WO2010131525A1 - 無線装置 - Google Patents

無線装置 Download PDF

Info

Publication number
WO2010131525A1
WO2010131525A1 PCT/JP2010/055172 JP2010055172W WO2010131525A1 WO 2010131525 A1 WO2010131525 A1 WO 2010131525A1 JP 2010055172 W JP2010055172 W JP 2010055172W WO 2010131525 A1 WO2010131525 A1 WO 2010131525A1
Authority
WO
WIPO (PCT)
Prior art keywords
subcarrier
level
inter
frequency side
storage area
Prior art date
Application number
PCT/JP2010/055172
Other languages
English (en)
French (fr)
Inventor
利哉 岩▲崎▼
敦史 須山
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Publication of WO2010131525A1 publication Critical patent/WO2010131525A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/22TPC being performed according to specific parameters taking into account previous information or commands
    • H04W52/226TPC being performed according to specific parameters taking into account previous information or commands using past references to control power, e.g. look-up-table

Definitions

  • the present invention relates to a radio apparatus for transmitting and / or receiving a signal modulated by a multicarrier modulation method and a signal modulation method for modulating a signal by a multicarrier modulation method.
  • the ITS (Intelligent Transport Systems) inter-vehicle communication system scheduled to start in 2012, is one of the applications, such as at the intersection where the line of sight is out of sight by notifying the vehicle of the position of the vehicle that is out of line of sight. Encounter vehicle collision accident prevention is considered, and communication is planned using radio waves in the 720 MHz frequency band.
  • the use frequency band of the digital terrestrial television broadcasting system is adjacent to the end of the use frequency band low frequency side of the ITS inter-vehicle communication system with the guard band of 5 MHz interposed therebetween.
  • a frequency band used for electrical communication is adjacent to the end of the system on the high frequency side with a guard band of 5 MHz.
  • the frequency bands are adjacent to each other in this way, reducing interference (interference) from the ITS inter-vehicle communication system side to the adjacent other system becomes a problem in the ITS inter-vehicle communication system.
  • Countermeasures for such interference are based on the position of the vehicle (for example, the position from a digital TV tower, the position from a telecommunications base station), the communication time, etc. Whether or not countermeasures against interference with communication are required or the degree of countermeasures against interference differs.
  • Patent Document 1 proposes a multi-carrier modulation digital transmission apparatus in which a small level of subcarrier exists at at least one end of a transmission channel band in order to reduce adjacent interference (given interference). .
  • a wireless system other than the ITS inter-vehicle communication system in which the use frequency band of another system is adjacent to both ends of the use frequency band or one end of the use frequency band Even in a wireless system in which the frequency band of another system is adjacent to each other, as in the case of the ITS inter-vehicle communication system, interference (giving interference) from the wireless system side to another system in which the frequency band is adjacent is caused. Reduction is an important issue in the wireless system.
  • an object of the present invention is to provide a radio apparatus and a signal modulation method capable of reducing interference (interference) with other systems having adjacent frequency bands depending on the situation.
  • a radio apparatus performs communication using a multi-carrier modulation method, provides an information storage area related to inter-system interference countermeasures in an area other than the physical data area, and is stored in the information storage area. Based on the data, transmission is performed with the level of the subcarrier at one or both ends of the channel band lower than the level of the subcarrier other than the subcarrier at one or both ends of the channel band.
  • a radio apparatus performs communication using an IEEE802.11 compliant multicarrier modulation scheme, and relates to a countermeasure for inter-system interference in a part of a MAC header or MSDU (MAC Service Data Unit).
  • An information storage area may be provided, and transmission may be performed by setting the number of subcarriers at one or both ends of the channel band and the signal level of the subcarrier based on data stored in the information storage area.
  • the data stored in the information storage area related to the inter-system interference countermeasure includes an ON / OFF flag for performing interference reduction on the low frequency side and / or high frequency side, and ON / OFF for performing the interference reduction.
  • the flag is ON, the signal level of the subcarrier at one or both ends of the channel band is set low and transmitted.
  • the data stored in the information storage area related to the inter-system interference countermeasure includes a subcarrier reduction degree on the low band side and / or high band side, and at one or both ends of the channel band according to the subcarrier reduction degree.
  • the signal level of a predetermined number of subcarriers is set low and transmitted.
  • the data stored in the information storage area regarding the inter-system interference countermeasure includes position information for performing interference reduction on the low frequency side and / or high frequency side, and depending on the position information, one end of the channel band or Transmission is performed with the subcarrier levels at both ends set low.
  • the data stored in the information storage area regarding the inter-system interference countermeasure includes the number of level-reduced subcarriers on the low frequency side and / or the high frequency side, and the channel bandwidth is determined according to the number of level-reduced subcarriers. Transmission is performed with the signal level of the subcarrier at one end or both ends set low.
  • the wireless device performs ITS road-to-vehicle communication, and transmits a signal storing information related to countermeasures for inter-system interference in an information storage area from a roadside device, and receives the transmitted signal at a vehicle terminal provided in the vehicle.
  • the vehicle terminal performs transmission control based on the received information on the countermeasure against interference between systems.
  • the data stored in the information storage area related to the inter-system interference countermeasure includes subcarrier level reduction degree data other than the frequency low band side subcarrier, and the frequency low band is determined by the subcarrier level reduction degree data.
  • the subcarrier level other than the side subcarrier is reduced.
  • the data stored in the information storage area related to the inter-system interference countermeasure includes subcarrier level reduction degree data other than the frequency high frequency side subcarrier, and the frequency high band is determined by the subcarrier level reduction degree data.
  • the subcarrier level other than the side subcarrier is reduced.
  • a signal modulation method is a signal modulation method for modulating a signal by a multicarrier modulation method, and an information storage area related to countermeasures for inter-system interference is provided in an area other than a physical data area. And the number of subcarriers at one or both ends of the channel band and the signal level of the subcarrier are set based on the data stored in the information storage area.
  • the number and level of subcarriers can be set according to the position and time of the vehicle, so that it is possible to take measures against interference suitable for the situation.
  • an area for countermeasures against inter-system interference is provided in a part of the MAC header or MSUD in the communication method compliant with the IEEE802.11 system, and this area is used to instruct the reduction of the subcarrier level at the ITS signal end. Since the received signal is analyzed in the MAC layer and the setting parameter is acquired, the interference countermeasure can be controlled without changing the physical layer using a signal that conforms to the IEEE 802.11-2007 standard.
  • the reduction of the subcarrier level is equivalent to the case where the level is lowered due to fading or the like, so that the conventional method and apparatus can be used in the receiving side without changing.
  • the layer structure of the IEEE802.11 standard includes a physical layer (layer 1) and a data link layer (layer 2) as shown in FIG.
  • the data link layer further comprises an LLC (Logical Link Control) sublayer and a MAC (Media Access Control) sublayer.
  • the packet structure seen from the MAC sublayer of the data link layer is composed of a MAC header and MSUD (MAC Service Data Unit) as shown in FIG.
  • the packet structure conforming to the IEEE802.11 system viewed from the time axis includes physical data after a physical header including a short training field STF, a long training field LTF, and a signal field SIG.
  • DATA continues.
  • the short training field STF is a field in which information for performing AGC (Automatic Gain Control) control, packet detection, symbol synchronization, and frequency coarse adjustment is described.
  • AGC Automatic Gain Control
  • the long training field LTF is a field in which information for performing fine frequency adjustment and channel estimation is described.
  • the signal field SIG is a field in which information on the transmission rate (modulation method) of physical data DATA and packet length is described.
  • an OFDM (Orthogonal Frequency Division Multiplexing) modulation method which is multicarrier modulation, is employed as a modulation method for physical data DATA.
  • An in-vehicle terminal (vehicle terminal) used in a vehicle-to-vehicle communication system using the IEEE 802.11 system standard and a roadside device that is a radio fixed to a road performing road-to-vehicle communication will be described.
  • the roadside machine 2 which is a radio fixed to the road that transmits to the vehicle terminal 1 will be described.
  • the roadside machine 2 is a transmitter that is fixed to the road as shown in FIG. 5 and that transmits to the vehicle terminal 1.
  • FIG. 6 shows a block diagram of the roadside machine 2 according to the present invention.
  • the roadside machine 2 includes a physical layer processing unit (hardware processing unit) 3 conforming to the physical layer and a MAC layer processing unit 4 mainly subjected to software processing.
  • the MAC layer processing unit 4 acquires information on system interference and issues an instruction to the physical layer processing unit (hardware processing unit) 3.
  • a physical layer processing unit (hardware processing unit) 3 includes a convolutional coding unit 5, an interleaving unit 6, a subcarrier modulation unit 7, a subcarrier level reduction processing unit 8, an IFFT (Inverse Fast Fourier Transform) unit 9, and a guard interval addition unit. 10, a digital / analog converter (D / A converter) 11, and a power amplifier 12.
  • the instruction data for interference countermeasures described later is given from the MAC layer processing unit 4 to the physical layer processing unit (hardware processing unit) 3.
  • the given instruction data is subjected to convolutional coding, interleaving, and then subcarrier modulation.
  • the control which reduces the level of the subcarrier of an ITS signal end is performed by reducing the level set about the number of the set subcarriers.
  • This signal is subjected to inverse Fourier transform (IFFT) to obtain a time domain signal, to which a guard interval is added and converted into an analog signal, which is then transmitted by an antenna through a power amplifier.
  • IFFT inverse Fourier transform
  • the level may be reduced by a power amplifier instead of reducing the specific subcarrier signal level described above.
  • the interference countermeasure instruction data is transmitted to the vehicle terminal 1, and the transmission signal is also subjected to interference countermeasures.
  • the roadside device instructs the vehicle terminal 1 to take countermeasures against inter-system interference using a transmission signal that has been subjected to interference countermeasures.
  • the in-vehicle terminal 1 is a wireless device that is installed in a vehicle and performs vehicle-to-vehicle communication and road-to-vehicle communication, and its configuration is shown in FIG.
  • the vehicle terminal 1 includes a transmission unit 15 and a reception unit 16, and performs transmission / reception by switching the output of the transmission unit 15 and the input to the reception unit 16.
  • the transmission unit 15 has substantially the same configuration as that of the roadside device 2 described above, and includes a hardware processing unit conforming to the physical layer and a MAC layer processing unit 26 that mainly performs software processing.
  • the MAC layer processing unit 26 acquires information related to system interference and issues an instruction to the physical layer processing unit (hardware processing unit).
  • the physical layer processing unit includes a convolutional coding unit 18, an interleaving unit 19, a subcarrier modulation unit 20, a subcarrier level reduction processing unit 21, an IFFT (Inverse Fast Fourier Transform) unit 22, and a guard interval addition unit 23. , A digital / analog converter (D / A converter) 24, and a power amplifier 25.
  • the receiving unit 16 includes an LNA (Low Noise Amp) 28, an analog / digital converter (A / D converter) 29, a guard interval removing unit 30, an FFT (Fast Fourier Transform) unit 31, a subcarrier demodulating unit 32, and a deinterleaving unit. 33, a hardware processing unit including a Viterbi decoding unit 34 and a MAC layer processing unit 35 for analyzing output data of the hardware processing unit.
  • LNA Low Noise Amp
  • a / D converter analog / digital converter
  • FFT Fast Fourier Transform
  • a switch 17 for switching output signals and input signals of the transmission unit and the reception unit, and a transmission / reception antenna 27 are provided.
  • the transmission data provided from the MAC layer processing unit 26 is convolutionally encoded and interleaved, and then subcarrier modulation is performed.
  • subcarrier modulation control is performed to reduce the level of subcarriers to a level set for the number of set subcarriers.
  • This signal is subjected to inverse Fourier transform (IFFT) to be a time domain signal, to which a guard interval is added and further converted into an analog signal, amplified by a power amplifier 25, and transmitted from a transmitting / receiving antenna 27 via a switch 17.
  • IFFT inverse Fourier transform
  • the in-vehicle terminal 1 performs the following operation upon reception.
  • Received data received by the transmission / reception antenna 27 is subjected to level adjustment by an LNA (Low Noise Amp) 28 via a switch 27, converted to a digital signal by an A / D converter 29, and output to a guard interval removal unit 30.
  • LNA Low Noise Amp
  • a / D converter converts a digital signal from an A / D converter
  • guard interval removal unit 30 After the guard interval is removed, primary demodulation is performed by fast Fourier transform processing by an FFT (Fast Fourier Transform) unit 31.
  • FFT Fast Fourier Transform
  • the subcarrier demodulation unit 32 demodulates the same number of subcarriers as the number of subcarriers, and the deinterleaving unit 33 and the Viterbi decoding unit 34 perform decoding processing.
  • the decrypted data is sent to the MAC layer processing unit 35 to process a data area related to inter-system interference described later.
  • the in-vehicle terminal 1 When taking measures against interference, the in-vehicle terminal 1 performs the multicarrier modulation method shown in FIG.
  • the multicarrier modulation shown in FIG. 8 (b) primary modulation is performed with 16QAM on the subcarriers in the channel band (band in which the subcarriers are arranged), and the levels of a predetermined number of subcarriers at both ends are set to the channel.
  • OFDM modulation is performed so that the level of subcarriers other than a predetermined number of subcarriers at both ends of the band is 1 ⁇ 2.
  • the level adjustment for each subcarrier by the modulator by the level adjustment for each subcarrier by the modulator, the level of the number of subcarriers at both ends of the channel band becomes 1/2 of the level of the subcarrier other than the number of subcarriers at both ends of the channel band.
  • 16QAM demodulation is performed by the demodulator in the subcarrier demodulator 32.
  • the subcarrier level is reduced at both ends of the channel band which is a major factor of the interference, so that the frequency band used is higher than that of the conventional multicarrier modulation method as shown in FIG. Can reduce interference with other adjacent systems.
  • the number of subcarriers at both ends of the channel band is the same at the low-frequency side end and the high-frequency side end. However, they may be different numbers, or one of them may be zero as shown in FIG. 8 (c) or FIG. 8 (d).
  • the vehicle terminal 1 does not give a unique inter-system interference instruction unlike the roadside machine 2 described above. That is, instruction data for countermeasures against interference is not transmitted to other vehicles, or the contents of inter-system interference instructed from the roadside machine 2 are copied and transferred as they are.
  • the position information is registered or set in the vehicle terminal 1 in advance, and processing is performed based on this.
  • FIG. 9 shows a packet structure of the MAC frame according to the present invention.
  • An information area for intersystem interference countermeasures is provided in part of the MAC header or MSDU.
  • the ON / OFF flag of the low frequency side interference reduction implementation the number of low frequency side level subcarriers, the low side subcarrier reduction degree, the location information of the low frequency side interference reduction implementation (latitude , Longitude, etc.), ON / OFF flag for high frequency side interference reduction implementation, number of high frequency side subcarrier reduction, high frequency side subcarrier reduction degree, location information for high frequency side interference reduction implementation ( Write latitude, longitude, etc.)
  • the following information (a) to (h) regarding the next inter-system interference countermeasure is written in the extended MAC header or a part of the MSDU.
  • a flag area that defines ON / OFF of inter-system interference countermeasures on the low frequency side of the ITS signal. If this flag is set, countermeasures for inter-system interference on the low frequency side will be implemented.
  • B A region that defines the number of subcarriers to be subcarrier level reduced on the low frequency side of the ITS signal.
  • C A region that defines the degree of reduction of the subcarrier level in (b) above on the low frequency side of the ITS signal.
  • D An area for storing position information for implementing inter-system interference countermeasures on the low frequency side.
  • (E) A flag area that defines ON / OFF of inter-system interference countermeasures on the high frequency side of the ITS signal. If this flag is set, countermeasures for inter-system interference on the high frequency side will be implemented.
  • (F) A region that defines the number of subcarriers to be subcarrier level reduced on the high frequency side of the ITS signal.
  • (G) A region defining the degree of reduction of the subcarrier level of (f) above on the high frequency side of the ITS signal.
  • (H) An area for storing position information for implementing countermeasures against inter-system interference on the high frequency side.
  • the position information (d) and (h) is information such as latitude and longitude, and this information may be given from the roadside device 2 or may be determined in advance.
  • (I) An area defining ON / OFF of subcarrier level reduction of the entire ITS signal.
  • the subcarrier level of the entire ITS signal is reduced (see FIG. 8E). It may be linked to the position information (k) below.
  • (J) A region that defines the degree of reduction of the subcarrier level of (i) in the entire ITS signal.
  • K Position information for reducing the subcarrier level of the entire ITS signal. (Latitude, longitude, etc .. This information may be given from the roadside machine 2, or may be known in advance and registered in the terminal. The above (d) and (h) may play the role of this area. .) Specific examples of each region are shown below.
  • latitude A degree or more, B degree or less, longitude C degree or more, D degree or less For example, latitude A degree or more, B degree or less, longitude C degree or more, D degree or less, therefore, the minimum number of bits of variables A, B, C, D is required.
  • a region that defines a degree of reduction of subcarrier levels other than subcarriers other than frequency low frequency side subcarrier level reduced carriers and subbands other than frequency high frequency side subcarrier level reduced carriers is added.
  • inter-system interference countermeasure For details, the following information (a) to (h) concerning the next inter-system interference countermeasure is written in a part of the extended MAC header or MSDU.
  • a flag area that defines ON / OFF of inter-system interference countermeasures on the low frequency side of the ITS signal. If this flag is set, countermeasures for inter-system interference on the low frequency side will be implemented.
  • B A region that defines the number of subcarriers to be subcarrier level reduced on the low frequency side of the ITS signal.
  • C A region that defines the degree of reduction of the subcarrier level in (b) above on the low frequency side of the ITS signal.
  • C ′ A region that defines the degree of reduction in subcarrier levels other than subcarriers other than frequency lower band subcarrier level reduced carriers.
  • D An area for storing position information for implementing inter-system interference countermeasures on the low frequency side.
  • E A flag area that defines ON / OFF of inter-system interference countermeasures on the high frequency side of the ITS signal. If this flag is set, countermeasures for inter-system interference on the high frequency side will be implemented.
  • F A region that defines the number of subcarriers to be subcarrier level reduced on the high frequency side of the ITS signal.
  • G A region defining the degree of reduction of the subcarrier level of (f) above on the high frequency side of the ITS signal.
  • (G ′) A region that defines the degree of reduction of subcarrier levels other than subcarriers other than the high frequency side subcarrier level reduced carrier.
  • (H) An area for storing position information for implementing countermeasures against inter-system interference on the high frequency side.
  • the position information of (d) and (h) is information such as latitude and longitude, and this information may be given from the roadside device 2 or may be determined in advance.
  • (I) An area defining ON / OFF of subcarrier level reduction of the entire ITS signal.
  • the subcarrier level of the entire ITS signal is reduced. It may be linked to the position information (k) below.
  • (J) A region that defines the degree of reduction of the subcarrier level of (i) in the entire ITS signal.
  • K Position information for reducing the subcarrier level of the entire ITS signal. (Latitude, longitude, etc .. This information may be given from the roadside machine 2, or may be known in advance and registered in the terminal. The above (d) and (h) may play the role of this area. .) Specific examples of each region are shown below.
  • (B) (2 bits) 00: The number of target subcarriers on the low frequency side whose level is to be reduced, 01:11 (including one pilot carrier), 10:16 (including one pilot carrier) ), 11: Reserve.
  • (C) (3 bits) 000: no level reduction, 001: level 1/2, 010: level 1/4, 011: level 1/8, 100: level 1/16, 101: level 1/32, 110: Reserve, 111: Reserve.
  • latitude A degree or more, B degree or less, longitude C degree or more, D degree or less For example, latitude A degree or more, B degree or less, longitude C degree or more, D degree or less, therefore, the minimum number of bits of variables A, B, C, D is required.
  • the roadside device 2 transmits information on countermeasures against inter-system interference.
  • the vehicle terminal 1 that has received the signal transmitted from the roadside device 2 acquires information and follows the instructions to take measures against interference by reducing the subcarrier level at the ITS signal end.
  • the position information that requires countermeasures may be transmitted simultaneously with the information on countermeasures against inter-system interference, and the position of the vehicle is in a position that requires countermeasures against inter-system interference based on the position information If it is determined that there is a position where countermeasures against inter-system interference are necessary, the subcarrier level at the end of the ITS signal is reduced.
  • countermeasures are automatically implemented by reducing the carrier level shown in FIG. 8 or FIG. It is possible.
  • the 52CH service area of terrestrial digital broadcasting or the area where the radio wave is particularly weak in the 52CH service area is known in advance, and when it is recognized that the host vehicle has entered the area, it is automatically shown in FIG.
  • countermeasures against interference with certain fixed parameters are implemented.
  • a similar method can be considered for the mobile phone base station if its location is known in advance. For example, when the position of the host vehicle is close to the mobile phone base station, an interference countermeasure with a certain fixed parameter is implemented in the form of FIGS. 10 (c) to 10 (f).
  • the parameters such as the carrier level and the number of carriers in FIGS. 10C to 10F are obtained from the roadside machine 2, and the parameters If information is not available, a method of implementing countermeasures against interference using the initial parameter may be considered.
  • the subcarrier level reduction at the ITS signal end is applied to all areas of STF, LTF, SIGNAL, and DATA.
  • the in-vehicle terminal used in the ITS inter-vehicle communication system has been described as an example.
  • the ITS inter-vehicle communication system in which the use frequency band of another system is adjacent to both ends of the use frequency band can also be applied to a wireless device used in a wireless system other than the above or a wireless system in which the use frequency band of another system is adjacent to only one end of the use frequency band.
  • the present invention can be applied to modulation schemes such as BPSK, QPSK, and 64QAM other than the 16QAM modulation scheme described above.
  • the present invention can be applied not only to a wireless device (transmission / reception device) that performs transmission and reception, but also to a wireless device (transmission device) that performs only transmission and a wireless device (reception device) that performs only reception. Further, the present invention can be applied not only to OFDM modulation but also to other multicarrier modulation.
  • the present invention is applied to the communication of the multi-carrier modulation system compliant with the IEEE 802.11 system.
  • the present invention can also be applied to the communication of the multi-carrier modulation system that is not compliant with the IEEE 802.11 system. is there.
  • an information storage area related to countermeasures for inter-system interference may be provided in part of the MAC header and / or MSUD.
  • An information storage area related to countermeasures against inter-system interference may be provided in this area (physical header or the like).
  • the present invention can be applied to the field of wireless communication.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

 無線装置において、マルチキャリア変調方式により通信を行い、物理データ領域以外の領域にシステム間干渉対策に関する情報格納領域を設け、受信信号を解析し、この情報格納領域に格納されたデータに基づいてチャネル帯域の片端又は両端のサブキャリアのレベルを、チャネル帯域の片端又は両端のサブキャリア以外のサブキャリアのレベルよりも低くして送信する。

Description

無線装置
 本発明は、マルチキャリア変調方式で変調された信号を送信及び/又は受信する無線装置並びにマルチキャリア変調方式で信号を変調する信号変調方法に関するものである。
 2012年にサービス開始が予定されているITS(Intelligent Transport Systems)車車間通信システムは、そのアプリケーションの一つとして見通し外にある自車両の位置の他車両への通知により見通しの悪い交差点等での出会い頭車両衝突事故防止が考えられており、720MHzの周波数帯の電波を使用して通信を行う予定である。図1に示すように、ITS車車間通信システムの使用周波数帯低域側端部には、ガードバンド5MHzを挟んで地上デジタルテレビジョン放送システムの使用周波数帯が隣接しており、ITS車車間通信システムの使用周波数高域側端部には、ガードバンド5MHzを挟んで電気通信として用いられる周波数帯が隣接している。
特開2002-247004号公報
 このように周波数帯が隣接しているためITS車車間通信システム側から隣接する他システムへの干渉(与干渉)を低減することが、ITS車車間通信システムにおいて問題となる。かかる与干渉の対策は車両の位置(例えば、デジタルテレビの電波塔からの位置、電気通信の基地局からの位置)、通信時刻等によって、隣接する地上デジタルテレビジョン放送システムあるいは携帯電話等の電気通信との干渉対策を要するか否かあるいは干渉対策の程度が異なる。
 特許文献1では隣接干渉(与干渉)を低減するために、伝送チャネル帯域の少なくとも一方の端部で小さなレベルのサブキャリアが存在するようにしたマルチキャリア変調方式のデジタル伝送装置が提案されている。
 しかしながら、これは予め設定した特定のキャリアについてキャリアレベルを低くする技術であり、上述のように干渉対策の必要の有無あるいは干渉対策の程度の状況に応じて適応させることができないという課題があった。
 また、この課題を解決すべく、出願人は特願2008-202561において、IEE802.11-2007の物理層に一部変更を加えて、ITS信号端のサブキャリアレベルを低減するシステムを提案している。
 しかし、このシステムでは、変調方法が異なるサブキャリアが混在する技術を必須としており、全てのサブキャリアの変調方式が同一であるものを排除してしまっている。また、このシステムでは、IEEE802.11-2007規格の物理層を変更するため、同規格に合致せず、IEEE802.11-2007規格と混在した通信はできないものであった。
 尚、上記においてはITS車車間通信システムにおける課題を述べたが、使用周波数帯の両端に他のシステムの使用周波数帯が隣接しているITS車車間通信システム以外の無線システム或いは使用周波数帯の片端のみに他のシステムの使用周波数帯が隣接している無線システムにおいてもITS車車間通信システムの場合と同様に、当該無線システム側から使用周波数帯が隣接する他システムへの干渉(与干渉)を低減することが、当該無線システムにおいて重要な課題となっている。
 本発明は、上記事情に鑑み、状況に応じて使用周波数帯が隣接する他システムへの干渉(与干渉)を低減することができる無線装置及び信号変調方法を提供することを目的とする。
 上記目的を達成するために本発明に係る無線装置は、マルチキャリア変調方式により通信を行い、物理データ領域以外の領域にシステム間干渉対策に関する情報格納領域を設け、当該情報格納領域に格納されたデータに基づいてチャネル帯域の片端又は両端のサブキャリアのレベルを、前記チャネル帯域の片端又は両端のサブキャリア以外のサブキャリアのレベルよりも低くして送信を行う。
 上記目的を達成するために本発明に係る無線装置は、IEEE802.11系準拠のマルチキャリア変調方式により通信を行い、MACヘッダ、あるいはMSDU(MAC Service Data Unit)の一部にシステム間干渉対策に関する情報格納領域を設け、この情報格納領域に格納されたデータに基づいて、チャネル帯域の片端又は両端のサブキャリアの本数およびサブキャリアの信号レベルを設定して送信を行うようにしてもよい。このような構成によると、上記目的を達成することができ、しかもIEEE802.11-2007規格の無線機と本発明にかかる無線機が混在した状況の下でも通信を可能となる。
 このシステム間干渉対策に関する情報格納領域に格納されたデータには、周波数低域側及び/又は周波数高域側の与干渉低減実施のON/OFFフラグを含み、当該与干渉低減実施のON/OFFフラグがONの場合に、前記チャネル帯域の片端又は両端のサブキャリアの信号レベルを低く設定して送信する。
 前記システム間干渉対策に関する情報格納領域に格納されたデータには、低域側及び/又は高域側のサブキャリア低減度合いを含み、当該サブキャリア低減度合いに応じて、チャネル帯域の片端又は両端の所定本数のサブキャリアの信号レベルを低く設定して送信する。
 また、システム間干渉対策に関する情報格納領域に格納されたデータには、低域側及び/又は高域側の与干渉低減実施の位置情報を含み、当該位置情報に応じて、チャネル帯域の片端又は両端のサブキャリアのレベルを低く設定して送信する。
 さらに、前記システム間干渉対策に関する情報格納領域に格納されたデータには、低域側及び/又は高域側のレベル低減サブキャリア本数を含み、当該レベル低減サブキャリア本数に応じて、チャネル帯域の片端又は両端のサブキャリアの信号レベルを低く設定して送信を行う。
 また、ITS路車間通信を行う無線装置であって、情報格納領域にシステム間干渉対策に関する情報を格納した信号を路側機から送信し、この送信された信号を車両に備えた車両端末で受信し、車両端末は受信したシステム間干渉対策に関する情報に基づいて送信制御を行う。
 また、前記システム間干渉対策に関する情報格納領域に格納されたデータには、周波数低域側サブキャリア以外のサブキャリアレベルの低減度合いデータを含み、当該サブキャリアレベルの低減度合いデータにより前記周波数低域側サブキャリア以外のサブキャリアレベルを低減する。
 また、前記システム間干渉対策に関する情報格納領域に格納されたデータには、周波数高域側サブキャリア以外のサブキャリアレベルの低減度合いデータを含み、当該サブキャリアレベルの低減度合いデータにより前記周波数高域側サブキャリア以外のサブキャリアレベルを低減する。
 また、上記目的を達成するために本発明に係る信号変調方法は、マルチキャリア変調方式で信号を変調する信号変調方法であって、物理データ領域以外の領域にシステム間干渉対策に関する情報格納領域を設け、この情報格納領域に格納されたデータに基づいて、チャネル帯域の片端又は両端のサブキャリアの本数およびサブキャリアの信号レベルが設定されるようにする。
 本発明によると、受信したパラメータを用いて設定を行うことにより、車両の位置、時刻に応じてサブキャリアの本数及びレベルを設定できるため、状況に適応した与干渉対策が可能となる。また、IEEE802.11系準拠の通信方式におけるMACヘッダあるいはMSUDの一部にシステム間干渉対策の領域を設け、この領域を用いてITS信号端のサブキャリアレベルの低減等を指示する構成にした場合、受信信号をMAC層で解析して設定パラメータを取得するため、IEEE802.11-2007規格に合致した信号を用いて、物理層に変更を加えることなく与干渉対策の制御を行うことができる。
 また、受信側にとってはサブキャリアレベルの低減は、フェージング等でレベルが低下する場合と等価であるため、受信側の処理においては従来の方法および装置を変更することなく用いることができる。
 これにより、ITS信号端のサブキャリアレベル低減に対応可能な端末と、一部のサブキャリアレベル低減に対応できない端末が混在する場合でも相互に通信を行うことが可能となる。
日本での720MHz周辺の周波数割当を示す図である。 IEEE802.11系規格のレイヤ構造を示す図である。 MAC副層から見たパケット構成を示す図である。 物理層から見たパケット構成を示す図である。 ITS車車間通信およびITS路車間通信の概念図である。 路側機のブロック図構成図である。 車載端末のブロック図構成図である。 本発明の与干渉対策の変調方法の概要を示す図である。 本発明にかかるMACフレームの構成例1を示す図である。 本発明の与干渉対策の変調方法の概要を示す図である。 本発明にかかるMACフレームの構成例2を示す図である。
 本発明の実施形態について図面を参照して以下に説明する。
 現在、車車間通信の規格として720MHz帯を使用したIEEE802.11系の規格が検討されている。
 まず、IEEE802.11系準拠のパケット構成について説明する。
 IEEE802.11系規格のレイヤ構造は図2に示すように物理層(レイヤ1)とデータリンク層(レイヤ2)からなる。データリンク層はさらにLLC(Logical Link Control)副層とMAC(Media Access Control)副層からなる。
 データリンク層のMAC副層から見たパケット構成は図3に示すようにMACヘッダとMSUD(MAC Service Data Unit)から構成される。
 時間軸から見たIEEE802.11系準拠のパケット構成は、図4に示すように、ショート・トレーニング・フィールドSTF、ロング・トレーニング・フィールドLTF、及びシグナル・フィールドSIGからなる物理ヘッダの後に、物理データDATAが続いている。ショート・トレーニング・フィールドSTFは、AGC(Automatic Gain Control)制御、パケット検出、シンボル同期、及び周波数粗調整を行うための情報が記載されているフィールドである。
 ロング・トレーニング・フィールドLTFは、周波数微調整及び伝送路推定を行うための情報が記載されているフィールドである。また、シグナル・フィールドSIGは、物理データDATAの伝送レート(変調方式)やパケット長の情報が記載されているフィールドである。
 なお、IEEE802.11系では、物理データDATAに対する変調方式として、マルチキャリア変調であるOFDM(Orthogonal Frequency Division Multiplexing)変調方式が採用されている。
 このIEEE802.11系規格を使用した車車間通信システムで用いられる車載端末(車両端末)および路車間通信を行う道路に固定された無線機である路側機について説明する。
〔路側機の構成および動作〕
 まず、車両端末1に送信を行う道路に固定された無線機である路側機2について説明する。
 路側機2は図5に示すように道路に固定された送信機であり車両端末1に向けて送信を行う送信機である。
 本発明にかかる路側機2のブロック図を図6に示す。路側機2は物理層に準拠した物理層処理部(ハードウエア処理部)3と主にソフトウエア処理されるMAC層処理部4からなる。MAC層処理部4では、システム干渉に関する情報を取得し、物理層処理部(ハードウエア処理部)3への命令等を行う。物理層処理部(ハードウエア処理部)3は畳み込み符号化部5、インタリーブ部6、サブキャリア変調部7、サブキャリアレベル低減処理部8、IFFT(Inverse Fast Fourier Transform)部9、ガードインターバル付加部10、デジタル/アナログ変換器(D/A変換器)11、パワーアンプ12からなる。
 この物理層処理部(ハードウエア処理部)3にMAC層処理部4から後述する干渉対策の指示データを与える。この与えられた指示データについて、畳み込み符号化を行い、インタリーブした後、サブキャリア変調を行う。そして、設定されたサブキャリアの本数について設定されたレベルの低減を行うことでITS信号端のサブキャリアのレベルを低減する制御を行う。この信号を逆フーリエ変換(IFFT)して時間領域の信号とし、これにガードインターバルを付加し、さらにアナログ信号に変換した後、パワーアンプを通してアンテナにより送信を行う。
 なお、サブキャリア信号全体を低減させる場合は、上述の特定のサブキャリア信号レベルの低減を行う代わりに、パワーアンプによりレベルの低減を行ってもよい。
 これにより、干渉対策の指示データを車両端末1に送信するとともに、送信信号についても干渉対策を施したものとなる。
 すなわち、システム間干渉対策が必要な地域において路側機は干渉対策が施された送信信号を用いて車両端末1にシステム間干渉対策を施すよう指示することになる。
〔車両端末の構成および動作〕
 車車間通信を行う車載端末1の構成について説明する。
 車載端末1は車両内に設置され、車車間通信および路車間通信を行う無線機であり、その構成を図7に示す。
 車両端末1は送信部15と受信部16からなり、送信部15の出力と受信部16への入力を切り替えて送受信を行う。
 送信部15は上述の路側機2とほぼ同じ構成であり、物理層に準拠したハードウエア処理部と主にソフトウエア処理されるMAC層処理部26からなる。MAC層処理部26はシステム干渉に関する情報を取得し、物理層処理部(ハードウエア処理部)への命令等を行う。
 物理層処理部(ハードウエア処理部)は畳み込み符号化部18、インタリーブ部19、サブキャリア変調部20、サブキャリアレベル低減処理部21、IFFT(Inverse Fast Fourier Transform)部22、ガードインターバル付加部23、デジタル/アナログ変換器(D/A変換器)24、パワーアンプ25からなる。
 受信部16はLNA(Low Noise Amp)28、アナログ/デジタル変換器(A/D変換器)29、ガードインターバル除去部30、FFT(Fast Fourier Transform)部31、サブキャリア復調部32、デインタリーブ部33、ビタビ復号部34を備えるハードウエア処理部とハードウエア処理部の出力データを解析するMAC層処理部35からなる。
 さらに、送信部と受信部の出力信号および入力信号を切り替えるためのスイッチ17と、送受信アンテナ27を備える。
 そして、送信時に次の動作を行う。MAC層処理部26から与えられる送信データを畳み込み符号化を行い、インタリーブした後、サブキャリア変調を行う。サブキャリア変調は設定されたサブキャリアの本数について設定されたレベルにサブキャリアのレベルを低減する制御を行う。この信号を逆フーリエ変換(IFFT)して時間領域の信号とし、これにガードインターバルを付加し、さらにアナログ信号に変換した後、パワーアンプ25によって増幅され、スイッチ17を経由して送受信アンテナ27から送信する。
 また、車載端末1は受信時に次の動作を行う。送受信アンテナ27で受信された受信データは、スイッチ27を経由して、LNA(Low Noise Amp)28によってレベル調整され、A/D変換器29によってデジタル信号に変換され、ガードインターバル除去部30に出力されガードインターバルが除去された後、FFT(Fast Fourier Transform)部31による高速フーリエ変換処理で一次復調される。さらに、サブキャリア復調部32でサブキャリア本数と同数の復調器によって復調され、デインタリーブ部33およびビタビ復号部34で復号処理がなされる。
 復号されたデータは、MAC層処理部35に送られ後述するシステム間干渉に関するデータ領域の処理を行う。
 次に、車載端末1において実施するマルチキャリア変調方法について説明する。
 与干渉対策を行う場合、車載端末1は図8に示すマルチキャリア変調方法を実施する。図8(b)に示すマルチキャリア変調は、チャネル帯域(サブキャリアが配置されている帯域)のサブキャリアに対して16QAMで一次変調を行い、両端の所定本数のサブキャリアのレベルを、前記チャネル帯域の両端の所定本数のサブキャリア以外のサブキャリアのレベルの1/2とするOFDM変調を行う。
 この場合、変調器によるサブキャリア毎のレベル調整によって、前記チャネル帯域の両端の本数のサブキャリアのレベルが、前記チャネル帯域の両端の本数のサブキャリア以外のサブキャリアのレベルの1/2となるようにする。また、これに対応して、サブキャリア復調部32内の復調器により16QAM復調を行う。
 このマルチキャリア変調方法は、与干渉の主要な要因となるチャネル帯域の両端においてサブキャリアレベルが低減されるので、図8(a)に示すような従来のマルチキャリア変調方法に比べて使用周波数帯が隣接する他システムへの与干渉を低減することができる。
 上述した図8(b)のマルチキャリア変調では、チャネル帯域(サブキャリアが配置されている帯域)の両端のサブキャリアの本数が低域側端部と高域側端部で同数になっているが、異なる数であってもよく、また、図8(c)あるいは図8(d)のように片方が零であってもよい。
 車両端末1は上述した路側機2と異なり、独自のシステム間干渉の指示は行わない。すなわち、他の車両へ干渉対策を行う指示データを送信しないか、路側機2から指示されたシステム間干渉の内容をそのままコピーして転送する動作を行う。
 また、システム間干渉対策が必要な位置情報が予め判明している場合は、位置情報について車両端末1に予め登録あるいは設定しておき、これに基づいて処理を行う。
 次に、この干渉対策を行う際のパラメータの取得および設定の方法について説明する。
〔MACフレームパケット構成例1〕
 図9に本発明にかかるMACフレームのパケット構成を示す。
 MACヘッダあるいはMSDUの一部にシステム間干渉対策の情報領域を設ける。
 この領域に、周波数低域側の与干渉低減実施のON/OFFフラグ、低域側のレベル低減サブキャリア本数、低域側のサブキャリア低減度合い、低域側与干渉低減実施の位置情報(緯度、経度など)、周波数高域側の与干渉低減実施のON/OFFフラグ、高域側のレベル低減サブキャリア本数、高域側のサブキャリア低減度合い、高域側与干渉低減実施の位置情報(緯度、経度など)を書き込む。
 詳細は、拡張MACヘッダ、あるいはMSDUの一部につぎのシステム間干渉対策に関する次の(a)~(h)の情報を書き込む。
(a)ITS信号の周波数低域側でシステム間干渉対策のON/OFFを定義するフラグ領域。このフラグが立っていれば、低域側のシステム間干渉対策を実施する。
(b)ITS信号の周波数低域側でサブキャリアレベル低減の対象となるサブキャリアの本数を定義する領域。
(c)ITS信号の周波数低域側で上記(b)のサブキャリアレベルの低減度合いを定義する領域。
(d)周波数低域側のシステム間干渉対策を実施する位置情報を格納する領域。
(e)ITS信号の周波数高域側でシステム間干渉対策のON/OFFを定義するフラグ領域。このフラグが立っていれば、高域側のシステム間干渉対策を実施する。
(f)ITS信号の周波数高域側でサブキャリアレベル低減の対象となるサブキャリアの本数を定義する領域。
(g)ITS信号の周波数高域側で上記(f)のサブキャリアレベルの低減度合いを定義する領域。
(h)周波数高域側のシステム間干渉対策を実施する位置情報を格納する領域。
上記(d)および(h)の位置情報は、緯度、経度などの情報であり、路側機2からこの情報を与えてもよいし、予め定めておいてもよい。
(i)ITS信号全体のサブキャリアレベル低減のON/OFFを定義する領域。
 このフラグが立っていれば、ITS信号全体のサブキャリアレベル低減を実施する(図8(e)参照)。下記(k)の位置情報に連動していてもよい。
(j)ITS信号全体で上記(i)のサブキャリアレベルの低減度合いを定義する領域。
(k)ITS信号全体のサブキャリアレベル低減を実施する位置情報。
(緯度、経度など。路側機2からこの情報を与えてもよいし、予め判明しており、端末に登録されていてもよい。上記(d)(h)がこの領域の役割を果たしても良い。)
各領域の具体例を下記に示す。
(a)(2ビット)00:サブキャリアレベル低減実施せず、01:位置情報(d)に従って実施、10:位置情報に関係なく実施、11:送信停止。
(b)(2ビット)00:レベル低減の対象となる低域側の対象サブキャリア数5本、01:11本(パイロットキャリア1本を含む)、10:16本(パイロットキャリア1本を含む)、11:リザーブ。
(c)(3ビット)000:レベル低減なし、001:レベル1/2、010:レベル1/4、011:レベル1/8、100:レベル1/16、101:レベル1/32、110:リザーブ、111:リザーブ。
(d)緯度、経度など。
 例えば、緯度A度以上、B度以下、経度C度以上、D度以下、このため最低限、変数A、B、C、Dのビット数は必要となる。
 さらに、高度情報も必要になる可能性があるため数ビット確保する。
(e)~(h)に関しては上記(a)~(d)と同様、(i)(j)(k)に関しては上記(a)(c)(d)と同様であるので省略する。
〔MACフレームパケット構成例2(変形例)〕
 このMACフレームパケット構成例は、図9に示すMACフレームパケット構成例1にかかる拡張MACヘッダ又はMUSDの一部に、新たにシステム干渉対策に関する領域を設けたものである。
 具体的には、図11に示すように、周波数低域側サブキャリアレベル低減キャリア以外のサブキャリア以外のサブキャリアレベルの低減度合いを定義する領域および周波数高域側サブキャリアレベル低減キャリア以外のサブキャリア以外のサブキャリアレベルの低減度合いを定義する領域を追加したものである。
 詳細は、拡張MACヘッダ又はMSDUの一部につぎのシステム間干渉対策に関する次の(a)~(h)の情報を書き込む。
(a)ITS信号の周波数低域側でシステム間干渉対策のON/OFFを定義するフラグ領域。このフラグが立っていれば、低域側のシステム間干渉対策を実施する。
(b)ITS信号の周波数低域側でサブキャリアレベル低減の対象となるサブキャリアの本数を定義する領域。
(c)ITS信号の周波数低域側で上記(b)のサブキャリアレベルの低減度合いを定義する領域。
(c´)周波数低域側サブキャリアレベル低減キャリア以外のサブキャリア以外のサブキャリアレベルの低減度合いを定義する領域。
(d)周波数低域側のシステム間干渉対策を実施する位置情報を格納する領域。
(e)ITS信号の周波数高域側でシステム間干渉対策のON/OFFを定義するフラグ領域。このフラグが立っていれば、高域側のシステム間干渉対策を実施する。
(f)ITS信号の周波数高域側でサブキャリアレベル低減の対象となるサブキャリアの本数を定義する領域。
(g)ITS信号の周波数高域側で上記(f)のサブキャリアレベルの低減度合いを定義する領域。
(g´)周波数高域側サブキャリアレベル低減キャリア以外のサブキャリア以外のサブキャリアレベルの低減度合いを定義する領域。
(h)周波数高域側のシステム間干渉対策を実施する位置情報を格納する領域。
上記(d)および(h)の位置情報は、緯度、経度などの情報であり、路側機2からこの情報を与えてもよいし、予め定めておいてもよい。
(i)ITS信号全体のサブキャリアレベル低減のON/OFFを定義する領域。
 このフラグが立っていれば、ITS信号全体のサブキャリアレベル低減を実施する。下記(k)の位置情報に連動していてもよい。
(j)ITS信号全体で上記(i)のサブキャリアレベルの低減度合いを定義する領域。
(k)ITS信号全体のサブキャリアレベル低減を実施する位置情報。
(緯度、経度など。路側機2からこの情報を与えてもよいし、予め判明しており、端末に登録されていてもよい。上記(d)(h)がこの領域の役割を果たしても良い。)
各領域の具体例を下記に示す。
(a)(2ビット)00:サブキャリアレベル低減実施せず、01:位置情報(d)に従って実施、10:位置情報に関係なく実施、11:送信停止。
(b)(2ビット)00:レベル低減の対象となる低域側の対象サブキャリア数5本、01:11本(パイロットキャリア1本を含む)、10:16本(パイロットキャリア1本を含む)、11:リザーブ。
(c)(3ビット)000:レベル低減なし、001:レベル1/2、010:レベル1/4、011:レベル1/8、100:レベル1/16、101:レベル1/32、110:リザーブ、111:リザーブ。
(d)緯度、経度など。
 例えば、緯度A度以上、B度以下、経度C度以上、D度以下、このため最低限、変数A、B、C、Dのビット数は必要となる。
 さらに、高度情報も必要になる可能性があるため数ビット確保する。
(e)~(h)に関しては上記(a)~(d)と同様、(i)(j)(k)に関しては上記(a)(c)(d)と同様、(c´)(g´)に関しては上記(c)と同様であるので省略する。
 上述の路側機2および車両端末1を用いた具体的な、運用方法について説明する。
 まず、システム間干渉対策が必要な地域において、路側機2がシステム間干渉対策の情報を送信する。
 路側機2から送信された信号を受信した車両端末1は、情報を取得してその指示に従い、ITS信号端のサブキャリアレベルを低減することで与干渉対策を行う。
 また、この場合、システム間干渉対策の情報と同時にその対策が必要となる位置情報も同時に送信してもよく、この位置情報に基づいて車両の位置が、システム間干渉対策が必要な位置にあるか否かを判別し、システム間干渉対策が必要な位置にあると判断した場合にITS信号端のサブキャリアレベルを低減する。
 また、予め対策を実施する地域が判明しており、GPSにより、自車両が干渉対策地域に入ったことを認識した場合、自動的に図8または図10に示すキャリアレベル低減による対策を実施することが考えられる。
 例えば地上デジタル放送の52CHのサービスエリア、あるいは52CHサービスエリアの中でも特に電波が弱い地域が、予め判明しており、自車両がその地域に入ったことを認識した場合は、自動的に図10の(c)~(f)の形態で、ある固定パラメータ(キャリアレベル、キャリア本数など)の与干渉対策を実施する。
 携帯電話基地局に対しても、予めその位置が判明している場合は同様の方法が考えられる。例えば自車両位置が携帯電話基地局に近い場合は、図10(c)~(f)の形態で、ある固定パラメータの与干渉対策を実施することになる。
 なお、これらを組み合わせ、対策地域に関しては予め判明しているが、図10(c)~(f)におけるキャリアレベル、キャリア本数等のパラメータに関しては路側機2から入手し、路側機2から、パラメータ情報に関して、入手できない場合は、初期値のパラメータで与干渉対策を実施する方法が考えられる。
 また、システム間干渉対策の指示に従ってITS信号端のサブキャリアレベル低減を実施する車両端末と実施しない車両端末が混在する場合、すなわち、サブキャリアレベル低減の機能がある車両端末のみ対応し、かかる機能が備わっていない車両端末を有し対応できない車両がある場合が考えられる。
 しかし、受信する場合はサブキャリアレベルの低減に関しては、フェージング等の影響で特定のサブキャリアレベルが低減したのと同じ状態であるため、受信動作としては、通常のサブキャリアレベル低減を実施していない信号を受信する動作と全く同じであり、受信機については従来のIEEE802.11系の受信機をそのまま用いることができる。
 したがって、IEEE802.11系の受信側の物理層に関連する変更が不要、送信側の物理層に関連する変更では、サブキャリアレベルを低減する場合は、その機能が必要となるが、システム運用では、送信側のサブキャリアレベル低減機能が備わっている車両端末と備わっていない車両端末の混在が可能となる。
 これにより、効率的(伝送速度とのトレードオフ含む)に与干渉レベルを低減でき、かつIEEE802.11系との混在も可能となる。
 なお、パケットを時間軸から見た場合の構成は図4に示すようになるため、ITS信号端のサブキャリアレベル低減をSTF、LTF、SIGNAL、DATAのすべての領域に適応されることになる。
 上述した実施形態では、ITS車車間通信システムで用いられる車載端末を例に挙げて説明を行ったが、使用周波数帯の両端に他のシステムの使用周波数帯が隣接しているITS車車間通信システム以外の無線システム或いは使用周波数帯の片端のみに他のシステムの使用周波数帯が隣接している無線システムにおいて用いられる無線装置についても、本発明を適用することができる。
 そして、上述した16QAMの変調方式以外の、BPSK,QPSK,64QAM等の変調方式にも適用することができる。
 さらに、本発明は、送信及び受信を行う無線装置(送受信装置)のみならず、送信のみを行う無線装置(送信装置)、受信のみを行う無線装置(受信装置)にも適用することができる。また、本発明は、OFDM変調のみならず、他のマルチキャリア変調にも適用することができる。
 また、上述した実施形態では、IEEE802.11系準拠のマルチキャリア変調方式の通信において本発明を適用したが、IEEE802.11系準拠しないマルチキャリア変調方式の通信において本発明を適用することも可能である。IEEE802.11系準拠しないマルチキャリア変調方式の通信において本発明を適用する場合、MACヘッダおよび/またはMSUDの一部にシステム間干渉対策に関する情報格納領域を設けてもよく、物理データ領域以外の他の領域(物理ヘッダなど)にシステム間干渉対策に関する情報格納領域を設けてもよい。
 本発明は、無線通信の分野に適用することができる。
   1 車両端末
   2 路側機
   3 物理層処理(ハードウエア処理)部
   4 MAC層処理部
   5 畳み込み符号化部
   6 インタリーブ部
   7 サブキャリア変調部
   8 サブキャリアレベル低減部
   9 IFFT部
   10 ガードインターバル付加部
   11 D/A変換器
   12 可変利得アンプ
   13 アンテナ部
   14 データ処理部
   15 送信部
   16 受信部
   17 切り替えスイッチ
   18 畳み込み符号化部
   19 インタリーブ部
   20 サブキャリア変調部
   21 サブキャリアレベル低減部
   22 IFFT部
   23 ガードインターバル付加部
   24 D/A変換器
   25 可変利得アンプ
   26 MAC層処理部
   27 アンテナ部
   28 ノイズ低減アンプ
   29 A/D変換器
   30 ガードインターバル除去部
   31 FFT部
   32 サブキャリア復調部
   33 デインタリーブ部
   34 ビタビ復号部
   35 MAC層処理部

Claims (9)

  1.  マルチキャリア変調方式の通信を行う無線装置において、
     物理データ領域以外の領域にシステム間干渉対策に関する情報格納領域を設け、当該情報格納領域に格納されたデータに基づいてチャネル帯域の片端又は両端のサブキャリアのレベルを、前記チャネル帯域の片端又は両端のサブキャリア以外のサブキャリアのレベルよりも低くして送信することを特徴とする無線装置。
  2.  IEEE802.11系準拠のマルチキャリア変調方式の通信を行う無線装置において、
     MACヘッダおよび/またはMSUDの一部にシステム間干渉対策に関する情報格納領域を設け、当該情報格納領域に格納されたデータに基づいてチャネル帯域の片端又は両端のサブキャリアのレベルを、前記チャネル帯域の片端又は両端のサブキャリア以外のサブキャリアのレベルよりも低くして送信することを特徴とする無線装置。
  3.  前記システム間干渉対策に関する情報格納領域に格納されたデータには、周波数低域側および/または高域側の与干渉低減実施のON/OFFフラグを含み、
     当該与干渉低減実施のON/OFFフラグがONの場合に、
     前記チャネル帯域の片端又は両端のサブキャリアのレベルを、前記チャネル帯域の片端又は両端のサブキャリア以外のサブキャリアのレベルよりも低くして送信することを特徴とする請求項1または請求項2記載の無線装置。
  4.  前記システム間干渉対策に関する情報格納領域に格納されたデータには、低域側および/または高域側のサブキャリア低減度合いを含み、
     当該サブキャリア低減度合いに応じて、
     前記チャネル帯域の片端又は両端のサブキャリアのレベルを前記チャネル帯域の片端又は両端のサブキャリア以外のサブキャリアのレベルよりも低くして送信することを特徴とする請求項1または請求項2記載の無線装置。
  5.  前記システム間干渉対策に関する情報格納領域に格納されたデータには、低域側および/または高域側の与干渉低減を実施すべき位置に関する情報を含み、
     当該位置情報に応じて、
     前記チャネル帯域の片端又は両端のサブキャリアのレベルを、前記チャネル帯域の片端又は両端のサブキャリア以外のサブキャリアのレベルよりも低くして送信することを特徴とする請求項1または請求項2記載の無線装置。
  6.  前記システム間干渉対策に関する情報格納領域に格納されたデータには、低域側および/または高域側のレベルを低減するサブキャリアの本数情報を含み、
     当該レベル低減するサブキャリアの本数情報に応じて、
     前記チャネル帯域の片端又は両端のサブキャリアのレベルを、前記チャネル帯域の片端又は両端の前記サブキャリア本数のサブキャリア以外のサブキャリアのレベルよりも低くして送信することを特徴とする請求項1または請求項2記載の無線装置。
  7.  ITS路車間通信を行う無線装置であって、前記情報格納領域にシステム間干渉対策に関する情報を格納した信号を路側機から送信し、
     当該送信された信号を車両に備えた車両端末で受信し、前記システム間干渉対策に関する情報に基づいて送信制御を行うことを特徴とする請求項1乃至6記載の無線装置。
  8.  前記システム間干渉対策に関する情報格納領域に格納されたデータには、周波数低域側サブキャリア以外のサブキャリアレベルの低減度合いデータを含み、
     当該サブキャリアレベルの低減度合いデータにより前記周波数低域側サブキャリア以外のサブキャリアレベルを低減することを特徴とする請求項4乃至請求項7に記載の無線装置。
  9.  前記システム間干渉対策に関する情報格納領域に格納されたデータには、周波数高域側サブキャリア以外のサブキャリアレベルの低減度合いデータを含み、
     当該サブキャリアレベルの低減度合いデータにより前記周波数高域側サブキャリア以外のサブキャリアレベルを低減することを特徴とする請求項4乃至請求項7に記載の無線装置。
PCT/JP2010/055172 2009-05-12 2010-03-25 無線装置 WO2010131525A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2009-115290 2009-05-12
JP2009115290 2009-05-12
JP2009-197523 2009-08-28
JP2009197523A JP2012160774A (ja) 2009-05-12 2009-08-28 無線装置

Publications (1)

Publication Number Publication Date
WO2010131525A1 true WO2010131525A1 (ja) 2010-11-18

Family

ID=43084904

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/055172 WO2010131525A1 (ja) 2009-05-12 2010-03-25 無線装置

Country Status (2)

Country Link
JP (1) JP2012160774A (ja)
WO (1) WO2010131525A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015512210A (ja) * 2012-02-15 2015-04-23 マーベル ワールド トレード リミテッド 広帯域幅における低帯域幅phy送信

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017529753A (ja) * 2015-03-20 2017-10-05 株式会社東芝 干渉緩和/回避

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11145928A (ja) * 1997-11-04 1999-05-28 Nippon Hoso Kyokai <Nhk> Ofdm伝送方法、送信装置および受信装置
JP2009100204A (ja) * 2007-10-16 2009-05-07 Sony Corp 無線通信装置、無線通信方法、および無線通信システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11145928A (ja) * 1997-11-04 1999-05-28 Nippon Hoso Kyokai <Nhk> Ofdm伝送方法、送信装置および受信装置
JP2009100204A (ja) * 2007-10-16 2009-05-07 Sony Corp 無線通信装置、無線通信方法、および無線通信システム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015512210A (ja) * 2012-02-15 2015-04-23 マーベル ワールド トレード リミテッド 広帯域幅における低帯域幅phy送信

Also Published As

Publication number Publication date
JP2012160774A (ja) 2012-08-23

Similar Documents

Publication Publication Date Title
US7912024B2 (en) Method and apparatus for wide bandwidth mixed-mode wireless communications
US8259828B2 (en) Sub-carrier alignment mechanism for OFDM multi-carrier systems
CN106572539B (zh) 用于上行链路信令的系统和方法
US10893433B2 (en) Wireless vehicular communications involving retransmission of messages
KR101480531B1 (ko) 무선통신 시스템에서 부반송파 간격의 제어장치 및 방법
US11696262B2 (en) Communication method and communications apparatus
EP2482476B1 (en) A method for transmitting multiple streams in wireless broadcast networks
CN1348668A (zh) 时分多址/时分双工系统的链路和无线小区适配
US9967772B1 (en) Systems and methods for suppressing interference in a wireless communication system
JP2007325254A (ja) Uwb通信システムに属する2つの無線装置の間の偶発的な干渉を抑制する方法及び対応する装置
CN114556877A (zh) 车辆通信网络中的分组的中置码格式
JP2010041446A (ja) 無線装置及び信号変調方法
JP5156485B2 (ja) 無線通信システム
JP2006020128A (ja) デジタル放送信号の送受信方法及びその送受信機
WO2010131525A1 (ja) 無線装置
JP2005223548A (ja) 受信装置
JP2007251739A (ja) 伝送装置のアンテナ制御方法
KR20160135157A (ko) 디지털 텔레비전 시스템을 위한 낮은 인접 채널 간섭 모드
WO2010067726A1 (ja) 無線装置
WO2010067727A1 (ja) 無線装置
US8744455B2 (en) Wireless communication system
JP2011114425A (ja) 無線送信装置及び信号伝送方法
WO2010131513A1 (ja) 無線通信方法
US20090175368A1 (en) Multiple Resolution Mode Orthogonal Frequency Division Multiplexing System and Method
US20020172183A1 (en) Method and device for transmitting data in radio channels with strong multipath propagation and increased data volume in a radio communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10774784

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10774784

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP