WO2010133214A1 - Verfahren zur herstellung von dichtungselementen - Google Patents
Verfahren zur herstellung von dichtungselementen Download PDFInfo
- Publication number
- WO2010133214A1 WO2010133214A1 PCT/DE2010/000565 DE2010000565W WO2010133214A1 WO 2010133214 A1 WO2010133214 A1 WO 2010133214A1 DE 2010000565 W DE2010000565 W DE 2010000565W WO 2010133214 A1 WO2010133214 A1 WO 2010133214A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tube
- sheet metal
- sealing element
- elements
- width
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D53/00—Making other particular articles
- B21D53/84—Making other particular articles other parts for engines, e.g. connecting-rods
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C37/00—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
- B21C37/06—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
- B21C37/08—Making tubes with welded or soldered seams
- B21C37/0815—Making tubes with welded or soldered seams without continuous longitudinal movement of the sheet during the bending operation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C37/00—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
- B21C37/06—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
- B21C37/08—Making tubes with welded or soldered seams
- B21C37/09—Making tubes with welded or soldered seams of coated strip material ; Making multi-wall tubes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21C—MANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
- B21C37/00—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
- B21C37/06—Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of tubes or metal hoses; Combined procedures for making tubes, e.g. for making multi-wall tubes
- B21C37/15—Making tubes of special shape; Making tube fittings
- B21C37/154—Making multi-wall tubes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D15/00—Corrugating tubes
- B21D15/04—Corrugating tubes transversely, e.g. helically
- B21D15/06—Corrugating tubes transversely, e.g. helically annularly
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D26/00—Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
- B21D26/02—Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure
- B21D26/033—Deforming tubular bodies
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D53/00—Making other particular articles
- B21D53/16—Making other particular articles rings, e.g. barrel hoops
- B21D53/20—Making other particular articles rings, e.g. barrel hoops washers, e.g. for sealing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16J—PISTONS; CYLINDERS; SEALINGS
- F16J15/00—Sealings
- F16J15/02—Sealings between relatively-stationary surfaces
- F16J15/06—Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
- F16J15/08—Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with exclusively metal packing
- F16J15/0887—Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with exclusively metal packing the sealing effect being obtained by elastic deformation of the packing
Definitions
- the invention relates to a method for producing annularly formed metallic sealing elements.
- EP 1 306 589 A2 has disclosed a sealing element comprising a first metallic layer of an oxide-dispersion-hardened alloy and a second metallic layer of a mixed-crystal-hardened alloy or a precipitation-hardened nickel-based alloy or an oxide dispersion-hardened alloy.
- the seal has a bellows-like structure, seen in radial section.
- first and second pieces of the sheets are cut out, with the two sheets being deformed into first and second rings.
- the rings thus formed are placed concentrically into each other, wherein then a deformation of the composite material thus formed is brought about to the final contour of a sealing element. Due to the multitude of working steps, this type of shaping is considered to be complicated and cost-intensive.
- DE 10 2007 038 713 A1 discloses a method for producing partially reinforced hollow profiles from a metal, in particular steel or a steel alloy.
- a board is formed together with a plurality of arranged on the board reinforcing elements made of metal by the use of Einrolltechnik or by a U-O-forming into a hollow profile, wherein the arranged on the board reinforcing elements are connected after forming via a positive connection with the formed blanks.
- the invention has for its object to produce with the least possible use of material sealing elements that can improve both the sealing behavior and the spring properties in the operating condition.
- the sealing elements produced in this way should be usable for specific application cases, in particular in the area of a vehicle drive.
- This object is achieved by a method for producing ring-shaped metallic sealing elements by at least two sheet or foil strips predetermined thickness, length and width, are brought into operative connection with each other in the manner of a tailored blank or patchwork, this composite is then wound into a tube, wherein the mutually facing end portions of the tubular multi-layer composite material fit, non-positive or positive or combinations thereof, in particular by thermal action, such as by welding or soldering, are joined together and the tube is either divided into individual ring elements, which thereafter by mechanical shaping to the respective Be formed sealing element, or the entire tube formed and this so profiled tube is divided into individual sealing elements forming ring elements.
- This object is also achieved by a method for producing annular metallic sealing elements by pipes or pipe segments of different outer dimensions are generated from sheet metal or film strips specifiable thickness, length and width, the pipes or pipe segments to form a type of Tailored Tubes multilayer composite with each other be placed, wherein the mutually facing end portions of the tubular multilayer composite material fit, non-positive or positive or combinations thereof, in particular by thermal action, such as by welding or soldering, are interconnected and the multilayer composite is divided into individual ring elements, which then by mechanical shaping be converted to the respective sealing element, or the entire tube formed and this so profiled pipe is divided into individual sealing elements forming ring elements.
- tailored blank is understood by the person skilled in the art to mean sheets or foils composed, for example, of different material grades and / or thicknesses. This prefabricated semi-finished product is then subjected to mechanical deformation.
- patchwork is understood by the person skilled in the art to mean sheets or foils onto which other smaller sheets or foils are applied in the manner of patches and which are joined to the first sheets or foils.
- Tailored Tubes is understood by the person skilled in the art to mean tubular components formed from sheets or foils which are connected to one another.
- connection of the sheets, respectively pipes, respectively, of the opposite end portions of the wound sheets can be brought about by all known in the art material, non-positive or positive connection methods or combinations thereof.
- seals in the region of a turbocharger or as Flachsolid. Flange seals are seals in the region of a turbocharger or as Flachsolid. Flange seals, especially in the exhaust system of a motor vehicle. Furthermore, the seals thus produced can also be used as housing seals, for example in the transmission housing of a vehicle.
- the starting materials are either thin sheet metal or film strips (10 .mu.m to 200 .mu.m) are used, or a combination with thicker sheet metal or Foil strips (200 ⁇ m to 1,000 ⁇ m) from which the respective composite material, either as a sheet metal or as a tube, is assembled.
- This layer structure serves to be able to adjust the spring properties similar to a leaf spring according to the respective requirement of the sealing element.
- Such layer systems can be made of materials through which no undesired effects, such as different thermal expansions or thermoelectric effects occur.
- the same or different materials are used. It offers both cold strips, spring steels, nickel-based alloys, bainitic materials or the like.
- the sheet metal or film strips used can be coated partially or completely.
- FIG. 1 is a schematic diagram of a laminar structure constructed in the manner of a tailored blank
- FIG. 2 is a schematic diagram of a laminar structure constructed in the manner of a patchwork
- Figures 3 and 4 are schematic diagrams of two rolled from sheets of different rolling direction tubes
- Figure 5 schematic diagram of a spirally wound from a long sheet metal tube
- FIGS. 6 and 7 are schematic diagrams of shaping processes for contouring a pipe
- FIG. 8 is a schematic diagram of a shaping process for producing a sealing element
- FIG. 10 Schematic diagram of a cylinder head gasket, including a sealing element according to FIG. 9.
- FIG. 1 shows a schematic diagram of a layer composite built up in the manner of a tailored blank, formed from three sheet metal strips 1, 2, 3 of different thickness.
- the metal strips 1,2,3 have in this example equal lengths L and equal widths B.
- the thicknesses of the metal strips 1 and 3 are between 200 and 1,000 microns, while the interposed sheet metal strip 2 has a thickness between 10 and 150 ⁇ m. These thickness specifications are only to be understood as exemplary thickness specifications.
- the metal strips 1, 2, 3 can be joined together in the region of one of their sides 4 by thermal action, for example by welding be (not shown). Thus, a multi-layer composite formed from the sheet metal strips 1,2,3 generated, which is then wound into a tube 5.
- the opposite end portions 6,7 of the wound tube 5 can also be connected to each other by thermal action, for example by welding. This depends on the particular application of the sealing element to be produced. If a shock - as in a piston ring known - should be necessary, the tube 5 can be performed in a similar manner as a pipe segment, so that this shock (not shown) is maintained after the winding process.
- FIG. 2 shows an alternative to FIG. 1.
- a plurality of sheets 8, 9, 10 has been strung together with substantially different thicknesses.
- These sheets 8-10 are in this example materially bonded (gluing, welding, soldering) with each other.
- the patchwork produced in this way is rolled (arrow), with the end regions being connected to one another analogously to FIG.
- This tube 5 'can then be cut into individual ring elements or else the entire tube 5' can be reshaped. From the formed tube 5 'can then individual, sealing rings forming ring elements are cut.
- Figures 3 and 4 show metal strips 11,12 different rolling direction, which are also formed into tubes 13,14.
- the respective end regions 15, 16, 17, 18 of the tubes 13, 14 can be connected to one another by welding or soldering. Again, it is possible to form pipe segments, so that the end portions 15,16,17,18 are provided with a predetermined distance from each other.
- the tubes 13, 14 have different diameters in this example, with the outer diameter of the tube 14 approximately corresponding to the inner diameter of the tube 13. These tubes 13,14 can now be pushed together to produce a Tailored Tubes. Any existing welds may be required staggered to each other. Also it is conceivable to position the tubes 13, 14 with respect to one another such that they are brought into operative connection with one another by welding.
- FIG. 5 shows a further embodiment of the method according to the invention.
- a long sheet metal strip 19 can be wound up into a spirally formed tube 20.
- the end portion 21 of the sheet metal strip 19 may, if necessary, be connected to the winding portion 22 by welding or soldering. It is also conceivable to produce a positive or non-positive connection in order to connect the individual layers with each other.
- the entire tube can be reshaped, wherein the thus profiled tube is cut into individual sealing elements forming ring elements.
- FIGS. 6 and 7 show different shaping processes for contouring the outer peripheral surface, for example, of the tube 20 according to FIG. 5.
- FIG. 6 shows the process of hydroforming
- FIG. 7 shows the process of rubber-forming. In both cases, corresponding contours 20 ', 20 "are introduced into the tube 20.
- Figure 8 shows a single ring element 23 in an enlarged view.
- This ring element 23 is placed in front of a negative mold 24, which is provided with a corresponding negative profile 25.
- a negative mold 24 For example, using a rotating roller 26, the ring member 23 is pressed into the female mold 25.
- the sealing element 27 thus produced has an approximately V-shaped contour.
- a wide variety of contours of the sealing element 27 can be produced.
- FIG. 9 shows examples of differently contoured sealing elements 27.
- Figure 10 shows a schematic diagram of a flat gasket or a cylinder head gasket 28, as z. B. can be used in the field of an internal combustion engine. It can be seen screw through holes 29 and through holes or Brennraum malgangsöffhungen 30. A sealing element 27, as shown in Figure 9, can be positioned in the region of the respective through holes or combustion chamber through hole 30.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Gasket Seals (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10732265A EP2432604A1 (de) | 2009-05-22 | 2010-05-20 | Verfahren zur herstellung von dichtungselementen |
CN2010800161338A CN102387875A (zh) | 2009-05-22 | 2010-05-20 | 用于制造密封垫元件的方法 |
US13/322,095 US20120073348A1 (en) | 2009-05-22 | 2010-05-20 | Method for producing sealing elements |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102009022391.6 | 2009-05-22 | ||
DE102009022391A DE102009022391B4 (de) | 2009-05-22 | 2009-05-22 | Verfahren zur Herstellung ringförmig ausgebildeter Dichtungselemente |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010133214A1 true WO2010133214A1 (de) | 2010-11-25 |
Family
ID=42985393
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE2010/000565 WO2010133214A1 (de) | 2009-05-22 | 2010-05-20 | Verfahren zur herstellung von dichtungselementen |
Country Status (5)
Country | Link |
---|---|
US (1) | US20120073348A1 (de) |
EP (1) | EP2432604A1 (de) |
CN (1) | CN102387875A (de) |
DE (1) | DE102009022391B4 (de) |
WO (1) | WO2010133214A1 (de) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012173652A1 (en) * | 2011-06-14 | 2012-12-20 | Amsted Rail Company, Inc. | Method of manufacturing a roller bearing seal |
RU2704709C1 (ru) * | 2018-10-05 | 2019-10-30 | Акционерное общество ""Объединенная двигателестроительная корпорация" (АО "ОДК") | Способ изготовления двухслойного кольцевого жаропрочного уплотнения узлов газотурбинного двигателя |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9457633B2 (en) * | 2014-10-21 | 2016-10-04 | Benteler Automobiltechnik Gmbh | Cross member system for a coupling device a motor vehicle |
CN104690127B (zh) * | 2015-03-19 | 2016-05-18 | 宁波永享铜管道有限公司 | 管件上鼓包加工装置及其加工方法 |
CN109570318A (zh) * | 2018-10-23 | 2019-04-05 | 上海航天设备制造总厂有限公司 | 一种燃气涡轮排气道支承壁用钣金件流体成形方法 |
WO2020150715A1 (en) * | 2019-01-20 | 2020-07-23 | Techreo Llc | Tubular structures |
EP3911455A4 (de) | 2019-01-20 | 2022-11-30 | Techreo LLC | Verfahren zur herstellung von geschichteten rohrförmigen strukturen |
CN115870366A (zh) * | 2022-10-31 | 2023-03-31 | 江苏恒高电气制造有限公司 | 一种不锈钢多层波纹管同轴成型的方法 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01172682A (ja) * | 1987-12-25 | 1989-07-07 | Nippon Valqua Ind Ltd | 金属中空oリングの製造方法 |
US5249814A (en) * | 1992-01-31 | 1993-10-05 | Eg&G Pressure Science, Inc. | Multi-ply sealing rings and methods for manufacturing same |
US5716052A (en) * | 1994-09-12 | 1998-02-10 | Eg&G Pressure Science, Inc. | Pressure-energized sealing rings |
US6227546B1 (en) * | 1999-03-26 | 2001-05-08 | Jetseal, Inc. | Resilient seal and method of using a resilient seal |
EP1306589A2 (de) | 2001-10-29 | 2003-05-02 | The Advanced Products Company | Hochtemperaturdichtung |
DE102007025477A1 (de) * | 2007-05-31 | 2008-12-04 | Bayerische Motoren Werke Aktiengesellschaft | Verfahren zur Herstellung einer Ringdichtung |
DE102007038713A1 (de) | 2007-08-14 | 2009-02-19 | Thyssenkrupp Steel Ag | Partiell verstärktes Hohlprofil |
DE102007049925A1 (de) * | 2007-10-18 | 2009-04-30 | Federal-Mogul Sealing Systems Gmbh | Geschweißte Metalldichtung |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1610383A (en) * | 1926-03-18 | 1926-12-14 | Wallace & Sons Mfg Co R | Method of forming metal parts from tubing |
US3797088A (en) * | 1972-09-08 | 1974-03-19 | Grotnes Machine Works Inc | Method of manufacturing cylindrical blanks |
US4162569A (en) * | 1977-10-17 | 1979-07-31 | Dana Corporation | Method of making metal gaskets |
DE2912308C2 (de) * | 1979-03-28 | 1982-12-16 | Alfred 7272 Altensteig Morhard | Verfahren zum Herstellen von gewickelten, oberflächen beschichteten Rohren und Vorrichtung zur Durchführung dieses Verfahrens |
DE3135966C2 (de) * | 1981-09-11 | 1986-06-05 | Hoesch Ag, 4600 Dortmund | Verfahren zur Herstellung mehrschichtiger Schraubennahtrohre |
JP2892057B2 (ja) * | 1989-11-15 | 1999-05-17 | アイシン・エィ・ダブリュ株式会社 | 自動変速機のオイルポンプのシール構造 |
DE19755391A1 (de) * | 1997-12-12 | 1999-06-24 | Freudenberg Carl Fa | Verfahren zur Herstellung eines Dichtringes |
US20020063145A1 (en) * | 2000-11-29 | 2002-05-30 | Lotspaih Steven R. | Reinforced hydroform tube |
DE10331061B4 (de) * | 2003-07-09 | 2005-05-19 | Technische Universität Dresden | Ringförmige Verbundwerkstücke und Kaltwalzverfahren zu ihrer Fertigung |
WO2008112620A1 (en) * | 2007-03-09 | 2008-09-18 | Federal-Mogul Corporation | Metal gasket |
-
2009
- 2009-05-22 DE DE102009022391A patent/DE102009022391B4/de not_active Expired - Fee Related
-
2010
- 2010-05-20 US US13/322,095 patent/US20120073348A1/en not_active Abandoned
- 2010-05-20 CN CN2010800161338A patent/CN102387875A/zh active Pending
- 2010-05-20 WO PCT/DE2010/000565 patent/WO2010133214A1/de active Application Filing
- 2010-05-20 EP EP10732265A patent/EP2432604A1/de not_active Withdrawn
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01172682A (ja) * | 1987-12-25 | 1989-07-07 | Nippon Valqua Ind Ltd | 金属中空oリングの製造方法 |
US5249814A (en) * | 1992-01-31 | 1993-10-05 | Eg&G Pressure Science, Inc. | Multi-ply sealing rings and methods for manufacturing same |
US5716052A (en) * | 1994-09-12 | 1998-02-10 | Eg&G Pressure Science, Inc. | Pressure-energized sealing rings |
US6227546B1 (en) * | 1999-03-26 | 2001-05-08 | Jetseal, Inc. | Resilient seal and method of using a resilient seal |
EP1306589A2 (de) | 2001-10-29 | 2003-05-02 | The Advanced Products Company | Hochtemperaturdichtung |
DE102007025477A1 (de) * | 2007-05-31 | 2008-12-04 | Bayerische Motoren Werke Aktiengesellschaft | Verfahren zur Herstellung einer Ringdichtung |
DE102007038713A1 (de) | 2007-08-14 | 2009-02-19 | Thyssenkrupp Steel Ag | Partiell verstärktes Hohlprofil |
DE102007049925A1 (de) * | 2007-10-18 | 2009-04-30 | Federal-Mogul Sealing Systems Gmbh | Geschweißte Metalldichtung |
Non-Patent Citations (1)
Title |
---|
See also references of EP2432604A1 |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012173652A1 (en) * | 2011-06-14 | 2012-12-20 | Amsted Rail Company, Inc. | Method of manufacturing a roller bearing seal |
CN103597258A (zh) * | 2011-06-14 | 2014-02-19 | 阿母斯替德铁路公司 | 制造滚柱轴承密封件的方法 |
AU2012271246B2 (en) * | 2011-06-14 | 2016-02-25 | Amsted Rail Company, Inc. | Method of manufacturing a roller bearing seal |
EA029239B1 (ru) * | 2011-06-14 | 2018-02-28 | Амстед Рэйл Компани, Инк. | Способ изготовления уплотнения роликового подшипника |
RU2704709C1 (ru) * | 2018-10-05 | 2019-10-30 | Акционерное общество ""Объединенная двигателестроительная корпорация" (АО "ОДК") | Способ изготовления двухслойного кольцевого жаропрочного уплотнения узлов газотурбинного двигателя |
Also Published As
Publication number | Publication date |
---|---|
US20120073348A1 (en) | 2012-03-29 |
EP2432604A1 (de) | 2012-03-28 |
DE102009022391A1 (de) | 2010-12-02 |
CN102387875A (zh) | 2012-03-21 |
DE102009022391B4 (de) | 2011-06-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102009022391B4 (de) | Verfahren zur Herstellung ringförmig ausgebildeter Dichtungselemente | |
DE102009022393B4 (de) | Verfahren zur Herstellung metallischer Elemente, insbesondere Dichtelemente | |
EP0737803B1 (de) | Abgassammelrohr, insbesondere für eine Brennkraftmaschine in einem Kraftfahrzeug, und Verfahren zu dessen Herstellung | |
DE60101789T2 (de) | Verfahren zur herstellung eines rohrförmigen bauteils | |
WO2010136016A1 (de) | Verfahren zur herstellung von metallischen dichtungselementen | |
DE102006025522B4 (de) | Verfahren und Vorrichtung zur Herstellung strukturierter, geschlossener Hohlprofile | |
EP1775437A1 (de) | Hitzeschild in Sandwich-Bauweise | |
DE4103083C1 (en) | Steel pipe branch for IC engine exhaust - is formed by integral, hydrostatically shaped component with inner, longitudinal flanges | |
EP0292754B1 (de) | Flansch zur Befestigung von Rohren | |
EP1890812B1 (de) | Herstellung von, insbesondere grossen, wabenkörpern für die mobile abgasnachbehandlung | |
EP1797974A2 (de) | Verfahren zur Herstellung eines Querträgers, insbesondere für ein Kraftfahrzeug | |
DE102020205454A1 (de) | Verfahren zur Herstellung von Druckringen für Wellschläuche | |
DE102011007937B4 (de) | Verfahren zum Herstellen eines Strukturbauteils einer Kraftfahrzeugkarosserie | |
EP2338617A2 (de) | Verfahren zur Herstellung von Konvektorblechen für Heizkörper, sowie entsprechendes Konvektorblech und Heizkörper damit | |
DE102009008842A1 (de) | Querlenker | |
DE102007030942A1 (de) | Gebautes Metallrohr | |
DE19851492A1 (de) | Verfahren zum Herstellen eines Bauteils mittels Innenhochdruck-Umformen | |
EP2177282A1 (de) | Belastungsangepasstes Strukturteil aus Metall für einen Wärmetauscher, Verfahren zur Herstellung eines belastungsangepassten Strukturteils | |
DE602004000461T2 (de) | Biegsame gewellte Leitung mit zumindest einem geschlossenen metallischen Ring und Verfahren zu deren Herstellung | |
EP0972588A2 (de) | Verfahren zur Herstellung von Blechringen | |
EP0753363A1 (de) | Verfahren zur Herstellung von Hohlkörpern | |
DE102015201879A1 (de) | Verfahren zum Herstellen eines Bauteils aus einem Sandwichmaterial und Bauteil aus einem Sandwichmaterial | |
DE102016204787A1 (de) | Käfigsystem sowie Verfahren zur Herstellung eines Käfigsegments | |
DE102016201638A1 (de) | Verfahren zum Herstellen eines Profils aus einem Sandwichmaterial, Profil aus einem Sandwichmaterial sowie dessen Verwendung | |
DE102015111096A1 (de) | Verfahren zur Herstellung eines nahtlosen, mehrlagigen Rohrproduktes und Rund- oder Mehrkantblock zur Verwendung bei diesem Verfahren |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080016133.8 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10732265 Country of ref document: EP Kind code of ref document: A1 |
|
DPE2 | Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2010732265 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 4341/KOLNP/2011 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13322095 Country of ref document: US |