WO2010136586A1 - Procédé et dispositif de planification de trajectoire d'ordre 4, exploitable en temps réel, pour générer des trajectoires de consigne continues, sans à-coups - Google Patents

Procédé et dispositif de planification de trajectoire d'ordre 4, exploitable en temps réel, pour générer des trajectoires de consigne continues, sans à-coups Download PDF

Info

Publication number
WO2010136586A1
WO2010136586A1 PCT/EP2010/057470 EP2010057470W WO2010136586A1 WO 2010136586 A1 WO2010136586 A1 WO 2010136586A1 EP 2010057470 W EP2010057470 W EP 2010057470W WO 2010136586 A1 WO2010136586 A1 WO 2010136586A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
jerk
dimensional
path
kinematic
Prior art date
Application number
PCT/EP2010/057470
Other languages
German (de)
English (en)
Inventor
Arvid Amthor
Stephan ZSCHÄCK
Christoph Ament
Andreas Lorenz
Johannes Werner
Original Assignee
Technische Universität Ilmenau
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Technische Universität Ilmenau filed Critical Technische Universität Ilmenau
Publication of WO2010136586A1 publication Critical patent/WO2010136586A1/fr

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/416Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control of velocity, acceleration or deceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning

Definitions

  • the present invention relates to a method and an apparatus for real-time path planning of the fourth order for generating continuous, jerk-free, time-dependent setpoint trajectories.
  • the invention finds application in robotics as well as in control and automation technology.
  • the invention relates to an actuator control device for moving an actuator along a predetermined path.
  • path planning used here describes methods and devices for moving an actuator, in particular in robotics, as described, inter alia, in Sawodny, 0 .: “Crane automation and large-scale robotics” in: Progress Report, Series 8, No. 888, VDI Verlag, Dusseldorf, 2001, is defined.
  • Olomski's jerk profile was included in analytical trajectory planning (Olomski, J .: “Trajectory Planning, Optimization and Control for Industrial Robots", International Conference on Control and Applications, Proceedings, Jerusalem, 1989).
  • the kinematic behavior of the system is determined in this approach by a piecewise constant jerk function (also Leonhard, W .: “Trajectory Control of a Multi-axes Robot with Electrical Servo Drives”: IEEE Conference on Industrial Electronics, Proceedings, Philadelphia, USA, 1989).
  • the trajectories for acceleration, speed and position are then obtained by multiple integration of this jerk function.
  • Croft, EA "Jerk-bound Manipulator Trajectory Planning: Design for Real-Time Application” in IEEE Transactions on Robotics and Automation, Vol. 19, No. 1, Feb. 2003, shows a real-time method for determining trajectories of a robot in which fifth-order polynomials are concatenated.
  • Object of the present invention is therefore to overcome the disadvantages of the prior art and a method and apparatus for real-time path planning fourth order for generating continuous, jerk-free setpoint trajectories for kinematic parameters, such as travel, speed, acceleration, jerk and jerk to provide in consideration of kinematic restrictions. Furthermore, an actuator control unit to provide direction for moving an actuator according to the above-mentioned path planning.
  • the method according to the invention is used for path planning in order to move an actuator of a robot or the like on a predetermined path taking into account kinematic restrictions.
  • the method can be executed in real time on the hardware customary for path planning at the time of the invention.
  • a time-dependent, three-dimensional target value trajectory for the planned path is determined, which is transmitted to a device for operating the actuator, for example to a state controller, which acts on a motor of the actuator with an electrical voltage.
  • a fourth-order orbit planning ie the path planning takes place taking into account the first four temporal derivatives of the place or the way, namely the speed, the acceleration, the jerk and the Ruckanieries.
  • the time-dependent setpoint trajectories to be determined are continuous and jerk-free.
  • kinematic restrictions are considered for the path, for the speed, for the acceleration, for the jerk and / or for the jerk rise, ie there are, inter alia, start and end points on the way, predetermined limits of speed, acceleration, jerk and / or Ruckanctiones processed as input variables.
  • Ruckanctiones in particular restrictions of the Ruckanctiones be considered.
  • the kinematic restrictions initially result from the actuator's technically executable movements, which are limited in terms of speed, acceleration, jerk and jerk.
  • the given kinematic restrictions up to the fourth order for the individual axes of motion are projected onto the one-dimensional function of the web location to determine the kinematic parameter jerk rise as a one-dimensional function of time related to the web.
  • the kinematic restrictions for the location can be applied directly to the one-dimensional anal function of the railway location.
  • the kinematic restrictions for speed, acceleration, jerk and jerk can be determined apply to the time derivatives of the one-dimensional function of the web site, preferably using the Frenet formulas.
  • the one-dimensional time-dependent function can first be determined for the fourth derivative of the web location, namely for the jerk rise as a kinematic parameter.
  • This one-dimensional function describes the chronological progression of the recoil with respect to the web.
  • This function can also be used to determine one-dimensional functions for the other kinematic parameters: jerk, acceleration, speed and path through integration.
  • the time-dependent three-dimensional setpoint trajectory is determined at least for the kinematic parameter path, namely on the basis of the previously calculated one-dimensional function of the time, which describes the kinematic parameter jerk rise.
  • the kinematic parameter path is preferably first calculated as a one-dimensional function of time related to the path from the one-dimensional function of time describing the kinematic parameter jerk rise, which relates to the path.
  • the time-dependent, three-dimensional setpoint trajectory for the kinematic parameter path is subsequently transmitted to a device for operating the actuator.
  • the calculation of the kinematic parameter path as the one-dimensional function of the time related to the track is preferably carried out by first successively determining the kinematic parameters jerk, acceleration and velocity as one-dimensional functions of the time related to the path the one-dimensional function of time describing the kinematic parameter jerk rise, which is related to the orbit.
  • Many devices for operating an actuator also process time-dependent, three-dimensional setpoint trajectories for the kinematic parameters jerk rise, jerk, acceleration and / or speed, in particular for the kinematic parameters acceleration and speed. Therefore, in a preferred embodiment of the method according to the invention further time-dependent, three-dimensional setpoint trajectories for the kinematic parameters jerk, jerk, acceleration and / or speed from the kinematic parameters jerk, jerk, acceleration and / or speed descriptive, the web related one-dimensional functions Time determined. Particularly preferably, the time-dependent, three-dimensional setpoint trajectories for the kinematic parameters acceleration and speed are determined.
  • this serves for real-time path planning fourth order for generating continuous, jerk-free setpoint trajectories for the kinematic parameters way, speed, acceleration, jerk and jerk rise taking into account kinematic restrictions.
  • This embodiment initially comprises a step in which the dimension of a three-dimensional setpoint trajectory is reduced to a one-dimensional function of the web location.
  • the kinematic restrictions for the individual axes of motion are projected onto the one-dimensional function of the web location.
  • a step is provided in which the kinematic Parameters for the one-dimensional function of the railway location are calculated.
  • the three-dimensional setpoint trajectory for the kinematic parameters path, speed, acceleration, jerk and jerk rise is determined.
  • the given path is subdivided into several segments, each segment being described by a time-independent, three-dimensional setpoint trajectory.
  • the steps specified for the method according to the invention are carried out for each of the plurality of time-independent, three-dimensional setpoint trajectories.
  • the segments are preferably formed in each case by a straight line or by a circular arc.
  • a slicing element is inserted between each two of the one-dimensional functions of two successive segments.
  • the wear elements are preferably formed by an extended bios curve in each case.
  • Reducing the dimension of the one or more time-independent, three-dimensional setpoint trajectories describing the given trajectory is preferably done using Frenet's formulas.
  • integration is preferably carried out by means of Gaussian-Legendric quadrature.
  • the determined time-dependent, three-dimensional setpoint trajectory for the kinematic parameter path is transmitted to a controller for regulating the state of an actuator to be moved along the path.
  • the time-dependent, three-dimensional setpoint trajectories for the kinematic parameters jerk rise, jerk, acceleration and / or speed are transmitted to the controller;
  • Particularly preferred are the time-dependent, three-dimensional setpoint trajectories for the kinematic parameters acceleration and speed.
  • the time-dependent, three-dimensional setpoint trajectory for the kinematic parameter velocity is preferably determined using an asymmetrical profile.
  • the device according to the invention is used for real-time capable path planning in order to move an actuator of a robot or the like on a predetermined path taking into account kinematic restrictions.
  • the device is configured to carry out the method according to the invention.
  • the device preferably has a data input for reading in data which describe the given path, in particular in the form of time-independent, three-dimensional setpoint trajectories.
  • the device preferably has a control output for outputting the time-dependent, three-dimensional setpoint trajectory for the kinematic parameter path, so that, for example, a controller to be connected can be controlled to control a state of the actuator.
  • the device according to the invention is preferably formed by a programmable computer.
  • the actuator control device serves to move an actuator along a predetermined path.
  • the actuator control device comprises a controller for regulating a state of the actuator and a device according to the invention for path planning.
  • the path planning device is connected to the controller to control the device from the device Path planning determined time-dependent, three-dimensional SoIl werttraj ektorie for the kinematic parameter way to the controller to transmit.
  • the procedure in the analytical path planning according to the invention can be divided into three phases.
  • a so-called dimension reduction takes place.
  • the kinematic calculation of the path parameter takes place in one dimension.
  • the kinematic trajectories of the individual motion axes are determined in the third step. This procedure offers the decisive advantage that the partial movements of the individual machine axes inevitably behave synchronously with each other.
  • FIG. 2 shows an example of a jerk rise function determined according to the invention
  • 3 shows an example of the inventively determined course of jerk, acceleration, speed and location.
  • Fig. 6 is a schematic diagram for determining the element transfer speeds
  • FIG. 13 shows a block diagram of a preferred embodiment of an actuator control device according to the invention.
  • Fig. 14 is a block diagram of another preferred embodiment
  • the so-called frenet tripod including the associated scalar magnitudes curvature and torsion can be derived from the vector-valued position function.
  • This orthonormal base (see FIG. 1) forms the general foundation for the closed description of spatial curves and will therefore be introduced first below.
  • Fig. 1 shows the three vectors that make up the Frenetian tripod for a freely chosen point on the depicted space curve.
  • Arrow t here represents the tangent vector ⁇
  • arrow n represents the normal vector n and arrow b embodied the binormal vector.
  • the tangent vector is tangent to the trajectory and indicates the instantaneous direction of movement for the examined curve point.
  • the torsion indicates the amount of tilting of the planing plane and can therefore be obtained by means of the following rule:
  • Equations (1.8) to (1.11) now provide vector-valued functions for all investigated kinematic variables.
  • the conversion into the kinematics of the trajectory can take place at any time by inserting the scalar path sizes v, a, j, d determined by the path planning.
  • Equation (1.13) now gives a relation between the location s and the distance derived. Thus, at any point in time, a path location predetermined by the path planning can not be calculated into the corresponding point in R 3 . Equation (1.13) is used to create the prerequisites for applying the Frenet formulas for the basic element distance. The derivation of equation (1.13) according to the location of the track results in the following relationship:
  • the trajectory kinematics can be calculated by a simple multiplication of the respective path size with the normalized direction vector.
  • each point s on the circular arc is rotated by one rotation R of the radius vector Angle ⁇ and subsequent addition of the circle center can be determined. Since the axis of rotation of a Kreis ⁇ remains constant, R depends only on the angle of rotation, which can therefore also be regarded as a curve parameter.
  • the conversion between the web location s on the circular arc and the curve parameter ⁇ can be done by a simple rule of three and leads to the following relationship:
  • the base transformation can be formulated as follows:
  • Another differentiation step provides the normal vector of the circular arc in the transformed coordinate system:
  • the derivation provides a constant K which corresponds to the reciprocal of the circle radius r and thus corresponds exactly to the general definition of the circular curvature. Since the arc represents a flat curve, there is no tilt of the corresponding plane normal and the torsion is eliminated. It should also be noted at this point that the two coefficients K and ⁇ represent scalar quantities and therefore the transformation of the coordinate system to its value has no effect. For this reason, both sizes remain valid even in the original coordinate system, which can be recognized by the absence of the tilde.
  • the kinematic variables consist exclusively of direction vectors, for which only the rotational modification has to be reversed.
  • the translational shift in the return ⁇ transformation can be omitted and it follows:
  • a direct conversion of Bru kinematics to the korrespondie ⁇ -saving Traj ektorienkinematik for the line and the circle is possible.
  • Prerequisite for the applicability is a representation of the trajectory as an at least three times differentiable vector-valued function of the railway location s.
  • the corresponding back kinematics of the trajectory are calculated back.
  • the valid kinematic restrictions must be determined.
  • v max is now the largest value that satisfies all three inequalities:
  • Equations (2.11) through (2.14) allow the calculation of the train restrictions based on the direction vector of the route and the axis restrictions.
  • a first solution step of the alternative numerical approach is to calculate the vector lengths.
  • the basis for the suggested solution path is the fact that by means of the equations (1.42) to (1.45) it is possible to calculate the length of the respective resulting kinematics vector without the use of trigonometric functions.
  • the vectors Fund ⁇ are perpendicular to each other and represent normalized basis vectors. These are scaled by the coefficients in equations (1.37) to (1.40). This results in a right-angled triangle in which the scaled basis vectors are the catheters while the result of the vector addition forms the hypotenuse.
  • the Pythagorean theorem it is possible to use the Pythagorean theorem to determine the length of the resulting kinematics vectors:
  • the permissible scaling can also be determined here by selecting the smallest quotient:
  • the one-dimensional kinematic planning of the path parameter is presented below.
  • the goal of this planning component is to cover a defined railway line as well as possible in one dimension and in compliance with specified restrictions.
  • a fourth-order path planning method has been developed.
  • the aim of the method steps presented below is to enable a sequential maximization of the kinematic variables on the model of the constant-jerk method.
  • an algorithm has been found which allows to increase the overall dynamics of the positioning over several path segments. This is only possible if the kinematic system does not have to stop at each transition point between the individual parts of the path. This can be achieved by smoothing the transitions, which means that changes in direction take place slowly and continuously and can therefore be traversed at a relatively high speed.
  • the interval labels Il to 115 are assigned the respective bounds. Based on the calculation rule (3.1) and Table 1, a subdivision of the function into fifteen subareas can be seen. The constants T 1 to T 1 are thereby symbolic of the seven occurring basic interval widths, giving rise the actual segmentation of the domain. These seven values can be determined a priori for each path segment and remain immutable thereafter. The calculation of T 1 to T 1 is based on the given restrictions and the path length. Closer examination of equation (3.1) reveals that the subfunctions in the odd numbered intervals represent second degree polynomials. The resulting parabolas differ in their vertex and in their opening direction. In addition, the parabolic width also varies between the acceleration and braking phases.
  • the mentioned parameters were selected in such a way that the vertex in the direction of the abscissa lies exactly in the respective interval center and the associated function value exactly corresponds in its amount to the jerk rise restriction ⁇ i max .
  • the vertex in the direction of the abscissa lies exactly in the respective interval center and the associated function value exactly corresponds in its amount to the jerk rise restriction ⁇ i max .
  • the parabola width causes these zeros to fall exactly on the interval boundaries and thus form a continuous transition to the zero functions in the even-numbered intervals.
  • the core component of the planning algorithm is the determination of the basic interval widths T 1 to T 1 , since these directly determine the position of the extremes of the kinematic functions.
  • the requirements of time optimality and compliance with the restrictions can only be met by bringing one kinematic quantity after another as close as possible to their restriction pointed out that from the perspective of the interval width determination nebe n ⁇ ?, /, ⁇ v , v v also s ael represents a restriction.
  • the interval width of the jerk-up phase during acceleration is determined in a first step. Limiting to the corresponding value T 1 , the restriction first achieved by the resulting kinematic functions has an effect. This can be represented by the following inequalities:
  • the optimization problem can be formulated as follows:
  • the path planner now generates the kinematic progressions on the orbital plane for each individual element. In this case, all higher time derivatives of the speed at the beginning and end of the element are zero and therefore do not need to be considered along the entire route. However, this does not apply to the web speed, as this should have a continuous course over the entire route.
  • the aim now is to develop a method which allows these start and end speeds and thus the path planning algorithm to determine the kinematics element by element, without having to consider the total distance.
  • an element is identified by the seven variables s target , v max , ⁇ max , y max , ⁇ i max , v start and v target . These variables of the j 'th element distance can become an element vector
  • start and end speeds may be smaller than v max , which corresponds to the first case in FIG. 5.
  • the starting speed is smaller and the final speed is greater than or equal to the path speed limit.
  • v start is greater than or equal to v max and v target is greater than max .
  • the calculated final speed is adopted and the current starting speed is not modified, furthermore, the final speed is first as start speed of the following element assuming that: Applies in the second case so will set.
  • the start speed of the current element remains unchanged. In the latter case, the starting speed becomes too established.
  • the final speed of the previous track element must be limited so that the course of the web speeds along the entire route is continuous.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Feedback Control In General (AREA)

Abstract

L'invention concerne un procédé et un dispositif de planification de trajectoire d'ordre 4, exploitable en temps réel, pour générer des trajectoires de consigne continues, sans à-coups, dépendantes du temps. L'invention concerne en outre un dispositif de commande d'actionneur servant à déplacer un actionneur le long d'une trajectoire prédéfinie. Selon l'invention, la dimension d'une trajectoire de consigne tridimensionnelle, indépendante du temps, décrivant une trajectoire donnée, est réduite à une fonction unidimensionnelle de l'emplacement de la trajectoire. Des restrictions cinématiques pouvant aller jusqu'à l'ordre 4 sont projetées sur la fonction unidimensionnelle de l'emplacement de la trajectoire pour déterminer le paramètre cinématique "augmentation des à-coups" en tant que fonction unidimensionnelle du temps, rapportée à la trajectoire, à partir de laquelle la trajectoire de consigne tridimensionnelle, dépendante du temps, est déterminée pour le paramètre cinématique "déplacement".
PCT/EP2010/057470 2009-05-29 2010-05-28 Procédé et dispositif de planification de trajectoire d'ordre 4, exploitable en temps réel, pour générer des trajectoires de consigne continues, sans à-coups WO2010136586A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200910024130 DE102009024130B4 (de) 2009-05-29 2009-05-29 Verfahren zur echtzeitfähigen Bahnplanung kontinuierlicher, rucksprungfreier Sollwerttrajektorien
DE102009024130.2 2009-05-29

Publications (1)

Publication Number Publication Date
WO2010136586A1 true WO2010136586A1 (fr) 2010-12-02

Family

ID=42942071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2010/057470 WO2010136586A1 (fr) 2009-05-29 2010-05-28 Procédé et dispositif de planification de trajectoire d'ordre 4, exploitable en temps réel, pour générer des trajectoires de consigne continues, sans à-coups

Country Status (2)

Country Link
DE (1) DE102009024130B4 (fr)
WO (1) WO2010136586A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10271021B2 (en) 2016-02-29 2019-04-23 Microsoft Technology Licensing, Llc Vehicle trajectory determination to stabilize vehicle-captured video
CN111015671A (zh) * 2019-12-30 2020-04-17 南京埃斯顿机器人工程有限公司 一种机器人平面螺旋线打磨轨迹的规划方法
CN112720481A (zh) * 2020-12-22 2021-04-30 中山大学 一种基于急突度的机械臂最小运动规划和控制方法
US11022445B2 (en) 2018-12-11 2021-06-01 Here Global B.V. Segmented path coordinate system
CN113119111A (zh) * 2021-03-18 2021-07-16 深圳市优必选科技股份有限公司 机械臂及其轨迹规划方法和装置
CN113478495A (zh) * 2021-09-08 2021-10-08 南京蓝昊智能科技有限公司 一种多维度的机械臂平滑路径规划方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011122434B4 (de) 2011-12-24 2019-07-04 Robert Bosch Gmbh Verfahren zur Steuerung einer Bewegung von mechanischen Vorrichtungen unter Verwendung nacheinander interpolierter Verfahrsätze
DE102014103370B4 (de) 2014-03-12 2017-08-24 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren und Vorrichtung zur zeitdiskreten Steuerung eines Manipulators
DE102015103452B4 (de) * 2015-03-10 2022-06-02 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren zum zeitdiskreten Anhalten antreibbarer Achsen, Computerprogrammprodukt und Vorrichtung zur Durchführung eines derartigen Verfahrens
DE102015103451B4 (de) 2015-03-10 2021-09-23 Deutsches Zentrum für Luft- und Raumfahrt e.V. Verfahren zum zeitdiskreten Kontrollieren antreibbarer Achsen und Computerprogrammprodukt
CN108415239B (zh) * 2018-02-09 2020-08-11 北京理工大学 一种基于动态构建可达集的直接控制分配方法
EP3623887A1 (fr) 2018-09-12 2020-03-18 Siemens Aktiengesellschaft Guidage de déplacement optimisé dans le temps entre des sections ferroviaires
US11264929B2 (en) * 2019-09-18 2022-03-01 Rockwell Automation Technologies, Inc. Systems and methods for non-rigid load vibration control
DE102019218711A1 (de) * 2019-12-02 2021-06-02 Volkswagen Aktiengesellschaft Bewegungsbahnbestimmung zum Steuern einer Maschinenkinematik
DE102021102619A1 (de) 2021-02-04 2022-08-04 Carl Zeiss Industrielle Messtechnik Gmbh Steuereinheit und steuerungsverfahren
DE102022110546A1 (de) 2022-04-29 2023-11-02 Carl Zeiss Industrielle Messtechnik Gmbh Steuereinheit und Steuerungsverfahren

Non-Patent Citations (16)

* Cited by examiner, † Cited by third party
Title
A. AMTHOR, J. WERNER, A. LORENZ, S. ZSCHAECK, C. AMENT: "Asymmetric motion profile planning for nanopositioning and nanomeasuring machines", PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS, PART I: JOURNAL OF SYSTEMS AND CONTROL ENGINEERING, vol. 224, no. 1/2010, 26 October 2009 (2009-10-26), http://journals.pepublishing.com, pages 79 - 92, XP008128180, ISSN: 2041-3041 *
BROQUERE, X.; SIDOBRE, D.; HERRERA-AGUILAR, I.: "Soft Motion Trajectory Planner for Service Manipulator Robot", INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, IROS 2008, IEEE/RSJ, 2008
CHI HAUR WU, CHI CHENG JOU: "Planning and Control of Robot Orientational Path", IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, vol. 19, no. 5, October 1989 (1989-10-01), pages 1234 - 1241, XP002606836 *
JORGE ANGELES: "Fundamentals of Robotic Mechanical Systems,Theory, Methods, and Algorithms", 2007, SPRINGER SCIENCE+BUSINESS MEDIA, LLC, New York, USA, ISBN: 0-387-29412-0, pages: 429 - 448, XP002606837 *
LAMBRECHTS P ET AL: "Trajectory planning and feedforward design for electromechanical motion systems", CONTROL ENGINEERING PRACTICE, PERGAMON PRESS, OXFORD, GB LNKD- DOI:10.1016/J.CONENGPRAC.2004.02.010, vol. 13, no. 2, 1 February 2005 (2005-02-01), pages 145 - 157, XP004560097, ISSN: 0967-0661 *
LAMBRECHTS P ET AL: "Trajectory planning and feedforward design for high performance motion systems", AMERICAN CONTROL CONFERENCE, 2004. PROCEEDINGS OF THE 2004 BOSTON, MA, USA JUNE 30-JULY 2, 2004, PISCATAWAY, NJ, USA,IEEE, vol. 5, 30 June 2004 (2004-06-30), pages 4637 - 4642, XP010761564, ISBN: 978-0-7803-8335-7 *
LAMBRECHTS, P.; BOERLAGE, M.; STEINBUCH, M.: "Trajectory planning and feedforward design for electromechanical motion systems", CONTROL ENGINEERING PRACTICE, vol. 13, no. 3, 2004, pages 145 - 157
LAMBRECHTS, P.; BOERLAGE, M.; STEINBUCH, M.: "Trajectory Planning and Feedforward Design for High Performance Motion Systems", AMERICAN CONTROL CONFERENCE, PROCEEDINGS, 2004, pages 4637 - 4642
LEONHARD, W.: "Trajectory Control of a Multi-axes Robot with Electrical Servo Drives", IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS, PROCEEDINGS, 1989
LI, H. Z.; GONG, Z. M.; LIN, W.; LIPPA, T.: "Motion profile planning for reduced jerk and vibration residuals", SIMTECH TECHNICAL REPORTS, vol. 8, no. 1, 2007, pages 32 - 37
MACFARLANE, S.: "On-line Smooth Trajectory Planning for Manipulators", MASTER THESIS, August 2001 (2001-08-01)
MACFARLANE, S.; CROFT, E. A.: "Jerk-Bounded Manipulator Trajectory Planning: Design for Real-Time Application", IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, vol. 19, no. 1, February 2003 (2003-02-01)
OLOMSKI, J.: "Trajectory Planning, Optimization and Control for Industrial Robots", INTERNATIONAL CONFERENCE ON CONTROL AND APPLICATIONS, PROCEEDINGS, 1989
REZA RAVANI, ALI MEGHDARI: "Velocity Distribution Profile for Robot Arm Motion Using Rational Frenet-Serret Curves", INFORMATICA, vol. 17, no. 1, 2006, pages 69 - 84, XP002606838 *
SAWODNY, 0.; ASCHEMANN, H.; LAHRES, S.: "An automated gantry crane as a large workspace robot", CONTROL ENGINEERING PRACTICE, vol. 10, no. 12, 2002, pages 1323 - 1338
SAWODNY, 0.; ASCHEMANN, H.; LAHRES, S.; HOFER, E. P.: "A low cost material handling and logistic system for shop floor manufacturing using an automated bridge crane", 14TH IFAC WORLD CONGRESS, PROCEEDINGS, 1999, pages 517 - 522

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10271021B2 (en) 2016-02-29 2019-04-23 Microsoft Technology Licensing, Llc Vehicle trajectory determination to stabilize vehicle-captured video
US11022445B2 (en) 2018-12-11 2021-06-01 Here Global B.V. Segmented path coordinate system
CN111015671A (zh) * 2019-12-30 2020-04-17 南京埃斯顿机器人工程有限公司 一种机器人平面螺旋线打磨轨迹的规划方法
CN111015671B (zh) * 2019-12-30 2022-03-08 南京埃斯顿机器人工程有限公司 一种机器人平面螺旋线打磨轨迹的规划方法
CN112720481A (zh) * 2020-12-22 2021-04-30 中山大学 一种基于急突度的机械臂最小运动规划和控制方法
CN113119111A (zh) * 2021-03-18 2021-07-16 深圳市优必选科技股份有限公司 机械臂及其轨迹规划方法和装置
CN113478495A (zh) * 2021-09-08 2021-10-08 南京蓝昊智能科技有限公司 一种多维度的机械臂平滑路径规划方法
CN113478495B (zh) * 2021-09-08 2022-03-11 南京蓝昊智能科技有限公司 一种多维度的机械臂平滑路径规划方法

Also Published As

Publication number Publication date
DE102009024130A1 (de) 2010-12-02
DE102009024130B4 (de) 2011-05-12

Similar Documents

Publication Publication Date Title
WO2010136586A1 (fr) Procédé et dispositif de planification de trajectoire d'ordre 4, exploitable en temps réel, pour générer des trajectoires de consigne continues, sans à-coups
EP2255931B2 (fr) Procédé et dispositif de commande d'un manipulateur
DE60038578T2 (de) Vorrichtung und Verfahren zur Erzeugung glatter Kurven in einem Bewegungssteuerungssystem
EP1934660B1 (fr) Procede et dispositif pour guider le deplacement d'un element mobile d'une machine
DE102018203702A1 (de) Vorrichtung für maschinelles Lernen, Servo-Regelungsvorrichtung, Servo-Regelungssystem und Verfahren für maschinelles Lernen
DE102012017331B4 (de) Numerische Steuervorrichtung mit einer Werkstücksetzfehlerkompensierungseinheit für eine Mehrachsenwerkzeugmaschine
DE112021001104T5 (de) Bewegungsplanungsverfahren mit kollisionsvermeidung für industrieroboter
DE102014103370B4 (de) Verfahren und Vorrichtung zur zeitdiskreten Steuerung eines Manipulators
DE102015103451B4 (de) Verfahren zum zeitdiskreten Kontrollieren antreibbarer Achsen und Computerprogrammprodukt
EP3623116A1 (fr) Procédé et dispositif de planification du mouvement sans collision d'un manipulateur
DE19618332A1 (de) Numerische Steuervorrichtung mit Spline-Interpolationsfunktion
DE102011018536A1 (de) Numerische Steuerung mit einer Oszillationsvorgangsfunktion, die im Stande ist, Geschwindigkeit in einem optionalen Abschnitt zu ändern
DE69634034T2 (de) Verfahren zur kurveninterpolation bei einer geschwindigkeitssteuerung eines roboters während eines überschleifvorganges
EP0998700B1 (fr) Procede pour la generation de trajectoires d'accostage, utilisable pour le guidage d'un vehicule vers une trajectoire cible predefinie
DE19841716A1 (de) Steuerungsverfahren und numerische Steuerung zur Bewegungsführung von industriellen Bearbeitungsmaschinen
DE102013102656B4 (de) Schneidstrecken-berechnungseinrichtung für eine mehrachsen-werkzeugmaschine
DE102020124734A1 (de) Simulationsgerät
EP0791870A1 (fr) Procédé et dispositif pour l'adaptation d'un cÔntroleur à logique floue
EP0530401A1 (fr) Méthode de déclenchement d'opérations en fonction de la position pendant l'usinage par un robot ou une machine-outil
DE4342057A1 (de) Verfahren zur Adaption der Regelparameter einer elektrohydraulischen Achse
DE102012206952A1 (de) Verfahren und Vorrichtung zur Steuerung der Bewegung einer beweglichen Einheit im Raum
EP3367185A1 (fr) Système de moteur et sa évaluation
WO2019002587A1 (fr) Unité de régulation, système mécatronique et procédé pour la régulation d'un système mécatronique
DE19800552C2 (de) Verfahren zur Kommandosteuerung eines Manipulators
EP3037903A1 (fr) Procédé de fonctionnement d'un système technique, dispositif de commande, produit-programme informatique et système technique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10726930

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10726930

Country of ref document: EP

Kind code of ref document: A1