JP2009100204A - 無線通信装置、無線通信方法、および無線通信システム - Google Patents

無線通信装置、無線通信方法、および無線通信システム Download PDF

Info

Publication number
JP2009100204A
JP2009100204A JP2007269239A JP2007269239A JP2009100204A JP 2009100204 A JP2009100204 A JP 2009100204A JP 2007269239 A JP2007269239 A JP 2007269239A JP 2007269239 A JP2007269239 A JP 2007269239A JP 2009100204 A JP2009100204 A JP 2009100204A
Authority
JP
Japan
Prior art keywords
signal
wireless communication
unit
data signal
pilot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007269239A
Other languages
English (en)
Inventor
Hiroyuki Yamasuga
裕之 山菅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP2007269239A priority Critical patent/JP2009100204A/ja
Publication of JP2009100204A publication Critical patent/JP2009100204A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

【課題】無線通信装置、無線通信方法、および無線通信システムを提供すること。
【解決手段】干渉を回避する回避帯域を利用して無線通信を行う無線通信装置であって、前記回避帯域に含まれる既定のキャリアを利用して送信された既定のパイロット信号、および前記回避帯域に含まれる他のキャリアを利用して送信されたデータ信号を受信する受信部と、前記受信部により受信されるパイロット信号を用いる第1の動作モード、および、前記受信部により受信されるパイロット信号およびデータ信号を用いる第2の動作モード、を含む動作モードのいずれかで前記データ信号および前記パイロット信号の送信に利用されるキャリアの伝送路特性を推定し、該伝送路特性に基づいて前記データ信号および前記パイロット信号を補正する第1の補正部と、前記受信部により受信されるパイロット信号の数に応じて前記第1の補正部の動作モードを設定する設定部と、を備える。
【選択図】図7

Description

本発明は、無線通信装置、無線通信方法、および無線通信システムに関する。
近日、複数のサブキャリアの各々の直交性を利用し、無線通信の高速化および高品質化を実現するMB−OFDM(Multi Band Orthogonal Frequency Division Multiplexing)方式が注目を集めいている。
具体的には、MB−OFDM方式においては、送信装置がデータ信号の重畳された複数のサブキャリアを多重化して無線信号として送信し、受信装置が無線信号をサブキャリアごとに分離してデータ信号を得ることができる。また、無線信号には、例えば特許文献1に記載されているように、既定のパイロット信号が重畳されたサブキャリアも含まれる。受信装置は、受信した無線信号に含まれるパイロット信号と、既定のパイロット信号との差分に基づいてデータ信号およびパイロット信号の例えば位相誤差や振幅誤差などの周波数特性誤差を補正することができる。
また、MB−OFDM方式に基づいて動作するシステムの近傍に他のシステムが隣接する場合、両システム間での干渉を回避するためのDAA(Detect And Avoid)機能が注目を集めている。DAA機能は、他のシステムで利用されている周波数帯域を回避する回避帯域を利用して無線通信を行う機能である。
特開2007−142602号公報
しかし、パイロット信号の送信用のサブキャリアは事前に決められているため、回避帯域に含まれるパイロット信号の送信用のサブキャリアが少ない場合、受信装置における周波数特性誤差の補正精度が劣化するという問題がある。その結果、受信PER(Packet Error Rate)が悪化しかねない。
そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、回避帯域に含まれるパイロット信号の送信用のサブキャリアが少ない場合に、周波数特性誤差の補正精度を向上させることが可能な、新規かつ改良された無線通信装置、無線通信方法、および無線通信システムを提供することにある。
上記課題を解決するために、本発明のある観点によれば、周囲で送受信されている無線信号の周波数帯域を回避する回避帯域を利用して無線通信を行う無線通信装置が提供される。当該無線通信装置は、前記回避帯域に含まれる既定のキャリアを利用して送信された既定のパイロット信号、および前記回避帯域に含まれる他のキャリアを利用して送信されたデータ信号を受信する受信部と、前記受信部により受信されるパイロット信号を用いる第1の動作モード、および、前記受信部により受信されるパイロット信号およびデータ信号を用いる第2の動作モード、を含む動作モードのいずれかで前記データ信号および前記パイロット信号の伝送路特性を推定し、該伝送路特性に基づいて前記データ信号および前記パイロット信号を補正する第1の補正部と、前記受信部により受信されるパイロット信号の数に応じて前記第1の補正部の動作モードを設定する設定部と、を備える。
かかる構成においては、受信部によりパイロット信号およびデータ信号が受信される。ここで、第2の動作モードで動作する第1の補正部は、パイロット信号に加え、データ信号も伝送路特性の推定に用いることができる。また、第1の動作モードで動作する第1の補正部は、より多くのパイロット信号を用いた方が伝送路特性を高い精度で推定できる場合がある。すなわち、受信部により受信されるパイロット信号の数は、第1の動作モードで動作する第1の補正部による伝送路特性の推定結果に影響を与える。そこで、設定部が、受信部により受信されるパイロット信号の数に適する動作モードに第1の補正部の動作モードを設定することにより、伝送路特性の好適な推定結果が得られることが期待される。
前記設定部は、前記受信部により受信されるパイロット信号の数が設定数より少ない場合、前記第1の補正部の動作モードを前記第2の動作モードに設定してもよい。ここで、受信部により受信されるパイロット信号の数が設定数より少ない場合、パイロット信号のみでは例えば十分な精度で伝送路特性を推定できないと考えられる。そこで、受信部により受信されるパイロット信号の数が設定数より少ない場合、設定部は、パイロット信号に加えてデータ信号を用いて伝送路特性の推定を行う第2の動作モードで第1の補正部を動作させる。その結果、受信部により受信されるパイロット信号の数が設定数より少ない場合であっても、より精度の高い伝送路特性の推定結果を得ることができる。
前記パイロット信号および前記データ信号の一部には既定の伝送路推定信号が含まれ、前記無線通信装置は、前記受信部により受信された伝送路推定信号に基づいて前記パイロット信号およびデータ信号の送信に利用される各キャリアの伝送路特性を推定し、該各キャリアの伝送路特性に基づき、前記データ信号およびパイロット信号をキャリアごとに補正する第2の補正部と、前記第2の補正部により推定された前記キャリアごとの伝送路特性から、前記受信部により受信されるパイロット信号の数を特定する特定部と、をさらに備えてもよい。
かかる構成においては、第2の補正部は、受信部により受信されたパイロット信号およびデータ信号のキャリアの伝送路特性を推定する。ここで、受信部により受信されるキャリアは回避帯域に含まれるキャリアである。したがって、特定部は、例えば第2の補正部による各キャリアの伝送路特性の推定から回避帯域を推定することができる。また、パイロット信号の送信に利用されるキャリアは既知であるため、特定部は、例えば推定した回避帯域から受信部により受信されるパイロット信号の数を特定することができる。
前記設定部は、前記第2の動作モードにおいて前記第1の補正部に用いさせるデータ信号を、前記第2の補正部により推定された各キャリアの伝送路特性に基づいて設定してもよい。ここで、第2の動作モードにおいて第1の補正部があるデータ信号を用いることにより正確なデータ信号およびパイロット信号の伝送路特性の推定に寄与することができるか否かは、データ信号のキャリアの伝送路特性に依存する場合がある。そこで、設定部は、第2の補正部により推定された各キャリアの伝送路特性に基づいて第2の動作モードにおいて第1の補正部に用いさせるデータ信号を設定することにより、伝送路特性の好適な推定結果が得られることが期待される。
前記設定部は、前記受信部により受信されるパイロット信号の数が設定数より少ない場合に前記第1の補正部の動作モードを前記第2の動作モードに設定し、前記設定数は、前記第2の補正部により推定された各キャリアの伝送路特性に基づいて設定されてもよい。
前記受信部は、前記回避帯域を示す所定信号を前記パイロット信号およびデータ信号より前に受信し、前記無線通信装置は、前記所定信号の示す前記回避帯域の周波数帯域に基づいて前記受信部により受信されるパイロット信号の数を特定する特定部をさらに備えてもよい。
前記設定部は、前記パイロット信号および前記データ信号の双方に重み付けをし、前記第1の補正部は前記第2の動作モードにおいて、前記設定部により付された重みに従って前記データ信号および前記パイロット信号を用いて前記データ信号および前記パイロット信号の伝送路特性を推定してもよい。
前記第1の補正部は前記第2の動作モードにおいて、前記受信部により受信されたパイロット信号と前記既定のパイロット信号との差分、および前記受信部により受信されたデータ信号と送信されたと想定されるデータ信号との差分に基づいて前記データ信号および前記パイロット信号の伝送路特性を推定してもよい。
また、上記課題を解決するために、本発明の別の観点によれば、周囲で送受信されている無線信号の周波数帯域を回避する回避帯域を利用して無線通信を行う無線通信装置において実行される無線通信方法が提供される。当該無線通信方法は、前記回避帯域に含まれる既定のキャリアを利用して送信された既定のパイロット信号、および前記回避帯域に含まれる他のキャリアを利用して送信されたデータ信号を受信するステップと、前記受信部により受信されるパイロット信号の数に応じて動作モードを設定するステップと、第1の動作モードに設定された場合、前記受信部により受信されたパイロット信号を用いて前記データ信号および前記パイロット信号の伝送路特性を推定し、該伝送路特性に基づいて前記データ信号および前記パイロット信号を補正し、第2の動作モードに設定された場合、前記受信部により受信されるパイロット信号およびデータ信号を用いて前記データ信号および前記パイロット信号の伝送路特性を推定し、該伝送路特性に基づいて前記データ信号および前記パイロット信号を補正するステップと、を含む。
また、上記課題を解決するために、本発明の別の観点によれば、送信側の無線通信装置と、前記送信側の無線通信装置と通信可能な受信側の無線通信装置とを含む無線通信システムが提供される。前記送信側の無線通信装置は、周囲で送受信されている無線信号の周波数帯域を回避する回避帯域に含まれる既定のキャリアを利用して既定のパイロット信号を送信し、かつ、前記回避帯域に含まれる他のキャリアを利用してデータ信号を送信する。また、前記受信側の無線通信装置は、前記送信側の無線通信装置から送信されたパイロット信号、およびデータ信号を受信する受信部と、前記受信部により受信されるパイロット信号を用いる第1の動作モード、および、前記受信部により受信されるパイロット信号およびデータ信号を用いる第2の動作モード、を含む動作モードのいずれかで前記データ信号および前記パイロット信号の伝送路特性を推定し、該伝送路特性に基づいて前記データ信号および前記パイロット信号を補正する第1の補正部と、前記受信部により受信されるパイロット信号の数に応じて前記第1の補正部の動作モードを設定する設定部と、を備える。
以上説明したように本発明にかかる無線通信装置、無線通信方法、および無線通信システムによれば、回避帯域に含まれるパイロット信号の送信用のサブキャリアが少ない場合に、周波数特性誤差の補正精度を向上させることができる。
以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
また、以下の順序にしたがって当該「発明を実施するための最良の形態」を説明する。
〔1〕本実施形態において利用される干渉回避機能
〔2〕本実施形態の目的
〔2−1〕本実施形態に関連する無線通信装置
〔2−2〕本実施形態の目的
〔3〕本実施形態にかかる無線通信装置
〔3−1〕無線通信装置の機能の概要
〔3−2〕受信処理部の詳細な説明
〔3−3〕無線通信装置の動作
〔4〕受信処理部の変形例
〔4−1〕変形例にかかる受信処理部の構成
〔4−2〕変形例にかかる受信処理部および制御部の動作
〔5〕まとめ
〔1〕本実施形態で利用される干渉回避機能
まず、図1〜図3を参照し、本実施形態において利用される干渉回避機能について説明する。
図1は、複数の無線通信装置10A〜無線通信装置10Dによる通信状態の一例を示した説明図である。より詳細には、図1は、無線通信装置10Aおよび無線通信装置10Bが無線通信を行っており、無線通信装置10Cおよび無線通信装置10Dが無線通信を行っている例を示している。なお、特に無線通信装置10A〜無線通信装置10Dを区別する必要が無い場合には、各無線通信装置を単に無線通信装置10と称する。
また、本実施形態にかかる各無線通信装置10は、MB−OFDM方式を利用して無線通信を行う。MB−OFDM方式について図2を参照して説明する。
図2は、MB−OFDM方式におけるサブキャリアの配置例を示した説明図である。図2に示したように、MB−OFDM方式においては、各々が直交するように複数のサブキャリアが配置されている。無線通信装置10は、基本的には各サブキャリアを利用してデータ信号を送信することができるが、複数のサブキャリアには、図2において斜線を付して示したようにパイロット信号の送信用のサブキャリアが含まれる。
かかるパイロット信号の送信用のサブキャリアは事前に取り決められている。また、パイロット信号は既定の信号パターンを有する。したがって、無線通信装置10は、既定のパイロット信号を事前に取り決められている既定のサブキャリアを利用して送信する。なお、各サブキャリアに重畳された信号は多重化されて無線信号として送信される。
例えば、図1を参照すると、無線通信装置10Aは各サブキャリアに重畳された信号が多重化された無線信号を無線通信装置10Bに送信する。無線通信装置10Bは、受信した無線信号に含まれるパイロット信号と、既定のパイロット信号に基づいてチャネル(伝送路特性)推定を行ない、データ信号およびパイロット信号の位相誤差を補正することができる。
一方、図1に示したように、無線通信装置10Cが送信する無線信号は、無線通信装置10Cの通信相手である無線通信装置10Dだけでなく、無線通信装置10Cの電波到達範囲12Cに含まれる無線通信装置10Aおよび無線通信装置10Bにも到達する。ここで、無線通信装置10Cが無線通信装置10Aが利用するサブキャリアと重複する周波数帯域を利用している場合、無線通信装置10Aおよび10B間の通信は無線通信装置10Cが送信する無線信号と干渉を起こし、正常な無線通信が阻害されかねない。
このような干渉を回避するための干渉回避機能として、DAA(Detect And Avoid)機能が注目を集めいている。かかるDAA機能について、図3を参照して説明する。
図3は、DAA機能による干渉回避を実現するためのサブキャリア利用例を示した説明図である。図1において、無線通信装置10Aは、任意の方法により無線通信装置10Cにより利用されている周波数帯域を把握することができる。例えば、無線通信装置10Aは、無線通信装置10Cから送信される無線信号の周波数成分を解析することにより無線通信装置10Cにより利用されている周波数帯域を把握することができる。また、無線通信装置10Aは、無線通信装置10Cにより利用されている周波数帯域を示す情報を受信することにより当該事項を把握することもできる。
無線通信装置10Aが、上記任意の方法により、無線通信装置10Cが周波数帯域P〜P+Q、および周波数帯域I〜I+Jを利用していると把握したとする。この場合、無線通信装置10Aは、図3に示したように、周波数帯域P〜P+Q、および周波数帯域I〜I+J以外の周波数帯域である回避帯域に含まれるサブキャリアを利用する。その結果、無線通信装置10Aおよび10B間の通信と、無線通信装置10Cおよび10D間の通信との干渉を回避することができる。
すなわち、DAA機能は、無線通信装置10の周囲で利用されている周波数帯域を検出し、該周波数帯域を回避する回避帯域に含まれるサブキャリアを利用して無線通信を行う機能を含む。かかるDAA機能により、共通の周波数帯域を利用可能な異なるシステムが隣接する場合、両システムの共存を実現することができる。
なお、図1においては無線通信装置10の一例としてPC(Personal Computer)を示しているが、無線通信装置10はかかる例に限定されない。例えば、無線通信装置10は、家庭用映像処理装置(DVDレコーダ、ビデオデッキなど)、携帯電話、PHS(Personal Handyphone System)、携帯用音楽再生装置、携帯用映像処理装置、PDA(Personal Digital Assistants)、家庭用ゲーム機器、携帯用ゲーム機器、家電機器などの情報処理装置であってもよい。
〔2〕本実施形態の目的
以上、本実施形態において利用されるDAA機能について説明した。上述したように、DAA機能は複数の隣接するシステムの共存を図ることができる。一方で、DAA機能は通信品質の劣化を誘発しかねない。そこで、かかる問題を本実施形態に関連する無線通信装置を例にあげて説明した後に、本実施形態の目的を説明する。
〔2−1〕本実施形態に関連する無線通信装置
図4は、本実施形態に関連する無線通信装置の受信処理部70の構成を示した機能ブロック図である。図5は、本実施形態に関連する無線通信装置の受信処理部70のより詳細な構成を示した説明図である。
図4に示したように、受信処理部70は、FFT(Fast Fourier Transform)72、チャネル補正部74、チャネルトラッキング部80、デマッパー92、デインターリーバー94、およびデコーダ96を備える。また、チャネル補正部74はチャネル推定部76および乗算器78を備え、チャネルトラッキング部80はメモリ82、乗算器84、ループフィルタ86および乗算器88を備える。
FFT72には、無線信号に含まれるデータ信号およびパイロット信号をサブキャリアごとに分離して順次出力する。チャネル推定部76は、FFT72から出力されたデータ信号およびパイロット信号に含まれる所定のチャネル推定用信号に基づいてチャネル推定を行い、該チャネル推定結果に基づいて各データ信号およびパイロット信号の補正量を出力する。乗算器78は、FFT72から出力されたデータ信号およびパイロット信号の各々に、チャネル推定部76から出力された補正量を乗算することによりデータ信号およびパイロット信号を補正する。
チャネルトラッキング部80のメモリ82は既定のパイロット信号の信号パターンを保持しており、チャネル補正部74により位相や信号振幅が補正されたパイロット信号に乗算器84がメモリ82に保持されているパイロット信号を乗算する。その結果、チャネル補正部74から入力されたパイロット信号の位相誤差が得られる。ループフィルタ86は、乗算器84による複数の乗算結果を平滑化してチャネル補正部74から出力されるデータ信号およびパイロット信号の位相誤差を推定し、該位相誤差を解消する信号を出力する。乗算器88は、チャネル補正部74から入力されたデータ信号およびパイロット信号に、ループフィルタ86から出力される信号を乗算することにより、データ信号およびパイロット信号の位相変動に追従することができる。
デマッパー92は、チャネルトラッキング部80から出力されたデータ信号をビット列に変換する。デインターリーバー94はビット列に変換されたデータ信号の順序をもとに戻し、デコーダ96はデータ信号のデコードを行なう。
〔2−2〕本実施形態の目的
以上説明したように、本実施形態に関連する無線通信装置の受信処理部70のトラッキング部80は、受信したパイロット信号を利用してデータ信号およびパイロット信号の位相変動に追従してデータ信号およびパイロット信号の位相を補正する(チャネルトラッキング)。したがって、トラッキング部80は、受信するパイロット信号の数が多いほど、より精密なチャネルトラッキングを行なうことができると考えられる。
しかし、上述したDAA機能においては、例えば図3に示したような回避帯域に含まれるサブキャリアを利用して無線信号が送信される。このため、図3に示したように、パイロット信号の送信用のサブキャリアが回避帯域に十分に含まれない場合、受信処理部70におけるチャネルトラッキングの精度が劣化してしまうという問題があった。
そこで、上記事情に鑑みて本実施形態にかかる無線通信装置10を創作するに至った。本実施形態にかかる無線通信装置10は、回避帯域に含まれるパイロット信号の送信用のサブキャリアが少ない場合に、チャネルトラッキングの精度を向上させることができる。以下、当該無線通信装置10について図6〜図10を参照して説明する。
〔3〕本実施形態にかかる無線通信装置
〔3−1〕無線通信装置の機能の概要
図6は、本実施形態にかかる無線通信装置10を含む無線通信システム1の構成を示した説明図である。図6に示したように、無線通信システム1は、送信側の無線通信装置8、および受信側の無線通信装置10を備える。なお、無線通信装置8は受信側の無線通信装置10の機能を実装していてもよく、無線通信装置10は送信側の無線通信装置8の機能を実装していてもよい。
無線通信装置8は、送信データ出力部32と、送信処理部34と、回避帯域推定部36と、アンテナ38と、を備える。
送信データ出力部32は、無線通信装置10に送信するための各種データをデータ信号として送信処理部34に出力する。なお、各種データとしては、音楽、講演およびラジオ番組などの音楽データや、映画、テレビジョン番組、ビデオプログラム、写真、文書、絵画および図表などの映像データや、ゲームおよびソフトフェアなどの任意のデータがあげられる。
送信処理部34は、送信データ出力部32から入力されたデータ信号をデータ信号の送信用のサブキャリアに重畳し、パイロット信号をパイロット信号の送信用のサブキャリアに重畳し、全てのサブキャリアを多重化してアンテナ38に出力する。
より詳細には、送信処理部34は、送信データ出力部32から入力されたデータ信号のビット列に対して、エンコード、マッピング、サブキャリアの変調、周波数変換などの処理を施す。また、送信処理部34は、既定のパイロット信号のビット列に対しても同様の処理を施す。
アンテナ38は、送信処理部34から出力された多重化信号を無線信号として送信する送信部としての機能を有する。
ここで、送信処理部34が利用できるサブキャリアは、回避帯域推定部36により推定された回避帯域に含まれるサブキャリアである。回避帯域推定部36は、任意の方法により周囲で利用されている周波数帯域を推定し、該周波数帯域以外の周波数帯域を回避帯域として推定する。したがって、アンテナ38から送信される無線信号に含まれるパイロット信号の数は、回避帯域推定部36により推定された回避帯域の周波数帯域に依存する。
無線通信装置10は、アンテナ12と、受信処理部14と、制御部16と、受信データ入力部18と、を備える。
アンテナ12は、無線通信装置8から送信された無線信号を受信する受信部としての機能を有する。受信処理部14は、アンテナ12により受信された無線信号からデータ信号を抽出し、受信データ入力部18へ出力する。制御部16は、受信処理部14におけるチャネルトラッキングに関する動作モードを設定する。以下、制御部16の制御に基づいて動作する受信処理部14について詳細に説明する。
〔3−2〕受信処理部の詳細な説明
図7は、受信処理部14の詳細な構成を示した機能ブロック図である。図7に示したように、受信処理部14は、フロントエンド102と、FFT104と、チャネル補正部110と、チャネルトラッキング部120と、デマッパー152と、デインターリーバ154と、デコーダ156と、MAC処理部158と、を備える。
フロントエンド102は、アンテナ12により受信された無線信号に所定処理を施してFFT104に出力する。例えば、フロントエンド102は、アンテナ12により受信された無線信号をベースバンド信号にダウンコンバージョンし、FFT104における高速フーリエ変換のための同期をとったりする。
FFT104は、フロントエンド102から入力されたベースバンド信号に高速フーリエ変換を施し、ベースバンド信号をサブキャリアごとのパイロット信号およびデータ信号に分離し、パイロット信号およびデータ信号を順次出力する。
チャネル補正部110は、チャネル推定部112および乗算器114を備え、各パイロット信号および各データ信号に含まれるチャネル推定用信号に基づいて各パイロット信号および各データ信号の位相や信号振幅の補正を行なう第2の補正部としての機能を有する。
図8は、無線信号のフレームフォーマット例を示した説明図である。図8に示したように、無線信号のフレームには、プリアンブル42、チャネル推定用信号44、ヘッダー46、およびペイロード48が含まれる。
プリアンブル42は、既知固定パターンのビット列であり、フロントエンド102による無線信号の検出、シンボルタイミングの検出などのために利用されることが想定されている。
チャネル推定用信号44は、既定の信号パターンを有し、伝送路推定信号としての機能を有する。かかるチャネル推定用信号44は、各サブキャリアにデータ信号またはパイロット信号の一部として重畳される。
ヘッダー46には、該ヘッダー46が含まれるフレームに関する情報が含まれる。例えばヘッダ46―には、当該フレームを送信する無線信号の変調方式、データ長、伝送レート、送信元装置のアドレス、宛先装置のアドレスなどが記載されてもよい。ペイロード48には、既定のパイロット信号やデータ信号などが含まれる。
チャネル補正部110のチャネル推定部112は、各パイロット信号および各データ信号に含まれる上記チャネル推定用信号44と、既定のチャネル推定用信号とを乗算し、各パイロット信号および各データ信号の送信用のサブキャリアのチャネル推定を行なう。例えば、チャネル推定の結果、各パイロット信号および各データ信号の送信用のサブキャリアの位相誤差や信号振幅誤差が得られる。チャネル推定部112は、かかる各パイロット信号および各データ信号の送信用のサブキャリアの位相誤差や信号振幅誤差を解消する信号を乗算器114に出力する。
乗算器114は、FFT104から順次出力されるサブキャリアごとの信号に、チャネル推定部112から出力される信号を乗算することにより、各パイロット信号および各データ信号の位相誤差や信号振幅誤差を補正できる。
しかし、チャネル補正部110は一時的に各パイロット信号および各データ信号の位相誤差を補正できるが、例えばマルチパスの影響を受けて各サブキャリアの位相は時間と共に変動する場合が多い。チャネルトラッキング部120は、かかる各サブキャリアの位相の変動に追従してパイロット信号およびデータ信号の位相を補正する第1の補正部としての機能を有する。
チャネルトラッキング部120は、メモリ122と、乗算器124と、スイッチ126と、判定部128と、乗算器130と、ループフィルタ132と、乗算器134と、を備える。
メモリ122は、あらかじめ既定のパイロット信号の信号パターンを保持している。乗算器124には、チャネル補正部110から出力されたパイロット信号と、メモリ122に保持されているパイロット信号が入力され、双方のパイロット信号を乗算し、チャネル補正部110から出力されたパイロット信号の位相誤差を出力する。該パイロット信号の位相誤差は該パイロット信号の送信に利用されたサブキャリアのチャネル特性と捉えることもできる。
スイッチ126は、端子aおよび端子bを備え、制御部16からのスイッチ制御信号に基づいて端子aまたは端子bのいずれかを接続する。図7では、スイッチ126は端子aに接続されている例を示している。この場合、乗算器124から出力されたパイロット信号の位相誤差がループフィルタ132に入力される。
判定部128は、チャネル補正部110から出力されたデータ信号が入力され、該データ信号の本来の位相を判定し、該位相を有するデータ信号を出力する。例えば、判定部128は、サブキャリアの変調方式がQPSKである場合、データ信号を複素平面上の対応する位置に信号点として配置する。そして、判定部128は、配置した信号点が第1象限に属する場合、本来のデータ信号の信号点は複素平面の45度上に配されるものと判定し、複素平面の45度上に配される信号点に対応するデータ信号を出力する。
なお、サブキャリアの変調方式はQPSKに限られず、BPSK、APSK、16QAM、64QAM、256QAMなどの任意の変調方式であってもよい。
乗算器130は、チャネル補正部110から出力されたデータ信号と、判定部による判定後のデータ信号とを乗算し、チャネル補正部110から出力されたデータ信号の位相誤差を出力する。該データ信号の位相誤差は該データ信号の送信に利用されたサブキャリアのチャネル特性と捉えることもできる。
ループフィルタ132は、スイッチ126から順次入力される位相誤差を平均化し、該平均化した位相誤差を解消する補正信号を出力する。乗算器134は、チャネル補正部110から出力されたデータ信号およびパイロット信号にループフィルタ132から出力された補正信号を乗算し、データ信号およびパイロット信号の位相変動を補正する。
デマッパー152は、チャネルトラッキング部120から出力されたデータ信号をビット列に変換する。デインターリーバ154はビット列に変換されたデータ信号の順序をもとに戻し、デコーダ156はデータ信号のデコードを行なう。MAC処理部158は、デコードされたデータ信号の内容を解析する。
ここで、チャネルトラッキング部120の動作モードについて説明する。
チャネルトラッキング部120は、制御部16から出力されるスイッチ制御信号に基づき、第1の動作モードまたは第2の動作モードで動作する。すなわち、制御部16は、チャネルトラッキング部120の動作モードを設定する設定部としての機能を有する。
制御部16からチャネルトラッキング部120を第1の動作モードで動作させるスイッチ制御信号が出力されると、スイッチ126はa端子をループフィルタ132に接続し続ける。
その結果、第1の動作モードにおいては、ループフィルタ132にパイロット信号を用いて算出された位相誤差のみが入力されるため、チャネルトラッキング部120はパイロット信号のみを用いてチャネルトラッキングを行なう。
ここで、受信されるパイロット信号の数が少ない場合、パイロット信号のみでは例えば十分な精度でチャネルトラッキングを行なえないと考えられる。そこで、DAA機能により、受信されるパイロット信号の数が設定数Nより少ない場合、制御部16は、パイロット信号に加えてデータ信号を用いてチャネルトラッキングを行う第2の動作モードでチャネルトラッキング部120を動作させる。
制御部16からチャネルトラッキング部120を第2の動作モードで動作させるスイッチ制御信号が出力されると、スイッチ126は該スイッチ制御信号に基づいてa端子とb端子を順次切替えてループフィルタ132にする。図9を参照し、制御部16から出力されるスイッチ制御信号とスイッチ126の動作について説明する。
図9は、制御部16から出力されるスイッチ制御信号とスイッチ126の動作の関係を示した説明図である。図9に示したように、制御部16から出力されるチャネルトラッキング部120を第2の動作モードで動作させるスイッチ制御信号は、HとLの2値の信号レベルを有する。また、該スイッチ制御信号は、チャネルトラッキング部120にパイロット信号が入力されるときに信号レベルがHであり、データ信号が入力されるときに信号レベルがLである。
スイッチ126は、スイッチ制御信号の信号レベルがHである期間に端子aをループフィルタ132に接続し、スイッチ制御信号の信号レベルがLである期間に端子bをループフィルタ132に接続する。
したがって、第2の動作モードにおいては、ループフィルタ132にパイロット信号を用いて算出された位相誤差、およびデータ信号を用いて算出された位相誤差の双方が入力される。その結果、第2の動作モードにおいては、受信されるパイロット信号の数が設定数Nより少ない場合でも、チャネルトラッキング部120がパイロット信号のみを用いる場合と比較して高い精度でチャネルトラッキングを行なうことができる。
続いて、制御部16によるチャネルトラッキング部120の動作モードの設定方法について説明する。
上述したように、制御部16は、受信されるパイロット信号の数が設定数Nより多いか否かに応じてチャネルトラッキング部120の動作モードを設定する。すなわち、制御部16は、受信されるパイロット信号の数を特定する特定部としての機能と、チャネルトラッキング部120の動作モードを設定する設定部としての機能を有する。
制御部16は、受信されるパイロット信号の数を任意の方法で特定することができる。例えば、制御部16は、チャネル推定部112によるチャネル推定の際に得られる情報、またはチャネル推定部112によるチャネル推定結果に基づいてパイロット信号の数を特定することができる。具体的には、チャネル推定部112がサブキャリアごとの信号振幅を推定することができるため、制御部16は、利用されているサブキャリアを把握できる。
ここで、パイロット信号の送信用のサブキャリアは既知であるため、制御部16は、利用されているサブキャリアに含まれるパイロット信号の送信用のサブキャリアの数を、受信されるパイロット信号の数として特定することができる。
または、制御部16は、事前に無線通信装置8から送信される情報に基づいてパイロット信号の数を特定してもよい。例えば、無線通信装置8が事前に利用するサブキャリアの周波数帯域、すなわち回避帯域を示す情報を送信する場合、無線通信装置10のMAC処理部158が受信信号を解析することにより回避帯域情報を得ることができる。上述しているように、パイロット信号の送信用のサブキャリアは既知であるため、制御部16は、MAC処理部158により得られた回避帯域情報の示す周波数帯域に含まれるパイロット信号の送信用のサブキャリアの数を特定することができる。
なお、受信されるパイロット信号の数の比較対象である設定数Nは、制御部16が、チャネル推定部112によるチャネル推定結果や伝送レートに応じて動的に設定してもよい。
また、制御部16は、チャネルトラッキング部120を第2の動作モードで動作させる際、パイロット信号を用いて算出された位相誤差の重み係数Sおよびデータ信号を用いて算出された位相誤差の重み係数Tをループフィルタ132に出力してもよい。この場合、ループフィルタ132は、制御部16から入力された重み係数SおよびTに応じ、パイロット信号を用いて算出された位相誤差、またはデータ信号を用いて算出された位相誤差を主に用いて補正信号を生成することができる。
なお、パイロット信号の送信用のサブキャリアの数が全体に占める割合は少ないため、たまたまパイロット信号の送信用のサブキャリアのチャネル特性が悪い場合はチャネルトラッキングに影響を与えやすい。一方、データ信号の送信用のサブキャリアの数が全体に占める割合は大きいため、局所的にデータ信号の送信用のサブキャリアのチャネル特性が悪くても平均化される。ただし、判定部128による判定が誤っている場合があるため、データ信号を用いて算出された位相誤差はSNが低い状況だと信頼性が低くなる。
このような事情を参酌し、制御部16は、上記重み係数SおよびTを、チャネル推定結果や、パイロット信号およびデータ信号の数などに応じて動的に設定してもよい。
〔3−3〕無線通信装置の動作
以上、本実施形態にかかる無線通信装置10の機能について説明した。続いて、図10を参照し、本実施形態にかかる無線通信装置10において実行される無線通信方法について説明する。
図10は、本実施形態にかかる無線通信装置10において実行される無線通信方法の流れを示したフローチャートである。図10に示したように、まず、無線通信装置10の制御部16は、任意の方法により、後に送信される無線信号で利用される周波数帯域である回避帯域の情報を取得する(S204)。続いて、受信処理部14がパイロット信号およびデータ信号が多重化された無線信号の受信を開始すると(S208)、制御部16は回避帯域情報に基づいて受信可能なパイロット信号の数を特定する(S212)。
その後、制御部16は、特定したパイロット信号の数が設定数Nより多いか否かを判断する(S216)。制御部16は、特定したパイロット信号の数が設定数Nより多いと判断した場合、パイロット信号を利用する第1の動作モードでチャネルトラッキング部120を動作させる(S220)。
一方、制御部16は、特定したパイロット信号の数が設定数Nより少ないと判断した場合、パイロット信号およびデータ信号を利用する第2の動作モードでチャネルトラッキング部120を動作させる(S224)。
〔4〕受信処理部の変形例
以上説明したように、本実施形態にかかる無線通信装置10は、回避帯域に含まれるパイロット信号の送信用のサブキャリアが少ない場合に、データ信号も用いることによりチャネルトラッキングの精度を向上させることができる。以下では、本実施形態にかかる無線通信装置10の変形例を説明する。
〔4−1〕変形例にかかる受信処理部の構成
図11は、変形例にかかる受信処理部15の構成を示した機能ブロック図である。図11に示したように、変形例にかかる受信処理部15は、フロントエンド102と、FFT104と、チャネル補正部110と、チャネルトラッキング部121と、デマッパー152と、デインターリーバ154と、デコーダ156と、MAC処理部158と、を備える。
チャネルトラッキング部121以外の構成は、「〔3〕本実施形態にかかる無線通信装置」で説明した内容と実質的に同一であるので、チャネルトラッキング部121に重きをおいて説明する。
チャネルトラッキング部121は、スイッチ127がa端子およびb端子に加え、「0」が入力されるc端子を備える点で特徴的である。かかるスイッチ127は、制御部17から入力されるスイッチ制御信号に基づいて接続を切替える。以下、図12を参照し、制御部17から出力されるスイッチ制御信号とスイッチ127の動作について説明する。
図12は、変形例にかかる制御部17から出力されるスイッチ制御信号とスイッチ127の動作の関係を示した説明図である。図12に示したように、制御部17から出力されるチャネルトラッキング部121を第3の動作モード(データ信号を用いるという点で、第2の動作モードの下位概念である。)で動作させるスイッチ制御信号は、HとLとMの3値の信号レベルを有する。また、該スイッチ制御信号は、チャネルトラッキング部121にパイロット信号が入力されるときに信号レベルがHであり、データ信号が入力されるときに信号レベルがLまたはMである。
スイッチ127は、スイッチ制御信号の信号レベルがHである期間に端子aをループフィルタ132に接続し、スイッチ制御信号の信号レベルがLである期間に端子bをループフィルタ132に接続する。また、スイッチ127は、スイッチ制御信号の信号レベルがMである期間に端子cをループフィルタ132に接続する。
したがって、第3の動作モードにおいては、ループフィルタ132にパイロット信号を用いて算出された位相誤差に加え、信号レベルがMである期間にチャネルトラッキング部121へ入力されるデータ信号を用いて算出された位相誤差が入力される。ここで、制御部17が、チャネル推定結果などから信頼性の高いデータ信号がチャネルトラッキング部121へ入力されるときにスイッチ制御信号の信号レベルをMとすれば、よりチャネルトラッキングの精度の向上が期待される。
〔4−2〕変形例にかかる受信処理部および制御部の動作
続いて、図13を参照し、変形例に係る受信処理部121および制御部17の動作を説明する。
図13は、変形例に係る受信処理部121および制御部17の動作の流れを示したフローチャートである。図13に示したように、まず、無線通信装置10の制御部17は、任意の方法により、後に送信される無線信号で利用される周波数帯域である回避帯域の情報を取得する(S304)。続いて、受信処理部15がパイロット信号およびデータ信号が多重化された無線信号の受信を開始すると(S308)、制御部17は回避帯域情報に基づいて受信可能なパイロット信号の数を特定する(S312)。
その後、制御部17は、特定したパイロット信号の数が設定数Nより多いか否かを判断する(S316)。制御部17は、特定したパイロット信号の数が設定数Nより多いと判断した場合、パイロット信号を利用する第1の動作モードでチャネルトラッキング部121を動作させる(S320)。
一方、制御部17は、特定したパイロット信号の数が設定数Nより少ないと判断した場合、例えばチャネル推定結果からチャネルトラッキングに利用するデータ信号を選択する(S324)。そして、制御部17は、選択したデータ信号がチャネルトラッキング部121に入力されるときに信号レベルがMであるスイッチ制御信号を出力し、スイッチ127が端子bをループフィルタ132に接続する。その結果、チャネルトラッキング部121が、パイロット信号および選択されたデータ信号を利用する第3の動作モードでチャネルトラッキングを行なうことができる(S328)。
〔5〕まとめ
以上説明したように、本実施形態においては、無線通信装置10が受信可能なパイロット信号の数が設定数Nより少ない場合、制御部17は、パイロット信号に加えてデータ信号を用いてチャネル推定を行う第2の動作モードでチャネルトラッキング部120を動作させる。その結果、本実施形態にかかる無線通信装置10は、無線通信装置10が受信可能なパイロット信号の数が設定数Nより少ない場合であっても、より精度の高いチャネルトラッキングを行なうことができる。
なお、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明は係る例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
例えば、本明細書の無線通信装置10の処理における各ステップは、必ずしもフローチャートとして記載された順序に沿って時系列に処理する必要はない。例えば、無線通信装置10の処理における各ステップは、並列的あるいは個別に実行される処理(例えば、並列処理あるいはオブジェクトによる処理)を含んでもよい。
また、無線通信装置10に含まれる制御部16、17の機能を、無線通信装置10に内蔵されるCPU、ROM、およびRAMなどのハードウェアに実行させるコンピュータプログラムも作成可能である。また、上記受信処理部14、15の機能を実装した集積回路も提供される。
複数の無線通信装置による通信状態の一例を示した説明図である。 MB−OFDM方式におけるサブキャリアの配置例を示した説明図である。 DAA機能による干渉回避を実現するためのサブキャリア利用例を示した説明図である。 本実施形態に関連する無線通信装置の受信処理部の構成を示した機能ブロック図である。 本実施形態に関連する無線通信装置の受信処理部のより詳細な構成を示した説明図である。 本実施形態にかかる無線通信装置を含む無線通信システムの構成を示した説明図である。 受信処理部の詳細な構成を示した機能ブロック図である。 無線信号のフレームフォーマット例を示した説明図である。 制御部から出力されるスイッチ制御信号とスイッチの動作の関係を示した説明図である。 本実施形態にかかる無線通信装置において実行される無線通信方法の流れを示したフローチャートである。 変形例にかかる受信処理部の構成を示した機能ブロック図である。 変形例にかかる制御部から出力されるスイッチ制御信号とスイッチの動作の関係を示した説明図である。 変形例に係る受信処理部および制御部の動作の流れを示したフローチャートである。
符号の説明
8、10 無線通信装置
12、38 アンテナ
14 受信処理部
16、17 制御部
110 チャネル補正部
112 チャネル推定部
120、121 チャネルトラッキング部
126、127 スイッチ

Claims (10)

  1. 周囲で送受信されている無線信号の周波数帯域を回避する回避帯域を利用して無線通信を行う無線通信装置であって:
    前記回避帯域に含まれる既定のキャリアを利用して送信された既定のパイロット信号、および前記回避帯域に含まれる他のキャリアを利用して送信されたデータ信号を受信する受信部と;
    前記受信部により受信されるパイロット信号を用いる第1の動作モード、および、前記受信部により受信されるパイロット信号およびデータ信号を用いる第2の動作モード、を含む動作モードのいずれかで前記データ信号および前記パイロット信号の送信に利用されるキャリアの伝送路特性を推定し、該伝送路特性に基づいて前記データ信号および前記パイロット信号を補正する第1の補正部と;
    前記受信部により受信されるパイロット信号の数に応じて前記第1の補正部の動作モードを設定する設定部と;
    を備えることを特徴とする、無線通信装置。
  2. 前記設定部は、前記受信部により受信されるパイロット信号の数が設定数より少ない場合、前記第1の補正部の動作モードを前記第2の動作モードに設定することを特徴とする、請求項1に記載の無線通信装置。
  3. 前記パイロット信号および前記データ信号の一部には既定の伝送路推定信号が含まれ、
    前記無線通信装置は、
    前記受信部により受信された伝送路推定信号に基づいて前記パイロット信号およびデータ信号の送信に利用される各キャリアの伝送路特性を推定し、該各キャリアの伝送路特性に基づき、前記データ信号およびパイロット信号をキャリアごとに補正する第2の補正部と;
    前記第2の補正部により推定された前記キャリアごとの伝送路特性から、前記受信部により受信されるパイロット信号の数を特定する特定部と;
    をさらに備えることを特徴とする、請求項1に記載の無線通信装置。
  4. 前記設定部は、前記第2の動作モードにおいて前記第1の補正部に利用させるデータ信号を、前記第2の補正部により推定された各キャリアの伝送路特性に基づいて設定することを特徴とする、請求項3に記載の無線通信装置。
  5. 前記設定部は、前記受信部により受信されるパイロット信号の数が設定数より少ない場合に前記第1の補正部の動作モードを前記第2の動作モードに設定し、
    前記設定数は、前記第2の補正部により推定された各キャリアの伝送路特性に基づいて設定されることを特徴とする、請求項3に記載の無線通信装置。
  6. 前記受信部は、前記回避帯域を示す所定信号を前記パイロット信号およびデータ信号より前に受信し、
    前記無線通信装置は、前記所定信号の示す前記回避帯域の周波数帯域に基づいて前記受信部により受信されるパイロット信号の数を特定する特定部をさらに備えることを特徴とする、請求項1に記載の無線通信装置。
  7. 前記設定部は、前記パイロット信号および前記データ信号の双方に重み付けをし、
    前記第1の補正部は前記第2の動作モードにおいて、前記設定部により付された重みに従って前記データ信号および前記パイロット信号を用いて前記データ信号および前記パイロット信号の送信に利用されるキャリアの伝送路特性を推定することを特徴とする、請求項1に記載の無線通信装置。
  8. 前記第1の補正部は前記第2の動作モードにおいて、
    前記受信部により受信されたパイロット信号と前記既定のパイロット信号との差分、および前記受信部により受信されたデータ信号と送信されたと想定されるデータ信号との差分に基づいて前記データ信号および前記パイロット信号を補正することを特徴とする、請求項1に記載の無線通信装置。
  9. 周囲で送受信されている無線信号の周波数帯域を回避する回避帯域を利用して無線通信を行う無線通信装置において実行される無線通信方法であって:
    前記回避帯域に含まれる既定のキャリアを利用して送信された既定のパイロット信号、および前記回避帯域に含まれる他のキャリアを利用して送信されたデータ信号を受信するステップと;
    前記受信部により受信されるパイロット信号の数に応じて動作モードを設定するステップと;
    第1の動作モードに設定された場合、前記受信部により受信されたパイロット信号を用いて前記データ信号および前記パイロット信号の伝送路特性を推定し、該伝送路特性に基づいて前記データ信号および前記パイロット信号を補正し、
    第2の動作モードに設定された場合、前記受信部により受信されるパイロット信号およびデータ信号を用いて前記データ信号および前記パイロット信号の伝送路特性を推定し、該伝送路特性に基づいて前記データ信号および前記パイロット信号を補正するステップと;
    を含むことを特徴とする、無線通信方法。
  10. 送信側の無線通信装置と、前記送信側の無線通信装置と通信可能な受信側の無線通信装置とを含む無線通信システムであって:
    前記送信側の無線通信装置は、
    周囲で送受信されている無線信号の周波数帯域を回避する回避帯域に含まれる既定のキャリアを利用して既定のパイロット信号を送信し、かつ、前記回避帯域に含まれる他のキャリアを利用してデータ信号を送信し、
    前記受信側の無線通信装置は、
    前記送信側の無線通信装置から送信されたパイロット信号、およびデータ信号を受信する受信部と;
    前記受信部により受信されるパイロット信号を用いる第1の動作モード、および、前記受信部により受信されるパイロット信号およびデータ信号を用いる第2の動作モード、を含む動作モードのいずれかで前記データ信号および前記パイロット信号の伝送路特性を推定し、該伝送路特性に基づいて前記データ信号および前記パイロット信号を補正する第1の補正部と;
    前記受信部により受信されるパイロット信号の数に応じて前記第1の補正部の動作モードを設定する設定部と;
    を備えることを特徴とする、無線通信システム。
JP2007269239A 2007-10-16 2007-10-16 無線通信装置、無線通信方法、および無線通信システム Withdrawn JP2009100204A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007269239A JP2009100204A (ja) 2007-10-16 2007-10-16 無線通信装置、無線通信方法、および無線通信システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007269239A JP2009100204A (ja) 2007-10-16 2007-10-16 無線通信装置、無線通信方法、および無線通信システム

Publications (1)

Publication Number Publication Date
JP2009100204A true JP2009100204A (ja) 2009-05-07

Family

ID=40702794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007269239A Withdrawn JP2009100204A (ja) 2007-10-16 2007-10-16 無線通信装置、無線通信方法、および無線通信システム

Country Status (1)

Country Link
JP (1) JP2009100204A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010131525A1 (ja) * 2009-05-12 2010-11-18 三洋電機株式会社 無線装置
WO2011024524A1 (ja) * 2009-08-24 2011-03-03 日本電気株式会社 通信端末

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010131525A1 (ja) * 2009-05-12 2010-11-18 三洋電機株式会社 無線装置
WO2011024524A1 (ja) * 2009-08-24 2011-03-03 日本電気株式会社 通信端末
CN102484553A (zh) * 2009-08-24 2012-05-30 日本电气株式会社 通信终端
US8780751B2 (en) 2009-08-24 2014-07-15 Nec Corporation Communication terminal
CN102484553B (zh) * 2009-08-24 2015-04-08 联想创新有限公司(香港) 通信终端

Similar Documents

Publication Publication Date Title
JP3588040B2 (ja) 通信端末装置および基地局装置
JP4409743B2 (ja) 無線通信装置及び無線通信方式
US6993092B1 (en) Transmission apparatus, reception apparatus and digital radio communication method
KR20110074620A (ko) 통신 장치, 통신 방법 및 집적 회로
JP5151144B2 (ja) Ofdm受信機及びデータ判定方法
US20090034647A1 (en) Transmitting device, wireless communication system and transmitting method
JP2007089125A (ja) 無線装置およびそれを利用した通信システム
JP4748678B2 (ja) パイロット信号配置を適応的に変更する無線装置、プログラム及び通信方法
US8817920B2 (en) Apparatus and method for detecting signal in wireless communication system
US20020193070A1 (en) Radio transmitting apparatus and radio transmitting method
JP2007081862A (ja) 復調装置及び復調方法
US7801179B2 (en) Radio apparatus and communication system using the same
CN106899400B (zh) 突发数据帧发送方法及装置
JP5904709B2 (ja) コミュニケーションシステムにおけるデータ変調
JP5172302B2 (ja) 基地局装置の変調方式選択方法およびそれを利用した基地局装置
JP2009100204A (ja) 無線通信装置、無線通信方法、および無線通信システム
JPH09200282A (ja) Tdd用適応変調方式送受信機
JP2003283441A (ja) 信号伝送システム、送信装置及び受信装置
WO2007027778A1 (en) Method and apparatus for scaling demodulated symbols for h-arq transmissions
EP2048805A1 (en) Radio communication device and radio communication method
JP5010970B2 (ja) Ofdm通信装置および適応速度制御方法
US20070047675A1 (en) Method and apparatus for scaling demodulated symbols for fixed point processing
JP6619802B2 (ja) 送信方法、送信制御方法、及び、通信装置
JP2004072251A (ja) Ofdm通信装置
JP5485304B2 (ja) Ofdm通信装置

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20110104