WO2012086666A1 - 液晶パネルおよび液晶表示装置 - Google Patents

液晶パネルおよび液晶表示装置 Download PDF

Info

Publication number
WO2012086666A1
WO2012086666A1 PCT/JP2011/079589 JP2011079589W WO2012086666A1 WO 2012086666 A1 WO2012086666 A1 WO 2012086666A1 JP 2011079589 W JP2011079589 W JP 2011079589W WO 2012086666 A1 WO2012086666 A1 WO 2012086666A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
liquid crystal
substrate
branch
common
Prior art date
Application number
PCT/JP2011/079589
Other languages
English (en)
French (fr)
Inventor
洋典 岩田
雄一 川平
村田 充弘
松本 俊寛
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2012086666A1 publication Critical patent/WO2012086666A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134318Electrodes characterised by their geometrical arrangement having a patterned common electrode
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134381Hybrid switching mode, i.e. for applying an electric field with components parallel and orthogonal to the substrates

Definitions

  • the present invention relates to a liquid crystal panel and a liquid crystal display device, and more specifically, controls light transmission by applying an oblique electric field to a vertical alignment type liquid crystal cell in which liquid crystal molecules are aligned in a vertical direction when no voltage is applied.
  • the present invention relates to a liquid crystal panel and a liquid crystal display device including the liquid crystal panel.
  • the liquid crystal display device has an advantage that it is thin, lightweight and consumes less power among various display devices. For this reason, in recent years, instead of CRT (cathode ray tube), it has been widely used in various fields such as mobile devices such as TV (television), monitors, and mobile phones.
  • CTR cathode ray tube
  • the display method of the liquid crystal display device is determined by how the liquid crystals are arranged in the liquid crystal cell.
  • Various display systems are known as display systems for liquid crystal display devices.
  • the pixel structure is simple, has excellent viewing angle characteristics, and can obtain high contrast by vertical alignment.
  • the liquid crystal molecules are rearranged by the electric field generated by applying a voltage to the first electrode and the second electrode formed on the same substrate to give a potential difference.
  • a display method for performing is known.
  • FIG. 21 is a diagram schematically showing a director distribution of liquid crystal molecules in a liquid crystal cell in a typical liquid crystal panel using a display method in which a horizontal electric field is applied to the vertical alignment type liquid crystal cell.
  • the liquid crystal cell 105 in the liquid crystal panel 100 using the display method typically has a liquid crystal layer 130 having a positive dielectric anisotropy sandwiched between a pair of substrates 110 and 120.
  • One substrate 110 has a solid common electrode 112 (counter electrode), an insulating layer 113, a comb-like pixel electrode 114, and an alignment film 115 provided in this order on a glass substrate 111, and the other substrate 120 is The alignment film 122 is provided on the glass substrate 121.
  • alignment films 115 and 122 vertical alignment films for aligning the liquid crystal molecules 131 with the substrates 110 and 120 in the vertical direction when no electric field is applied are used.
  • one substrate 110 has an electrode configuration of an electrode substrate (array substrate) in a liquid crystal panel using a so-called FFS mode display system in which a pair of electrodes are provided on the same substrate via an insulating layer. It has a similar configuration.
  • a pair of electrodes having such a configuration is referred to as an FFS structure electrode, and a substrate having such a configuration is referred to as an FFS structure substrate.
  • a liquid crystal panel having such a configuration is referred to as an FFS structure liquid crystal panel.
  • the FFS structure liquid crystal panel referred to here only employs the FFS structure as described above in the electrode configuration, and is different from the so-called FFS mode liquid crystal panel.
  • a horizontal electric field (in this case, an oblique horizontal direction) is formed between the common electrode 112 and the pixel electrode 114 that form a pair. field) by applying a director distribution of the liquid crystal molecules 131 has a symmetrical structure around a center portion of the branch electrodes 114a 2 which is an electrode line in the pixel electrode 114 is a comb-teeth electrode, the liquid crystal cell 105 An arcuate (bend-like) liquid crystal alignment distribution is formed.
  • liquid crystal molecules 131 are vertically aligned as described above when the power is turned off, and arranged so that the self-director compensates for the center portion of the branch electrode 114a 2 that is an electrode line when the power is turned on.
  • the above display method can realize high-speed response based on bend alignment, a wide viewing angle due to the self-director cancellation compensation arrangement, and high contrast due to vertical alignment.
  • the pixel electrode 114 and the common electrode 112 are provided with the insulating layer 113 interposed therebetween, and the electrode interval between both the electrodes is small. Since a strong electric field is generated and the liquid crystal molecules 131 in the vicinity of the comb-like pixel electrode 114 respond, the voltage can be lowered.
  • liquid crystal molecules 131 in the vicinity of the other substrate 120 which is a counter substrate with a weak electric field and in the central portion between the electrode lines of the comb-like pixel electrode 114 are difficult to respond and are high. There is a problem that it is difficult to obtain transmittance.
  • a liquid crystal panel described in Patent Document 1 is known as an example in which an electrode is provided on the counter substrate side in a vertical alignment type liquid crystal panel using a lateral electric field driving method.
  • FIG. 22 is a cross-sectional view showing a schematic configuration of the liquid crystal panel described in Patent Document 1.
  • a planar electrode 202, an insulating film 203, and a linear electrode 204 are formed in this order on a lower substrate 201, and an upper electrode having an opening 213 (slit) on the upper substrate 211. 212 is formed.
  • FIG. 22 illustration of the alignment film and the liquid crystal layer is omitted, but vertical alignment films are respectively provided on the opposing surfaces of the lower substrate 201 and the upper substrate 211 as in the liquid crystal panel 100 illustrated in FIG. 21.
  • a liquid crystal layer having positive dielectric anisotropy is sandwiched between the lower substrate 201 and the upper substrate 211.
  • the planar electrode 202 has a certain width and is long in the lateral direction.
  • the linear electrode 204 has a narrower width than the planar electrode 202, and a large number of linear electrodes 204 are formed in parallel to each other on the insulating film 203.
  • the planar electrode 202 is at least partially overlapped with the linear electrode 204, and has a continuous surface between the linear electrodes 204.
  • an opening 213 of the upper electrode 212 is formed right above the center between the linear electrodes 204.
  • an upper electrode 212 made of a transparent electrode is arranged on the upper substrate 211 that is a counter substrate to increase the electric field, thereby achieving high-speed response.
  • Japanese Patent Publication Japanese Patent Laid-Open No. 11-316383 (published on November 16, 1999)”
  • the vertical electric field component increases in regions other than the vicinity of the linear electrode 104 and the opening 213 of the upper electrode 212, and the dielectric anisotropy is vertically aligned in those regions.
  • a positive liquid crystal does not respond. For this reason, even the liquid crystal panel 200 cannot obtain a high transmittance.
  • the present invention has been made in view of the above problems, and an object of the present invention is to improve the responsiveness of the liquid crystal molecules in the liquid crystal panel to achieve high transmittance.
  • the responsiveness of the liquid crystal molecules indicates not the response speed but how much the liquid crystal molecules can be rotated by an electric field from the initial alignment state.
  • the present invention realizes high transmittance by devising the electrode structure and creating an electric field distribution that allows the liquid crystal molecules to rotate more.
  • a liquid crystal panel according to the present invention is sandwiched between a first substrate and a second substrate that are arranged to face each other, and the first substrate and the second substrate.
  • a liquid crystal layer, and the first substrate includes a common electrode provided on a lower layer side and a pixel electrode provided on an upper layer side with an insulating layer interposed therebetween, and the first substrate and the second substrate are connected to each other.
  • a liquid crystal panel provided with a vertical alignment film for vertically aligning liquid crystal molecules in the liquid crystal layer with respect to each of the substrates when no electric field is applied, wherein a common electrode is further provided on the second substrate.
  • the pixel electrode and the common electrode provided on the second substrate are each a slit electrode in which a plurality of branch electrodes extending from the trunk electrode are provided at regular intervals across the slit.
  • the branch electrodes of the common electrode provided on the second substrate do not overlap with the branch electrodes of the pixel electrode, and are arranged only between adjacent branch electrodes of the pixel electrode.
  • the electrode width of the branch electrode in the common electrode provided on the substrate is 85% or less of the electrode interval between adjacent branch electrodes in the pixel electrode, and the liquid crystal layer includes the pixel electrode, the first substrate, and the first substrate. It is characterized by being driven by an electric field generated between each of the common electrodes provided on the two substrates.
  • the responsiveness of the liquid crystal molecules can be improved by the oblique electric field generated between each common electrode and the pixel electrode, and high transmittance can be realized.
  • the liquid crystal panel according to the present invention is sandwiched between the first substrate and the second substrate which are arranged to face each other, and the first substrate and the second substrate.
  • the first substrate includes a common electrode provided on a lower layer side and a pixel electrode provided on an upper layer side with an insulating layer interposed therebetween, and the first substrate and the second substrate.
  • the liquid crystal panel is provided with a vertical alignment film for vertically aligning liquid crystal molecules in the liquid crystal layer with respect to each substrate when no electric field is applied, wherein the pixel electrode and the common electrode are respectively trunks.
  • a plurality of branch electrodes extending from the electrode are slit electrodes provided at regular intervals across the slit, and the branch electrode in the common electrode is adjacent to the pixel electrode when viewed from a direction perpendicular to each substrate.
  • the electrode width of the branch electrode in the common electrode is 85% or less of the electrode interval between adjacent branch electrodes in the pixel electrode, and the liquid crystal layer is disposed between the pixel electrode and the branch electrode in the pixel electrode.
  • the first substrate is driven by an electric field generated between a pixel electrode and a common electrode provided on each of the first substrates.
  • the responsiveness of the liquid crystal molecules is improved by the oblique electric field generated between the common electrode and the pixel electrode. It is possible to improve and achieve high transmittance.
  • the liquid crystal display device includes any one of the liquid crystal panels described above.
  • a plurality of branch electrodes extending from the stem electrode are provided on the second substrate with a slit electrode provided at regular intervals across the slit.
  • the electrode is arranged so that the branch electrode does not overlap with the branch electrode in the pixel electrode provided on the first substrate, and the electrode width of the branch electrode in the common electrode provided on the second substrate is set to By setting it to 85% or less of the electrode interval between adjacent branch electrodes in the pixel electrode, the response of the liquid crystal molecules is improved by the oblique electric field generated between each common electrode and the pixel electrode, and the liquid crystal panel and the liquid crystal display High transmittance of the apparatus can be realized.
  • the first substrate is provided with the pixel electrode and the common electrode including the slit electrodes in which a plurality of branch electrodes extending from the trunk electrode are provided at regular intervals across the slit, and each substrate is provided with
  • branch electrodes in the common electrode are arranged between adjacent branch electrodes in the pixel electrode and directly below the branch electrode in the pixel electrode, and the electrode width of the branch electrode in the common electrode
  • the oblique electric field generated between the common electrode and the pixel electrode improves the responsiveness of the liquid crystal molecules. High transmittance of the panel and the liquid crystal display device can be realized.
  • FIG. 1 is an exploded cross-sectional view schematically showing a schematic configuration of a liquid crystal display device according to Embodiment 1 of the present invention. It is a top view which shows an example of schematic structure of each electrode in the liquid crystal cell concerning Embodiment 1 of this invention, (a) is a top view which shows an example of schematic structure of the upper layer electrode in an array substrate, (b) These are top views which show an example of schematic structure of the lower layer electrode in an array board
  • FIG. 5 is a diagram illustrating transmittance, a director distribution of liquid crystal molecules, and an equipotential curve when a voltage of 5 V is applied to the pixel electrode in FIG. 4 at room temperature (25 ° C.) in the simulation in Example 1.
  • (B) is a top view which shows the other example of schematic structure of the lower layer electrode in an array board
  • (c) is a top view which shows the other example of schematic structure of the counter substrate side electrode. It is sectional drawing which shows typically schematic structure of the liquid crystal cell in the liquid crystal panel concerning Embodiment 2 of this invention with the director distribution of the liquid crystal molecule at the time of an oblique electric field application.
  • FIG. 7 It is a top view which shows an example of schematic structure of each electrode in the liquid crystal cell concerning Embodiment 2 of this invention
  • (a) is a top view which shows an example of schematic structure of the upper layer electrode in an array substrate
  • (b) These are top views which show an example of schematic structure of the lower layer electrode in an array board
  • (c) is a top view which shows an example of schematic structure of the counter substrate side electrode.
  • (A) is a figure which shows the voltage application conditions to each electrode in the liquid crystal cell shown in FIG. 7,
  • (b) is the simulation in Example 6,
  • FIG. 10 is a cross-sectional view illustrating a schematic configuration of a liquid crystal panel described in Patent Document 1.
  • FIG. (A) is a figure which shows the voltage application conditions to each electrode in the liquid crystal cell shown in FIG. 21,
  • (b) is a voltage of 5 V at room temperature (25 ° C.) in the pixel electrode in (a) in the above simulation.
  • FIG. 5 is a diagram illustrating transmittance, a director distribution of liquid crystal molecules, and an equipotential curve when a voltage of 5 V is applied to the pixel electrode in FIG. 4 at room temperature (25 ° C.) in the simulation of Comparative Example 2.
  • 22 is a diagram showing transmittance, director distribution of liquid crystal molecules, and equipotential curves when a voltage of 5 V is applied to the linear electrode and the upper electrode at room temperature (25 ° C.) in a simulation using a model having the configuration shown in FIG. It is.
  • FIG. 1 An embodiment of the present invention will be described below with reference to FIGS. 1 to 6 (a) to (c) and FIGS. 21 to 24.
  • FIG. 1 An embodiment of the present invention will be described below with reference to FIGS. 1 to 6 (a) to (c) and FIGS. 21 to 24.
  • FIG. 2 is an exploded sectional view schematically showing a schematic configuration of the liquid crystal display device according to the present embodiment.
  • the liquid crystal display device 1 As shown in FIG. 2, the liquid crystal display device 1 according to the present embodiment is provided on the back side of the liquid crystal panel 2 (liquid crystal display panel, liquid crystal display element), the drive circuit 3 that drives the liquid crystal panel 2, and the liquid crystal panel 2. And a backlight 4 (illuminating device) for irradiating the liquid crystal panel 2 with light from the back side of the liquid crystal panel 2.
  • the liquid crystal panel 2 liquid crystal display panel, liquid crystal display element
  • the drive circuit 3 that drives the liquid crystal panel 2
  • the liquid crystal panel 2 liquid crystal panel 2
  • a backlight 4 illumination device for irradiating the liquid crystal panel 2 with light from the back side of the liquid crystal panel 2.
  • the configurations of the drive circuit 3 and the backlight 4 are the same as the conventional ones. Therefore, the description of these configurations is omitted.
  • the liquid crystal panel 2 includes a liquid crystal cell 5, polarizing plates 6 and 7, and retardation plates 8 and 9 as necessary.
  • the liquid crystal panel 2 is formed by bonding polarizing plates 6 and 7 and, if necessary, retardation plates 8 and 9 to the liquid crystal cell 5.
  • the polarizing plates 6 and 7 are respectively provided on the surfaces of the substrates 10 and 20 opposite to the surface facing the liquid crystal layer 30. Further, as shown in FIG. 2, the retardation plates 8 and 9 are provided between the substrates 10 and 20 and the polarizing plates 6 and 7 as necessary.
  • the phase difference plates 8 and 9 may be provided only on one surface of the liquid crystal panel 2. Further, in the case of a display device using only front transmitted light, the retardation plates 8 and 9 are not necessarily essential.
  • the polarizing plates 6 and 7 are, for example, electrode portions (branch electrodes) adjacent to each other through the slits in the electrodes having the transmission axes of the polarizing plates 6 and 7 orthogonal to each other and having slits provided in the liquid crystal cell 5. Are arranged such that the direction in which each is stretched and the transmission axis of the polarizing plates 6 and 7 form an angle of 45 °.
  • the liquid crystal panel 2 is a vertical alignment type liquid crystal panel that is driven using an oblique lateral electric field (hereinafter simply referred to as “an oblique electric field”) as a lateral electric field driving method.
  • the liquid crystal panel 2 is configured such that when no electric field is applied, liquid crystal molecules are aligned perpendicular to the substrate surface in the liquid crystal cell 5 and a lower layer electrode and a pair of electrodes are provided on at least one of the pair of substrates provided to face each other.
  • An upper electrode is provided and driven by an oblique electric field generated in an oblique lateral direction between the pair of electrodes.
  • the “vertical” includes “substantially vertical”.
  • FIG. 1 is a cross-sectional view schematically showing a schematic configuration of a main part of a liquid crystal cell 5 in a liquid crystal panel 2 according to the present embodiment, together with a director distribution of liquid crystal molecules when a lateral electric field is applied.
  • the liquid crystal cell 5 includes a pair of substrates 10 and 20 arranged to face each other as an array substrate (electrode substrate) and a counter substrate.
  • a liquid crystal layer 30 is sandwiched between the substrates 10 and 20 as a display medium layer.
  • At least one of these substrates 10 and 20, that is, at least the substrate on the viewer side, is a translucent substrate such as a glass substrate, preferably a transparent substrate, as an insulating substrate (liquid crystal layer holding member, base substrate). It has.
  • a translucent substrate such as a glass substrate, preferably a transparent substrate, as an insulating substrate (liquid crystal layer holding member, base substrate). It has.
  • a glass substrate is used as an insulating substrate will be described as an example, but this embodiment is not limited to this.
  • the display surface side (observer side) substrate is described as the upper substrate, the other substrate is described as the lower substrate, and an array substrate is used as the lower substrate 10, and the upper substrate is used.
  • a case where a counter substrate is used as the substrate 20 will be described as an example.
  • the counter substrate may be a lower substrate and the array substrate may be an upper substrate.
  • the substrate 10 (first substrate) is an array substrate as described above.
  • a TFT substrate provided with a TFT (thin film transistor) as a switching element (not shown) can be used.
  • the substrate 10 includes, for example, a common electrode 12 (lower layer electrode, first common electrode (counter electrode), first electrode), and insulating layer 13 (array-side insulating layer) on a glass substrate 11. ),
  • the pixel electrode 14 (upper layer electrode, second electrode), and the alignment film 15 are stacked in this order.
  • the common electrode 12 and the pixel electrode 14, which are pairs of electrodes, are electrodes each having a slit (space part), and have a patterned electrode part (electrode line) and a space part (electrode non-formation part). ing.
  • the structures (shapes) of the common electrode 12 and the pixel electrode 14 will be described in detail later.
  • the insulating layer 13 is formed in a solid shape over the entire display area of the substrate 10 so as to cover the common electrode 12.
  • the alignment film 15 is a so-called vertical alignment film that aligns the liquid crystal molecules 31 of the liquid crystal layer 30 perpendicularly to the substrate surface when no electric field is applied.
  • the alignment film 15 is formed in a solid shape on the insulating layer 13 so as to cover the pixel electrode 14.
  • the substrate 20 (second substrate) is a counter substrate. As shown in FIG. 1, for example, the substrate 20 is provided with a common electrode 22 (a counter substrate side electrode, a second common electrode (counter electrode), a third electrode), and an alignment film 23 on a glass substrate 21. It has a configuration.
  • the common electrode 22 is an electrode having a slit (space part), and has a patterned electrode part (electrode line) and a space part (electrode non-formation part). ing.
  • the alignment film 23 is a so-called vertical alignment film like the alignment film 15. In the same manner that the alignment film 15 is formed in a solid shape over the entire display region of the substrate 10, the alignment film 23 is formed in a solid shape over the entire display region of the substrate 20.
  • a color filter for each color such as R (red), G (green), and B (blue), a black matrix, and the like (not shown) are provided between the glass substrate 21 and the common electrode 22 as necessary. May be. That is, the substrate 20 may be a color filter substrate provided with a color filter (not shown).
  • the substrates 10 and 20 may include an undercoat film or an overcoat film (not shown).
  • the substrate 10 and the substrate 20 are bonded to each other with a sealant (not shown) through a spacer (not shown) to form a gap between the substrates 10 and 20. It is formed by enclosing a medium containing a liquid crystal material.
  • the liquid crystal material may be a p (positive) liquid crystal material or an n (negative) liquid crystal material.
  • a p-type liquid crystal material for example, a p-type nematic liquid crystal material can be used.
  • the present embodiment is not limited to this.
  • the liquid crystal panel 2 and the liquid crystal display device 1 are configured to form a distribution of electric field strength in the liquid crystal cell 5 by applying an electric field, thereby realizing a bend alignment of the liquid crystal material.
  • a liquid crystal material having a large refractive index anisotropy ⁇ n or a liquid crystal material having a large dielectric anisotropy ⁇ is preferably used.
  • p-type liquid crystal materials include CN (cyano) liquid crystal materials (chiral nematic liquid crystal materials) and F (fluorine) liquid crystal materials.
  • a transparent electrode material such as ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide) is preferably used.
  • the common electrode 12 and the pixel electrode 14 are not necessarily transparent electrodes, and may be made of a metal electrode such as aluminum.
  • the common electrode 22 is not necessarily a transparent electrode, and may be made of a metal electrode such as aluminum. Further, these electrodes may be formed of the same electrode material, or may be formed of different electrode materials.
  • the method for forming (laminating) these electrodes is not particularly limited, and various conventionally known methods such as sputtering, vacuum deposition, and plasma CVD can be applied. Further, a method for patterning the pixel electrode 14 and the common electrode 12 is not particularly limited, and a known patterning method such as photolithography can be used.
  • the film thickness of these electrodes is not particularly limited, but is preferably set within a range of 100 mm to 2000 mm.
  • the film thickness of the insulating layer 13 depends on the type of the insulating layer 13 (for example, whether it is an inorganic insulating film or an organic insulating film), but is set within a range of 1000 to 30000 mm, for example.
  • the film thickness of the insulating layer 13 may be set as appropriate according to the type of the insulating layer 13 and is not particularly limited. However, the thinner the liquid crystal molecules 31 move, the thinner the liquid crystal panel 2 is. It is preferable because it can be achieved. However, from the viewpoint of preventing insulation failure due to lattice defects and film thickness unevenness, the film thickness of the insulating layer 13 is preferably 1000 mm or more.
  • the method for forming (stacking) the insulating layer 13 is not particularly limited, and various conventionally known methods may be applied depending on the insulating material used, such as sputtering, vacuum deposition, plasma CVD, coating, or the like. Can do.
  • the alignment film 15 can be formed by, for example, applying an alignment film material having a vertical alignment regulating force on the insulating layer 13 so as to cover the pixel electrode 14.
  • the alignment film 23 can be formed, for example, by applying an alignment film material having a vertical alignment regulating force on the common electrode 22 so as to cover the common electrode 22.
  • each of the common electrodes 12 and 22 and the pixel electrode 14 is a slit electrode having a slit (space portion), and a patterned electrode portion (electrode line), a space portion (electrode non-forming portion), and have.
  • 3A to 3C are schematic views of the pixel electrode 14 as the upper layer electrode, the common electrode 12 as the lower layer electrode, and the common electrode 22 as the counter substrate side electrode in the liquid crystal cell 5 shown in FIG. It is a top view which shows a structure.
  • so-called comb electrodes having a comb-like structure are used as the common electrodes 12 and 22 and the pixel electrode 14, respectively.
  • the case will be described as an example, but the present embodiment is not limited to this.
  • the pixel electrode 14 is a comb electrode having a patterned electrode portion 14a and a space portion 14b (slit), and more specifically, a stem electrode. 14a 1 (stem line) and a branch electrode 14a 2 (branch line) corresponding to the teeth of a comb and extending from the stem electrode 14a 1 , and the branch electrode 14a 2 is spaced at a constant interval across the space portion 14b. It has the structure provided in.
  • a cross section of the branch electrode 14 a 2 is illustrated as a cross section of the electrode portion 14 a of the pixel electrode 14.
  • the common electrode 12 is a comb electrode having a patterned electrode portion 12a and a space portion 12b, and more specifically, the stem electrode 12a. 1 (stem line) and a branch electrode 12a 2 (branch line) extending from the stem electrode 12a 1 corresponding to a comb tooth.
  • a cross section of the branch electrode 12 a 2 is illustrated as a cross section of the electrode portion 12 a of the common electrode 12.
  • the common electrode 22 is a comb electrode having a patterned electrode portion 22a and a space portion 22b, more specifically, a trunk electrode 22a 1 ( (Stem line) and branch electrodes 22a 2 (branch lines) extending from the stem electrode 22a 1 corresponding to the teeth of comb teeth.
  • a cross section of the branch electrode 22 a 2 is illustrated as a cross section of the electrode portion 22 a of the common electrode 22.
  • the electrode portion 14a (particularly the branch electrode 14a 2 ) of the pixel electrode 14 is disposed right above the center of the space portion 12b of the common electrode 12 (just above the center of the opening).
  • the electrode portion 12a (particularly the branch electrode 12a 2 ) of the common electrode 12 is disposed directly below the center of the space portion 14b of the pixel electrode 14 (just below the center of the opening).
  • the electrode portion 14a of the pixel electrode 14 and the electrode portion 12a (particularly the branch electrode 12a 2 ) of the common electrode 12 are formed at positions and sizes that do not overlap each other.
  • the electrode portion 22a (particularly the branch electrode 22a 2 ) of the common electrode 22 is disposed right above the center of the space portion 14b of the pixel electrode 14 (just above the center of the opening), and the electrode portion of the pixel electrode 14 14a (particularly the branch electrode 14a 2 ) is formed in a position and size that do not overlap.
  • the electrode portion 22a (particularly the branch electrode 22a 2 ) of the common electrode 22 is provided so as to overlap the electrode portion 12a (particularly the branch electrode 12a 2 ) of the common electrode 12 provided on the substrate 10. ing.
  • the number of teeth of the common electrodes 12 and 22 and the pixel electrode 14 (that is, the branch electrodes 12a 2 , 22a 2, and 14a 2 constituting the electrode portions 12a, 22a, and 14a) provided in one pixel is particularly limited. Instead, it is determined based on the relationship between the pixel pitch and each L / S in the common electrodes 12 and 22 and the pixel electrode 14.
  • L is an electrode width of the line electrodes, indicating the electrode width of each of the branch electrodes 12a 2 ⁇ 22a 2 ⁇ 14a 2 .
  • S is an electrode interval, and is an electrode interval between adjacent branch electrodes 12a 2 and 12a 2, an electrode interval between adjacent branch electrodes 22a 2 and 22a 2 , or between adjacent branch electrodes 14a 2 and 14a 2.
  • the electrode interval is shown. That is, S indicates the width of the space portions 12b, 22b, and 14b.
  • the pixel pitch is P ⁇ m
  • the electrode width L of the pixel electrode 14 (that is, the width of each branch electrode 14a 2 serving as an electrode line) is L ⁇ m
  • the electrode interval S that is, the branch electrodes 14a 2 and 14a serving as spaces).
  • (Distance between 2 ) is S ⁇ m and the number of branch electrodes 14a 2 is X
  • the electrode width L of the branch electrode 14a 2 is L1, and the electrode between the adjacent branch electrodes 14a 2 and 14a 2 is used.
  • the interval S is S1
  • the electrode width L of the branch electrode 12a 2 is L2
  • the electrode interval S between the adjacent branch electrodes 12a 2 and 12a 2 is S2
  • the electrode width L of the branch electrode 22a 2 is L3.
  • the electrode spacing S between the branch electrodes 22a 2 and 22a 2 is S3.
  • the branch electrodes 12a 2 and 22a in the common electrodes 12 and 22 formed on the upper and lower substrates. 2 of electrode width L2 ⁇ L3, respectively, are set to be equal to or less than 85% of the electrode spacing S1 (i.e., L2 ⁇ 0.85 ⁇ S1, L3 ⁇ 0.85 ⁇ S1).
  • the electrode widths L2 and L3 are set to 8.5 ⁇ m or less.
  • the electrode widths L1, L2, and L3 and the electrode intervals S1, S2, and S3 are not particularly limited as long as the above relational expressions are satisfied.
  • the electrode width L1 is preferably as small as possible.
  • the electrode width L1 is preferably in the range of 2 ⁇ m to 5 ⁇ m, more preferably in the range of 2 ⁇ m to 3 ⁇ m, taking into account errors, and preferably in the range of 2 ⁇ m to 2.6 ⁇ m. Particularly preferred.
  • the lower limit of the electrode width L1 is not limited to this.
  • the electrode spacing S1 is not particularly limited, but is preferably 4 ⁇ m or more and 12 ⁇ m or less from the viewpoint of the aperture ratio.
  • interval S1 is verified in detail by embodiment mentioned later. However, as shown in the embodiments described later, a sufficient substantial transmittance can be obtained even when the electrode spacing S1 exceeds, for example, 12 ⁇ m. Accordingly, the electrode interval S1 is preferably within the above range, but is not limited to the above range.
  • the electrode widths L2 and L3 are set to 85% or less of the electrode interval S1 (however, it goes without saying that it is larger than 0%).
  • the pixel pitch is P ⁇ m and the number of branch electrodes 14a 2 (that is, the number of branch electrodes 14a 2 ).
  • the electrode 12a 2 and the number of branch electrodes 22a 2 are X
  • the electrode widths L2 and L3 and the electrode spacings S2 and S3 are L2 ⁇ m, L3 ⁇ m, S2 ⁇ m, and S3 ⁇ m, respectively
  • the electrode width L2 and the electrode width L3 are not necessarily the same as long as the above conditions are satisfied. Further, the electrode spacing S2 and the electrode spacing S3 are not necessarily the same as long as the above conditions are satisfied.
  • the number of branch electrodes 14a 2 of the number and branch number of the electrodes 12a 2 and the finger electrode 22a not necessarily the same, it is possible to independently set.
  • Each of the branch electrodes 12a 2 , 22a 2, and 14a 2 may be formed in a linear shape, or may be formed in a V shape or a zigzag shape.
  • the liquid crystal panel 2 according to the present embodiment is a vertical alignment type liquid crystal panel that is driven using a lateral electric field (an oblique electric field).
  • the liquid crystal panel 2 has a configuration in which vertical alignment films are provided as the alignment films 15 and 22 on the surfaces of the substrates 10 and 20, and the major axis direction of the liquid crystal molecules 31 is not applied when no voltage is applied.
  • the homeotropic orientation perpendicular to the substrate surface is shown.
  • the liquid crystal molecules 31 are vertically aligned when the power is turned off, and when the power is turned on, the self-director compensates for the center portion of the branch electrode 14 a 2 that is an electrode line in the pixel electrode 14. Arrange as follows.
  • the liquid crystal panel 2 has a high-speed response based on bend alignment, which is an effect peculiar to a vertical alignment type liquid crystal panel using a lateral electric field (diagonal electric field) driving method, a wide viewing angle due to a self-director cancellation compensation arrangement, High contrast due to vertical alignment can be realized.
  • the liquid crystal panel 2 is provided with a pixel electrode 14 and a common electrode 12 which are a pair of electrodes provided on the same substrate with an insulating film 13 interposed therebetween, and an electrode interval between both electrodes is small. Since a strong electric field is generated at a low voltage and the liquid crystal molecules 31 near the pixel electrode 14 respond, the voltage can be lowered.
  • a common electrode 22 is provided on the substrate 20 that is the counter substrate, at a position corresponding to the center of the space portion 14 b between the branch electrodes 14 a 2 that are the openings of the pixel electrode 14.
  • the pixel electrode 14 is a drain electrode (not shown) and is connected to a signal line and a switching element such as a TFT, and a signal corresponding to a video signal is applied.
  • the common electrode 12 and the common electrode 22 are set to the same potential.
  • FIG. 4 is a diagram showing an example of voltage application conditions to the pixel electrode 14 and the common electrodes 12 and 22 in the liquid crystal cell 5.
  • both the common electrodes 12 and 22 are set to 0 V, and the voltage applied to the pixel electrode 14 is changed. Note that, as shown in the examples below, each branch electrodes 14a 2 of the pixel electrodes 14 are all the same voltage is applied.
  • display is performed by applying a potential difference between the pixel electrode 14 and the common electrodes 12 and 22.
  • an oblique electric field is generated between the pixel electrode 14 and the common electrodes 12 and 22, and electric lines of force between the pixel electrode 14 and the common electrodes 12 and 22 are semicircular.
  • the liquid crystal molecules 31 are arranged according to the electric field strength distribution in the liquid crystal cell 5 and the binding force from the interface.
  • the liquid crystal molecules 31 are rotated by an oblique electric field generated between the pixel electrode 14 and the common electrodes 12 and 22, thereby controlling the amount of light transmitted through the liquid crystal panel 2. Is done.
  • the common electrode 22 on the substrate 20, at a position corresponding to the center directly above the space portion 14b between the branch electrodes 14a 2 is an opening of the pixel electrode 14, by providing the common electrode 22, the common An oblique electric field is generated between the electrode 22 and the pixel electrode 14 to increase the electric field, and the liquid crystal molecules 31 on the substrate 20 side easily respond.
  • the time, the common electrode 22 be disposed on the substrate 20 is not overlapped to the pixel electrode 14 is a comb-teeth electrode, the space portion 14b between the branch electrodes 14a 2 as described above Only placed directly above the center.
  • the inventors of the present application prevent the fringe electric field generated in the vicinity of the comb-teeth electrode from preventing the generation of the oblique electric field, thereby reducing the response of the liquid crystal molecules. I found it worse.
  • the common electrode 12 as a lower electrode rather than solid-like, the space part configuration and then with 12b (slit), the branch electrode 14a in the branch electrodes 12a 2 and the pixel electrode 14 in the common electrode 12 2
  • the common electrode 12 By increasing the responsiveness of the liquid crystal molecules 31 by the oblique electric field generated between the two, a high transmittance was realized.
  • a common electrode 12 as a lower electrode only in the center beneath between the branch electrodes 14a 2 of the pixel electrode 14.
  • the electrode structure is devised to create an electric field distribution that allows the liquid crystal molecules 31 to rotate more, thereby realizing high transmittance.
  • the present inventors provide three layers of electrodes on the liquid crystal panel 2 as described above, the lower the upper and lower substrates 10 and 20 as the widths of the branch electrodes 12a 2 and 22a 2 in the common electrodes 12 and 22 become narrower. It has been found that the region in which the liquid crystal molecules 31 are difficult to respond between becomes smaller, and as a result, as the widths of the branch electrodes 12a 2 and 22a 2 become narrower, higher transmittance can be obtained.
  • the branch electrodes 12a in the common electrodes 12 and 22 formed on the upper and lower substrates. 2 ⁇ 22a 2 of the electrode width L2 ⁇ L3, respectively, it was found that can realize high transmittance of time is less than 85% of the electrode spacing S1.
  • an insulating layer 13 (dielectric layer) made of SiN and having a thickness of 3000 mm was formed on the common electrode 12.
  • an alignment film coating material “JALS-204” (trade name, solid content 5 wt.%, ⁇ -butyrolactone solution) manufactured by JSR Co. is applied to the insulating layer 13 so as to cover the pixel electrode 14 by spin coating. Was applied. Then, the board
  • the substrate 20 was formed by forming the alignment film 23 on the glass substrate 21 so as to cover the common electrode 22 by using the same material and the same process as the alignment film 15.
  • the dry film thickness of each of the alignment films 15 and 22 was 1000 mm.
  • resin beads “Micropearl SP20375” (trade name, manufactured by Sekisui Chemical Co., Ltd.) having a diameter of 3.75 ⁇ m were dispersed as spacers on one of the substrates 10 and 20.
  • a sealing resin “Struct Bond XN-21S” (trade name, manufactured by Mitsui Toatsu Chemical Co., Ltd.) was printed as a sealing agent on the other substrate facing the one substrate.
  • the substrates 10 and 20 were bonded to each other and baked at 135 ° C. for 1 hour, whereby a liquid crystal cell 5 was produced.
  • the polarizing plates 6 and 7 are formed on the front and back surfaces of the liquid crystal cell 5, the transmission axes of the polarizing plates 6 and 7 are orthogonal to each other, and the directions in which the branch electrodes 12 a 2 , 14 a 2, and 22 a 2 are stretched are polarized.
  • the plates 6 and 7 were bonded so that the transmission axis was at an angle of 45 °.
  • a liquid crystal panel 2 liquid crystal display element having the configuration shown in FIG. 1 was produced.
  • the liquid crystal panel 2 produced in this way is placed on the backlight 4 and driven as shown in FIG. 2, whereby the voltage-transmittance change (hereinafter referred to as “measured T”) on the front side of the liquid crystal panel 2 is driven.
  • measured T the voltage-transmittance change
  • BM5A manufactured by Topcon.
  • the transmittance at the actual measurement T was obtained from the luminance of the liquid crystal panel 2 / the luminance of the backlight 4.
  • FIG. 5 shows the transmittance, the director distribution of the liquid crystal molecules 31, and the equipotential curve when a voltage of 5 V is applied to the pixel electrode 14 in FIG. 4 at room temperature (25 ° C.) in the above simulation.
  • the common electrodes 12 and 22 are set to 0V.
  • a solid electrode made of ITO is used as a common electrode 112 on a glass substrate 111 similar to the glass substrate 11 over the entire surface of one side of the glass substrate 111 by sputtering. Formed.
  • an insulating layer 113 (dielectric layer) made of SiN and having a thickness of 3000 mm was formed on the common electrode 112.
  • the thicknesses of the pixel electrode 114 and the common electrode 112 were both 1400 mm.
  • the alignment film paint “JALS-204” (trade name, solid content 5 wt.%, ⁇ -butyrolactone solution) manufactured by JSR Co., Ltd., which is the same as that of Example 1, so as to cover the pixel electrode 114 on the insulating layer 113.
  • the substrate 110 provided with an alignment film 115 as a vertical alignment film was formed on the insulating layer 113 by baking at 200 ° C. for 2 hours as in Example 1.
  • the substrate 120 was formed by forming only the alignment film 122 on the same glass substrate 121 as the glass substrate 21 by the same material and the same process as the alignment film 15.
  • the dry thickness of the alignment films 115 and 122 thus obtained was 1000 mm.
  • resin beads “Micropearl SP20375” (trade name, manufactured by Sekisui Chemical Co., Ltd.) having a diameter of 3.75 ⁇ m were dispersed as spacers on one of the substrates 110 and 120 as in Example 1.
  • a sealing resin “Struct Bond XN-21S” (trade name, manufactured by Mitsui Toatsu Chemical Co., Ltd.) was printed as a sealing agent on the other substrate facing the one substrate.
  • the substrates 10 and 20 were bonded together and baked at 135 ° C. for 1 hour in the same manner as in Example 1 to produce a comparative liquid crystal cell 105.
  • a polarizing plate (not shown) similar to that of Example 1 is formed on the front and back surfaces of the liquid crystal cell 105, and the polarizing axis of the polarizing plate is perpendicular to the transmission axis of the polarizing plate and the branch electrode 114a 2 is stretched. Bonding was performed so that the transmission axis formed an angle of 45 °. Thus, a comparative liquid crystal panel 100 (liquid crystal display element) having the configuration shown in FIG. 21 was produced.
  • the actual measurement T of the liquid crystal panel 100 thus manufactured was measured in the same manner as in Example 1.
  • FIG. 23A shows the voltage application conditions to each electrode in the simulation.
  • FIG. 23B shows the simulation, and the pixel electrode 114 in FIG.
  • the common electrode 112 is set to 0V.
  • Example 2 the electrode width L2 of the common electrode 12 and the electrode width L3 of the common electrode 22 are 90% (9.0 ⁇ m, Comparative Example 2), 85 based on 10 ⁇ m which is the same as the electrode interval S1 of the pixel electrode 14. % (8.5 ⁇ m, Example 2), 50% (5 ⁇ m, Example 3), and 10% (1.0 ⁇ m, Example 4).
  • SimT of each liquid crystal panel 2 when the electrode widths L2 and L3 of the common electrodes 12 and 22 were changed was obtained. In either case, as shown in FIG. 4, the common electrodes 12 and 22 were set to 0V.
  • Table 1 shows the SimT, the electrode width L1 / electrode spacing S1 of the pixel electrode 14, the electrode width L2 / electrode spacing S2 of the common electrode 12, the electrode width L3 / electrode spacing S3 of the common electrode 22, the ratio X2, and the ratio X3. Show.
  • FIG. 24 shows the transmittance, the director distribution of the liquid crystal molecules 31 and the equipotential curve when a voltage of 5 V is applied to the pixel electrode 14 in FIG. 4 at room temperature (25 ° C.) in the simulation of Comparative Example 2.
  • the substrate 20 which is a counter substrate, a common electrode 22 having a space portion 22b (slit), the branch electrode 22a 2 do not overlap the branch electrodes 14a 2 of the pixel electrode 14
  • the common electrode 12 that is the lower layer electrode has a space portion 12b (slit) and the electrode interval S1 of the pixel electrode 14 is 100%, the common electrode 12. It was confirmed that a high transmittance can be realized by setting the electrode widths L2 and L3 of 22 to 85% or less of the electrode interval S1.
  • the common electrodes 12 and 22 and the pixel electrode 14 are slit electrodes each having a slit (space portion), and are patterned electrode portions (electrode lines) and space portions (electrode non-formed). Part).
  • FIG. 14 is a plan view showing a schematic configuration of an electrode 22.
  • FIG. The cross-sectional view of the liquid crystal panel 2 of this modification is the same as FIG.
  • the common electrodes 12 and 22 and the pixel electrode 14 made of comb-shaped electrodes are cut into a solid electrode from one end to the other opposite end.
  • 6 has a comb-teeth shape having a plurality of notches (slits) as a space portion at one end thereof, whereas the common electrodes 12 and 22 and the pixels shown in FIGS.
  • the electrode 14 has a shape in which a plurality of openings (opening windows, slits) are provided as space portions at the center of the solid electrode, and the ends are connected.
  • the pixel electrode 14 in the present modification includes a frame-shaped (frame-shaped) stem electrode 14a 1 and a frame-shaped stem electrode as patterned electrode portions 14a.
  • 14a 1 has a striped branch electrode 14a 2 (branch line) extending from one end to the other opposite end, and the branch electrode 14a 2 is provided at a constant electrode interval with the space portion 14b interposed therebetween. is doing.
  • the common electrode 12 in the present modification as shown in FIG. 6 (b), as the electrode portion 12a which is patterned, and the stem electrodes 12a 1 of the frame-shaped (frame-shaped), the frame-shaped stem
  • the electrode 12a 1 has a striped branch electrode 12a 2 (branch line) extending from one end to the other opposite end, and the branch electrode 12a 2 is provided at a constant electrode interval across the space portion 12b.
  • the common electrode 22 in the present modification as shown in (c) of FIG. 6, as patterned electrode portions 22a, and the stem electrodes 22a 1 of the frame-shaped (frame-shaped), the frame-like stem electrodes 22a 1 has a striped branch electrode 22a 2 (branch line) extending from one end to the opposite opposite end, and the branch electrode 22a 2 is provided at a constant electrode interval with the space portion 22b interposed therebetween. is doing.
  • the branch electrode 14 a 2 in the pixel electrode 14 is arranged right above the center of the space portion 12 b of the common electrode 12 (just above the center of the opening), and the branch electrode 12 a in the common electrode 12. 2 is formed at a position and size (electrode width) that do not overlap.
  • branch electrode 22a 2 in the common electrode 22 is arranged right above the center of the space portion 14b of the pixel electrode 14 (just above the center of the opening) and does not overlap with the branch electrode 14a 2 in the pixel electrode 14. It is formed in position and size (electrode width).
  • the electrode part 22a (particularly the branch electrode 22a 2 ) of the common electrode 22 is provided so as to overlap the electrode part 12a (particularly the branch electrode 12a 2 ) of the common electrode 12 provided on the substrate 10. Yes.
  • each of the branch electrodes 12a 2 , 22a 2, and 14a 2 may be formed in a linear shape, or may be formed in a V shape or a zigzag shape.
  • Example 5 In Example 1, the shape of the pixel electrode 14 and the common electrodes 12 and 22 is changed from the comb shape shown in FIGS. 3 (a) to 3 (c) to the slit shape shown in FIGS. 6 (a) to 6 (c).
  • a liquid crystal panel 2 having the configuration shown in FIG. 1 was produced using the same conditions and method as in Example 1 except for the changes.
  • the electrode widths L1 to L3 of the pixel electrode 14 and the common electrodes 12 and 22 are 2.5 ⁇ m, respectively, and the electrode spacing S1 between the pixel electrode 14 and the common electrodes 12 and 22 is set.
  • Each of S3 was set to 10 ⁇ m. That is, in this example, the ratio X2 and the ratio X3 were each 25%.
  • the measured T is shown in Table 2 together with the measured T in Example 1.
  • Example 1 From the results shown in Table 2, in Example 1, the shape of the pixel electrode 14 and the common electrodes 12 and 22 is changed from the comb shape shown in FIGS. 3A to 3C to FIGS. It was found that the actual measurement T when the slit shape shown in c) was changed to a value close to the actual measurement T of Example 1.
  • the shape of the pixel electrode 14 and the common electrodes 12 and 22 is changed from the comb-tooth shape shown in FIGS. 3A to 3C to the slit shape shown in FIGS. 6A to 6C. Even in this case, it was found that the same result as before the change was obtained.
  • the common electrode 12 which is a lower layer electrode has a space portion 12b (slit) and the electrode interval S1 of the pixel electrode 14 is 100% so as not to overlap with the space portion 14b.
  • the pixel electrode 14 and the common electrodes 12 and 22 are mainly described by taking as an example the case where both are comb-teeth electrodes or slit electrodes each having an opening window. did. However, from the results shown in Examples 1 to 5, the present embodiment is not limited to this, and any one or two of the pixel electrode 14 and the common electrodes 12 and 22 are comb electrodes, Obviously, the remainder may be a slit electrode having an open window.
  • FIG. 7 is a cross-sectional view schematically showing the schematic configuration of the main part of the liquid crystal cell 5 of the liquid crystal panel 2 according to the present embodiment, together with the director distribution of liquid crystal molecules when an oblique electric field is applied. Also in the present embodiment, in FIG. 7, the cross sections of the branch electrodes 14 a 2 , 12 a 2, and 22 a 2 are shown as cross sections of the electrode portion 14 a of the pixel electrode 14 and the electrode portions 12 a and 22 a of the common electrodes 12 and 22, respectively. It is shown in the figure.
  • 8A to 8C sequentially illustrate the pixel electrode 14 as the upper layer electrode, the common electrode 12 as the lower layer electrode, and the common electrode 22 as the counter substrate side electrode in the liquid crystal cell 5 shown in FIG. It is a top view which shows schematic structure of these.
  • so-called comb electrodes having a comb-like structure are used as the common electrodes 12 and 22 and the pixel electrode 14, respectively.
  • the case will be described as an example, but the present embodiment is not limited to this.
  • the liquid crystal panel 2 according to the present embodiment has the same structure as the liquid crystal panel 2 shown in FIG. 1 in the first embodiment except for the following points.
  • the common electrode 12 in the substrate 10 is added directly below the center between adjacent branch electrodes 14 a 2 in the pixel electrode 14, and each branch electrode 14 a 2. It is also provided directly below.
  • the electrode width L2 ⁇ of the branch electrodes 12a 2 and 22a 2 in the common electrodes 12 and 22 L3 is set to 85% or less of the electrode interval S1.
  • each of the branch electrodes 12a 2 , 22a 2, and 14a 2 may be formed in a linear shape, or may be formed in a V shape or a zigzag shape.
  • Example 1 the electrode width L3 of the common electrode 22 is 90% (9.0 ⁇ m, Comparative Example 3) and 25% (2.5 ⁇ m, Example), based on the same 10 ⁇ m as the electrode interval S1 of the pixel electrode 14. 6), 85% (8.5 ⁇ m, Example 7). Further, as shown in FIG. 6, the branch electrode 12 a 2 of the common electrode 12 is connected directly below the center between adjacent branch electrodes 14 a 2 in the pixel electrode 14 (that is, directly below the branch electrode 22 a 2 of the common electrode 22) and each branch. It provided just below the electrode 14a 2.
  • Table 3 shows the SimT, the electrode width L1 / electrode interval S1, the electrode width L2 / electrode interval S2 of the common electrode 12, the electrode width L3 / electrode interval S3 of the common electrode 22, the ratio X2, and the ratio X3. Show.
  • FIG. 9A shows the voltage application conditions to each electrode in the simulation using the liquid crystal panel 2
  • FIG. 9B shows the simulation in the sixth embodiment.
  • the common electrode 12 is set to 0 V as shown in FIG.
  • the branch electrode 12a 2 arranged immediately below each branch electrode 14a 2 in the pixel electrode 14 hardly affects the response of the liquid crystal molecules 31, and in this case as well, adjacent branches in the pixel electrode 14 are affected.
  • the electrode spacing S1 of between the electrodes 14a 2 is taken as 100%, the electrode width L2-L3 branch electrode 12a 2-22a 2 in each common electrode 12 and 22, respectively, is not more than 85% of the electrode spacing S1 It can be seen that high transmittance can be realized.
  • the common electrodes 12 and 22 and the pixel electrode 14 are electrodes having slits (space portions), respectively, and patterned electrode portions (electrode lines) and What is necessary is just to have a space part (electrode non-formation part).
  • 10A to 10C are, in order, the pixel electrode 14 that is the upper layer electrode, the common electrode 12 that is the lower layer electrode, and the counter substrate side electrode in the liquid crystal cell 5 of the liquid crystal panel 2 according to this modification.
  • 3 is a plan view showing a schematic configuration of a common electrode 22.
  • FIG. Note that the cross-sectional view of the liquid crystal panel 2 of the present modification is the same as FIG.
  • the pixel electrode 14 and the common electrode 22 in this modification are the same in structure as the pixel electrode 14 and the common electrode 22 shown in FIGS. have.
  • the common electrode 12 in this modified example the branch electrode 12a 2 is formed with a pitch smaller than the branch electrodes 12a 2 of the common electrode 12 shown in FIG. 6 (b) Except for this, it has the same structure as the common electrode 12 shown in FIG.
  • the branch electrode 12a 2 in the common electrode 12 is disposed directly below the center between adjacent branch electrodes 14a 2 in the pixel electrode 14 and directly below each branch electrode 14a 2 .
  • the branch electrode 22a 2 in the common electrode 22 is arranged right above the center of the space portion 14b of the pixel electrode 14 (just above the center of the opening) and does not overlap with the branch electrode 14a 2 in the pixel electrode 14. It is formed in position and size (electrode width).
  • the electrode portion 12a (particularly the branch electrode 12a 2 ) of the common electrode 12 that does not overlap the branch electrode 14a 2 of the pixel electrode 14 is connected to the electrode portion 22a (particularly the branch electrode 22a 2 ) of the common electrode 22 provided on the substrate 20. It is provided overlapping.
  • each branch electrode 14a in the pixel electrode 14 is obtained from the results of Examples 1 to 7.
  • the branch electrode 12a 2 arranged immediately below the second electrode hardly affects the response of the liquid crystal molecules 31, and each common electrode when the electrode interval S1 between the adjacent branch electrodes 14a 2 in the pixel electrode 14 is 100%. It is clear that high transmittance can be realized when the electrode widths L2 and L3 of the branch electrodes 12a 2 and 22a 2 at 12 and 22 are 85% or less of the electrode interval S1, respectively.
  • any one or two of the pixel electrode 14 and the common electrodes 12 and 22 are comb-tooth electrodes, and the rest may be slit electrodes having an opening window. it is obvious.
  • each of the branch electrodes 12a 2 , 22a 2, and 14a 2 may be formed in a linear shape, or may be formed in a V shape or a zigzag shape.
  • differences from the first embodiment will be described, and the same description as in the first embodiment shall be applied to configurations that are not particularly mentioned.
  • components having the same functions as those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
  • FIG. 11 is a cross-sectional view schematically showing a schematic configuration of a main part of the liquid crystal cell 5 of the liquid crystal panel 2 according to the present embodiment, together with a director distribution of liquid crystal molecules when an oblique electric field is applied.
  • the liquid crystal panel 2 according to the present embodiment has a solid shape as the common electrode 12 in the substrate 10 in the liquid crystal panel 2 shown in FIG. It has a configuration with a common electrode.
  • the liquid crystal panel 2 according to the present embodiment has the same configuration as that of the substrate 110 shown in FIG.
  • the cross sections of the branch electrodes 14a 2 and 22a 2 are shown as cross sections of the electrode portion 14a of the pixel electrode 14 and the electrode portion 22a of the common electrode 22, respectively.
  • the electrode width L3 of the branch electrode 22a 2 in the common electrode 22 is equal to the electrode interval S1. Of 85% or less.
  • the branch electrodes 22a 2 and 14a 2 may each be formed in a straight line shape, or may be formed in a V shape or a zigzag shape.
  • Example 8 In Example 1, instead of the comb-like common electrode 12, except that the solid common electrode 12 made of ITO was formed on the entire surface of one side of the glass substrate 11 with a thickness of 1400 mm by sputtering.
  • a liquid crystal panel 2 (liquid crystal display element) having the configuration shown in FIG. 11 was produced using the same materials and processes as in Example 1.
  • Table 4 shows the SimT and the measured T, the electrode width L1 / electrode interval S1 of the pixel electrode 14, the electrode width L3 / electrode interval S3 of the common electrode 22, and the ratio X3.
  • FIG. 13A shows the voltage application conditions to each electrode in the simulation using the liquid crystal panel 2
  • FIG. 13B shows the pixel in FIG.
  • the transmittance, the director distribution of the liquid crystal molecules 31 and the equipotential curve when a voltage of 5 V is applied to the electrode 14 at room temperature (25 ° C.) are shown.
  • the common electrode 12 is set to 0V.
  • Example 8 the electrode width L3 of the common electrode 22 is 90% (9.0 ⁇ m, Comparative Example 4) and 85% (8.5 ⁇ m, Example), based on the same 10 ⁇ m as the electrode interval S1 of the pixel electrode 14. 9).
  • Table 4 also shows the SimT, the electrode width L1 / electrode interval S1 of the pixel electrode 14, the electrode width L3 / electrode interval S3 of the common electrode 22, and the ratio X3.
  • the common electrode 22 and the pixel electrode 14 are electrodes having slits (space portions), and patterned electrode portions (electrode lines) and space portions. (Electrode non-formation part) should just be included.
  • 14A to 14C are, in order, the pixel electrode 14 as the upper layer electrode, the common electrode 12 as the lower layer electrode, and the counter substrate side electrode in the liquid crystal cell 5 of the liquid crystal panel 2 according to this modification.
  • 3 is a plan view showing a schematic configuration of a common electrode 22.
  • FIG. Note that the cross-sectional view of the liquid crystal panel 2 of the present modification is the same as FIG.
  • the pixel electrode 14 and the common electrode 22 in this modification are the same in structure as the pixel electrode 14 and the common electrode 22 shown in FIGS. 6A and 6C. have.
  • the common electrode 12 in this modification has the same structure as the common electrode 12 shown in FIG.
  • the common electrode 12 is a solid electrode
  • the branch electrode 22a 2 in the common electrode 22 is disposed directly above the center of the space portion 14b of the pixel electrode 14, and the branch electrode 14a 2 in the pixel electrode 14 Are formed at positions and sizes (electrode widths) that do not overlap.
  • each of the branch electrodes 22a 2 and 14a 2 may be formed in a linear shape, or may be formed in a V shape or a zigzag shape.
  • Example 10 In Example 8, the shape of the pixel electrode 14 and the common electrode 22 was changed from the comb shape shown in FIGS. 12A and 12C to the slit shape shown in FIGS. 14A and 14C.
  • a liquid crystal panel 2 having the configuration shown in FIG. 11 was produced using the same conditions and method as in Example 8 except for the above.
  • the electrode widths L1 and L3 of the pixel electrode 14 and the common electrode 22 are 2.5 ⁇ m, respectively, and the electrode intervals S1 and S3 of the pixel electrode 14 and the common electrode 22 are respectively set.
  • the thickness was 10 ⁇ m. That is, in this embodiment, the ratio X3 is set to 25%.
  • the measured T is shown in Table 5 together with the measured T in Example 8.
  • the electrode width L3 of the common electrode 22 is set to 85% or less of the electrode interval S1, thereby realizing high transmittance.
  • the case where the pixel electrode 14 and the common electrode 22 are both comb electrodes or slit electrodes each having an opening window is mainly described as an example.
  • this embodiment is not limited to this, and one of the pixel electrode 14 and the common electrode 22 is a comb electrode, and the other is an opening window. Obviously, it may be a slit electrode.
  • the lower common electrode 12 is a slit electrode even if it is a solid electrode. It can be seen that the responsiveness of the liquid crystal molecules 31 can be further improved by making the common electrode 12 in the lower layer into a slit shape, particularly a slit shape satisfying L2 ⁇ 0.85 ⁇ S1, It can be seen that the effect of increasing the transmittance can be obtained.
  • FIG. 15 is a cross-sectional view schematically showing a schematic configuration of a main part of the liquid crystal cell 5 of the liquid crystal panel 2 according to the present embodiment, together with a director distribution of liquid crystal molecules when an oblique electric field is applied.
  • FIGS. 16A and 16B are plan views showing schematic configurations of the pixel electrode 14 as the upper layer electrode and the common electrode 12 as the lower layer electrode in the liquid crystal cell 5 shown in FIG.
  • the liquid crystal panel 2 according to the present embodiment has the same structure as the liquid crystal panel 2 shown in FIG. 7 in the second embodiment except that the common electrode 22 is not provided on the substrate 20. Have.
  • the common electrode 12 in the substrate 10 is added directly below the center between adjacent branch electrodes 14 a 2 in the pixel electrode 14, and each branch electrode 14 a 2. It is also provided directly below. On the other hand, no electrode is provided on the substrate 20.
  • the cross sections of the branch electrodes 14a 2 and 22a 2 are shown as cross sections of the electrode portion 14a of the pixel electrode 14 and the electrode portion 22a of the common electrode 22, respectively.
  • the electrode width L2 of the branch electrode 12a 2 in the common electrode 12 is set to 85% or less of the electrode interval S1. Is done.
  • each of the branch electrodes 12a 2 and 14a 2 may be formed in a linear shape, or may be formed in a V shape or a zigzag shape.
  • Example 11 In the first embodiment, the branch electrode 12a 2 of the common electrode 12 is arranged directly below the center between adjacent branch electrodes 14a 2 in the pixel electrode 14 (that is, directly below the branch electrode 22a 2 of the common electrode 22) and each branch electrode 14a 2 . It was installed directly below.
  • the substrate 20 was formed by directly forming only the alignment film 23 on the glass substrate 21 by using the same material and the same process as the alignment film 15 without providing the common electrode 22.
  • liquid crystal panel 2 liquid crystal display element having the configuration shown in FIG. 15 was produced using the same materials and processes as in Example 1.
  • Table 6 shows the SimT and the measured T, the electrode width L1 / electrode interval S1 of the pixel electrode 14, the electrode width L2 / electrode interval S2 of the common electrode 12, and the ratio X2.
  • FIG. 17A shows the applied voltage in the simulation using the liquid crystal panel 2
  • FIG. 17B shows the simulation in which the pixel electrode 14 in FIG.
  • the transmittance when the voltage of 5 V is applied at 25 ° C., the director distribution of the liquid crystal molecules 31, and the equipotential curve are shown.
  • the common electrode 12 is set to 0V.
  • Example 11 the electrode width L2 of the common electrode 12 is 90% (9.0 ⁇ m, Comparative Example 5) and 85% (8.5 ⁇ m, Example), based on the same 10 ⁇ m as the electrode interval S1 of the pixel electrode 14. 12).
  • Table 6 shows the SimT, the electrode width L1 / electrode interval S1 of the pixel electrode 14, the electrode width L2 / electrode interval S2 of the common electrode 12, and the ratio X2.
  • the liquid crystal panel 2 shown in FIG. 15 has a weak electric field strength corresponding to the oblique electric field strength generated between the pixel electrode 14 and the common electrode 22 because the common electrode 22 does not exist on the substrate 20. Therefore, it can be seen that the effect of increasing the transmittance is small as compared with Examples 1 to 10.
  • the branch electrode 12a 2 arranged immediately below each branch electrode 14a 2 in the pixel electrode 14 has little influence on the response of the liquid crystal molecules 31, and in this case also, when the electrode spacing S1 100 percent between the branch electrodes 14a 2 adjacent in the pixel electrode 14, the electrode width L2 of the branch electrode 12a 2 in the common electrode 12, is 85% or less of the electrode spacing S1 It can be seen that high transmittance can be realized.
  • each branch electrode 14a 2 a branch electrode 12a 2 disposed beneath each branch electrodes 14a 2 across the insulating layer 13 It can be seen that a capacitance is formed between the two. Similar to the liquid crystal panel 2 shown in FIG. 7, this capacity can be used as an auxiliary capacity of the liquid crystal panel 2.
  • the common electrode 12 and the pixel electrode 14 are electrodes having slits (space portions), and patterned electrode portions (electrode lines) and space portions. (Electrode non-formation part) should just be included.
  • 18A and 18B are plan views showing schematic configurations of a pixel electrode 14 that is an upper layer electrode and a common electrode 12 that is a lower layer electrode in the liquid crystal cell 5 of the liquid crystal panel 2 according to this modification in order. It is. Note that the cross-sectional view of the liquid crystal panel 2 of the present modification is the same as FIG.
  • the pixel electrode 14 and the common electrode 12 in the present modification have the same structure as the pixel electrode 14 and the common electrode 12 shown in FIGS. 10A and 10B. have.
  • each of the branch electrodes 12a 2 and 14a 2 may be formed in a straight line, or may be formed in a V shape or a zigzag shape.
  • Example 13 In Example 11, the shape of the pixel electrode 14 and the common electrode 12 was changed from the comb shape shown in FIGS. 16 (a) and 16 (c) to the slit shape shown in FIGS. 18 (a) and 18 (c).
  • a liquid crystal panel 2 having the configuration shown in FIG. 15 was produced using the same conditions and method as in Example 11 except for the above.
  • the electrode widths L1 and L2 of the pixel electrode 14 and the common electrode 22 are set to 2.5 ⁇ m, respectively, and the electrode interval S1 of the pixel electrode 14 and the electrode interval S2 of the common electrode 12 are set.
  • the thickness was 10 ⁇ m and 3.8 ⁇ m, respectively.
  • the ratio X2 was set to 25%.
  • the measured T is shown in Table 2 together with the measured T in Example 11.
  • the electrode width L2 of the common electrode 12 is 85% or less of the electrode interval S1, thereby realizing high transmittance.
  • the case where the pixel electrode 14 and the common electrode 12 are both comb electrodes or slit electrodes each having an opening window is mainly described as an example.
  • this embodiment is not limited to this, and one of the pixel electrode 14 and the common electrode 12 is a comb electrode, and the other is an opening window. Obviously, it may be a slit electrode.
  • the electrode width of the linear electrode 204 was 5 ⁇ m, and the electrode interval was 15 ⁇ m.
  • the width of the opening 213 of the upper electrode 212 was 5 ⁇ m.
  • the thickness of each layer was set in the same manner as in Example 1 except that the cell thickness was 3.4 ⁇ m. In the same manner as in Example 1, “LCD-MASTER” manufactured by Shintech Co., Ltd. was used for the simulation.
  • the vertical electric field component becomes large in regions other than the vicinity of the linear electrode 104 and the vicinity of the opening 213 of the upper electrode 212. Then, it can be seen that the liquid crystal molecules do not respond and high transmittance cannot be obtained.
  • Embodiment 5 One embodiment of the present invention will be described below with reference to FIGS. 19 and 20.
  • components having the same functions as those in Embodiments 1 to 4 are denoted by the same reference numerals and description thereof is omitted.
  • the preferable electrode spacing S1 in each liquid crystal panel 2 described in the first to fourth embodiments will be described from the viewpoint of the aperture ratio.
  • the transmittance in each of the examples and comparative examples described in the first to fourth embodiments is a transmittance in an infinite plane.
  • the pixel size becomes a problem.
  • the number of branch electrodes 14a 2 once the electrode spacing S1 and electrode width L1 is determined naturally.
  • the number of branch electrodes 14a 2 the more the electrode spacing S1 is smaller ones often results electrode spacing S1 is less as large.
  • the substantial transmission part (the part excluding the dark line) becomes the opening. Since the transmissive part increases as the area of the opening increases, the electrode spacing S1 is naturally limited.
  • FIG. 19 shows the relationship between the electrode spacing S1 and the aperture ratio at this time.
  • the aperture ratio can be calculated from the electrode interval S1, the electrode width L1, and the number of lines.
  • the aperture ratio rapidly decreases when the electrode spacing S1 is smaller than 4 ⁇ m.
  • the electrode interval S1 is preferably 4 ⁇ m or more from the viewpoint of the aperture ratio.
  • ⁇ About real transmittance> The actual transmittance of a liquid crystal display device using a liquid crystal panel such as a TFT panel is calculated by multiplying the aperture ratio, the transmittance in an infinite plane, and the transmittance of a color filter (about 28%).
  • the electrode widths L2 and L3 of the common electrodes 12 and 22 are set to 25% of the electrode spacing S1, and the electrode spacing S1 is changed by simulation. That is, in each model used in Example 1 (Embodiment 1), Example 6 (Embodiment 2), Example 8 (Embodiment 3), and Example 11 (Embodiment 4), a common electrode is used.
  • the electrode interval S1 was changed by simulation so that the electrode widths L2 and L3 of 12 and 22 were 25% of the electrode interval S1.
  • FIG. 20 shows the relationship between the substantial transmittance and the electrode spacing S1.
  • the electrode interval S1 is preferably 12.0 ⁇ m or less.
  • the substantial transmittance sharply decreases when the electrode interval S1 is 4 ⁇ m. Therefore, the electrode interval S1 is preferably 4 ⁇ m or more in any liquid crystal panel 2 from the viewpoint of not only the aperture ratio (see FIG. 19 and Table 9) but also the substantial transmittance.
  • the electrode interval S1 is preferably within the above range, but is not limited to the above range.
  • each of the above-described embodiments achieves high transmittance by devising the electrode structure and creating an electric field distribution that allows the liquid crystal molecules to rotate more.
  • the response of liquid crystal molecules can be improved and a high transmittance can be realized.
  • the responsiveness of the liquid crystal molecules does not indicate the response speed but indicates how much the liquid crystal molecules can be rotated by an electric field from the initial alignment state.
  • a liquid crystal panel includes a first substrate and a second substrate which are arranged to face each other, and a liquid crystal sandwiched between the first substrate and the second substrate.
  • the first substrate includes a common electrode provided on the lower layer side and a pixel electrode provided on the upper layer side with an insulating layer interposed therebetween, and the first substrate and the second substrate in each other.
  • a liquid crystal panel provided with a vertical alignment film on a facing surface for vertically aligning liquid crystal molecules in the liquid crystal layer with respect to each substrate when no electric field is applied, wherein a common electrode is further provided on the second substrate.
  • the common electrode provided on the pixel electrode and the second substrate is a slit electrode in which a plurality of branch electrodes extending from the trunk electrode are provided at regular intervals across the slit, and is perpendicular to each substrate.
  • Each branch electrode in the common electrode provided on the second substrate does not overlap with the branch electrode in the pixel electrode, and is arranged only between adjacent branch electrodes in the pixel electrode.
  • the electrode width of the branch electrode in the provided common electrode is 85% or less of the electrode interval between adjacent branch electrodes in the pixel electrode, and the liquid crystal layer includes the pixel electrode, the first substrate, and the second substrate. It is driven by an electric field generated between each common electrode provided on the substrate.
  • the oblique electric field generated between each common electrode and the pixel electrode can improve the responsiveness of liquid crystal molecules and achieve high transmittance.
  • the common electrode provided on the first substrate is a slit electrode in which branch electrodes extending from the trunk electrode are provided at a constant electrode interval across the slit, and the common electrode provided on the first substrate is the above-mentioned
  • the common electrode provided on the first substrate when viewed from a direction perpendicular to each of the substrates, is disposed between adjacent branch electrodes of the pixel electrode, and the first electrode
  • the electrode width of the branch electrode in the common electrode provided on the substrate is preferably 85% or less of the electrode interval between adjacent branch electrodes in the pixel electrode.
  • the common electrode provided on the first substrate is also disposed directly below the branch electrode in the pixel electrode when viewed from a direction perpendicular to the respective substrates.
  • the branch electrode arranged immediately below each branch electrode in the pixel electrode hardly affects the response of the liquid crystal molecules.
  • the branch electrode is also provided on the first substrate. Further, when the electrode width of the branch electrode in the common electrode is 85% or less of the electrode interval between adjacent branch electrodes in the pixel electrode, high transmittance can be realized.
  • the common electrode provided on the first substrate is also disposed directly below the branch electrode in the pixel electrode, so that the pixel electrode is sandwiched between the branch electrode in the pixel electrode and the insulating layer.
  • a capacitance is formed between the branch electrode of the common electrode, which is disposed immediately below the branch electrode of FIG. This capacity can be used as an auxiliary capacity of the liquid crystal panel.
  • the common electrode provided on the first substrate may be a solid electrode.
  • the common electrode provided on the first substrate has a solid shape
  • the common electrode immediately below each branch electrode in the pixel electrode prevents the generation of an oblique electric field. Therefore, although the effect of increasing the transmittance is small as compared with the former, also in this case, as described above, the electrode width of the branch electrode in the common electrode provided on the second substrate is adjacent to the pixel electrode. High transmittance can be achieved when the electrode spacing is 85% or less of the inter-branch electrodes.
  • the liquid crystal panel includes a first substrate and a second substrate that are disposed to face each other, and a space between the first substrate and the second substrate.
  • the first substrate includes a common electrode provided on a lower layer side and a pixel electrode provided on an upper layer side with an insulating layer interposed therebetween, and includes the first substrate and the second substrate.
  • the liquid crystal panel is provided with a vertical alignment film for aligning liquid crystal molecules in the liquid crystal layer perpendicularly to each of the substrates when no electric field is applied to the opposing surfaces of the substrate, wherein the pixel electrode and the common electrode are respectively
  • a plurality of branch electrodes extending from the trunk electrode are slit electrodes provided at regular intervals across the slit, and the branch electrode in the common electrode is the pixel electrode when viewed from a direction perpendicular to each substrate.
  • the electrode width of the branch electrode in the common electrode is 85% or less of the electrode interval between adjacent branch electrodes in the pixel electrode, and is disposed between the electrodes and directly below the branch electrode in the pixel electrode. Are driven by an electric field generated between the pixel electrode and the common electrode provided on the first substrate, respectively.
  • the oblique electric field generated between the common electrode and the pixel electrode improves the responsiveness of the liquid crystal molecules and increases the transmittance. Can be realized.
  • the electrode interval between adjacent branch electrodes in the pixel electrode is preferably 4 ⁇ m or more and 12 ⁇ m or less.
  • the slit electrode may be a comb-like electrode, and includes a frame-shaped trunk electrode and a striped branch electrode extending from one end of the frame-shaped trunk electrode to the opposite end,
  • the branch electrode may be a slit electrode provided at a constant electrode interval across the slit.
  • liquid crystal display device provided with any of the liquid crystal panels described above, a liquid crystal display device with high transmittance in which the response of liquid crystal molecules is improved as compared with the prior art can be provided.
  • the liquid crystal panel and the liquid crystal display device according to the present invention have high liquid crystal molecule responsiveness and high transmittance at a practical driving voltage. Further, an initial bend transition operation is not required, and a wide viewing angle characteristic equivalent to that of the MVA mode or the IPS mode, a high-speed response equivalent to or higher than the OCB mode, and a high contrast characteristic can be realized at the same time. Therefore, it can be particularly suitably used for public bulletin boards for outdoor use, mobile devices such as mobile phones and PDAs.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Geometry (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

液晶パネル(2)の基板(10)は絶縁層(13)を挟んで下層側の共通電極(12)と上層側の画素電極(14)とを備え、基板(20)は共通電極(22)を備えている。共通電極(12・22)はスリット電極である。共通電極(22)の枝電極(22a)は、平面視で画素電極(14)の枝電極(14a)間にのみ配置され、その電極幅(L3)は枝電極(14a)間の電極間隔(S1)の85%以下である。

Description

液晶パネルおよび液晶表示装置
 本発明は液晶パネルおよび液晶表示装置に関するものであり、より詳しくは、電圧無印加時に液晶分子が基板垂直方向に配向する垂直配向型の液晶セルに斜め電界を印加することで光の透過を制御する液晶パネルおよび該液晶パネルを備えた液晶表示装置に関するものである。
 液晶表示装置は、各種表示装置のなかでも薄型で軽量かつ消費電力が小さいといった利点を有している。このため、近年、CRT(陰極線管)に代わって、TV(テレビション)、モニタ、携帯電話等のモバイル機器等の様々な分野で広く用いられている。
 液晶表示装置の表示方式は、液晶セル内で液晶をどのように配列させるかによって決定される。液晶表示装置の表示方式としては、各種表示方式が知られている。
 そのなかの一つとして、画素構成が単純で、かつ、優れた視野角特性を有し、垂直配向による高コントラスト性を得ることができる表示方式として、電界無印加時に液晶分子が基板に垂直方向に配向する垂直配向型の液晶セルを使用し、同一基板上に形成された第1電極および第2電極に電圧を印加して電位差を与えることで生じる電気場によって液晶分子を再配列させて表示を行う表示方式が知られている。
 以下に、このように同一基板上に形成された第1電極と第2電極との間に生じる横向きの電界(横電界)により表示を行ういわゆる横電界駆動方式を用いた垂直配向型の液晶パネルにおける典型的なセル構成について説明する。
 図21は、このように垂直配向型の液晶セルに横電界を印加する表示方式を用いた典型的な液晶パネルにおける液晶セル内の液晶分子のダイレクタ分布を模式的に示す図である。
 図21に示すように、上記表示方式を用いた液晶パネル100における液晶セル105は、典型的には、一対の基板110・120間に、誘電率異方性が正の液晶層130が挟持され、一方の基板110は、ガラス基板111上に、ベタ状の共通電極112(対向電極)、絶縁層113、櫛歯状の画素電極114、配向膜115がこの順に設けられ、他方の基板120は、ガラス基板121上に、配向膜122が設けられた構成を有している。
 配向膜115・122には、電界無印加時に液晶分子131を基板110・120に垂直方向に配向させる垂直配向膜が使用される。
 なお、上記したように、一方の基板110は、同一基板上に対の電極が絶縁層を介して設けられる、いわゆるFFSモードの表示方式を用いた液晶パネルにおける電極基板(アレイ基板)の電極構成に類似の構成を有している。
 したがって、以下、このような構成を有する対の電極をFFS構造の電極と称し、このような構成を有する基板をFFS構造の基板と称する。また、このような構成を有する液晶パネルを、FFS構造の液晶パネルと称する。
 但し、ここで言うFFS構造の液晶パネルは、電極構成に上記したようにFFS構造を採用しているにすぎず、いわゆるFFSモードの液晶パネルとは異なるものである。
 上記したように横電界駆動方式を用いた垂直配向型の液晶パネル100においては、図21に示すように、対となる共通電極112と画素電極114との間に横電界(この場合は斜め横向きの電界)を印加することで、液晶分子131のダイレクタ分布が、櫛歯電極である画素電極114における電極ラインである枝電極114aの中央部分を中心に対称構造を有し、液晶セル105内に弓なり状(ベンド状)の液晶配向分布が形成される。
 このため、液晶分子131が、電源OFF時は上記したように垂直配向し、電源ON時には、自己ダイレクタが電極ラインである枝電極114aの中央部分を中心に相殺補償するように配列する。
 このため、上記表示方式は、ベンド配向に基づく高速応答性、自己ダイレクタの相殺補償型配列による広視野角、垂直配向に起因する高コントラストを実現することができる。
 また、上記したようにFFS構造の電極を用いた液晶パネル100では、画素電極114と共通電極112とが絶縁層113を挟んで設けられており、両電極間の電極間隔が小さいため、低電圧で強い電界が発生し、櫛歯状の画素電極114付近の液晶分子131が応答するために、低電圧化が可能である。
 しかしながら、このような液晶パネル100では、アレイ基板である一方の基板110に設けられた対の電極間のみで電界を発生させる。
 このため、このような液晶パネル100は、電界の弱い、対向基板である他方の基板120の近傍や櫛歯状の画素電極114における電極ライン間の中心部分における液晶分子131が応答し難く、高い透過率が得られ難いという問題点を有している。
 これに対し、横電界駆動方式を用いた垂直配向型の液晶パネルにおいて対向基板側にも電極を設けた例として、例えば、特許文献1に記載の液晶パネルが知られている。
 図22は、特許文献1に記載の液晶パネルの概略構成を示す断面図である。
 図22に示す液晶パネル200は、下側基板201上に、面形電極202、絶縁膜203、線形電極204がこの順に形成され、上側基板211上に、開口部213(スリット)を有する上部電極212が形成された構成を有している。
 なお、図22では、配向膜および液晶層の図示は省略しているが、図21に示す液晶パネル100同様、下側基板201および上側基板211における互いの対向面にそれぞれ垂直配向膜が設けられているとともに、これら下側基板201と上側基板211とで誘電率異方性が正の液晶層が挟持された構成を有している。
 面形電極202は、一定の幅を有し、横方向に長く形成されている。線形電極204は、面形電極202よりも狭い幅を有し、絶縁膜203上には、多数の線形電極204が、互いに平行に形成されている。面形電極202は、線形電極204と少なくとも一部分が重畳しており、線形電極204間で連続的な面を有している。
 なお、図22に示す液晶表示装置では、線形電極204間の中央真上に、上部電極212の開口部213が形成されている。
 このように、特許文献1では、対向基板である上側基板211上に、透明電極からなる上部電極212を配置して電気場を大きくすることで、高速応答化を図っている。
日本国公開特許公報「特開平11-316383号公報(1999年11月16日公開)」
 しかしながら、特許文献1に記載の液晶パネル200は、線形電極104近傍および上部電極212の開口部213近傍以外の領域では、縦電界成分が大きくなり、それらの領域では垂直配向した誘電率異方性が正の液晶は応答しない。このため、上記液晶パネル200でも、高い透過率を得ることはできない。
 本発明は、上記問題点に鑑みなされたものであり、その目的は、液晶パネルにおける液晶分子の応答性を向上させて高透過率化を実現することにある。
 本願発明者らは上記課題を解決すべく鋭意検討した結果、電極構造を工夫することで、液晶分子の応答性を向上させ、高透過率化を実現することができることを見出して本発明を完成させるに至った。
 ここで、液晶分子の応答性とは、応答速度ではなく、液晶分子が初期の配向状態から電界によりいかに大きく回転できるかを示す。
 すなわち、本発明は、電極構造を工夫して液晶分子がより回転できるような電界分布を作り出すことで、高透過率化を実現するものである。
 本発明にかかる液晶パネルは、上記の課題を解決するために、互いに対向配置された第1の基板および第2の基板と、上記第1の基板と第2の基板との間に挟持された液晶層とを備え、上記第1の基板は、絶縁層を挟んで下層側に設けられた共通電極および上層側に設けられた画素電極を備え、上記第1の基板および第2の基板における互いの対向面に、電界無印加時に上記液晶層における液晶分子を上記各基板に垂直に配向させる垂直配向膜が設けられた液晶パネルであって、上記第2の基板に、さらに共通電極が設けられており、上記画素電極および第2の基板に設けられた共通電極は、それぞれ、幹電極から延びる複数の枝電極がスリットを挟んで一定の間隔で設けられたスリット電極であり、上記各基板に垂直な方向から見たときに、上記第2の基板に設けられた共通電極における各枝電極は、上記画素電極における枝電極とは重畳せず、上記画素電極における隣り合う枝電極間にのみ配置されており、上記第2の基板に設けられた共通電極における枝電極の電極幅は、上記画素電極における隣り合う枝電極間の電極間隔の85%以下であり、上記液晶層が、上記画素電極と上記第1の基板および第2の基板にそれぞれ設けられた各共通電極との間に発生する電界で駆動されることを特徴としている。
 本発明によれば、上記構成とすることで、各共通電極と画素電極との間で発生する斜め電界により、液晶分子の応答性を向上させ、高透過率化を実現することができる。
 また、本発明にかかる液晶パネルは、上記の課題を解決するために、互いに対向配置された第1の基板および第2の基板と、上記第1の基板と第2の基板との間に挟持された液晶層とを備え、上記第1の基板は、絶縁層を挟んで下層側に設けられた共通電極および上層側に設けられた画素電極を備え、上記第1の基板および第2の基板における互いの対向面に、電界無印加時に上記液晶層における液晶分子を上記各基板に垂直に配向させる垂直配向膜が設けられた液晶パネルであって、上記画素電極および共通電極は、それぞれ、幹電極から延びる複数の枝電極がスリットを挟んで一定の間隔で設けられたスリット電極であり、上記各基板に垂直な方向から見たときに、上記共通電極における枝電極が、上記画素電極における隣り合う枝電極間および上記画素電極における枝電極の真下に配置されており、上記共通電極における枝電極の電極幅は、上記画素電極における隣り合う枝電極間の電極間隔の85%以下であり、上記液晶層が、上記第1の基板にそれぞれ設けられた画素電極と共通電極との間に発生する電界で駆動されることを特徴としている。
 本発明によれば、上記構成とすることで、第2の基板に電極を設けない場合であっても、上記共通電極と画素電極との間で発生する斜め電界により、液晶分子の応答性を向上させ、高透過率化を実現することができる。
 また、本発明にかかる液晶表示装置は、上述した何れかの液晶パネルを備えている。
 したがって、本発明によれば、従来よりも液晶分子の応答性が向上された、高透過率の液晶表示装置を提供することができる。
 上記したように、第1の基板に設けられた共通電極とは別に、第2の基板に、幹電極から延びる複数の枝電極がスリットを挟んで一定の間隔で設けられたスリット電極からなる共通電極を、その枝電極が、第1の基板に設けられた画素電極における枝電極と重畳しないように配置するとともに、上記第2の基板に設けられた共通電極における枝電極の電極幅を、上記画素電極における隣り合う枝電極間の電極間隔の85%以下とすることで、各共通電極と画素電極との間で発生する斜め電界により、液晶分子の応答性を向上させ、液晶パネルおよび液晶表示装置の高透過率化を実現することができる。
 また、上記したように、第1の基板に、それぞれ幹電極から延びる複数の枝電極がスリットを挟んで一定の間隔で設けられたスリット電極からなる画素電極および共通電極が設けられ、各基板に垂直な方向から見たときに、上記共通電極における枝電極が、上記画素電極における隣り合う枝電極間および上記画素電極における枝電極の真下に配置されており、上記共通電極における枝電極の電極幅が、上記画素電極における隣り合う枝電極間の電極間隔の85%以下である場合にも、上記共通電極と画素電極との間で発生する斜め電界により、液晶分子の応答性を向上させ、液晶パネルおよび液晶表示装置の高透過率化を実現することができる。
本発明の実施の形態1にかかる液晶パネルにおける液晶セルの概略構成を、斜め電界印加時における液晶分子のダイレクタ分布と併せて模式的に示す断面図である。 本発明の実施の形態1にかかる液晶表示装置の概略構成を模式的に示す分解断面図である。 本発明の実施の形態1にかかる液晶セルにおける各電極の概略構成の一例を示す平面図であり、(a)はアレイ基板における上層電極の概略構成の一例を示す平面図であり、(b)は、アレイ基板における下層電極の概略構成の一例を示す平面図であり、(c)は、対向基板側電極の概略構成の一例を示す平面図である。 図1に示す液晶セルにおける各電極への電圧印加条件の一例を示す図である。 実施例1におけるシミュレーションで、図4において画素電極に室温(25℃)で5Vの電圧を印加したときの透過率、液晶分子のダイレクタ分布、等電位曲線を示す図である。 本発明の実施の形態1にかかる液晶セルにおける各電極の概略構成の他の例を示す平面図であり、(a)はアレイ基板における上層電極の概略構成の他の例を示す平面図であり、(b)は、アレイ基板における下層電極の概略構成の他の例を示す平面図であり、(c)は、対向基板側電極の概略構成の他の例を示す平面図である。 本発明の実施の形態2にかかる液晶パネルにおける液晶セルの概略構成を、斜め電界印加時における液晶分子のダイレクタ分布と併せて模式的に示す断面図である。 本発明の実施の形態2にかかる液晶セルにおける各電極の概略構成の一例を示す平面図であり、(a)はアレイ基板における上層電極の概略構成の一例を示す平面図であり、(b)は、アレイ基板における下層電極の概略構成の一例を示す平面図であり、(c)は、対向基板側電極の概略構成の一例を示す平面図である。 (a)は、図7に示す液晶セルにおける各電極への電圧印加条件を示す図であり、(b)は、実施例6におけるシミュレーションで、(a)において画素電極に室温(25℃)で5Vの電圧を印加したときの透過率、液晶分子のダイレクタ分布、等電位曲線を示す図である。 本発明の実施の形態2にかかる液晶セルにおける各電極の概略構成の他の例を示す平面図であり、(a)はアレイ基板における上層電極の概略構成の他の例を示す平面図であり、(b)は、アレイ基板における下層電極の概略構成の他の例を示す平面図であり、(c)は、対向基板側電極の概略構成の他の例を示す平面図である。 本発明の実施の形態3にかかる液晶パネルにおける液晶セルの概略構成を、斜め電界印加時における液晶分子のダイレクタ分布と併せて模式的に示す断面図である。 本発明の実施の形態3にかかる液晶セルにおける各電極の概略構成の一例を示す平面図であり、(a)はアレイ基板における上層電極の概略構成の一例を示す平面図であり、(b)は、アレイ基板における下層電極の概略構成を示す平面図であり、(c)は、対向基板側電極の概略構成の一例を示す平面図である。 (a)は、図11に示す液晶セルにおける各電極への電圧印加条件を示す図であり、(b)は、実施例8におけるシミュレーションで、(a)において画素電極に室温(25℃)で5Vの電圧を印加したときの透過率、液晶分子のダイレクタ分布、等電位曲線を示す図である。 本発明の実施の形態3にかかる液晶セルにおける各電極の概略構成の他の例を示す平面図であり、(a)はアレイ基板における上層電極の概略構成の他の例を示す平面図であり、(b)は、アレイ基板における下層電極の概略構成を示す平面図であり、(c)は、対向基板側電極の概略構成の他の例を示す平面図である。 本発明の実施の形態4にかかる液晶パネルにおける液晶セルの概略構成を、斜め電界印加時における液晶分子のダイレクタ分布と併せて模式的に示す断面図である。 本発明の実施の形態4にかかる液晶セルにおける各電極の概略構成の一例を示す平面図であり、(a)はアレイ基板における上層電極の概略構成の一例を示す平面図であり、(b)は、アレイ基板における下層電極の概略構成の一例を示す平面図である。 (a)は、図15に示す液晶セルにおける各電極への電圧印加条件を示す図であり、(b)は、実施例11におけるシミュレーションで、(a)において画素電極に室温(25℃)で5Vの電圧を印加したときの透過率、液晶分子のダイレクタ分布、等電位曲線を示す図である。 本発明の実施の形態4にかかる液晶セルにおける各電極の概略構成の他の例を示す平面図であり、(a)はアレイ基板における上層電極の概略構成の他の例を示す平面図であり、(b)は、アレイ基板における下層電極の概略構成の他の例を示す平面図である。 開口率と電極間隔S1との関係を示すグラフである。 実質透過率と電極間隔S1との関係を示すグラフである。 垂直配向型の液晶セルに横電界を印加する表示方式を用いた典型的な液晶パネルにおける液晶セル内の液晶分子のダイレクタ分布を模式的に示す図である。 特許文献1に記載の液晶パネルの概略構成を示す断面図である。 (a)は、図21に示す液晶セルにおける各電極への電圧印加条件を示す図であり、(b)は、上記シミュレーションで、(a)において画素電極に室温(25℃)で5Vの電圧を印加したときの透過率、液晶分子のダイレクタ分布、等電位曲線を示す図である。 比較例2のシミュレーションで、図4において画素電極に室温(25℃)で5Vの電圧を印加したときの透過率、液晶分子のダイレクタ分布、等電位曲線を示す図である。 図22に示す構成を有するモデルを用いたシミュレーションで、線形電極および上部電極にそれぞれ室温(25℃)で5Vの電圧を印加したときの透過率、液晶分子のダイレクタ分布、等電位曲線を示す図である。
 以下に、本発明について詳細に説明する。
 〔実施の形態1〕
 本発明の実施の一形態について図1乃至図6の(a)~(c)、および図21~図24に基づいて説明すれば以下の通りである。
 <液晶表示装置の概略構成>
 まず、本実施の形態にかかる液晶表示装置の全体の概略構成について説明する。
 図2は、本実施の形態にかかる液晶表示装置の概略構成を模式的に示す分解断面図である。
 本実施の形態にかかる液晶表示装置1は、図2に示すように、液晶パネル2(液晶表示パネル、液晶表示素子)、液晶パネル2を駆動する駆動回路3、液晶パネル2の背面側に設けられ、液晶パネル2の背面側から液晶パネル2に光を照射するバックライト4(照明装置)を備えている。
 なお、駆動回路3およびバックライト4の構成は従来と同じである。したがって、これらの構成については、その説明を省略する。
 <液晶パネル2の概略構成>
 次に、上記液晶パネル2の全体の概略構成について説明する。
 図2に示すように、液晶パネル2は、液晶セル5と、偏光板6・7と、必要に応じて位相差板8・9と、を備えている。液晶パネル2は、液晶セル5に、偏光板6・7および必要に応じて位相差板8・9を貼り合わせることにより形成される。
 偏光板6・7は、基板10・20における液晶層30との対向面とは反対側の面にそれぞれ設けられる。また、位相差板8・9は、図2に示すように、例えば、基板10・20と偏光板6・7との間に、必要に応じて設けられる。なお、位相差板8・9は、液晶パネル2の一方の面にのみ設けられていてもよい。また、正面透過光のみを利用する表示装置の場合には、位相差板8・9は必ずしも必須ではない。
 偏光板6・7は、例えば、偏光板6・7の透過軸が互いに直交し、かつ、液晶セル5に設けられたスリットを有する電極における、スリットを介して隣り合う各電極部(枝電極)がそれぞれ延伸される方向と偏光板6・7の透過軸とが45゜の角度をなすように配置される。
 液晶パネル2は、横電界駆動方式として斜め横電界(以下、単に「斜め電界」と記す)を用いて駆動を行う垂直配向型の液晶パネルである。液晶パネル2は、電界無印加時に、液晶セル5において液晶分子が基板面に垂直に配向するとともに、互いに対向して設けられた対の基板のうち少なくとも一方の基板に対の電極として下層電極および上層電極を備え、これら対の電極間に斜め横方向に発生する斜め電界によって駆動される。なお、上記「垂直」には、「略垂直」も含まれる。
 以下に、液晶セル5の概略構成について説明する。
 <液晶セル5の概略構成>
 図1は、本実施の形態にかかる液晶パネル2における液晶セル5の要部の概略構成を、横電界印加時における液晶分子のダイレクタ分布と併せて模式的に示す断面図である。
 図1に示すように、液晶セル5は、アレイ基板(電極基板)および対向基板として、互いに対向して配置された一対の基板10・20を備えている。これら基板10・20間には、表示用の媒質層として液晶層30が挟持されている。
 これら基板10・20のうち少なくとも一方の基板、つまり、少なくとも観察者側の基板は、絶縁基板(液晶層保持部材、ベース基板)として、ガラス基板等の透光性基板、好適には透明基板、を備えている。以下、本実施の形態では、絶縁基板として、それぞれガラス基板を用いた場合を例に挙げて説明するが、本実施の形態はこれに限定されるものではない。
 また、以下の説明では、表示面側(観察者側)の基板を上側の基板とし、他方の基板を下側の基板として説明するとともに、下側の基板10としてアレイ基板を使用し、上側の基板20として対向基板を使用した場合を例に挙げて説明する。
 しかしながら、本実施の形態はこれに限定されるものではなく、対向基板を下側の基板とし、アレイ基板を上側の基板としても構わない。
 次に、液晶セル5における各構成について説明する。
 <基板10>
 基板10(第1の基板)は上記したようにアレイ基板である。上記基板10としては、例えば、図示しないスイッチング素子としてTFT(薄膜トランジスタ)が設けられたTFT基板等を用いることができる。
 基板10は、図1に示すように、例えば、ガラス基板11上に、共通電極12(下層電極、第1の共通電極(対向電極)、第1の電極)、絶縁層13(アレイ側絶縁層)、画素電極14(上層電極、第2の電極)、配向膜15が、この順に積層された構成を有している。
 対の電極である共通電極12および画素電極14は、それぞれ、スリット(スペース部)を有する電極であり、パターン化された電極部(電極ライン)とスペース部(電極非形成部)とを有している。なお、共通電極12および画素電極14の構造(形状)については、後で詳述する。
 絶縁層13は、共通電極12を覆うように、基板10における表示領域全体にベタ状に形成されている。
 配向膜15は、電界無印加時に液晶層30の液晶分子31を基板面に垂直に配向させるいわゆる垂直配向膜である。配向膜15は、画素電極14を覆うように、絶縁層13上にベタ状に形成されている。
 <基板20>
 基板20(第2の基板)は対向基板である。基板20は、図1に示すように、例えば、ガラス基板21上に、共通電極22(対向基板側電極、第2の共通電極(対向電極)、第3の電極)、配向膜23が設けられた構成を有している。
 共通電極22は、共通電極12および画素電極14と同様に、スリット(スペース部)を有する電極であり、パターン化された電極部(電極ライン)とスペース部(電極非形成部)とを有している。
 なお、画素電極14および共通電極12・22の電極構成については後で詳述する。
 配向膜23は、配向膜15同様、いわゆる垂直配向膜である。配向膜15が、基板10における表示領域全体にベタ状に形成されているのと同様に、配向膜23は、基板20における表示領域全体にベタ状に形成されている。
 なお、図1では、共通電極22がガラス基板21に接触して設けられている場合を例に挙げて図示しているが、本実施の形態はこれに限定されるものではない。
 例えば、ガラス基板21と共通電極22との間に、必要に応じて、図示しない、R(赤)、G(緑)、B(青)等の各色のカラーフィルタおよびブラックマトリクス等が設けられていてもよい。すなわち、上記基板20は、図示しないカラーフィルタが設けられたカラーフィルタ基板であってもよい。
 また、基板10・20が、図示しないアンダーコート膜やオーバーコート膜等を備えていてもよいことは言うまでも無い。
 <液晶層30>
 上記液晶パネル2における液晶セル5は、例えば、上記基板10と基板20とを、スペーサ(図示せず)を介してシール剤(図示せず)によって貼り合わせ、両基板10・20間の空隙に、液晶材料を含む媒質を封入することにより形成される。
 上記液晶材料は、p(ポジ)型の液晶材料であってもよく、n(ネガ)型の液晶材料であってもよい。
 なお、本実施形態では、主に、図1並びに後述する実験例に示すように、上記液晶材料として、p型の液晶材料を用いた場合を例に挙げて説明する。しかしながら、本実施の形態はこれに限定されるものではなく、上記液晶材料としてn型の液晶材料を用いた場合であっても、p型の液晶材料を用いた場合と同様の原理により、同様の結果を得ることができる。
 本実施形態において、p型液晶材料としては、例えばp型ネマチック液晶材料を用いることができる。しかしながら、本実施の形態はこれに限定されるものではない。
 上記液晶パネル2および液晶表示装置1は、電界の印加により、液晶セル5内に電界強度の分布を形成し、液晶材料のベンド配列を実現するものである。本実施の形態では、屈折率異方性Δnの大きな液晶材料や誘電率異方性Δεの大きな液晶材料が好適に使用される。このようなp型液晶材料としては、CN(シアノ)系液晶材料(カイラルネマチック系液晶材料)の他、F(フッ素)系液晶材料が挙げられる。
 <基板10・20における各層の材料並びにその形成方法>
 次に、上記基板10・20における各層の材料並びにその形成方法の一例について説明する。但し、以下に示す各構成要素の寸法、材質、形状、並びに、その相対配置等はあくまで一実施形態に過ぎず、これらによって本発明の範囲が限定解釈されるべきではない。
 共通電極12・22および画素電極14には、例えば、ITO(Indium Tin Oxide:インジウム錫酸化物)、IZO(Indium Zinc Oxide:インジウム亜鉛酸化物)等の透明電極材料が好適に用いられる。但し、上記したように基板10を背面側の基板として用いる場合、共通電極12および画素電極14は、必ずしも透明電極である必要はなく、アルミニウム等の金属電極からなっていてもよい。同様に、基板20を背面側の基板として用いる場合、共通電極22は、必ずしも透明電極である必要はなく、アルミニウム等の金属電極からなっていてもよい。また、これら電極は、互いに同じ電極材料にて形成されていてもよく、それぞれ異なる電極材料にて形成されていてもよい。
 これら電極を形成(積層)する方法は特に限定されるものではなく、スパッタリング法、真空蒸着法、プラズマCVD法等、従来公知の各種方法を適用することができる。また、画素電極14および共通電極12をパターン形成する方法も特に限定されるものではなく、フォトリソグラフィ等の公知のパターニング方法を用いることができる。
 これら電極の膜厚は特に限定されるものではないが、好適には100Å~2000Åの範囲内において設定される。
 また、絶縁層13としては、例えば、後述する窒化シリコン(SiN)(比誘電率ε=6.9)等の無機絶縁材料からなる無機絶縁膜を用いることができる。しかしながら、本実施の形態はこれに限定されるものではなく、アクリル系樹脂(例えば比誘電率ε=3.7)等の有機絶縁材料からなる有機絶縁膜を用いても構わない。
 絶縁層13の膜厚は、絶縁層13の種類(例えば無機絶縁膜であるか有機絶縁膜であるか等)にもよるが、例えば、1000Å~30000Åの範囲内において設定される。
 絶縁層13の膜厚は、絶縁層13の種類に応じて適宜設定すればよく、特に限定されるものではないが、薄い方が、液晶分子31がよく動くとともに、液晶パネル2の薄型化を図ることができることから好ましい。但し、格子欠陥による絶縁性不良および膜厚ムラの防止の観点からは、絶縁層13の膜厚は、1000Å以上であることが好ましい。
 絶縁層13を形成(積層)する方法は、特に限定されるものではなく、スパッタリング法、真空蒸着法、プラズマCVD、塗布等、用いる絶縁材料等に応じて、従来公知の各種方法を適用することができる。
 また、配向膜15は、例えば、絶縁層13上に、画素電極14を覆うように、垂直配向規制力を有する配向膜材料を塗布することで形成することができる。また、配向膜23は、例えば、共通電極22上に、該共通電極22を覆うように、垂直配向規制力を有する配向膜材料を塗布することで形成することができる。
 <画素電極14および共通電極12・22の電極構成>
 前記したように、共通電極12・22および画素電極14は、それぞれ、スリット(スペース部)を有するスリット電極であり、パターン化された電極部(電極ライン)とスペース部(電極非形成部)とを有している。
 図3の(a)~(c)は、順に、図1に示す液晶セル5における、上層電極である画素電極14、下層電極である共通電極12、対向基板側電極である共通電極22の概略構成を示す平面図である。
 以下、本実施の形態では、図3の(a)~(c)に示すように、共通電極12・22および画素電極14として、それぞれ、櫛歯状構造を有する、いわゆる櫛歯電極を用いた場合を例に挙げて説明するものとするが、本実施の形態はこれに限定されるものではない。
 図1および図3の(a)に示すように、画素電極14は、パターン化された電極部14aとスペース部14b(スリット)とを有する櫛歯電極であり、より具体的には、幹電極14a(幹ライン)と、櫛歯の歯にあたる、幹電極14aから延びる枝電極14a(分岐ライン)とで構成されており、枝電極14aが、スペース部14bを挟んで一定の間隔で設けられた構成を有している。
 なお、図1では、画素電極14の電極部14aの断面として、枝電極14aの断面が図示されている。
 また、図1および図3の(b)に示すように、共通電極12は、パターン化された電極部12aとスペース部12bとを有する櫛歯電極であり、より具体的には、幹電極12a(幹ライン)と、櫛歯の歯にあたる、幹電極12aから延びる枝電極12a(分岐ライン)とで構成されている。なお、図1では、共通電極12の電極部12aの断面として、枝電極12aの断面が図示されている。
 図1および図3の(c)に示すように、共通電極22は、パターン化された電極部22aとスペース部22bとを有する櫛歯電極であり、より具体的には、幹電極22a(幹ライン)と、櫛歯の歯にあたる、幹電極22aから延びる枝電極22a(分岐ライン)とで構成されている。なお、図1では、共通電極22の電極部22aの断面として、枝電極22aの断面が図示されている。
 本実施の形態では、画素電極14の電極部14a(特に枝電極14a)は、共通電極12のスペース部12bの中央の真上(開口部中央の真上)に配置されている。言い換えれば、共通電極12の電極部12a(特に枝電極12a)は、画素電極14のスペース部14bの中央の真下(開口部中央の真下)に配置されている。
 画素電極14の電極部14aと共通電極12の電極部12a(特に枝電極12a)とは、互いに重畳しない位置並びに大きさに形成されている。
 また、共通電極22の電極部22a(特に枝電極22a)は、画素電極14のスペース部14bの中央の真上(開口部中央の真上)に配置されており、画素電極14の電極部14a(特に枝電極14a)とは重畳しない位置並びに大きさに形成されている。
 すなわち、本実施の形態では、共通電極22の電極部22a(特に枝電極22a)は、基板10に設けられた共通電極12の電極部12a(特に枝電極12a)に重畳して設けられている。
 なお、1つの画素内に設けられる共通電極12・22および画素電極14の歯(つまり、電極部12a・22a・14aを構成する各枝電極12a・22a・14a)の数は特に限定されず、画素ピッチと、共通電極12・22および画素電極14における各L/Sとの関係等において決定される。
 ここで、Lは、ライン電極の電極幅であり、各枝電極12a・22a・14aの電極幅を示す。
 また、Sは、電極間隔であり、隣り合う枝電極12a・12a間の電極間隔、または隣り合う枝電極22a・22a間の電極間隔、または隣り合う枝電極14a・14a間の電極間隔を示す。すなわち、Sは、スペース部12b・22b・14bの幅を示す。
 例えば、画素ピッチがPμmであり、画素電極14の電極幅L(すなわち、電極ラインとなる各枝電極14aの幅)がLμm、電極間隔S(すなわち、スペースとなる各枝電極14a・14a間の距離)がSμmであり、枝電極14aの本数をXとすると、L×X+S×(X+1)=Pを満足するように、各パラメータが決定される。
 なお、以下、説明の便宜上、図1および図3の(a)~(c)に示すように、枝電極14aの電極幅LをL1とし、隣り合う枝電極14a・14a間の電極間隔SをS1とし、枝電極12aの電極幅LをL2とし、隣り合う枝電極12a・12a間の電極間隔SをS2とし、枝電極22aの電極幅LをL3とし、隣り合う枝電極22a・22a間の電極間隔SをS3とする。
 本実施の形態では、画素電極14における隣り合う枝電極14a・14a間の電極間隔S1を100%とすると、上下の各基板に形成された共通電極12・22における枝電極12a・22aの電極幅L2・L3が、それぞれ、上記電極間隔S1の85%以下(つまり、L2<0.85×S1、L3<0.85×S1)となるように設定されている。
 例えば、電極間隔S1が10μmであるとすると、電極幅L2・L3は、8.5μm以下に設定される。
 なお、本実施の形態において、S2、S3は、それぞれS2=(S1-L2)+L1、S3=(S1-L3)+L1で示される。
 電極幅L1・L2・L3および電極間隔S1・S2・S3は、上記関係式を満足するものであれば、特に限定されるものではない。
 しかしながら、上記液晶パネル2において、表示原理上、画素電極14の上部は液晶分子31の傾きが小さく、光が透過しない。このため、電極幅L1は、小さければ小さいほど好ましい。
 現状では、作製できる最も小さな電極幅は技術的に2μmとされている。このため、電極幅L1は、誤差を考慮して2μm~5μmの範囲内であることが好ましく、2μm~3μmの範囲内であることがより好ましく、2μm~2.6μmの範囲内であることが特に好ましい。但し、将来的には、電極幅L1の下限は、この限りではない。
 一方、電極間隔S1は、特に限定されるものではないが、開口率の観点から、4μm以上、12μm以下であることが好ましい。なお、電極間隔S1の好適な範囲については、後述する実施の形態で詳しく検証する。但し、後述する実施の形態に示すように、電極間隔S1は、例えば12μmを超えても十分な実質透過率を得ることができる。したがって、上記電極間隔S1は、上記範囲内とすることが好ましいが、上記範囲内にのみ限定されるものではない。
 また、上記したように電極幅L2・L3は電極間隔S1の85%以下(但し、0%よりも大きいことは言うまでもない)に設定される。
 このとき、図1に示すように枝電極14aの数と枝電極12aの数と枝電極22aの数とがそれぞれ等しい場合、画素ピッチをPμm、枝電極14aの本数(すなわち、枝電極12a、枝電極22aの各本数)をX、電極幅L2・L3および電極間隔S2・S3を、それぞれL2μm、L3μm、S2μm、S3μmとすると、電極間隔S2・S3は、それぞれ、L2×X+S2×(X+1)=P、L3×X+S3×(X+1)=Pを満足するように決定される。
 但し、電極幅L2と電極幅L3とは、上記条件を満足していれば、必ずしも同じである必要はない。また、電極間隔S2と電極間隔S3とは、上記条件を満足していれば、必ずしも同じである必要はない。
 さらに言えば、枝電極14aの本数と枝電極12aの本数と枝電極22aの本数とは、必ずしも同じである必要はなく、それぞれ独立して設定が可能である。
 なお、各枝電極12a・22a・14aは、それぞれ、直線状に形成されていてもよく、V字状あるいはジグザグ状に形成されていてもよい。
 <液晶パネル2の表示方式>
 次に、上記液晶パネル2の表示方式について説明する。
 本実施の形態にかかる液晶パネル2は、横電界(斜め電界)を用いて駆動を行う垂直配向型の液晶パネルである。
 液晶パネル2は、前記したように、基板10・20の表面に配向膜15・22として垂直配向膜が設けられた構成を有しており、電圧無印加時に、液晶分子31の長軸方向が基板面に垂直なホメオトロピック配向を示している。
 このような液晶パネル2では、液晶分子31が、電源OFF時は垂直配向し、電源ON時には、自己ダイレクタが、画素電極14における電極ラインである枝電極14aの中央部分を中心に相殺補償するように配列する。
 このため、液晶パネル2は、横電界(斜め電界)駆動方式を用いた垂直配向型の液晶パネル特有の効果であるベンド配向に基づく高速応答性、自己ダイレクタの相殺補償型配列による広視野角、垂直配向に起因する高コントラストを実現することができる。
 また、上記液晶パネル2は、同一の基板に設けられた対の電極である画素電極14と共通電極12とが絶縁膜13を挟んで設けられており、両電極間の電極間隔が小さいため、低電圧で強い電界が発生し、画素電極14付近の液晶分子31が応答するために、低電圧化が可能である。
 しかしながら、前記したように、同一の基板に設けられた対の電極間のみで電界を発生させた場合、電界の弱い対向基板近傍や櫛歯電極間の中心部分における液晶分子が応答し難く、高い透過率が得られ難い。
 そこで、本実施の形態では、図1に示すように、対向基板である基板20上における、画素電極14の開口部である枝電極14a間のスペース部14bの中央直上に相当する位置に、共通電極22を設けている。
 本実施の形態において、画素電極14は、図示しないドレイン電極で、信号線およびTFT等のスイッチング素子に接続されており、映像信号に応じた信号が印加される。また、共通電極12と共通電極22とは同電位に設定されている。
 図4は、液晶セル5における画素電極14および共通電極12・22への電圧印加条件の一例を示す図である。
 本実施の形態では、図4に示すように、例えば、共通電極12・22を何れも0Vに設定し、画素電極14に印加する電圧を変化させている。なお、後述する実施例に示すように、画素電極14における各枝電極14aには、何れも同じ電圧が印加される。
 液晶パネル2において、表示は、画素電極14と共通電極12・22との間に電位差が与えられることで行われる。
 この電位差により、図1に示すように、画素電極14と共通電極12・22との間に斜め電界が発生し、画素電極14と共通電極12・22との間の電気力線が半円状に湾曲する。液晶分子31は、液晶セル5内の電界強度分布、および界面からの束縛力に応じて配列する。
 このように、上記液晶パネル2においては、画素電極14と共通電極12・22との間に発生する斜め電界により液晶分子31を回転させることで、液晶パネル2を透過する光量を制御して表示が行われる。
 このように、本実施の形態では、基板20上における、画素電極14の開口部である枝電極14a間のスペース部14bの中央直上に相当する位置に、共通電極22を設けることによって、共通電極22と画素電極14との間に斜め電界を発生させて電気場を大きくし、基板20側の液晶分子31が応答し易い構造とした。
 また、本実施の形態では、このとき、基板20上に配置する共通電極22は、櫛歯電極である画素電極14とは重畳させず、上記したように枝電極14a間のスペース部14bの中央直上にのみ配置した。
 また、本願発明者らは、液晶パネル100・200のように下層電極が全面に形成されていると、櫛歯電極近傍で発生するフリンジ電界が斜め電界の発生を妨げ、液晶分子の応答性を悪化させることを見出した。
 このため、本実施の形態では、下層電極である共通電極12をベタ状ではなく、スペース部12b(スリット)を有する構成とし、共通電極12における枝電極12aと画素電極14における枝電極14aとの間で発生する斜め電界により液晶分子31の応答性を向上させることで、高透過率化を実現した。
 このとき、特に、本実施の形態では、下層電極である共通電極12を画素電極14における枝電極14aの間の中央真下にのみ設けた。
 このように、本実施の形態では、電極構造を工夫して液晶分子31がより回転できるような電界分布を作り出すことで、高透過率化を実現した。
 また、本願発明者らは、上記したように液晶パネル2に三層の電極を設ける場合、各共通電極12・22における各枝電極12a・22aの幅が狭いほど上下の基板10・20間における、液晶分子31が応答し難い領域が小さくなり、この結果、各枝電極12a・22aの幅が狭くなるに従って高い透過率を得ることができることを見出した。
 そして、特に、前記したように、画素電極14における隣り合う枝電極14a・14a間の電極間隔S1を100%とすると、上下の各基板に形成された共通電極12・22における枝電極12a・22aの電極幅L2・L3が、それぞれ、上記電極間隔S1の85%以下であるとき高透過率化を実現できることが判った。
 <実施例および比較例>
 以下、実施例および比較例を用いて上記液晶パネル2の製造方法についてより具体的に説明するとともに、上記効果について、実験並びにシミュレーションにより立証を行う。
 〔実施例1〕
 まず、図1に示すように、ガラス基板11上に、スパッタリング法により、下層電極として、ITOからなる櫛歯状の共通電極12を、厚み=1400Å、電極幅L2=2.5μm、電極間隔S2=10μmにて形成した。
 次に、スパッタリング法により、上記共通電極12の表面全面を覆うように、比誘電率ε=6.9の窒化シリコン(SiN)膜を成膜した。これにより、上記共通電極12上に、上記SiNからなる、膜厚3000Åの絶縁層13(誘電体層)を形成した。
 続いて、上記絶縁層13上に、上層電極として、ITOからなる櫛歯状の画素電極14を、厚み=1400Å、電極幅L1=2.5μm、電極間隔S=10μmにて形成した。このとき、画素電極14の各枝電極14aが、共通電極12の各枝電極12a間の中央真上に位置するように上記画素電極14を形成した。
 次いで、上記絶縁層13上に、上記画素電極14を覆うように、JSR社製の配向膜塗料「JALS-204」(商品名、固形分5wt.%、γ-ブチロラクトン溶液)を、スピンコート法にて塗布した。その後、200℃にて2時間焼成することにより、上記絶縁層13上に、垂直配向膜である配向膜15が設けられた基板10を形成した。
 一方、ガラス基板11と同様のガラス基板21上に、スパッタリング法により、対向基板側電極として、ITOからなる櫛歯状の共通電極22を、厚み=1400Å、電極幅L2=2.5μm、電極間隔S2=10μmにて形成した。
 次いで、上記ガラス基板21上に、上記共通電極22を覆うように、配向膜15と同じ材料、同じプロセスにて、配向膜23を成膜することにより、基板20を形成した。配向膜15・22の乾燥膜厚は何れも1000Åであった。
 その後、上記基板10・20のうち一方の基板に、スペーサとして、直径3.75μmの樹脂ビーズ「ミクロパールSP20375」(商品名、積水化学工業株式会社製)を分散させた。一方、上記一方の基板に対峙する他方の基板上に、シール剤として、シール樹脂「ストラクトボンドXN-21S」(商品名、三井東圧化学工業株式会社製)を印刷した。
 次に、上記基板10・20を貼り合わせ、135℃で1時間焼成することにより、液晶セル5を作製した。
 その後、上記液晶セル5に、液晶材料として、メルク株式会社製のポジ型液晶材料(Δε=22、Δn=0.15)を真空注入法にて封入することにより、液晶層30を形成した。
 続いて、上記液晶セル5の表裏面に、偏光板6・7を、偏光板6・7の透過軸が直交し、かつ各枝電極12a・14a・22aが延伸される方向と偏光板6・7の透過軸とが45゜の角度をなすように貼合した。これにより、図1に示す構成を有する液晶パネル2(液晶表示素子)を作製した。
 このようにして作製した液晶パネル2を、図2に示すようにバックライト4上に載置して駆動することにより、該液晶パネル2の正面の電圧-透過率変化(以下、「実測T」と記す)を、Topcon社製の「BM5A」で測定した。なお、実測Tにおける透過率は、液晶パネル2の輝度/バックライト4の輝度により求めた。
 一方、液晶パネル2として、図1に示すFFS構造を有するモデルを、上記実測と同じ条件で駆動したときの電圧-透過率変化(以下、「SimT」と記す)を、シンテック社製の「LCD-MASTER」を用いてシミュレーションにより求めた。
 上記SimT、実測T、画素電極14の電極幅L1/電極間隔S1、共通電極12の電極幅L2/電極間隔S2、共通電極22の電極幅L3/電極間隔S3、画素電極14の電極間隔S1に対する共通電極12の電極幅L2の割合(百分率、以下「割合X2」と記す)、画素電極14の電極間隔S1に対する共通電極22の電極幅L3の割合(百分率、以下「割合X3」と記す)を表1に併せて示す。
 また、図5に、上記シミュレーションで、図4において画素電極14に室温(25℃)で5Vの電圧を印加したときの透過率、液晶分子31のダイレクタ分布、等電位曲線を示す。なお、本実施例では、図4に示すように、共通電極12・22は、0Vに設定している。
 〔比較例1〕
 まず、図21に示すように、ガラス基板11と同様のガラス基板111上に、共通電極112として、ITOからなるベタ状の電極を、スパッタ法にて、上記ガラス基板111の片面全面に渡って形成した。
 次に、スパッタリング法により、上記共通電極112の表面全面を覆うように、実施例1と同じ比誘電率ε=6.9の窒化シリコン(SiN)膜を成膜した。これにより、上記共通電極112上に、上記SiNからなる、膜厚3000Åの絶縁層113(誘電体層)を形成した。
 続いて、上記絶縁層113上に、上層電極として、ITOからなる、電極幅L=2.5μm、電極間隔S=8.0μmの櫛歯状の画素電極114を作製した。なお、上記画素電極114および共通電極112の厚みは何れも1400Åとした。
 次いで、上記絶縁層113上に、上記画素電極114を覆うように、実施例1と同じJSR社製の配向膜塗料「JALS-204」(商品名、固形分5wt.%、γ-ブチロラクトン溶液)を、スピンコート法にて塗布した。その後、実施例1と同じく200℃にて2時間焼成することにより、上記絶縁層113上に、垂直配向膜である配向膜115が設けられた基板110を形成した。
 一方、ガラス基板21と同様のガラス基板121上に、配向膜15と同じ材料、同じプロセスにて、配向膜122のみを成膜することにより、基板120を形成した。このようにして得られた配向膜115・122の乾燥膜厚は何れも1000Åであった。
 その後、上記基板110・120のうち一方の基板に、スペーサとして、実施例1と同じく直径3.75μmの樹脂ビーズ「ミクロパールSP20375」(商品名、積水化学工業株式会社製)を分散させた。一方、上記一方の基板に対峙する他方の基板上に、シール剤として、実施例1と同じくシール樹脂「ストラクトボンドXN-21S」(商品名、三井東圧化学工業株式会社製)を印刷した。
 次に、上記基板10・20を貼り合わせ、実施例1と同じく135℃で1時間焼成することにより、比較用の液晶セル105を作製した。
 その後、上記液晶セル105に、液晶材料として、実施例1と同じメルク株式会社製のポジ型液晶材料(Δε=22、Δn=0.15)を真空注入法にて封入することにより、液晶層130を形成した。
 続いて、上記液晶セル105の表裏面に、実施例1と同様の偏光板(図示せず)を、該偏光板の透過軸が直交し、かつ枝電極114aが延伸される方向と偏光板の透過軸とが45゜の角度をなすように貼合した。これにより、図21に示す構成を有する比較用の液晶パネル100(液晶表示素子)を作製した。
 このようにして作製した液晶パネル100の実測Tを、実施例1と同様にして測定した。
 一方、液晶パネル100として、図21に示すFFS構造を有するモデルを、上記実測と同じ条件で駆動したときのSimTを、実施例1と同様に、シンテック社製の「LCD-MASTER」を用いてシミュレーションにより求めた。
 上記SimTおよび実測Tを表1に併せて示す。
 また、図23の(a)に、上記シミュレーションにおける各電極への電圧印加条件を示すとともに、図23の(b)に、上記シミュレーションで、図23の(a)において画素電極114に室温(25℃)で5Vの電圧を印加したときの透過率、液晶分子31のダイレクタ分布、等電位曲線を示す。なお、本比較例では、図23の(a)に示すように、共通電極112は、0Vに設定している。
 実施例1および比較例1で得られたSimTは、実測Tに近い値が得られた。したがって、SimTと実測Tとの電圧-透過率(V-T)曲線との相関性はほぼ同じ結果が得られることが判った。そこで、以下の実施例および比較例においては、実施例1と同様にシンテック社製の「LCD-MASTER」を用いて、シミュレーションのみを行った。
 〔比較例2、実施例2~4〕
 実施例1において、共通電極12の電極幅L2および共通電極22の電極幅L3を、画素電極14の電極間隔S1と同じ10μmを基準に、その90%(9.0μm、比較例2)、85%(8.5μm、実施例2)、50%(5μm、実施例3)、10%(1.0μm、実施例4)とした以外は、実施例1と同様の条件を用いて、上記したように共通電極12・22の電極幅L2・L3をそれぞれ変更したときの各液晶パネル2のSimTを求めた。なお、何れの場合も、図4に示すように、共通電極12・22は、0Vに設定した。
 上記SimT、画素電極14の電極幅L1/電極間隔S1、共通電極12の電極幅L2/電極間隔S2、共通電極22の電極幅L3/電極間隔S3、割合X2、割合X3を表1に併せて示す。
 また、図24に、比較例2のシミュレーションで、図4において画素電極14に室温(25℃)で5Vの電圧を印加したときの透過率、液晶分子31のダイレクタ分布、等電位曲線を示す。
Figure JPOXMLDOC01-appb-T000001
 実施例1~4および比較例2に示す結果から、図1に示すように液晶パネル2に三層の電極を設ける場合、各共通電極12・22における各枝電極12a・22aの幅が狭いほど上下の基板10・20間における、液晶分子31が応答し難い領域が小さくなり、各枝電極12a・22aの幅が狭くなるに従って高い透過率を得ることができることが確認できた。
 また、実施例1~4および比較例1、2に示す結果から、共通電極12・22の電極幅L2・L3が8.5μm以下であるとき、典型的なFFS構造を有する液晶パネル100と比べて最大透過率(5Vでの透過率)が高くなることが判った。
 以上の結果から、図1に示すように、対向基板である基板20に、スペース部22b(スリット)を有する共通電極22を、その枝電極22aが画素電極14の枝電極14aに重畳しないようにスペース部14bの真上に配置し、かつ、下層電極である共通電極12がスペース部12b(スリット)を有し、画素電極14の電極間隔S1を100%としたときに共通電極12・22の電極幅L2・L3をそれぞれ上記電極間隔S1の85%以下とすることで、高透過率化を実現できることが確認できた。
 <変形例>
 本実施の形態では、上記したように、主に、共通電極12・22および画素電極14としてそれぞれ櫛歯電極を用いた場合を例に挙げて説明した。
 しかしながら、これら共通電極12・22および画素電極14は、前記したように、それぞれ、スリット(スペース部)を有するスリット電極であり、パターン化された電極部(電極ライン)とスペース部(電極非形成部)とを有していればよい。
 そこで、以下の説明では、スリット(スペース部)を有する電極として、ベタ状の電極(面電極)の中央部に開口部(スリット)が設けられてなる電極を用いた場合を例に挙げて説明する。
 なお、以下の説明においては、画素電極14および共通電極12・22の電極構成における変更点について説明するものとし、特に言及しない構成については、同じ説明が適用されるものとする。また、説明の便宜上、本実施形態で既に説明した構成要素と同じ機能を有する構成要素については、同じ符号を付記し、その説明を省略する。
 <画素電極14および共通電極12・22の電極構成>
 図6の(a)~(c)は、順に、本変形例の液晶パネル2の液晶セル5における、上層電極である画素電極14、下層電極である共通電極12、対向基板側電極である共通電極22の概略構成を示す平面図である。なお、本変形例の液晶パネル2の断面図は、図1と同じである。
 図3の(a)~(c)に示すように、櫛歯電極からなる共通電極12・22および画素電極14が、ベタ状の電極に、その一端から対向する他端に向かって複数の切り込みを入れることでその一端にスペース部として複数の切欠き(スリット)を有する櫛歯形状を有しているのに対し、図6の(a)~(c)に示す共通電極12・22および画素電極14は、ベタ状の電極の中央部にスペース部として複数の開口部(開口窓、スリット)が設けられ、各端部が繋がった形状を有している。
 すなわち、本変形例における画素電極14は、図6の(a)に示すように、パターン化された電極部14aとして、枠状(額縁状)の幹電極14aと、該枠状の幹電極14aの一端から対向する他端に延びる縞状の枝電極14a(分岐ライン)とを有し、枝電極14aが、スペース部14bを挟んで一定の電極間隔で設けられた構成を有している。
 同様に、本変形例における共通電極12は、図6の(b)に示すように、パターン化された電極部12aとして、枠状(額縁状)の幹電極12aと、該枠状の幹電極12aの一端から対向する他端に延びる縞状の枝電極12a(分岐ライン)とを有し、枝電極12aが、スペース部12bを挟んで一定の電極間隔で設けられた構成を有している。
 また、本変形例における共通電極22は、図6の(c)に示すように、パターン化された電極部22aとして、枠状(額縁状)の幹電極22aと、該枠状の幹電極22aの一端から対向する他端に延びる縞状の枝電極22a(分岐ライン)とを有し、枝電極22aが、スペース部22bを挟んで一定の電極間隔で設けられた構成を有している。
 なお、本変形例でも、画素電極14における枝電極14aは、共通電極12のスペース部12bの中央の真上(開口部中央の真上)に配置されており、共通電極12における枝電極12aとは重畳しない位置並びに大きさ(電極幅)に形成されている。
 また、共通電極22における枝電極22aは、画素電極14のスペース部14bの中央の真上(開口部中央の真上)に配置されており、画素電極14における枝電極14aとは重畳しない位置並びに大きさ(電極幅)に形成されている。
 また、本比較例でも、共通電極22の電極部22a(特に枝電極22a)は、基板10に設けられた共通電極12の電極部12a(特に枝電極12a)に重畳して設けられている。
 なお、本変形例でも、各枝電極12a・22a・14aは、それぞれ、直線状に形成されていてもよく、V字状あるいはジグザグ状に形成されていてもよいことは言うまでもない。
 <実施例>
 以下、実施例を用いて本変形例に記載の液晶パネル2の製造方法について説明するとともに、以下の実施例における実験結果から、その効果について説明する。
 〔実施例5〕
 実施例1において、画素電極14および共通電極12・22の形状を、図3の(a)~(c)に示す櫛歯形状から、図6の(a)~(c)に示すスリット形状に変更した以外は、実施例1と同様の条件並びに方法を用いて、図1に示す構成を有する液晶パネル2を作製した。
 すなわち、本実施例では、実施例1と同じく、画素電極14および共通電極12・22の各電極幅L1~L3をそれぞれ2.5μmとし、画素電極14および共通電極12・22の各電極間隔S1~S3をそれぞれ10μmとした。すなわち、本実施例では、割合X2および割合X3をそれぞれ25%とした。
 その後、このようにして作製した液晶パネル2の実測Tを、実施例1と同様にして測定した。
 上記実測Tを、実施例1における実測Tと合わせて表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2に示す結果から、実施例1において、画素電極14および共通電極12・22の形状を、図3の(a)~(c)に示す櫛歯形状から、図6の(a)~(c)に示すスリット形状に変更したときの実測Tは、実施例1の実測Tと近い値が得られることが判った。
 このことから、画素電極14および共通電極12・22の形状を、図3の(a)~(c)に示す櫛歯形状から、図6の(a)~(c)に示すスリット形状に変更した場合でも、変更前と同様の結果が得られることが判った。
 したがって、本変形例においても、図1に示すように、対向基板である基板20に、スペース部22b(スリット)を有する共通電極22を、その枝電極22aが画素電極14の枝電極14aに重畳しないようにスペース部14bの真上に配置し、かつ、下層電極である共通電極12がスペース部12b(スリット)を有し、画素電極14の電極間隔S1を100%としたときに共通電極12・22の電極幅L2・L3をそれぞれ上記電極間隔S1の85%以下とすることで、高透過率化を実現することができる。
 また、本実施の形態では、上記したように、主に、画素電極14および共通電極12・22が、何れも櫛歯電極もしくは何れも開口窓を有するスリット電極である場合を例に挙げて説明した。しかしながら、実施例1~5に示す結果から、本実施の形態はこれに限定されるものではなく、画素電極14および共通電極12・22のうち何れか1つまたは2つが櫛歯電極であり、残りが開口窓を有するスリット電極であってもよいことは明らかである。
 〔実施の形態2〕
 本発明の実施の一形態について図7乃至図10の(a)・(b)に基づいて説明すれば以下の通りである。なお、本実施の形態では、前記実施の形態1との相違点について説明するものとし、特に言及しない構成については、実施の形態1と同じ説明が適用されるものとする。また、説明の便宜上、前記実施の形態1と同様の機能を有する構成要素には同一の番号を付し、その説明を省略する。
 <液晶セル5の概略構成>
 図7は、本実施の形態にかかる液晶パネル2の液晶セル5の要部の概略構成を、斜め電界印加時における液晶分子のダイレクタ分布と併せて模式的に示す断面図である。なお、本実施の形態でも、図7では、画素電極14の電極部14aおよび共通電極12・22の電極部12a・22aの断面として、それぞれ、枝電極14a・12a・22aの断面が図示されている。
 また、図8の(a)~(c)は、順に、図7に示す液晶セル5における、上層電極である画素電極14、下層電極である共通電極12、対向基板側電極である共通電極22の概略構成を示す平面図である。
 以下、本実施の形態では、図8の(a)~(c)に示すように、共通電極12・22および画素電極14として、それぞれ、櫛歯状構造を有する、いわゆる櫛歯電極を用いた場合を例に挙げて説明するものとするが、本実施の形態はこれに限定されるものではない。
 本実施の形態にかかる液晶パネル2は、以下の点を除けば、実施の形態1における図1に示す液晶パネル2と同じ構造を有している。
 すなわち、本実施の形態にかかる液晶パネル2は、図7に示すように、基板10における共通電極12が、画素電極14における隣り合う枝電極14a間の中央真下に加え、各枝電極14aの真下にも設けられている。
 このため、本実施の形態において、S2、S3は、それぞれS2=(S1-L2)/2、S3=(S1-L3)+L1で示される。
 また、本実施の形態でも、画素電極14における隣り合う枝電極14a・14a間の電極間隔S1を100%とすると、共通電極12・22における枝電極12a・22aの電極幅L2・L3は、それぞれ、上記電極間隔S1の85%以下に設定される。
 なお、本実施の形態でも、各枝電極12a・22a・14aは、それぞれ、直線状に形成されていてもよく、V字状あるいはジグザグ状に形成されていてもよい。
 <実施例および比較例>
 以下、実施例および比較例を用いて上記液晶パネル2の製造方法についてより具体的に説明するとともに、上記効果について、実験並びにシミュレーションにより立証を行う。
 〔比較例3、実施例6~7〕
 実施例1において、共通電極22の電極幅L3を、画素電極14の電極間隔S1と同じ10μmを基準に、その90%(9.0μm、比較例3)、25%(2.5μm、実施例6)、85%(8.5μm、実施例7)とした。また、図6に示すように、共通電極12の枝電極12aを、画素電極14における隣り合う枝電極14a間の中央真下(すなわち、共通電極22の枝電極22aの真下)および各枝電極14aの真下に設けた。
 上記した点を除けば、実施例1と同様の条件を用いて、上記したように共通電極12・22の電極幅L2・L3をそれぞれ変更したときの各液晶パネル2のSimTを求めた。
 上記SimT、画素電極14の電極幅L1/電極間隔S1、共通電極12の電極幅L2/電極間隔S2、共通電極22の電極幅L3/電極間隔S3、割合X2、割合X3を表3に併せて示す。
 また、図9の(a)に、上記液晶パネル2を用いたシミュレーションにおける各電極への電圧印加条件を示すとともに、図9の(b)に、実施例6におけるシミュレーションで、図9の(a)において画素電極14に室温(25℃)で5Vの電圧を印加したときの透過率、液晶分子31のダイレクタ分布、等電位曲線を示す。なお、上記実施例および比較例では、何れも、図9の(a)に示すように、共通電極12は、0Vに設定している。
Figure JPOXMLDOC01-appb-T000003
 表3に示す結果から、実施例1と割合X2・X3が同じ実施例6とは、ほぼ等しいSimTが得られることが判る。同様に、実施例2と割合X2・X3が同じ実施例7と、比較例2と割合X2・X3が同じ比較例3とは、それぞれほぼ等しいSimTが得られることが判る。
 このことから、画素電極14における各枝電極14aの真下に配置した枝電極12aは、液晶分子31の応答に殆ど影響を与えておらず、この場合にも、画素電極14における隣り合う枝電極14a間の電極間隔S1を100%としたときに、各共通電極12・22における枝電極12a・22aの電極幅L2・L3が、それぞれ、上記電極間隔S1の85%以下であるとき、高透過率化を実現できることが判る。
 また、図9の(b)に示す結果から、図7に示す液晶パネル2では、各枝電極14aと、絶縁層13を挟んで各枝電極14aの真下に配置された枝電極12aとの間には容量が形成されることが判る。この容量は、液晶パネル2の補助容量として利用することができる。
 <変形例>
 上述した説明では、主に、共通電極12・22および画素電極14としてそれぞれ櫛歯電極を用いた場合を例に挙げて説明した。
 しかしながら、実施の形態1同様、本実施の形態でも、これら共通電極12・22および画素電極14は、それぞれ、スリット(スペース部)を有する電極であり、パターン化された電極部(電極ライン)とスペース部(電極非形成部)とを有していればよい。
 <画素電極14および共通電極12・22の電極構成>
 図10の(a)~(c)は、順に、本変形例にかかる液晶パネル2の液晶セル5における、上層電極である画素電極14、下層電極である共通電極12、対向基板側電極である共通電極22の概略構成を示す平面図である。なお、本変形例の液晶パネル2の断面図は、図7と同じである。
 図10の(a)・(c)に示すように、本変形例における画素電極14および共通電極22は、図6の(a)・(c)に示す画素電極14および共通電極22と同じ構造を有している。また、図10の(b)に示すように、本変形例における共通電極12は、枝電極12aが、図6の(b)に示す共通電極12の枝電極12aよりも小さなピッチで形成されていることを除けば、図6の(b)に示す共通電極12と同じ構造を有している。
 すなわち、共通電極12における枝電極12aは、画素電極14における隣り合う枝電極14a間の中央真下および各枝電極14aの真下に配置されている。また、共通電極22における枝電極22aは、画素電極14のスペース部14bの中央の真上(開口部中央の真上)に配置されており、画素電極14における枝電極14aとは重畳しない位置並びに大きさ(電極幅)に形成されている。画素電極14の枝電極14aに重畳していない共通電極12の電極部12a(特に枝電極12a)は、基板20に設けられた共通電極22の電極部22a(特に枝電極22a)に重畳して設けられている。
 このように画素電極14および共通電極12・22として、図10の(a)~(c)に示すスリット電極を用いた場合、実施例1~7の結果から、画素電極14における各枝電極14aの真下に配置した枝電極12aは、液晶分子31の応答に殆ど影響を与えず、画素電極14における隣り合う枝電極14a間の電極間隔S1を100%としたときに、各共通電極12・22における枝電極12a・22aの電極幅L2・L3が、それぞれ、上記電極間隔S1の85%以下であるとき、高透過率化を実現できることは明白である。
 また、各枝電極14aと、絶縁層13を挟んで各枝電極14aの真下に配置された枝電極12aとの間には容量が形成され、この容量は、液晶パネル2の補助容量として利用することができることも明白である。
 さらに、実施例1~7の結果から、画素電極14および共通電極12・22のうち何れか1つまたは2つが櫛歯電極であり、残りが開口窓を有するスリット電極であってもよいことは明らかである。
 なお、本変形例でも、各枝電極12a・22a・14aは、それぞれ、直線状に形成されていてもよく、V字状あるいはジグザグ状に形成されていてもよいことは言うまでもない。
 〔実施の形態3〕
 本発明の実施の一形態について図11乃至図14の(a)~(c)に基づいて説明すれば以下の通りである。なお、本実施の形態では、前記実施の形態1との相違点について説明するものとし、特に言及しない構成については、実施の形態1と同じ説明が適用されるものとする。また、説明の便宜上、前記実施の形態1と同様の機能を有する構成要素には同一の番号を付し、その説明を省略する。
 <液晶セル5の概略構成>
 図11は、本実施の形態にかかる液晶パネル2の液晶セル5の要部の概略構成を、斜め電界印加時における液晶分子のダイレクタ分布と併せて模式的に示す断面図である。
 また、図12の(a)~(c)は、順に、図11に示す液晶セル5における、上層電極である画素電極14、下層電極である共通電極12、対向基板側電極である共通電極22の概略構成を示す平面図である。
 本実施の形態にかかる液晶パネル2は、図11および図12の(b)に示すように、実施の形態1における図1に示す液晶パネル2において、基板10における共通電極12として、ベタ状の共通電極を備えた構成を有している。言い換えれば、本実施の形態にかかる液晶パネル2は、基板10に代えて、図21に示す基板110を備えたに等しい構成を有している。
 なお、本実施の形態でも、図11では、画素電極14の電極部14aおよび共通電極22の電極部22aの断面として、それぞれ、枝電極14a・22aの断面が図示されている。
 図11に示すように、本実施の形態でも、実施の形態1、2と同じく、基板20における共通電極22は、画素電極における隣り合う枝電極14a間の中央真上に相当する位置に配されている。このため、S3は、S3=(S1-L3)+L1で示される。
 また、本実施の形態でも、画素電極14における隣り合う枝電極14a・14a間の電極間隔S1を100%とすると、共通電極22における枝電極22aの電極幅L3は、上記電極間隔S1の85%以下に設定される。
 なお、本実施の形態でも、各枝電極22a・14aは、それぞれ、直線状に形成されていてもよく、V字状あるいはジグザグ状に形成されていてもよい。
 <実施例および比較例>
 以下、実施例および比較例を用いて上記液晶パネル2の製造方法についてより具体的に説明するとともに、上記効果について、実験並びにシミュレーションにより立証を行う。
 〔実施例8〕
 実施例1において、櫛歯状の共通電極12に代えて、ITOからなるベタ状の共通電極12を、スパッタ法にて、ガラス基板11の片面全面に、厚み1400Åで形成した点を除けば、実施例1と同様の材料およびプロセスを用いて図11に示す構成を有する液晶パネル2(液晶表示素子)を作製した。
 このようにして作製した液晶パネル2の実測Tを、実施例1と同様にして測定した。
 一方、液晶パネル2として、図11に示すFFS構造を有するモデルを、上記実測と同じ条件で駆動したときのSimTを、実施例1と同様に、シンテック社製の「LCD-MASTER」を用いてシミュレーションにより求めた。
 上記SimTおよび実測T、画素電極14の電極幅L1/電極間隔S1、共通電極22の電極幅L3/電極間隔S3、割合X3を表4に併せて示す。
 また、図13の(a)に、上記液晶パネル2を用いたシミュレーションにおける各電極への電圧印加条件を示すとともに、図13の(b)に、上記シミュレーションで、図13の(a)において画素電極14に室温(25℃)で5Vの電圧を印加したときの透過率、液晶分子31のダイレクタ分布、等電位曲線を示す。なお、図13の(a)に示すように、共通電極12は、0Vに設定している。
 実施例8で得られたSimTは、実測Tに近い値が得られた。したがって、図11に示す構成を有する液晶パネル2においても、SimTと実測Tとの電圧-透過率(V-T)曲線との相関性はほぼ同じ結果が得られることが判った。そこで、以下の実施例および比較例においては、実施例8と同様にシンテック社製の「LCD-MASTER」を用いて、シミュレーションのみを行った。
 〔比較例4、実施例9〕
 実施例8において、共通電極22の電極幅L3を、画素電極14の電極間隔S1と同じ10μmを基準に、その90%(9.0μm、比較例4)、85%(8.5μm、実施例9)とした。
 上記した点を除けば、実施例8と同様の条件を用いて、上記したように共通電極22の電極幅L3をそれぞれ変更したときの各液晶パネル2のSimTを求めた。
 上記SimT、画素電極14の電極幅L1/電極間隔S1、共通電極22の電極幅L3/電極間隔S3、割合X3を表4に併せて示す。
Figure JPOXMLDOC01-appb-T000004
 表4に示す結果から、画素電極14の下層の共通電極12がベタ状である場合には、各枝電極14aの真下近傍の共通電極12が斜め電界の発生を妨げるために、実施例1~4と比較して高透過率化の効果は小さいことが判る。
 しかしながら、表4に示す結果から、図11に示す構造を有する液晶パネル2を用いた場合にも、画素電極14における隣り合う枝電極14a間の電極間隔S1を100%としたときに、共通電極22における枝電極22aの電極幅L3が、上記電極間隔S1の85%以下であるとき、高透過率化を実現できることが判る。
 <変形例>
 図12の(a)~(c)に示したように、上述した説明では、共通電極22および画素電極14としてそれぞれ櫛歯電極を用いた場合を例に挙げて説明した。
 しかしながら、実施の形態1同様、本実施の形態でも、これら共通電極22および画素電極14は、それぞれ、スリット(スペース部)を有する電極であり、パターン化された電極部(電極ライン)とスペース部(電極非形成部)とを有していればよい。
 <画素電極14および共通電極12・22の電極構成>
 図14の(a)~(c)は、順に、本変形例にかかる液晶パネル2の液晶セル5における、上層電極である画素電極14、下層電極である共通電極12、対向基板側電極である共通電極22の概略構成を示す平面図である。なお、本変形例の液晶パネル2の断面図は、図7と同じである。
 図14の(a)・(c)に示すように、本変形例における画素電極14および共通電極22は、図6の(a)・(c)に示す画素電極14および共通電極22と同じ構造を有している。また、図14の(b)に示すように、本変形例における共通電極12は、図11の(b)に示す共通電極12と同じ構造を有している。
 すなわち、共通電極12はベタ状の電極であり、共通電極22における枝電極22aは、画素電極14のスペース部14bの中央の真上に配置されており、画素電極14における枝電極14aとは重畳しない位置並びに大きさ(電極幅)に形成されている。
 なお、本変形例でも、各枝電極22a・14aは、それぞれ、直線状に形成されていてもよく、V字状あるいはジグザグ状に形成されていてもよいことは言うまでもない。
 <実施例>
 以下、実施例を用いて本変形例に記載の液晶パネル2の製造方法について説明するとともに、以下の実施例における実験結果から、その効果について説明する。
 〔実施例10〕
 実施例8において、画素電極14および共通電極22の形状を、図12の(a)・(c)に示す櫛歯形状から、図14の(a)・(c)に示すスリット形状に変更した以外は、実施例8と同様の条件並びに方法を用いて、図11に示す構成を有する液晶パネル2を作製した。
 すなわち、本実施例では、実施例8と同じく、画素電極14および共通電極22の各電極幅L1・L3をそれぞれ2.5μmとし、画素電極14および共通電極22の各電極間隔S1・S3をそれぞれ10μmとした。すなわち、本実施例では、割合X3を25%とした。
 その後、このようにして作製した液晶パネル2の実測Tを、実施例8と同様にして測定した。
 上記実測Tを、実施例8における実測Tと合わせて表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表5に示す結果から、図14の(b)に示すように共通電極12にベタ状の電極を用いた場合にも、実施例8において、画素電極14および共通電極22の形状を、図12の(a)・(c)に示す櫛歯形状から、図14の(a)・(c)に示すスリット形状に変更したときの実測Tは、実施例8の実測Tと近い値が得られることが判った。
 このことから、本実施の形態でも、画素電極14および共通電極22の形状を上記したように変更した場合でも、変更前と同様の結果が得られることが判った。
 したがって、本変形例においても、画素電極14の電極間隔S1を100%としたときに共通電極22の電極幅L3を上記電極間隔S1の85%以下とすることで、高透過率化を実現することができることが判る。
 また、本実施の形態でも、上記したように、主に、画素電極14および共通電極22が、何れも櫛歯電極もしくは何れも開口窓を有するスリット電極である場合を例に挙げて説明した。しかしながら、実施例8~10に示す結果から、本実施の形態はこれに限定されるものではなく、画素電極14および共通電極22のうち何れか一方が櫛歯電極であり、他方が開口窓を有するスリット電極であってもよいことは明らかである。
 また、実施例1~10に示す結果から、基板20に、上述した条件を満たす共通電極22が設けられている場合、下層の共通電極12は、ベタ状電極であってもスリット電極であってもよいことが判るとともに、下層の共通電極12を、スリット状、特に、L2<0.85×S1を満足するスリット状とすることで、液晶分子31の応答性をさらに向上させることができ、高い高透過率化の効果を得ることができることが判る。
 〔実施の形態4〕
 本発明の実施の一形態について図15乃至図18の(a)・(b)に基づいて説明すれば以下の通りである。なお、本実施の形態では、前記実施の形態1、2との相違点について説明するものとし、特に言及しない構成については、実施の形態1、2と同じ説明が適用されるものとする。また、説明の便宜上、前記実施の形態1と同様の機能を有する構成要素には同一の番号を付し、その説明を省略する。
 <液晶セル5の概略構成>
 図15は、本実施の形態にかかる液晶パネル2の液晶セル5の要部の概略構成を、斜め電界印加時における液晶分子のダイレクタ分布と併せて模式的に示す断面図である。
 また、図16の(a)・(b)は、順に、図15に示す液晶セル5における、上層電極である画素電極14、下層電極である共通電極12の概略構成を示す平面図である。
 本実施の形態にかかる液晶パネル2は、図15に示すように、基板20に共通電極22が設けられていない点を除けば、実施の形態2における図7に示す液晶パネル2と同じ構造を有している。
 すなわち、本実施の形態にかかる液晶パネル2は、図15に示すように、基板10における共通電極12が、画素電極14における隣り合う枝電極14a間の中央真下に加え、各枝電極14aの真下にも設けられている。一方、基板20に電極は設けられていない。
 なお、本実施の形態でも、図15では、画素電極14の電極部14aおよび共通電極22の電極部22aの断面として、それぞれ、枝電極14a・22aの断面が図示されている。
 また、本実施の形態において、S2は、S2=(S1-L2)/2で示される。
 また、画素電極14における隣り合う枝電極14a・14a間の電極間隔S1を100%とすると、共通電極12における枝電極12aの電極幅L2は、上記電極間隔S1の85%以下に設定される。
 なお、本実施の形態でも、各枝電極12a・14aは、それぞれ、直線状に形成されていてもよく、V字状あるいはジグザグ状に形成されていてもよい。
 <実施例および比較例>
 以下、実施例および比較例を用いて上記液晶パネル2の製造方法についてより具体的に説明するとともに、上記効果について、実験並びにシミュレーションにより立証を行う。
 〔実施例11〕
 実施例1において、共通電極12の枝電極12aを、画素電極14における隣り合う枝電極14a間の中央真下(すなわち、共通電極22の枝電極22aの真下)および各枝電極14aの真下に設けた。また、ガラス基板21上に、共通電極22を設けることなく、配向膜15と同じ材料、同じプロセスにて、配向膜23のみを直接成膜することにより、基板20を形成した。
 上記した点を除けば、実施例1と同様の材料およびプロセスを用いて図15に示す構成を有する液晶パネル2(液晶表示素子)を作製した。
 このようにして作製した液晶パネル2の実測Tを、実施例1と同様にして測定した。
 一方、液晶パネル2として、図15に示すFFS構造を有するモデルを、上記実測と同じ条件で駆動したときのSimTを、実施例1と同様に、シンテック社製の「LCD-MASTER」を用いてシミュレーションにより求めた。
 上記SimTおよび実測T、画素電極14の電極幅L1/電極間隔S1、共通電極12の電極幅L2/電極間隔S2、割合X2を表6に併せて示す。
 また、図17の(a)に、上記液晶パネル2を用いたシミュレーションにおける印加電圧を示すとともに、図17の(b)に、上記シミュレーションで、図17の(a)において画素電極14に室温(25℃)で5Vの電圧を印加したときの透過率、液晶分子31のダイレクタ分布、等電位曲線を示す。なお、図17の(a)に示すように、共通電極12は、0Vに設定している。
 実施例11で得られたSimTは、実測Tに近い値が得られた。したがって、図15に示す構成を有する液晶パネル2においても、SimTと実測Tとの電圧-透過率(V-T)曲線との相関性はほぼ同じ結果が得られることが判った。そこで、以下の実施例および比較例においては、実施例11と同様にシンテック社製の「LCD-MASTER」を用いて、シミュレーションのみを行った。
 〔比較例5、実施例12〕
 実施例11において、共通電極12の電極幅L2を、画素電極14の電極間隔S1と同じ10μmを基準に、その90%(9.0μm、比較例5)、85%(8.5μm、実施例12)とした。
 上記した点を除けば、実施例11と同様の条件を用いて、上記したように共通電極22の電極幅L2をそれぞれ変更したときの各液晶パネル2のSimTを求めた。
 上記SimT、画素電極14の電極幅L1/電極間隔S1、共通電極12の電極幅L2/電極間隔S2、割合X2を表6に併せて示す。
Figure JPOXMLDOC01-appb-T000006
 表6に示す結果から、図15に示す液晶パネル2は、基板20に共通電極22が存在しないために、画素電極14と共通電極22との間で発生する斜め電界強度分、電界強度が弱くなるため、実施例1~10と比較して高透過率化の効果が小さいことが判る。また、この場合にも、実施例5・6同様、画素電極14における各枝電極14aの真下に配置した枝電極12aは、液晶分子31の応答に殆ど影響を与えておらず、この場合にも、画素電極14における隣り合う枝電極14a間の電極間隔S1を100%としたときに、共通電極12における枝電極12aの電極幅L2が、上記電極間隔S1の85%以下であるとき、高透過率化を実現できることが判る。
 また、図17の(b)に示す結果から、本実施の形態によれば、各枝電極14aと、絶縁層13を挟んで各枝電極14aの真下に配置された枝電極12aとの間には容量が形成されることが判る。この容量は、図7に示す液晶パネル2同様、液晶パネル2の補助容量として利用することができる。
 <変形例>
 図16の(a)・(b)に示したように、上述した説明では、共通電極12および画素電極14としてそれぞれ櫛歯電極を用いた場合を例に挙げて説明した。
 しかしながら、実施の形態1同様、本実施の形態でも、これら共通電極12および画素電極14は、それぞれ、スリット(スペース部)を有する電極であり、パターン化された電極部(電極ライン)とスペース部(電極非形成部)とを有していればよい。
 <画素電極14および共通電極12・22の電極構成>
 図18の(a)・(b)は、順に、本変形例にかかる液晶パネル2の液晶セル5における、上層電極である画素電極14、下層電極である共通電極12の概略構成を示す平面図である。なお、本変形例の液晶パネル2の断面図は、図11と同じである。
 図18の(a)・(b)に示すように、本変形例における画素電極14および共通電極12は、図10の(a)・(b)に示す画素電極14および共通電極12と同じ構造を有している。
 なお、本変形例でも、各枝電極12a・14aは、それぞれ、直線状に形成されていてもよく、V字状あるいはジグザグ状に形成されていてもよいことは言うまでもない。
 <実施例>
 以下、実施例を用いて本変形例に記載の液晶パネル2の製造方法について説明するとともに、以下の実施例における実験結果から、その効果について説明する。
 〔実施例13〕
 実施例11において、画素電極14および共通電極12の形状を、図16の(a)・(c)に示す櫛歯形状から、図18の(a)・(c)に示すスリット形状に変更した以外は、実施例11と同様の条件並びに方法を用いて、図15に示す構成を有する液晶パネル2を作製した。
 すなわち、本実施例では、実施例15と同じく、画素電極14および共通電極22の各電極幅L1・L2をそれぞれ2.5μmとし、画素電極14の電極間隔S1、共通電極12の電極間隔S2をそれぞれ10μm、3.8μmとした。このように、本実施例では、割合X2を25%とした。
 その後、このようにして作製した液晶パネル2の実測Tを、実施例11と同様にして測定した。
 上記実測Tを、実施例11における実測Tと合わせて表2に示す。
Figure JPOXMLDOC01-appb-T000007
 表7に示す結果から、図15に示す構成を有する液晶パネル2を用いた場合にも、実施例11において、画素電極14および共通電極12の形状を、図16の(a)・(b)に示す櫛歯形状から、図18の(a)・(b)に示すスリット形状に変更したときの実測Tは、実施例11の実測Tと近い値が得られることが判った。
 このことから、本実施の形態でも、画素電極14および共通電極12の形状を上記したように変更した場合でも、変更前と同様の結果が得られることが判った。
 したがって、上記変形例においても、画素電極14の電極間隔S1を100%としたときに共通電極12の電極幅L2を上記電極間隔S1の85%以下とすることで、高透過率化を実現することができることが判る。
 また、本実施の形態でも、上記したように、主に、画素電極14および共通電極12が、何れも櫛歯電極もしくは何れも開口窓を有するスリット電極である場合を例に挙げて説明した。しかしながら、実施例11~13に示す結果から、本実施の形態はこれに限定されるものではなく、画素電極14および共通電極12のうち何れか一方が櫛歯電極であり、他方が開口窓を有するスリット電極であってもよいことは明らかである。
 〔比較例6〕
 また、比較のために、特許文献1に記載の図22に示す構成を有するモデルを用いたシミュレーションで、線形電極204および上部電極212にそれぞれ室温(25℃)で5Vの電圧を印加したときの透過率、液晶分子31のダイレクタ分布、等電位曲線を、図25に示す。なお、面形電極202は、0Vに設定した。
 なお、線形電極204の電極幅は5μm、電極間隔は15μmとした。上部電極212の開口部213の幅は5μmとした。また、セル厚を3.4μmとした以外は、各層の厚みは、実施例1と同様に設定した。シミュレーションには、実施例1と同様に、シンテック社製の「LCD-MASTER」を用いた。
 図25に示すように、特許文献1に記載の図22に示す液晶パネル200は、線形電極104近傍および上部電極212の開口部213近傍以外の領域では、縦電界成分が大きくなり、それらの領域では液晶分子が応答せず、高い透過率を得ることができないことが判る。
 〔実施の形態5〕
 本発明の実施の一形態について図19および図20に基づいて説明すれば以下の通りである。また、説明の便宜上、実施の形態1~4と同様の機能を有する構成要素には同一の番号を付し、その説明を省略する。
 なお、本実施の形態では、実施の形態1~4に記載の各液晶パネル2における好ましい電極間隔S1について、開口率の観点から説明する。
 <開口率について>
 実施の形態1~4に記載の各実施例および比較例における透過率は、何れも無限平面内での透過率である。実際に液晶パネル2を作製する場合には、画素のサイズが問題となる。
 100×300μm程度の画素を想定した場合、電極間隔S1および電極幅L1が決まれば枝電極14aの本数は自ずと決定される。枝電極14aの本数は、電極間隔S1が小さなものほどが多く、電極間隔S1が大きなものほど少ない結果となる。
 ここで、実質透過部分(暗線を除く部分)が開口部となる。開口部の面積が大きいほど透過部分が増加するため、電極間隔S1は自ずと限定される。
 そこで、横幅(枝電極14aの配列方向の幅)が100μmの画素を想定した場合の各画素のスペース部分(画素電極14の電極部14aを除く部分)を開口率として算出した結果を、電極間隔S1、電極幅L1、枝電極14aの本数(ライン本数)と併せて表7に示す。また、このときの電極間隔S1と開口率との関係を図19に示す。なお、開口率は、電極間隔S1、電極幅L1、およびライン本数から算出することができる。
 なお、上記関係は、電極幅L1に対して比例関係を有している。このため、電極幅L1を変更した場合にも、同様のカーブ(傾向)が得られる。
 したがって、表7および図19に示す結果から判るように、開口率は、電極間隔S1が4μmよりも小さくなると、急激に低下する。このため、電極間隔S1は、開口率の観点からすれば、4μm以上とすることが好ましい。
Figure JPOXMLDOC01-appb-T000008
 <実質透過率について>
 TFTパネル等の液晶パネルを用いた液晶表示装置の実質透過率は、上記開口率と無限平面内での透過率、カラーフィルタの透過率(28%程度)の掛け算で算出される。
 そこで、実施の形態1~4に示す各液晶パネル2において共通電極12・22の電極幅L2・L3を電極間隔S1の25%とし、シミュレーションにより電極間隔S1を変化させた。すなわち、実施例1(実施の形態1)、実施例6(実施の形態2)、実施例8(実施の形態3)、実施例11(実施の形態4)で用いた各モデルにおいて、共通電極12・22の電極幅L2・L3が電極間隔S1の25%となるように、シミュレーションにより電極間隔S1を変化させた。
 なお、上記シミュレーションには、実施例1と同様に、シンテック社製の「LCD-MASTER」を用いた。
 このときの実質透過率を、電極間隔S1、無限平面内での5V印加時の透過率、開口率と併せて表9に示す。また、図20に、上記実質透過率と電極間隔S1との関係を示す。
Figure JPOXMLDOC01-appb-T000009
 表9および図20に示すように、実施の形態1~4の何れの構成を有する液晶パネル2においても、電極間隔S1が12.0μmを越えると実質透過率が急激に低下することが確認された。
 したがって、実質透過率の観点から、何れの液晶パネル2においても、電極間隔S1は12.0μm以下であることが好ましい。また、図20に示すように、実施の形態1~4の何れの構成を有する液晶パネル2においても、電極間隔S1が4μmである場合を境に実質透過率が急激に低下する。したがって、開口率(図19および表9参照)の観点だけでなく実質透過率の観点からも、何れの液晶パネル2においても、電極間隔S1は4μm以上とすることが好ましい。
 但し、表9、表10、図19、図20から判るように、電極間隔S1が12μmよりも大きい場合でも、十分な開口率および実質透過率を得ることができる。したがって、上記電極間隔S1は、上記範囲内とすることが好ましいが、上記範囲内にのみ限定されるものではない。
 <要点概要>
 以上のように、上述した各実施の形態は、電極構造を工夫して液晶分子がより回転できるような電界分布を作り出すことで、高透過率化を実現するものである。
 電極構造を工夫することで、液晶分子の応答性を向上させ、高透過率化を実現することができる。なお、液晶分子の応答性とは、応答速度ではなく、液晶分子が初期の配向状態から電界によりいかに大きく回転できるかを示す。
 本発明の一態様にかかる液晶パネルは、以上のように、互いに対向配置された第1の基板および第2の基板と、上記第1の基板と第2の基板との間に挟持された液晶層とを備え、上記第1の基板は、絶縁層を挟んで下層側に設けられた共通電極および上層側に設けられた画素電極を備え、上記第1の基板および第2の基板における互いの対向面に、電界無印加時に上記液晶層における液晶分子を上記各基板に垂直に配向させる垂直配向膜が設けられた液晶パネルであって、上記第2の基板に、さらに共通電極が設けられており、上記画素電極および第2の基板に設けられた共通電極は、それぞれ、幹電極から延びる複数の枝電極がスリットを挟んで一定の間隔で設けられたスリット電極であり、上記各基板に垂直な方向から見たときに、上記第2の基板に設けられた共通電極における各枝電極は、上記画素電極における枝電極とは重畳せず、上記画素電極における隣り合う枝電極間にのみ配置されており、上記第2の基板に設けられた共通電極における枝電極の電極幅は、上記画素電極における隣り合う枝電極間の電極間隔の85%以下であり、上記液晶層が、上記画素電極と上記第1の基板および第2の基板にそれぞれ設けられた各共通電極との間に発生する電界で駆動される。
 上記構成とすることで、各共通電極と画素電極との間で発生する斜め電界により、液晶分子の応答性を向上させ、高透過率化を実現することができる。
 上記第1の基板に設けられた共通電極は、幹電極から延びる枝電極がスリットを挟んで一定の電極間隔で設けられたスリット電極であり、上記第1の基板に設けられた共通電極が上記スリット電極である場合、上記各基板に垂直な方向から見たときに、上記第1の基板に設けられた共通電極が、上記画素電極における隣り合う枝電極間に配置されており、上記第1の基板に設けられた共通電極における枝電極の電極幅は、上記画素電極における隣り合う枝電極間の電極間隔の85%以下であることが好ましい。
 この場合、液晶分子の応答性の向上効果が高く、高い高透過率化の効果を得ることができることが判る。
 また、この場合、上記各基板に垂直な方向から見たときに、上記第1の基板に設けられた共通電極が、上記画素電極における枝電極の真下にも配置されていることが好ましい。
 第1の基板に設けられた共通電極のうち画素電極における各枝電極の真下に配置した枝電極は、液晶分子の応答に殆ど影響を与えず、この場合にも、第1の基板に設けられた共通電極における枝電極の電極幅が、画素電極における隣り合う枝電極間の電極間隔の85%以下であるとき、高透過率化を実現することができる。
 一方、上記したように、上記第1の基板に設けられた共通電極が、画素電極における枝電極の真下にも配置されていることで、画素電極における枝電極と、絶縁層を挟んで画素電極における枝電極の真下に配置された、上記共通電極における枝電極との間には容量が形成される。この容量は、液晶パネルの補助容量として利用することができる。
 また、上記第1の基板に設けられた共通電極は、ベタ状に形成された電極であってもよい。
 上記第1の基板に設けられた共通電極がベタ状である場合には、画素電極における各枝電極の真下近傍の共通電極が斜め電界の発生を妨げる。このため、前者と比べれば、高透過率化の効果は小さいものの、この場合にも、上記したように第2の基板に設けられた共通電極における枝電極の電極幅が、上記画素電極における隣り合う枝電極間の電極間隔の85%以下であるとき、高透過率化を実現することができる。
 また、本発明のさらに他の一態様にかかる液晶パネルは、以上のように、互いに対向配置された第1の基板および第2の基板と、上記第1の基板と第2の基板との間に挟持された液晶層とを備え、上記第1の基板は、絶縁層を挟んで下層側に設けられた共通電極および上層側に設けられた画素電極を備え、上記第1の基板および第2の基板における互いの対向面に、電界無印加時に上記液晶層における液晶分子を上記各基板に垂直に配向させる垂直配向膜が設けられた液晶パネルであって、上記画素電極および共通電極は、それぞれ、幹電極から延びる複数の枝電極がスリットを挟んで一定の間隔で設けられたスリット電極であり、上記各基板に垂直な方向から見たときに、上記共通電極における枝電極が、上記画素電極における隣り合う枝電極間および上記画素電極における枝電極の真下に配置されており、上記共通電極における枝電極の電極幅は、上記画素電極における隣り合う枝電極間の電極間隔の85%以下であり、上記液晶層が、上記第1の基板にそれぞれ設けられた画素電極と共通電極との間に発生する電界で駆動される。
 上記構成とすることで、第2の基板に電極を設けない場合であっても、上記共通電極と画素電極との間で発生する斜め電界により、液晶分子の応答性を向上させ、高透過率化を実現することができる。
 また、上記各液晶パネルにおいて、上記画素電極における隣り合う枝電極間の電極間隔は4μm以上、12μm以下であることが好ましい。
 上記の構成によれば、高い開口率および実質透過率を安定して得ることができる。
 上記各液晶パネルにおいて、上記スリット電極は、櫛歯電極であってもよく、枠状の幹電極と、枠状の幹電極の一端から対向する他端に延びる縞状の枝電極とを備え、上記枝電極がスリットを挟んで一定の電極間隔で設けられたスリット電極であってもよい。
 上記の各構成によれば、何れの場合であっても、液晶分子の応答性を向上させ、高透過率化を実現することができる。
 したがって、上述した何れかの液晶パネルを備えている液晶表示装置を提供することで、従来よりも液晶分子の応答性が向上された、高透過率の液晶表示装置を提供することができる。
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、また、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 本発明にかかる液晶パネルおよび液晶表示装置は、液晶分子の応答性が高く、実用的な駆動電圧で、高い透過率を有している。また、初期ベンド転移操作が不要であり、MVAモードやIPSモードと同等の広視野角特性と、OCBモード並、あるいはそれ以上の高速応答性と、高コントラスト特性とを同時に実現することができる。したがって、アウトドアユースの公共掲示板や、携帯電話、PDA等のモバイル機器等に特に好適に用いることができる。
  1   液晶表示装置
  2   液晶パネル
  3   駆動回路
  4   バックライト
  5   液晶セル
  6   偏光板
  7   偏光板
  8   位相差板
  9   位相差板
 10   基板
 11   ガラス基板
 12   共通電極
 12a  電極部
 12a1  幹電極
 12a2  枝電極
 12b  スペース部(スリット)
 13   絶縁層
 14   画素電極
 14a  電極部
 14a1  幹電極
 14a2  枝電極
 14b  スペース部(スリット)
 15  配向膜
 20  基板
 21  ガラス基板
 22   共通電極
 22a  電極部
 22a1  幹電極
 22a2  枝電極
 22b  スペース部(スリット)
 23  配向膜
 30  液晶層
 31  液晶分子

Claims (9)

  1.  互いに対向配置された第1の基板および第2の基板と、上記第1の基板と第2の基板との間に挟持された液晶層とを備え、上記第1の基板は、絶縁層を挟んで下層側に設けられた共通電極および上層側に設けられた画素電極を備え、上記第1の基板および第2の基板における互いの対向面に、電界無印加時に上記液晶層における液晶分子を上記各基板に垂直に配向させる垂直配向膜が設けられた液晶パネルであって、
     上記第2の基板に、さらに共通電極が設けられており、
     上記画素電極および第2の基板に設けられた共通電極は、それぞれ、幹電極から延びる複数の枝電極がスリットを挟んで一定の間隔で設けられたスリット電極であり、
     上記各基板に垂直な方向から見たときに、上記第2の基板に設けられた共通電極における各枝電極は、上記画素電極における枝電極とは重畳せず、上記画素電極における隣り合う枝電極間にのみ配置されており、
     上記第2の基板に設けられた共通電極における枝電極の電極幅は、上記画素電極における隣り合う枝電極間の電極間隔の85%以下であり、
     上記液晶層が、上記画素電極と上記第1の基板および第2の基板にそれぞれ設けられた各共通電極との間に発生する電界で駆動されることを特徴とする液晶パネル。
  2.  上記第1の基板に設けられた共通電極は、幹電極から延びる枝電極がスリットを挟んで一定の電極間隔で設けられたスリット電極であり、
     上記各基板に垂直な方向から見たときに、上記第1の基板に設けられた共通電極が、上記画素電極における隣り合う枝電極間に配置されており、
     上記第1の基板に設けられた共通電極における枝電極の電極幅は、上記画素電極における隣り合う枝電極間の電極間隔の85%以下であることを特徴とする請求項1に記載の液晶パネル。
  3.  上記各基板に垂直な方向から見たときに、上記第1の基板に設けられた共通電極が、上記画素電極における枝電極の真下にも配置されていることを特徴とする請求項2に記載の液晶パネル。
  4.  上記第1の基板に設けられた共通電極はベタ状に形成された電極であることを特徴とする請求項1に記載の液晶パネル。
  5.  互いに対向配置された第1の基板および第2の基板と、上記第1の基板と第2の基板との間に挟持された液晶層とを備え、上記第1の基板は、絶縁層を挟んで下層側に設けられた共通電極および上層側に設けられた画素電極を備え、上記第1の基板および第2の基板における互いの対向面に、電界無印加時に上記液晶層における液晶分子を上記各基板に垂直に配向させる垂直配向膜が設けられた液晶パネルであって、
     上記画素電極および共通電極は、それぞれ、幹電極から延びる複数の枝電極がスリットを挟んで一定の間隔で設けられたスリット電極であり、
     上記各基板に垂直な方向から見たときに、上記共通電極における枝電極が、上記画素電極における隣り合う枝電極間および上記画素電極における枝電極の真下に配置されており、
     上記共通電極における枝電極の電極幅は、上記画素電極における隣り合う枝電極間の電極間隔の85%以下であり、
     上記液晶層が、上記第1の基板にそれぞれ設けられた画素電極と共通電極との間に発生する電界で駆動されることを特徴とする液晶パネル。
  6.  上記画素電極における隣り合う枝電極間の電極間隔が4μm以上、12μm以下であることを特徴とする請求項1~5の何れか1項に記載の液晶パネル。
  7.  上記スリット電極が櫛歯電極であることを特徴とする請求項1~6の何れか1項に記載の液晶パネル。
  8.  上記スリット電極は、枠状の幹電極と、枠状の幹電極の一端から対向する他端に延びる縞状の枝電極とを備え、上記枝電極がスリットを挟んで一定の電極間隔で設けられたスリット電極であることを特徴とする請求項1~6の何れか1項に記載の液晶パネル。
  9.  請求項1~8の何れか1項に記載の液晶パネルを備えていることを特徴とする液晶表示装置。
PCT/JP2011/079589 2010-12-22 2011-12-21 液晶パネルおよび液晶表示装置 WO2012086666A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010286382 2010-12-22
JP2010-286382 2010-12-22

Publications (1)

Publication Number Publication Date
WO2012086666A1 true WO2012086666A1 (ja) 2012-06-28

Family

ID=46313934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079589 WO2012086666A1 (ja) 2010-12-22 2011-12-21 液晶パネルおよび液晶表示装置

Country Status (1)

Country Link
WO (1) WO2012086666A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014080018A1 (fr) * 2012-11-26 2014-05-30 Volfoni R&D Modulateur de polarisation optique a cristaux liquides
JP2015148790A (ja) * 2014-01-10 2015-08-20 株式会社 オルタステクノロジー 液晶表示装置
CN105204243A (zh) * 2015-10-16 2015-12-30 武汉华星光电技术有限公司 高速响应液晶显示面板
CN105425480A (zh) * 2015-12-31 2016-03-23 昆山龙腾光电有限公司 可切换视角的液晶显示装置及其视角切换方法
CN109188791A (zh) * 2018-07-19 2019-01-11 友达光电股份有限公司 显示装置
CN109298557A (zh) * 2018-11-13 2019-02-01 昆山龙腾光电有限公司 显示面板和防窥显示方法及显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09244046A (ja) * 1996-03-13 1997-09-19 Matsushita Electric Ind Co Ltd 液晶パネルとその駆動方法
JPH1048652A (ja) * 1996-08-05 1998-02-20 Mitsubishi Electric Corp 液晶表示装置
JPH11153802A (ja) * 1997-11-20 1999-06-08 Nec Corp アクティブマトリクス液晶表示装置
JP2010217248A (ja) * 2009-03-13 2010-09-30 Seiko Epson Corp 電気光学装置及び電気光学装置の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09244046A (ja) * 1996-03-13 1997-09-19 Matsushita Electric Ind Co Ltd 液晶パネルとその駆動方法
JPH1048652A (ja) * 1996-08-05 1998-02-20 Mitsubishi Electric Corp 液晶表示装置
JPH11153802A (ja) * 1997-11-20 1999-06-08 Nec Corp アクティブマトリクス液晶表示装置
JP2010217248A (ja) * 2009-03-13 2010-09-30 Seiko Epson Corp 電気光学装置及び電気光学装置の製造方法

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014080018A1 (fr) * 2012-11-26 2014-05-30 Volfoni R&D Modulateur de polarisation optique a cristaux liquides
FR2998682A1 (fr) * 2012-11-26 2014-05-30 Volfoni R & D Modulateur de polarisation optique a cristaux liquides
JP2015148790A (ja) * 2014-01-10 2015-08-20 株式会社 オルタステクノロジー 液晶表示装置
KR20160105525A (ko) * 2014-01-10 2016-09-06 가부시키가이샤 오루투스 테크놀로지 액정 표시 장치
US9897869B2 (en) 2014-01-10 2018-02-20 Ortus Technology Co., Ltd. Liquid crystal display device
KR102271626B1 (ko) * 2014-01-10 2021-06-30 도판 인사츠 가부시키가이샤 액정 표시 장치
CN105204243A (zh) * 2015-10-16 2015-12-30 武汉华星光电技术有限公司 高速响应液晶显示面板
CN105425480A (zh) * 2015-12-31 2016-03-23 昆山龙腾光电有限公司 可切换视角的液晶显示装置及其视角切换方法
CN109188791A (zh) * 2018-07-19 2019-01-11 友达光电股份有限公司 显示装置
CN109298557A (zh) * 2018-11-13 2019-02-01 昆山龙腾光电有限公司 显示面板和防窥显示方法及显示装置

Similar Documents

Publication Publication Date Title
US9618779B2 (en) LCD viewing angle control method, LCD panel and LCD
US9612486B2 (en) Liquid crystal display device
WO2010137217A1 (ja) 液晶パネルおよび液晶表示装置
JP5068886B2 (ja) 液晶パネルおよび液晶表示装置
US9678393B2 (en) Liquid crystal display panel, display apparatus and method for driving the display apparatus
US20080266480A1 (en) Multi-domain vertical alignment liquid crystal display
WO2013137254A1 (ja) 液晶表示装置
WO2012086666A1 (ja) 液晶パネルおよび液晶表示装置
US20200050063A1 (en) Liquid crystal display device
WO2012017931A1 (ja) 液晶パネルおよび液晶表示装置
JP5335907B2 (ja) 液晶パネルおよびその製造方法並びに液晶表示装置
WO2013100088A1 (ja) 液晶表示装置
CN113631997B (zh) 液晶面板及显示装置
JP2013117700A (ja) 液晶表示装置
WO2010137213A1 (ja) 液晶表示素子、及び、液晶表示装置
WO2012011443A1 (ja) 液晶パネルおよび液晶表示装置
US8284359B2 (en) Liquid crystal panel and liquid crystal display device
US8953134B2 (en) Liquid crystal display panel
WO2016031638A1 (ja) 液晶表示装置
WO2015012092A1 (ja) 液晶表示装置
US11181770B2 (en) Liquid crystal display panel and method for manufacturing same
KR101297737B1 (ko) 액정 표시 장치
WO2018232778A1 (zh) 像素电极及阵列基板
JP2009251346A (ja) 液晶表示素子
WO2013061806A1 (ja) 液晶パネルおよび液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11850769

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11850769

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP