquid crystal molecules.
  • the electrode width of the comb-like electrode is L
  • the distance between the electrodes is S
  • the cell gap the thickness of the liquid crystal layer
  • the electrode interval S is larger than the electrode width L and the cell gap D.
  • the display is performed by reducing the size and generating a so-called fringe electric field.
  • the electrode interval S is set to be larger than the electrode width L and the cell gap D as shown in the examples described later.
  • the cell gap D is not particularly limited.
  • the liquid crystal panel 2 having the FFS structure is driven by two driving methods.
  • comb-tooth drive what drives between the comb-like electrodes 14A and 14B adjacent to the liquid crystal layer 30 through the alignment film 15 is referred to as “comb-tooth drive”, and the comb-like electrodes 14A and 14B and the insulating layer 13 are connected to each other.
  • the comb electrode 14A functions as a pixel electrode
  • the comb electrode 14B functions as a common electrode. Note that when the comb driving is performed, the lower layer electrode 12 is set to 0V.
  • the comb electrodes 14A and 14B function as pixel electrodes, and the lower layer electrode 12 functions as a common electrode.
  • the liquid crystal panel 2 according to the present embodiment uses a display method that is completely different from the FFS mode as described above.
  • the liquid crystal panel 2 has the FFS structure as described above, unlike the conventional liquid crystal panel 102 using the display method shown in FIG. 40, the interdigital electrodes 14A and 14B are provided. In addition, the liquid crystal molecules 31 on the comb electrodes 14A and 14B are also driven. Therefore, there is an advantage that the aperture ratio can be increased as compared with the liquid crystal panel 102 having the structure shown in FIG.
  • the liquid crystal panel 2 forms a bend-shaped (bow-shaped) electric field by applying the electric field in the vertical alignment mode as shown in FIG.
  • a bend-shaped electric field by applying the electric field in the vertical alignment mode as shown in FIG.
  • two domains in which director directions of the liquid crystal molecules 31 are different from each other by 180 degrees are formed.
  • the liquid crystal molecules 31 are arranged according to the electric field strength distribution in the liquid crystal cell 5 and the binding force from the interface. Thereby, a wide viewing angle characteristic can be obtained.
  • the liquid crystal molecules 31 continuously change from homeotropic alignment to bend alignment when a voltage is applied.
  • the liquid crystal layer 30 In normal driving, the liquid crystal layer 30 always exhibits a bend alignment as shown in FIG. 3, and a high-speed response is possible with an inter-tone response.
  • the orientation direction of the liquid crystal molecules 31 is defined by being driven by a horizontal electric field while maintaining high contrast by vertical alignment as described above. For this reason, alignment control by protrusions like the MVA mode is unnecessary, and the viewing angle characteristic is excellent with a simple pixel configuration.
  • the liquid crystal panel 2 has advantages such as high-speed response based on bend alignment, a wide viewing angle due to a self-compensating arrangement, and high contrast due to vertical alignment, and has a simple structure and is manufactured. However, it has the advantage that it can be manufactured inexpensively.
  • the inventors of the present application have a conventional liquid crystal panel 102 having an FFS structure and driving the vertical alignment type liquid crystal panel 2 by driving the horizontal electric field by driving the vertical alignment type liquid crystal panel 2 by the horizontal electric field.
  • the aperture ratio can be improved while maintaining its excellent high-speed response, wide viewing angle, and high contrast.
  • the inventors of the present invention can always achieve a low voltage by simply adopting FFS driving in a liquid crystal panel using a display method in which a vertical alignment type liquid crystal panel is driven as described above. I also found that it was not possible.
  • the inventors of the present application performed simulations and experiments on the conditions for lowering the voltage in the liquid crystal panel 2 having the FFS structure as described above.
  • the material ratio of the insulating layer 13
  • the electrode width L / electrode spacing S it is possible to obtain an effect of reducing the drive voltage and an effect of improving the transmittance.
  • the material (relative permittivity ⁇ ) and thickness d, electrode width L / electrode spacing of the insulating layer 13 are set so that the electric energy EL is 0.6 J / m 3 or more. It has been found that by selecting and setting S, it is possible to obtain an effect of reducing the driving voltage and a particular effect of improving the transmittance.
  • the electric energy EL is calculated by a calculation based on a measured value obtained by disassembling the liquid crystal panel and measuring the dielectric constant of each layer according to a conventional method.
  • Example 1 First, as shown in FIG. 1, an ITO (Indium Tin Oxide) film was formed on the entire surface of a glass substrate 11 with a thickness of 1400 mm by sputtering. Thereby, the solid lower layer electrode 12 covering the entire main surface of the glass substrate 11 was formed.
  • ITO Indium Tin Oxide
  • the insulating layer 13 made of SiN and having a thickness d 0.1 ⁇ m (1000 mm) was formed on the lower layer electrode 12.
  • an alignment film paint “JALS-204” (trade name, solid content 5 wt.%, ⁇ -butyrolactone solution) manufactured by JSR Co. is applied on the insulating layer 13 so as to cover the comb-like electrodes 14A and 14B. It was applied by a spin coating method. Then, the board
  • the alignment films 15 and 22 thus obtained had a dry film thickness of 1000 mm.
  • resin beads “Micropearl SP20375” (trade name, manufactured by Sekisui Chemical Co., Ltd.) having a diameter of 3.75 ⁇ m were dispersed as spacers 33 on one of the substrates 10 and 20.
  • a sealing resin “Struct Bond XN-21S” (trade name, manufactured by Mitsui Toatsu Chemical Co., Ltd.) was printed as the sealing agent 34 on the other substrate facing the substrate.
  • the substrates 10 and 20 were bonded to each other and baked at 135 ° C. for 1 hour, whereby a liquid crystal cell 5 was produced.
  • the polarizing plates 35 and 36 are disposed on the front and back surfaces of the liquid crystal cell 5, the transmission axes of the polarizing plates 35 and 36 are orthogonal to each other, and the direction in which the comb-shaped electrodes 14A and 14B are stretched are the polarizing plates 35 and 36. Bonding was performed so as to form an angle of 45 ° with the transmission axis. Thus, a liquid crystal panel 2 (liquid crystal display element) having the configuration shown in FIG. 1 was produced.
  • the liquid crystal panel 2 thus manufactured is placed on the backlight 4 and driven by comb teeth as shown in FIG. 2, whereby the voltage-transmittance change (hereinafter referred to as “actual measurement”) on the front surface of the liquid crystal panel 2 is driven.
  • T was measured with“ BM5A ”manufactured by Topcon.
  • the transmittance at the actual measurement T was obtained from the luminance of the liquid crystal panel 2 / the luminance of the backlight 4.
  • the voltage-transmittance change (hereinafter referred to as “SimT”) when the model having the FFS structure shown in FIG. It calculated
  • the SimT, the relative dielectric constant ⁇ and thickness d of the insulating layer 13, and the electrode width L / electrode spacing S of the comb-like electrodes 14A and 14B are shown in Table 1 together with the measured T and electric energy EL.
  • Table 6 shows. 4A shows the applied voltage in the simulation, and FIG. 4B shows a voltage of 6V applied to the comb-shaped electrode 14A in FIG. 4A in the simulation.
  • the transmittance, the director distribution of the liquid crystal molecules 31, and the equipotential curve are shown.
  • the comb-like electrode 14B is set to 0V.
  • FIG. 4C shows the display state of one pixel when the power is turned off and when the power is turned on in the simulation.
  • Example 2 In Example 1, actual measurement T and SimT were obtained in the same manner as in Example 1 except that FFS driving was used instead of comb driving.
  • Example 1 the same liquid crystal panel 2 as in Example 1 was manufactured using the same materials and processes as in Example 1, and the measured T was measured on the backlight 4 using “BM5A” as in Example 1. It was measured. Further, SimT when a model having the same FFS structure as in Example 1 was FFS-driven under the same conditions as the above actual measurement was obtained by simulation using “LCD-MASTER” as in Example 1.
  • the SimT, the relative dielectric constant ⁇ and thickness d of the insulating layer 13, and the electrode width L / electrode spacing S of the comb-like electrodes 14A and 14B are shown in Table 1 together with the measured T and electric energy EL.
  • Table 8 shows.
  • 5A shows the applied voltage in the above simulation
  • FIG. 5B shows the voltage applied to the comb-shaped electrodes 14A and 14B in FIG.
  • the transmittance, the director distribution of the liquid crystal molecules 31, and the equipotential curve are shown.
  • FIG. 5C shows the display state of one pixel when the power is turned off and when the power is turned on in the simulation.
  • ITO was formed on the entire surface of a glass substrate 111 similar to the glass substrate 11 to a thickness of 1400 mm by sputtering. Thereafter, by patterning the ITO film, a comb-like electrode 112 (first comb-like electrode) as a pixel electrode and a comb-like shape as a common electrode are formed of the ITO film on the glass substrate 111.
  • the alignment film paint “JALS-204” (trade name, solid content 5 wt.%, ⁇ , manufactured by JSR Co., Ltd.) same as in Example 1 so as to cover the comb-shaped electrodes 112 and 113 on the glass substrate 111.
  • -Butyrolactone solution was applied by spin coating.
  • the substrate 110 was baked at 200 ° C. for 2 hours in the same manner as in Example 1 to form the substrate 110 provided with a vertical alignment film (not shown) on the surface facing the liquid crystal layer 130.
  • a substrate 120 was formed by depositing only a vertical alignment film (not shown) on the same glass substrate 321 as the glass substrate 21 by using the same material and the same process as the vertical alignment film.
  • the dry thickness of each vertical alignment film thus obtained was 1000 mm.
  • the substrates 110 and 120 were bonded together and baked at 135 ° C. for 1 hour in the same manner as in Example 1 to produce a comparative liquid crystal cell 105.
  • a polarizing plate (not shown) similar to that of Example 1 is applied to the front and back surfaces of the liquid crystal cell 105 in a direction in which the transmission axes of the polarizing plate are orthogonal and the comb-shaped electrodes 112 and 113 are stretched. And the transmission axis of the polarizing plate were bonded so as to form an angle of 45 °.
  • a comparative liquid crystal panel 102 liquid crystal display element having the configuration shown in FIG. 40 was produced.
  • the liquid crystal panel 102 thus produced was placed on the backlight in the same manner as in Example 1 and was driven by comb teeth.
  • the actual measurement T on the front surface of the liquid crystal panel 102 was measured with “BM5A” manufactured by Topcon as in Example 1. Note that the transmittance at the actual measurement T was obtained by panel luminance / backlight luminance as in Example 1.
  • the electrode width L / electrode spacing S of the SimT and the comb-like electrodes 112 and 113 are shown in Table 2 and are shown in Table 6 together with the measured T and electric energy EL.
  • 12A shows the applied voltage in the simulation
  • FIG. 12B shows a voltage of 6 V applied to the comb-like electrode 112 in FIG. 12A in the simulation.
  • the transmittance, the director distribution of the liquid crystal molecules 131, and the equipotential curve are shown.
  • the comb-shaped electrode 113 is set to 0V.
  • FIG. 12C shows the display state of one pixel when the power is turned off and when the power is turned on in the simulation.
  • the alignment film paint “JALS-204” (trade name, solid content 5 wt.%, ⁇ , manufactured by JSR Co., Ltd.) as in Example 2 so as to cover the comb-like electrodes 14A and 14B on the insulating layer 13. -Butyrolactone solution) was applied by spin coating. Then, the board
  • the alignment films 15 and 22 thus obtained had a dry film thickness of 1000 mm.
  • the substrates 10 and 20 were bonded to each other and baked at 135 ° C. for 1 hour to produce a comparative liquid crystal cell 5.
  • Example 2 the same polarizing plates 35 and 36 as in Example 2 are stretched on the front and back surfaces of the comparative liquid crystal cell 5 with the transmission axes of the polarizing plates 35 and 36 orthogonal to each other and the comb-like electrodes 14A and 14B extending. Bonding was performed so that the direction in which the light was transmitted and the transmission axes of the polarizing plates 35 and 36 formed an angle of 45 °.
  • a comparative liquid crystal panel 2 liquid crystal display element having a different material and thickness d of the insulating layer 13 from the liquid crystal cell 5 produced in Example 2 was produced.
  • the comparative liquid crystal panel 2 produced in this way was placed on the backlight 4 in the same manner as in Example 2 and was driven by comb teeth.
  • the actual measurement T on the front surface of the liquid crystal panel 102 was measured with “BM5A” manufactured by Topcon as in Example 2.
  • FIG. 13 (a) shows the applied voltage in the simulation.
  • FIG. 13 (b) shows the voltage applied to the comb electrodes 14A and 14B in FIG. 13 (a).
  • the transmittance and the equipotential curve are shown.
  • FIG. 13C shows the display state of one pixel when the power is turned off and when the power is turned on in the simulation.
  • Example 3 SimT was determined in the same manner as in Example 2 except that the thickness of the insulating layer 13 was changed from 0.1 ⁇ m to 0.3 ⁇ m (3000 mm).
  • the SimT, the dielectric constant ⁇ and thickness d of the insulating layer 13, and the electrode width L / electrode spacing S of the comb-like electrodes 14A and 14B are shown together in Table 1 and in Table 8 together with the electric energy EL.
  • Show. 6A shows the applied voltage in the above simulation
  • FIG. 6B shows the voltage applied to the comb-like electrodes 14A and 14B in FIG. 6A.
  • the transmittance, the director distribution of the liquid crystal molecules 31, and the equipotential curve are shown.
  • FIG. 6C shows a display state of one pixel when the power is turned off and when the power is turned on in the simulation.
  • FIG. 7A shows the applied voltage in the simulation
  • FIG. 7B shows a voltage of 6 V applied to the comb-like electrode 14A in FIG. 7A in the simulation.
  • the transmittance, the director distribution of the liquid crystal molecules 31, and the equipotential curve are shown.
  • FIG. 7C shows the display state of one pixel when the power is turned off and when the power is turned on in the simulation.
  • the SimT, the dielectric constant ⁇ and thickness d of the insulating layer 13, and the electrode width L / electrode spacing S of the comb-like electrodes 14A and 14B are shown together in Table 1 and in Table 8 together with the electric energy EL.
  • Show. 8A shows the applied voltage in the above simulation
  • FIG. 8B shows the voltage applied to the comb-like electrodes 14A and 14B in FIG.
  • the transmittance, the director distribution of the liquid crystal molecules 31, and the equipotential curve are shown.
  • FIG. 8C shows the display state of one pixel when the power is turned off and when the power is turned on in the simulation.
  • the SimT, the dielectric constant ⁇ and the thickness d of the insulating layer 13, and the electrode width L / electrode spacing S of the comb-like electrodes 14A and 14B are shown together in Table 1 and in Table 7 together with the electric energy EL.
  • Show. 9A shows the applied voltage in the simulation
  • FIG. 9B shows a voltage of 6 V applied to the comb-like electrode 14A in FIG. 9A in the simulation.
  • the transmittance, the director distribution of the liquid crystal molecules 31, and the equipotential curve are shown.
  • FIG. 9C shows the display state of one pixel when the power is turned off and when the power is turned on in the simulation.
  • FIG. 10 (a) shows the applied voltage in the simulation.
  • FIG. 10 (b) shows the voltage applied to the comb-like electrodes 14A and 14B in FIG. 10 (a).
  • the transmittance, the director distribution of the liquid crystal molecules 31, and the equipotential curve are shown.
  • FIG. 10C shows the display state of one pixel when the power is turned off and when the power is turned on in the simulation.
  • FIG. 11 (a) shows the applied voltage in the simulation
  • FIG. 11 (b) shows a voltage of 6V applied to the comb-shaped electrode 14A in FIG. 11 (a).
  • the transmittance, the director distribution of the liquid crystal molecules 31, and the equipotential curve are shown.
  • FIG. 11C shows the display state of one pixel when the power is turned off and when the power is turned on in the simulation.
  • Comparative Example 3 In Comparative Example 2, actually measured T and SimT were obtained in the same manner as in Comparative Example 2, except that comb drive was used instead of FFS.
  • SimT was determined in the same manner as in Example 1 except that the resin was changed to an acrylic resin (32,000 mm) (trade name “Optomer SS” manufactured by JSR Corporation).
  • FIG. 14 (a) shows the applied voltage in the simulation
  • FIG. 14 (b) shows a voltage of 6V applied to the comb-like electrode 14A in FIG. 13 (a) in the simulation.
  • the transmittance, the director distribution of the liquid crystal molecules 31, and the equipotential curve are shown.
  • FIG. 14C shows the display state of one pixel when the power is turned off and when the power is turned on in the simulation.
  • FIG. 15A shows the applied voltage in the simulation.
  • FIG. 15B shows the voltage applied to the comb-like electrodes 14A and 14B in FIG. 15A.
  • the transmittance, the director distribution of the liquid crystal molecules 31, and the equipotential curve are shown.
  • FIG. 15C shows the display state of one pixel when the power is turned off and when the power is turned on in the simulation.
  • Example 9 SimT was obtained in the same manner as in Example 1 except that the thickness of the insulating layer 13 was changed from 0.1 ⁇ m to 1.0 ⁇ m (10000 mm) in Example 1.
  • FIG. 16A shows the applied voltage in the simulation
  • FIG. 16B shows a voltage of 6 V applied to the comb-shaped electrode 14A in FIG.
  • the transmittance, the director distribution of the liquid crystal molecules 31, and the equipotential curve are shown.
  • FIG. 16C shows the display state of one pixel when the power is turned off and when the power is turned on in the simulation.
  • Example 10 SimT was determined in the same manner as in Example 9 except that the thickness of the insulating layer 13 was changed from 1.0 ⁇ m to 1.5 ⁇ m (15000 mm). In other words, SimT was obtained in the same manner as in Example 1 except that the thickness of the insulating layer 13 in Example 1 was changed from 0.1 ⁇ m to 1.5 ⁇ m (15000 mm).
  • the SimT, the dielectric constant ⁇ and the thickness d of the insulating layer 13, and the electrode width L / electrode spacing S of the comb-like electrodes 14A and 14B are shown together in Table 3 and in Table 6 together with the electric energy EL.
  • Show. 17A shows the applied voltage in the simulation
  • FIG. 17B shows a voltage of 6 V applied to the comb-like electrode 14A in FIG. 17A in the simulation.
  • the transmittance, the director distribution of the liquid crystal molecules 31, and the equipotential curve are shown.
  • FIG. 17C shows the display state of one pixel when the power is turned off and when the power is turned on in the simulation.
  • the SimT, the dielectric constant ⁇ and the thickness d of the insulating layer 13, and the electrode width L / electrode spacing S of the comb-like electrodes 14A and 14B are shown together in Table 3 and in Table 6 together with the electric energy EL.
  • Show. 18A shows the applied voltage in the simulation
  • FIG. 18B shows a voltage of 6 V applied to the comb-like electrode 14A in FIG. 18A in the simulation.
  • the transmittance, the director distribution of the liquid crystal molecules 31, and the equipotential curve are shown.
  • FIG. 18C shows the display state of one pixel when the power is turned off and when the power is turned on in the simulation.
  • Example 12 SimT was determined in the same manner as in Example 8 except that the thickness of the insulating layer 13 was changed from 1.0 ⁇ m to 0.6 ⁇ m (6000 mm).
  • FIG. 19A shows the applied voltage in the simulation
  • FIG. 19B shows a voltage of 6 V applied to the comb-like electrode 14A in FIG. 19A in the simulation.
  • the transmittance, the director distribution of the liquid crystal molecules 31, and the equipotential curve are shown.
  • FIG. 19C shows the display state of one pixel when the power is turned off and when the power is turned on in the simulation.
  • Example 13 In Example 12, SimT was determined in the same manner as in Example 12 except that the thickness of the insulating layer 13 was changed from 0.6 ⁇ m to 0.1 ⁇ m (1000 mm). In other words, SimT was obtained in the same manner as in Example 8 except that the thickness of the insulating layer 13 was changed from 1.0 ⁇ m to 0.1 ⁇ m (1000 mm) in Example 8.
  • the SimT, the dielectric constant ⁇ and the thickness d of the insulating layer 13, and the electrode width L / electrode spacing S of the comb-like electrodes 14A and 14B are shown together in Table 3 and in Table 7 together with the electric energy EL.
  • Show. 20A shows the applied voltage in the simulation
  • FIG. 20B shows a voltage of 6 V applied to the comb-like electrode 14A in FIG. 19A in the simulation.
  • the transmittance, the director distribution of the liquid crystal molecules 31, and the equipotential curve are shown.
  • FIG. 20C shows the display state of one pixel when the power is turned off and when the power is turned on in the simulation.
  • Example 9 SimT was obtained in the same manner as in Example 9 except that FFS driving was used instead of comb driving. In other words, SimT was obtained in the same manner as in Example 2 except that the thickness of the insulating layer 13 in Example 2 was changed from 0.1 ⁇ m to 1.0 ⁇ m (10000 mm).
  • FIG. 22 (a) shows the applied voltage in the simulation.
  • FIG. 22 (b) shows the voltage applied to the comb electrodes 14A and 14B in FIG. 22 (a).
  • the transmittance when a voltage is applied, the director distribution of the liquid crystal molecules 31, and the equipotential curve are shown.
  • FIG. 22C shows the display state of one pixel when the power is turned off and when the power is turned on in the simulation.
  • Example 10 SimT was determined in the same manner as in Example 10 except that FFS driving was used instead of comb driving. In other words, SimT was obtained in the same manner as in Example 2, except that the thickness of the insulating layer 13 in Example 2 was changed from 0.1 ⁇ m to 1.5 ⁇ m (15000 mm).
  • FIG. 23A shows the applied voltage in the simulation.
  • FIG. 23B shows the voltage applied to the comb electrodes 14A and 14B in FIG. 23A.
  • the transmittance when a voltage is applied, the director distribution of the liquid crystal molecules 31, and the equipotential curve are shown.
  • FIG. 23C shows the display state of one pixel when the power is turned off and when the power is turned on in the simulation.
  • Example 11 SimT was obtained in the same manner as in Example 11 except that FFS driving was used instead of comb driving.
  • SimT was determined in the same manner as in Example 2 except that the thickness was changed to 4.0 ⁇ m.
  • FIG. 24A shows the applied voltage in the simulation.
  • FIG. 24B shows the voltage applied to the comb-like electrodes 14A and 14B in FIG. 24A.
  • the transmittance when a voltage is applied, the director distribution of the liquid crystal molecules 31, and the equipotential curve are shown.
  • FIG. 24C shows the display state of one pixel when the power is turned off and when the power is turned on in the simulation.
  • Example 14 SimT was determined in the same manner as in Example 13 except that FFS driving was used instead of comb driving.
  • FIG. 21A shows the applied voltage in the simulation.
  • FIG. 21B shows the voltage applied to the comb-shaped electrodes 14A and 14B in FIG. 21A.
  • the transmittance when a voltage is applied, the director distribution of the liquid crystal molecules 31, and the equipotential curve are shown.
  • FIG. 21C shows the display state of one pixel when the power is turned off and when the power is turned on in the simulation.
  • Example 12 SimT was obtained in the same manner as in Example 12 except that FFS driving was used instead of comb driving. In other words, SimT was obtained in the same manner as in Example 14 except that the thickness of the insulating layer 13 in Example 14 was changed from 0.1 ⁇ m to 0.6 ⁇ m (6000 mm).
  • FIG. 25A shows the applied voltage in the simulation
  • FIG. 25B shows the simulation
  • the transmittance when a voltage is applied, the director distribution of the liquid crystal molecules 31, and the equipotential curve are shown.
  • FIG. 25C shows a display state when the power is turned off and when the power is turned on in the simulation.
  • Example 15 In Example 10, SimT was determined in the same manner as in Example 10 except that the thickness of the insulating layer 13 was changed from 1.5 ⁇ m to 1.8 ⁇ m (18000 mm). In other words, SimT was obtained in the same manner as in Example 1 except that the thickness of the insulating layer 13 in Example 1 was changed from 0.1 ⁇ m to 1.8 ⁇ m (18000 mm).
  • FIG. 26 (a) shows the applied voltage in the above simulation
  • FIG. 26 (b) shows a voltage of 6V applied to the comb-like electrode 14A in FIG. 26 (a) in the above simulation.
  • the transmittance, the director distribution of the liquid crystal molecules 31, and the equipotential curve are shown.
  • FIG. 26C shows the display state of one pixel when the power is turned off and when the power is turned on in the simulation.
  • Example 15 SimT was determined in the same manner as in Example 15 except that the thickness of the insulating layer 13 was changed from 1.8 ⁇ m to 2.0 ⁇ m (20000 mm). In other words, SimT was obtained in the same manner as in Example 1 except that the thickness of the insulating layer 13 in Example 1 was changed from 0.1 ⁇ m to 2.0 ⁇ m (20000 mm).
  • the SimT, the dielectric constant ⁇ and thickness d of the insulating layer 13, and the electrode width L / electrode spacing S of the comb-like electrodes 14A and 14B are shown together in Table 5 and in Table 6 together with the electric energy EL.
  • Show. 27A shows the applied voltage in the simulation
  • FIG. 27B shows a voltage of 6 V applied to the comb-like electrode 14A in FIG. 27A in the simulation.
  • the transmittance, the director distribution of the liquid crystal molecules 31, and the equipotential curve are shown.
  • FIG. 27C shows the display state of one pixel when the power is turned off and when the power is turned on in the simulation.
  • FIG. 28 (a) shows the applied voltage in the simulation
  • FIG. 28 (b) shows a voltage of 6V applied to the comb-like electrode 14A in FIG. 28 (a) in the simulation.
  • the transmittance, the director distribution of the liquid crystal molecules 31, and the equipotential curve are shown.
  • FIG. 28C shows the display state of one pixel when the power is turned off and when the power is turned on in the simulation.
  • FIG. 29 (a) shows the applied voltage in the simulation
  • FIG. 29 (b) shows the simulation
  • FIG. 29 (a) shows that 6V is applied to each of the comb-like electrodes 14A and 14B in FIG.
  • the transmittance when a voltage is applied, the director distribution of the liquid crystal molecules 31, and the equipotential curve are shown.
  • FIG. 29C shows the display state of one pixel when the power is turned off and when the power is turned on in the simulation.
  • FIG. 30A shows the applied voltage in the simulation
  • FIG. 30B shows the simulation
  • the transmittance when a voltage is applied, the director distribution of the liquid crystal molecules 31, and the equipotential curve are shown.
  • FIG. 30C shows the display state of one pixel when the power is turned off and when the power is turned on in the simulation.
  • FIG. 31A shows the applied voltage in the simulation.
  • FIG. 31B shows the voltage applied to the comb-like electrodes 14A and 14B in FIG. 31A.
  • the transmittance when a voltage is applied, the director distribution of the liquid crystal molecules 31, and the equipotential curve are shown.
  • FIG. 31C shows the display state of one pixel when the power is turned off and when the power is turned on in the simulation.
  • FIG. 32 (a) shows the applied voltage in the simulation
  • FIG. 32 (b) shows a voltage of 6V applied to the comb-like electrode 14A in FIG. 32 (a) in the simulation.
  • the transmittance, the director distribution of the liquid crystal molecules 31, and the equipotential curve are shown.
  • FIG. 32C shows the display state of one pixel when the power is turned off and when the power is turned on in the simulation.
  • the organic insulating layer 13 having a low relative dielectric constant ⁇ of, for example, 3.3 as described above is used, if the thickness d is reduced to, for example, 0.1 ⁇ m, the driving voltage can be reduced. The transmittance is also increased.
  • the electrode width L / electrode spacing S of the comb-like electrodes 14A and 14B is 2.6 /
  • the thickness d of the insulating layer 13 is, for example, 1.0 ⁇ m or more when the thickness is 8.0, the effect of reducing the driving voltage is not seen even if the liquid crystal panel 2 is FFS driven.
  • the inorganic insulating layer 13 having a high relative dielectric constant ⁇ , for example, 6.9 as described above is used, if the thickness d of the insulating layer 13 is reduced to, for example, 0.3 ⁇ m or less, the driving voltage is reduced. The effect is seen and the transmittance increases.
  • the liquid crystal panel 2 is driven by comb teeth, as shown in Table 7, when the organic insulating layer 13 having a low relative dielectric constant ⁇ of 3.3, for example, is used, the comb electrodes 14A and 14B are used.
  • the electrode width L / electrode spacing S is 2.6 / 8.0 and the thickness d of the insulating layer 13 is as thick as 3.2 ⁇ m, for example, the effect of reducing the driving voltage is not seen.
  • the thickness d of the insulating layer 13 when the thickness is 1.0 ⁇ m or less, the driving voltage can be reduced and the transmittance can be increased.
  • the comb electrodes 14A and 14B are used.
  • the electrode width L / electrode spacing S is 2.6 / 8.0 and the thickness d of the insulating layer 13 is as thick as 2.0 ⁇ m, for example, the effect of reducing the driving voltage is not seen.
  • the thickness d of the insulating layer 13 and the comb teeth are used when the thickness d of the insulating layer 13 is 1.8 ⁇ m or less.
  • the electrode interval S when the electrode interval S is 12.0 ⁇ m or less, decreasing the electrode interval S tends to reduce the driving voltage reduction effect and the transmittance, and when the electrode interval S is 12.0 ⁇ m or more, the electrode interval S is reduced. When is increased, the reduction effect of the driving voltage is reduced and the transmittance tends to be lowered.
  • the electric energy EL can be explained by the electric energy EL. That is, although the preferred thickness d of the insulating layer 13 varies depending on the relative dielectric constant ⁇ as described above, the smaller the thickness d of the insulating layer 13, the greater the electric energy EL, regardless of the relative dielectric constant ⁇ and the driving method. It was confirmed that the liquid crystal molecules move well.
  • the electric energy EL is 0.44 J / m 3 regardless of whether it is comb drive or FFS drive. That was confirmed. Further, when FFS driving was used, the electric energy EL was 0.6 J / m 3 or more, and a remarkable effect was obtained in reducing the driving voltage and improving the transmittance.
  • the liquid crystal panels 2 and 102 used in the above-described examples and comparative examples are both vertical alignment lateral electric field mode liquid crystal panels that perform lateral electric field driving in the vertical alignment mode. For this reason, the liquid crystal molecules 31 and 131 in the liquid crystal panels 2 and 102 are not connected between the comb-like electrodes 14A and 14B and the lower layer electrode 12 when the power is turned off (that is, between the comb-like electrodes 14A and 14B). (When no electric field is generated between the comb-shaped electrodes 112 and 113), each pixel is aligned perpendicularly to the substrate surface, as shown in the respective partial diagrams (c) in FIGS. Is darkened.
  • the liquid crystal molecules 31 and 131 are centered on the central portions of the comb-like electrodes 14A and 14B or the comb-like electrodes 112 and 113 Are aligned so as to have a symmetrical structure, and as shown in the respective partial diagrams (c) in FIGS. 4 to 32, each pixel is brightly displayed.
  • “H” indicates the alignment spaces of the liquid crystal molecules 31 and 131 that operate when the power is turned on
  • “T” indicates the comb-like electrodes 14A and 14B.
  • a disclination border of alignment disorder of the liquid crystal molecules 31 and 131 between the electrodes or between the comb-like electrodes 112 and 113 is shown.
  • the transmittance varies with the size of the alignment space, and the disclination affects the transmittance.
  • FIG. 33 shows the relationship between the electric energy EL and the thickness d of the insulating layer 13 in Examples 2, 3, 14 and Comparative Examples 2, 4, 5, 6, 8 using FFS driving.
  • the electric energy EL increases as the thickness d decreases regardless of the relative permittivity ⁇ .
  • the thickness d of the insulating layer 13 is such that the electric energy EL is 0.44 J / m 3 or more. It is preferable that it is 0.35 ⁇ m or less.
  • the thickness d of the insulating layer 13 is 0.65 ⁇ m at which the electric energy EL is 0.44 J / m 3 or more. The following is preferable.
  • the upper limit of the thickness d of the insulating layer 13 is 0.35 to 0.65 from the result shown in FIG. Within the range.
  • the lower limit value of the thickness d of the insulating layer 13 is preferably 0.1 ⁇ m from the viewpoint of insulation. By setting the thickness d of the insulating layer 13 to 0.1 ⁇ m or more, it is possible to prevent the occurrence of insulation failure due to lattice defects.
  • the thickness d of the insulating layer 13 is 0.1 ⁇ m, and regardless of the relative dielectric constant ⁇ , it is 0.60 J / m 3 or more. Electric energy EL can be obtained.
  • FIG. 34 shows the relationship between the electric energy EL and the thickness d of the insulating layer 13 in Examples 1, 8, 9, 10, 12, 13, 15, and Comparative Examples 1, 3, and 9 using a comb drive. .
  • the thickness d of the insulating layer 13 is such that the electric energy EL is 0.44 J / m 3 or more. It is preferable to be 2.8 ⁇ m or less.
  • the thickness d of the insulating layer 13 is 1.8 ⁇ m or less at which the electric energy EL is 0.44 J / m 3 or more. It is preferable to do.
  • the thickness d of the insulating layer 13 is 0.1 ⁇ m or more from the viewpoint of preventing insulation defects due to lattice defects and film thickness unevenness. Is preferred.
  • FIG. 35 shows the relationship between the electric energy EL and the electrode spacing S between the comb-like electrodes 14A and 14B in Examples 2, 3, 5, 7, 17, 18, 19 and Comparative Example 7 using FFS driving.
  • the electrical energy EL decreases when the electrode spacing S is decreased.
  • the electrical energy EL decreases as the electrode interval S decreases, and when the electrode interval S is 12.0 ⁇ m or more, As the electrode spacing S decreases, the electrical energy EL increases.
  • the electrode spacing S is determined by the electric energy EL. It is preferred but is 4.5 ⁇ m or more to be 0.44J / m 3 or more.
  • the electrode spacing S is The energy EL is preferably in the range of 6.0 ⁇ m or more and 17.5 ⁇ m or less where the energy EL is 0.44 J / m 3 or more.
  • FIG. 36 shows the relationship between the electric energy EL and the electrode spacing S of the comb-shaped electrodes 14A and 14B in Examples 1, 4, 11, and 16 using the comb-tooth drive.
  • FIG. 36 shows the relationship between the electric energy EL and the electrode spacing S when the inorganic insulating layer 13 having a thickness d of the insulating layer 13 of 0.1 ⁇ m and a relative dielectric constant ⁇ of 6.9 is shown. Yes.
  • the comb-like electrodes 14A and 14B The electrode spacing S is preferably 14.5 ⁇ m or less at which the electric energy EL is 0.44 J / m 3 or more.
  • the transmittance in each of the examples and comparative examples shown in Tables 1 to 5 is a transmittance in an infinite plane.
  • the pixel size becomes a problem.
  • the number of dark lines is determined by the electrode interval S, and the number of dark lines increases as the electrode interval S is smaller.
  • the substantial transmission part (the part excluding the dark line) becomes the opening. Since the transmission part increases as the area of the opening increases, the electrode spacing S is limited.
  • each pixel (the portion excluding the comb-like electrodes 14A and 14B) assuming a pixel having a horizontal width (width in the direction perpendicular to the comb-like electrodes 14A and 14B) of 100 ⁇ m was calculated as the aperture ratio.
  • Table 10 the results are shown in Table 10 together with the electrode spacing S, electrode width L, and the number of comb-like electrodes 14A and 14B (number of lines).
  • FIG. 37 shows the relationship between the electrode spacing S and the aperture ratio at this time.
  • the aperture ratio is calculated based on the electrode spacing S, the electrode width L, and the number of lines. For this reason, there is no distinction between comb tooth drive and FFS drive.
  • the electrode spacing S is preferably 4 ⁇ m or more for both the comb driving and the FFS driving, and more preferably 6 ⁇ m or more from the results shown in FIG. 37 and Table 10.
  • the actual transmittance of a liquid crystal display device using a liquid crystal panel such as a TFT panel can be calculated by multiplying the aperture ratio, the transmittance in an infinite plane according to the present invention, and the transmittance of a color filter (about 28%). .
  • Table 11 shows the actual transmittance when each driving method is used, together with the electrode interval S between adjacent comb-shaped electrodes 14A and 14B, the transmittance when 6V is applied in an infinite plane, and the aperture ratio.
  • FIG. 38 shows the relationship between the actual transmittance and the electrode spacing S when each driving method is used.
  • the electrode interval S is preferably 12.0 ⁇ m or less from the viewpoint of substantial transmittance.
  • the substantial transmittance of the electrode spacing S sharply decreases at a boundary of 4 ⁇ m. Therefore, from the viewpoint of not only the aperture ratio (see FIG. 37 and Table 10) but also the substantial transmittance, the electrode spacing S is preferably set to 4 ⁇ m or more when the comb driving is performed as described above.
  • the thickness d of the insulating layer 13 is the same as the relationship between the electric energy EL and the electrode spacing S shown in FIG. Is 0.3 ⁇ m, the electrode spacing S is preferably 6 ⁇ m or more, and more preferably 8 ⁇ m or more. It can also be seen that the substantial transmittance starts to decrease when the electrode spacing S is 12.0 ⁇ m or more.
  • the upper layer electrode composed of the comb-like electrodes 14A and 14B and the lower layer electrode 12 are superimposed on one of the pair of substrates 10 and 20 facing each other with the liquid crystal layer 30 interposed therebetween via the insulating layer 13.
  • the electrode spacing S of the comb-like electrodes 14A and 14B, the film thickness of the insulating layer 13, and the relative dielectric constant ⁇ of the insulating layer 13 so that the electric energy EL is 0.44 J / m 3 or more.
  • the dielectric constant of the insulating layer 13 is 3.3
  • the electrode spacing S between adjacent comb-shaped electrodes 14A and 14B is 12.0 ⁇ m or less
  • an electric energy EL of 0.44 J / m 3 or more can be obtained, and a high substantial transmittance can be obtained. Therefore, according to said structure, the liquid crystal panel 2 and the liquid crystal display device 1 with a low drive voltage and a high transmittance
  • the dielectric constant of the insulating layer 13 is 3.3 to 6.9, and the electrode spacing S between the adjacent comb electrodes 14A and 14B is 12.0 ⁇ m or less, Even when the thickness d of the insulating layer 13 is 1.8 ⁇ m or less, an electric energy EL of 0.44 J / m 3 or more can be obtained, and a high substantial transmittance can be obtained. Therefore, also in this case, the liquid crystal panel 2 and the liquid crystal display device 1 with low driving voltage and high transmittance can be manufactured.
  • the thickness d of the insulating layer 13 is preferably set to 0.1 ⁇ m or more for the reason described above.
  • the dielectric layer of the insulating layer 13 has a relative dielectric constant of 6.9, and adjacent comb-like electrodes 14A.
  • the thickness d of the insulating layer 13 is preferably 0.65 ⁇ m or less.
  • the thickness of the insulating layer 13 is as follows. The thickness d is preferably set to 0.35 ⁇ m or less.
  • the thickness d of the insulating layer 13 is preferably set to 0.1 ⁇ m or more for the reason described above.
  • the electrode between the adjacent comb-shaped electrodes 14A and 14B It is preferable that the distance S is 4.5 ⁇ m or more. In this case, as described above, an electric energy EL of 0.44 J / m 3 or more can be obtained, and a high substantial transmittance can be obtained. In this case, the electrode spacing S is preferably as large as possible. Therefore, the upper limit of the electrode interval S is not particularly limited. Note that the upper limit of the electrode spacing S is naturally determined from the pixel area if the number of comb-shaped electrodes 14A and 14B (number of lines) and the electrode width L are determined.
  • the dielectric constant of the insulating layer 13 is 6.9, the thickness of the insulating layer 13 is 0.1 ⁇ m to 0.3 ⁇ m, and the adjacent comb-like electrodes 14A and 14B. Even when the inter-electrode distance S is 6.0 ⁇ m or more, as described above, it is possible to obtain an electric energy EL of 0.44 J / m 3 or more and a high substantial transmittance.
  • the present invention is extremely epoch-making capable of realizing both low voltage and high transmittance in a display method in which a horizontal electric field is applied in a vertical alignment cell, which is extremely difficult to achieve at the same time. It is a novel invention.
  • the material (relative dielectric constant ⁇ ), thickness d, electrode width L / electrode spacing S of the insulating layer 13 are set so that the electric energy EL satisfies the above range as described above. -What is necessary is just to select and it does not specifically limit.
  • the material and forming method of the other components can be selected and set in the same manner as before, and no special changes are required.
  • the case where ITO is used as the comb-like electrodes 14A and 14B has been described as an example.
  • ITO IndiumxZinc Oxide
  • IZO IndiumxZinc Oxide
  • the material and film thickness of each component are not particularly limited.
  • the material of the insulating layer 13 is set so that the electric energy EL satisfies the above range according to the formation conditions of each component used. It is only necessary to set at least one parameter selected from the group consisting of (relative permittivity ⁇ ), thickness d, electrode width L / electrode spacing S.
  • the organic insulating layer 13 when an acrylic resin having a thickness of 1 ⁇ m to 3 ⁇ m is used as the organic insulating layer 13, instead of forming the color filter layer on the substrate 20 as described above, as shown in FIG. As the insulating layer 13, a black matrix 13A and a color filter 13B may be formed. That is, a color filter can be substituted for the insulating layer 13. In other words, the insulating layer 13 may include a color filter layer.
  • FIG. 39 a cross section of the liquid crystal panel 2 using the insulating layer made of the black matrix 13A and the color filter 13B as the insulating layer 13 when no voltage is applied is shown.
  • the upper layer electrode and the lower layer electrode are provided so as to overlap each other through the insulating layer on one of the pair of substrates facing each other with the liquid crystal layer interposed therebetween.
  • the upper electrode is composed of a comb-like electrode, and the average at a position of 0.1 ⁇ m from the surface of the other substrate in a portion overlapping with the comb-like electrode when the liquid crystal layer is viewed from a direction perpendicular to the substrate surface. Is 0.44 J / m 3 or more.
  • a liquid crystal display device according to the present invention includes the liquid crystal panel.
  • the upper layer electrode includes first and second comb-like electrodes, and the liquid crystal layer is driven by an electric field generated between the adjacent first and second comb-like electrodes.
  • the liquid crystal layer may be driven by an electric field generated between the upper layer electrode and the lower layer electrode.
  • the dielectric constant of the insulating layer is 3.3
  • the distance between the adjacent first and second comb-like electrodes is 12.0 ⁇ m or less
  • the thickness of the insulating layer is Is preferably 0.1 ⁇ m or more and 2.8 ⁇ m or less.
  • the dielectric constant of the insulating layer is 3.3 to 6.9
  • the distance between the adjacent first and second comb electrodes is 12.0 ⁇ m or less
  • the thickness of the insulating layer is It is preferably 0.1 ⁇ m or more and 1.8 ⁇ m or less.
  • the interval between the first and second comb electrodes adjacent to each other is preferably set to 4 ⁇ m or more for the reason described above.
  • the electrical energy is preferably 0.60 J / m 3 or more.
  • the relative dielectric constant of the insulating layer is 6.9, and the upper electrode is adjacent to the dielectric layer. It is preferable that the interval between the comb electrodes is 8.0 ⁇ m and the thickness of the insulating layer is 0.1 ⁇ m or more and 0.65 ⁇ m or less.
  • the dielectric constant of the insulating layer is 3.3 to 6.9, the interval between adjacent comb-like electrodes in the upper electrode is 8.0 ⁇ m, and the thickness of the insulating layer is 0.1 ⁇ m. As mentioned above, it is preferable that it is 0.35 micrometer or less.
  • the dielectric constant of the said insulating layer is 6.9, the thickness of the said insulating layer is 0.1 micrometer, and the space
  • the dielectric constant of the insulating layer is 6.9, the thickness of the insulating layer is 0.1 ⁇ m to 0.3 ⁇ m, and the spacing between adjacent comb-like electrodes in the upper layer electrode is 6.0 ⁇ m. The thickness is preferably 12.0 ⁇ m or less.
  • the insulating layer may include a color filter layer. That is, when an acrylic resin is used for the insulating layer as the organic insulating layer, a color filter layer can be substituted for the insulating layer. Thereby, a color filter can be formed on the substrate provided with the upper layer electrode and the lower layer electrode, and the liquid crystal panel can be made thinner.
  • the method for manufacturing a liquid crystal panel according to the present invention includes an upper electrode composed of comb-like electrodes on one of a pair of substrates facing each other with a liquid crystal layer interposed therebetween, with an insulating layer interposed therebetween, An average is obtained at a position of 0.1 ⁇ m from the surface of the other substrate in a portion overlapping with the comb-like electrode when the liquid crystal layer is viewed from a direction perpendicular to the substrate surface.
  • a liquid crystal panel having high-speed response, wide viewing angle characteristics, and high contrast characteristics, capable of being driven with a practical driving voltage, and having high transmittance, a method for manufacturing the same, and A liquid crystal display device can be provided.
  • the liquid crystal panel and the liquid crystal display device according to the present invention do not require an initial bend transition operation, have a high transmittance at a practical driving voltage, have a wide viewing angle characteristic equivalent to the MVA mode and the IPS mode, and the OCB. High-speed response comparable to or higher than the mode and high contrast characteristics can be realized at the same time. Therefore, it can be particularly suitably used for public bulletin boards for outdoor use, mobile devices such as mobile phones and PDAs.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Geometry (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

 液晶パネル(2)は、液晶層(30)を挟んで対向する一対の基板(10・20)における一方の基板(10)に、絶縁層(13)を介して上層電極(14)と下層電極(12)とが重畳して設けられており、上層電極(14)は、櫛歯状電極(14A・14B)からなり、液晶層(30)を基板面に垂直な方向から見たときに櫛歯状電極(14A・14B)と重なる部分における、他方の基板(20)の表面から0.1μmの位置での平均の電気エネルギーが、0.44J/m以上である。

Description

液晶パネルおよびその製造方法並びに液晶表示装置
 本発明は、液晶パネルおよびその製造方法並びに液晶表示装置に関するものであり、より詳しくは、電圧無印加時に液晶分子が基板垂直方向に配向する垂直配向型の液晶セルに横電界を印加することで光の透過を制御する液晶パネルおよびその製造方法並びに液晶表示装置に関するものである。
 液晶表示装置は、各種表示装置のなかでも薄型で軽量かつ消費電力が小さいといった利点を有し、近年、CRT(Cathode Ray Tube)に代わって、TV(Television)、モニタ、携帯電話等のモバイル機器等の様々な分野で広く用いられている。
 液晶表示装置の表示方式は、液晶セル内で液晶をどのように配列させるかによって決定される。
 液晶表示装置の表示方式の一つとして、従来、MVA(Multi-domain Vertical Alignment)モードの液晶表示装置が知られている。MVAモードは、アクティブマトリクス基板の画素電極にスリットを設けるとともに、対向基板の対向電極に液晶分子配向制御用の突起(リブ)を設け、これによって垂直方向の電界を加え、リブやスリットで配向方向を規制しながら液晶分子の配向方向を複数方向に配設させる方式である。
 MVAモードの液晶表示装置は、電界印加時に液晶分子が倒れる方向を複数に分割することによって、広視野角を実現している。また、垂直配向モードであるため、IPS(In-Plain Switching)モード等の水平配向モードに比べて高コントラストを得ることができる。しかしながら、製造工程が複雑であるという欠点を有している。
 そこで、MVAモードのプロセス課題を解決すべく、電圧無印加時に液晶分子が基板垂直方向に配向する垂直配向型の液晶セル(垂直配向セル)に櫛歯状電極を使用し、基板面に平行な電界(いわゆる横電界)を印加する表示方式が提案されている(例えば、特許文献1参照)。
 上記表示方式では、垂直配向による高コントラスト性を保ちながら横電界により駆動させることで液晶分子の配向方位を規定する。上記表示方式は、MVAのような突起物による配向制御が不要であるため、画素構成が単純であり、優れた視野角特性を有している。
日本国公開特許公報「特開平10-186351号公報(1998年7月14日公開)」
 上記したように垂直配向型の液晶セルに横電界を印加する表示方式を用いた液晶パネルの典型的な構成について、図40を参照して以下に説明する。
 図40は、上記した垂直配向型の液晶セルに横電界を印加する表示方式を用いたときの該液晶セル内の液晶分子のダイレクタ分布を模式的に示す図である。
 図40に示すように、上記表示方式を用いた液晶パネル102は、液晶層130を挟んで対向する一対の基板110・120における一方の基板110に、画素電極および共通電極として、一対の櫛歯状電極112・113が設けられた構成を有している。
 このような液晶パネル102においては、典型的に、ガラス基板111上に、一対の櫛歯状電極112・113が設けられ、これら一対の櫛歯状電極112・113を覆うように、配向膜として、図示しない垂直配向膜が設けられる。
 このような液晶パネル102においては、図40に示すように、上記一対の櫛歯状電極112・113間に横電界を印加することで、液晶分子131のダイレクタ分布が、櫛歯状電極による電極ラインの中央部分を中心に対称構造を有し、セル内に弓なり状(ベンド状)の液晶配向分布が形成される。このため、液晶分子131が、電源OFF時は上記したように垂直配向し、電源ON時には、自己ダイレクタが電極ラインの中央部分を中心に相殺補償するように配列する。
 したがって、上記表示方式は、ベンド配向に基づく高速応答性、自己ダイレクタの相殺補償型配列による広視野角、垂直配向に起因する高コントラストを実現することができる。
 しかしながら、その反面、上記表示方式は、駆動電圧が高いという問題点を有している。
 さらに、上記表示方式に特有の課題として、櫛歯状電極112・113上は液晶分子131が動作せず、暗線が形成されるため、開口率が低く、透過率が低いという問題がある。
 透過率を高くするには、電極ライン上の配向スペースを大きくとる必要があり、誘電率異方性(Δε)が高い液晶材料を使用する必要がある。
 しかしながら、誘電率異方性(Δε)が高い液晶材料は、相対的に粘性が高く、このような液晶材料を使用すると、液晶層130の粘性が増加し、高速応答することができない。
 このため、透過率を高めるためには、電圧の印加により位相差をできるだけ大きくする必要がある。
 しかしながら、上記表示方式では、上記したように表示面内一様に液晶分子131が回転しない。また、表示領域内に形成される多数の暗線が一種の壁となり、液晶分子の回転が規制される。このため、通常の駆動電圧では、充分な位相差が発現されない。
 したがって、上記表示方式においては、低電圧化は困難である。また、上記表示方式においては、低電圧化と高透過率とを両立することは極めて困難である。
 このため、これまで、上記表示方式において低電圧化のための提案は行われていない。また、上記表示方式においては、実用的な駆動電圧による駆動が困難であることから、上記した利点を有しながらも、上記表示方式を用いた液晶パネル並びに液晶表示装置は、未だ実用化されていないのが現状である。
 本発明は、上記の問題点に鑑みてなされたものであり、その目的は、上記したように垂直配向セルに横電界を印加する表示方式を用いた液晶パネルおよび液晶表示装置において駆動電圧を従来よりも低減することにある。
 また、本発明のさらなる目的は、上記した表示方式を用いた液晶パネルおよび液晶表示装置において、駆動電圧の低減並びに透過率の向上を図ることにある。
 また、本発明のさらなる目的は、垂直配向セルに横電界を印加する表示方式を用いた、駆動電圧が低い液晶パネル、さらには、透過率が高い液晶パネルを製造する方法を提供することにある。
 上記した状況のもと、本願発明者らは、上記表示方式を用いた液晶パネル並びに液晶表示装置において、低電圧化、さらには透過率を高く保持したままで低電圧化できる、特別の条件をシミュレーションおよび実験により見出した。この結果、本願発明者らは、上記表示方式を用いた液晶パネル並びに液晶表示装置の低電圧化に成功した。
 すなわち、本発明にかかる液晶パネルは、上記課題を解決するために、液晶層を挟んで対向する一対の基板における一方の基板に、絶縁層を介して上層電極と下層電極とが重畳して設けられており、上記上層電極は、櫛歯状電極からなり、上記液晶層を基板面に垂直な方向から見たときに上記櫛歯状電極と重なる部分における、他方の基板の表面から0.1μmの位置での平均の電気エネルギーが、0.44J/m以上であることを特徴としている。
 また、本発明にかかる液晶表示装置は、上記液晶パネルを備えていることを特徴としている。
 また、本発明にかかる液晶パネルの製造方法は、上記課題を解決するために、液晶層を挟んで対向する一対の基板における一方の基板に、絶縁層を介して、櫛歯状電極からなる上層電極と、下層電極とを重畳して形成するとともに、上記液晶層を基板面に垂直な方向から見たときに上記櫛歯状電極と重なる部分における、他方の基板の表面から0.1μmの位置での平均の電気エネルギーが、0.44J/m以上となるように、上記櫛歯状電極の電極間隔、絶縁層の膜厚、絶縁層の比誘電率、および駆動方式の組み合わせを決定することを特徴としている。
 本発明にかかる液晶パネルおよび液晶表示装置は、垂直配向による高コントラスト性を保ちながら、基板面に平行な、いわゆる横電界により駆動させることで、単純な画素構成によって、高速応答性、広視野角特性、並びに高コントラスト特性を実現することができる。
 また、上記液晶パネルおよび液晶表示装置は、絶縁層を介して上層電極と下層電極とが重畳して設けられていることで、上記櫛歯状電極上に位置する液晶分子を駆動することができる。このため、上記下層電極を備えていない液晶パネルよりも開口率を大きくすることができる。
 さらに、最も特筆すべきは、上記電気エネルギーを0.44J/m以上とすることで、液晶分子の立ち上がり電圧を低減することができ、従来、困難とされてきた、垂直配向セルに横電界を印加する表示方式において、駆動電圧を低減することができた。さらには、駆動電圧の低減並びに透過率の向上を同時に実現することができた。
 したがって、本発明によれば、高速応答性、広視野角特性、並びに高コントラスト特性を有し、かつ、実用的な駆動電圧で駆動が可能で、さらには、透過率が高い液晶パネルおよびその製造方法並びに液晶表示装置を提供することができる。
本発明の実施の一形態にかかる液晶パネルの要部の概略構成を模式的に示す断面図である。 本発明の実施の一形態にかかる液晶表示装置の概略構成を模式的に示す断面図である。 図1に示す液晶セル内の液晶分子のダイレクタ分布を示す図である。 (a)は、実施例1における上層電極および下層電極への電圧印加条件を示す図であり、(b)は、(a)で上層電極における第1の櫛歯状電極に6Vの電圧を印加したときの透過率、液晶分子のダイレクタ分布、等電位曲線を示す図であり、(c)は、電源OFF時および電源ON時における1画素の表示状態を示す平面図である。 (a)は、実施例2における上層電極および下層電極への電圧印加条件を示す図であり、(b)は、(a)で上層電極における第1の櫛歯状電極および第2の櫛歯状電極にそれぞれ6Vの電圧を印加したときの透過率、液晶分子のダイレクタ分布、等電位曲線を示す図であり、(c)は、電源OFF時および電源ON時における1画素の表示状態を示す平面図である。 (a)は、実施例3における上層電極および下層電極への電圧印加条件を示す図であり、(b)は、(a)で上層電極における第1の櫛歯状電極および第2の櫛歯状電極にそれぞれ6Vの電圧を印加したときの透過率、液晶分子のダイレクタ分布、等電位曲線を示す図であり、(c)は、電源OFF時および電源ON時における1画素の表示状態を示す平面図である。 (a)は、実施例4における上層電極および下層電極への電圧印加条件を示す図であり、(b)は、(a)で上層電極における第1の櫛歯状電極に6Vの電圧を印加したときの透過率、液晶分子のダイレクタ分布、等電位曲線を示す図であり、(c)は、電源OFF時および電源ON時における1画素の表示状態を示す平面図である。 (a)は、実施例5における上層電極および下層電極への電圧印加条件を示す図であり、(b)は、(a)で上層電極における第1の櫛歯状電極および第2の櫛歯状電極にそれぞれ6Vの電圧を印加したときの透過率、液晶分子のダイレクタ分布、等電位曲線を示す図であり、(c)は、電源OFF時および電源ON時における1画素の表示状態を示す平面図である。 (a)は、実施例6における上層電極および下層電極への電圧印加条件を示す図であり、(b)は、(a)で上層電極における第1の櫛歯状電極に6Vの電圧を印加したときの透過率、液晶分子のダイレクタ分布、等電位曲線を示す図であり、(c)は、電源OFF時および電源ON時における1画素の表示状態を示す平面図である。 (a)は、実施例7における上層電極および下層電極への電圧印加条件を示す図であり、(b)は、(a)で上層電極における第1の櫛歯状電極および第2の櫛歯状電極にそれぞれ6Vの電圧を印加したときの透過率、液晶分子のダイレクタ分布、等電位曲線を示す図であり、(c)は、電源OFF時および電源ON時における1画素の表示状態を示す平面図である。 (a)は、実施例8における上層電極および下層電極への電圧印加条件を示す図であり、(b)は、(a)で上層電極における第1の櫛歯状電極に6Vの電圧を印加したときの透過率、液晶分子のダイレクタ分布、等電位曲線を示す図であり、(c)は、電源OFF時および電源ON時における1画素の表示状態を示す平面図である。 (a)は、比較例1における第1の櫛歯状電極および第2の櫛歯状電極への電圧印加条件を示す図であり、(b)は、(a)で第1の櫛歯状電極に6Vの電圧を印加したときの透過率、液晶分子のダイレクタ分布、等電位曲線を示す図であり、(c)は、電源OFF時および電源ON時における1画素の表示状態を示す平面図である。 (a)は、比較例2における上層電極および下層電極への電圧印加条件を示す図であり、(b)は、(a)で上層電極における第1の櫛歯状電極および第2の櫛歯状電極にそれぞれ6Vの電圧を印加したときの透過率および等電位曲線を示す図であり、(c)は、電源OFF時および電源ON時における1画素の表示状態を示す平面図である。 (a)は、比較例3における第1の櫛歯状電極および第2の櫛歯状電極への電圧印加条件を示す図であり、(b)は、(a)で第1の櫛歯状電極に6Vの電圧を印加したときの透過率、液晶分子のダイレクタ分布、等電位曲線を示す図であり、(c)は、電源OFF時および電源ON時における1画素の表示状態を示す平面図である。 (a)は、比較例4における上層電極および下層電極への電圧印加条件を示す図であり、(b)は、(a)で上層電極における第1の櫛歯状電極および第2の櫛歯状電極にそれぞれ6Vの電圧を印加したときの透過率および等電位曲線を示す図であり、(c)は、電源OFF時および電源ON時における1画素の表示状態を示す平面図である。 (a)は、実施例9における上層電極および下層電極への電圧印加条件を示す図であり、(b)は、(a)で上層電極における第1の櫛歯状電極に6Vの電圧を印加したときの透過率、液晶分子のダイレクタ分布、等電位曲線を示す図であり、(c)は、電源OFF時および電源ON時における1画素の表示状態を示す平面図である。 (a)は、実施例10における上層電極および下層電極への電圧印加条件を示す図であり、(b)は、(a)で上層電極における第1の櫛歯状電極に6Vの電圧を印加したときの透過率、液晶分子のダイレクタ分布、等電位曲線を示す図であり、(c)は、電源OFF時および電源ON時における1画素の表示状態を示す平面図である。 (a)は、実施例11における上層電極および下層電極への電圧印加条件を示す図であり、(b)は、(a)で上層電極における第1の櫛歯状電極に6Vの電圧を印加したときの透過率、液晶分子のダイレクタ分布、等電位曲線を示す図であり、(c)は、電源OFF時および電源ON時における1画素の表示状態を示す平面図である。 (a)は、実施例12における上層電極および下層電極への電圧印加条件を示す図であり、(b)は、(a)で上層電極における第1の櫛歯状電極に6Vの電圧を印加したときの透過率および等電位曲線を示す図であり、(c)は、電源OFF時および電源ON時における1画素の表示状態を示す平面図である。 (a)は、実施例13における上層電極および下層電極への電圧印加条件を示す図であり、(b)は、(a)で上層電極における第1の櫛歯状電極に6Vの電圧を印加したときの透過率、液晶分子のダイレクタ分布、等電位曲線を示す図であり、(c)は、電源OFF時および電源ON時における1画素の表示状態を示す平面図である。 (a)は、実施例14における上層電極および下層電極への電圧印加条件を示す図であり、(b)は、(a)で上層電極における第1の櫛歯状電極および第2の櫛歯状電極にそれぞれ6Vの電圧を印加したときの透過率、液晶分子のダイレクタ分布、等電位曲線を示す図であり、(c)は、電源OFF時および電源ON時における1画素の表示状態を示す平面図である。 (a)は、比較例5における上層電極および下層電極への電圧印加条件を示す図であり、(b)は、(a)で上層電極における第1の櫛歯状電極および第2の櫛歯状電極にそれぞれ6Vの電圧を印加したときの透過率および等電位曲線を示す図であり、(c)は、電源OFF時および電源ON時における1画素の表示状態を示す平面図である。 (a)は、比較例6における上層電極および下層電極への電圧印加条件を示す図であり、(b)は、(a)で上層電極における第1の櫛歯状電極および第2の櫛歯状電極にそれぞれ6Vの電圧を印加したときの透過率および等電位曲線を示す図であり、(c)は、電源OFF時および電源ON時における1画素の表示状態を示す平面図である。 (a)は、比較例7における上層電極および下層電極への電圧印加条件を示す図であり、(b)は、(a)で上層電極における第1の櫛歯状電極および第2の櫛歯状電極にそれぞれ6Vの電圧を印加したときの透過率および等電位曲線を示す図であり、(c)は、電源OFF時および電源ON時における1画素の表示状態を示す平面図である。 (a)は、比較例8における上層電極および下層電極への電圧印加条件を示す図であり、(b)は、(a)で上層電極における第1の櫛歯状電極および第2の櫛歯状電極にそれぞれ6Vの電圧を印加したときの透過率および等電位曲線を示す図であり、(c)は、電源OFF時および電源ON時における1画素の表示状態を示す平面図である。 (a)は、実施例15における上層電極および下層電極への電圧印加条件を示す図であり、(b)は、(a)で上層電極における第1の櫛歯状電極に6Vの電圧を印加したときの透過率、液晶分子のダイレクタ分布、等電位曲線を示す図であり、(c)は、電源OFF時および電源ON時における1画素の表示状態を示す平面図である。 (a)は、比較例9における上層電極および下層電極への電圧印加条件を示す図であり、(b)は、(a)で上層電極における第1の櫛歯状電極に6Vの電圧を印加したときの透過率、液晶分子のダイレクタ分布、等電位曲線を示す図であり、(c)は、電源OFF時および電源ON時における1画素の表示状態を示す平面図である。 (a)は、実施例16における上層電極および下層電極への電圧印加条件を示す図であり、(b)は、(a)で上層電極における第1の櫛歯状電極に6Vの電圧を印加したときの透過率、液晶分子のダイレクタ分布、等電位曲線を示す図であり、(c)は、電源OFF時および電源ON時における1画素の表示状態を示す平面図である。 (a)は、実施例17における上層電極および下層電極への電圧印加条件を示す図であり、(b)は、(a)で上層電極における第1の櫛歯状電極および第2の櫛歯状電極にそれぞれ6Vの電圧を印加したときの透過率、液晶分子のダイレクタ分布、等電位曲線を示す図であり、(c)は、電源OFF時および電源ON時における1画素の表示状態を示す平面図である。 (a)は、実施例18における上層電極および下層電極への電圧印加条件を示す図であり、(b)は、(a)で上層電極における第1の櫛歯状電極および第2の櫛歯状電極にそれぞれ6Vの電圧を印加したときの透過率、液晶分子のダイレクタ分布、等電位曲線を示す図であり、(c)は、電源OFF時および電源ON時における1画素の表示状態を示す平面図である。 (a)は、実施例19における上層電極および下層電極への電圧印加条件を示す図であり、(b)は、(a)で上層電極における第1の櫛歯状電極および第2の櫛歯状電極にそれぞれ6Vの電圧を印加したときの透過率、液晶分子のダイレクタ分布、等電位曲線を示す図であり、(c)は、電源OFF時および電源ON時における1画素の表示状態を示す平面図である。 (a)は、実施例20における上層電極および下層電極への電圧印加条件を示す図であり、(b)は、(a)で上層電極における第1の櫛歯状電極に6Vの電圧を印加したときの透過率、液晶分子のダイレクタ分布、等電位曲線を示す図であり、(c)は、電源OFF時および電源ON時における1画素の表示状態を示す平面図である。 FFS駆動を用いた場合の電気エネルギーELと絶縁層の厚さdとの関係を示すグラフである。 櫛歯駆動を用いた場合の電気エネルギーELと絶縁層の厚さdとの関係を示すグラフである。 FFS駆動を用いた場合の電気エネルギーELと電極間隔Sとの関係を示すグラフである。 櫛歯駆動を用いた場合の電気エネルギーELと電極間隔Sとの関係を示すグラフである。 開口率と電極間隔Sとの関係を示すグラフである。 各駆動方式を用いたときの実質透過率と電極間隔Sとの関係を示すグラフである。 本発明の実施の他の形態にかかる液晶パネルの要部の概略構成を模式的に示す断面図である。 従来の垂直配向型の液晶セルに横電界を印加する表示方式を用いたときの該液晶セル内の液晶分子のダイレクタ分布を模式的に示す図である。
 本発明の一実施形態について図1ないし図40に基づいて説明すれば以下の通りである。
 図2は、本実施の形態にかかる液晶表示装置の概略構成を模式的に示す断面図である。
 本実施の形態にかかる液晶表示装置1は、図2に示すように、液晶パネル2(液晶表示素子)、駆動回路3、およびバックライト4(照明装置)を備えている。上記駆動回路3およびバックライト4の構成は従来と同じである。したがって、これらの構成については、その説明を省略する。
 図1は、上記液晶パネル2の要部の概略構成を模式的に示す断面図である。また、図3は、図1に示す液晶セル内の液晶分子のダイレクタ分布を示す図である。
 図1および図2に示すように、本実施の形態にかかる液晶パネル2は、電極基板および対向基板として、互いに対向して設けられた一対の基板10・20を備えている。これら一対の基板10・20間には、表示用の媒質層として液晶層30が挟持されている。
 また、上記一対の基板10・20のうち少なくとも一方の基板、つまり、少なくとも観察者側の基板は、絶縁基板(液晶層保持部材、ベース基板)として、ガラス基板等の透明基板を備えている。また、上記一対の基板10・20における他方の基板との対向面には、いわゆる垂直配向膜と称される配向膜15・22がそれぞれ設けられている。
 垂直配向膜は、電界無印加時に液晶層の液晶分子を基板面に垂直に配向させる配向膜である。なお、上記「垂直」には、「略垂直」も含まれる。
 上記基板10(第1の基板、電極基板)としては、例えば、TFTアレイ基板等のアレイ基板を用いることができる。一方、基板20(第2の基板、対向基板)としては、例えば、カラーフィルタ基板等を用いることができる。
 すなわち、上記基板10は、図示しないTFT等を備えていてもよい。また、上記基板20は、上記配向膜22の他に、図示しないカラーフィルタ(CF)を備えていてもよい。しかしながら、本実施の形態は、これに限定されるものではない。
 また、上記基板10・20が、図示しないアンダーコート膜やオーバーコート膜等を備えていてもよいことは言うまでも無い。
 以下、表示面側(観察者側の基板)を上側の基板とし、他方の基板を下側の基板として説明する。また、図1および図2では、基板10を下側の基板として説明するが、本実施の形態はこれに限定されるものではない。
 上記基板10は、上層電極14と下層電極12とが、絶縁層13を介して重畳配置された構成を有している。なお、本実施形態において、「上層電極」とは、上記配向膜22を介して液晶層30と隣り合う、液晶層30側の電極を示し、「下層電極」とは、ベース基板であるガラス基板11側の電極を示す。
 具体的には、上記基板10は、ガラス基板11上に、下層電極12、絶縁層13、上層電極14、配向膜15が、この順に設けられた構成を有している。
 上記下層電極12はベタ状の電極であり、ガラス基板11上に、上記基板10における表示領域(すなわち、シール剤34で囲まれた領域)を覆うように、ガラス基板11における基板20との対向面のほぼ全面に渡って形成されている。上記下層電極12は、共通電極として機能する。
 上記絶縁層13は、上記下層電極12を覆うように、上記下層電極12上に形成されている。
 上記上層電極14は、櫛歯状電極である。本実施形態では、上記液晶パネル2は、後述する実験において駆動方法を切り替えることができるように、互いに隣り合う櫛歯状電極14A(第1の櫛歯状電極)と、櫛歯状電極14B(第2の櫛歯状電極)とが互いに独立して駆動可能に設けられている。
 上記櫛歯状電極14A・14Bは、それぞれ、直線状であってもよく、V字状あるいはジグザグ状に形成されていてもよい。
 上記本実施の形態では、互いに独立して駆動可能に設けられた櫛歯状電極14A・14Bは、それぞれの幹電極(幹ライン)から延びる枝電極(分岐ライン)同士が互いに噛み合うように交互に対向して配置されている。
 しかしながら、本実施の形態は、これに限定されるものではなく、駆動方法に拘らず互いに隣り合う櫛歯状電極14A・14Bが互いに独立して駆動可能に設けられている構成としてもよい。また、駆動方法として、後述する「櫛歯駆動」を用いる場合には、必ずしも2つの櫛歯状電極14A・14Bを設ける必要はない。すなわち、上記上層電極14は、単一の櫛歯状電極であってもよい。
 上記配向膜15は、上記櫛歯状電極14A・14Bを覆うように、上記絶縁層13上に設けられている。
 また、図1および図2に示すように、これら一対の基板10・20における上記液晶層30との対向面とは反対側の面には、偏光板35・36がそれぞれ設けられている。
 また、上記基板10・20と偏光板35・36との間には、図2に示すように、必要に応じて位相差板37・38がそれぞれ設けられている。但し、上記位相差板37・38は、上記液晶パネル2の一方の面にのみ設けられていてもよい。また、正面透過光のみを利用する表示装置の場合には、位相差板37・38は必ずしも必須ではない。
 上記液晶パネル2における液晶セル5は、例えば、図1に示すように、上記基板10と基板20とを、スペーサ33を介してシール剤34によって貼り合わせ、両基板10・20間の空隙に、液晶材料を含む媒質を封入することにより形成される。
 上記液晶材料は、p(ポジ)型の液晶材料であってもよく、n型(ネガ)型の液晶材料であってもよい。
 なお、本実施形態では、主に、図2並びに後述する実験例に示すように、上記液晶材料として、p型の液晶材料を用いた場合を例に挙げて説明する。しかしながら、本実施の形態はこれに限定されるものではなく、上記液晶材料としてn型の液晶材料を用いた場合であっても、p型の液晶材料を用いた場合と同様の原理により、同様の結果を得ることができる。
 また、本実施形態において、p型液晶材料としては、例えばp型ネマチック液晶材料を用いることができるが、本実施の形態はこれに限定されるものではない。
 上記液晶パネル2および液晶表示装置1は、電界の印加により、液晶セル5内に電界強度の分布を形成し、液晶材料のベンド配列を実現するものである。本実施の形態では、屈折率異方性Δnの大きな液晶材料や誘電率異方性Δεの大きな液晶材料が好適に使用される。このようなp型液晶材料としては、CN(シアノ)系液晶材料(カイラルネマチック系液晶材料)の他、F(フッ素)系液晶材料が挙げられる。
 上記液晶パネル2は、上記液晶セル5に、上記したように位相差板37・38および偏光板35・36を貼り合わせることにより形成される。
 上記偏光板35・36は、例えば、上記偏光板35・36の透過軸が互いに直交し、かつ、櫛歯状電極14A・14Bが延伸される方向と偏光板35・36の透過軸とが45゜の角度をなすように配置される。
 以上のように、上記液晶パネル2は、共通電極と画素電極とが絶縁層を介して重畳配置される、いわゆるFFS(Fringe Field Switching)モードの表示方式を用いた液晶パネルの電極構成に類似の構成を有している。したがって、以下、上記構成を有する液晶パネルを、FFS構造の液晶パネルと称する。
 しかしながら、本発明にかかる液晶パネル2は、単に電極構成に上記したFFS構造を採用しているにすぎず、いわゆるFFSモードの液晶パネルとは、似て非なるものであり、全く別ものである。
 FFSモードは、電圧無印加時に、一対の基板間に挟まれた液晶分子の長軸方向が基板面に平行なホモジニアス配向している。これに対し、本発明にかかる液晶パネル2は、電圧無印加時に、図1に示すように、一対の基板10・20間に挟まれた液晶分子31の長軸方向が基板面に垂直なホメオトロピック配向を示している。このため、本発明にかかる液晶パネル2は、FFSモードとは、液晶分子の挙動が全く異なっている。
 また、櫛歯状電極の電極幅をLとし、電極間距離をSとし、セルギャップ(液晶層の厚み)をDとすると、FFSモードでは、電極間隔Sを電極幅LやセルギャップDよりも小さくしていわゆるフリンジ電界を生じさせることで表示を行っている。
 しかしながら、本実施の形態では、後述する実施例に示すように、電極間隔Sを電極幅LやセルギャップDよりも大きく設定している。但し、本発明において、液晶セル5全体の透過率とセルギャップDとの間に必ずしも相関はない。このため、上記セルギャップDは、特に限定されない。
 本実施の形態では、上記したようにFFS構造を有する液晶パネル2を、2通りの駆動方法により駆動する。
 以下、配向膜15を介して液晶層30と隣り合う櫛歯状電極14A・14B間で駆動を行うものを「櫛歯駆動」と称し、上記櫛歯状電極14A・14Bと、絶縁層13を挟んで上記櫛歯状電極14A・14Bの下層に設けられた下層電極12との間で駆動を行うものを、「FFS駆動」と称する。
 上記液晶パネル2を櫛歯駆動する場合、上記櫛歯状電極14Aは、画素電極として機能し、櫛歯状電極14Bは、共通電極として機能する。なお、櫛歯駆動を行う場合には、下層電極12は0Vに設定される。
 また、上記液晶パネル2をFFS駆動する場合、上記櫛歯状電極14A・14Bは、それぞれ画素電極として機能し、下層電極12は、共通電極として機能する。
 本実施形態にかかる液晶パネル2は、上記したようにFFSモードとは全く異なる表示方式を用いたものである。
 しかしながら、上記液晶パネル2は、上記したようにFFS構造を有していることで、図40に示す、上記表示方式を用いた従来の液晶パネル102とは異なり、櫛歯状電極14A・14B間のみならず、櫛歯状電極14A・14B上の液晶分子31も駆動される。このため、図40に示す構造を有する液晶パネル102と比較して、開口率を大きくすることができるという利点を有している。
 また、本実施形態にかかる液晶パネル2は、上記したように、垂直配向モードにおいて横電界駆動を行うことで、電界印加により、図3に示すように、ベンド状(弓なり状)の電界が形成され、液晶分子31のダイレクタ方位が互いに180度異なる2つのドメインが形成される。液晶分子31は、液晶セル5内の電界強度分布、および界面からの束縛力に応じて配列する。これにより、広い視野角特性を得ることができる。
 なお、上記液晶分子31は、電圧印加により、ホメオトロピック配向からベンド配列へと連続的に変化する。通常の駆動においては、液晶層30は、図3に示すように常にベンド配列を呈し、階調間応答で高速応答が可能となる。
 また、上記液晶パネル2では、上記したように垂直配向による高コントラスト性を保ちながら横電界駆動することで液晶分子31の配向方位を規定している。このため、MVAモードのような突起物による配向制御が不要であり、単純な画素構成で優れた視野角特性を有している。
 したがって、上記液晶パネル2は、ベンド配向に基づく高速応答性、自己補償型配列による広視野角、垂直配向に起因する高コントラストを得ることができるという利点を有するとともに、構造がシンプルであり、製造が容易で、安価に製造することができるという利点を有している。
 本願発明者らは、上記したように、FFS構造を有し、かつ垂直配向型の液晶パネル2を横電界駆動することで、垂直配向型の液晶パネル2を横電界駆動する従来の液晶パネル102に対し、その優れた高速応答性、広視野角性、高コントラスト性を維持したまま、開口率を向上させることができることを見出した。
 しかしながら、同時に、本願発明者らは、上記したように垂直配向型の液晶パネルを横電界駆動する表示方式を用いた液晶パネルにおいてFFS駆動を採用しただけでは、必ずしも低電圧化を実現することができるわけではないこともまた見出した。
 そこで、本願発明者らは、このように、FFS構造を有する液晶パネル2において、低電圧化の条件について、シミュレーションおよび実験を行った。
 この結果、上記FFS構造を有する液晶パネル2において、上記液晶層30を基板面に垂直な方向から見たときに上記櫛歯状電極14A・14Bと重なる部分における、他方の基板20の表面から0.1μmの位置での平均の電気エネルギーを「電気エネルギーEL」とすると、該電気エネルギーELが、0.44J/m(ジュール/立方メートル)以上となるように、上記絶縁層13の材質(比誘電率ε)および電極幅L/電極間隔Sを選択・設定することで、駆動電圧の低減効果、さらには、透過率の向上効果を得ることができることを見出した。
 また、特に、FFS駆動を行う場合、上記電気エネルギーELが0.6J/m以上となるように、上記絶縁層13の材質(比誘電率ε)および厚さd、電極幅L/電極間隔Sを、選択・設定することで、駆動電圧の低減効果、さらには、透過率の特段の向上効果を得ることができることを見出した。
 上記電気エネルギーELは、常法に従い、液晶パネルを分解して各層の誘電率を測定し、その測定値を元にした計算により算出される。
 以下、実施例を用いて上記液晶パネル2の製造方法についてより具体的に説明するとともに、上記効果について、実験並びにシミュレーションにより立証を行う。
 〔実施例1〕
 まず、図1に示すように、ガラス基板11上に、スパッタリング法により、ITO(Indium Tin Oxide:インジウム錫酸化物)を、厚み1400Åで全面に成膜した。これにより、ガラス基板11の主面全面を覆うベタ状の下層電極12を形成した。
 次に、スパッタリング法により、上記下層電極12全面を覆うように、比誘電率ε=6.9の窒化シリコン(SiN)を成膜した。これにより、上記下層電極12上に、上記SiNからなる厚さd=0.1μm(1000Å)の絶縁層13を形成した。
 続いて、上記絶縁層13上に、上層電極として、ITOからなる櫛歯状電極14A・14Bを、厚み=1400Å、電極幅L=2.6μm、電極間隔S=8.0μmにて形成した。
 次いで、上記絶縁層13上に、上記櫛歯状電極14A・14Bを覆うように、JSR社製の配向膜塗料「JALS-204」(商品名、固形分5wt.%、γ-ブチロラクトン溶液)を、スピンコート法にて塗布した。その後、200℃にて2時間焼成することにより、液晶層30との対向面となる表面に、垂直配向膜である配向膜15が設けられた基板10を形成した。
 一方、配向膜15と同じ材料、同じプロセスにて、ガラス基板21上に、配向膜22のみを成膜した。これにより、基板20を形成した。このようにして得られた配向膜15・22の乾燥膜厚は1000Åであった。
 その後、上記基板10・20のうち一方の基板上に、スペーサ33として、直径3.75μmの樹脂ビーズ「ミクロパールSP20375」(商品名、積水化学工業株式会社製)を分散させた。一方、上記基板に対峙する他方の基板上に、シール剤34として、シール樹脂「ストラクトボンドXN-21S」(商品名、三井東圧化学工業株式会社製)を印刷した。
 次に、上記基板10・20を貼り合わせ、135℃で1時間焼成することにより、液晶セル5を作製した。
 その後、上記液晶セル5に、液晶材料として、メルク株式会社製のポジ型液晶材料(Δε=22、Δn=0.15)を真空注入法にて封入することにより、液晶層30を形成した。
 続いて、上記液晶セル5の表裏面に、偏光板35・36を、偏光板35・36の透過軸が直交し、かつ櫛歯状電極14A・14Bが延伸される方向と偏光板35・36の透過軸とが45゜の角度をなすように貼合した。これにより、図1に示す構成を有する液晶パネル2(液晶表示素子)を作製した。
 このようにして作製した液晶パネル2を、図2に示すようにバックライト4上に載置して櫛歯駆動することにより、該液晶パネル2の正面の電圧-透過率変化(以下、「実測T」と記す)を、Topcon社製の「BM5A」で測定した。なお、実測Tにおける透過率は、液晶パネル2の輝度/バックライト4の輝度により求めた。
 一方、液晶パネルとして、図1に示すFFS構造を有するモデルを、上記実測と同じ条件で櫛歯駆動したときの電圧-透過率変化(以下、「SimT」と記す)を、シンテック社製の「LCD-MASTER」を用いてシミュレーションにより求めた。
 上記SimT、絶縁層13の比誘電率εおよび厚さd、櫛歯状電極14A・14Bの電極幅L/電極間隔Sを、表1に併せて示すとともに、実測Tおよび電気エネルギーELと併せて表6に示す。また、図4の(a)に、上記シミュレーションにおける印加電圧を示すとともに、図4の(b)に、上記シミュレーションで、図4の(a)において櫛歯状電極14Aに6Vの電圧を印加したときの透過率、液晶分子31のダイレクタ分布、等電位曲線を示す。なお、本実施例では、図4の(b)に示すように、櫛歯状電極14Bは、0Vに設定している。また、図4の(c)に、上記シミュレーションにおける電源OFF時および電源ON時における1画素の表示状態を示す。
 〔実施例2〕
 実施例1において、櫛歯駆動に代えてFFS駆動とした以外は、実施例1と同様にして実測TおよびSimTを求めた。
 すなわち、本実施例では、実施例1と同様の材料およびプロセスを用いて実施例1と同様の液晶パネル2を作製し、バックライト4上で、実施例1と同じく「BM5A」で実測Tを測定した。また、実施例1と同様のFFS構造を有するモデルを、上記実測と同じ条件でFFS駆動したときのSimTを、実施例1と同じく「LCD-MASTER」を用いてシミュレーションにより求めた。
 上記SimT、絶縁層13の比誘電率εおよび厚さd、櫛歯状電極14A・14Bの電極幅L/電極間隔Sを、表1に併せて示すとともに、実測Tおよび電気エネルギーELと併せて表8に示す。また、図5の(a)に、上記シミュレーションにおける印加電圧を示すとともに、図5の(b)に、上記シミュレーションで、図5の(a)において櫛歯状電極14A・14Bにそれぞれ6Vの電圧を印加したときの透過率、液晶分子31のダイレクタ分布、等電位曲線を示す。また、図5の(c)に、上記シミュレーションにおける電源OFF時および電源ON時における1画素の表示状態を示す。
 〔比較例1〕
 まず、図40に示すように、ガラス基板11と同様のガラス基板111上に、スパッタリング法により、ITOを、厚み1400Åで全面に成膜した。その後、このITO膜をパターニングすることにより、上記ガラス基板111上に、上記ITO膜からなる、画素電極としての櫛歯状電極112(第1の櫛歯状電極)および共通電極としての櫛歯状電極113(第2の櫛歯状電極)を、電極幅L=2.6μm、電極間隔S=8.0μmにて形成した。
 次いで、上記ガラス基板111上に、上記櫛歯状電極112・113を覆うように、実施例1と同じJSR社製の配向膜塗料「JALS-204」(商品名、固形分5wt.%、γ-ブチロラクトン溶液)を、スピンコート法にて塗布した。その後、実施例1と同じく200℃にて2時間焼成することにより、液晶層130との対向面となる表面に、図示しない垂直配向膜が設けられた基板110を形成した。
 一方、ガラス基板21と同様のガラス基板321上に、上記垂直配向膜と同じ材料、同じプロセスにて、図示しない垂直配向膜のみを成膜することにより、基板120を形成した。このようにして得られた各垂直配向膜の乾燥膜厚は何れも1000Åであった。
 その後、上記基板110・120のうち一方の基板上に、スペーサとして、実施例1と同じく直径3.75μmの樹脂ビーズ「ミクロパールSP20375」を分散させた。一方、上記基板に対峙する他方の基板上に、シール剤として、実施例1と同じくシール樹脂「ストラクトボンドXN-21S」を印刷した。
 次に、上記基板110・120を貼り合わせ、実施例1と同じく135℃で1時間焼成することにより、比較用の液晶セル105を作製した。
 その後、上記液晶セル105に、液晶材料として、実施例1と同じメルク株式会社製のポジ型液晶材料(Δε=22、Δn=0.15)を真空注入法にて封入することにより、液晶層130を形成した。
 続いて、上記液晶セル105の表裏面に、実施例1と同様の偏光板(図示せず)を、該偏光板の透過軸が直交し、かつ櫛歯状電極112・113が延伸される方向と偏光板の透過軸とが45゜の角度をなすように貼合した。これにより、図40に示す構成を有する比較用の液晶パネル102(液晶表示素子)を作製した。
 このようにして作製した液晶パネル102を、実施例1と同様にバックライト上に載置して櫛歯駆動した。これにより、該液晶パネル102の正面の実測Tを、実施例1と同じくTopcon社製の「BM5A」で測定した。なお、実測Tにおける透過率は、実施例1同様、パネル輝度/バックライト輝度により求めた。
 一方、液晶パネルとして、図40に示すFFS構造を有するモデルを、上記実測と同じ条件で櫛歯駆動したときのSimTを、実施例1と同じく「LCD-MASTER」を用いてシミュレーションにより求めた。
 上記SimT、櫛歯状電極112・113の電極幅L/電極間隔Sを、表2に併せて示すとともに、実測Tおよび電気エネルギーELと併せて表6に示す。また、図12の(a)に、上記シミュレーションにおける印加電圧を示すとともに、図12の(b)に、上記シミュレーションで、図12の(a)において櫛歯状電極112に6Vの電圧を印加したときの透過率、液晶分子131のダイレクタ分布、等電位曲線を示す。なお、本比較例では、図12の(b)に示すように、櫛歯状電極113は、0Vに設定している。また、図12の(c)に、上記シミュレーションにおける電源OFF時および電源ON時における1画素の表示状態を示す。
 〔比較例2〕
 まず、図1に示すように、ガラス基板11上に、スパッタリング法により、ITOを、厚み1400Åで全面に成膜した。これにより、ガラス基板11の主面全面を覆うベタ状の下層電極12を形成した。
 次に、上記下層電極12全面を覆うように、比誘電率ε=3.3のアクリル樹脂(JSR社製、商品名「オプトマーSS」)を、スピンコート法により成膜した。これにより、上記下層電極12上に、上記アクリル樹脂からなる、厚さd=3.2μm(32000Å)の絶縁層13を形成した。
 続いて、上記絶縁層13上に、上層電極として、ITOからなる櫛歯状電極14A・14Bを、厚み=1400Å、電極幅L=2.6μm、電極間隔S=8.0μmにて形成した。
 次いで、上記絶縁層13上に、上記櫛歯状電極14A・14Bを覆うように、実施例2と同じJSR社製の配向膜塗料「JALS-204」(商品名、固形分5wt.%、γ-ブチロラクトン溶液)を、スピンコート法にて塗布した。その後、200℃にて2時間焼成することにより、液晶層30との対向面となる表面に、垂直配向膜である配向膜15が設けられた基板10を形成した。
 一方、配向膜15と同じ材料、同じプロセスにて、ガラス基板21上に、配向膜22のみを成膜した。これにより、基板20を形成した。このようにして得られた配向膜15・22の乾燥膜厚は1000Åであった。
 その後、上記基板10・20のうち一方の基板上に、スペーサ33として、実施例2と同じく直径3.75μmの樹脂ビーズ「ミクロパールSP20375」を分散させた。一方、上記基板に対峙する他方の基板上に、シール剤として、実施例2と同じくシール樹脂「ストラクトボンドXN-21S」を印刷した。
 次に、上記基板10・20を貼り合わせ、135℃で1時間焼成することにより、比較用の液晶セル5を作製した。
 その後、上記比較用の液晶セル5に、液晶材料として、実施例2と同じメルク株式会社製のポジ型液晶材料(Δε=22、Δn=0.15)を真空注入法にて封入することにより、液晶層30を形成した。
 続いて、上記比較用の液晶セル5の表裏面に、実施例2と同様の偏光板35・36を、偏光板35・36の透過軸が直交し、かつ櫛歯状電極14A・14Bが延伸される方向と偏光板35・36の透過軸とが45゜の角度をなすように貼合した。これにより、実施例2で作製した液晶セル5とは絶縁層13の材料および厚さdが異なる比較用の液晶パネル2(液晶表示素子)を作製した。
 このようにして作製した比較用の液晶パネル2を、実施例2と同様にバックライト4上に載置して櫛歯駆動した。これにより、該液晶パネル102の正面の実測Tを、実施例2と同じくTopcon社製の「BM5A」で測定した。
 一方、液晶パネルとして、図1に示すFFS構造を有するモデルを、上記実測と同じ条件で櫛歯駆動したときのSimTを、実施例2と同じく「LCD-MASTER」を用いてシミュレーションにより求めた。
 上記SimT、絶縁層13の比誘電率εおよび厚さd、櫛歯状電極14A・14Bの電極幅L/電極間隔Sを、表2に併せて示すとともに、実測Tおよび電気エネルギーELと併せて表9に示す。また、図13の(a)に、上記シミュレーションにおける印加電圧を示すとともに、図13の(b)に、上記シミュレーションで、図13の(a)において櫛歯状電極14A・14Bにそれぞれ6Vの電圧を印加したときの透過率、等電位曲線を示す。また、図13の(c)に、上記シミュレーションにおける電源OFF時および電源ON時における1画素の表示状態を示す。
 実施例1、2および比較例1、2で得られたSimTと実測Tの電圧-透過率(V-T)曲線との相関性を確認したところ、同じ結果が得られた。そこで、以下の実施例および比較例においては、シミュレーションのみを行った。なお、上層電極および下層電極からなる2層電極構造を用いた以下の実施例および比較例において、櫛歯駆動を行う場合には、櫛歯状電極14Bは0Vに設定した。
 〔実施例3〕
 実施例2において、絶縁層13の厚みを0.1μmから0.3μm(3000Å)に変更した以外は、実施例2と同様にしてSimTを求めた。
 上記SimT、絶縁層13の比誘電率εおよび厚さd、櫛歯状電極14A・14Bの電極幅L/電極間隔Sを、表1に併せて示すとともに、電気エネルギーELと併せて表8に示す。また、図6の(a)に、上記シミュレーションにおける印加電圧を示すとともに、図6の(b)に、上記シミュレーションで、図6の(a)において櫛歯状電極14A・14Bにそれぞれ6Vの電圧を印加したときの透過率、液晶分子31のダイレクタ分布、等電位曲線を示す。また、図6の(c)に、上記シミュレーションにおける電源OFF時および電源ON時における1画素の表示状態を示す。
 〔実施例4〕
 実施例1において、櫛歯状電極14A・14BのL/Sを、電極幅L=2.6μm/電極間隔S=8.0μmから、電極幅L=2.6μm/電極間隔S=6.0μmに変更した以外は、実施例1と同様にしてSimTを求めた。
 上記SimT、絶縁層13の比誘電率εおよび厚さd、櫛歯状電極14A・14Bの電極幅L/電極間隔Sを、表1に併せて示すとともに、電気エネルギーELと併せて表6に示す。また、図7の(a)に、上記シミュレーションにおける印加電圧を示すとともに、図7の(b)に、上記シミュレーションで、図7の(a)において櫛歯状電極14Aに6Vの電圧を印加したときの透過率、液晶分子31のダイレクタ分布、等電位曲線を示す。また、図7の(c)に、上記シミュレーションにおける電源OFF時および電源ON時における1画素の表示状態を示す。
 〔実施例5〕
 実施例2において、櫛歯状電極14A・14BのL/Sを、電極幅L=2.6μm/電極間隔S=8.0μmから、電極幅L=2.6μm/電極間隔S=6.0μmに変更した以外は、実施例2と同様にしてSimTを求めた。
 上記SimT、絶縁層13の比誘電率εおよび厚さd、櫛歯状電極14A・14Bの電極幅L/電極間隔Sを、表1に併せて示すとともに、電気エネルギーELと併せて表8に示す。また、図8の(a)に、上記シミュレーションにおける印加電圧を示すとともに、図8の(b)に、上記シミュレーションで、図8の(a)において櫛歯状電極14A・14Bにそれぞれ6Vの電圧を印加したときの透過率、液晶分子31のダイレクタ分布、等電位曲線を示す。また、図8の(c)に、上記シミュレーションにおける電源OFF時および電源ON時における1画素の表示状態を示す。
 〔実施例6〕
 実施例4において、絶縁層13を、比誘電率ε=6.9、厚さd=0.1μmのSiN膜から、比誘電率ε=3.3、厚さd=3.2μm(32000Å)のアクリル樹脂(JSR社製、商品名「オプトマーSS」)に変更した以外は、実施例4と同様にしてSimTを求めた。
 上記SimT、絶縁層13の比誘電率εおよび厚さd、櫛歯状電極14A・14Bの電極幅L/電極間隔Sを、表1に併せて示すとともに、電気エネルギーELと併せて表7に示す。また、図9の(a)に、上記シミュレーションにおける印加電圧を示すとともに、図9の(b)に、上記シミュレーションで、図9の(a)において櫛歯状電極14Aに6Vの電圧を印加したときの透過率、液晶分子31のダイレクタ分布、等電位曲線を示す。また、図9の(c)に、上記シミュレーションにおける電源OFF時および電源ON時における1画素の表示状態を示す。
 〔実施例7〕
 実施例3において、櫛歯状電極14A・14BのL/Sを、電極幅L=2.6μm/電極間隔S=8.0μmから、電極幅L=2.6μm/電極間隔S=6.0μmに変更した以外は、実施例3と同様にしてSimTを求めた。
 上記SimT、絶縁層13の比誘電率εおよび厚さd、櫛歯状電極14A・14Bの電極幅L/電極間隔Sを、表1に併せて示すとともに、電気エネルギーELと併せて表8に示す。また、図10の(a)に、上記シミュレーションにおける印加電圧を示すとともに、図10の(b)に、上記シミュレーションで、図10の(a)において櫛歯状電極14A・14Bにそれぞれ6Vの電圧を印加したときの透過率、液晶分子31のダイレクタ分布、等電位曲線を示す。また、図10の(c)に、上記シミュレーションにおける電源OFF時および電源ON時における1画素の表示状態を示す。
 〔実施例8〕
 実施例1において、絶縁層13を、比誘電率ε=6.9、厚さd=0.1μmのSiN膜から、比誘電率ε=3.3、厚さd=1.0μm(10000Å)のアクリル樹脂(JSR社製、商品名「オプトマーSS」)に変更した以外は、実施例1と同様にしてSimTを求めた。
 上記SimT、絶縁層13の比誘電率εおよび厚さd、櫛歯状電極14A・14Bの電極幅L/電極間隔Sを、表1に併せて示すとともに、電気エネルギーELと併せて表7に示す。また、図11の(a)に、上記シミュレーションにおける印加電圧を示すとともに、図11の(b)に、上記シミュレーションで、図11の(a)において櫛歯状電極14Aに6Vの電圧を印加したときの透過率、液晶分子31のダイレクタ分布、等電位曲線を示す。また、図11の(c)に、上記シミュレーションにおける電源OFF時および電源ON時における1画素の表示状態を示す。
 〔比較例3〕
 比較例2において、FFSに代えて櫛歯駆動とした以外は、比較例2と同様にして実測TおよびSimTを求めた。言い換えれば、実施例1において、絶縁層13を、比誘電率ε=6.9、厚さd=0.1μmのSiN膜から、比誘電率ε=3.3、厚さd=3.2μm(32000Å)のアクリル樹脂(JSR社製、商品名「オプトマーSS」)に変更した以外は、実施例1と同様にしてSimTを求めた。
 上記SimT、絶縁層13の比誘電率εおよび厚さd、櫛歯状電極14A・14Bの電極幅L/電極間隔Sを、表2に併せて示すとともに、実測Tおよび電気エネルギーELと併せて表7に示す。また、図14の(a)に、上記シミュレーションにおける印加電圧を示すとともに、図14の(b)に、上記シミュレーションで、図13の(a)において櫛歯状電極14Aに6Vの電圧を印加したときの透過率、液晶分子31のダイレクタ分布、等電位曲線を示す。また、図14の(c)に、上記シミュレーションにおける電源OFF時および電源ON時における1画素の表示状態を示す。
 〔比較例4〕
 比較例2において、絶縁層13の厚さdを、3.2μm(32000Å)から1.0μm(10000Å)に変更した以外は、比較例2と同様にしてSimTを求めた。
 上記SimT、絶縁層13の比誘電率εおよび厚さd、櫛歯状電極14A・14Bの電極幅L/電極間隔Sを、表2に併せて示すとともに、電気エネルギーELと併せて表9に示す。また、図15の(a)に、上記シミュレーションにおける印加電圧を示すとともに、図15の(b)に、上記シミュレーションで、図15の(a)において櫛歯状電極14A・14Bにそれぞれ6Vの電圧を印加したときの透過率、液晶分子31のダイレクタ分布、等電位曲線を示す。また、図15の(c)に、上記シミュレーションにおける電源OFF時および電源ON時における1画素の表示状態を示す。
 〔実施例9〕
 実施例1において、絶縁層13の厚みを0.1μmから1.0μm(10000Å)に変更した以外は、実施例1と同様にしてSimTを求めた。
 上記SimT、絶縁層13の比誘電率εおよび厚さd、櫛歯状電極14A・14Bの電極幅L/電極間隔Sを、表3に併せて示すとともに、電気エネルギーELと併せて表6に示す。また、図16の(a)に、上記シミュレーションにおける印加電圧を示すとともに、図16の(b)に、上記シミュレーションで、図16の(a)において櫛歯状電極14Aに6Vの電圧を印加したときの透過率、液晶分子31のダイレクタ分布、等電位曲線を示す。また、図16の(c)に、上記シミュレーションにおける電源OFF時および電源ON時における1画素の表示状態を示す。
 〔実施例10〕
 実施例9において、絶縁層13の厚みを1.0μmから1.5μm(15000Å)に変更した以外は、実施例9と同様にしてSimTを求めた。言い換えれば、実施例1において、絶縁層13の厚みを0.1μmから1.5μm(15000Å)に変更した以外は、実施例1と同様にしてSimTを求めた。
 上記SimT、絶縁層13の比誘電率εおよび厚さd、櫛歯状電極14A・14Bの電極幅L/電極間隔Sを、表3に併せて示すとともに、電気エネルギーELと併せて表6に示す。また、図17の(a)に、上記シミュレーションにおける印加電圧を示すとともに、図17の(b)に、上記シミュレーションで、図17の(a)において櫛歯状電極14Aに6Vの電圧を印加したときの透過率、液晶分子31のダイレクタ分布、等電位曲線を示す。また、図17の(c)に、上記シミュレーションにおける電源OFF時および電源ON時における1画素の表示状態を示す。
 〔実施例11〕
 実施例4において、櫛歯状電極14A・14BのL/Sを、電極幅L=2.6μm/電極間隔S=6.0μmから、電極幅L=2.6μm/電極間隔S=4.0μmに変更した以外は、実施例4と同様にしてSimTを求めた。言い換えれば、実施例1において、櫛歯状電極14A・14BのL/Sを、電極幅L=2.6μm/電極間隔S=8.0μmから、電極幅L=2.6μm/電極間隔S=4.0μmに変更した以外は、実施例1と同様にしてSimTを求めた。
 上記SimT、絶縁層13の比誘電率εおよび厚さd、櫛歯状電極14A・14Bの電極幅L/電極間隔Sを、表3に併せて示すとともに、電気エネルギーELと併せて表6に示す。また、図18の(a)に、上記シミュレーションにおける印加電圧を示すとともに、図18の(b)に、上記シミュレーションで、図18の(a)において櫛歯状電極14Aに6Vの電圧を印加したときの透過率、液晶分子31のダイレクタ分布、等電位曲線を示す。また、図18の(c)に、上記シミュレーションにおける電源OFF時および電源ON時における1画素の表示状態を示す。
 〔実施例12〕
 実施例8において、絶縁層13の厚みを1.0μmから0.6μm(6000Å)に変更した以外は、実施例8と同様にしてSimTを求めた。
 上記SimT、絶縁層13の比誘電率εおよび厚さd、櫛歯状電極14A・14Bの電極幅L/電極間隔Sを、表3に併せて示すとともに、電気エネルギーELと併せて表7に示す。また、図19の(a)に、上記シミュレーションにおける印加電圧を示すとともに、図19の(b)に、上記シミュレーションで、図19の(a)において櫛歯状電極14Aに6Vの電圧を印加したときの透過率、液晶分子31のダイレクタ分布、等電位曲線を示す。また、図19の(c)に、上記シミュレーションにおける電源OFF時および電源ON時における1画素の表示状態を示す。
 〔実施例13〕
 実施例12において、絶縁層13の厚みを0.6μmから0.1μm(1000Å)に変更した以外は、実施例12と同様にしてSimTを求めた。言い換えれば、実施例8において、絶縁層13の厚みを1.0μmから0.1μm(1000Å)に変更した以外は、実施例8と同様にしてSimTを求めた。
 上記SimT、絶縁層13の比誘電率εおよび厚さd、櫛歯状電極14A・14Bの電極幅L/電極間隔Sを、表3に併せて示すとともに、電気エネルギーELと併せて表7に示す。また、図20の(a)に、上記シミュレーションにおける印加電圧を示すとともに、図20の(b)に、上記シミュレーションで、図19の(a)において櫛歯状電極14Aに6Vの電圧を印加したときの透過率、液晶分子31のダイレクタ分布、等電位曲線を示す。また、図20の(c)に、上記シミュレーションにおける電源OFF時および電源ON時における1画素の表示状態を示す。
 〔比較例5〕
 実施例9において、櫛歯駆動に代えてFFS駆動とした以外は、実施例9と同様にしてSimTを求めた。言い換えれば、実施例2において、絶縁層13の厚みを0.1μmから1.0μm(10000Å)に変更した以外は、実施例2と同様にしてSimTを求めた。
 上記SimT、絶縁層13の比誘電率εおよび厚さd、櫛歯状電極14A・14Bの電極幅L/電極間隔Sを、表5に併せて示すとともに、電気エネルギーELと併せて表8に示す。また、図22の(a)に、上記シミュレーションにおける印加電圧を示すとともに、図22の(b)に、上記シミュレーションで、図22の(a)において櫛歯状電極14A・14Bにそれぞれに6Vの電圧を印加したときの透過率、液晶分子31のダイレクタ分布、等電位曲線を示す。また、図22の(c)に、上記シミュレーションにおける電源OFF時および電源ON時における1画素の表示状態を示す。
 〔比較例6〕
 実施例10において、櫛歯駆動に代えてFFS駆動とした以外は、実施例10と同様にしてSimTを求めた。言い換えれば、実施例2において、絶縁層13の厚みを0.1μmから1.5μm(15000Å)に変更した以外は、実施例2と同様にしてSimTを求めた。
 上記SimT、絶縁層13の比誘電率εおよび厚さd、櫛歯状電極14A・14Bの電極幅L/電極間隔Sを、表5に併せて示すとともに、電気エネルギーELと併せて表8に示す。また、図23の(a)に、上記シミュレーションにおける印加電圧を示すとともに、図23の(b)に、上記シミュレーションで、図23の(a)において櫛歯状電極14A・14Bにそれぞれに6Vの電圧を印加したときの透過率、液晶分子31のダイレクタ分布、等電位曲線を示す。また、図23の(c)に、上記シミュレーションにおける電源OFF時および電源ON時における1画素の表示状態を示す。
 〔比較例7〕
 実施例11において、櫛歯駆動に代えてFFS駆動とした以外は、実施例11と同様にしてSimTを求めた。言い換えれば、実施例2において、櫛歯状電極14A・14BのL/Sを、電極幅L=2.6μm/電極間隔S=8.0μmから、電極幅L=2.6μm/電極間隔S=4.0μmに変更した以外は、実施例2と同様にしてSimTを求めた。
 上記SimT、絶縁層13の比誘電率εおよび厚さd、櫛歯状電極14A・14Bの電極幅L/電極間隔Sを、表5に併せて示すとともに、電気エネルギーELと併せて表8に示す。また、図24の(a)に、上記シミュレーションにおける印加電圧を示すとともに、図24の(b)に、上記シミュレーションで、図24の(a)において櫛歯状電極14A・14Bにそれぞれに6Vの電圧を印加したときの透過率、液晶分子31のダイレクタ分布、等電位曲線を示す。また、図24の(c)に、上記シミュレーションにおける電源OFF時および電源ON時における1画素の表示状態を示す。
 〔実施例14〕
 実施例13において、櫛歯駆動に代えてFFS駆動とした以外は、実施例13と同様にしてSimTを求めた。
 上記SimT、絶縁層13の比誘電率εおよび厚さd、櫛歯状電極14A・14Bの電極幅L/電極間隔Sを、表3に併せて示すとともに、電気エネルギーELと併せて表9に示す。また、図21の(a)に、上記シミュレーションにおける印加電圧を示すとともに、図21の(b)に、上記シミュレーションで、図21の(a)において櫛歯状電極14A・14Bにそれぞれに6Vの電圧を印加したときの透過率、液晶分子31のダイレクタ分布、等電位曲線を示す。また、図21の(c)に、上記シミュレーションにおける電源OFF時および電源ON時における1画素の表示状態を示す。
 〔比較例8〕
 実施例12において、櫛歯駆動に代えてFFS駆動とした以外は、実施例12と同様にしてSimTを求めた。言い換えれば、実施例14において、絶縁層13の厚みを0.1μmから0.6μm(6000Å)に変更した以外は、実施例14と同様にしてSimTを求めた。
 上記SimT、絶縁層13の比誘電率εおよび厚さd、櫛歯状電極14A・14Bの電極幅L/電極間隔Sを、表5に併せて示すとともに、電気エネルギーELと併せて表9に示す。また、図25の(a)に、上記シミュレーションにおける印加電圧を示すとともに、図25の(b)に、上記シミュレーションで、図25の(a)において櫛歯状電極14A・14Bにそれぞれに6Vの電圧を印加したときの透過率、液晶分子31のダイレクタ分布、等電位曲線を示す。図25の(c)に、上記シミュレーションにおける電源OFF時および電源ON時における表示状態を示す。
 〔実施例15〕
 実施例10において、絶縁層13の厚みを1.5μmから1.8μm(18000Å)に変更した以外は、実施例10と同様にしてSimTを求めた。言い換えれば、実施例1において、絶縁層13の厚みを0.1μmから1.8μm(18000Å)に変更した以外は、実施例1と同様にしてSimTを求めた。
 上記SimT、絶縁層13の比誘電率εおよび厚さd、櫛歯状電極14A・14Bの電極幅L/電極間隔Sを、表3に併せて示すとともに、電気エネルギーELと併せて表6に示す。また、図26の(a)に、上記シミュレーションにおける印加電圧を示すとともに、図26の(b)に、上記シミュレーションで、図26の(a)において櫛歯状電極14Aに6Vの電圧を印加したときの透過率、液晶分子31のダイレクタ分布、等電位曲線を示す。また、図26の(c)に、上記シミュレーションにおける電源OFF時および電源ON時における1画素の表示状態を示す。
 〔比較例9〕
 実施例15において、絶縁層13の厚みを1.8μmから2.0μm(20000Å)に変更した以外は、実施例15と同様にしてSimTを求めた。言い換えれば、実施例1において、絶縁層13の厚みを0.1μmから2.0μm(20000Å)に変更した以外は、実施例1と同様にしてSimTを求めた。
 上記SimT、絶縁層13の比誘電率εおよび厚さd、櫛歯状電極14A・14Bの電極幅L/電極間隔Sを、表5に併せて示すとともに、電気エネルギーELと併せて表6に示す。また、図27の(a)に、上記シミュレーションにおける印加電圧を示すとともに、図27の(b)に、上記シミュレーションで、図27の(a)において櫛歯状電極14Aに6Vの電圧を印加したときの透過率、液晶分子31のダイレクタ分布、等電位曲線を示す。また、図27の(c)に、上記シミュレーションにおける電源OFF時および電源ON時における1画素の表示状態を示す。
 〔実施例16〕
 実施例1において、櫛歯状電極14A・14BのL/Sを、電極幅L=2.6μm/電極間隔S=8.0μmから、電極幅L=2.6μm/電極間隔S=12.0μmに変更した以外は、実施例1と同様にしてSimTを求めた。
 上記SimT、絶縁層13の比誘電率εおよび厚さd、櫛歯状電極14A・14Bの電極幅L/電極間隔Sを、表4に併せて示すとともに、電気エネルギーELと併せて表6に示す。また、図28の(a)に、上記シミュレーションにおける印加電圧を示すとともに、図28の(b)に、上記シミュレーションで、図28の(a)において櫛歯状電極14Aに6Vの電圧を印加したときの透過率、液晶分子31のダイレクタ分布、等電位曲線を示す。また、図28の(c)に、上記シミュレーションにおける電源OFF時および電源ON時における1画素の表示状態を示す。
 〔実施例17〕
 実施例3において、櫛歯状電極14A・14BのL/Sを、電極幅L=2.6μm/電極間隔S=8.0μmから、電極幅L=2.6μm/電極間隔S=12.0μmに変更した以外は、実施例3と同様にしてSimTを求めた。
 上記SimT、絶縁層13の比誘電率εおよび厚さd、櫛歯状電極14A・14Bの電極幅L/電極間隔Sを、表4に併せて示すとともに、電気エネルギーELと併せて表8に示す。また、図29の(a)に、上記シミュレーションにおける印加電圧を示すとともに、図29の(b)に、上記シミュレーションで、図29の(a)において櫛歯状電極14A・14Bにそれぞれに6Vの電圧を印加したときの透過率、液晶分子31のダイレクタ分布、等電位曲線を示す。また、図29の(c)に、上記シミュレーションにおける電源OFF時および電源ON時における1画素の表示状態を示す。
 〔実施例18〕
 実施例17において、櫛歯状電極14A・14BのL/Sを、電極幅L=2.6μm/電極間隔S=12.0μmから、電極幅L=2.6μm/電極間隔S=14.0μmに変更した以外は、実施例17と同様にしてSimTを求めた。
 上記SimT、絶縁層13の比誘電率εおよび厚さd、櫛歯状電極14A・14Bの電極幅L/電極間隔Sを、表4に併せて示すとともに、電気エネルギーELと併せて表8に示す。また、図30の(a)に、上記シミュレーションにおける印加電圧を示すとともに、図30の(b)に、上記シミュレーションで、図30の(a)において櫛歯状電極14A・14Bにそれぞれに6Vの電圧を印加したときの透過率、液晶分子31のダイレクタ分布、等電位曲線を示す。また、図30の(c)に、上記シミュレーションにおける電源OFF時および電源ON時における1画素の表示状態を示す。
 〔実施例19〕
 実施例18において、櫛歯状電極14A・14BのL/Sを、電極幅L=2.6μm/電極間隔S=14.0μmから、電極幅L=2.6μm/電極間隔S=16.0μmに変更した以外は、実施例18と同様にしてSimTを求めた。
 上記SimT、絶縁層13の比誘電率εおよび厚さd、櫛歯状電極14A・14Bの電極幅L/電極間隔Sを、表4に併せて示すとともに、電気エネルギーELと併せて表8に示す。また、図31の(a)に、上記シミュレーションにおける印加電圧を示すとともに、図31の(b)に、上記シミュレーションで、図31の(a)において櫛歯状電極14A・14Bにそれぞれに6Vの電圧を印加したときの透過率、液晶分子31のダイレクタ分布、等電位曲線を示す。また、図31の(c)に、上記シミュレーションにおける電源OFF時および電源ON時における1画素の表示状態を示す。
 〔実施例20〕
 実施例4において、櫛歯状電極14A・14BのL/Sを、電極幅L=2.6μm/電極間隔S=6.0μmから、電極幅L=2.6μm/電極間隔S=2.0μmに変更した以外は、実施例4と同様にしてSimTを求めた。言い換えれば、実施例1において、櫛歯状電極14A・14BのL/Sを、電極幅L=2.6μm/電極間隔S=8.0μmから、電極幅L=2.6μm/電極間隔S=2.0μmに変更した以外は、実施例1と同様にしてSimTを求めた。
 上記SimT、絶縁層13の比誘電率εおよび厚さd、櫛歯状電極14A・14Bの電極幅L/電極間隔Sを、表4に併せて示すとともに、電気エネルギーELと併せて表6に示す。また、図32の(a)に、上記シミュレーションにおける印加電圧を示すとともに、図32の(b)に、上記シミュレーションで、図32の(a)において櫛歯状電極14Aに6Vの電圧を印加したときの透過率、液晶分子31のダイレクタ分布、等電位曲線を示す。また、図32の(c)に、上記シミュレーションにおける電源OFF時および電源ON時における1画素の表示状態を示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 表2・6から判るように、比較例1に示す液晶パネル102のようにFFS構造を有さない液晶パネルを櫛歯駆動する場合、液晶分子の立ち上がり電圧は2.5V以上となる。
 この立ち上がり電圧を基準として考えた場合、表9に示すように、アクリル樹脂等の有機系の絶縁層13、つまり、比誘電率εが例えば3.3と低い絶縁層13を用いる場合、櫛歯状電極14A・14Bの電極幅L/電極間隔Sが2.6/8.0であるとき、絶縁層13の厚さdが例えば0.6μm以上では、液晶パネル2をFFS駆動しても駆動電圧の低減効果は見られない。しかしながら、上記したような比誘電率εが例えば3.3と低い有機系の絶縁層13を用いた場合でも、厚さdを例えば0.1μmと薄くすると、駆動電圧の低減効果が見られるとともに透過率も高くなる。
 また、表8に示すように、比誘電率εが例えば6.9と高い無機系の絶縁層13を用いる場合、櫛歯状電極14A・14Bの電極幅L/電極間隔Sが2.6/8.0であるとき、絶縁層13の厚さdが例えば1.0μm以上では、液晶パネル2をFFS駆動しても駆動電圧の低減効果は見られない。しかしながら、上記したような比誘電率εが例えば6.9と高い無機系の絶縁層13を用いた場合でも、絶縁層13の厚さdを例えば0.3μm以下に薄くすると、駆動電圧の低減効果が見られるとともに透過率も高くなる。
 以上のように、FFS駆動を行う場合、比誘電率εによって好適な絶縁層13の厚さdは異なるものの、比誘電率εに拘らず、絶縁層13の厚さdが薄い方が、駆動電圧の低減効果が見られるとともに透過率も高くなる。
 また、表6・7に示すように、液晶パネル2を櫛歯駆動する場合にも、比誘電率εに拘らず、絶縁層13の厚さdが薄い方が、駆動電圧の低減効果が見られるとともに透過率も高くなる。
 但し、液晶パネル2を櫛歯駆動する場合、表7に示すように、比誘電率εが例えば3.3と低い有機系の絶縁層13を用いた場合には、櫛歯状電極14A・14Bの電極幅L/電極間隔Sが2.6/8.0であり、絶縁層13の厚さdが例えば3.2μmと厚い場合には、駆動電圧の低減効果は見られない。このように比誘電率εが3.3と低く、櫛歯状電極14A・14Bの電極幅L/電極間隔Sが2.6/8.0である場合には、絶縁層13の厚さdを例えば1.0μm以下にすると、駆動電圧の低減効果が見られるとともに透過率も高くなる。
 一方、液晶パネル2を櫛歯駆動する場合、表6に示すように、比誘電率εが例えば6.9と高い無機系の絶縁層13を用いた場合には、櫛歯状電極14A・14Bの電極幅L/電極間隔Sが2.6/8.0であり、絶縁層13の厚さdが例えば2.0μmと厚い場合には、駆動電圧の低減効果は見られない。但し、比誘電率εが6.9と高い無機系の絶縁層13を用いた場合には、絶縁層13の厚さdが1.8μm以下においては、絶縁層13の厚さdおよび櫛歯状電極14A・14Bの電極幅L/電極間隔Sに拘らず、液晶パネル2を櫛歯駆動することで、全ての実施例で駆動電圧の低減効果が見られた。
 さらに、液晶パネル2を櫛歯駆動する場合、上記したように比誘電率εが例えば3.3と低い有機系の絶縁層13を、3.2μmの厚さで形成した場合であっても、実施例6と比較例3との比較から判るように、電極間隔Sを小さくすると、駆動電圧の低減効果が見られるとともに透過率も高くなる。
 なお、液晶パネル2を櫛歯駆動する場合、比誘電率εが例えば6.9と高い絶縁層13を用いる場合にも、表6に示す実施例1・4・11・16・20の比較、および表7に示す実施例6と比較例3との比較から判るように、絶縁層13の厚さdに拘らず、電極間隔Sを小さくすると、より高い効果が得られる。
 一方、表8に示す実施例2・5および比較例7の比較から判るように、FFS駆動を行う場合、絶縁層13の厚さdが0.1μmの場合には、櫛歯駆動を行う場合とは相反して、電極間隔Sを小さくすると、駆動電圧の低減効果が小さくなるとともに透過率も低くなる。しかしながら、FFS駆動を行う場合、表8に示す実施例3・7・17~19の比較から判るように、絶縁層13の厚さdが0.3μmの場合には、電極間隔Sが12.0μmを境にして異なる傾向を示す。すなわち、電極間隔Sが12.0μm以下では、電極間隔Sを小さくすると、駆動電圧の低減効果が小さくなるとともに透過率も低くなる傾向を示し、電極間隔Sが12.0μm以上では、電極間隔Sを大きくすると、駆動電圧の低減効果が小さくなるとともに透過率も低くなる傾向を示す。
 なお、櫛歯駆動において、電極間隔Sを小さくするとより高い効果が得られる理由としては、櫛歯駆動では、横方向に電界強度が平行にかかっているため、電極間隔Sを小さくすると、電界強度が上がるためであると考えられる。
 これらの現象の理由は、何れも、電気エネルギーELで説明できる。つまり、上記したように比誘電率εによって好適な絶縁層13の厚さdは異なるものの、比誘電率εや駆動方法に拘らず、絶縁層13の厚さdは、薄い方が電気エネルギーELが高く、液晶分子がよく動くことが確認された。
 また、表6・7に示すように、櫛歯駆動では、全体的に電極間隔Sが小さくなると電気エネルギーが上がる。逆に、FFS駆動では、表8に示すように、電極間隔Sを小さくすると、電気エネルギーELが小さくなる。
 なお、表6~8に示す結果から、駆動電圧の低減に効果が見られる構成として、上記電気エネルギーELは、櫛歯駆動であるかFFS駆動であるかに拘らず、0.44J/m以上であることが確認された。また、FFS駆動を用いた場合には、上記電気エネルギーELが0.6J/m以上で、駆動電圧の低減並びに透過率の向上に顕著な効果が得られた。
 また、上記実施例および比較例で用いた液晶パネル2・102は、何れも、垂直配向モードにおいて横電界駆動を行う垂直配向横電界モードの液晶パネルである。このため、上記液晶パネル2・102における液晶分子31・131は、電源OFF時(つまり、櫛歯状電極14A・14B間、上層電極である上記櫛歯状電極14A・14Bと下層電極12との間、櫛歯状電極112・113間に電界が発生していない場合)には、基板面に対して垂直配向し、図4~図32における各分図(c)に示すように、各画素は暗表示になる。
 一方、電源ON時(上記各電極間に発生する電界による横電界駆動時)には、液晶分子31・131は、櫛歯状電極14A・14Bあるいは櫛歯状電極112・113の中央部分を中心に対称構造を有するように配向し、図4~図32における各分図(c)に示すように、各画素は明表示になる。
 なお、図4~図32における各分図(c)において、「H」は、電源ON時に動作する液晶分子31・131の各配向スペースを示し、「T」は、櫛歯状電極14A・14B間あるいは櫛歯状電極112・113間のディスクリネーション(液晶分子31・131の配向乱れの境界)を示す。透過率は配向スペースの大きさによって変化するとともに、ディスクリネーションは、透過率に影響する。
 図4~図32における各分図(c)に示す結果から、駆動方法が同じ場合、実施例の方が比較例よりも上記ディスクリネーションの発生を抑制することができることが判る。特に、櫛歯駆動を行う場合、実施例1・4・9・10・11~13、17では、櫛歯状電極14A・14B間にディスクリネーションが発生せず、明るく表示品質に優れた液晶パネル2を実現することができる。
 そこで、次に、上記電気エネルギーELの値から見た、各駆動方法における絶縁層13の厚さdおよび電極間隔Sの好適な条件について調べた結果について、以下に説明する。
 〔FFS駆動を用いた場合の絶縁層13の厚さdについて〕
 まず、図33に、FFS駆動を用いた実施例2・3・14および比較例2・4・5・6・8における電気エネルギーELと絶縁層13の厚さdとの関係を示す。
 図33に示すように、FFS駆動を用いた場合、比誘電率εに拘らず、厚さdが薄くなると電気エネルギーELが大きくなる。
 図33に示す結果から、比誘電率εが例えば3.3と低い有機系の絶縁層13を用いた場合、該絶縁層13の厚さdは、電気エネルギーELが0.44J/m以上となる0.35μm以下であることが好ましい。また、比誘電率εが例えば6.9と高い無機系の絶縁層13を用いた場合、該絶縁層13の厚さdは、電気エネルギーELが0.44J/m以上となる0.65μm以下であることが好ましい。
 なお、上記絶縁層13の比誘電率εが3.3~6.9の範囲内では、上記絶縁層13の厚さdの上限は、図33に示す結果から、0.35~0.65の範囲内となる。
 また、上記絶縁層13の厚さdの下限値は、絶縁性の観点から、0.1μmであることが好ましい。上記絶縁層13の厚さdを0.1μm以上とすることで、格子欠陥による絶縁性不良の発生を防止することができる。
 また、図33に示すように、電極間隔Sが8.0μmの場合、絶縁層13の厚さdが0.1μmであれば、比誘電率εに拘らず、0.60J/m以上の電気エネルギーELを得ることができる。
 〔櫛歯駆動を用いた場合の絶縁層13の厚さdについて〕
 図34に、櫛歯駆動を用いた実施例1・8・9・10・12・13・15および比較例1・3・9における電気エネルギーELと絶縁層13の厚さdとの関係を示す。
 図34に示すように、櫛歯駆動を用いた場合にも、比誘電率εに拘らず、厚さdが薄くなると電気エネルギーが大きくなる。
 図34に示す結果から、比誘電率εが例えば3.3と低い有機系の絶縁層13を用いた場合、絶縁層13の厚さdは、電気エネルギーELが0.44J/m以上となる2.8μm以下とすることが好ましい。一方、比誘電率εが例えば6.9と高い無機系の絶縁層13を用いる場合、絶縁層13の厚さdは、電気エネルギーELが0.44J/m以上となる1.8μm以下とすることが好ましい。
 なお、このように無機系の絶縁層13を用いる場合にも、格子欠陥による絶縁性不良および膜厚ムラの防止の観点から、上記絶縁層13の厚さdは、0.1μm以上であることが好ましい。
 〔FFS駆動を用いた場合の電極間隔Sについて〕
 図35に、FFS駆動を用いた実施例2・3・5・7・17・18・19および比較例7における電気エネルギーELと櫛歯状電極14A・14Bの電極間隔Sとの関係を示す。
 図35に示すように、FFS駆動を用いた場合、絶縁層13の厚さdが0.1μmのときは電極間隔Sを小さくすると、電気エネルギーELが小さくなる。
 一方、絶縁層13の厚さdが0.3μmのときは、電極間隔Sが12.0μm以下では、電極間隔Sが小さくなるほど電気エネルギーELが小さくなり、電極間隔Sが12.0μm以上では、電極間隔Sが小さくなるほど電気エネルギーELが大きくなる。
 図35に示す結果から、絶縁層13の厚さdが0.1μmで、比誘電率εが例えば6.9と高い無機系の絶縁層13を用いた場合、電極間隔Sは、電気エネルギーELが0.44J/m以上となる4.5μm以上であることが好ましい。
 また、図35に示す結果から、絶縁層13の厚さdが0.3μmで、比誘電率εが例えば6.9と高い無機系の絶縁層13を用いた場合、電極間隔Sは、電気エネルギーELが0.44J/m以上となる、6.0μm以上、17.5μm以下の範囲内であることが好ましい。
 〔櫛歯駆動を用いた場合の電極間隔Sについて〕
 図36に、櫛歯駆動を用いた実施例1・4・11・16における電気エネルギーELと櫛歯状電極14A・14Bの電極間隔Sとの関係を示す。
 前記したように、櫛歯駆動を用いた場合、絶縁層13の厚さdに拘らず、電極間隔Sを小さくすると、電気エネルギーELが大きくなる。図36では、絶縁層13の厚さdが0.1μmで、比誘電率εが6.9の無機系の絶縁層13を用いた場合の電気エネルギーELと電極間隔Sとの関係について示している。
 図36に示す結果から、絶縁層13の厚さdが0.1μmで、比誘電率εが例えば6.9と高い無機系の絶縁層13を用いた場合、櫛歯状電極14A・14Bの電極間隔Sは、電気エネルギーELが0.44J/m以上となる14.5μm以下であることが好ましい。
 〔開口率について〕
 表1~5に示した各実施例および比較例における透過率は、何れも無限平面内での透過率である。実際に液晶パネル2(液晶表示素子)を作製する場合には、画素のサイズが問題となる。
 すなわち、100×300μm程度の画素を想定した場合、電極間隔Sにより暗線の本数は決定され、電極間隔Sが小さい方が、暗線の本数が多くなる。
 ここで、実質透過部分(暗線を除く部分)が開口部となる。開口部の面積が大きいほど透過部分が増加するため、電極間隔Sは限定される。
 そこで、横幅(櫛歯状電極14A・14Bに垂直な方向の幅)が100μmの画素を想定した場合の各画素のスペース部分(櫛歯状電極14A・14Bを除く部分)を開口率として算出した結果を、電極間隔S、電極幅L、櫛歯状電極14A・14Bの本数(ライン本数)と併せて表10に示す。また、このときの電極間隔Sと開口率との関係を図37に示す。なお、ここでは、上記したように電極間隔S、電極幅L、およびライン本数により開口率を算出する。このため、櫛歯駆動、FFS駆動の区別はない。
 図37に示す結果から、電極間隔Sが4μmより、急激に開口率が低下することが判る。したがって、電極間隔Sは、開口率の観点からすれば、櫛歯駆動およびFFS駆動ともに、4μm以上とすることが好ましく、図37および表10に示す結果から、6μm以上とすることがより好ましい。
Figure JPOXMLDOC01-appb-T000010
 〔実質透過率について〕
 TFTパネル等の液晶パネルを用いた液晶表示装置の実質透過率は、上記開口率と本発明による無限平面内での透過率、カラーフィルタの透過率(28%程度)の掛け算で算出ことができる。
 各駆動方式を用いた場合の実質透過率を、隣り合う櫛歯状電極14A・14B間の電極間隔S、無限平面内での6V印加時の透過率、開口率と併せて表11に示す。
Figure JPOXMLDOC01-appb-T000011
 また、図38に、各駆動方式を用いた場合の実質透過率と電極間隔Sとの関係を示す。
 図38に示すように、櫛歯駆動では電極間隔Sが12.0μmを越えると実質透過率が急激に低下する。したがって、櫛歯駆動を行う場合、実質透過率の観点から、電極間隔Sは12.0μm以下であることが好ましい。また、図38に示すように、櫛歯駆動を行う場合、電極間隔Sは、4μmを境に実質透過率が急激に低下する。したがって、開口率(図37および表10参照)の観点だけでなく実質透過率の観点からも、上記したように櫛歯駆動を行う場合、電極間隔Sは4μm以上とすることが好ましい。
 また、図38に示すように、FFS駆動を行う場合、実質透過率の観点から見ても、図35に示す電気エネルギーELと電極間隔Sとの関係と同様に、絶縁層13の厚さdが0.3μmの場合、電極間隔Sは、6μm以上であることが好ましく、8μm以上であることがより好ましいことが判る。また、電極間隔Sが12.0μm以上で実質透過率が低下し始めることが判る。
 以上の結果から、電気エネルギーELによる評価は、駆動電圧が低く、透過率が高い液晶パネル2および液晶表示装置1を得るための簡易的な評価方法として有効に作用することが判る。
 したがって、液晶層30を挟んで対向する一対の基板10・20における一方の基板に、絶縁層13を介して、櫛歯状電極14A・14Bからなる上層電極と、下層電極12とを重畳して形成するとともに、上記電気エネルギーELが、0.44J/m以上となるように、上記櫛歯状電極14A・14Bの電極間隔S、絶縁層13の膜厚、絶縁層13の比誘電率ε、および駆動方式の組み合わせを決定することで、駆動電圧が低く、透過率が高い液晶パネル2および液晶表示装置1を製造することができる。
 以上の結果から、櫛歯駆動を行う場合、上記絶縁層13の比誘電率が3.3であり、隣り合う櫛歯状電極14A・14B間の電極間隔Sが12.0μm以下であり、上記絶縁層13の厚さdが2.8μm以下の場合、0.44J/m以上の電気エネルギーELを得ることができるとともに、高い実質透過率を得ることができることが判る。したがって、上記の構成によれば、駆動電圧が低く、透過率が高い液晶パネル2および液晶表示装置1を製造することができる。
 また、櫛歯駆動を行う場合、上記絶縁層13の比誘電率が3.3~6.9であり、隣り合う櫛歯状電極14A・14B間の電極間隔Sが12.0μm以下であり、上記絶縁層13の厚さdが1.8μm以下の場合にも、0.44J/m以上の電気エネルギーELを得ることができるとともに、高い実質透過率を得ることができる。したがって、この場合にも、駆動電圧が低く、透過率が高い液晶パネル2および液晶表示装置1を製造することができる。
 なお、上記絶縁層13の厚さdは、前記した理由から、0.1μm以上に設定されていることが好ましい。
 一方、FFS駆動を行う場合、0.44J/m以上の電気エネルギーELを得るためには、例えば、上記絶縁層13の比誘電率が6.9であり、隣り合う櫛歯状電極14A・14B間の電極間隔Sが8.0μmの場合、上記絶縁層13の厚さdを0.65μm以下とすることが好ましい。また、上記絶縁層13の比誘電率が3.3~6.9であり、隣り合う櫛歯状電極14A・14B間の電極間隔Sが8.0μmの場合には、上記絶縁層13の厚さdを0.35μm以下とすることが好ましい。
 なお、これらの場合にも、上記絶縁層13の厚さdは、前記した理由から、0.1μm以上に設定されていることが好ましい。
 また、FFS駆動を行う場合、上記絶縁層13の比誘電率が6.9であり、上記絶縁層13の厚さが0.1μmである場合、隣り合う櫛歯状電極14A・14B間の電極間隔Sを4.5μm以上とすることが好ましい。この場合、上記したように、0.44J/m以上の電気エネルギーELを得ることができるとともに、高い実質透過率を得ることができる。なお、この場合、電極間隔Sは、大きければ大きいほど好ましい。したがって、電極間隔Sの上限は、特に限定されるものではない。なお、電極間隔Sの上限は、櫛歯状電極14A・14Bの本数(ライン本数)および電極幅Lが決定されれば、画素面積から自ずと決定される。
 また、FFS駆動を行う場合、上記絶縁層13の比誘電率が6.9であり、上記絶縁層13の厚さが0.1μm~0.3μmであり、隣り合う櫛歯状電極14A・14B間の電極間隔Sが6.0μm以上である場合にも、上記したように、0.44J/m以上の電気エネルギーELを得ることができるとともに、高い実質透過率を得ることができる。
 また、FFS駆動を行う場合、上記電極間隔Sが8.0μmの場合、絶縁層13の厚さdが0.1μmであれば、比誘電率εに拘らず、0.60J/m以上の電気エネルギーELを得ることができる。
 以上のように、本発明は、両立が非常に困難とされる、垂直配向セルで横電界を印加する表示方式での低電圧化および高透過率を、ともに実現することができる極めて画期的な発明である。
 なお、本発明において、上記絶縁層13の材質(比誘電率ε)および厚さd、電極幅L/電極間隔Sは、上記したように、上記電気エネルギーELが上記範囲を満足するように設定・選択すればよく、特に限定されるものではない。
 また、その他の各構成要素の材質および形成方法としても、従来と同様に選択・設定することができ、特段の変更は必要ない。
 例えば、上記実施例では、上記櫛歯状電極14A・14BとしてITOを用いた場合を例に挙げて説明したが、上記ITOに代えて、IZO(Indium Zinc Oxide:インジウム亜鉛酸化物)を用いることができることは言うまでもないことである。同様に、上記各構成要素の材質並びに膜厚についても、特に限定されるものではない。
 これらの条件については、当業者の知見によって適宜選択、変更が可能であり、使用した各構成要素の形成条件に応じて、電気エネルギーELが上記範囲を満足するように、上記絶縁層13の材質(比誘電率ε)および厚さd、電極幅L/電極間隔Sからなる群より選ばれる少なくとも一つのパラメータを設定すればよい。
 なお、上記したように有機系の絶縁層13として、厚さ1μm~3μmのアクリル樹脂を使用する場合、前記したように基板20にカラーフィルタ層を形成する代わりに、図39に示すように、絶縁層13として、ブラックマトリクス13Aおよびカラーフィルタ13Bを形成してもよい。つまり、上記絶縁層13には、カラーフィルタを代用することが可能である。言い換えれば、上記絶縁層13はカラーフィルタ層を含んでいてもよい。
 なお、図39では、上記したように、上記絶縁層13として、ブラックマトリクス13Aおよびカラーフィルタ13Bからなる絶縁層を用いた液晶パネル2の、電圧無印加時における断面を示している。
 以上のように、本発明にかかる液晶パネルは、液晶層を挟んで対向する一対の基板における一方の基板に、絶縁層を介して上層電極と下層電極とが重畳して設けられており、上記上層電極は、櫛歯状電極からなり、上記液晶層を基板面に垂直な方向から見たときに上記櫛歯状電極と重なる部分における、他方の基板の表面から0.1μmの位置での平均の電気エネルギーが、0.44J/m以上である。また、本発明にかかる液晶表示装置は、上記液晶パネルを備えている。
 上記液晶パネルは、(1)上記上層電極が第1および第2の櫛歯状電極からなり、上記液晶層を、隣り合う第1および第2の櫛歯状電極間に発生する電界で駆動するものであってもよく、(2)上記液晶層を、上記上層電極と下層電極との間に発生する電界で駆動するものであってもよい。
 このためには、例えば、上記絶縁層の比誘電率が3.3であり、隣り合う第1および第2の櫛歯状電極間の間隔が12.0μm以下であり、上記絶縁層の厚さが0.1μm以上、2.8μm以下であることが好ましい。あるいは、上記絶縁層の比誘電率が3.3~6.9であり、隣り合う第1および第2の櫛歯状電極間の間隔が12.0μm以下であり、上記絶縁層の厚さが0.1μm以上、1.8μm以下であることが好ましい。
 また、隣り合う第1および第2の櫛歯状電極間の間隔は、前記した理由から4μm以上に設定されていることが好ましい。
 一方、上記(2)の駆動を行う場合、上記電気エネルギーは、0.60J/m以上であることが好ましい。
 また、上記(2)の駆動を行う場合、上記電気エネルギーを0.44J/m以上とするためには、例えば、上記絶縁層の比誘電率が6.9であり、上記上層電極において隣り合う櫛歯状電極間の間隔が8.0μmであり、上記絶縁層の厚さが0.1μm以上、0.65μm以下であることが好ましい。あるいは、上記絶縁層の比誘電率が3.3~6.9であり、上記上層電極において隣り合う櫛歯状電極間の間隔が8.0μmであり、上記絶縁層の厚さが0.1μm以上、0.35μm以下であることが好ましい。あるいは、上記絶縁層の比誘電率が6.9であり、上記絶縁層の厚さが0.1μmであり、上記上層電極において隣り合う櫛歯状電極間の間隔が4.5μm以上であることが好ましい。あるいは、上記絶縁層の比誘電率が6.9であり、上記絶縁層の厚さが0.1μm~0.3μmであり、上記上層電極において隣り合う櫛歯状電極間の間隔が6.0μm以上、12.0μm以下であることが好ましい。
 また、上記絶縁層は、カラーフィルタ層を含んでいてもよい。すなわち、上記絶縁層に有機系の絶縁層としてアクリル樹脂を使用する場合、上記絶縁層にカラーフィルタ層を代用することができる。これにより、上記上層電極および下層電極が設けられた基板にカラーフィルタを形成することができるとともに、上記液晶パネルの薄型化を図ることができる。
 また、本発明にかかる液晶パネルの製造方法は、以上のように、液晶層を挟んで対向する一対の基板における一方の基板に、絶縁層を介して、櫛歯状電極からなる上層電極と、下層電極とを重畳して形成するとともに、上記液晶層を基板面に垂直な方向から見たときに上記櫛歯状電極と重なる部分における、他方の基板の表面から0.1μmの位置での平均の電気エネルギーが、0.44J/m以上となるように、上記櫛歯状電極の電極間隔、絶縁層の膜厚、絶縁層の比誘電率、および駆動方式の組み合わせを決定する方法である。
 本発明によれば、高速応答性、広視野角特性、並びに高コントラスト特性を有し、かつ、実用的な駆動電圧で駆動が可能で、さらには、透過率が高い液晶パネルおよびその製造方法並びに液晶表示装置を提供することができる。
 なお、本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。すなわち、請求項に示した範囲で適宜変更した技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 本発明にかかる液晶パネルおよび液晶表示装置は、初期ベンド転移操作が不要であり、実用的な駆動電圧で、高い透過率を有し、MVAモードやIPSモードと同等の広視野角特性と、OCBモード並、あるいはそれ以上の高速応答性と、高コントラスト特性とを同時に実現することができる。したがって、アウトドアユースの公共掲示板や、携帯電話、PDA等のモバイル機器等に特に好適に用いることができる。
 1   液晶表示装置
 2   液晶パネル
 3   駆動回路
 4   バックライト
 5   液晶セル
 10  基板
 11  ガラス基板
 12  下層電極
 13  絶縁層
 13A ブラックマトリクス
 13B カラーフィルタ
 14  上層電極
 14A 櫛歯状電極
 14B 櫛歯状電極
 15  配向膜
 20  基板
 21  ガラス基板
 22  配向膜
 30  液晶層
 31  液晶分子
 33  スペーサ
 34  シール剤
 35  偏光板
 36  偏光板
 37  位相差板
 38  位相差板

Claims (13)

  1.  液晶層を挟んで対向する一対の基板における一方の基板に、絶縁層を介して上層電極と下層電極とが重畳して設けられており、
     上記上層電極は、櫛歯状電極からなり、
     上記液晶層を基板面に垂直な方向から見たときに上記櫛歯状電極と重なる部分における、他方の基板の表面から0.1μmの位置での平均の電気エネルギーが、0.44J/m以上であることを特徴とする液晶パネル。
  2.  上記上層電極は、第1および第2の櫛歯状電極からなり、上記液晶層を、隣り合う第1および第2の櫛歯状電極間に発生する電界で駆動することを特徴とする請求項1に記載の液晶パネル。
  3.  上記絶縁層の比誘電率が3.3であり、隣り合う第1および第2の櫛歯状電極間の間隔が12.0μm以下であり、上記絶縁層の厚さが0.1μm以上、2.8μm以下であることを特徴とする請求項1または2に記載の液晶パネル。
  4.  上記絶縁層の比誘電率が3.3~6.9であり、隣り合う第1および第2の櫛歯状電極間の間隔が12.0μm以下であり、上記絶縁層の厚さが0.1μm以上、1.8μm以下であることを特徴とする請求項1または2に記載の液晶パネル。
  5.  上記液晶層を、上記上層電極と下層電極との間に発生する電界で駆動することを特徴とする請求項1に記載の液晶パネル。
  6.  上記電気エネルギーが、0.60J/m以上であることを特徴とする請求項5に記載の液晶パネル。
  7.  上記絶縁層の比誘電率が6.9であり、上記上層電極において隣り合う櫛歯状電極間の間隔が8.0μmであり、上記絶縁層の厚さが0.1μm以上、0.65μm以下であることを特徴とする請求項5に記載の液晶パネル。
  8.  上記絶縁層の比誘電率が3.3~6.9であり、上記上層電極において隣り合う櫛歯状電極間の間隔が8.0μmであり、上記絶縁層の厚さが0.1μm以上、0.35μm以下であることを特徴とする請求項5に記載の液晶パネル。
  9.  上記絶縁層の比誘電率が6.9であり、上記絶縁層の厚さが0.1μmであり、上記上層電極において隣り合う櫛歯状電極間の間隔が4.5μm以上であることを特徴とする請求項5に記載の液晶パネル。
  10.  上記絶縁層の比誘電率が6.9であり、上記絶縁層の厚さが0.1μm~0.3μmであり、上記上層電極において隣り合う櫛歯状電極間の間隔が6.0μm以上、12.0μm以下であることを特徴とする請求項5に記載の液晶パネル。
  11.  上記絶縁層は、カラーフィルタ層を含んでいることを特徴とする請求項1または2に記載の液晶パネル。
  12.  請求項1~11の何れか1項に記載の液晶パネルを備えていることを特徴とする液晶表示装置。
  13.  液晶層を挟んで対向する一対の基板における一方の基板に、絶縁層を介して、櫛歯状電極からなる上層電極と、下層電極とを重畳して形成するとともに、
     上記液晶層を基板面に垂直な方向から見たときに上記櫛歯状電極と重なる部分における、他方の基板の表面から0.1μmの位置での平均の電気エネルギーが、0.44J/m以上となるように、上記櫛歯状電極の電極間隔、絶縁層の膜厚、絶縁層の比誘電率、および駆動方式の組み合わせを決定することを特徴とする液晶パネルの製造方法。
PCT/JP2010/003007 2009-05-29 2010-04-27 液晶パネルおよびその製造方法並びに液晶表示装置 WO2010137235A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP10780197A EP2437111A1 (en) 2009-05-29 2010-04-27 Liquid crystal panel, method for manufacturing same, and liquid crystal display device
RU2011144167/28A RU2011144167A (ru) 2009-05-29 2010-04-27 Жидкокристаллическая панель, способ ее изготовления и жидкокристаллическое дисплейное устройство
JP2011515856A JP5335907B2 (ja) 2009-05-29 2010-04-27 液晶パネルおよびその製造方法並びに液晶表示装置
BRPI1015071A BRPI1015071A2 (pt) 2009-05-29 2010-04-27 painel de cristal líquido, método para a fabricação do mesmo, e dispositivo de exibição de cristal líquido.
US13/257,752 US20120008074A1 (en) 2009-05-29 2010-04-27 Liquid crystal panel, method for manufacturing same, and liquid crystal display device
CN2010800193964A CN102439517A (zh) 2009-05-29 2010-04-27 液晶面板及其制造方法和液晶显示装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-131558 2009-05-29
JP2009131558 2009-05-29
JP2010028174 2010-02-10
JP2010-028174 2010-11-25

Publications (1)

Publication Number Publication Date
WO2010137235A1 true WO2010137235A1 (ja) 2010-12-02

Family

ID=43222367

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/003007 WO2010137235A1 (ja) 2009-05-29 2010-04-27 液晶パネルおよびその製造方法並びに液晶表示装置

Country Status (7)

Country Link
US (1) US20120008074A1 (ja)
EP (1) EP2437111A1 (ja)
JP (1) JP5335907B2 (ja)
CN (1) CN102439517A (ja)
BR (1) BRPI1015071A2 (ja)
RU (1) RU2011144167A (ja)
WO (1) WO2010137235A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012090839A1 (ja) * 2010-12-28 2012-07-05 シャープ株式会社 液晶パネル、及び、液晶ディスプレイ
CN102629039A (zh) * 2011-12-16 2012-08-08 京东方科技集团股份有限公司 阵列基板及液晶显示器

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103487972A (zh) * 2012-06-08 2014-01-01 瀚宇彩晶股份有限公司 显示装置
KR102135792B1 (ko) * 2013-12-30 2020-07-21 삼성디스플레이 주식회사 곡면 액정 표시 장치
CN104749835A (zh) * 2015-04-21 2015-07-01 深圳市华星光电技术有限公司 用于ffs模式的液晶显示面板及其制作方法
CN107315288B (zh) * 2017-08-17 2021-01-26 京东方科技集团股份有限公司 一种阵列基板、液晶面板及其制作工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10186351A (ja) 1996-12-24 1998-07-14 Hitachi Ltd 液晶表示装置
JP2000111957A (ja) * 1998-08-03 2000-04-21 Nec Corp 液晶表示装置およびその製造方法
JP2002296611A (ja) * 2001-03-30 2002-10-09 Seiko Epson Corp 液晶表示装置および電子機器
JP2003029247A (ja) * 2001-07-17 2003-01-29 Hitachi Ltd 液晶表示装置
JP2008070688A (ja) * 2006-09-15 2008-03-27 Epson Imaging Devices Corp 液晶装置、及び電子機器

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3396130B2 (ja) * 1996-06-03 2003-04-14 シャープ株式会社 液晶表示装置
JPH11231344A (ja) * 1998-02-18 1999-08-27 Hoshiden Philips Display Kk 液晶表示素子
KR100448046B1 (ko) * 2000-12-05 2004-09-10 비오이 하이디스 테크놀로지 주식회사 반사형 프린지 필드 구동 모드 액정 표시 장치
JP3900859B2 (ja) * 2001-06-07 2007-04-04 セイコーエプソン株式会社 液晶装置、投射型表示装置および電子機器
US7298445B1 (en) * 2003-06-23 2007-11-20 Research Foundation Of The University Of Central Florida Fast response liquid crystal mode
JP4108589B2 (ja) * 2003-11-05 2008-06-25 Nec液晶テクノロジー株式会社 液晶表示装置及びその製造方法
EP2924498A1 (en) * 2006-04-06 2015-09-30 Semiconductor Energy Laboratory Co, Ltd. Liquid crystal desplay device, semiconductor device, and electronic appliance
JP2008129405A (ja) * 2006-11-22 2008-06-05 Toshiba Matsushita Display Technology Co Ltd 液晶表示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10186351A (ja) 1996-12-24 1998-07-14 Hitachi Ltd 液晶表示装置
JP2000111957A (ja) * 1998-08-03 2000-04-21 Nec Corp 液晶表示装置およびその製造方法
JP2002296611A (ja) * 2001-03-30 2002-10-09 Seiko Epson Corp 液晶表示装置および電子機器
JP2003029247A (ja) * 2001-07-17 2003-01-29 Hitachi Ltd 液晶表示装置
JP2008070688A (ja) * 2006-09-15 2008-03-27 Epson Imaging Devices Corp 液晶装置、及び電子機器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012090839A1 (ja) * 2010-12-28 2012-07-05 シャープ株式会社 液晶パネル、及び、液晶ディスプレイ
CN102629039A (zh) * 2011-12-16 2012-08-08 京东方科技集团股份有限公司 阵列基板及液晶显示器
CN102629039B (zh) * 2011-12-16 2015-01-07 京东方科技集团股份有限公司 阵列基板及液晶显示器

Also Published As

Publication number Publication date
BRPI1015071A2 (pt) 2019-09-24
JP5335907B2 (ja) 2013-11-06
JPWO2010137235A1 (ja) 2012-11-12
RU2011144167A (ru) 2013-07-10
EP2437111A1 (en) 2012-04-04
US20120008074A1 (en) 2012-01-12
CN102439517A (zh) 2012-05-02

Similar Documents

Publication Publication Date Title
WO2010137217A1 (ja) 液晶パネルおよび液晶表示装置
JP5068886B2 (ja) 液晶パネルおよび液晶表示装置
Chen et al. Fringe-field switching with a negative dielectric anisotropy liquid crystal
JP5178831B2 (ja) 液晶表示装置
JP5335907B2 (ja) 液晶パネルおよびその製造方法並びに液晶表示装置
JP4621788B2 (ja) 液晶パネルおよび液晶表示装置
WO2006118752A2 (en) Multi-domain in-plane switching liquild crystal displays
WO2012017931A1 (ja) 液晶パネルおよび液晶表示装置
WO2012086666A1 (ja) 液晶パネルおよび液晶表示装置
JP3145938B2 (ja) 液晶表示装置
JP5273368B2 (ja) 液晶表示装置
WO2010137213A1 (ja) 液晶表示素子、及び、液晶表示装置
WO2012011443A1 (ja) 液晶パネルおよび液晶表示装置
US20120176575A1 (en) Liquid crystal display element
US8284359B2 (en) Liquid crystal panel and liquid crystal display device
WO2009154258A1 (ja) 液晶パネルおよび液晶表示装置
US7414689B2 (en) Continuous domain in-plane switching liquid crystal display
EP2312385B1 (en) Liquid crystal panel and liquid crystal display device
CN106125406B (zh) 一种窄视角显示的垂直取向液晶显示器
KR20010065169A (ko) 액정 표시장치
US20130329177A1 (en) Liquid-crystal display
KR20120015683A (ko) 액정표시장치
JP2006301466A (ja) 液晶表示装置
JP5507233B2 (ja) 液晶表示装置
WO2012086503A1 (ja) 液晶表示装置及び液晶表示装置の駆動方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080019396.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10780197

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011515856

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13257752

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 8048/CHENP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010780197

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2011144167

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1015071

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI1015071

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20111125