WO2010134288A1 - 原子炉格納構造 - Google Patents

原子炉格納構造 Download PDF

Info

Publication number
WO2010134288A1
WO2010134288A1 PCT/JP2010/003199 JP2010003199W WO2010134288A1 WO 2010134288 A1 WO2010134288 A1 WO 2010134288A1 JP 2010003199 W JP2010003199 W JP 2010003199W WO 2010134288 A1 WO2010134288 A1 WO 2010134288A1
Authority
WO
WIPO (PCT)
Prior art keywords
debris
reactor containment
pool
sump
weir
Prior art date
Application number
PCT/JP2010/003199
Other languages
English (en)
French (fr)
Inventor
宇多信喜
福田秀朗
石原伸夫
村田和豊
有川浩
柴戸要
松岡寛
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to CA2762110A priority Critical patent/CA2762110A1/en
Priority to US13/320,310 priority patent/US20120057668A1/en
Priority to EP10777527A priority patent/EP2434496A1/en
Priority to KR1020117028564A priority patent/KR20120012480A/ko
Publication of WO2010134288A1 publication Critical patent/WO2010134288A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C15/00Cooling arrangements within the pressure vessel containing the core; Selection of specific coolants
    • G21C15/18Emergency cooling arrangements; Removing shut-down heat
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21CNUCLEAR REACTORS
    • G21C9/00Emergency protection arrangements structurally associated with the reactor, e.g. safety valves provided with pressure equalisation devices
    • G21C9/004Pressure suppression
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • the present invention relates to a reactor containment structure used for a pressurized water reactor.
  • the primary coolant (light water) is pressurized so as not to boil.
  • the primary coolant is heated with the thermal energy generated by the nuclear fission reaction, and the primary coolant that has reached a high temperature is sent to the steam generator.
  • the secondary coolant (light water) is boiled and the turbine generator is rotated by high-temperature and high-pressure steam to generate electricity.
  • This security structure mainly includes a reactor containment vessel and a pump device.
  • the reactor containment vessel mainly includes a reactor containment chamber, a pool (sump pool), and a sump.
  • the reactor is stored in the reactor containment chamber.
  • the pool is provided inside the reactor containment vessel and adjacent to the lower part of the reactor containment chamber, and stores the emergency coolant.
  • the sump is located at the bottom of the pool.
  • an opening for allowing the emergency coolant in the reactor containment chamber to flow into the pool is provided in the lower part of the reactor containment chamber.
  • the pump device sucks the emergency coolant from the sump and discharges it from the upper part of the reactor containment chamber.
  • the emergency coolant is sucked from the sump at the bottom of the pool by the pump device and discharged from the top of the reactor containment chamber.
  • the discharged emergency coolant flows into the pool from the opening of the reactor containment chamber, is sucked again by the pump device, and circulates in the safety structure.
  • the reactor containment structure disclosed in Patent Document 1 below includes a second sump that functions as a temporary storage tank for emergency cooling water at the opening of the floor of the reactor containment chamber.
  • the 2nd screen is provided in the water outflow part from a 2nd sump to a pool.
  • the debris is captured by the second screen so as not to flow into the pool, thereby suppressing the debris from adhering to the sump screen.
  • the pressurized water reactor as described above has a problem that the second sump cannot be provided in all of the openings. That is, for example, the second sump as described above cannot be provided in the opening of the ascending / descending steps provided between the pool and the reactor containment chamber. It is also conceivable that this opening can be opened and closed. However, if the opening of the elevating staircase can be opened and closed, there is a problem that maintainability is lowered and the circulation efficiency of emergency cooling water is lowered.
  • the present invention provides a reactor containment structure that can suppress the attachment of debris to a debris filter and can simplify the configuration of an opening.
  • a reactor containment structure of the present invention comprises the following.
  • a reactor containment chamber having an opening communicating with the lower floor in the lower part of the room where the nuclear reactor is housed and the lower floor, a sump pool in which emergency coolant is stored, and a lower part of the sump pool Reactor containment vessel with sump.
  • a debris filter provided in the sump.
  • a pump body that sucks the emergency coolant from the sump and discharges it from the upper part of the reactor containment chamber.
  • the emergency coolant discharged from the upper part of the reactor containment chamber reflows into the sump pool from the opening of the reactor containment chamber, and the emergency containment Coolant circulates.
  • the reactor containment structure according to the present invention is characterized in that a debris trapping portion is provided so as to intersect the emergency coolant flow path in the sump pool. That is, in order to solve the above problems, the reactor containment structure of the present invention includes the following. Reactor containment vessel. A reactor containment chamber provided inside the reactor containment vessel and housing the reactor. A pool that is provided inside the reactor containment vessel and adjacent to the lower part of the reactor containment chamber and stores an emergency coolant. An opening through which the emergency coolant flows from the reactor containment chamber into the pool; A sump provided below the pool. A debris filter provided in the sump for filtering debris contained in the emergency coolant. A pump device that sucks the emergency coolant from the sump and discharges it into the reactor containment chamber.
  • a debris capturing unit that is provided in the pool and captures the debris.
  • the debris capturing part is provided so as to intersect the flow path of the emergency coolant flowing into the pool from the opening and flowing toward the sump.
  • the debris capturing unit captures debris in the flow path of the emergency coolant that flows into the pool and flows toward the sump. Therefore, debris contained in the emergency coolant is suppressed from reaching the debris filter. Thereby, adhesion of debris to the debris filter can be suppressed.
  • the debris capturing unit may have a capturing moat provided at the bottom of the sump pool so as to intersect the emergency coolant flow path.
  • the debris trapping part may include a trapping moat provided at the bottom of the pool so as to extend in a direction intersecting the emergency coolant flow path.
  • Part of the debris contained in the emergency coolant flowing into the pool moves along the flow path of the emergency coolant so as to roll on the bottom of the pool.
  • the debris eventually reaches a trapping moat extending in a direction intersecting the emergency coolant flow path. Debris that reaches the trapping moat enters the trapping moat and is captured by the trapping moat. Therefore, the debris can be captured more reliably by the capture moat extending in the direction intersecting the emergency coolant flow path.
  • the capture moat may surround the debris filter.
  • the debris contained in the emergency coolant flowing into the pool moves from any direction toward the debris filter so as to roll on the bottom of the pool toward the debris filter.
  • the trapping moat surrounds the debris filter body, the debris moving from any direction toward the debris filter body can be trapped more reliably by the trapping moat.
  • the debris capturing unit may include a downstream weir that extends upward from an edge on the downstream side of the flow channel among the edges of the capturing moat. That is, the debris capturing unit may include a downstream weir extending upward from the downstream edge at the downstream edge of the capture moat.
  • the emergency coolant flow collides with the downstream weir. Then, the flow of the emergency coolant flowing into the inside of the trapping moat is generated. Thereby, the debris that moves so as to roll on the bottom of the pool is caused to flow by the flow of the emergency coolant and enters the inside of the trapping moat. Therefore, debris can be captured efficiently.
  • the debris capturing unit may include an upstream filter that extends downstream from an upstream edge of the flow path and covers a part of the capturing moat among edges of the capturing moat.
  • the debris capturing part includes an upstream filter provided at an edge of the capturing moat upstream of the flow path so as to extend toward the downstream of the flow path and cover a part of the capturing moat. But you can.
  • the debris that has entered the inside of the emergency trapping moat is caused to flow to the emergency coolant on the upstream side of the emergency coolant flow path and to flow out of the trapping moat.
  • the upstream filter captures debris contained in the emergency coolant. Thereby, it is possible to effectively prevent the debris that has entered the inside of the capture moat from flowing into the flow path of the emergency coolant outside the capture moat.
  • the debris capturing part has an upward extending weir extending upward from a bottom part of the sump pool. That is, the debris capturing unit may include a bottom weir provided at the bottom of the pool so as to extend upward from the bottom. According to this configuration, the debris that moves so as to roll on the bottom of the pool is blocked by the bottom weir (upward extending weir) and captured.
  • the debris capturing unit may include a downward extending weir that extends downward from the ceiling of the sump pool to below the liquid level of the emergency coolant. That is, the debris capturing unit may include a ceiling weir provided on the ceiling of the pool so as to extend downward from the ceiling and reach below the liquid level of the emergency coolant stored in the pool. Good. According to this configuration, debris that moves near the liquid level of the emergency coolant stored in the pool by receiving buoyancy is captured by the ceiling weir.
  • the bottom dam may be provided on the upstream side of the flow path, and the ceiling dam may be provided on the downstream side of the flow path. According to this configuration, the upper end (tip) of the bottom weir can be easily positioned below the liquid level.
  • acquisition part may be provided with two or more. According to this configuration, the efficiency of capturing debris can be improved by the plurality of debris capturing units.
  • the nuclear reactor containment structure according to the present invention can suppress the adhesion of debris to the debris filter and can simplify the configuration of the opening.
  • FIG. 2 is a cross-sectional view of a main part of the reactor containment structure 1 according to the first embodiment of the present invention, taken along the line II in FIG.
  • FIG. 3 is an enlarged cross-sectional view of a main part of the reactor containment structure 1 according to the first embodiment of the present invention, taken along the line II-II in FIG. 2.
  • FIG. 4 is an enlarged cross-sectional view of a main part of a nuclear reactor containment structure 3 according to a third embodiment of the present invention, and is an enlarged view of a debris capturing unit 50. It is an expanded sectional view of the nuclear reactor containment structure 4 which concerns on 4th embodiment of this invention, Comprising: It is an enlarged view of the debris capture part 60.
  • FIG. 4 is an enlarged cross-sectional view of a main part of a nuclear reactor containment structure 3 according to a third embodiment of the present invention, and is an enlarged view of a debris capturing unit 50.
  • FIG. 1 is a schematic configuration diagram of a reactor containment structure 1 according to a first embodiment of the present invention.
  • 2 is a cross-sectional view taken along the line II in FIG. 3 is a cross-sectional view taken along the line II-II in FIG.
  • the reactor containment structure 1 includes a reactor containment vessel 10 that houses a nuclear reactor 5, and a circulation pump (pump body, pump device) 20.
  • the nuclear reactor containment vessel 10 includes a nuclear reactor containment chamber 11 for storing the nuclear reactor 5 and a pool (sump pool) 12 in which emergency cooling water (emergency cooling liquid) W is stored.
  • the reactor containment chamber 11 is provided inside the reactor containment vessel 10.
  • the reactor containment chamber 11 stores a steam generator and a pressurizer (not shown) together with the reactor 5.
  • the floor portion 11a of the reactor containment chamber 11 is provided with openings 11b, 11c, 11d (see FIG. 2) communicating with the lower floor.
  • the pool 12 is provided inside the nuclear reactor containment vessel 10 adjacent to the lower part of the nuclear reactor containment chamber 11, and stores the emergency cooling water W. That is, the pool 12 is provided on the lower floor of the reactor containment vessel 10, specifically, on the basement floor of the reactor containment vessel 10.
  • a circulating sump (sump) 13 is provided below the bottom 12 a of the pool 12.
  • the circulation sump 13 is provided one step lower than the bottom 12a so as to extend downward from the bottom 12a.
  • the circulation sump 13 is provided with a sump screen (debris filter body) 14 for filtering debris such as damaged matters contained in the emergency cooling water W.
  • the sump screen 14 is provided so as to cover the opening of the circulation sump 13.
  • a raised edge (downstream weir) 32 formed higher than the bottom portion 12 a is formed at the opening of the circulation sump 13.
  • the structure 19 such as a support column is disposed at the center of the pool 12.
  • the sump screen 14 is formed in a box shape with one surface open.
  • the sump screen 14 is installed so that the opened side is overlaid on the opening of the circulation sump 13. That is, the sump screen 14 covers the opening of the circulation sump 13 with the bottom facing upward and the opening facing downward. Further, as shown in FIG. 1, the sump screen 14 is entirely submerged in order to effectively use the entire area for capturing the damaged object.
  • a debris filter body in which plate members having through holes are stacked in multiple stages may be used.
  • the circulation pump 20 is connected to one end of the suction side pipe 20a.
  • the other end of the suction side pipe 20 a is connected to the circulation sump 13 and opens to the circulation sump 13.
  • the circulation pump 20 is connected to the discharge side pipe 20b.
  • the discharge side pipe 20 b is connected to a spray nozzle 20 c disposed in the upper part 11 f of the reactor containment chamber 11.
  • the reactor containment structure 1 operates the circulation pump 20 in the event of a primary coolant loss accident that accompanies breakage of the piping portion 5a of the reactor 5.
  • the circulation pump 20 sucks the emergency cooling water W stored in the pool 12 from the circulation sump 13.
  • the circulation pump 20 discharges the sucked emergency cooling water W from a spray nozzle 20 c provided in the upper part 11 f of the reactor containment chamber 11.
  • the circulation pump 20 discharges the emergency cooling water W from the spray nozzle 20 c and supplies it to the nuclear reactor 5 to cool the nuclear reactor 5.
  • Emergency cooling water W that has cooled the reactor 5 and has flowed down to the floor 11a flows into the pool 12 from the openings 11b, 11c, and 11d (see FIG. 2). As described above, the reactor containment structure 1 circulates the emergency cooling water W stored in the pool 12.
  • the reactor containment structure 1 includes a debris capturing unit 30 as shown in FIG.
  • the debris capturing unit 30 captures the debris D that moves toward the sump screen 14.
  • the debris capturing unit 30 includes a capturing moat 31, a raised edge 32 (downstream weir), and an upstream filter 33.
  • the trapping moat 31 is provided so as to extend in a direction intersecting the flow path R (for example, R1 to R3) of the emergency cooling water W.
  • the capture moat 31 is provided so as to surround the sump screen 14.
  • the trapping moat 31 is formed in a groove shape having a rectangular cross section at the bottom 12 a of the pool 12.
  • the trapping moat 31 has a width from the inside of the outer edge of the sump screen 14 to the outside of the outer edge of the sump screen 14. That is, the upstream edge of the channel R of the trapping moat 31 is provided outside the outer edge of the sump screen 14. Further, the downstream edge of the channel R of the trapping moat 31 is provided inside the outer edge of the sump screen 14.
  • the edge 32 is provided at the downstream edge of the flow path R of the capture moat 31.
  • the raised edge 32 is provided so as to extend upward from the downstream edge of the flow path R. That is, the raised edge 32 is formed around the opening of the circulation sump 13 so as to be one step higher than the bottom 12 a of the pool 12.
  • an burred portion 32 a is formed inside the outer edge of the rim 32.
  • a downstream edge of the flow path R of the trapping moat 31 is provided below the punching portion 32a so as to be smoothly connected to the punching portion 32a. That is, the bore portion 32 a is provided continuously to the capture moat 31 so that the emergency cooling water W flows between the catch moat 31.
  • the upstream filter 33 is fixed to the edge 31a on the upstream side of the flow path R of the trapping moat 31, as shown in FIG.
  • the upstream filter 33 is provided so as to extend from the edge 31 a on the upstream side of the flow path R of the trapping moat 31 toward the downstream side of the flow path R (direction approaching the circulation sump 13).
  • the upstream filter 33 is provided so as to cover the upstream portion of the flow path R of the trapping moat 31. That is, the upstream filter 33 covers a part of the trapping moat 31, and specifically, a grating is used.
  • the emergency cooling water W that has flowed down to the floor portion 11a flows into the pool 12 from the openings 11b, 11c, and 11d as shown in FIG.
  • the emergency cooling water W that has flowed into the pool 12 flows along the flow path R (R1 to R3) toward the circulation sump 13 illustrated in FIG.
  • the emergency cooling water W flows along the flow path R in the horizontal direction above the debris capturing unit 30.
  • a part of the flow of the emergency cooling water W collides with the raised edge 32.
  • a part of the flow of the emergency cooling water W colliding with the raised edge 32 flows downward and flows into the inside of the trapping moat 31.
  • the emergency cooling water W that has flowed into the bore portion 32a and flowed in the horizontal direction collides with the inner wall 31b and flows into the inside of the trapping moat 31 (arrow Y1).
  • the upper emergency cooling water W is affected by the flow of the external emergency cooling water W (flow in the direction toward the circulation sump 13). And in the upper part inside the trapping moat 31, the flow of the emergency cooling water W is generated in the same direction (arrow Y3). Then, a flow in the direction opposite to the flow direction of the upper emergency cooling water W is generated in the lower portion inside the trapping moat 31 (arrow Y2).
  • the reverse emergency cooling water W flow (arrow Y2) collides with the inner wall 31c of the trapping moat 31 and flows upward (arrow Y4).
  • the upward flow of the emergency cooling water W passes through the upstream filter 33 and merges with the flow outside the trapping moat 31.
  • vortex flows (arrows Y1 to Y4) are generated along the cross section of the rectangular capturing moat 31 shown in FIG.
  • the debris D scattered on the floor 11 a of the reactor containment chamber 11 shown in FIG. 1 is flowed by the emergency cooling water W and flows into the pool 12 together with the emergency cooling water W. As shown in FIG. 2, the debris D flowing into the pool 12 flows along the flow path R toward the circulation sump 13.
  • the specific gravity of the debris D that moves along the flow path R by the flow of the emergency cooling water W is larger than the specific gravity of the emergency cooling water W. Therefore, most (about 70%) of the debris D moves so as to roll on the bottom 12a.
  • the remaining debris D receives buoyancy due to adhesion of bubbles and moves as a floating body.
  • some debris reacts slightly with the emergency cooling water W to become gelatinous debris.
  • this gelatinous debris is referred to as “chemical debris” in order to distinguish it from normal debris.
  • the debris D that has flowed into the capture moat 31 is caused to flow by the vortex inside the capture moat 31 (arrows Y1 to Y4) and captured by the upstream filter 33.
  • the debris D captured by the upstream filter 33 adheres so that the chemical debris is entangled.
  • the emergency cooling water W that has passed through the upstream filter 33 joins the flow toward the circulation sump 13 and reaches the sump screen 14.
  • the emergency cooling water W that has reached the sump screen 14 passes through the sump screen 14 and flows into the circulation sump 13. At this time, since most (about 70%) of the debris D is captured by the debris capturing unit 30, the debris D adhering to the sump screen 14 is reduced as compared with the conventional case and hardly adheres to the sump screen 14.
  • the debris D hardly adheres to the sump screen 14, it is possible to prevent the load of the circulation pump 20 from increasing or the circulation efficiency from being lowered. Therefore, the emergency cooling water W is circulated efficiently, and the safety of the nuclear reactor 5 is continuously maintained.
  • the reactor containment structure 1 of the present embodiment includes the debris capturing unit 30 provided so as to intersect the flow path R of the emergency cooling water W in the pool 12. Therefore, debris D is captured in the flow path R of the emergency cooling water W in the pool 12, and the arrival of the debris D to the sump screen 14 is suppressed. Thereby, adhesion of the debris D to the sump screen 14 can be suppressed. Further, it is not necessary to provide a sump structure or a sealing mechanism in the openings 11b to 11d. Therefore, the configuration of the openings 11b to 11d can be simplified. Therefore, according to the reactor containment structure 1, it is possible to suppress the adhesion of the debris D to the sump screen 14, and to simplify the configuration of the openings 11b to 11d.
  • the debris capturing unit 30 has a capturing moat 31 provided on the bottom 12 a of the pool 12. Therefore, the debris D that moves so as to roll on the bottom 12 a of the pool 12 can be captured by the capture moat 31.
  • a trapping moat 31 surrounds the sump screen 14. Therefore, the debris D that moves so as to roll on the bottom 12 a of the pool 12 and travels toward the sump screen 14 from any direction can be more reliably captured by the capture moat 31.
  • the debris capturing unit 30 includes a ridge 32 extending upward from an edge of the capturing moat 31 on the downstream side of the flow path. That is, a rising edge 32 extending upward is provided at the edge of the debris capturing part 30 on the downstream side of the flow path R of the capturing moat 31. Therefore, the emergency cooling water W collides with the edge 32 and a strong flow of the emergency cooling water W flowing into the trapping moat 31 is generated. Thereby, the debris D that flows so as to roll on the bottom 12 a of the pool 12 flows into the inside of the trapping moat 31 by the flow of the emergency cooling water W. Therefore, the debris D can be captured efficiently.
  • the debris capturing unit 30 includes an upstream filter 33 that extends downstream from the edge 31 a on the upstream side of the flow channel among the edges of the capturing moat 31 and covers a part of the capturing moat 31. That is, the debris capturing unit 30 has an upstream filter 33 that extends toward the downstream side of the flow path R and covers a part of the capture moat 31 at the upstream edge of the flow path R of the capture moat 31. Therefore, the debris D that is about to flow out of the capture moat 31 is captured on the upstream side of the flow path. This effectively prevents the debris D that has flowed into the inside of the trapping moat 31 from flowing out onto the flow path R (for example, R1 to R3) of the emergency cooling water W outside the trapping moat 31. it can.
  • the flow path R for example, R1 to R3
  • FIG. 5 is a cross-sectional view of a main part of the reactor containment structure 2 according to the second embodiment of the present invention.
  • FIG. 6 is an enlarged cross-sectional view of a main part of the reactor containment structure 2. 5 and 6, the same components as those in FIGS. 1 to 4 are denoted by the same reference numerals and description thereof is omitted.
  • the nuclear reactor containment structure 2 includes a debris capturing unit 40.
  • the debris capturing unit 40 is provided so as to extend in a direction intersecting the flow path R2 from the opening 11c toward the circulation sump 13.
  • the debris capturing unit 40 includes a capturing moat 41, a downstream weir 42, and an upstream filter 33.
  • the catching moat 41 is provided at the bottom 12 a of the pool 12 so as to extend in a direction intersecting the flow path R ⁇ b> 2 of the emergency cooling water W.
  • the downstream weir 42 is provided along the downstream edge of the flow path R ⁇ b> 2 of the capture moat 41.
  • the downstream weir 42 is provided so as to extend upward from the bottom 12 a of the pool 12.
  • vortex flows (arrows Y1 to Y4) similar to the debris capturing unit 30 of the first embodiment described above are formed.
  • the debris D that moves so as to roll on the bottom 12a of the pool 12 along the flow path R2 flows into the trapping moat 41.
  • the debris D flowing into the trapping moat 41 moves along the wall surface of the trapping moat 41 by the vortex flow (arrows Y1 to Y4) in the trapping moat 41 and is captured by the upstream filter 33. Further, the debris D captured by the upstream filter 33 adheres so that chemical debris is entangled.
  • the debris capturing unit 40 can be appropriately provided in accordance with the size and shape of the pool 12.
  • the reactor containment structure may include both the debris capturing unit 30 of the first embodiment and the debris capturing unit 40 of the present embodiment. Thereby, for example, when the amount of debris D that moves along the flow path R2 is larger than the amount of debris D that moves along the flow paths R1 and R3, the amount of debris D that reaches the sump screen 14 Can be efficiently reduced.
  • the downstream weir 42 and the upstream filter 33 are provided.
  • the reactor containment structure may include only the trapping moat 41 without providing the downstream weir 42 and the upstream filter 33.
  • the debris D falls to the bottom of the capture moat 41 and is captured.
  • the debris D can be captured more effectively.
  • FIG. 7 is a cross-sectional view of a main part of the reactor containment structure 3 according to the third embodiment of the present invention.
  • FIG. 8 is an enlarged cross-sectional view of a main part of the reactor containment structure 3. 7 and 8, the same components as those in FIGS. 1 to 6 are denoted by the same reference numerals and description thereof is omitted.
  • the reactor containment structure 3 includes a debris capturing unit 50.
  • the debris capturing unit 50 includes a ceiling weir (downward extending weir) 51 and a bottom weir (upwardly extending weir) 52.
  • the ceiling weir 51 is provided in the ceiling portion 12 b located above the pool 12.
  • the ceiling weir 51 is provided so as to extend downward from the ceiling portion 12 b of the pool 12.
  • the lower end 51 a of the ceiling weir 51 is located below the liquid level of the emergency cooling water W stored in the pool 12.
  • the bottom weir 52 is provided on the bottom 12 a of the pool 12.
  • the bottom weir 52 is provided so as to extend upward from the bottom 12 a of the pool 12.
  • the upper end 52 a of the bottom weir 52 is located above the lower end 51 a of the ceiling weir 51.
  • the ceiling dam 51 and the bottom dam 52 are provided so as to extend in a direction intersecting the flow path R2.
  • the ceiling weir 51 and the bottom weir 52 have one end in the horizontal direction provided on the structure 19 and the other end in the horizontal direction provided on the inner wall 12 c of the pool 12. Thereby, the ceiling dam 51 and the bottom dam 52 are continuously formed between the structure 19 and the inner wall 12c of the pool 12 so as to block the flow path R2.
  • the emergency cooling water W circulates between the pool 12 and the reactor containment chamber 11 when a primary coolant leakage accident occurs. Then, as shown in FIG. 8, in the pool 12, a difference occurs in the water level of the emergency cooling water W between the upstream side and the downstream side of the flow path R of the bottom weir 52. Then, the emergency cooling water W flows down over the upper end portion 52a of the bottom weir 52.
  • the emergency cooling water W flowing along the flow path R ⁇ b> 2 flows between the lower end portion 51 a of the ceiling weir 51 and the bottom portion 12 a of the pool 12 and then flows down over the upper end portion 52 a of the bottom weir 52.
  • the debris D that has become a floating body is blocked by the ceiling weir 51 and captured.
  • the debris D moving so as to roll on the bottom portion 12 a is blocked by the bottom weir 52 and captured.
  • the debris D that moves together with the emergency cooling water W along the flow path R2 is blocked and captured by the debris capturing unit 50. Therefore, the debris D flowing downstream of the debris capturing unit 50 is drastically reduced.
  • the debris D that is buoyant in the emergency cooling water W and becomes a floating body is captured by the ceiling weir 51.
  • the debris D that moves so as to roll on the bottom 12 a of the pool 12 is captured by the ceiling weir 51. Therefore, the debris D flowing to the downstream side of the flow path R2 of the debris capturing unit 50 is drastically reduced. Thereby, it is suppressed that the debris D reaches the sump screen 14. Therefore, the adhesion of the debris D to the sump screen 14 can be suppressed.
  • the ceiling weir 51 is provided on the upstream side of the flow path R2, and the bottom weir 52 is provided on the downstream side of the flow path R2. Therefore, the lower end portion 51a of the ceiling weir 51 can be reliably disposed below the water surface.
  • FIG. 9 is an enlarged cross-sectional view of the main part of the reactor containment structure 4 according to the fourth embodiment of the present invention.
  • the same components as those in FIGS. 1 to 8 are denoted by the same reference numerals and description thereof is omitted.
  • the reactor containment structure 4 includes a debris capturing unit 60.
  • the debris capturing unit 60 includes a weir unit 61 and a weir unit 62.
  • the dam unit 61 includes a ceiling dam 65 and a bottom dam 66.
  • the lower end (tip) 65a of the ceiling weir 65 and the lower end (tip) 65a of the bottom weir 66 are opposed to each other with a gap 61a.
  • the dam unit 62 includes a ceiling dam 67 and a bottom dam 68.
  • the lower end (tip) 67a of the ceiling weir 67 and the upper end (tip) 68a of the bottom weir 68 are opposed to each other with a gap 62a.
  • the height of the gap 61 a of the weir unit 61 from the bottom 12 a is lower than the height of the gap 62 a of the weir unit 62 from the bottom 12 a.
  • the emergency coolant water W circulates between the pool 12 and the reactor containment chamber 11 when a primary coolant leakage accident occurs. At this time, as shown in FIG. 10, there is no difference in the level of the emergency cooling water W between the upstream side and the downstream side of the flow path R of the bottom weir 52.
  • the emergency cooling water W flowing along the flow path R ⁇ b> 2 passes through the first gap 61 a between the ceiling weir 65 and the bottom weir 66 of the first dam unit 61 and then the second dam unit 62. Passes through the second gap 62 a between the ceiling weir 67 and the bottom weir 68.
  • the debris D that has become a floating body is blocked by the ceiling weir 65 and captured. Further, the debris D that moves so as to roll on the bottom portion 12 a is blocked by the bottom weir 66 and captured.
  • the debris D that has become a floating body due to buoyancy in the emergency cooling water W is captured by the ceiling weir 65. Further, debris D moving so as to roll on the bottom 12 a of the pool 12 is captured by the bottom weirs 66 and 68. Therefore, the debris D that moves to the downstream side of the flow path R of the bottom weir 68 is drastically reduced. Thereby, it is suppressed that the debris D reaches the sump screen 14. Therefore, the adhesion of the debris D to the sump screen 14 can be suppressed.
  • the reactor containment structure 4 of the present embodiment it is possible to adjust the flow rate of the emergency coolant W passing therethrough by adjusting the sizes of the first gap 61a and the second gap 62a. It is.
  • FIG. 10 is an enlarged cross-sectional view of a main part of a reactor containment structure 4A that is a first modification of the reactor containment structure 4 of the fourth embodiment described above.
  • FIG. 11 is an enlarged cross-sectional view of a main part of a reactor containment structure 4B that is a second modification of the reactor containment structure 4 of the fourth embodiment.
  • symbol is attached
  • the nuclear reactor containment structure 4A includes a debris capturing unit 60A.
  • the debris capturing unit 60 ⁇ / b> A has a ceiling weir 51 between the weir unit 61 and the weir unit 62.
  • the nuclear reactor containment structure 4B includes a debris capturing unit 60B.
  • the debris capturing unit 60B includes a bottom weir 69a, a ceiling weir 51, and a bottom weir 69b on the downstream side of the flow path R of the weir unit 61.
  • the bottom dam 69a, the ceiling dam 51, and the bottom dam 69b are arranged in this order from the upstream side of the flow path R.
  • the trapping efficiency of the debris D is improved by providing a plurality of ceiling weirs and bottom weirs in the direction along the flow path R. Can be made.
  • the debris D that has become a floating body in the emergency cooling water W is continuously collided with the ceiling weir and the bottom weir, thereby removing bubbles attached to the debris D and allowing the debris D to settle. it can.
  • the present invention includes a nuclear reactor containment vessel, a nuclear reactor containment chamber that is provided inside the nuclear reactor containment vessel and stores the nuclear reactor, and is adjacent to the interior of the nuclear reactor containment vessel below the nuclear reactor containment chamber.
  • a pool in which the emergency coolant is stored, an opening through which the emergency coolant flows from the reactor containment chamber to the pool, a sump provided below the pool, and the sump A debris filter body that filters debris contained in the emergency coolant, a pump device that sucks the emergency coolant from the sump and discharges it into the reactor containment chamber, and is provided in the pool And a debris catching part for catching the debris, wherein the debris catching part intersects the flow path of the emergency coolant flowing into the pool from the opening and flowing toward the sump.
  • Circulation pump pump body, pump device 30, 40, 50, 60, 60A, 60B ... debris capturing part 31 ... capturing moat 31a, 41a ... edge 32 ... prime edge (downstream weir) 33 ... Upstream filter 42 ... Downstream weirs 61, 62 ...
  • Weir units 61a, 62a Gaps 51, 65, 67 ... Ceiling weirs 52, 66, 68, 69a, 69b ... Bottom weirs 51a, 65a, 67a ... Lower end (tip) 52a, 66a, 68a ... upper end (tip) R (R1 to R3) ... flow path D ... debris W ... emergency cooling water (emergency cooling liquid)

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

 この原子炉格納構造(1)は、原子炉格納容器(10)と、原子炉格納容器(10)の内部に設けられ、原子炉(5)を格納する原子炉格納室(11)と、原子炉格納容器(10)の内部に、原子炉格納室(11)の下方に隣接して設けられ、非常用冷却液(W)が貯留されるプール(12)と、非常用冷却液(W)を原子炉格納室(11)からプール(12)へ流入させる開口部(11c)と、プール(12)の下方に設けられたサンプ(13)と、サンプ(13)に設けられ、非常用冷却液(W)に含まれるデブリ(D)を濾過するデブリ濾過体(14)と、非常用冷却液(W)をサンプ(13)から吸い込んで原子炉格納室(11)の内部に吐出するポンプ装置(20)と、プール(12)に設けられ、デブリ(D)を捕捉するデブリ捕捉部(30)と、を備え、デブリ捕捉部(30)は、開口部(11c)からプール(12)に流入してサンプ(13)へ向けて流れる非常用冷却液(W)の流路(R)に交差する。

Description

原子炉格納構造
 本発明は、加圧水型原子炉に用いる原子炉格納構造に関する。
 本願は、2009年5月20日に、日本に出願された特願2009-122497号に基づき優先権を主張し、その内容をここに援用する。
 周知のように、加圧水型原子炉においては、一次冷却材(軽水)が沸騰しないように加圧されている。この一次冷却材を原子炉の核分裂反応によって生じた熱エネルギーで加熱し、高温となった一次冷却材を蒸気発生器に送る。これにより、二次冷却材(軽水)を沸騰させ、高温・高圧の蒸気によりタービン発電機を回して発電している。
 このような加圧水型原子炉においては、一次冷却材の喪失事故発生時に、原子炉が過熱状態になるのを防止するために、保安構造が採用されている。この保安構造は、主に、原子炉格納容器と、ポンプ装置とを備えている。
 原子炉格納容器は、主に、原子炉格納室と、プール(サンププール)と、サンプとを備えている。原子炉格納室には、原子炉が格納される。プールは、原子炉格納容器の内部に、原子炉格納室の下方に隣接して設けられ、非常用冷却液が貯留される。サンプは、プールの下部に設けられている。また、原子炉格納室の下部には、原子炉格納室内の非常用冷却液をプールに流入させる開口部が設けられている。
 ポンプ装置は、サンプから非常用冷却液を吸い込んで原子炉格納室の上部から吐出する。
 上記の保安構造において、非常用冷却液は、ポンプ装置によってプールの下部のサンプから吸い込まれ、原子炉格納室の上部から吐出される。吐出された非常用冷却液は、原子炉格納室の開口部からプールに流入し、再びポンプ装置によって吸い込まれ、保安構造内で循環する。
 上記の保安構造においては、一次冷却材の喪失事故の発生時に、高圧の一次冷却材の噴出により、断熱材片や金属片のデブリが生じてプールに流入する。そのため、サンプにサンプスクリーン等のデブリ濾過体を設けて、デブリがポンプ装置に吸い込まれないようにしている。しかしながら、デブリ濾過体に多量のデブリが付着すると、ポンプ装置の負荷が増大したり、循環効率が低下したりする。そのため、デブリ濾過体に対する多量のデブリの付着を避けることが望ましい。
 例えば、下記の特許文献1に開示される原子炉格納構造は、原子炉格納室の床部の開口に、非常用冷却水の一時貯留槽として機能する第二サンプを設けている。また、第二サンプからプールへの水流出部に第二スクリーンを設けている。すなわち、デブリを第二スクリーンで捕捉して、プールに流出しないようにすることで、サンプスクリーンへのデブリの付着を抑制している。
特開平7-260977号公報
 しかしながら、上記のような加圧水型原子炉においては、開口の全てに第二サンプを設けることができないという問題があった。すなわち、例えば、プールと原子炉格納室との間に設けられた昇降階段の開口部には、構造上、上記のような第二サンプを設けることができない。また、この開口部を開閉可能にすることも考えられる。しかし、昇降階段の開口部を開閉可能にすると、保守性が低下したり、非常用冷却水の循環効率が低下したりする問題がある。
 本発明は、デブリ濾過体へのデブリの付着を抑制でき、開口部の構成を簡略化できる原子炉格納構造を提供する。
 上記目的を達成するために、本発明の原子炉格納構造は、次を備える。
 原子炉が格納された室内下部において下階に連通する開口部を有する原子炉格納室と前記下階に設けられ、非常用冷却液が貯留されたサンププールと前記サンププールの下部に設けられたサンプとを備える原子炉格納容器。
 前記サンプに設けられたデブリ濾過体。
 前記サンプから前記非常用冷却液を吸い込んで前記原子炉格納室の上部から吐出するポンプ体。
 以上の構成を備える原子炉格納構造においては、前記原子炉格納室の上部から吐出された前記非常用冷却液が、前記原子炉格納室の開口部から前記サンププールに再流入し、前記非常用冷却液が循環する。
 本発明の原子炉格納構造は、前記サンププールにおける前記非常用冷却液の流路に交差するようにデブリ捕捉部を備えることを特徴とする。
 すなわち、上記の課題を解決するために、本発明の原子炉格納構造は、次を備える。
 原子炉格納容器。
 前記原子炉格納容器の内部に設けられ、原子炉を格納する原子炉格納室。
 前記原子炉格納容器の内部に、前記原子炉格納室の下方に隣接して設けられ、非常用冷却液が貯留されるプール。
 前記非常用冷却液を前記原子炉格納室から前記プールへ流入させる開口部。
 前記プールの下方に設けられたサンプ。
 前記サンプに設けられ、前記非常用冷却液に含まれるデブリを濾過するデブリ濾過体。
 前記非常用冷却液を前記サンプから吸い込んで前記原子炉格納室の内部に吐出するポンプ装置。
 前記プールに設けられ、前記デブリを捕捉するデブリ捕捉部。
 ここで、前記デブリ捕捉部は、前記開口部から前記プールに流入して前記サンプへ向けて流れる前記非常用冷却液の流路に交差するように設けられる。
 この構成によれば、プールに流入してサンプへ向けて流れる非常用冷却液の流路において、デブリ捕捉部がデブリを捕捉する。そのため、非常用冷却液に含まれるデブリが、デブリ濾過体に到達することが抑制される。これにより、デブリ濾過体へのデブリの付着を抑制できる。
 また、開口部にサンプ構造を設けたり、開閉機構を設けたりする必要がなく、開口部の構成を簡略化できる。
 従って、本発明の原子炉格納構造によれば、デブリ濾過体へのデブリの付着を抑制することができ、開口部の構成を簡略化できる。
 また、前記デブリ捕捉部は、前記サンププールの底部において前記非常用冷却液の流路に交差するように設けられた捕捉堀を有してもよい。
 すなわち、前記デブリ捕捉部は、前記プールの底部に、前記非常用冷却液の流路に交差する方向に延びるように設けられた捕捉堀を含んでもよい。
 プールに流入した非常用冷却液に含まれるデブリの一部は、非常用冷却液の流路に沿って、プールの底部を転がるように移動する。このデブリは、やがて非常用冷却液の流路に交差する方向に延びる捕捉堀に到達する。捕捉堀に到達したデブリは、捕捉堀の内側に入り込んで、捕捉堀によって捕捉される。従って、非常用冷却液の流路に交差する方向に延びる捕捉堀によって、より確実にデブリを捕捉することができる。
 また、前記捕捉堀は、前記デブリ濾過体を囲繞していてもよい。
 プールに流入した非常用冷却液に含まれるデブリは、デブリ濾過体に向かうあらゆる方向から、デブリ濾過体に向けてプールの底部を転がるように移動する。
 この場合に、捕捉堀がデブリ濾過体を囲繞していれば、あらゆる方向からデブリ濾過体へ向けて移動するデブリを、捕捉堀によって、より確実に捕捉することができる。
 また、前記デブリ捕捉部は、前記捕捉堀の縁部のうち、前記流路の下流側の縁部から上方に延出する下流堰を有してもよい。
 すなわち、前記デブリ捕捉部は、前記捕捉堀の前記流路の下流側の縁部に、前記下流側の縁部から上方へ延びる下流堰を含んでもよい。
 この構成によれば、非常用冷却液の流れが下流堰に衝突する。すると、捕捉堀の内側に流入する非常用冷却液の流れが発生する。これにより、プールの底部を転がるように移動するデブリが、非常用冷却液の流れによって流されて、捕捉堀の内側に入り込む。従って、デブリを効率よく捕捉することができる。
 また、前記デブリ捕捉部は、前記捕捉堀の縁部のうち、前記流路の上流側の縁部から下流側に延出して、前記捕捉堀の一部を被覆する上流フィルタを有してもよい。
 すなわち、前記デブリ捕捉部は、前記捕捉堀の前記流路の上流側の縁部に、前記流路の下流に向けて延びて前記捕捉堀の一部を覆うように設けられた上流フィルタを含んでもよい。
 この構成によれば、非常捕捉堀の内側に入り込んだデブリは、非常用冷却液の流路上流側において、非常用冷却液に流されて、捕捉堀の外側へ流出しようとする。このとき、上流側フィルタは、非常用冷却液に含まれるデブリを捕捉する。これにより、捕捉堀の内側に入り込んだデブリが、捕捉堀の外側の非常用冷却液の流路に流出することを効果的に防ぐことができる。
 また、前記デブリ捕捉部は、前記サンププールの底部から上方に延出する上方延出堰を有することを特徴とする。
 すなわち、前記デブリ捕捉部は、前記プールの底部に、前記底部から上方に延びるように設けられた底部堰を含んでもよい。
 この構成によれば、プールの底部を転がるようにして移動するデブリが、底部堰(上方延出堰)によって移動を妨げられ、捕捉される。
 また、前記デブリ捕捉部は、前記サンププールの天井部から、下方かつ前記非常用冷却液の液面下まで延出する下方延出堰を有してもよい。
 すなわち、前記デブリ捕捉部は、前記プールの天井部に、前記天井部から下方へ延びて前記プールに貯留された前記非常用冷却液の液面下に達するように設けられた天井堰を含んでもよい。
 この構成によれば、浮力を受けてプールに貯留された非常用冷却液の液面付近を移動するデブリが、天井堰によって捕捉される。
 また、前記デブリ捕捉部は、前記底部堰が前記流路の上流側に設けられ、前記天井堰が前記流路の下流側に設けられていてもよい。
 この構成によれば、底部堰の上端部(先端)を容易に液面下に位置させることができる。
 また、前記デブリ捕捉部は、複数設けられていてもよい。
 この構成によれば、複数のデブリ捕捉部により、デブリを捕捉する効率を向上させることができる。
 本発明に係る原子炉格納構造によれば、デブリ濾過体へのデブリの付着を抑制でき、開口部の構成を簡略化することができる。
本発明の第一実施形態に係る原子炉格納構造1の概略構成図である。 本発明の第一実施形態に係る原子炉格納構造1の要部の断面図であって、図1におけるI-I線断面図である。 本発明の第一実施形態に係る原子炉格納構造1の要部の拡大断面図であって、図2におけるII-II線断面図である。 本発明の第一実施形態に係る原子炉格納構造1の作用の説明図である。 本発明の第二実施形態に係る原子炉格納構造2の要部の断面図であって、図2に相当する図である。 本発明の第二実施形態に係る原子炉格納構造2の要部の拡大断面図であって、デブリ捕捉部40の拡大図である。 本発明の第三実施形態に係る原子炉格納構造3の要部の断面図であって、図2に相当する図である。 本発明の第三実施形態に係る原子炉格納構造3の要部の拡大断面図であって、デブリ捕捉部50の拡大図である。 本発明の第四実施形態に係る原子炉格納構造4の拡大断面図であって、デブリ捕捉部60の拡大図である。 本発明の第四実施形態に係る原子炉格納構造4の第一の変形例4Aを示す要部の断面図である。 本発明の第四実施形態に係る原子炉格納構造4の第二の変形例4Bを示す要部の断面図である。
 以下、図面を参照し、本発明の実施の形態について説明する。
 図1は、本発明の第一実施形態に係る原子炉格納構造1の概略構成図である。図2は、図1におけるI-I線断面図である。図3は、図2におけるII-II線断面図である。
 図1に示すように、原子炉格納構造1は、原子炉5を格納する原子炉格納容器10と、循環ポンプ(ポンプ体、ポンプ装置)20とを備えている。
 原子炉格納容器10は、原子炉5を格納する原子炉格納室11と、非常用冷却水(非常用冷却液)Wが貯留されたプール(サンププール)12とを備えている。
 原子炉格納室11は、原子炉格納容器10の内部に設けられている。原子炉格納室11には、原子炉5と共に、不図示の蒸気発生器や加圧器等が格納されている。この原子炉格納室11の床部11aには下階へと連通する開口部11b,11c,11d(図2参照)が設けられている。
 プール12は、原子炉格納容器10の内部に、原子炉格納室11の下方に隣接して設けられ、非常用冷却水Wが貯留されている。すなわち、プール12は、原子炉格納容器10の下階に設けられており、具体的には、原子炉格納容器10の地階に設けられている。
 図1に示すように、プール12の底部12aの下方には循環サンプ(サンプ)13が設けられている。循環サンプ13は、底部12aから下方に延びるように、底部12aよりも一段低く設けられている。循環サンプ13には、非常用冷却水Wに含まれる破損物などのデブリを濾過するサンプスクリーン(デブリ濾過体)14が設けられている。サンプスクリーン14は、循環サンプ13の開口部を覆うように設けられている。循環サンプ13の開口部には、図3に示すように、底部12aよりも高く形成された盛り縁(下流堰)32が形成されている。
 図2示すように、支持柱等の構造体19は、プール12の中央部に配置されている。
 サンプスクリーン14は、一つの面が開放された箱状に形成されている。サンプスクリーン14は、開放された側を循環サンプ13の開口部に重ねるように設置されている。すなわち、サンプスクリーン14は、底部を上方に向け、開口を下方に向けた状態で循環サンプ13の開口部を覆っている。また、図1に示すように、サンプスクリーン14は、その全面積を破損物の捕捉に有効に活用するために、全体が水没している。
 なお、サンプスクリーン14に代えて、貫通孔を有するプレート部材を多段に積み重たデブリ濾過体を用いてもよい。
 図1に示すように、循環ポンプ20は、吸込側配管20aの一方の端部と接続されている。吸込側配管20aの他方の端部は循環サンプ13に接続され、循環サンプ13に開口している。また、循環ポンプ20は吐出側配管20bと接続されている。吐出側配管20bは、原子炉格納室11の上部11fに配設されたスプレイノズル20cに接続されている。
 原子炉格納構造1は、原子炉5の配管部分5aの破断を伴うような一次冷却材の喪失事故の発生時に、循環ポンプ20を作動させる。循環ポンプ20は、プール12に貯留された非常用冷却水Wを、循環サンプ13から吸い込む。循環ポンプ20は、吸い込んだ非常用冷却水Wを、原子炉格納室11の上部11fに設けられたスプレイノズル20cから吐出させる。循環ポンプ20は、非常用冷却水Wをスプレイノズル20cから吐出させて原子炉5に供給し、原子炉5を冷却する。
 原子炉5を冷却し、床部11aに流れ落ちた非常用冷却水Wは、開口部11b,11c,11d(図2参照)からプール12に流入する。以上のように、原子炉格納構造1は、プール12に貯留された非常用冷却水Wを循環させる。
 原子炉格納構造1は、図4に示すように、デブリ捕捉部30を備えている。デブリ捕捉部30は、サンプスクリーン14に向かって移動するデブリDを捕捉する。デブリ捕捉部30は、図3に示すように、捕捉堀31と、盛り縁32(下流堰)と、上流フィルタ33とを有している。
 図2に示すように、捕捉堀31は、非常用冷却水Wの流路R(例えば、R1~R3)に交差する方向に延びるように設けられている。具体的には、捕捉堀31は、サンプスクリーン14を囲繞するように設けられている。図3に示すように、捕捉堀31は、プール12の底部12aに、断面の形状が矩形の溝状に形成されている。捕捉堀31は、サンプスクリーン14の外縁の内側から、サンプスクリーン14の外縁の外側に亘る幅を有している。すなわち、捕捉堀31の流路Rの上流側の縁は、サンプスクリーン14の外縁の外側に設けられている。また、捕捉堀31の流路Rの下流側の縁は、サンプスクリーン14の外縁の内側に設けられている。
 図3に示すように、盛り縁32は、捕捉堀31の流路Rの下流側の縁部に設けられている。盛り縁32は、流路Rの下流側の縁部から上方へ延びるように設けられている。すなわち、盛り縁32は、循環サンプ13の開口部の周囲に、プール12の底部12aよりも一段高く形成されている。盛り縁32の外縁部の下側には、盛り縁32の外縁の内側にえぐられたえぐり部32aが形成されている。えぐり部32aの下方には、捕捉堀31の流路Rの下流側の縁部が、えぐり部32aに滑らかに連なるように設けられている。すなわち、えぐり部32aは、捕捉堀31に連続して設けられ、捕捉堀31との間で非常用冷却水Wが流通するように設けられている。
 上流フィルタ33は、図3に示すように、捕捉堀31の流路Rの上流側の縁部31aに固定されている。上流フィルタ33は、捕捉堀31の流路Rの上流側の縁部31aから流路Rの下流側(循環サンプ13に近づく方向)へ向けて延びるように設けられている。上流フィルタ33は、捕捉堀31の流路Rの上流側の部分を覆うように設けられている。すなわち、上流フィルタ33は、捕捉堀31の一部を被覆するものであり、具体的には、グレーティングが用いられる。
 原子炉格納構造1において一次冷却材の喪失事故が発生すると、高圧の一次冷却材の噴出によって、断熱材片や金属片を含むデブリDが原子炉格納室11に飛散する。
 このとき、図1に示す循環ポンプ20が作動して、循環サンプ13から非常用冷却水Wを吸い込む。循環ポンプ20は、吸い込んだ非常用冷却水Wを原子炉格納室11の上部11fに設けられたスプレイノズル20cから吐出して、原子炉5に供給する。原子炉5に供給された非常用冷却水Wは、原子炉5を冷却した後に床部11aに流れ落ちる。
 床部11aに流れ落ちた非常用冷却水Wは、図5に示すように、開口部11b,11c,11dからプール12に流入する。プール12に流入した非常用冷却水Wは、図2に例示する循環サンプ13に向かう流路R(R1~R3)に沿って流れる。
 このとき、デブリ捕捉部30では、以下のような非常用冷却水Wの流れが発生する。
 図3に示すように、非常用冷却水Wは、流路Rに沿ってデブリ捕捉部30の上方を水平方向に流れる。このとき、非常用冷却水Wの流れの一部が、盛り縁32に衝突する。盛り縁32に衝突した非常用冷却水Wの流れの一部は下方に向かって流れ、捕捉堀31の内側に流入する。また、図4に示すように、えぐり部32aの内側に流入して水平方向に流れた非常用冷却水Wは、内側壁31bに衝突して捕捉堀31の内側に流入する(矢印Y1)。
 捕捉堀31の内側では、上部の非常用冷却水Wが外部の非常用冷却水Wの流れ(循環サンプ13に向かう方向の流れ)の影響を受ける。そして、捕捉堀31の内側の上部には、同方向に非常用冷却水Wの流れが発生する(矢印Y3)。すると、捕捉堀31の内側の下部には、上部の非常用冷却水Wの流れ方向とは逆方向の流れが発生する(矢印Y2)。この逆方向の非常用冷却水W流れ(矢印Y2)は、捕捉堀31の内側壁31cに衝突して、上方に向けて流れる(矢印Y4)。この上方へ向かう非常用冷却水Wの流れは、上流フィルタ33を通過して捕捉堀31の外部の流れに合流する。
 このように、デブリ捕捉部30では、図4に示す矩形の捕捉堀31の断面に沿った渦流(矢印Y1~Y4)が発生する。
 図1に示す原子炉格納室11の床部11aに飛散したデブリDは、非常用冷却水Wによって流され、非常用冷却水Wと共にプール12に流入する。プール12に流入したデブリDは、図2に示すように、循環サンプ13に向けて、流路Rに沿って流れていく。
 この際、非常用冷却水Wの流れにより流路Rに沿って移動するデブリDの比重は、非常用冷却水Wの比重よりも大きい。そのため、大半(約70%)のデブリDは、底部12aを転がるように移動する。残りのデブリDは、気泡等の付着により浮力を受け、浮遊体となって移動する。
 また、一部のデブリは、非常用冷却水Wと僅かに反応してゼラチン状のデブリとなる。以下では、このゼラチン状のデブリを、通常のデブリと区別するために「化学デブリ」と称する。
 プール12の底部12aを転がるように移動して、デブリ捕捉部30に到達したデブリDは、非常用冷却水Wと共に捕捉堀31に流入する。捕捉堀31に流入したデブリDは、捕捉堀31の内側の渦流によって流され(矢印Y1~Y4)、上流フィルタ33に捕捉される。
 また、上流フィルタ33に捕捉されたデブリDには、上記の化学デブリが絡め取られるように付着する。
 上流フィルタ33を通過した非常用冷却水Wは、循環サンプ13に向かう流れに合流して、サンプスクリーン14に到達する。サンプスクリーン14に到達した非常用冷却水Wは、サンプスクリーン14を通過して、循環サンプ13に流入する。この際、デブリDの大部分(約70%)がデブリ捕捉部30によって捕捉されているため、サンプスクリーン14に付着するデブリDは、従来よりも減少し、サンプスクリーン14に殆ど付着しなくなる。
 このように、デブリDがサンプスクリーン14に殆ど付着しないため、循環ポンプ20の負荷が増大したり、循環効率が低下したりすることが防止される。従って、非常用冷却水Wが効率よく循環して、原子炉5の保安性が良好に継続される。
 以上、説明したように、本実施形態の原子炉格納構造1は、プール12における非常用冷却水Wの流路Rに交差するように設けられたデブリ捕捉部30を備える。そのため、プール12の非常用冷却水Wの流路RにおいてデブリDが捕捉され、デブリDのサンプスクリーン14への到達が抑制される。これにより、サンプスクリーン14へのデブリDの付着を抑制することができる。
 また、開口部11b~11dにサンプ構造を設けたり、封止機構を設けたりする必要がない。そのため、開口部11b~11dの構成を簡略化できる。
 従って、原子炉格納構造1によれば、サンプスクリーン14へのデブリDの付着を抑制でき、開口部11b~11dの構成を簡略化できる。
 また、デブリ捕捉部30がプール12の底部12aに設けられた捕捉堀31を有している。そのため、プール12の底部12aを転がるように移動するデブリDを、捕捉堀31によって捕捉することができる。
 また、捕捉堀31がサンプスクリーン14を囲繞している。そのため、プール12の底部12aを転がるように移動して、あらゆる方向からサンプスクリーン14に向かうデブリDを、捕捉堀31によって、より確実に捕捉することができる。
 また、デブリ捕捉部30が、捕捉堀31の縁部のうち流路下流側の縁部から上方に延出する盛り縁32を備えている。すなわち、デブリ捕捉部30の捕捉堀31の流路Rの下流側の縁部に、上方へ延びる盛り縁32が設けられている。そのため、盛り縁32に非常用冷却水Wが衝突し、捕捉堀31内に流入する非常用冷却水Wの強い流れが発生する。これにより、プール12の底部12aを転がるようにして流れるデブリDが、非常用冷却水Wの流れにより捕捉堀31の内側に流入する。従って、デブリDを効率よく捕捉することができる。
 また、デブリ捕捉部30が、捕捉堀31の縁部のうち流路上流側の縁部31aから下流側に延出して、捕捉堀31の一部を被覆する上流フィルタ33を備えている。すなわち、デブリ捕捉部30は、捕捉堀31の流路Rの上流側の縁部に、流路Rの下流に向けて延びて捕捉堀31の一部を覆う上流フィルタ33を有している。そのため、流路上流側において捕捉堀31から流出しようとするデブリDを捕捉する。これにより、捕捉堀31の内側に流入したデブリDが、、捕捉堀31の外側の非常用冷却水Wの流路R(例えば、R1~R3)上に流出することを効果的に防ぐことができる。
 次に、本発明の第二実施形態について説明する。
 図5は、本発明の第二実施形態に係る原子炉格納構造2の要部断面図である。図6は、原子炉格納構造2の要部拡大断面図である。図5及び図6において、図1から図4と同様の構成要素については、同一の符号を付して説明を省略する。
 図5及び図6に示すように、原子炉格納構造2は、デブリ捕捉部40を備えている。デブリ捕捉部40は、開口部11cから循環サンプ13に向かう流路R2に交差する方向に延びるように設けられている。
 デブリ捕捉部40は、捕捉堀41と下流堰42と上流フィルタ33とを有している。
 図5に示すように、捕捉堀41は、プール12の底部12aに、非常用冷却水Wの流路R2に交差する方向に延びるように設けられている。
 図6に示すように、下流堰42は、捕捉堀41の流路R2の下流側の縁部に沿って設けられている。下流堰42は、プール12の底部12aから上方に延びるように設けられている。
 本実施形態のデブリ捕捉部40においても、上述した第一実施形態のデブリ捕捉部30と同様の渦流(矢印Y1~Y4)が形成される。
 すなわち、原子炉格納構造2によれば、流路R2に沿ってプール12の底部12aを転がるように移動するデブリDは、捕捉堀41に流入する。捕捉堀41に流入したデブリDは、捕捉堀41内の渦流(矢印Y1~Y4)によって捕捉堀41の壁面に沿って移動し、上流フィルタ33に捕捉される。
 また、この上流フィルタ33に捕捉されたデブリDに化学デブリが絡め取られるように付着する。
 このように、原子炉格納構造2によれば、上述した第一実施形態と同様の効果を得ることができる。また、プール12の大きさや形状に対応して、適切にデブリ捕捉部40を設けることができる。
 なお、原子炉格納構造は、上述した第一実施形態のデブリ捕捉部30と本実施形態のデブリ捕捉部40との双方を備えてもよい。これにより、例えば、流路R2に沿って移動するデブリDの量が、流路R1,R3に沿って移動するデブリDの量よりも多い場合には、サンプスクリーン14に到達するデブリDの量を効率良く低減できる。
 本実施形態では、下流堰42と上流フィルタ33とを設ける構成とした。しかし、原子炉格納構造は、下流堰42と上流フィルタ33とを設けずに、捕捉堀41のみを備えてもよい。この場合、デブリDは捕捉堀41の底部に落下して、捕捉される。また、流路Rに複数の捕捉堀41を設けると、より効果的にデブリDを捕捉することができる。
 次に、本発明の第三実施形態について説明する。
 図7は、本発明の第三実施形態に係る原子炉格納構造3の要部断面図である。図8は、原子炉格納構造3の要部拡大断面図である。図7及び図8において、図1から図6と同様の構成要素については、同一の符号を付して説明を省略する。
 原子炉格納構造3は、図7及び図8に示すように、デブリ捕捉部50を備えている。デブリ捕捉部50は、天井堰(下方延出堰)51と、底部堰(上方延出堰)52とを有している。
 図8に示すように、天井堰51は、プール12の上方に位置する天井部12bに設けられている。天井堰51は、プール12の天井部12bから下方に延びるように設けられている。天井堰51の下端部51aは、プール12に貯留された非常用冷却水Wの液面下に位置している。
 底部堰52は、プール12の底部12aに設けられている。底部堰52は、プール12の底部12aから、上方に延びるように設けられている。底部堰52の上端部52aは、天井堰51の下端部51aよりも上方に位置している。
 図7に示すように、天井堰51及び底部堰52は、流路R2に交差する方向に延びるように設けられている。天井堰51及び底部堰52は、水平方向の一方の端部が構造体19に設けられ、水平方向の他方の端部がプール12の内壁12cに設けられている。これにより、天井堰51及び底部堰52は、流路R2を遮るように、構造体19とプール12の内壁12cとの間に連続して形成されている。
 本実施形態の原子炉格納構造3では、一次冷却材の漏出事故の発生時などに、非常用冷却水Wがプール12と原子炉格納室11とを循環する定常状態になる。すると、図8に示すように、プール12において、底部堰52の流路Rの上流側と下流側との間で、非常用冷却水Wの水位に差が生じる。そして、非常用冷却水Wが底部堰52の上端部52aを越えて下流側に流れ落ちる。
 すなわち、流路R2に沿って流れる非常用冷却水Wは、天井堰51の下端部51aとプール12の底部12aとの間を通過した後に、底部堰52の上端部52aを越えて流れ落ちる。このとき、浮遊体となったデブリDが天井堰51により堰き止められて捕捉される。また、底部12aを転がるように移動するデブリDが、底部堰52によって堰き止められて捕捉される。このように、流路R2に沿って非常用冷却水Wと共に移動するデブリDが、デブリ捕捉部50によって堰き止められて捕捉される。従って、デブリ捕捉部50の下流側に流れるデブリDが激減する。
 以上説明したように、本実施形態の原子炉格納構造3によれば、非常用冷却水W中で浮力を受けて浮遊体となったデブリDが天井堰51により捕捉される。また、プール12の底部12aを転がるように移動するデブリDが天井堰51により捕捉される。そのため、デブリ捕捉部50の流路R2の下流側に流れるデブリDが激減する。これにより、デブリDがサンプスクリーン14に到達することが抑制される。従って、サンプスクリーン14へのデブリDの付着を抑制できる。
 また、本実施形態の原子炉格納構造3によれば、流路R2の上流側に天井堰51が設けられ、流路R2の下流側に底部堰52が設けられている。そのため、天井堰51の下端部51aを確実に水面下に配置できる。
 次に、本発明の第四実施形態について説明する。
 図9は、本発明の第四実施形態に係る原子炉格納構造4の要部拡大断面図である。図9において、図1から図8と同様の構成要素については、同一の符号を付して説明を省略する。
 図9に示すように、原子炉格納構造4は、デブリ捕捉部60を備えている。デブリ捕捉部60は、堰ユニット61と堰ユニット62とを備えている。
 堰ユニット61は、天井堰65と底部堰66とを有している。天井堰65の下端部(先端)65aと底部堰66の下端部(先端)65aとは、間隙61aを有して対向している。
 また、堰ユニット62は、天井堰67と底部堰68とを有している。天井堰67の下端部(先端)67aと底部堰68の上端部(先端)68aとは、間隙62aを有して対向している。
 堰ユニット61の間隙61aの底部12aからの高さは、堰ユニット62の間隙62aの底部12aからの高さよりも低く設けられている。
 本実施形態の原子炉格納構造4では、一次冷却材の漏出事故の発生時などに、非常用冷却水Wがプール12と原子炉格納室11とを循環する定常状態になる。このとき、図10に示すように、底部堰52の流路Rの上流側と下流側との間で、非常用冷却水Wの水位に差が生じない。
 すなわち、流路R2に沿って流れる非常用冷却水Wは、第1の堰ユニット61の天井堰65と底部堰66との間の第1の間隙61aを通過した後に、第2の堰ユニット62の天井堰67と底部堰68との間の第2の間隙62aを通過する。
 非常用冷却水Wが第1の間隙61aを通過する際には、浮遊体となったデブリDが天井堰65により堰き止められて捕捉される。また、底部12aを転がるよう移動するデブリDは、底部堰66によって堰き止められて捕捉される。
 仮に、デブリDが第1の間隙61aを通過しても、底部12aを転がるように移動するデブリDは、第2の堰ユニット62の底部堰68により堰き止められて捕捉される。
 このように、流路R2に沿って流れる非常用冷却水Wと共に移動するデブリDは、デブリ捕捉部60によって堰き止められて捕捉される。従って、デブリ捕捉部60の流路Rの下流側に移動するデブリDが激減する。
 以上説明したように、本実施形態の原子炉格納構造4によれば、非常用冷却水W中で浮力を受けて浮遊体となったデブリDが天井堰65により捕捉される。また、プール12の底部12aを転がるように移動するデブリDが底部堰66,68により捕捉される。そのため、底部堰68の流路Rの下流側に移動するデブリDが激減する。これにより、デブリDがサンプスクリーン14に到達することが抑制される。従って、サンプスクリーン14へのデブリDの付着を抑制できる。
 また、本実施形態の原子炉格納構造4によれば、第1の間隙61a及び第2の間隙62aの大きさを調整することで、通過する非常用冷却水Wの流量を調整することも可能である。
 図10は、上述した第四実施形態の原子炉格納構造4の第一変形例である原子炉格納構造4Aの要部拡大断面図である。図11は、第四実施形態の原子炉格納構造4の第二の変形例である原子炉格納構造4Bの要部拡大断面図である。図10及び図11において、図1から図9と同様の構成要素については、同一の符号を付して説明を省略する。
 図10に示すように、原子炉格納構造4Aは、デブリ捕捉部60Aを備えている。デブリ捕捉部60Aは、堰ユニット61と堰ユニット62との間に、天井堰51を有している。
 また、図11に示すように、原子炉格納構造4Bは、デブリ捕捉部60Bを備えている。デブリ捕捉部60Bは、堰ユニット61の流路Rの下流側に、底部堰69a,天井堰51及び底部堰69bを備えている。底部堰69a,天井堰51及び底部堰69bは、流路Rの上流側からこの順に配置されている。
 原子炉格納構造4Aのデブリ捕捉部60A及び原子炉格納構造4Bのデブリ捕捉部60Bのように、天井堰及び底部堰を流路Rに沿う方向に複数設けることにより、デブリDの捕捉効率を向上させることができる。
 また、非常用冷却水W中で浮遊体となったデブリDを天井堰と底部堰とに連続的に衝突させることにより、デブリDに付着した気泡を除去して、デブリDを沈降させることができる。
 なお、上述した実施の形態において示した動作手順、あるいは各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。
 以上、本発明の好ましい実施形態を説明したが、本発明は上記の実施形態に限定されることはない。本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、およびその他の変更が可能である。本発明は前述した説明によって限定されることはなく、添付のクレームの範囲によってのみ限定される。
 本発明は、原子炉格納容器と、前記原子炉格納容器の内部に設けられ、原子炉を格納する原子炉格納室と、前記原子炉格納容器の内部に、前記原子炉格納室の下方に隣接して設けられ、非常用冷却液が貯留されるプールと、前記非常用冷却液を前記原子炉格納室から前記プールへ流入させる開口部と、前記プールの下方に設けられたサンプと、前記サンプに設けられ、前記非常用冷却液に含まれるデブリを濾過するデブリ濾過体と、前記非常用冷却液を前記サンプから吸い込んで前記原子炉格納室の内部に吐出するポンプ装置と、前記プールに設けられ、前記デブリを捕捉するデブリ捕捉部と、を備え、前記デブリ捕捉部は、前記開口部から前記プールに流入して前記サンプへ向けて流れる前記非常用冷却液の流路に交差する原子炉格納構造に関する。本発明の原子炉格納構造によれば、デブリ濾過体へのデブリの付着を抑制でき、プールと原子炉格納室との間に設けられた昇降階段の開口部の構成を簡略化できる。
1,2,3,4,4A,4B…原子炉格納構造
5…原子炉
10…原子炉格納容器
11…原子炉格納室
11a…床部
11b,11c,11d…開口部
11f…上部
12…プール(サンププール)
12a…底部
12b…天井部
12c…内壁
13…循環サンプ(サンプ)
14…サンプスクリーン(デブリ濾過体)
20…循環ポンプ(ポンプ体、ポンプ装置)
30,40,50,60,60A,60B…デブリ捕捉部
31…捕捉堀
31a,41a…縁部
32…盛り縁(下流堰)
33…上流フィルタ
42…下流堰
61,62…堰ユニット
61a,62a…間隙
51,65,67…天井堰
52,66,68,69a,69b…底部堰
51a,65a,67a…下端部(先端)
52a,66a,68a…上端部(先端)
R(R1~R3)…流路
D…デブリ
W…非常用冷却水(非常用冷却液)

Claims (10)

  1.  原子炉格納容器と、
     前記原子炉格納容器の内部に設けられ、原子炉を格納する原子炉格納室と、
     前記原子炉格納容器の内部に、前記原子炉格納室の下方に隣接して設けられ、非常用冷却液が貯留されるプールと、
     前記非常用冷却液を前記原子炉格納室から前記プールへ流入させる開口部と、
     前記プールの下方に設けられたサンプと、
     前記サンプに設けられ、前記非常用冷却液に含まれるデブリを濾過するデブリ濾過体と、
     前記非常用冷却液を前記サンプから吸い込んで前記原子炉格納室の内部に吐出するポンプ装置と、
     前記プールに設けられ、前記デブリを捕捉するデブリ捕捉部と、
     を備え、
     前記デブリ捕捉部は、前記開口部から前記プールに流入して前記サンプへ向けて流れる前記非常用冷却液の流路に交差する原子炉格納構造。
  2.  前記デブリ捕捉部は、前記プールの底部に、前記非常用冷却液の流路に交差する方向に延びるように設けられた捕捉堀を有する請求項1に記載の原子炉格納構造。
  3.  前記捕捉堀は、前記デブリ濾過体を囲繞している請求項2に記載の原子炉格納構造。
  4.  前記デブリ捕捉部は、前記捕捉堀の前記流路の下流側の縁部に、前記下流側の縁部から上方へ延びる下流堰を含む請求項2又は3に記載の原子炉格納構造。
  5.  前記デブリ捕捉部は、前記捕捉堀の前記流路の上流側の縁部に、前記流路の下流側に向けて延びて前記捕捉堀の一部を覆うように設けられた上流フィルタを含む請求項2から4のうちいずれか一項に記載の原子炉格納構造。
  6.  前記デブリ捕捉部は、前記プールの底部に、前記底部から上方に延びるように設けられた底部堰を含む請求項1から5のうちいずれか一項に記載の原子炉格納構造。
  7.  前記デブリ捕捉部は、前記プールの天井部に、前記天井部から下方へ延びて前記プールに貯留された前記非常用冷却液の液面下に達するように設けられた天井堰を含む請求項1から6のうちいずれか一項に記載の原子炉格納構造。
  8.  前記デブリ捕捉部は、前記プールの底部に、前記底部から上方に延びるように設けられた底部堰と、前記プールの天井部に、前記天井部から下方へ延びて前記プールに貯留された前記非常用冷却液の液面下に達するように設けられた天井堰とを含み、
     前記底部堰が前記流路の上流側に設けられ、前記天井堰が前記流路の下流側に設けられている請求項1から7のうちいずれか一項に記載の原子炉格納構造。
  9.  前記デブリ捕捉部は、前記底部堰と前記天井堰とを有する堰ユニットを含み、前記堰ユニットにおいて、前記底部堰の上端部と前記天井堰の下端部とが間隙を有して対向する請求項1から8のうちいずれか一項に記載の原子炉格納構造。
  10.  前記デブリ捕捉部は、複数設けられている請求項1から10のうちいずれか一項に記載の原子炉格納構造。
PCT/JP2010/003199 2009-05-20 2010-05-11 原子炉格納構造 WO2010134288A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA2762110A CA2762110A1 (en) 2009-05-20 2010-05-11 Reactor containment structure
US13/320,310 US20120057668A1 (en) 2009-05-20 2010-05-11 Reactor containment structure
EP10777527A EP2434496A1 (en) 2009-05-20 2010-05-11 Nuclear reactor containment structure
KR1020117028564A KR20120012480A (ko) 2009-05-20 2010-05-11 원자로 격납 구조체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009122497A JP2010271149A (ja) 2009-05-20 2009-05-20 原子炉格納構造
JP2009-122497 2009-05-20

Publications (1)

Publication Number Publication Date
WO2010134288A1 true WO2010134288A1 (ja) 2010-11-25

Family

ID=43125981

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/003199 WO2010134288A1 (ja) 2009-05-20 2010-05-11 原子炉格納構造

Country Status (6)

Country Link
US (1) US20120057668A1 (ja)
EP (1) EP2434496A1 (ja)
JP (1) JP2010271149A (ja)
KR (1) KR20120012480A (ja)
CA (1) CA2762110A1 (ja)
WO (1) WO2010134288A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012145020A1 (en) * 2011-04-21 2012-10-26 Performance Contracting, Inc. Multimodal debris trap
JP2015190876A (ja) * 2014-03-28 2015-11-02 日立Geニュークリア・エナジー株式会社 コリウムシールド
CN107464594A (zh) * 2016-06-03 2017-12-12 中广核研究院有限公司 安全壳再循环拦截装置
JP2018124129A (ja) * 2017-01-31 2018-08-09 三菱重工業株式会社 原子炉格納構造、気泡発生装置の操作方法

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013156195A (ja) * 2012-01-31 2013-08-15 Mitsubishi Heavy Ind Ltd 原子炉燃料取替用水ピット構造
JP5959893B2 (ja) * 2012-03-28 2016-08-02 三菱重工業株式会社 サンプスクリーン
JP6655292B2 (ja) * 2015-02-04 2020-02-26 三菱重工業株式会社 原子炉格納構造
JP6925172B2 (ja) * 2017-05-31 2021-08-25 三菱重工業株式会社 原子炉格納構造
CN111627575B (zh) * 2020-06-11 2022-07-01 中国原子能科学研究院 用于反应堆的屏蔽组件及其屏蔽结构
CN113851243B (zh) * 2021-10-19 2024-01-30 上海核工程研究设计院股份有限公司 一种核电站内具有碎片收集功能的围堰装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02122300A (ja) * 1988-11-01 1990-05-09 Toshiba Corp 原子炉格納容器
JPH07174880A (ja) * 1993-12-20 1995-07-14 Toshiba Corp 原子炉格納容器及びその原子炉プラント
JPH07260977A (ja) * 1994-03-18 1995-10-13 Mitsubishi Heavy Ind Ltd 燃料取替用水ピットにおける再循環サンプ構造
JP2007101371A (ja) * 2005-10-05 2007-04-19 Hitachi Ltd 異物捕獲設備を内蔵した原子炉格納容器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4517091A (en) * 1982-11-02 1985-05-14 Ebara Corporation Solids-liquid separator
US8555519B2 (en) * 2004-09-20 2013-10-15 Martin Allen McFarland Systems and methods for drying a plurality of diverse articles
US20090065412A1 (en) * 2007-09-11 2009-03-12 Rahma Mbarki Apparatus for waste water treatment

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02122300A (ja) * 1988-11-01 1990-05-09 Toshiba Corp 原子炉格納容器
JPH07174880A (ja) * 1993-12-20 1995-07-14 Toshiba Corp 原子炉格納容器及びその原子炉プラント
JPH07260977A (ja) * 1994-03-18 1995-10-13 Mitsubishi Heavy Ind Ltd 燃料取替用水ピットにおける再循環サンプ構造
JP2007101371A (ja) * 2005-10-05 2007-04-19 Hitachi Ltd 異物捕獲設備を内蔵した原子炉格納容器

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012145020A1 (en) * 2011-04-21 2012-10-26 Performance Contracting, Inc. Multimodal debris trap
JP2013531229A (ja) * 2011-04-21 2013-08-01 パフォーマンス コントラクティング,インコーポレイテッド 多重様式のデブリトラップ
US9741458B2 (en) 2011-04-21 2017-08-22 Performance Contracting, Inc. Multimodal debris trap
JP2015190876A (ja) * 2014-03-28 2015-11-02 日立Geニュークリア・エナジー株式会社 コリウムシールド
CN107464594A (zh) * 2016-06-03 2017-12-12 中广核研究院有限公司 安全壳再循环拦截装置
CN107464594B (zh) * 2016-06-03 2019-08-13 中广核研究院有限公司 安全壳再循环拦截装置
JP2018124129A (ja) * 2017-01-31 2018-08-09 三菱重工業株式会社 原子炉格納構造、気泡発生装置の操作方法

Also Published As

Publication number Publication date
US20120057668A1 (en) 2012-03-08
JP2010271149A (ja) 2010-12-02
CA2762110A1 (en) 2010-11-25
KR20120012480A (ko) 2012-02-10
EP2434496A1 (en) 2012-03-28

Similar Documents

Publication Publication Date Title
WO2010134288A1 (ja) 原子炉格納構造
US10290379B2 (en) Passive containment cooling and filtered venting system, and nuclear power plant
US9997264B2 (en) Enhanced nuclear sump strainer system
WO2010134280A1 (ja) 原子炉格納構造
JP2016142687A (ja) 原子炉格納構造
WO2010134291A1 (ja) 原子炉格納構造
US20070138072A1 (en) Trash rack for nuclear power plant
JP2009047637A (ja) 炉心溶融物保持装置および格納容器
JP4474349B2 (ja) 異物捕獲設備を内蔵した原子炉格納容器
CN110024046B (zh) 包括安全壳过滤排放系统的核电站
JP6672192B2 (ja) 原子炉格納構造、気泡発生装置の操作方法
JP6925172B2 (ja) 原子炉格納構造
JP6731386B2 (ja) 原子炉設備
JP2011191080A (ja) 原子炉の気水分離器
CN110428914B (zh) 一种具有空气自然循环能力的乏燃料水池系统
JP5274633B2 (ja) 防液堤を備えた貯油設備
JP2019144132A (ja) デブリ付着抑制構造及び原子炉格納構造
WO2007056028A2 (en) Trash rack for nuclear power plant
KR820000834B1 (ko) 원자로의 안전 회로용 배수 채널
JP2020159939A (ja) 原子炉格納容器
JP2020159898A (ja) サンプカバーの切断方法
JP2010230681A (ja) 流体吸込み装置および非常用炉心冷却装置
JPH07333377A (ja) 原子炉安全設備
JP2007139560A (ja) 沸騰水型原子炉設備

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10777527

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13320310

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2762110

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010777527

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117028564

Country of ref document: KR

Kind code of ref document: A