WO2010131658A1 - 溶融スラグ熱回収装置 - Google Patents

溶融スラグ熱回収装置 Download PDF

Info

Publication number
WO2010131658A1
WO2010131658A1 PCT/JP2010/057972 JP2010057972W WO2010131658A1 WO 2010131658 A1 WO2010131658 A1 WO 2010131658A1 JP 2010057972 W JP2010057972 W JP 2010057972W WO 2010131658 A1 WO2010131658 A1 WO 2010131658A1
Authority
WO
WIPO (PCT)
Prior art keywords
slag
solidified
fluid medium
molten slag
fluidized bed
Prior art date
Application number
PCT/JP2010/057972
Other languages
English (en)
French (fr)
Inventor
清水 忠明
Original Assignee
国立大学法人新潟大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人新潟大学 filed Critical 国立大学法人新潟大学
Priority to EP10774915.2A priority Critical patent/EP2431697A4/en
Priority to JP2011513347A priority patent/JP5357962B2/ja
Priority to US13/320,080 priority patent/US8764439B2/en
Publication of WO2010131658A1 publication Critical patent/WO2010131658A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B5/00Treatment of  metallurgical  slag ; Artificial stone from molten  metallurgical  slag 
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B3/00General features in the manufacture of pig-iron
    • C21B3/04Recovery of by-products, e.g. slag
    • C21B3/06Treatment of liquid slag
    • C21B3/08Cooling slag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/02Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers
    • F22B1/04Methods of steam generation characterised by form of heating method by exploitation of the heat content of hot heat carriers the heat carrier being hot slag, hot residues, or heated blocks, e.g. iron blocks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B15/00Fluidised-bed furnaces; Other furnaces using or treating finely-divided materials in dispersion
    • F27B15/02Details, accessories, or equipment peculiar to furnaces of these types
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/001Extraction of waste gases, collection of fumes and hoods used therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/004Systems for reclaiming waste heat
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/02Physical or chemical treatment of slags
    • C21B2400/022Methods of cooling or quenching molten slag
    • C21B2400/026Methods of cooling or quenching molten slag using air, inert gases or removable conductive bodies
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/05Apparatus features
    • C21B2400/066Receptacle features where the slag is treated
    • C21B2400/076Fluidised bed for cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B2400/00Treatment of slags originating from iron or steel processes
    • C21B2400/08Treatment of slags originating from iron or steel processes with energy recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to a molten slag heat recovery device that recovers heat from blast furnace molten slag.
  • JP 2007-284761 A Japanese Patent Laid-Open No. 5-311214 JP-A-11-181508 Japanese Patent Laid-Open No. 5-296673
  • an object of the present invention is to provide a molten slag heat recovery device that solves the above problems, simplifies the structure, and has high heat recovery efficiency.
  • the present invention provides a fluidized bed obtained by fluidizing a fluidized medium obtained by pulverizing solidified slag, a molten slag supply means for supplying molten slag to the fluidized bed, and recovering heat from the fluidized bed.
  • a heat exchanger and a solidified slag recovery device that recovers the solidified slag solidified by the molten slag in the fluidized bed.
  • the molten slag is dropped onto the fluidized bed.
  • the present invention includes a crushing device that crushes the solidified slag collected by the solidified slag collecting device. Furthermore, it comprises a circulation device that pulverizes using the pulverizer and returns to the fluidized bed.
  • the present invention includes a fluid medium extraction device that extracts a part of the fluid medium.
  • the molten slag supplied to the fluidized bed is solidified, and the heat generated at that time is transmitted to the heat transfer tube through the fluidized medium, and the heat transfer coefficient between the heat transfer tube and the fluidized medium is between the gas and the heat transfer tube. Since it is about 10 times the heat transfer coefficient, the heat transfer area for the same amount of heat recovery can be reduced, the heat recovery efficiency is excellent, and the apparatus can be downsized.
  • the dropped molten slag is supplied into the fluidized bed as a lump of a predetermined size, and then a part of the fluidized medium is taken in to form solidified slag.
  • the fluid medium is returned to the fluidized bed via the circulation device, so that the amount of the fluid medium can be maintained substantially constant.
  • the fluidized medium is present in the fluidized bed at a high temperature for a long time, the fluidized medium is subjected to a heat treatment, and a part of the fluidized medium is extracted via a fluidized medium extracting device to produce an aggregate or other product. Available.
  • Example 1 of this invention It is explanatory drawing which shows Example 1 of this invention. It is explanatory drawing which shows the apparatus of an experiment example same as the above. It is a graph which shows the actual measurement temperature and theoretical value temperature in the fluidized bed of an experiment example same as the above. It is a graph which shows the relationship between the supply speed of the simulation slag of an experiment example, and the uptake
  • the molten slag heat recovery apparatus 1 includes an apparatus main body 2, a fluidized bed 3 is provided in the apparatus main body 2, and a slag reservoir 4 serving as a molten slag supply means is provided above the fluidized bed 3.
  • a communication passage 5 communicating with the apparatus main body 2 is provided at a lower portion of the slag reservoir 4, and a slag dropping nozzle 6 connected to the lower portion of the slag reservoir 4 is provided in the communication passage 5.
  • the slag dropping nozzle 6 is provided with a blowing port 6A for blowing high-speed air or nitrogen.
  • the apparatus main body 2 is provided with a bottom dispersion plate 8 in which a heat transfer tube 7 is disposed in the upper part of the fluidized bed 3 and a side plate 2A of the apparatus main body 2 is formed obliquely below the heat transfer pipe 7.
  • the dispersion plate 8 is provided with a gas nozzle 9 to supply a fluidized gas into the fluidized bed 3.
  • an aeration nozzle 10 for supplying a flowing gas into the fluidized bed 3 is provided in a portion of the side plate 2B continuous to the lower part of the bottom dispersion plate 8, and the gas nozzle 9 and the aeration nozzle 10 supply the fluidizing gas. Means.
  • the fluidized bed 3 is formed such that the section surrounded by the side plate 2B below the bottom dispersion plate 8 is smaller in cross section than the top.
  • the gas linear velocity in the portion surrounded by the side plate 2B is operated so as to be higher than the gas linear velocity on the bottom dispersion plate 8.
  • a heat exchanger 11 is provided on the side plate 2B, and a cooling water supply means 12 is connected to the heat exchanger 11, and the solidified slag and the fluid medium flowing downward inside the portion surrounded by the side plate 2B are cooled. . At this time, the cooling water heated by the solidified slag and the fluid medium in the heat exchanger 11 is recovered to the outside from the recovery path 13 as steam or hot water.
  • an exhaust gas flue 14 is provided in the upper part of the apparatus main body 2, the exhaust gas flue 14 is located above the fluidized bed 3, and a heat transfer tube 15 is provided in the exhaust gas flue 14.
  • the heat transfer tube 7 which is a heat exchanger contacts the fluid medium 32 in the fluidized bed 3, and the heat transfer tube 15 contacts the exhaust gas in the exhaust gas flue 14 to recover heat from the fluid medium and the exhaust gas, respectively.
  • Cooling water or steam which is a heat medium, is sent to the heat transfer tubes 7 and 15 and is recovered outside as superheated steam, saturated steam or warm water.
  • a solidified slag extracting device 16 such as a conveyor is provided below the fluidized bed 3 and at the bottom of the apparatus main body 2.
  • the solidified slag extracting device 16 sends the solidified slag containing the fluidized medium from the discharge port 17 to the outside.
  • Discharge A crusher 18 as a crushing means for crushing the solidified slag discharged from the discharge port 17 is provided, and a part of the pulverized slag pulverized by the crusher 18 is fed from the fluid medium supply port 20 to the apparatus main body 2 by the circulation device 19. And the crushed slag particles become a fluid medium.
  • the fluid medium supply port 20 is located above the fluid medium layer upper surface of the fluidized bed 3. The remaining crushed slag other than the returned one is the product 35.
  • a fluidized medium extracting device 21 for extracting a part of the fluidized medium 32 is connected, and the extracted fluidized medium becomes a product 36.
  • a molten slag droplet 31 is dropped into the fluidized bed 3 from a slag reservoir 4 installed at the upper part of the fluidized bed 3.
  • the molten slag droplet 31 is continuously dropped and supplied at a predetermined interval.
  • the fluidized bed 3 is obtained by fluidizing a fluid medium 32 composed of pulverized slag particles having a particle diameter of 0.1 mm to 3 mm using air or nitrogen at a gas velocity in the range of 2 to 20 times the fluidization start velocity. It is.
  • the gas used for fluidizing the fluid medium 32 is supplied from the gas nozzle 9 and the aeration nozzle 10.
  • the temperature is maintained below the slag melting point and desirably in a temperature range of 700 to 1000 ° C.
  • the dropped slag forms a solidified product 33 while taking in the surrounding fluid medium 32 in part.
  • the solidified slag 34 is completely cooled and solidified by the heat from the surrounding fluid medium 32.
  • the heat transmitted to the fluidized medium 32 is transmitted to the cooling water or steam supplied to the heat transfer tubes 7 and 15 and the heat exchanger 11 set in the fluidized bed 3, and is recovered in the form of superheated steam, saturated steam or warm water. .
  • the solidified slag 34 sinks in the fluidized bed 3 and is cooled by the gas blown from the heat exchanger 11 and the aeration nozzle 10 installed on the side plate 2B, and then the solidified slag is extracted from the bottom.
  • the device 16 is drawn out of the fluidized bed 3 from the outlet 17.
  • the fluid medium 32 is taken into the solidified slag 34, the fluid medium 32 decreases as the solidified slag 34 is extracted, but the solidified slag 34 is pulverized by the pulverizer 18 and flows through the circulation device 19. By recycling into the layer 3, the amount of the fluid medium 32 is maintained substantially constant.
  • the part not used in the pulverized slag particles from the pulverizer 18 becomes the product 35. Further, since the fluid medium 32 in the apparatus main body 2 exists in the fluidized bed 3 at a high temperature for a long time, the fluid medium 32 has been subjected to heat treatment, and a part of the fluid medium 32 is extracted via the fluid medium extractor 21. Available as product 36. When the slag reservoir 4 is dropped onto the fluidized bed 3, the droplet size is adjusted by blowing high-speed air or nitrogen from the blowing port 6A into the nozzle 6 in order to adjust the particle size of the droplet. Can do.
  • heat can be transferred via the fluidized medium 32, so that the heat of the molten slag can be transferred to the heat transfer tube 7 even if the molten slag does not adhere directly to the heat transfer tube 7. Since the heat transfer coefficient between the heat transfer tube 7 and the fluidized bed 3 at this time is about 10 times the heat transfer coefficient between the gas (gas) and the heat transfer tube 7, the heat transfer area for the same heat recovery amount is 1 An order of magnitude can be reduced, so that the device can be miniaturized. Further, it is utilized that the solidified slag 34 can be selectively and continuously extracted by settling in the fluidized bed 3.
  • molten slag is introduced and solidified, and heat generated at that time is transmitted to the heat transfer tube 7 through the fluidized medium 32 which is a fluidized particle.
  • steam having a temperature as high as possible (approximately 600 ° C. or higher) can be recovered.
  • stable continuous operation can be performed.
  • the fluidized bed 3 can be maintained at a high temperature of 800 ° C. to 1000 ° C., and the heat treatment of the solidified slag can be performed simultaneously.
  • the fluidized bed 3 composed of the fluidized medium 32 composed of particles obtained by pulverizing the solidified slag 34 is fluidized with air, and molten slag is dropped therein, and the molten slag solidifies while taking in surrounding particles. At that time, heat is released, but the heat is transferred to the conductive tube 7 in the layer through surrounding fluidized particles, and heat recovery is performed.
  • the slag coarse particles settle on the bottom, are cooled and extracted and then partially pulverized to form a fluidized medium 32 constituting the fluidized bed 3. The remainder is effectively used as a product 35 such as an aggregate.
  • Experimental Example 1 Experimental Method Generated when simulated slag (wax 101) is dropped into the fluidized bed 102 and the molten wax 101 solidifies in order to simulate the heat recovery method from the molten slag using the fluidized bed proposed in the present invention. It was examined whether the heat to be transferred to the surrounding particles as theoretically, and how much the surrounding particles take in when the simulated slag (wax 101) solidifies. An outline of the experimental apparatus is shown in FIG.
  • the apparatus main body used in this experimental example was made of acrylic, and a fluidized bed 102 having an inner diameter of 54 mm and a height of 300 mm was used.
  • Polystyrene was affixed to the bottom as a heat insulating material, and the pipe had a double pipe structure for heat insulation on the wall.
  • As the fluid medium 103 300 g of quartz sand (QS) having a particle diameter of 0.15 mm was filled. Particles were fluidized by supplying 13.55 l / min of nitrogen, which is five times the minimum fluidization speed, as fluidizing gas 107.
  • molten wax (Wax) 101 simulating molten slag was used as molten wax (Wax) 101 simulating molten slag.
  • the melting point is 49 ° C., and the density is 800 kg / m 3.
  • 80 ° C. molten wax 101 was dropped into the fluidized bed 102 drop by drop every 1.5 seconds.
  • the droplet diameter was about 4-5 mm.
  • the wax dropping weight rate was calibrated in advance under the same conditions.
  • FIG 3 shows a measured value of the temperature in the fluidized bed 102 after starting the supply of simulated slag (wax 101) in comparison with a theoretical value.
  • the theoretical value is based on the fact that the heat generated when the simulated slag (wax 101) solidifies is completely transferred to the quartz sand particles and the fluidized gas, and heat is transferred from the device containing the particles to the outside due to heat transfer. There is.
  • a stable flow was maintained until 700 seconds after the supply of the simulated slag (wax 101) was started, and the temperature rise was almost the same as the theoretical value. This indicates that the fluidized bed heat recovery of the present invention is possible if an appropriate flow can be maintained.
  • the solidified substance 106 accumulated in the apparatus at a time exceeding 700 seconds to cause a flow failure, and the actually measured temperature rise deviated from the theory.
  • the flow failure due to the accumulation of the solidified material can be avoided by extracting the accumulated solidified slag using an appropriate means such as the solidified slag extracting device 16 shown in the embodiment.
  • FIG. 4 shows that the solidified substance 106 accumulated in the apparatus is taken up to 300 seconds after the supply of the simulated slag (wax 101) is taken out, the wax 101 and the quartz sand of the fluid medium 102 are separated and weighed separately, and the result is simulated. From the density of slag (wax 101) and quartz sand, the volume of quartz sand taken into the simulated slag (wax 101) is obtained by calculation. Regardless of the dropping speed of the simulated slag (wax 101), the volume ratio of sand: simulated slag (wax 101) was taken in at a ratio of 0.4 to 0.5: 1. From this data, the amount of pulverized / recycled solidified product can be estimated.
  • the heat transfer tube 7 as a heat exchanger for recovering the solidified slag and the solidified slag extraction device as the solidified slag recovery device for recovering the solidified slag 34 solidified by the molten slag in the fluidized bed 3 are supplied to the fluidized bed 3.
  • the molten slag is solidified and the heat generated at that time is transferred to the heat transfer tube 7 through the fluid medium 32.
  • the heat transfer coefficient between the heat transfer tube 7 and the fluid medium 32 is about 10 times the heat transfer coefficient between the gas and the heat transfer tube. Therefore, the heat transfer area for the same heat recovery amount can be reduced, the heat recovery efficiency is excellent, and the apparatus can be downsized.
  • the dropped molten slag droplet 31 is supplied into the fluidized bed 3 as a lump of a predetermined size. A part of the medium 32 is taken in to form a solidified slag 34.
  • a pulverizer 18 serving as a pulverizing means for pulverizing the solidified slag recovered by the solidified slag extracting device 16 serving as a solidified slag collecting device, and a circulation for returning the pulverized solidified slag particles to the fluidized bed 3. Since the apparatus 19 is provided, the amount of the fluid medium 32 can be maintained substantially constant by returning the fluid catalyst 32 into the fluidized bed 3 via the circulation device 19.
  • the fluid medium extraction device 21 for extracting a part of the fluid medium 32 since the fluid medium extraction device 21 for extracting a part of the fluid medium 32 is provided, a part of the fluid medium 32 exists in the fluidized bed 3 at a high temperature for a long time. Therefore, it is heat-treated, and a part of the fluid medium 32 is extracted via the fluid medium extracting device 21 and can be used as a product 36 such as an aggregate.
  • the fluid medium 32 is fluidized by supplying air or nitrogen gas, which is a fluidized gas, to the fluid medium 32 obtained by pulverizing the solidified slag.
  • the fluidizing gas is not limited to the examples, and various gases can be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Structural Engineering (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Metallurgy (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)
  • Furnace Details (AREA)
  • Manufacture Of Iron (AREA)

Abstract

 構造容易にして、熱回収効率の高い溶融スラグ熱回収装置を提供するため、本願発明の溶融スラグ熱回収装置は、固化スラグを粉砕した流動媒体(32)を流動化した流動層(3)と、流動層に溶融スラグを供給するスラグ溜め(4)と、流動層から熱を回収する伝熱管(7)と、流動層内で溶融スラグが固化した固化スラグ(34)を回収する固化スラグ抜き出し装置(21)とを備える。スラグ溜め(4)から溶融スラグ滴(31)を流動層(3)に滴下し、流動層内で溶融スラグ滴が固化し、そのときに発生する熱を流動媒体(32)を通じて伝熱管(7)に伝える。伝熱管と流動媒体間の伝熱係数は、ガスと伝熱管間の伝熱係数の10倍程度であるから、同じ熱回収量に対する伝熱面積を小さくでき、装置を小型化できる。

Description

溶融スラグ熱回収装置
 本発明は、高炉溶融スラグから熱を回収する溶融スラグ熱回収装置に関する。
 従来、伝熱管を用いて溶融スラグから直接熱回収しようとすると、伝熱管上にスラグが固化して塊を生じるため、連続的な熱回収は不可能であった。これに対して、従来、いったんスラグを空気又は水スプレーで冷却固化させてから固化温度以下で熱回収する方法(例えば特許文献1及び特許文献2)が提案されている。しかし、これらの方法では、高温スラグの持つエクセルギーが有効活用できないという欠点がある。
 また、溶融スラグに空気などのガスを吹き付けて高温のガスとする方法(例えば特許文献3)、あるいは溶融スラグに冷水又は温水を混合させて蒸気を発生させ、この高温ガスあるいは蒸気から熱を回収する方法(例えば特許文献4)などが提案されているが、ガスや伝熱管との間の伝熱係数が小さいため、熱回収装置が大型になるという欠点を有していた。
特開2007-284761号公報 特開平5-311214号公報 特開平11-181508号公報 特開平5-296673号公報
 そこで、本発明は、上記問題点を解決し、構造簡易にして、熱回収効率の高い溶融スラグ熱回収装置を提供することを目的とする。
 本発明は、上記目的を達成するために、固化スラグを粉砕した流動媒体を流動化した流動層と、この流動層に溶融スラグを供給する溶融スラグ供給手段と、前記流動層から熱を回収する熱交換器と、前記流動層内で前記溶融スラグが固化した固化スラグを回収する固化スラグ回収装置とを備えるものである。
 また、本発明は、前記溶融スラグを前記流動層に滴下するものである。
 さらに、本発明は、前記固化スラグ回収装置により回収した前記固化スラグを粉砕する粉砕装置を備えるものである。
さらにまた、前記粉砕装置を用いて粉砕したのち前記流動層に返送する循環装置を備えるものである。
 さらにまた、本発明は、前記流動媒体の一部を抜き取る流動媒体抜き出し装置を備えるものである。
 上記構成によれば、流動層に供給した溶融スラグが固化し、そのときに発生する熱を流動媒体を通じて伝熱管に伝え、伝熱管と流動媒体間の伝熱係数は、ガスと伝熱管間の伝熱係数の10倍程度であるから、同じ熱回収量に対する伝熱面積を小さくでき、熱回収効率に優れるとともに装置を小型化できる。
 また、滴下した溶融スラグが所定の大きさの塊として流動層内に供給され、この後、流動媒体の一部を取り込み固化スラグを形成する。
 さらに、固化スラグを粉砕した後循環装置を経由して流動層内へ流動媒体を返送することで、流動媒体の量を略一定に維持することができる。
 さらにまた、流動媒体は高温で長時間流動層内に存在しているので、熱処理を受けたものとなり、その流動媒体の一部を流動媒体抜き出し装置を経由して抜き出し、骨材などの製品として利用できる。
本発明の実施例1を示す全体説明図である。 同上、実験例の装置を示す説明図である。 同上、実験例の流動層における実測温度と理論値温度を示すグラフ図である。 同上、実験例の模擬スラグの供給速度と石英砂の取込量との関係を示すグラフ図である。
 本発明における好適な実施の形態について、添付図面を参照しながら詳細に説明する。尚、以下に説明する実施の形態は、特許請求の範囲に記載された本発明の内容を限定するものではない。また、以下に説明される構成の全てが、本発明の必須要件であるとは限らない。実施例では、従来とは異なる新規な溶融スラグ熱回収装置を採用することにより、従来にない溶融スラグからの熱回収が達成でき、その溶融スラグ熱回収装置について記述する。
 以下、本発明の実施例1について、図1~図4を参照して説明する。図1に示すように、溶融スラグ熱回収装置1は装置本体2を備え、この装置本体2内に流動層3が設けられ、この流動層3の上部に、溶融スラグ供給手段たるスラグ溜め4を設け、このスラグ溜め4の下部に前記装置本体2に連通する連通路5を設け、この連通路5内に前記スラグ溜め4の下部に連結したスラグ滴下ノズル6を設けている。このスラグ滴下ノズル6には、高速の空気又は窒素を吹き込む吹込み口6Aが設けられている。
 前記装置本体2には、前記流動層3内の上部に伝熱管7を配置し、この伝熱管7の下方に前記装置本体2の側板2Aを斜めに形成した底部分散板8を設け、この底部分散板8にはガスノズル9を設け、流動層3内に流動ガスを供給する。また、前記底部分散板8の下部に連続する側板2Bの部分には、流動層3内に流動ガスを供給するエアレーションノズル10が設けられており、それらガスノズル9,エアレーションノズル10が流動化ガス供給手段である。尚、流動層3は、底部分散板8位置より下部の側板2Bで囲まれた部分が上部より断面が小さく形成されている。側板2Bで囲まれた部分のガス線速度は、底部分散板8の上でのガス線速度より高くなるように運転される。
 前記側板2Bに、熱交換器11を設け、この熱交換器11には冷却水供給手段12が接続され、側板2Bで囲まれた部分の内部を下向きに流れる固化スラグならびに流動媒体は冷却される。このとき、熱交換器11で固化スラグならびに流動媒体により加熱された冷却水は、水蒸気あるいは温水となって回収路13から外部に回収される。
 また、前記装置本体2の上部には排ガス煙道14が設けられ、この排ガス煙道14は前記流動層3より上方に位置し、該排ガス煙道14内に伝熱管15が設けられている。尚、熱交換器である伝熱管7は、流動層3内において流動媒体32に接触し、また、伝熱管15は、排ガス煙道14において排ガスと接触し、それぞれ流動媒体と排ガスから熱を回収する。伝熱管7,15に、熱媒体である冷却水あるいは水蒸気が送られ、過熱水蒸気あるいは飽和水蒸気あるいは温水となって外部に回収される。
 前記流動層3の下部で、前記装置本体2内の底部には、コンベヤなどの固化スラグ抜き出し装置16が設けられ、この固化スラグ抜き出し装置16は流動媒体を含む固化スラグを排出口17から外部に排出する。この排出口17から排出された固化スラグを粉砕する粉砕手段たる粉砕機18を設け、この粉砕機18で粉砕された粉砕スラグの一部を循環装置19により、流動媒体供給口20から装置本体2内に返送し、前記粉砕スラグ粒子が流動媒体となる。尚、前記流動媒体供給口20は前記流動層3の流動媒体層上部表面の上方に位置する。また、返送した以外の残りの粉砕スラグは製品35となる。
 また、流動層3の流動媒体層上部表面より下方には、流動媒体32の一部を抜き取る流動媒体抜き出し装置21を接続し、抜き出した流動媒体が製品36となる。
 次に、前記回収装置1の動作について説明する。流動層3の上部に設置したスラグ溜め4から溶融スラグ滴31を流動層3に滴下する。この場合、溶融スラグ滴31を所定間隔で連続的に滴下供給する。流動層3は、粒子径が0.1mm~3mmの粉砕スラグ粒子からなる流動媒体32を、流動化開始速度の2倍~20倍の範囲のガス速度で空気或いは窒素を用いて流動化したものである。流動媒体32の流動化に用いるガスはガスノズル9とエアレーションノズル10から供給する。流動層3内では、温度がスラグ融点以下で望ましくは700~1000°Cの温度範囲に維持されており、滴下されたスラグは周囲の流動媒体32を一部に取り込みつつ固化物33を形成し、最終的には周囲の流動媒体32に熱を奪われて完全冷却固化した固化スラグ34となる。流動媒体32に伝わった熱は、流動層3内に設定された伝熱管7,15及び熱交換器11に供給した冷却水あるいは水蒸気に伝わり、過熱水蒸気あるいは飽和水蒸気あるいは温水の形態で回収される。
 固化スラグ34は周囲の流動媒体32より大きいので流動層3内を沈下し、側板2Bに設置された熱交換器11とエアレーションノズル10から吹き込まれたガスにより冷却された後、底部の固化スラグ抜き出し装置16により排出口17から流動層3の外に抜き出される。ここで、固化スラグ34に流動媒体32が取り込まれているので、固化スラグ34の抜き出しと共に流動媒体32は減少するが、固化スラグ34を粉砕機18で粉砕して循環装置19を経由して流動層3内へリサイクルすることで、流動媒体32の量を略一定に維持する。粉砕機18から出た粉砕スラグ粒子で利用されなかった部分は、製品35となる。また、装置本体2内の流動媒体32は高温で長時間流動層3内に存在しているので、熱処理を受けたものとなり、流動媒体32も一部を流動媒体抜き出し装置21を経由して抜き出し、製品36として利用できる。尚、スラグ溜め4を流動層3に滴下する際に、液滴の粒子径を調整するために、高速の空気又は窒素を、吹込み口6Aからノズル6に吹き込んで液滴サイズを調整することができる。
 そして、流動層3では流動媒体32を介して熱の移動ができるので、直接溶融スラグが伝熱管7に付着しなくても、溶融スラグの熱を伝熱管7に移動させることができる。このときの伝熱管7と流動層3の間の伝熱係数は、ガス(気体)と伝熱管7の間の伝熱係数の10倍程度であるので、同じ熱回収量に対する伝熱面積を1桁小さくでき、そのため装置を小型化できる。また、固化したスラグ34を流動層3内で沈降させることで、選択的且つ連続的に抜き出すことができることを利用したものである。したがって、溶融スラグを投入させて固化させ、そのときに発生する熱を流動した粒子である流動媒体32を通じて伝熱管7に伝えることを特徴とする。本実施例では、高炉溶融スラグの高温が持つエクセルギーを有効利用するため、なるべく高い温度(略600°C以上)の水蒸気を回収できることを特徴とする。また、伝熱管7へのスラグの付着がないので、安定した連続操業ができる。流動層3内は800°C~1000°Cの高温に維持でき、固化スラグの熱処理も同時に行うことができる。
 本実施例では、固化スラグ34を粉砕した粒子からなる流動媒体32により構成した流動層3を、空気で流動化し、その中に溶融スラグを滴下し、溶融スラグは周囲の粒子を取り込みつつ固化し、そのとき熱を放出するが、その熱は周囲の流動化粒子を通じて層内の伝導管7へ運ばれ、熱回収がなされる。スラグ粗粒は底部に沈降し、冷却され抜き出された後に一部粉砕されて流動層3を構成する流動媒体32となるが、残りは骨材などの製品35として有効利用される。
実験例
1.実験例の方法
 本発明で提案する流動層を用いた溶融スラグからの熱回収方式を模擬するために、模擬スラグ(ワックス101)を流動層102に滴下し、溶融ワックス101が固化する際に発生する熱が周囲粒子に理論どおりに移動するかどうか、また、模擬スラグ(ワックス101)が固化する際にどれだけ周囲粒子を取り込むかを検討した。実験装置概略を図2に示す。
 本実験例で使用した装置本体はアクリル製で内径54mm、高さ300mmの流動層102を用いた。底部に断熱材としてポリスチレンを貼り、また、壁面断熱のため管を二重管構造とした。流動媒体103として粒子径0.15mmの石英砂(QS)を300g充填した。流動化ガス107として最小流動化速度の5倍である13.55l/minの窒素を供給し粒子を流動化した。
 溶融スラグを模擬した溶融ワックス(Wax)101として1-ヘキサデカノール(セタノール)を用いた。融点は49°C、密度は800kg/m3である。自動滴下装置を用いて流動層102内へは1.5秒に1滴ずつ80°Cの溶融ワックス101を滴下した。液滴直径は約4~5mmであった。ワックス滴下重量速度はあらかじめ同一の条件で検量を行った。
 流動が安定していた間(300秒まで)で滴下を停止した後、固化したワックス104と石英砂105のかたまりである固化物106と流動媒体103の混合物を流動層102から回収し、2.50mmのふるいで固化物106を流動媒体103から分離した。その後、固化物106について熱水でワックスを溶融させるとともに溶融ワックス101と石英砂105と水の密度差を用いた浮上沈降分離操作を行い、ワックスと石英砂をそれぞれ乾燥させた後にそれぞれ重量を測定してワックス104が石英砂105を取り込んだ量を測定した。
2.実験例の結果
 図3に模擬スラグ(ワックス101)供給開始後の流動層102内の温度の実測値を理論値と比較して示す。理論値は、模擬スラグ(ワックス101)が固化する際に発する熱が石英砂粒子ならびに流動化ガスに完全に移動するとともに、粒子を入れた装置から外部へ伝熱で熱損失することを考慮に入れてある。温度を実測した結果、模擬スラグ(ワックス101)の供給開始後700秒までは安定した流動が維持されて、温度上昇は理論値とほぼ同じであった。これは、適切な流動が維持できれば、本発明の流動層式熱回収が可能であることを示す。一方、700秒を越えたところで装置内に固化物106が蓄積して流動不良を起こし、実測された温度上昇が理論からずれるようになった。しかし、固化物蓄積による流動不良は、蓄積した固化スラグを、実施例で示した固化スラグ抜き出し装置16のような適切な手段を用いて抜き出せば回避できると考えられる。
 図4は模擬スラグ(ワックス101)の供給開始後300秒までに装置内に蓄積した固化物106を取り出し、ワックス101と流動媒体102の石英砂を分離してそれぞれ重量測定し、その結果と模擬スラグ(ワックス101)、石英砂の密度から、模擬スラグ(ワックス101)中に取り込まれた石英砂の体積を計算で求めたものである。模擬スラグ(ワックス101)の滴下速度に依存せず、体積比で砂:模擬スラグ(ワックス101)=0.4~0.5:1の割合で取り込まれた。このデータにより、固化物の粉砕・リサイクル量が推定できる。
 このように本実施例では、固化スラグを粉砕した流動媒体32を流動化した流動層3と、この流動層3に溶融スラグを供給する溶融スラグ供給手段たるスラグ溜め4と、流動層3から熱を回収する熱交換器たる伝熱管7と、流動層3内で溶融スラグが固化した固化スラグ34を回収する固化スラグ回収装置たる固化スラグ抜き出し装置とを備えるものであり、流動層3に供給した溶融スラグが固化し、そのときに発生する熱を流動媒体32を通じて伝熱管7に伝え、伝熱管7と流動媒体32間の伝熱係数は、ガスと伝熱管間の伝熱係数の10倍程度であるから、同じ熱回収量に対する伝熱面積を小さくでき、熱回収効率に優れるとともに装置を小型化できる。
 また、このように本実施例では、溶融スラグを流動層3に滴下するものであるから、滴下した溶融スラグ滴31が所定の大きさの塊として流動層3内に供給され、この後、流動媒体32の一部を取り込み固化スラグ34を形成する。
 さらに、このように本実施例では、固化スラグ回収装置たる固化スラグ抜き出し装置16により回収した固化スラグを粉砕する粉砕手段たる粉砕機18と、この粉砕した固化スラグ粒子を流動層3に返送する循環装置19とを備えるものであるから、循環装置19を経由して流動層3内へ流動触媒32を返送することで、流動媒体32の量を略一定に維持することができる。
 さらにまた、このように本実施例では、流動媒体32の一部を抜き取る流動媒体抜き出し装置21を備えるものであるから、流動媒体32の一部は高温で長時間流動層3内に存在しているので、熱処理を受けたものとなり、その流動媒体32の一部を流動媒体抜き出し装置21を経由して抜き出し、骨材などの製品36として利用できる。
 また、このように本実施例では、固化スラグを粉砕した流動媒体32に、流動化ガスである空気又は窒素ガスを供給して流動媒体32を流動化したものである。
 本発明は、前記実施例に限定されず種々の変形実施が可能である。例えば、流動化ガスは実施例に限定されず各種のガスを用いることができる。
1 溶融スラグ熱回収装置
2 流動層本体
2A 流動層本体側板
2B 流動層底部粒子冷却抜き出し部側板
3 流動層
4 スラグ溜め(溶融スラグ供給手段)
5 連通路
6 スラグ滴下ノズル
6A スラグ滴下ノズルガス吹き込み用ノズル
7 流動層内伝熱管(熱交換器)
8 底部分散板
9 ガスノズル(流動化ガス供給手段)
10 エアレーションノズル(流動化ガス供給手段)
11 抜き出し粒子冷却用熱交換器
12 冷却水供給手段
13 水蒸気あるいは温水回収路
14 排ガス煙道
15 煙道内伝熱管(熱交換器)
16 固化スラグ抜き出し装置(固化スラグ回収装置)
17 固化スラグ排出口
18 粉砕機(粉砕手段)
19 循環装置
20 流動媒体供給口
21 流動媒体抜き出し装置
31 溶融スラグ滴
32 流動媒体
33 流動媒体を取り込みつつ固化する半固化スラグ(固化物)
34 固化スラグ
35 製品(固化スラグ粉砕物)
36 製品(熱処理後流動媒体)
101 模擬スラグ(ワックス)
102 流動層
103 流動媒体
104 固化模擬スラグ(固化ワックス)
105 付着流動媒体
106 固化物(付着流動媒体を取り込んだ固化模擬スラグ)
107 流動化ガス

Claims (10)

  1. 固化スラグを粉砕した流動媒体を流動化した流動層と、この流動層に溶融スラグを供給する溶融スラグ供給手段と、前記流動層から熱を回収する熱交換器と、前記流動層内で前記溶融スラグが固化した固化スラグを回収する固化スラグ回収装置とを備えることを特徴とする溶融スラグ熱回収装置。
  2. 前記溶融スラグを前記流動層に滴下することを特徴とする請求項1記載の溶融スラグ熱回収装置。
  3. 前記固化スラグ回収装置により回収した前記固化スラグを粉砕する粉砕手段と、この粉砕した固化スラグ粒子を前記流動層に返送する循環装置とを備えることを特徴とする請求項1記載の溶融スラグ熱回収装置。
  4. 前記固化スラグ回収装置により回収した前記固化スラグを粉砕する粉砕手段と、この粉砕した固化スラグ粒子を前記流動層に返送する循環装置とを備えることを特徴とする請求項2記載の溶融スラグ熱回収装置。
  5. 前記流動媒体の一部を抜き取る流動媒体抜き出し装置を備えることを特徴とする請求項2記載の溶融スラグ熱回収装置。
  6. 前記流動媒体の一部を抜き取る流動媒体抜き出し装置を備えることを特徴とする請求項3記載の溶融スラグ熱回収装置。
  7. 前記流動媒体の一部を抜き取る流動媒体抜き出し装置を備えることを特徴とする請求項4記載の溶融スラグ熱回収装置。
  8. 前記固化スラグを粉砕した流動媒体に、流動化ガスを供給して前記流動媒体を流動化することを特徴とする請求項1記載の溶融スラグ熱回収装置。
  9. 前記固化スラグを粉砕した流動媒体に、流動化ガスを供給して前記流動媒体を流動化することを特徴とする請求項2記載の溶融スラグ熱回収装置。
  10. 前記固化スラグを粉砕した流動媒体に、流動化ガスを供給して前記流動媒体を流動化することを特徴とする請求項3記載の溶融スラグ熱回収装置。
PCT/JP2010/057972 2009-05-12 2010-05-11 溶融スラグ熱回収装置 WO2010131658A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP10774915.2A EP2431697A4 (en) 2009-05-12 2010-05-11 APPARATUS FOR RECOVERING HEAT FROM MOLTEN DAIRY
JP2011513347A JP5357962B2 (ja) 2009-05-12 2010-05-11 溶融スラグ熱回収装置
US13/320,080 US8764439B2 (en) 2009-05-12 2010-05-11 Device for recovering heat of molten slag

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009115888 2009-05-12
JP2009-115888 2009-05-12

Publications (1)

Publication Number Publication Date
WO2010131658A1 true WO2010131658A1 (ja) 2010-11-18

Family

ID=43085031

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/057972 WO2010131658A1 (ja) 2009-05-12 2010-05-11 溶融スラグ熱回収装置

Country Status (4)

Country Link
US (1) US8764439B2 (ja)
EP (1) EP2431697A4 (ja)
JP (1) JP5357962B2 (ja)
WO (1) WO2010131658A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITMO20130353A1 (it) * 2013-12-20 2015-06-21 Gian Paolo Balderacchi Impianto e metodo per il recupero di calore da forni di cottura
CN105277004B (zh) * 2015-11-25 2018-01-12 南京圣诺热管有限公司 高温熔融炉渣两步法余热回收装置及余热回收方法
CN107894170A (zh) * 2017-11-08 2018-04-10 中科合肥煤气化技术有限公司 一种高温炉渣热量回收制冷装置
CN110186287B (zh) * 2019-05-29 2021-02-23 山西八达镁业有限公司 一种高温渣余热利用方法和系统
CN111351340B (zh) * 2020-03-13 2021-05-07 钢铁研究总院 一种高温液体冷却装置
CN113819776A (zh) * 2021-08-11 2021-12-21 自然资源部天津海水淡化与综合利用研究所 一种旋流流化床

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5438331A (en) * 1977-09-01 1979-03-22 Ishikawajima Harima Heavy Ind Apparatus for cooling molten slag
JPS5617954A (en) * 1979-07-23 1981-02-20 Sumitomo Metal Ind Manufacture of artificial sand
JPS56121622A (en) * 1980-02-28 1981-09-24 Ishikawajima Harima Heavy Ind Co Ltd Granulating and collecting device for molten slag
JPH05296673A (ja) 1992-04-24 1993-11-09 Nkk Corp 高炉スラグからの熱回収方法
JPH05311214A (ja) 1992-05-08 1993-11-22 Nkk Corp 高炉スラグからの熱回収方法
JPH1163870A (ja) * 1997-08-25 1999-03-05 Kawasaki Heavy Ind Ltd 排熱回収装置
JPH11181508A (ja) 1997-12-22 1999-07-06 Nippon Steel Corp 溶融高炉スラグの熱回収設備
JP2001048605A (ja) * 1999-07-29 2001-02-20 Nippon Steel Corp セメント用製鋼スラグの処理方法
JP2007284761A (ja) 2006-04-18 2007-11-01 Nippon Steel Corp 溶融高炉スラグからの熱回収装置及び熱回収方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1445679A (en) * 1922-05-13 1923-02-20 James H Gray Slag pocket and method of removing slag
US2873554A (en) * 1956-05-15 1959-02-17 Babcock & Wilcox Co Apparatus for and a method of recovering heat from molten slag
US3983927A (en) * 1975-06-25 1976-10-05 Dorr-Oliver Incorporated Heat exchanger for fluidized bed reactor
JPS5241195A (en) * 1975-09-29 1977-03-30 Mitsubishi Heavy Ind Ltd Equipment for recovering heat from molten slag
JPS5927732B2 (ja) * 1976-08-05 1984-07-07 大平洋金属株式会社 溶融スラグからの熱回収方法
JPS5385794A (en) * 1977-01-07 1978-07-28 Ishikawajima Harima Heavy Ind Co Ltd Cooling equipment for slag granules
JPS63282484A (ja) * 1987-05-15 1988-11-18 株式会社ティーディーイー 非鉄金属溶解炉
DE4021329A1 (de) * 1990-07-03 1992-01-16 Kuettner Gmbh & Co Kg Dr Verfahren und vorrichtung zum aufbereiten heisser, fluessiger schlacke
DE19522320C1 (de) * 1995-06-20 1996-08-22 Joseph E Doumet Verfahren und Vorrichtung zum Abkühlen und Verfestigen von glühendflüssiger Hochofenschlacke
US6447288B1 (en) * 2000-06-01 2002-09-10 Energy Research Company Heat treating apparatus
AT410676B (de) * 2001-10-23 2003-06-25 Tribovent Verfahrensentwicklg Verfahren und vorrichtung zum granulieren und zerkleinern von flüssigen schmelzen
JP4861652B2 (ja) * 2005-04-28 2012-01-25 タピオカ コマーシオ エ サービコス ソシエダーデ ウニペッソアル エルディーエー 加熱油化装置及び加熱油化方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5438331A (en) * 1977-09-01 1979-03-22 Ishikawajima Harima Heavy Ind Apparatus for cooling molten slag
JPS5617954A (en) * 1979-07-23 1981-02-20 Sumitomo Metal Ind Manufacture of artificial sand
JPS56121622A (en) * 1980-02-28 1981-09-24 Ishikawajima Harima Heavy Ind Co Ltd Granulating and collecting device for molten slag
JPH05296673A (ja) 1992-04-24 1993-11-09 Nkk Corp 高炉スラグからの熱回収方法
JPH05311214A (ja) 1992-05-08 1993-11-22 Nkk Corp 高炉スラグからの熱回収方法
JPH1163870A (ja) * 1997-08-25 1999-03-05 Kawasaki Heavy Ind Ltd 排熱回収装置
JPH11181508A (ja) 1997-12-22 1999-07-06 Nippon Steel Corp 溶融高炉スラグの熱回収設備
JP2001048605A (ja) * 1999-07-29 2001-02-20 Nippon Steel Corp セメント用製鋼スラグの処理方法
JP2007284761A (ja) 2006-04-18 2007-11-01 Nippon Steel Corp 溶融高炉スラグからの熱回収装置及び熱回収方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2431697A4

Also Published As

Publication number Publication date
JPWO2010131658A1 (ja) 2012-11-01
EP2431697A4 (en) 2016-01-13
US8764439B2 (en) 2014-07-01
EP2431697A1 (en) 2012-03-21
US20120055658A1 (en) 2012-03-08
JP5357962B2 (ja) 2013-12-04

Similar Documents

Publication Publication Date Title
JP5357962B2 (ja) 溶融スラグ熱回収装置
US9200346B2 (en) Dry granulation of metallurgical slag
JPH021879B2 (ja)
CN105110661B (zh) 一种熔融渣粒化及余热回收装置
US9371571B2 (en) Granulation of metallurgical slag
KR20100136442A (ko) 적니 가공 방법 및 적니 가공 장치
JP2009132546A (ja) 溶融スラグの処理方法および装置
US4482358A (en) Granular bed filtering device
JP2009204232A (ja) 溶融高炉スラグからの熱回収装置
Zhang et al. Modeling and simulation of iron ore sintering process with consideration of granule growth
CN108531671A (zh) 一种高炉熔渣固体介质换热回收和综合利用工艺方法及成套装备
US20130152632A1 (en) Method and device for manufacturing vitreous slag
JP2014141619A (ja) 改質炭の製造装置およびそれを備えた火力発電プラント
CN106755662B (zh) 炼钢转炉渣的资源回收装置及方法
US20140138862A1 (en) Process and Apparatus for Making Proppants
CN107674929B (zh) 一种熔融液态渣粒化及换热的方法及其系统装置
CN110484664A (zh) 高温液态熔渣离心粒化余热回收系统创建方法
Shimizu et al. Heat recovery from melted blast furnace slag using fluidized bed
JP2009001675A (ja) カーボンブラックの製造装置及び製造方法
JPS6126334Y2 (ja)
JPS59107949A (ja) 風砕スラグの製造方法
JPS60264349A (ja) 液体状スラグの細分別とその熱回収法及び装置
Warner et al. HIGH-GRADE ENERGY RECOVERY FROM MOLTEN SLAG IN A CIRCULATING FLUTDIZED BED
JPS62212250A (ja) 非鉄製錬溶融スラグの風砕及び熱回収装置
JP2001002442A (ja) 珪酸アルカリカレット破砕片の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10774915

Country of ref document: EP

Kind code of ref document: A1

DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2011513347

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13320080

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010774915

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010774915

Country of ref document: EP