WO2010134170A1 - 積層型二次電池および積層型二次電池の製造方法 - Google Patents

積層型二次電池および積層型二次電池の製造方法 Download PDF

Info

Publication number
WO2010134170A1
WO2010134170A1 PCT/JP2009/059252 JP2009059252W WO2010134170A1 WO 2010134170 A1 WO2010134170 A1 WO 2010134170A1 JP 2009059252 W JP2009059252 W JP 2009059252W WO 2010134170 A1 WO2010134170 A1 WO 2010134170A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
positive electrode
active material
electrode active
current collecting
Prior art date
Application number
PCT/JP2009/059252
Other languages
English (en)
French (fr)
Inventor
孝夫 大道寺
功 栃原
裕基 堀
浩一 座間
Original Assignee
Necトーキン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Necトーキン株式会社 filed Critical Necトーキン株式会社
Priority to PCT/JP2009/059252 priority Critical patent/WO2010134170A1/ja
Priority to CN200980159373.0A priority patent/CN102428600B/zh
Priority to US13/147,955 priority patent/US20110293996A1/en
Publication of WO2010134170A1 publication Critical patent/WO2010134170A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/528Fixed electrical connections, i.e. not intended for disconnection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • H01M10/0413Large-sized flat cells or batteries for motive or stationary systems with plate-like electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49108Electric battery cell making
    • Y10T29/4911Electric battery cell making including sealing

Definitions

  • the present invention relates to a laminated secondary battery such as a lithium ion secondary battery, a method for producing the laminated secondary battery, and a battery pack using the same and an assembled battery using the same.
  • a laminated secondary battery such as a lithium ion secondary battery has a positive electrode coated with a positive electrode active material with an aluminum foil as a current collector and a negative electrode coated with a negative electrode active material with a copper foil as a current collector facing each other through a separator.
  • a laminated body is formed, and current collecting tabs connected to the respective electrodes are stacked and joined to form a current input / output unit.
  • FIG. 8 is a diagram for explaining a conventional method for producing a current collecting tab.
  • FIG. 8A is a plan view before cutting the negative electrode current collecting tab
  • FIG. 8B is a plan view before cutting the positive electrode tab.
  • the negative electrode current collecting tab 47 is cut along the cutting line 9 so that a part of the negative electrode active material non-application part 45 is left in a rectangular shape in a state of being coupled to the negative electrode active material application part 43. It is formed by punching and cutting.
  • the positive electrode current collecting tab 57 is formed by punching and cutting along the cutting line 9 so that a part of the positive electrode active material non-application part 55 remains in a rectangular shape.
  • a metal foil of several micrometers to several tens of micrometers is used as the negative electrode current collector and the positive electrode current collector.
  • Both the negative electrode current collecting tab 47 and the positive electrode current collecting tab 57 are surrounded by a cutting line whose length is shorter than the lateral width of the electrode, and the thickness is small except for the portion where the active material layer is formed on both the positive electrode and the negative electrode. Since it is formed only of the metal foil, there is a problem that burrs are easily generated when a portion of only the metal foil is cut. Since burr does not necessarily cause problems such as short circuit in the long-term use process of the battery, it is necessary to inspect the presence or absence of burr after cutting and to remove the burr, which reduces production efficiency. There was a problem.
  • the present invention uses a metal foil of a laminated lithium ion secondary battery or the like as a current collector, forms an electrode active material layer on the current collector, and collects a current collector without an electrode active material as a current collecting tab. After stacking the electrodes, stacking the current collecting tabs and joining them together, connecting the battery electrode leads and sealing them with the outer package, when forming the current collecting tabs, the current collecting tabs had burrs. It is an object of the present invention to provide a stacked battery that does not occur.
  • the present invention includes a positive electrode current collector made of metal foil, a negative electrode current collector made of metal foil, a positive electrode active material application portion on which the positive electrode active material is applied on the positive electrode current collector, and a positive electrode active material.
  • the positive electrode current collecting tab and the negative electrode current collecting tab are laminated so that a part of each of the negative electrode current collecting tab faces each other, and the separator is also arranged at a portion where the positive electrode current collecting tab and the negative electrode current collecting tab face each other.
  • Electrode lead, the positive electrode lead and the negative electrode lead, the positive electrode, the separator, the a stacked-type secondary battery which has been removed to the outside of the outer package from the same end face of the laminated body composed of the negative electrode.
  • the shape of the electrode active material application portion of the negative electrode and the positive electrode is a quadrilateral shape
  • the positive electrode tab and the negative electrode tab are from the boundary with the positive electrode active material application portion or the negative electrode active material application portion.
  • the width decreases as the distance increases.
  • the said positive electrode tab and the said negative electrode tab are said triangular secondary batteries which are substantially triangular shape, substantially trapezoid shape, or a substantially pentagon shape.
  • the portion of the separator that faces the positive electrode current collector tab and the negative electrode current collector tab is the laminated secondary battery in which a non-porous tape is attached or heat crushed.
  • the positive electrode active material includes a lithium manganese composite oxide.
  • the active material is applied to the at least one surface of the strip-shaped metal foil in the length direction, with a paste-like positive electrode active material or negative electrode active material in the length direction, and a non-application portion for forming a current collecting tab is provided.
  • An active material coating step a step of producing a unit electrode body by cutting the positive electrode or the negative electrode in the length direction, and cutting the uncoated portion of the unit electrode body from one or two in the width direction Cutting with a wire, and cutting away so that the length in the width direction decreases as the distance from the boundary with the active material application portion decreases, and producing a positive electrode and a negative electrode having current collecting tabs;
  • a laminated secondary battery comprising a step of laminating the negative electrode through a separator, a step of joining the current collecting tabs of the positive electrode and the negative electrode, joining a positive electrode lead, a negative electrode lead, and a step of sealing with a film-shaped exterior material How to make It is.
  • a positive electrode current collector made of metal foil, a negative electrode current collector made of metal foil, a positive electrode active material application portion where a positive electrode active material is applied on the positive electrode current collector, and a positive electrode active material are not applied
  • the current tab and the negative current collector tab are laminated so that each part thereof is opposed, and the separator is also disposed in a portion where the positive current collector tab and the negative current collector tab are opposed, A positive lead connected to the positive current collecting tab and a negative lead connected to the negative current collecting tab The lead,
  • the laminated battery of the present invention comprises a positive electrode current collector made of metal foil and a negative electrode current collector on which a positive electrode active material non-coated portion and a negative electrode active material non-coated portion are not coated.
  • a positive electrode current collector made of metal foil and a negative electrode current collector on which a positive electrode active material non-coated portion and a negative electrode active material non-coated portion are not coated.
  • FIG. 1 is a diagram illustrating an embodiment of a stacked secondary battery of the present invention.
  • FIG. 2 is a diagram for sequentially explaining the manufacturing process of the laminated secondary battery according to the embodiment of the present invention.
  • FIG. 3 is a diagram illustrating a method for manufacturing a positive electrode and a negative electrode.
  • FIG. 4 is a diagram for sequentially explaining the manufacturing process of the laminated secondary battery according to another embodiment of the present invention.
  • FIG. 5 is a diagram illustrating a method for producing a positive electrode and a negative electrode according to another embodiment.
  • FIG. 6 is a diagram for explaining a manufacturing process of the electrode of the present invention.
  • FIG. 7 is a diagram illustrating an assembled battery.
  • FIG. 8 is a diagram for explaining a conventional method for producing a current collecting tab.
  • the present invention provides a positive electrode and a negative electrode in which a metal foil is used as a current collector, and a positive electrode active material non-applied portion where no positive electrode active material active material is applied, and a negative electrode active material where no negative electrode active material is applied
  • a metal foil is used as a current collector
  • a positive electrode active material non-applied portion where no positive electrode active material active material is applied
  • a negative electrode active material where no negative electrode active material is applied
  • FIG. 1 is a diagram illustrating an embodiment of a stacked secondary battery of the present invention.
  • FIG. 1A is a cross-sectional view taken along a plane perpendicular to the stacking surface of the stacked secondary battery.
  • FIG. 1B is a diagram illustrating a cross section taken along line AA in FIG. 1A.
  • the battery element 2 is sealed with a film-shaped exterior material 3.
  • a negative electrode 4 and a positive electrode 5 are laminated with a separator 6 made of a synthetic resin porous film, respectively.
  • the negative electrode 4 has a negative electrode active material application part 43 in which a negative electrode active material is applied to the negative electrode current collector 41 and a negative electrode active material non-application part 45 in which no negative electrode active material is applied, and the negative electrode active material application part A negative electrode current collecting tab 47 is formed on a part or all of the electrode.
  • the negative electrode current collector tab described with reference to FIG. 1B is formed so that the lateral width becomes narrower from the entire width in the lateral width direction of the negative electrode from the portion in contact with the region where the negative electrode active material is applied toward the tip.
  • the positive electrode 5 also has a positive electrode active material application part 53 in which a positive electrode active material is applied to the positive electrode current collector 51 and a positive electrode active material non-application part 55 in which no positive electrode active material is applied.
  • a positive electrode current collecting tab 57 is formed on a part or all of the application part.
  • the positive electrode current collecting tab 57 is formed so that the lateral width becomes narrower from the entire width in the lateral width direction of the negative electrode to the tip portion from the portion in contact with the region where the positive electrode active material is applied.
  • a separator 6 is disposed between the negative electrode 4 and the positive electrode 5.
  • the stacked secondary battery according to the present invention includes a positive electrode current collector tab and a negative electrode current collector tab that are integrally formed with the current collector, and the width of the positive electrode and the negative electrode in the width direction of the portion in contact with the region where the electrode active material is applied. It has a shape in which the lateral width decreases toward the tip.
  • the separator 6 is a region where the negative electrode current collecting tab 47 faces the positive electrode current collecting tab 57, that is, a portion where the negative current collecting tab 47 is projected onto the positive electrode current collecting tab 57 and the substantially triangular shape shown in FIG. It arrange
  • the negative electrode lead 15 is bonded to the negative electrode current collecting tab 47, and the positive electrode lead 17 is bonded to the positive electrode current collecting tab 57.
  • the negative electrode and the positive electrode are laminated via the separator, and each current collecting tab is joined. After the negative electrode lead and the positive electrode lead are joined to the current collecting tab, the film is filled with the electrolyte, The negative electrode lead 15 and the positive electrode lead 17 can be taken out from the sealing portion of the outer packaging material 3 to produce a stacked secondary battery.
  • FIG. 2 is a diagram for sequentially explaining the manufacturing process of the laminated secondary battery according to the embodiment of the present invention.
  • FIG. 2A is a diagram for explaining the positive electrode.
  • the positive electrode 5 includes a positive electrode active material application portion 53 to which a positive electrode active material is applied and a positive electrode current collecting tab including a positive electrode active material non-application portion to which no positive electrode active material is applied. 57.
  • the positive electrode current collecting tab is a positive electrode active material having a substantially triangular outer shape, one side of which is located on an extension line of the outer shape of the portion coated with the electrode active material, and the other side of which is a boundary line with the negative electrode active material application portion. It is formed from an uncoated part.
  • FIG. 2B is a figure explaining the separator of one Embodiment of this invention, and the separator 6 is a bag-like body joined intermittently by the three-way fused
  • FIG. 2C When the positive electrode 5 is mounted in the separator 6 as shown in FIG. 2C by setting the region formed inside the separator by the fusion part 61 to the width of the positive electrode 5, the positive electrode 5 is fused to the separator 6. Three sides can be positioned by the portion 61.
  • FIG. 2D is a figure explaining the negative electrode of one Embodiment of this invention, and the negative electrode 4 has the negative electrode active material application part 43 which apply
  • a negative electrode current collecting tab 47 is formed in the non-coated portion.
  • the negative electrode current collector tab is a negative electrode active material having a substantially triangular outer shape in which one side is positioned on an extension line of a portion where the electrode active material is applied and the other side is a boundary line with the negative electrode active material application portion. It is formed from an uncoated part.
  • FIG. 2E is a figure explaining the state which laminated
  • the positive electrode can be positioned by the fusion part provided in the separator, and the negative electrode can be positioned at the peripheral part of the separator. By doing in this way, it is possible to easily perform lamination in which the relative positions of the positive electrode and the negative electrode are specified.
  • the separator 8 exists between the negative electrode current collecting tab 47 and the positive electrode current collecting tab 57 so that the negative electrode current collecting tab 47 and the positive electrode current collecting tab 57 are separated from each other. An electrical short circuit between them can be prevented.
  • the negative electrode current collecting tab 47 and the positive electrode current collecting tab 57 are bonded to each other, and then the negative electrode lead 15 is bonded to the negative electrode current collecting tab 47.
  • the positive electrode lead 17 is bonded to the positive electrode current collecting tab 57 and sealed with a film-shaped exterior material.
  • FIG. 2F is a diagram for explaining another embodiment of the present invention.
  • a non-porous film 63 is attached to a portion corresponding to the facing portion 8 of the negative electrode current collecting tab 47 and the positive electrode current collecting tab 57.
  • the separator 6 in the facing portion 8 of the negative electrode current collecting tab 47 and the positive electrode current collecting tab 57 may be heated and crushed, or further, the separator may be heated and crushed to be multilayered.
  • FIG. 3 is a diagram illustrating a method for manufacturing a positive electrode and a negative electrode.
  • 3A and 3B are diagrams illustrating the negative electrode
  • FIGS. 3C and 3D are diagrams illustrating the positive electrode.
  • FIG. 3A shows a negative electrode current collector formed with a negative electrode active material application part 43 and a negative electrode active material non-application part 45 in which a negative electrode active material to be the negative electrode current collector tab 47 is not applied.
  • the negative electrode which formed the negative electrode current collection tab 47 as shown to FIG. 3B can be produced by cut
  • FIG. When the metal foil portion of the negative electrode current collector not coated with the negative electrode active material is cut by a linear cutting line as shown in the figure, no burr is generated.
  • the positive electrode active material non-applied portion 55 in which the positive electrode active material application portion 53 and the positive electrode active material to be the positive electrode current collection tab 57 are not applied to the positive electrode current collector is provided. Formed. By cutting the positive electrode active material non-applied portion 55 along the cutting line 9, a positive electrode in which the positive electrode current collecting tab 57 is formed as shown in FIG. 3D can be manufactured.
  • FIG. 4 is a diagram for sequentially explaining the manufacturing process of the laminated secondary battery according to another embodiment of the present invention.
  • the stacked secondary battery of the embodiment described in FIG. 4 is the same as the embodiment described in FIG. 2 except for the shape of the upper end portion of the negative electrode current collecting tab and the positive electrode current collecting tab and the shape of the separator. . That is, as shown in FIGS. 4A and 4D, the negative electrode current collecting tab 47 has a trapezoidal outer shape, and the negative electrode lead terminal attaching portion at the upper end portion of the positive electrode current collecting tab 57 and the negative electrode lead terminal attaching portion are provided.
  • the negative electrode and the positive electrode are different in that they are parallel to the boundary between the active material application layer and the active material non-application part.
  • the negative electrode current collecting tab 47 and the positive electrode current collecting tab are located on an extension line of the outer shape of the part where the electrode active material is applied, one side is a boundary line with the negative electrode active material application part, and one side is the negative electrode active material
  • the negative electrode active material having a substantially trapezoidal shape parallel to the boundary line with the coating portion is formed from a portion not coated.
  • the upper end portion of the separator 6 covers a region where the negative current collecting tab 47 faces the positive current collecting tab 57, that is, a substantially triangular overlapping portion 8 when the negative current collecting tab 47 is projected onto the positive current collecting tab 57.
  • a substantially triangular overlapping portion 8 when the negative current collecting tab 47 is projected onto the positive current collecting tab 57.
  • FIG. 5 is a diagram illustrating a method for producing a positive electrode and a negative electrode according to another embodiment.
  • 5A and 5B are diagrams illustrating the negative electrode
  • FIGS. 5C and 5D are diagrams illustrating the positive electrode.
  • FIG. 5A shows an area in which the negative electrode active material to be the negative electrode active material application portion 41 and the negative electrode current collector tab 47 is not applied to the negative electrode current collector.
  • coated the negative electrode active material is the outline line extended from both widths of a negative electrode active material application part, and two cutting lines 91 and 92 couple
  • a negative electrode in which the negative electrode current collecting tab 47 is formed as shown in FIG. 5B can be manufactured.
  • the metal foil part of the negative electrode current collector not coated with the negative electrode active material was cut only by the extension part of the active material application part and the two linear cutting lines as shown in the figure, so that shown in FIG. As with, no burr is produced.
  • the positive electrode current collecting tab is cut along the cutting lines 91 and 92 in a region where the positive electrode active material is not applied as shown in FIG. A positive electrode on which the positive electrode current collecting tab 57 is formed can be produced.
  • FIG. 6 is a diagram for explaining the production process of the electrode of the present invention, and is a diagram for explaining the negative electrode as an example.
  • the positive electrode can be manufactured in the same manner.
  • a paste of a negative electrode active material is applied to a strip-shaped negative electrode current collector 41A.
  • the negative electrode active material is applied intermittently so that the negative electrode active material application part 43 and the negative electrode active material non-application part 45 not applied with the negative electrode active material are formed.
  • the size of the negative electrode active material non-applied portion 45 is determined according to the size of the negative electrode current collecting tab to be formed.
  • the strip-shaped current collector coated with the negative electrode active material is cut along a cutting line 93 with a width corresponding to the width of one negative electrode constituting the multilayer body of the multilayer secondary battery. To do.
  • the strip 41B cut to the width of the negative electrode is cut, and the negative electrode active material coated portion 43 near the negative electrode active material non-coated portion 45 is cut along a cutting line 94 perpendicular to the length direction of the strip.
  • the negative electrode 4 can be obtained by cutting the negative electrode active material non-applied portion 45 with a cutting line 95 oblique to the longitudinal direction of the belt-like body while being cut by a line. In this method, since the negative electrode 4 having a uniform shape with respect to the length direction of the belt-like body can be obtained, an operation such as subsequent rotation is unnecessary.
  • the negative electrode active material in a portion close to the negative electrode active material non-applied part 45 on both sides of the negative electrode active material applied part 43 of the strip 41B cut to the width of the negative electrode through the active material non-applied part.
  • the material application part is cut along a cutting line 94 perpendicular to the length direction of the strip, and the negative electrode active material non-application part 45 positioned between the negative electrode active material application parts is slanted in the length direction of the strip.
  • the negative electrode 4 can be obtained by cutting along the direction cutting line 95.
  • two strips of the negative electrode active material application part 43 ⁇ / b> A are formed on the strip 41 ⁇ / b> B cut to the width of the negative electrode via the negative electrode active material non-application part 45.
  • the intermediate point of the negative electrode active material application portion 43A in the length direction of the strip is cut by a cutting line 94 perpendicular to the length direction of the strip, and the negative electrode active material non-application portion 45 is cut in the length direction of the strip.
  • the negative electrode 4 can be obtained by cutting along an oblique cutting line 95.
  • the method shown in FIGS. 6D and 6E reduces the amount of discarded members, but it is necessary to align the produced negative electrode 4 by rotation or the like.
  • FIG. 7 is a diagram illustrating an embodiment of the assembled battery.
  • FIG. 7A is a front view seen from the electrode lead side
  • FIG. 7B is a plan view in which a part on the side opposite to the electrode lead side is omitted.
  • the assembled battery 100 is formed by connecting electrode leads 15A2 to 15A4 and 17B1 to 17B3 of four stacked secondary batteries 1 in series by connecting conductive members 19A1 to 19A3, and electrode terminals 15A1 for connection to an external circuit.
  • 17B4 are joined with tabular tab terminals 21A, 21B having a rectangular plate shape.
  • connection lead wires 23A1 and 23B are connected to the tab terminals 21A and 21B at the connection portions 27A and 27B by soldering or the like.
  • the tab terminals 21A and 21B are connected to the electrode terminals by spot welding or the like at the joints 29A and 29B after first connecting the connection lead wires.
  • an assembled battery having an arbitrary output voltage and output current can be provided by connecting and integrating a plurality of stacked secondary batteries in series, parallel, and series-parallel. . Further, a protection circuit, a control circuit, and the like may be attached to these batteries.
  • the laminated secondary battery of the present invention is a lithium ion battery
  • an aluminum foil is used as a positive electrode current collector, and a positive electrode active material is formed on the positive electrode current collector.
  • the positive electrode active material lithium transition metal composites doped or undoped with lithium such as lithium manganese composite oxide, lithium cobalt composite oxide, lithium nickel composite oxide, or lithium composite oxide containing manganese, cobalt, nickel, etc.
  • the oxide is mixed with a conductivity imparting material such as carbon black, and a binder such as polyvinylidene fluoride is mixed with a solvent such as N-methylpyrrolidone, applied as a slurry on the positive electrode current collector, dried, and roll pressed.
  • the positive electrode active material layer can be formed by rolling with a machine or the like to produce the positive electrode.
  • the negative electrode is made of copper foil as a negative electrode current collector, negative electrode active material doped with lithium such as graphite powder, and a non-doped negative electrode active material as a conductivity imparting material such as carbon black, a binder such as polyvinylidene fluoride, and N-methyl.
  • a negative electrode can be prepared by forming a negative electrode active material layer by mixing with a solvent such as pyrrolidone and applying the slurry as a slurry on a negative electrode current collector, drying, and rolling with a roll press or the like.
  • Each of the positive electrode provided with the positive electrode current collecting tab and the negative electrode provided with the negative electrode current collecting tab is provided with a separator made of polyethylene, polypropylene, or the like interposed between the positive electrode current collecting tab and the negative electrode current collecting tab. Are stacked to form a battery element stack.
  • an electrolyte obtained by adding an electrolyte such as LiPF6 to a carbonate such as ethylene carbonate (EC), dimethyl carbonate (DMC), diethyl carbonate (DEC), or a lactone such as ⁇ -butyrolactone a positive electrode lead
  • the negative electrode lead can be pulled out and sealed with a film-like packaging material that does not leak or penetrate moisture.
  • a layer with good heat-fusibility such as polyethylene and polypropylene is laminated on the inner surface of the aluminum foil, and a layer of nylon, polyester, etc. that has a high strength and acts as a protective layer for the aluminum foil on the outer surface. It is preferable to use a film-shaped exterior material layer.
  • a 10 ⁇ m copper foil was used for the negative electrode current collector, and a 20 ⁇ m aluminum foil was used for the positive electrode current collector.
  • As the negative electrode active material graphite was mixed with carbon black as a conductivity imparting agent, and N-methylpyrrolidone was added to polyvinylidene fluoride as a binder to prepare a negative electrode active material paste.
  • LiMn 2 O 4 is used as the positive electrode active material, and similarly to the negative electrode, carbon black is blended as a conductivity-imparting material, and N-methylpyrrolidone is added to polyvinylidene fluoride as a binder to form a positive electrode active material.
  • a paste was prepared.
  • the negative electrode current collector and the positive electrode current collector were left with the negative electrode current collector tab and the positive electrode current collector tab forming portions, respectively, and after applying the paste respectively, they were cut into the shape shown in FIG. Thus, a positive electrode current collecting tab and a negative electrode current collecting tab were produced.
  • 4 positive electrodes and 5 negative electrodes were laminated via a polypropylene separator to produce a lithium ion secondary battery having an outer dimension of 82 ⁇ 150 ⁇ 4 mm. Lithium ion batteries with excellent characteristics were not produced.
  • the laminated secondary battery of the present invention is a shape in which a negative electrode current collecting tab produced integrally from a positive electrode and a negative electrode using a metal foil as a current collector and a positive electrode current collecting tab are cut along a simple line, Can be easily cut. In addition, since cutting is performed along a simple line, burrs and the like are hardly generated, and when cutting by punching, it is easy to adjust a die for punching and the productivity of the stacked secondary battery is improved. .
  • negative electrode current collector 41A, 41B ... band-like body, 43 ... negative electrode active material application part, 43A ... negative electrode active material of two lengths Application part, 45 ... Negative electrode active material non-application part, 47 ... Negative electrode current collection tab, 51 ... Positive electrode current collector, 53 ... Positive electrode active material application part, 55 ... Positive electrode active material non-application part, 57 ... Positive electrode current collection tab, 63 ... non-porous film, 91 91,93,94 ... cutting lines, 100 ... battery pack

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

 金属箔製の正極集電体51と金属箔製の負極集電体41上に、正極集電タブ57、負極集電タブ47を一体に形成した正極5と負極4をセパレータ6を介して積層し、セパレータ6は、正極集電タブと負極集電タブの対向部分8にも配置されており、前記正極集電タブに接続された正極リード17と、前記負極集電タブに接続された負極リード15は、正極5、負極4の積層体の同一端面から外装材3の外部へ取り出されていることを特徴とする積層型二次電池。

Description

積層型二次電池および積層型二次電池の製造方法
 本発明は、リチウムイオン二次電池等の積層型二次電池、積層型二次電池の製造方法およびそれを用いたのおよびそれを用いた組電池に関するものである。
 リチウムイオン二次電池等の積層型二次電池は、アルミニウム箔を集電体として正極活物質を塗布した正極と、銅箔を集電体として負極活物質を塗布した負極をセパレータを介して対向させて積層体とし、各電極に接続された集電タブを重ねて接合し、電流の入出力部としている。
 図8は、集電タブを作製する従来の方法を説明する図である。図8Aは、負極集電タブの切断前の平面図であり、図8Bは、正極タブの切断前の平面図である。
 負極活物質塗布部43の形成後、負極集電タブ47を負極活物質非塗布部45の一部を負極活物質塗布部43と結合した状態で矩形状に残すように切断線9に沿って打ち抜き切断することで形成される。
 同様に正極活物質塗布部53の形成後、正極集電タブ57が正極活物質非塗布部55の一部を矩形状に残すように切断線9に沿って打ち抜き切断することで形成される。
 負極集電体および正極集電体は、いずれも数マイクロメートルないし数十マイクロメートルの金属箔が用いられている。
 負極集電タブ47、正極集電タブ57は、いずれも電極の横幅に比べて長さが短い切断線で囲まれており、正極、負極ともに活物質層を形成した部分以外は、厚みが薄い金属箔のみで形成されているために、金属箔のみの部分を切断した場合にはバリが発生し易いすという問題があった。
 バリは、電池の長期間の使用過程において短絡等の問題が生じないとも限らないので、切断後にバリの有無を検査し、バリの除去作業を行うことが必要であり、生産効率が低下するという問題点があった。
特開平9-129211号公報
 本発明は、積層型リチウムイオン二次電池等の金属箔を集電体として、集電体上に電極活物質層を形成するとともに、電極活物質を塗布していない集電体を集電タブとして取り出し、電極を積層後、集電タブを重ねて接合し、電池の電極リードを接続して外装体によって封口した積層型電池において、集電タブを形成する際に、集電タブにバリが生じることがない積層型電池を提供することを課題とするものである。
 本発明は、金属箔製の正極集電体と金属箔製の負極集電体と、前記正極集電体上に、正極活物質を塗布した正極活物質塗布部と、正極活物質を塗布していない正極活物質未塗布部を有し、前記正極活物質未塗布部を正極集電タブとした正極と、前記負極集電体上に、負極活物質を塗布した負極活物質塗布部と、負極活物質を塗布していない負極活物質未塗布部を有し、前記負極活物質未塗布部を負極集電タブとした負極と、前記正極と前記負極の間に配置されたセパレータと、前記正極集電タブと前記負極集電タブはそれぞれの一部が対向するように積層されており、前記セパレータは、前記正極集電タブと前記負極集電タブが対向する部分にも配置されており、前記正極集電タブに接続された正極リードと、前記負極集電タブに接続された負極リードと、前記正極リードおよび前記負極リードは、前記正極、前記セパレータ、前記負極からなる積層体の同一端面から外装材の外部へ取り出されている積層型二次電池である。
 また、前記負極および前記正極の電極活物質塗布部の形状がいずれも四辺形状であり、前記正極タブ、前記負極タブは、前記正極活物質塗布部、または前記負極活物質塗布部との境界から離れるにしたがって幅が小さくなる前記の積層型二次電池である。
 また、前記正極タブ、前記負極タブは、略三角形状,略台形形状、あるいは略五角形状である前記の積層型二次電池である。
 前記セパレータの前記正極集電タブおよび前記負極集電タブに対向する部分は、無孔テープが貼着、もしくは加熱目潰しされた前記の積層型二次電池である。
 前記正極活物質にはリチウムマンガン複合酸化物を有する前記の積層型二次電池である。
 また、帯状の金属箔の少なくとも一方の面に長さ方向に、ペースト状の正極活物質、または負極活物質を長さ方向に、集電タブを形成する非塗布部を設けながら活物質を塗布する活物質塗布工程と、正極または負極の幅の大きさで長さ方向に切断して単位電極体を作製する工程、前記単位電極体の前記非塗布部を幅方向から1または2個の切断線で切断して、前記活物質塗布部との境界部から離れるにしたがって、幅方向の長さが小さくなるように切断して集電タブを有する正極および負極を作製する工程と、前記正極および前記負極をセパレータを介して積層する工程、該正極および負極の集電タブ相互を接合し、正極リード、負極リードを接合する工程、およびフィルム状外装材によって封口する工程を有する積層型二次電池の製造方法である。
 また、金属箔製の正極集電体と金属箔製の負極集電体と、前記正極集電体上に、正極活物質を塗布した正極活物質塗布部と、正極活物質を塗布していない正極活物質未塗布部を有し、前記正極活物質未塗布部を正極集電タブとした正極と、前記負極集電体上に、負極活物質を塗布した負極活物質塗布部と、負極活物質を塗布していない負極活物質未塗布部を有し、前記負極活物質未塗布部を負極集電タブとした負極と、前記正極と前記負極の間に配置されたセパレータと、前記正極集電タブと前記負極集電タブはそれぞれの一部が対向するように積層されており、前記セパレータは、前記正極集電タブと前記負極集電タブが対向する部分にも配置されており、前記正極集電タブに接続された正極リードと、前記負極集電タブに接続された負極リードと、前記正極リードおよび前記負極リードは、前記正極、前記セパレータ、前記負極からなる積層体の同一端面から外装材の外部へ取り出されている積層型電池の正極リードまたは負極リードを直列、並列、または直並列に接続した組電池である。
 本発明の積層型電池は、金属箔からなる正極集電体および負極集電体上の活物質を塗布していない、正極活物質非塗布部、負極活物質非塗布部を、それぞれ正極集電タブ、負極集電タブとし、正極と負極とをそれぞれの活物質層が対向するようにセパレータを介して積層した際に、正極集電タブと負極集電タブがセパレータを介して対向する部分を有するように配置され、正極集電タブと負極集電タブに接続した正極リードおよび負極リードがそれぞれ、積層体の同一の端面から取り出されるようにしたので、正極集電タブ、および負極集電タブを集電体の切断によって製造する際には、切断部にバリを生じることなく切断することができるので、効率的な製造が可能な積層型二次電池、およびそれを用いた組電池を提供することが可能となる。
図1は、本発明の積層型二次電池の実施形態を説明する図である。 図2は、本発明の実施態様の積層型二次電池の製造工程を順に説明する図である。 図3は、正極、負極の作製方法を説明する図である。 図4は、本発明の他の実施態様の積層型二次電池の製造工程を順に説明する図である。 図5は、他の実施態様の正極、負極の作製方法を説明する図である。 図6は、本発明の電極の製造工程を説明する図である。 図7は、組電池を説明する図である。 図8は、集電タブを作製する従来の方法を説明する図である。
 本発明は、金属箔を集電体とした正極および負極を作製する際に、正極活物質活物質を塗布していない正極活物質非塗布部、および負極活物質を塗布していない負極活物質非塗布部をそれぞれ切断して正極集電タブ、負極集電タブを形成する際に、正極集電タブおよび負極集電タブの形状を特定の形状となるように切断することによって、金属箔のように厚みが薄くバリが発生しやすい部材であってもバリの発生が起きない正極集電タブ、負極集電タブを有する積層型二次電池を提供することが可能であることを見出したものである。
 以下に,図面を参照して本発明を説明する。
 図1は、本発明の積層型二次電池の実施形態を説明する図である。
 図1Aは、積層型二次電池の積層面に垂直な面で切断した断面図である。また、図1Bは、図1AにおいてA-A線で切断した断面を説明する図である。
 本発明の積層型二次電池1は、電池要素2がフィルム状外装材3によって封口されている。電池要素2は、負極4および正極5が、それぞれ、合成樹脂製の多孔性フィルムからなるセパレータ6を介して積層されている。
 負極4には、負極集電体41に負極活物質を塗布した負極活物質塗布部43と、負極活物質を塗布していない負極活物質非塗布部45を有し、前記負極活物質塗布部の一部または全部に負極集電タブ47が形成されている。
 図1Bで説明する負極集電タブは、負極活物質を塗布した領域と接する部分から負極の横幅方向の全幅から、先端部へ向けて横幅が狭くなるように形成されている。
 また、正極5にも、正極集電体51に正極活物質を塗布した正極活物質塗布部53と、正極活物質を塗布していないを正極活物質非塗布部55有し、前記正極活物質塗布部の一部または全部に正極集電タブ57が形成されている。
 正極集電タブ57は、負極集電タブと同様に、正極活物質を塗布した領域と接する部分から負極の横幅方向の全幅から、先端部へ向けて横幅が狭くなるように形成されている。
 負極4と正極5との間には、セパレータ6が配置されている。
 本発明の積層型二次電池は、正極集電タブおよび負極集電タブが共に集電体と一体に形成され、電極活物質を塗布した領域と接する部分の正極および負極の幅方向の全幅から先端部に向けて横幅が小さくなる形状を有している。
 また、セパレータ6は、負極集電タブ47が正極集電タブ57に対向する領域、すなわち負極集電タブ47を正極集電タブ57に投影した場合に図1Bで示す略三角形の重なる部分である対向部分8の間を覆うように配置されている。
 したがって、負極集電タブ47と正極集電タブ57が対向する部分を有する正極と負極を積層した場合でも両者が対向する略三角形領域で電気的に短絡することは無い。
 また、負極集電タブ47には、負極リード15が接合され、正極集電タブ57には、正極リード17が接合されている。
 以上のように負極と正極とをセパレータを介して積層して各集電タブを接合し、集電タブには、負極リードおよび正極リードを接合した後に、内部に電解液を充填した後に、フィルム状外装材3の封口部分から負極リード15、正極リード17を取り出して積層型二次電池を作製することができる。
 図2は、本発明の実施態様の積層型二次電池の製造工程を順に説明する図である。
 図2Aは、正極を説明する図であり、正極5は、正極活物質を塗布した正極活物質塗布部53と、正極活物質を塗布していない正極活物質非塗布部からなる正極集電タブ57を有している。
 正極集電タブは、一辺が電極活物質が塗布された部分の外形の延長線上に位置し、他の一辺が負極活物質塗布部との境界線である略三角形の外形を有する正極活物質が塗布されていない部分から形成されている。
 また、図2Bは、本発明の1実施形態のセパレータを説明する図であり、セパレータ6は、三方の融着部61で間欠的に接合した袋状体である。
 融着部61によってセパレータ内部に形成される領域を正極5の幅とすることによって、図2Cで示すように、セパレータ6内に正極5を装着した場合には、正極5はセパレータ6の融着部61によって三方が位置決めすることができる。
 また、図2Dは、本発明の1実施形態の負極を説明する図であり、負極4は、負極活物質を塗布した負極活物質塗布部43と、負極活物質を塗布していない負極活物質非塗布部に負極集電タブ47が形成されている。
 負極集電タブは、一辺が電極活物質が塗布された部分の外形の延長線上に位置し、他の一辺が負極活物質塗布部との境界線である略三角形の外形を有する負極活物質が塗布されていない部分から形成されている。
 また、図2Eは、図2Cで示す正極を挿入したセパレータと、図2Dで説明した負極を積層した状態を説明する図である。
 正極5は、図2Cで説明したセパレータ6内部の融着部61によってセパレータに対して位置決めされているので、セパレータ6の外形部の直角に交わる二つの稜と負極4の二つの稜を位置決めすることによって、正極5とセパレータを介して積層する負極4の相対位置を定めることが容易となり、負極と正極の両者の位置関係が正確な積層体を作製することが可能となる。
 このように、セパレータに設けた融着部によって正極を位置決めし、負極はセパレータの周辺部で位置決めすることができる。
 このようにすることによって、正極と負極との相対位置を特定した積層が容易に行うことが可能となる。
 また、図2Eで示すように、負極集電タブ47と正極集電タブ57の対向部分8には、セパレータが存在するようにすることによって、負極集電タブ47と正極集電タブ57との間の電気的な短絡を防止することができる。
 以上のようにして、所定の個数の負極、セパレータ、正極を積層した後に、負極集電タブ47、正極集電タブ57を相互に接合した後に、負極集電タブ47に負極リード15を接合し、正極集電タブ57には正極リード17を接合し、フィルム状外装材によって封口する。
 また、図2Fは、本発明の他の実施態様を説明する図である。
 図2Fで示すセパレータ6は、負極集電タブ47と正極集電タブ57の対向部分8に対応する部分には、無孔フィルム63が貼着されている。このように無孔フィルムを貼着することによって、負極集電タブ47と正極集電タブ57の対向部分8での両者の接触を確実に防止することが可能となる。
 また、無孔フィルムに代えて、負極集電タブ47と正極集電タブ57の対向部分8のセパレータ6を加熱目潰したり、更にはセパレータを加熱目潰した後に多層化すると共にをしても良い。
 図3は、正極、負極の作製方法を説明する図である。図3Aおよび図3Bは、負極を説明する図であり、図3Cおよび図3Dは正極を説明する図である。
 図3Aは、負極集電体に負極活物質塗布部43と負極集電タブ47となる負極活物質を塗布していない負極活物質非塗布部45を形成したものである。
 そして、負極活物質を塗布していない領域を切断線9に沿って切断することによって、図3Bに示すように負極集電タブ47を形成した負極を作製することができる。
 負極活物質を塗布していない負極集電体の金属箔部分を図に示すように直線状の切断線によって切断する場合にはバリを生じることがない。
 正極についても、負極と同様に図3Cに示すように、正極集電体に正極活物質塗布部53と正極集電タブ57となる正極活物質を塗布していない正極活物質非塗布部55を形成したものである。正極活物質非塗布部55を切断線9に沿って切断することによって、図3Dに示すように正極集電タブ57を形成した正極を作製することができる。
 図4は、本発明の他の実施態様の積層型二次電池の製造工程を順に説明する図である。
 図4で説明する実施態様の積層型二次電池は、図2で説明した実施態様とは、負極集電タブ、および正極集電タブの上端部の形状、およびセパレータの形状を除き同様である。
 すなわち、図4A、図4Dで示すように、負極集電タブ47は台形状の外形を有しており、正極集電タブ57の上端部の負極リード端子取り付け部、および負極リード端子取り付け部が、負極および正極の活物質塗布層と活物質非塗布部との境界に平行である点が相違している。
 負極集電タブ47および正極集電タブは、一辺が電極活物質が塗布された部分の外形の延長線上に位置し、一辺が負極活物質塗布部との境界線であり、一辺が負極活物質塗布部との境界線に平行である略台形形状である負極活物質が塗布されていない部分から形成されている。
 また、セパレータ6の上端部が、負極集電タブ47が正極集電タブ57に対向する領域、すなわち負極集電タブ47を正極集電タブ57に投影した場合の略三角形の重なり部分8を覆うように、略三角形の外形に沿ったものである点が相違している。
 このように、負極集電タブ、正極集電タブ、よびセパレータの形状を変更したことによって、負極集電タブと正極集電タブの両者が対向しない部分には、セパレータが存在しないので、負極集電タブ、正極集電タブが取扱し易くなるという効果を得ることが可能となる。
 図5は、他の実施態様の正極、負極の作製方法を説明する図である。図5Aおよび図5Bは、負極を説明する図であり、図5Cおよび図5Dは正極を説明する図である。
 図5Aは、負極集電体に負極活物質塗布部41と負極集電タブ47となる負極活物質を塗布していない領域を形成したものである。
 そして、負極活物質を塗布していない領域が、負極活物質塗布部の両幅から延びる外形線、およびそれと結合する二つの切断線91、92、および負極活物質塗布部と非塗布部との境界線に囲まれた略五角形とすることによって、図5Bに示すように負極集電タブ47を形成した負極を作製することができる。
 負極活物質を塗布していない負極集電体の金属箔部分は、図に示すように活物質塗布部の延長部と二つの直線状の切断線のみによって切断したので、図2で示したものと同様にバリを生じることがない。
 また、正極集電タブも負極集電タブと同様に、図5Cに示すように正極活物質を塗布していない領域を切断線91、92に沿って切断することによって、図5Dに示すように正極集電タブ57を形成した正極を作製することができる。
 次に本発明の電極を集電体に電極活物質を塗布して製造する工程について説明する。
 図6は、本発明の電極の製造工程を説明する図であり、負極を例に挙げて説明する図である。また、正極についても同様に製造することが可能である。
 図6Aに示すように、帯状の負極集電体41Aに、負極活物質のペーストを塗布する。負極活物質の塗布は、負極活物質塗布部43と負極活物質を塗布していない負極活物質非塗布部45が形成されるように間欠的に形成する。負極活物質非塗布部45の大きさは、形成する負極集電タブの大きさに応じて決定される。
 次いで、図6Bに示すように、負極活物質を塗布した帯状の集電体を、積層型二次電池の積層体を構成する一つの負極の幅に相当する幅で切断線93に沿って切断する。
 図6Cで示す例は、負極の幅に切断した帯状体41Bを、負極活物質非塗布部45に近い部分の負極活物質塗布部43を帯状体の長さ方向に直角な切断線94で切断線によって切断すると共に、負極活物質非塗布部45を、帯状体の長さ方向に斜め方向の切断線95によって切断して負極4を得ることができる。
 この方法では、負極4は、帯状体の長さ方向に対して形状が揃ったものを得ることができるので、その後の回転等の操作が不要となる。
 図6Dに示す例は、負極の幅に切断した帯状体41Bの、活物質非塗布部を介して隣接する負極活物質塗布部43の両側の負極活物質非塗布部45に近い部分の負極活物質塗布部を帯状体の長さ方向に直角な切断線94で切断すると共に、前記の負極活物質塗布部の間に位置する負極活物質非塗布部45を、帯状体の長さ方向に斜め方向の切断線95によって切断して負極4を得ることができる。
 図6Eに示す例は、負極の幅に切断した帯状体41Bには、2個分の長さの負極活物質塗布部43Aが、負極活物質非塗布部45を介して形成されている。
 負極活物質塗布部43Aの帯状体の長さ方向の中間点を帯状体に長さ方向に垂直な切断線94で切断すると共に、負極活物質非塗布部45を、帯状体の長さ方向に斜め方向の切断線95によって切断して負極4を得ることができる。
 図6D、6Eに示す方法は、廃棄される部材の量が少なくなるが、作製した負極4を回転等によって揃えることが必要となる。
 次に、本発明の積層型二次電池の複数個を結合した組電池の一実施態様を図面を参照して説明する。
  図7は、組電池の一実施態様を説明する図である。図7Aは、電極リード側からみた正面図、図7Bは、電極リード側とは反対側の一部を省略した平面図である。
 組電池100は、4個の積層型二次電池1の電極リード15A2~15A4、17B1~17B3を連結導電部材19A1~19A3によって直列に接続したものであり、外部回路との接続用の電極端子15A1、17B4には、矩形平板状のタブ端子21A、21Bが接合されている。
 また、タブ端子21A、21Bに接続リード線23A1、23Bの芯線部分25A、25Bが半田付け等によって接続部27A、27Bにおいて接続されている。また、各タブ端子21A、21Bには先に接続リード線を接続した後に、接合部29A,29Bにおいてスポット溶接等によって電極端子と接合されている。
 更に、以上のように複数個の積層型二次電池を電気的に直列、並列、直並列に接続して一体化することによって任意の出力電圧、出力電流を有する組電池を提供することができる。
 また、これらの電池に、保護回路、制御回路などを装着しても良い。
 本発明の積層型二次電池がリチウムイオン電池である場合について説明する。
 正極には、アルミニウム箔を正極集電体として、正極集電体上に正極活物質が形成されている。
 正極活物質としては、リチウムマンガン複合酸化物、リチウムコバルト複合酸化物、リチウムニッケル複合酸化物、あるいは、マンガン、コバルト、ニッケル等を含むリチウム複合酸化物等のリチウムをドープ、アンドープするリチウム遷移金属複合酸化物を、カーボンブラック等の導電性付与材、ポリフッ化ビニリデン等の結着剤を、N-メチルピロリドン等の溶剤とともに混合してスラリー状として正極集電体上に塗布、乾燥し、ロールプレス機等により圧延することで正極活物質層を形成し正極を作製することができる。
 また、負極は、銅箔を負極集電体として、黒鉛粉末等のリチウムをドープ、アンドープする負極活物質をカーボンブラック等の導電性付与材、ポリフッ化ビニリデン等の結着剤を、N-メチルピロリドン等の溶剤とともに混合してスラリー状として負極集電体上に塗布、乾燥し、ロールプレス機等により圧延することで負極活物質層を形成して負極を作製することができる。
 正極集電タブを設けた正極と、負極集電タブを設けた負極のそれぞれを、正極集電タブと負極集電タブが対向した部分にも、ポリエチレン、ポリプロピレン等からなるセパレータを介在させて所定の枚数を積層して電池要素の積層体を形成する。
 次いで、エチレンカーボネート(EC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)等のカーボネート類、γ-ブチロラクトン等のラクトン類に、LiPF6等の電解質を添加した電解液を充填した後に、正極リード、負極リードを引出し、漏洩あるいは水分の浸透がないフィルム状外装材によって封口することができる。
 フィルム状外装材としては、アルミニウム箔の内面にポリエチレン、ポリプリピレン等の熱融着性が良好な層、外面に強度が大きくアルミニウム箔の保護層としての作用を果たすナイロン、ポリエステル等の層を積層したフィルム状外装材層を用いることが好ましい。
 次に本発明の実施態様に基づいて作製したリチウムイオン二次電池の一例について説明する。負極集電体に10μmの銅箔を用い、正極集電体には20μmのアルミニウム箔を用いた。
 負極活物質はグラファイトに導電性付与材としてカーボンブラックを配合し、結着剤としてポリフッ化ビニリデンにN-メチルピロリドンを加えて負極活物質のペーストを調製した。
 正極活物質にはLiMn24を用いて、負極と同様に同様に、導電性付与材としてカーボンブラックを配合し、結着剤としてポリフッ化ビニリデンにN-メチルピロリドンを加えて正極活物質のペーストを調製した。
 次いで、負極集電体、正極集電体には、負極集電タブおよび正極集電タブの形成部を残して、それぞれペーストを塗布した後に、先に示した図2に示した形状に切断して正極集電タブおよび負極集電タブを作製した。
 次いで、正極4枚および負極5枚をポリプロピレン製セパレータを介して積層し、外形寸法が82×150×4mmのリチウムイオン二次電池を作製したが、負極集電タブ、正極集電タブにはバリは発生せず特性が優れたリチウムイオン電池を作製することができた。
 本発明の積層型二次電池は、金属箔を集電体とした正極および負極のから一体に作製した負極集電タブ、正極集電タブが単純な線に沿って切断される形状であり、容易に切断できる。しかも、単純な線に沿って切断されるので、バリなどが出にくく、打ち抜きで切断する場合には、打ち抜き用の金型の調整等も容易で、積層型二次電池の生産性が向上する。
 1…積層型二次電池、2…電池要素、3…フィルム状外装材、4…負極、5…正極、6…セパレータ、8…対向部分、9,91,92,93…切断線、15…負極リード、15A1~15A4…電極リード、17…正極リード、17B1~17B3…電極リード、19A1~19A3…連結導電部材、21A、21B…タブ端子、23A、23B…接続リード線、25A、25B…芯線部分、27A,27B…接続部、29A,29B…接合部、41…負極集電体、41A,41B…帯状体、43…負極活物質塗布部、43A…2個分の長さの負極活物質塗布部、45…負極活物質非塗布部、47…負極集電タブ、51…正極集電体、53…正極活物質塗布部、55…正極活物質非塗布部、57…正極集電タブ、63…無孔フィルム、91,91,93,94…切断線、100… 組電池

Claims (7)

  1.  金属箔製の正極集電体と金属箔製の負極集電体と、
     前記正極集電体上に、正極活物質を塗布した正極活物質塗布部と、正極活物質を塗布していない正極活物質未塗布部を有し、前記正極活物質未塗布部を正極集電タブとした正極と、
     前記負極集電体上に、負極活物質を塗布した負極活物質塗布部と、負極活物質を塗布していない負極活物質未塗布部を有し、前記負極活物質未塗布部を負極集電タブとした負極と、
     前記正極と前記負極の間に配置されたセパレータと、
     前記正極集電タブと前記負極集電タブはそれぞれの一部が対向するように積層されており、前記セパレータは、前記正極集電タブと前記負極集電タブが対向する部分にも配置されており、
     前記正極集電タブに接続された正極リードと、前記負極集電タブに接続された負極リードと、
     前記正極リードおよび前記負極リードは、前記正極、前記セパレータ、前記負極からなる積層体の同一端面から外装材の外部へ取り出されていることを特徴とする積層型二次電池。
  2.  前記負極および前記正極の電極活物質塗布部の形状がいずれも四辺形状であり、前記正極タブ、前記負極タブは、前記正極活物質塗布部、または前記負極活物質塗布部との境界から離れるにしたがって幅が小さくなることを特徴とする請求項1記載の積層型二次電池。
  3.  前記正極タブ、前記負極タブは、略三角形状,略台形形状、あるいは略五角形状であることを特徴とする請求項1または2記載の積層型二次電池。
  4.  前記セパレータの前記正極集電タブおよび前記負極集電タブに対向する部分は、無孔フィルムが貼着されているか、加熱目潰しされていることを特徴とする請求項1から3のいずれか1項に記載の積層型二次電池。
  5.  前記正極活物質にはリチウムマンガン複合酸化物を有することを特徴とする請求項1から4のいずれか1項記載の積層型二次電池。
  6.  帯状の金属箔の少なくとも一方の面に長さ方向に、ペースト状の正極活物質、または負極活物質を長さ方向に、集電タブを形成する非塗布部を設けながら活物質を塗布する活物質塗布工程と、正極または負極の幅の大きさで長さ方向に切断して単位電極体を作製する工程、前記単位電極体の前記非塗布部を幅方向から1または2個の切断線で切断して、前記活物質塗布部との境界部から離れるにしたがって、幅方向の長さが小さくなるように切断して集電タブを有する正極および負極を作製する工程と、前記正極および前記負極をセパレータを介して積層する工程、該正極および負極の集電タブ相互を接合し、正極リード、負極リードを接合する工程、およびフィルム状外装材によって封口する工程を有することを特徴とする積層型二次電池の製造方法。
  7.  金属箔製の正極集電体と金属箔製の負極集電体と、
     前記正極集電体上に、正極活物質を塗布した正極活物質塗布部と、正極活物質を塗布していない正極活物質未塗布部を有し、前記正極活物質未塗布部を正極集電タブとした正極と、
     前記負極集電体上に、負極活物質を塗布した負極活物質塗布部と、負極活物質を塗布していない負極活物質未塗布部を有し、前記負極活物質未塗布部を負極集電タブとした負極と、
     前記正極と前記負極の間に配置されたセパレータと、
     前記正極集電タブと前記負極集電タブはそれぞれの一部が対向するように積層されており、前記セパレータは、前記正極集電タブと前記負極集電タブが対向する部分にも配置されており、
     前記正極集電タブに接続された正極リードと、前記負極集電タブに接続された負極リードと、
     前記正極リードおよび前記負極リードは、前記正極、前記セパレータ、前記負極からなる積層体の同一端面から外装材の外部へ取り出されている積層型電池の正極リードまたは負極リードを直列、並列、または直並列に接続したことを特徴とする組電池。
PCT/JP2009/059252 2009-05-20 2009-05-20 積層型二次電池および積層型二次電池の製造方法 WO2010134170A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2009/059252 WO2010134170A1 (ja) 2009-05-20 2009-05-20 積層型二次電池および積層型二次電池の製造方法
CN200980159373.0A CN102428600B (zh) 2009-05-20 2009-05-20 层叠二次电池及其制造方法
US13/147,955 US20110293996A1 (en) 2009-05-20 2009-05-20 Stacked secondary battery and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/059252 WO2010134170A1 (ja) 2009-05-20 2009-05-20 積層型二次電池および積層型二次電池の製造方法

Publications (1)

Publication Number Publication Date
WO2010134170A1 true WO2010134170A1 (ja) 2010-11-25

Family

ID=43125870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/059252 WO2010134170A1 (ja) 2009-05-20 2009-05-20 積層型二次電池および積層型二次電池の製造方法

Country Status (3)

Country Link
US (1) US20110293996A1 (ja)
CN (1) CN102428600B (ja)
WO (1) WO2010134170A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2014050988A1 (ja) * 2012-09-27 2016-08-22 Necエナジーデバイス株式会社 リチウムイオン二次電池及びその製造方法
EP2696425B1 (en) * 2011-04-07 2017-05-10 Nissan Motor Co., Ltd Battery, manufacturing method for battery, and sacked electrode

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120000964A1 (en) * 2010-07-01 2012-01-05 Gm Global Technology Operations, Inc. Battery tab joints and methods of making
KR101764841B1 (ko) * 2013-02-13 2017-08-04 주식회사 엘지화학 경사 구조의 전극조립체 및 이를 포함하는 전지셀
JP2015060714A (ja) * 2013-09-18 2015-03-30 住友電気工業株式会社 電極群ならびにこれを用いた蓄電デバイス
JP6376442B2 (ja) * 2014-05-22 2018-08-22 株式会社Gsユアサ 蓄電素子
KR101998194B1 (ko) * 2016-06-13 2019-07-09 주식회사 엘지화학 전극 제조 장치 및 방법
CN109860913A (zh) * 2017-06-28 2019-06-07 湖南妙盛汽车电源有限公司 一种锂离子动力电池
US10431816B2 (en) * 2017-07-17 2019-10-01 GM Global Technology Operations LLC Battery cell with increased tab area and method and apparatus for manufacturing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09129211A (ja) * 1995-10-30 1997-05-16 Shin Kobe Electric Mach Co Ltd 非水電解液二次電池
JP2003068278A (ja) * 2001-08-24 2003-03-07 Tdk Corp 電気化学デバイス
JP2003100282A (ja) * 2001-09-20 2003-04-04 Sony Corp 電極及びその製造方法
JP2007328952A (ja) * 2006-06-06 2007-12-20 Toshiba Corp 非水電解質電池、電池パックおよび自動車
JP2008027894A (ja) * 2006-07-24 2008-02-07 Lg Chem Ltd タブ−リード結合部の電極間抵抗差を最小化した電極組立体及びこれを有する電気化学セル

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2582186Y (zh) * 2002-12-06 2003-10-22 东莞新能源电子科技有限公司 安全聚合物锂离子电池
JP5591704B2 (ja) * 2007-09-28 2014-09-17 エー123 システムズ, インコーポレイテッド 無機/有機多孔質膜を有する電池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09129211A (ja) * 1995-10-30 1997-05-16 Shin Kobe Electric Mach Co Ltd 非水電解液二次電池
JP2003068278A (ja) * 2001-08-24 2003-03-07 Tdk Corp 電気化学デバイス
JP2003100282A (ja) * 2001-09-20 2003-04-04 Sony Corp 電極及びその製造方法
JP2007328952A (ja) * 2006-06-06 2007-12-20 Toshiba Corp 非水電解質電池、電池パックおよび自動車
JP2008027894A (ja) * 2006-07-24 2008-02-07 Lg Chem Ltd タブ−リード結合部の電極間抵抗差を最小化した電極組立体及びこれを有する電気化学セル

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2696425B1 (en) * 2011-04-07 2017-05-10 Nissan Motor Co., Ltd Battery, manufacturing method for battery, and sacked electrode
JPWO2014050988A1 (ja) * 2012-09-27 2016-08-22 Necエナジーデバイス株式会社 リチウムイオン二次電池及びその製造方法
JP2017168462A (ja) * 2012-09-27 2017-09-21 Necエナジーデバイス株式会社 リチウムイオン二次電池
US10153477B2 (en) 2012-09-27 2018-12-11 Nec Energy Devices, Ltd. Lithium-ion secondary battery and method of producing the same

Also Published As

Publication number Publication date
CN102428600B (zh) 2014-07-09
CN102428600A (zh) 2012-04-25
US20110293996A1 (en) 2011-12-01

Similar Documents

Publication Publication Date Title
WO2010134170A1 (ja) 積層型二次電池および積層型二次電池の製造方法
JP6859059B2 (ja) リチウムイオン二次電池及びその製造方法
JP5157244B2 (ja) 電気化学デバイス及びその製造方法
JP4720384B2 (ja) バイポーラ電池
JP6250921B2 (ja) 電池
JP5787750B2 (ja) 多層の膜電極接合体の製造方法
WO2011002064A1 (ja) ラミネート形電池
JP5735096B2 (ja) 非水二次電池用電極の製造方法、および非水二次電池の製造方法
JP6032628B2 (ja) 薄型電池
JP7220617B2 (ja) 全固体電池および全固体電池の製造方法
JP2010086780A (ja) 角形二次電池
JP4670275B2 (ja) バイポーラ電池および組電池
WO2014141640A1 (ja) ラミネート外装電池
JP2014049371A (ja) 扁平形非水二次電池およびその製造方法
WO2021131878A1 (ja) 二次電池
JP2011129446A (ja) ラミネート形電池
JP2011124161A (ja) 扁平形非水二次電池
JP5125438B2 (ja) リチウムイオン二次電池およびそれを用いた組電池
EP3483975A1 (en) Lithium ion secondary battery and method for manufacturing same
JP2009110812A (ja) 電池及びその製造方法
JP2011216209A (ja) ラミネート形電池およびその製造方法
JP2011216205A (ja) ラミネート形電池およびその製造方法
TWI424604B (zh) A method for producing a laminate type secondary battery and laminate type secondary batteries
JP5566671B2 (ja) 扁平形非水二次電池
JP2007335158A (ja) 二次電池及び組電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980159373.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09844904

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13147955

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09844904

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP