WO2010131349A1 - 車両用充電装置 - Google Patents

車両用充電装置 Download PDF

Info

Publication number
WO2010131349A1
WO2010131349A1 PCT/JP2009/058979 JP2009058979W WO2010131349A1 WO 2010131349 A1 WO2010131349 A1 WO 2010131349A1 JP 2009058979 W JP2009058979 W JP 2009058979W WO 2010131349 A1 WO2010131349 A1 WO 2010131349A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
unit
contact
charging
power receiving
Prior art date
Application number
PCT/JP2009/058979
Other languages
English (en)
French (fr)
Inventor
真士 市川
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to PCT/JP2009/058979 priority Critical patent/WO2010131349A1/ja
Priority to CN200980159272.3A priority patent/CN102421628B/zh
Priority to EP09844622.2A priority patent/EP2431214B1/en
Priority to JP2011513185A priority patent/JP4930653B2/ja
Priority to US13/203,862 priority patent/US8810205B2/en
Publication of WO2010131349A1 publication Critical patent/WO2010131349A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/122Circuits or methods for driving the primary coil, e.g. supplying electric power to the coil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L1/00Supplying electric power to auxiliary equipment of vehicles
    • B60L1/003Supplying electric power to auxiliary equipment of vehicles to auxiliary motors, e.g. for pumps, compressors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/126Methods for pairing a vehicle and a charging station, e.g. establishing a one-to-one relation between a wireless power transmitter and a wireless power receiver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/22Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/52Drive Train control parameters related to converters
    • B60L2240/527Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/147Emission reduction of noise electro magnetic [EMI]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a vehicle charging device, and more particularly to a vehicle charging device for charging a power storage device mounted on a vehicle from an AC power supply outside the vehicle.
  • Patent Document 1 discloses a vehicle power supply system capable of charging a power storage unit such as a secondary battery or an electric double layer capacitor from a power supply external to the vehicle.
  • the vehicle power supply system includes a conductive charging means for charging (conductive charging) a power storage unit by exchanging electric power in a state where the power supply system external to the vehicle and the power supply system are electrically connected, and a power supply and power supply external to the vehicle.
  • the power storage unit can be charged by selecting the conductive charging using the conductive charging unit and the inductive charging using the inductive charging unit. It can be enlarged (see Patent Document 1).
  • the vehicle power supply system disclosed in the above Japanese Patent Application Laid-Open No. 2008-220130 is useful in that the chargeable area of the power storage unit can be expanded.
  • the selected charging method is not necessarily an efficient charging method.
  • an object of the present invention is to realize efficient charging in a vehicular charging device that can be charged using both conductive charging (plug-in charging) and inductive charging (non-contact charging).
  • a vehicle charging device is a vehicle charging device for charging a power storage device mounted on a vehicle from an AC power supply outside the vehicle, and includes a power receiving terminal, a charger, and a non-contact power receiving unit. And a control device.
  • the power receiving terminal is configured to be electrically connectable to an AC power source.
  • the charger is configured to convert AC power input from the power receiving terminal into a predetermined DC voltage.
  • the non-contact power reception unit is configured to receive power from the AC power source in a non-contact manner by being magnetically coupled to the power transmission unit of the AC power source. This non-contact power reception unit is connected to the power conversion circuit of the charger.
  • control device compares the first received power indicating the power input from the power receiving terminal with the second received power indicating the power received by the non-contact power receiving unit, and based on the comparison result, The charger is controlled to execute charging using the larger one of the first and second received power.
  • this vehicle charging device charging is performed using the larger one of the first received power indicating the power input from the power receiving terminal and the second received power indicating the power received by the non-contact power receiving unit. Since the charger is controlled as described above, the charging time is shortened. Therefore, according to this vehicular charging device, efficient charging can be realized in the vehicular charging device that can be charged using both conductive charging (plug-in charging) and inductive charging (non-contact charging). it can.
  • the control device when a decrease in power reception efficiency is detected based on a state quantity indicating a decrease in power reception efficiency by the non-contact power reception unit, the control device causes the charger to perform charging using the first received power. Control.
  • the charger includes first and second rectification units, an inverter, and an insulating transformer.
  • the first rectifying unit is configured to be able to rectify AC power input from the power receiving terminal.
  • the inverter is connected to the first rectification unit.
  • the insulation transformer is connected to the inverter.
  • the second rectifying unit is configured to rectify the output of the insulating transformer.
  • the non-contact power receiving unit is connected to one of the first and second rectifying units.
  • the charger includes first and second rectifying units, an inverter, and an insulating transformer.
  • the first rectifying unit is configured to be able to rectify AC power input from the power receiving terminal.
  • the inverter is connected to the first rectification unit.
  • the insulation transformer is connected to the inverter.
  • the second rectifying unit is configured to rectify the output of the insulating transformer.
  • the non-contact power reception unit includes a power reception coil and a third rectification unit.
  • the power reception coil is configured to be magnetically coupled to a power transmission coil provided in the power transmission unit.
  • the third rectifying unit is configured to rectify the output of the power receiving coil.
  • a third rectification unit is connected between the first rectification unit and the inverter.
  • the vehicle charging device is a vehicle charging device for charging a power storage device mounted on the vehicle from an AC power supply outside the vehicle, and includes a power receiving terminal, a charger, and a non-contact type.
  • a power receiving unit and a control device are provided.
  • the power receiving terminal is configured to be electrically connectable to an AC power source.
  • the charger is configured to convert AC power input from the power receiving terminal into a predetermined DC voltage.
  • the non-contact power reception unit is configured to receive power from the AC power source in a non-contact manner by being magnetically coupled to the power transmission unit of the AC power source.
  • the control device controls the charger.
  • the charger includes first and second rectifying units, an inverter, and an insulating transformer.
  • the first rectifying unit is configured to be able to rectify AC power input from the power receiving terminal.
  • the inverter is connected to the first rectification unit.
  • the insulation transformer is connected to the inverter.
  • the second rectifying unit is configured to rectify the output of the insulating transformer.
  • the non-contact power reception unit includes a power reception coil and a third rectification unit.
  • the power reception coil is configured to be magnetically coupled to a power transmission coil provided in the power transmission unit.
  • the third rectifying unit is configured to rectify the output of the power receiving coil.
  • a third rectification unit is connected between the first rectification unit and the inverter.
  • the control device when charging is performed using the electric power received by the non-contact power receiving unit, the control device reduces the DC voltage between the first rectifying unit to which the third rectifying unit is connected and the inverter. It adjusts based on the magnitude
  • the DC voltage between the first rectifier and the inverter to which the non-contact power receiving unit is connected is received by the non-contact power receiving unit. Since it is adjusted based on the magnitude of the electric power to be generated, it is possible to take impedance matching between the power transmission side (feeding equipment) and the power reception side (vehicle). Therefore, according to this vehicle charging device, more efficient charging can be realized in the vehicle charging device that can be charged using both conductive charging (plug-in charging) and inductive charging (non-contact charging). Can do.
  • control device performs the first rectification to which the third rectification unit is connected when charging is simultaneously performed using both the power received by the non-contact power reception unit and the power input from the power reception terminal.
  • the DC voltage between the inverter and the inverter is adjusted based on the magnitude of power received by the non-contact power receiving unit.
  • control device adjusts the DC voltage to a value that is a square root of a value obtained by multiplying the received power value of the non-contact power receiving unit by the target impedance.
  • efficient charging can be realized in the vehicle charging device that can be charged using both conductive charging (plug-in charging) and inductive charging (non-contact charging).
  • FIG. 1 is an overall configuration diagram of a vehicle to which a vehicle charging device according to Embodiment 1 of the present invention is applied. It is the figure which showed the structure of the charger shown in FIG. 1 in detail. It is a figure for demonstrating the resonance method which is an example of the power receiving form by a non-contact power receiving part. It is a flowchart which shows the process sequence of charge ECU when the connector of a charging cable is connected to the receiving terminal. It is a flowchart which shows the process sequence of charge ECU when the start of the non-contact charge using a non-contact power receiving part was instruct
  • FIG. 6 shows a configuration of a charging system in a third embodiment. It is the figure which showed the structure of the charging system in Embodiment 4.
  • FIG. It is a functional block diagram of the part regarding control of the voltage VH by charge ECU shown in FIG. It is a whole lineblock diagram of vehicles without a converter.
  • FIG. 1 is an overall configuration diagram of a vehicle to which a vehicle charging apparatus according to Embodiment 1 of the present invention is applied.
  • vehicle 1 includes an engine 10, motor generators 12 and 14, a power split device 16, and drive wheels 18.
  • Vehicle 1 further includes inverters 20 and 22, converter 24, power storage device 26, system main relay (SMR) 28, and MG-ECU (Electronic Control Unit) 30.
  • the vehicle 1 further includes a charger 32, a power receiving terminal 34, a non-contact power receiving unit 36, a charging ECU 40, and a communication device 41.
  • the vehicle 1 further includes a DC / DC converter 42 and an auxiliary machine 44.
  • the engine 10 is configured to be able to convert the thermal energy generated by the combustion of fuel into the kinetic energy of a moving element such as a piston or rotor and output it to the power split device 16.
  • the power split device 16 is configured to be able to split the kinetic energy generated by the engine 10 into the motor generator 12 and the drive wheels 18.
  • a planetary gear having three rotation shafts of a sun gear, a planetary carrier, and a ring gear can be used as the power split device 16, and these three rotation shafts are the rotation shaft of the motor generator 12, the crankshaft of the engine 10, and the drive of the vehicle.
  • the shaft (drive wheel 18) is connected to each other.
  • Motor generators 12 and 14 are AC motors, for example, three-phase AC synchronous motors in which a permanent magnet is embedded in a rotor.
  • the motor generator 12 is driven by an inverter 20 with a rotating shaft connected to the power split device 16.
  • Motor generator 12 receives the kinetic energy generated by engine 10 from power split device 16, converts it into electrical energy, and outputs it to inverter 20.
  • Motor generator 12 also generates driving force by the three-phase AC power received from inverter 20 and also starts engine 10.
  • the motor generator 14 has a rotation shaft coupled to a drive shaft (drive wheel 18) of the vehicle. Motor generator 14 is driven by inverter 22 and generates driving torque of the vehicle by three-phase AC power received from inverter 22. Further, the motor generator 14 receives mechanical energy stored in the vehicle as kinetic energy or positional energy from the drive wheels 18 when the vehicle is braked or when acceleration is reduced on a downward slope, and converts it into electric energy (regenerative power generation). ) Output to inverter 22.
  • the engine 10 is incorporated in the vehicle 1 as a power source for driving the drive wheels 18 and driving the motor generator 12.
  • the motor generator 12 is incorporated in the vehicle 1 so as to operate as a generator driven by the engine 10 and to operate as an electric motor capable of starting the engine 10.
  • the motor generator 14 is incorporated in the vehicle 1 so as to operate as an electric motor that drives the drive wheels 18 and to operate as a generator capable of regenerative power generation using mechanical energy stored in the vehicle.
  • the inverter 20 drives the motor generator 12 based on the signal PWI1 from the MG-ECU 30, and the inverter 22 drives the motor generator 14 based on the signal PWI2 from the MG-ECU 30.
  • Inverters 20 and 22 are connected to main positive bus MPL and main negative bus MNL, and each of inverters 20 and 22 includes, for example, a three-phase bridge circuit.
  • the inverter 20 drives the motor generator 12 in the regeneration mode based on the signal PWI1, converts the electric power generated by the motor generator 12 into DC power, and outputs it to the main positive bus MPL and the main negative bus MNL.
  • Inverter 20 drives motor generator 12 in the power running mode based on signal PWI1 when engine 10 is started, and converts the DC power supplied from main positive bus MPL and main negative bus MNL into AC power to drive the motor. Output to the generator 12.
  • the inverter 22 drives the motor generator 14 in the power running mode based on the signal PWI2, converts the DC power supplied from the main positive bus MPL and the main negative bus MNL into AC power, and outputs the AC power to the motor generator 14.
  • the inverter 22 drives the motor generator 14 in the regeneration mode based on the signal PWI2 when braking the vehicle or reducing acceleration on the down slope, and converts the electric power generated by the motor generator 14 into DC power. Output to positive bus MPL and main negative bus MNL.
  • Converter 24 is connected between positive line PL and negative line NL and main positive line MPL and main negative line MNL. Based on signal PWC from MG-ECU 30, converter 24 boosts the voltage between main positive bus MPL and main negative bus MNL to be higher than the voltage between positive line PL and negative line NL.
  • Converter 24 is formed of a boost chopper circuit, for example.
  • the power storage device 26 is a rechargeable DC power source, and is composed of, for example, a secondary battery such as nickel metal hydride or lithium ion. Power storage device 26 is electrically connected to positive line PL and negative line NL by system main relay 28, and outputs power to positive line PL and negative line NL. Power storage device 26 is charged by receiving power generated by at least one of motor generators 12, 14 from converter 24. Furthermore, the power storage device 26 is charged by receiving power supplied from the AC power supply 50 or 52 outside the vehicle from the charger 32. Note that a large-capacity capacitor can also be used as the power storage device 26.
  • the system main relay 28 is provided between the power storage device 26 and the positive line PL and the negative line NL, and is turned on when the vehicle system is started up or when the power storage device 26 is charged from the AC power supply 50 (or 52).
  • the charger 32 is connected to the positive line PL and the negative line NL.
  • the charger 32 receives AC power supplied from the AC power supply 50 from the power receiving terminal 34, and changes the AC power input from the power receiving terminal 34 to the voltage level of the power storage device 26 based on a control signal from the charging ECU 40. It converts so that it can output to positive electrode line PL and negative electrode line NL.
  • the charger 32 is connected to a non-contact power receiving unit 36 (described later).
  • the charger 32 receives AC power received from the AC power supply 52 by the non-contact power receiving unit 36 from the non-contact power receiving unit 36, and receives AC power from the non-contact power receiving unit 36 based on a control signal from the charging ECU 40. Is converted into the voltage level of power storage device 26 and output to positive line PL and negative line NL.
  • the charger 32 converts the AC power input from the power receiving terminal 34 into a voltage or outputs it, or whether the AC power received from the non-contact power receiving unit 36 converts the voltage into a voltage is output as described later. Based on the AC power input from 34 and the AC power received from the non-contact power receiving unit 36, the charging ECU 40 controls the charging. The configuration of the charger 32 will be described in detail later.
  • the power receiving terminal 34 is a power interface for conducting conductive charging from an AC power supply 50 outside the vehicle.
  • the power receiving terminal 34 is configured to be electrically connectable to a power outlet or the like (not shown) of the AC power supply 50.
  • the non-contact power receiving unit 36 is a power interface for performing inductive charging (non-contact charging) from the AC power supply 52 outside the vehicle.
  • the non-contact power reception unit 36 includes a power reception coil 38 that can be magnetically coupled to the power transmission coil 54 of the AC power supply 52.
  • the power reception coil 38 receives power from the AC power supply 52 in a non-contact manner by being magnetically coupled to the power transmission coil 54 of the AC power supply 52.
  • the magnetic coupling between the power reception coil 38 and the power transmission coil 54 may be electromagnetic induction, or may be a resonance method in which the power reception coil 38 and the power transmission coil 54 are resonated via a magnetic field.
  • Charge ECU 40 controls the operation of charger 32 when power storage device 26 is charged from AC power supply 50 or 52.
  • the charging ECU 40 includes power input from the power receiving terminal 34 (hereinafter also referred to as “conductive power receiving power”) and power received by the non-contact power receiving unit 36 (hereinafter also referred to as “non-contact power receiving power”). Based on the comparison result, the charger 32 is controlled so as to execute charging using the larger one of the conductive received power and the non-contact received power.
  • the conductive received power is calculated based on, for example, the rated current information received via the power receiving terminal 34 from the charging cable connected to the power receiving terminal 34 and the voltage input to the power receiving terminal 34.
  • non-contact received power for example, power information indicating the transmitted power from the power transmission coil 54 is transmitted from the power supply facility to the communication device 41, and the non-contact received power is based on the power information received by the communication device 41. Calculated.
  • the DC / DC converter 42 is connected to the positive line PL and the negative line NL.
  • DC / DC converter 42 steps down the power received from positive line PL and negative line NL to the operating voltage of auxiliary machine 44 and outputs it to auxiliary machine 44.
  • the auxiliary machine 44 generally shows each auxiliary machine of the vehicle 1 and is supplied with electric power from the DC / DC converter 42.
  • FIG. 2 is a diagram showing in detail the configuration of the charger 32 shown in FIG. 2, charger 32 includes a rectifying unit 102, an inverter 104, an insulating transformer 106, a rectifying unit 108, and relays RY1 and RY2.
  • the rectifying unit 102 includes two upper and lower arms connected in parallel, and each upper and lower arm includes two rectifying elements (diodes) connected in series. And the power receiving terminal 34 is connected to the intermediate point (node N1, N2) of each upper and lower arm, and the rectification
  • FIG. A switching element is provided on the lower arm of each upper and lower arm, and a reactor is provided on the power line between the power receiving terminal 34 and the nodes N1 and N2.
  • rectifier 102 forms a boost chopper circuit together with the reactor, and can rectify and boost the power input from power receiving terminal 34 based on signal PWM1 from charging ECU 40.
  • the inverter 104 is connected to the rectifying unit 102, and converts the output from the rectifying unit 102 into alternating current based on the signal PWM2 from the charging ECU 40.
  • Inverter 104 is formed of a full bridge circuit, for example.
  • the insulating transformer 106 is connected between the inverter 104 and the rectifying unit 108 to electrically insulate the electric system of the vehicle 1 to which the rectifying unit 108 is connected and the AC power supply 50 to which the power receiving terminal 34 is connected.
  • the rectifying unit 108 includes two upper and lower arms connected in parallel between the positive electrode line PL and the negative electrode line NL, and each upper and lower arm includes two rectifying elements (diodes) connected in series.
  • the secondary coil of the insulating transformer 106 is connected to the intermediate node of each upper and lower arm, and the rectifying unit 108 rectifies the output of the insulating transformer 106 and outputs it to the positive line PL and the negative line NL.
  • the non-contact power reception unit 36 is connected to the rectification unit 102. That is, the power receiving coil 38 of the non-contact power receiving unit 36 is connected to the nodes N1 and N2 of the rectifying unit 102. Then, during non-contact charging in which charging power is received by the non-contact power receiving unit 36, the power received by the non-contact power receiving unit 36 is rectified by the rectifying unit 102.
  • the non-contact power receiving unit 36 Since the frequency of the AC power received by the non-contact power receiving unit 36 is high (particularly, in the resonance method, the frequency of the AC power received can be 1 M to several tens of MHz), the non-contact power receiving unit 36 For the rectifying unit 102 to be connected, it is preferable to use a rectifying element having excellent high-frequency rectifying characteristics. For example, it is known that silicon carbide (SiC), gallium nitride (GaN), and the like are superior in high-frequency rectification characteristics than general silicon (Si).
  • the relay RY1 is provided between the node N1 of the rectifying unit 102 and the non-contact power receiving unit 36.
  • the relay RY2 is provided between the node N1 of the rectifying unit 102 and the power receiving terminal 34. Relays RY1 and RY2 are turned on / off in response to signals SE1 and SE2 from charging ECU 40, respectively.
  • Charging ECU 40 receives cable connection signal PISW and pilot signal CPLT from power receiving terminal 34.
  • the cable connection signal PISW is a signal indicating a connection between a charging cable (not shown) and the power receiving terminal 34.
  • Pilot signal CPLT is a pulse signal transmitted from a charging cable connected to power receiving terminal 34. For example, the rated current of charging power is indicated by the duty of the pulse.
  • the voltage sensor 62 detects the voltage VAC indicating the input voltage of the power receiving terminal 34 and outputs the detected value to the charging ECU 40.
  • the communication device 41 receives information on the power P transmitted from the power supply facility (not shown) of the AC power supply 52 to the non-contact power receiving unit 36 from the power supply facility, and outputs the received information on the power P to the charging ECU 40.
  • the charging ECU 40 calculates the power input from the power receiving terminal 34, that is, the conductive power received based on the rated current value indicated by the pilot signal CPLT and the voltage detection value of the voltage sensor 62. Further, the charging ECU 40 calculates the power received by the non-contact power receiving unit 36, that is, the non-contact received power based on the information on the power P received by the communication device 41. Then, the charging ECU 40 compares the contactless received power with the conductive received power, and when the contactless received power is larger than the conductive received power, the relays RY1 and RY2 are turned on and off, respectively.
  • the power (alternating current) received by the non-contact power receiving unit 36 is supplied to the rectifying unit 102, and the rectifying unit 102 rectifies the power received from the non-contact power receiving unit 36 and outputs it to the inverter 104.
  • Inverter 104 converts electric power (direct current) output from rectifying unit 102 into alternating current
  • rectifying unit 108 rectifies electric power (alternating current) received from insulating transformer 106 and outputs it to positive electrode line PL and negative electrode line NL. To do.
  • the non-contact received power is larger than the conductive received power, the non-contact charging using the non-contact power receiving unit 36 is performed.
  • the charging ECU 40 turns off and on the relays RY1 and RY2, respectively.
  • the electric power (alternating current) input from the power receiving terminal 34 is supplied to the rectifying unit 102, and the rectifying unit 102 rectifies the electric power input from the power receiving terminal 34 and outputs the rectified power to the inverter 104.
  • the subsequent inverter 104, insulating transformer 106, and rectifier 108 are as described above.
  • conductive charging is performed in which charging is performed with the power input from the power receiving terminal 34.
  • FIG. 3 is a diagram for explaining a resonance method which is an example of a power receiving form by the non-contact power receiving unit 36.
  • the resonance method in the same way as two tuning forks resonate, two LC resonance coils having the same natural frequency resonate in an electromagnetic field (near field), so that from one coil to the other. Electric power is transmitted to the other coil via an electromagnetic field.
  • the primary coil 54-2 is connected to the AC power source 52, and high frequency power of 1 to 10 MHz is fed to the primary self-resonant coil 54-1 that is magnetically coupled to the primary coil 54-2 by electromagnetic induction.
  • the primary self-resonant coil 54-1 is an LC resonator having an inductance and stray capacitance of the coil itself.
  • the primary self-resonant coil 54-1 and the secondary self-resonant coil 38-1 having the same resonance frequency as the primary self-resonant coil 54-1 Resonates through). Then, energy (electric power) moves from the primary self-resonant coil 54-1 to the secondary self-resonant coil 38-1 via the electromagnetic field.
  • the energy (power) transferred to the secondary self-resonant coil 38-1 is taken out by the secondary coil 38-2 magnetically coupled to the secondary self-resonant coil 38-1 by electromagnetic induction and supplied to the load 56.
  • the Note that power transmission by the resonance method is realized when the Q value indicating the resonance intensity between the primary self-resonant coil 54-1 and the secondary self-resonant coil 38-1 is greater than 100, for example.
  • the secondary self-resonant coil 38-1 and the secondary coil 38-2 constitute the power receiving coil 38 of FIG. 2, and the primary self-resonant coil 54-1 and the primary coil 54-2 are the power transmitting coil 54 of FIG. Configure.
  • power may be transmitted from the power transmission coil 54 of the AC power supply 52 to the power reception coil 38 of the non-contact power reception unit 36 using electromagnetic induction.
  • FIGS 4 and 5 are diagrams for explaining charging control executed by the charging ECU 40 in more detail.
  • FIG. 4 is a flowchart showing a processing procedure of the charging ECU 40 when the connector of the charging cable is connected to the power receiving terminal 34. Whether the connector of the charging cable is connected to the power receiving terminal 34 is determined based on the cable connection signal PISW (FIG. 2) from the power receiving terminal 34.
  • PISW cable connection signal
  • charging ECU 40 determines whether or not non-contact charging using non-contact power receiving unit 36 is being performed (step S110). When it is determined that non-contact charging is not being performed (NO in step S110), charging ECU 40 turns off and on relays RY1 and RY2 (FIG. 2), and performs charging using electric power input from power receiving terminal 34. Charging is started (step S120).
  • step S110 If it is determined in step S110 that contactless charging is being performed (YES in step S110), the charging ECU 40 determines that the contactless received power (the power received by the contactless power receiving unit 36) is the conductive received power (power receiving terminal). It is determined whether or not the power is larger than (the power input from 34) (step S130).
  • the non-contact received power is calculated based on the power output information from the power supply facility received by the communication device 41 (FIG. 2).
  • the conductive received power is calculated based on the rated current value indicated by the pilot signal CPLT (FIG. 2) received from the charging cable via the power receiving terminal 34 and the voltage detection value detected by the voltage sensor 62 (FIG. 2).
  • the non-contact received power is calculated based on the power output information from the power supply facility received by the communication device 41 (FIG. 2).
  • the conductive received power is calculated based on the rated current value indicated by the pilot signal CPLT (FIG. 2) received from the charging cable via the power receiving terminal 34
  • step S130 When it is determined in step S130 that the non-contact received power is larger than the conductive received power (YES in step S130), the charging ECU 40 continues the non-contact charging using the non-contact power receiving unit 36 (step S130). S140).
  • step S130 when it is determined in step S130 that the non-contact received power is equal to or lower than the conductive received power (NO in step S130), the charging ECU 40 stops the non-contact charging (step S150). Then, charging ECU 40 switches relay RY1 from on to off and switches relay RY2 from off to on, and starts conductive charging (step S160).
  • FIG. 5 is a flowchart showing a processing procedure of the charging ECU 40 when an instruction to start non-contact charging using the non-contact power receiving unit 36 is given.
  • the instruction to start non-contact charging is determined, for example, based on whether a non-contact charging switch provided in the driver's seat is turned on by the driver.
  • charging ECU 40 determines whether or not conductive charging is being performed (step S210). If it is determined that the conductive charging is not in progress (NO in step S210), charging ECU 40 turns relays RY1 and RY2 (FIG. 2) on and off, respectively, and starts non-contact charging using non-contact power receiving unit 36 ( Step S220).
  • step S210 If it is determined in step S210 that the conductive charging is being performed (YES in step S210), the charging ECU 40 determines whether the non-contact received power is larger than the conductive received power (step S230). If it is determined that the non-contact received power is larger than the conductive received power (YES in step S230), charging ECU 40 stops the conductive charging (step S240). Then, charging ECU 40 switches relay RY1 from off to on and switches relay RY2 from on to off, and starts non-contact charging (step S250).
  • step S230 when it is determined in step S230 that the non-contact received power is equal to or lower than the conductive received power (NO in step S230), charging ECU 40 continues the conductive charging (step S260).
  • the non-contact power receiving unit 36 is connected to the charger 32 for conductive charging by the power receiving terminal 34. And since charging ECU40 controls the charger 32 so that charging may be performed using the larger one of conductive receiving electric power and non-contact receiving electric power, charging time is shortened. Therefore, according to the first embodiment, efficient charging can be realized in the vehicle charging device that can be charged using both conductive charging (plug-in charging) and non-contact charging.
  • the overall configuration of the vehicle in the second embodiment is the same as that of the vehicle 1 shown in FIG. Further, the configuration of the charger 32 and the non-contact power receiving unit 36 is the same as the configuration shown in FIG.
  • FIG. 6 is a flowchart showing the procedure of the non-contact charge prohibition process executed by the charge ECU 40.
  • charging ECU 40 determines whether or not a non-contact charging switch provided in the driver's seat is turned on by the driver (step S310). If it is determined that the switch is off (NO in step S310), charging ECU 40 does not perform non-contact charging (step S320).
  • step S310 If it is determined in step S310 that the non-contact charging switch is turned on (YES in step S310), the charging ECU 40 determines whether or not conductive charging is being performed (step S330). If it is determined that the conductive charging is not being performed (NO in step S330), charging ECU 40 starts non-contact charging using non-contact power receiving unit 36 (step S340).
  • charging ECU 40 determines whether or not the non-contact received power is larger than the conductive received power (step S350).
  • the charging ECU 40 receives the power receiving coil 38 of the non-contact power receiving unit 36 (see FIG. 1) for the power transmission equipment.
  • the positional deviation amount shown in FIG. 1) is detected, and it is determined whether or not the positional deviation amount is smaller than a predetermined amount (step S360).
  • the positional deviation amount can be detected by a position detection sensor or the like.
  • the predetermined amount used for the determination is set in advance based on the efficiency of contactless charging using the contactless power receiving unit 36.
  • charging ECU 40 stops conductive charging (step S370). Then, charging ECU 40 switches relay RY1 from off to on and switches relay RY2 from on to off, and starts non-contact charging (step S380).
  • step S350 when it is determined in step S350 that the non-contact received power is equal to or less than the conductive received power (NO in step S350), or when it is determined in step S360 that the positional deviation amount of the power receiving coil is equal to or greater than the predetermined amount ( In step S360, NO), charging ECU 40 continues the conductive charging without switching relays RY1, RY2 (step S390).
  • the amount of displacement of the power receiving coil 38 with respect to the power transmission coil 54 of the power supply facility is detected, and when the amount of displacement is a predetermined value or more, it is assumed that the efficiency of contactless charging is reduced.
  • the electric power is actually transmitted from the power transmission coil 54 without detecting the amount of physical displacement, and the power actually received by the power reception coil 38 is compared with the transmitted power.
  • the power reception efficiency may be actually detected.
  • the non-contact power receiving unit 36 is connected to the rectifying unit 102 of the charger 32.
  • the non-contact power receiving unit is provided with a rectifier, and the DC unit of the charger has a non-contact power receiving unit. May be connected.
  • FIG. 7 is a diagram showing the configuration of the charging system in the third embodiment.
  • the charging system in the third embodiment includes a power receiving terminal 34, a charger 32 ⁇ / b> A, a non-contact power receiving unit 36 ⁇ / b> A, a charging ECU 40, and a communication device 41.
  • the configuration of the charger 32A is basically the same as that of the charger 32 shown in FIG. 2, but the non-contact power receiving unit 36A is connected to the nodes N3 and N4 in the DC link between the rectifying unit 102 and the inverter 104.
  • the point that relay RY1 is provided between node N3 and non-contact power reception unit 36A is different from battery charger 32.
  • the non-contact power receiving unit 36A includes a power receiving coil 38, a rectifying unit 110, and an electromagnetic shield material 112.
  • the rectifying unit 110 is connected to the power receiving coil 38, rectifies the AC power received by the power receiving coil 38, and outputs the rectified power to the charger 32A.
  • the rectifying unit 110 includes two upper and lower arms connected in parallel, like the rectifying units 102 and 108 in the charger 32A, and each upper and lower arm includes two rectifying elements (diodes) connected in series. .
  • the receiving coil 38 is connected to the intermediate point of each upper and lower arm.
  • the electromagnetic shielding material 112 generates high-frequency electromagnetic waves generated around the power receiving coil 38 and the rectifying unit 110 when the power is received by the power receiving coil 38 (in the case of the resonance method, the frequency can be 1 M to several tens of MHz). Shield.
  • the electromagnetic shielding material 112 integrally shields the power receiving coil 38 and the rectifying unit 110 when high-frequency electromagnetic waves propagate to the rectifying unit 110 that rectifies the AC power received by the power receiving coil 38. Thereby, it is possible to prevent high-frequency electromagnetic waves generated due to non-contact charging from diffusing around.
  • a metal member such as iron having a high electromagnetic shielding effect or a cloth having an electromagnetic shielding effect can be employed.
  • the same effects as those of the first and second embodiments can be obtained. Further, according to the third embodiment, the power receiving coil 38 and the rectifying unit 110 can be integrally electromagnetically shielded, and the shield configuration is simplified.
  • conductive charging from the power receiving terminal 34 and non-contact charging using the non-contact power receiving unit 36A can be performed simultaneously.
  • the voltage of the DC link to which the non-contact power receiving unit 36A is connected in the charger is controlled based on the magnitude of the non-contact received power.
  • FIG. 8 is a diagram showing a configuration of the charging system in the fourth embodiment.
  • the charging system in the fourth embodiment includes a power receiving terminal 34, a charger 32B, a non-contact power receiving unit 36A, a charging ECU 40A, and a communication device 41.
  • Charger 32B does not include relays RY1 and RY2, but further includes a voltage sensor 64 and a current sensor 66 in the configuration of charger 32A in the third embodiment shown in FIG. That is, even if the relays RY1 and RY2 are not provided, the power input from the power receiving terminal 34 does not flow to the power receiving coil 38 of the non-contact power receiving unit 36A by providing the rectifying unit 110 in the non-contact power receiving unit 36A. In addition, the power received by the power receiving coil 38 of the non-contact power receiving unit 36 ⁇ / b> A by the rectifying unit 102 of the charger 32 ⁇ / b> B does not flow to the power receiving terminal 34. Therefore, in the fourth embodiment, conductive charging from the power receiving terminal 34 and non-contact charging using the non-contact power receiving unit 36A can be performed simultaneously.
  • the voltage sensor 64 detects the voltage VH between the nodes N3 and N4 to which the non-contact power receiving unit 36A is connected, and outputs the detected value to the charging ECU 40A.
  • Current sensor 66 detects current I indicating the input current of inverter 104, and outputs the detected value to charging ECU 40A.
  • the charging ECU 40A includes a power (non-contact received power) and voltage sensor received by the non-contact power receiving unit 36A when the conductive charging from the power receiving terminal 34 and the non-contact charging using the non-contact power receiving unit 36A are performed simultaneously. Based on the voltage VH from 64, the voltage VH is controlled to a predetermined target voltage. Specifically, charging ECU 40A sets the target voltage of voltage VH by the following equation based on the magnitude of non-contact received power.
  • VHref ⁇ (P ⁇ R) (1)
  • P non-contact received power
  • R is a target impedance.
  • the impedance can be set to the target impedance R without depending on the received power. For example, by setting the target impedance R based on the impedance value on the power supply facility side, impedance matching can be achieved on the power transmission side and the power reception side in the non-contact charging.
  • FIG. 9 is a functional block diagram of a portion related to control of voltage VH by charge ECU 40A shown in FIG.
  • charging ECU 40 ⁇ / b> A includes a target voltage setting unit 72 and a DC voltage control unit 74.
  • the target voltage setting unit 72 calculates the target voltage VHref according to the above equation (1) based on the non-contact received power P and the target impedance R.
  • DC voltage controller 74 drives signal PWM2 for driving inverter 104 and / or rectifier 102 so that voltage VH detected by voltage sensor 64 (FIG. 8) matches target voltage VHref.
  • Signal PWM1 (during simultaneous execution of conductive charging) is generated, and the generated signals are output to inverter 104 and / or rectifying unit 102, respectively.
  • the voltage VH between the nodes N3 and N4 to which the non-contact power receiving unit 36A is connected is adjusted based on the magnitude of the non-contact received power. Impedance matching is possible between the equipment) and the power receiving side (vehicle). Therefore, according to the fourth embodiment, more efficient charging can be realized in the vehicle charging device that can be charged using both conductive charging (plug-in charging) and non-contact charging.
  • the vehicle 1 includes the converter 24, and the charger 32 (32A, 32B) and the DC / DC converter 42 are connected between the converter 24 and the system main relay (SMR) 28.
  • SMR system main relay
  • the present invention is applicable to a vehicle 1 ⁇ / b> A that does not include the converter 24.
  • the non-contact power receiving unit 36 is connected to the rectifying unit 102, but may be connected to the rectifying unit 108.
  • a rectifying element having excellent high-frequency AC characteristics such as SiC or GaN is used for the rectifying unit 108, and a general rectifying element made of Si is used for the rectifying unit 102.
  • the part 36 may be connected.
  • the resonance method has been described in FIG. 3 as an example of the power receiving mode of the non-contact power receiving units 36 and 36A.
  • the present invention is limited to the power receiving mode of the non-contact power receiving units 36 and 36A.
  • electromagnetic induction may be used.
  • the charger is connected to the positive line PL and the negative line NL, but may be connected to the main positive line MPL and the main negative line MNL.
  • a series / parallel type hybrid capable of dividing the power of the engine 10 by the power split device 16 and transmitting it to the drive wheels 18 and the motor generator 12.
  • the present invention is also applicable to other types of hybrid vehicles. That is, for example, a so-called series-type hybrid vehicle that uses the engine 10 only for driving the motor generator 12 and generates the driving force of the vehicle only by the motor generator 14, or regenerative energy among the kinetic energy generated by the engine 10.
  • the present invention can also be applied to a hybrid vehicle in which only the electric energy is recovered, a motor assist type hybrid vehicle in which the motor assists the engine as the main power if necessary.
  • the present invention can also be applied to an electric vehicle that does not include the engine 10 and travels only by electric power, and a fuel cell vehicle that further includes a fuel cell as a DC power supply in addition to the power storage device 26.
  • the charging ECUs 40 and 40A correspond to the “control device” in the present invention
  • the rectifying unit 102 corresponds to the “first rectifying unit” in the present invention
  • the rectifying unit 108 corresponds to the “second rectifying unit” in the present invention
  • the rectifying unit 110 corresponds to the “third rectifying unit” in the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Secondary Cells (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Abstract

 受電端子(34)は、交流電源(50)に電気的に接続可能に構成される。充電器(32)は、受電端子(34)から入力される交流電力を所定の直流電圧に変換するように構成される。非接触受電部(36)は、交流電源(52)の送電部と磁気的に結合することによって交流電源(52)から非接触で受電するように構成される。非接触受電部(36)は、充電器(32)の電力変換回路に接続される。充電ECU(40)は、コンダクティブ受電電力と非接触受電電力とを比較し、その比較結果に基づいて、コンダクティブ受電電力と非接触受電電力とのうち大きい方を用いて充電を実行するように充電器(32)を制御する。

Description

車両用充電装置
 この発明は、車両用充電装置に関し、特に、車両に搭載された蓄電装置を車両外部の交流電源から充電するための車両用充電装置に関する。
 特開2008-220130号公報(特許文献1)は、二次電池や電気二重層キャパシタ等の蓄電部を車両外部の電源から充電可能な車両用電源システムを開示する。この車両用電源システムは、車両外部の電源と電源システムとを電気的に接続した状態で電力の授受を行なうことにより蓄電部を充電(コンダクティブ充電)する導通充電手段と、車両外部の電源と電源システムとを磁気的に結合した状態で電力の授受を行なうことにより蓄電部を充電(インダクティブ充電)する誘導充電手段と、導通充電手段と誘導充電手段とを択一的に選択する充電制御装置とを備えている。
 この車両用電源システムによれば、導通充電手段を用いたコンダクティブ充電と、誘導充電手段を用いたインダクティブ充電とを選択して蓄電部を充電することができるので、蓄電部の充電可能なエリアを拡大することができる(特許文献1参照)。
特開2008-220130号公報 特開2003-47163号公報
 上記の特開2008-220130号公報に開示される車両用電源システムは、蓄電部の充電可能なエリアを拡大することができる点で有用である。しかしながら、上記の車両用電源システムでは、導通充電手段を用いたコンダクティブ充電(いわゆるプラグイン充電)と、誘導充電手段を用いたインダクティブ充電(非接触充電)とを選択スイッチにより選択可能であるところ、選択された充電方式が必ずしも効率的な充電方式であるとは限らない。
 それゆえに、この発明の目的は、コンダクティブ充電(プラグイン充電)とインダクティブ充電(非接触充電)との双方を用いて充電可能な車両用充電装置において、効率的な充電を実現することである。
 この発明によれば、車両用充電装置は、車両に搭載された蓄電装置を車両外部の交流電源から充電するための車両用充電装置であって、受電端子と、充電器と、非接触受電部と、制御装置とを備える。受電端子は、交流電源に電気的に接続可能に構成される。充電器は、受電端子から入力される交流電力を所定の直流電圧に変換するように構成される。非接触受電部は、交流電源の送電部と磁気的に結合することによって交流電源から非接触で受電するように構成される。この非接触受電部は、充電器の電力変換回路に接続される。そして、制御装置は、受電端子から入力される電力を示す第1の受電電力と非接触受電部により受電される電力を示す第2の受電電力とを比較し、その比較結果に基づいて、第1および第2の受電電力のうち大きい方を用いて充電を実行するように充電器を制御する。
 この車両用充電装置においては、受電端子から入力される電力を示す第1の受電電力と非接触受電部により受電される電力を示す第2の受電電力とのうち大きい方を用いて充電を実行するように充電器が制御されるので、充電時間が短縮される。したがって、この車両用充電装置によれば、コンダクティブ充電(プラグイン充電)とインダクティブ充電(非接触充電)との双方を用いて充電可能な車両用充電装置において、効率的な充電を実現することができる。
 好ましくは、制御装置は、非接触受電部による受電の効率低下を示す状態量に基づいて受電効率の低下が検知されると、第1の受電電力を用いて充電を実行するように充電器を制御する。
 好ましくは、充電器は、第1および第2の整流部と、インバータと、絶縁トランスとを含む。第1の整流部は、受電端子から入力される交流電力を整流可能に構成される。インバータは、第1の整流部に接続される。絶縁トランスは、インバータに接続される。第2の整流部は、絶縁トランスの出力を整流するように構成される。そして、非接触受電部は、第1および第2の整流部のいずれかに接続される。
 また、好ましくは、充電器は、第1および第2の整流部と、インバータと、絶縁トランスとを含む。第1の整流部は、受電端子から入力される交流電力を整流可能に構成される。インバータは、第1の整流部に接続される。絶縁トランスは、インバータに接続される。第2の整流部は、絶縁トランスの出力を整流するように構成される。非接触受電部は、受電コイルと、第3の整流部とを含む。受電コイルは、送電部に設けられる送電コイルと磁気的に結合するように構成される。第3の整流部は、受電コイルの出力を整流するように構成される。そして、第1の整流部とインバータとの間に第3の整流部が接続される。
 また、この発明によれば、車両用充電装置は、車両に搭載された蓄電装置を車両外部の交流電源から充電するための車両用充電装置であって、受電端子と、充電器と、非接触受電部と、制御装置とを備える。受電端子は、交流電源に電気的に接続可能に構成される。充電器は、受電端子から入力される交流電力を所定の直流電圧に変換するように構成される。非接触受電部は、交流電源の送電部と磁気的に結合することによって交流電源から非接触で受電するように構成される。制御装置は、充電器を制御する。充電器は、第1および第2の整流部と、インバータと、絶縁トランスとを含む。第1の整流部は、受電端子から入力される交流電力を整流可能に構成される。インバータは、第1の整流部に接続される。絶縁トランスは、インバータに接続される。第2の整流部は、絶縁トランスの出力を整流するように構成される。非接触受電部は、受電コイルと、第3の整流部とを含む。受電コイルは、送電部に設けられる送電コイルと磁気的に結合するように構成される。第3の整流部は、受電コイルの出力を整流するように構成される。そして、第1の整流部とインバータとの間に第3の整流部が接続される。ここで、制御装置は、非接触受電部により受電される電力を用いて充電が実行されるとき、第3の整流部が接続される第1の整流部とインバータとの間の直流電圧を非接触受電部により受電される電力の大きさに基づいて調整する。
 この車両用充電装置においては、非接触受電部を用いて充電が実行されるとき、非接触受電部が接続される第1の整流部とインバータとの間の直流電圧が非接触受電部により受電される電力の大きさに基づいて調整されるので、送電側(給電設備)と受電側(車両)とでインピーダンスマッチングをとることが可能である。したがって、この車両用充電装置によれば、コンダクティブ充電(プラグイン充電)とインダクティブ充電(非接触充電)との双方を用いて充電可能な車両用充電装置において、より効率的な充電を実現することができる。
 好ましくは、制御装置は、非接触受電部により受電される電力および受電端子から入力される電力の双方を用いて同時に充電が実行されるとき、第3の整流部が接続される第1の整流部とインバータとの間の直流電圧を非接触受電部により受電される電力の大きさに基づいて調整する。
 好ましくは、制御装置は、非接触受電部の受電電力値に目標インピーダンスを乗算した値の平方根から成る値に直流電圧を調整する。
 この車両用充電装置によれば、コンダクティブ充電(プラグイン充電)とインダクティブ充電(非接触充電)との双方を用いて充電可能な車両用充電装置において、効率的な充電を実現することができる。
この発明の実施の形態1による車両用充電装置が適用される車両の全体構成図である。 図1に示す充電器の構成を詳細に示した図である。 非接触受電部による受電形態の一例である共鳴法を説明するための図である。 受電端子に充電ケーブルのコネクタが接続されたときの充電ECUの処理手順を示すフローチャートである。 非接触受電部を用いた非接触充電の開始が指示されたときの充電ECUの処理手順を示すフローチャートである。 充電ECUにより実行される非接触充電禁止処理の手順を示すフローチャートである。 実施の形態3における充電システムの構成を示した図である。 実施の形態4における充電システムの構成を示した図である。 図8に示す充電ECUによる電圧VHの制御に関する部分の機能ブロック図である。 コンバータを備えない車両の全体構成図である。
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。
 [実施の形態1]
 図1は、この発明の実施の形態1による車両用充電装置が適用される車両の全体構成図である。図1を参照して、車両1は、エンジン10と、モータジェネレータ12,14と、動力分割装置16と、駆動輪18とを備える。また、車両1は、インバータ20,22と、コンバータ24と、蓄電装置26と、システムメインリレー(SMR)28と、MG-ECU(Electronic Control Unit)30とをさらに備える。さらに、車両1は、充電器32と、受電端子34と、非接触受電部36と、充電ECU40と、通信装置41とをさらに備える。また、さらに、車両1は、DC/DCコンバータ42と、補機44とをさらに備える。
 エンジン10は、燃料の燃焼による熱エネルギーをピストンやロータなどの運動子の運動エネルギーに変換して動力分割装置16へ出力可能に構成される。動力分割装置16は、エンジン10が発生する運動エネルギーをモータジェネレータ12と駆動輪18とに分割可能に構成される。たとえば、サンギヤ、プラネタリキャリヤおよびリングギヤの3つの回転軸を有する遊星歯車を動力分割装置16として用いることができ、この3つの回転軸がモータジェネレータ12の回転軸、エンジン10のクランクシャフトおよび車両の駆動軸(駆動輪18)にそれぞれ連結される。
 モータジェネレータ12,14は、交流電動機であり、たとえばロータに永久磁石が埋設された三相交流同期電動機である。モータジェネレータ12は、動力分割装置16に回転軸が連結され、インバータ20によって駆動される。そして、モータジェネレータ12は、エンジン10により生成された運動エネルギーを動力分割装置16から受け、電気エネルギーに変換してインバータ20へ出力する。また、モータジェネレータ12は、インバータ20から受ける三相交流電力によって駆動力を発生し、エンジン10の始動も行なう。
 モータジェネレータ14は、車両の駆動軸(駆動輪18)に回転軸が連結される。そして、モータジェネレータ14は、インバータ22によって駆動され、インバータ22から受ける三相交流電力によって車両の駆動トルクを発生する。また、モータジェネレータ14は、車両の制動時や下り斜面での加速度低減時、運動エネルギーや位置エネルギーとして車両に蓄えられた力学的エネルギーを駆動輪18から受け、電気エネルギーに変換して(回生発電)インバータ22へ出力する。
 エンジン10は、駆動輪18を駆動するとともにモータジェネレータ12を駆動する動力源として車両1に組込まれる。モータジェネレータ12は、エンジン10によって駆動される発電機として動作し、かつ、エンジン10の始動を行ない得る電動機として動作するものとして車両1に組込まれる。また、モータジェネレータ14は、駆動輪18を駆動する電動機として動作し、かつ、車両に蓄えられた力学的エネルギーを用いて回生発電可能な発電機として動作するものとして車両1に組込まれる。
 インバータ20は、MG-ECU30からの信号PWI1に基づいてモータジェネレータ12を駆動し、インバータ22は、MG-ECU30からの信号PWI2に基づいてモータジェネレータ14を駆動する。インバータ20,22は、主正母線MPLおよび主負母線MNLに接続され、インバータ20,22の各々は、たとえば三相ブリッジ回路から成る。
 インバータ20は、信号PWI1に基づいてモータジェネレータ12を回生モードで駆動し、モータジェネレータ12により発電された電力を直流電力に変換して主正母線MPLおよび主負母線MNLへ出力する。また、インバータ20は、エンジン10の始動時、信号PWI1に基づいてモータジェネレータ12を力行モードで駆動し、主正母線MPLおよび主負母線MNLから供給される直流電力を交流電力に変換してモータジェネレータ12へ出力する。
 インバータ22は、信号PWI2に基づいてモータジェネレータ14を力行モードで駆動し、主正母線MPLおよび主負母線MNLから供給される直流電力を交流電力に変換してモータジェネレータ14へ出力する。また、インバータ22は、車両の制動時や下り斜面での加速度低減時、信号PWI2に基づいてモータジェネレータ14を回生モードで駆動し、モータジェネレータ14により発電された電力を直流電力に変換して主正母線MPLおよび主負母線MNLへ出力する。
 コンバータ24は、正極線PLおよび負極線NLと主正母線MPLおよび主負母線MNLとの間に接続される。そして、コンバータ24は、MG-ECU30からの信号PWCに基づいて、主正母線MPLおよび主負母線MNL間の電圧を正極線PLおよび負極線NL間の電圧以上に昇圧する。コンバータ24は、たとえば昇圧チョッパ回路から成る。
 蓄電装置26は、再充電可能な直流電源であり、たとえば、ニッケル水素やリチウムイオン等の二次電池から成る。蓄電装置26は、システムメインリレー28によって正極線PLおよび負極線NLに電気的に接続され、正極線PLおよび負極線NLへ電力を出力する。また、蓄電装置26は、モータジェネレータ12,14の少なくとも一方が発電する電力をコンバータ24から受けて充電される。さらに、蓄電装置26は、車両外部の交流電源50または52から供給される電力を充電器32から受けて充電される。なお、蓄電装置26として、大容量のキャパシタも採用可能である。
 システムメインリレー28は、蓄電装置26と正極線PLおよび負極線NLとの間に設けられ、車両システムの起動時または交流電源50(または52)から蓄電装置26の充電時にオンされる。
 充電器32は、正極線PLおよび負極線NLに接続される。そして、充電器32は、交流電源50から供給される交流電力を受電端子34から受け、充電ECU40からの制御信号に基づいて、受電端子34から入力される交流電力を蓄電装置26の電圧レベルに変換して正極線PLおよび負極線NLへ出力可能に構成される。
 ここで、充電器32には、非接触受電部36(後述)が接続される。そして、充電器32は、非接触受電部36によって交流電源52から受電された交流電力を非接触受電部36から受け、充電ECU40からの制御信号に基づいて、非接触受電部36から受ける交流電力を蓄電装置26の電圧レベルに変換して正極線PLおよび負極線NLへ出力可能に構成される。
 充電器32が、受電端子34から入力される交流電力を電圧変換して出力するか、それとも非接触受電部36から受ける交流電力を電圧変換して出力するかは、後述するように、受電端子34から入力される交流電力および非接触受電部36から受ける交流電力に基づいて、充電ECU40により制御される。なお、充電器32の構成は、後ほど詳しく説明する。
 受電端子34は、車両外部の交流電源50からコンダクティブ充電を行なうための電力インターフェースである。受電端子34は、交流電源50の電源コンセント等(図示せず)に電気的に接続可能に構成される。
 非接触受電部36は、車両外部の交流電源52からインダクティブ充電(非接触充電)を行なうための電力インターフェースである。非接触受電部36は、交流電源52の送電コイル54と磁気的に結合可能な受電コイル38を含む。受電コイル38は、交流電源52の送電コイル54と磁気的に結合することによって交流電源52から非接触で受電する。なお、受電コイル38と送電コイル54との磁気的な結合は、電磁誘導であってもよいし、磁場を介して受電コイル38および送電コイル54を共鳴させる共鳴法でもよい。
 充電ECU40は、交流電源50または52から蓄電装置26の充電が行なわれるとき、充電器32の動作を制御する。ここで、充電ECU40は、受電端子34から入力される電力(以下「コンダクティブ受電電力」とも称する。)と非接触受電部36により受電される電力(以下「非接触受電電力」とも称する。)とを比較し、その比較結果に基づいて、コンダクティブ受電電力および非接触受電電力のうち大きい方を用いて充電を実行するように充電器32を制御する。
 なお、コンダクティブ受電電力は、たとえば、受電端子34に接続される充電ケーブルから受電端子34を介して受ける定格電流情報と受電端子34に入力される電圧とに基づいて算出される。また、非接触受電電力については、たとえば、送電コイル54からの送電電力を示す電力情報を給電設備から通信装置41へ送信し、通信装置41により受信される電力情報に基づいて非接触受電電力が算出される。
 DC/DCコンバータ42は、正極線PLおよび負極線NLに接続される。DC/DCコンバータ42は、正極線PLおよび負極線NLから受ける電力を補機44の動作電圧に降圧して補機44へ出力する。補機44は、この車両1の各補機を総括的に示したものであり、DC/DCコンバータ42から電力の供給を受ける。
 図2は、図1に示した充電器32の構成を詳細に示した図である。図2を参照して、充電器32は、整流部102と、インバータ104と、絶縁トランス106と、整流部108と、リレーRY1,RY2とを含む。
 整流部102は、並列接続される2つの上下アームを含み、各上下アームは、直列接続される2つの整流素子(ダイオード)を含む。そして、各上下アームの中間点(ノードN1,N2)に受電端子34が接続され、整流部102は、受電端子34から入力される交流電力を整流する。なお、各上下アームの下アームには、スイッチング素子が設けられ、さらに受電端子34とノードN1,N2との間の電力線にはリアクトルが設けられている。これにより、整流部102は、リアクトルとともに昇圧チョッパ回路を構成し、充電ECU40からの信号PWM1に基づいて、受電端子34から入力される電力を整流するとともに昇圧することができる。
 インバータ104は、整流部102に接続され、充電ECU40からの信号PWM2に基づいて整流部102からの出力を交流に変換する。インバータ104は、たとえばフルブリッジ回路から成る。絶縁トランス106は、インバータ104と整流部108との間に接続され、整流部108が接続される車両1の電気システムと受電端子34が接続される交流電源50とを電気的に絶縁する。
 整流部108は、正極線PLおよび負極線NL間に並列接続される2つの上下アームを含み、各上下アームは、直列接続される2つの整流素子(ダイオード)を含む。そして、各上下アームの中間ノードに絶縁トランス106の二次コイルが接続され、整流部108は、絶縁トランス106の出力を整流して正極線PLおよび負極線NLへ出力する。
 そして、この実施の形態1では、非接触受電部36は、整流部102に接続される。すなわち、整流部102のノードN1,N2に非接触受電部36の受電コイル38が接続される。そして、非接触受電部36によって充電電力を受電する非接触充電時、非接触受電部36によって受電された電力は、整流部102によって整流される。
 なお、非接触受電部36により受電される交流電力の周波数は高いので(特に、共鳴法では、受電される交流電力の周波数は1M~10数MHzになり得る。)、非接触受電部36が接続される整流部102には、高周波整流特性が優れた整流素子を用いるのが好ましい。たとえば、シリコンカーバイド(SiC)やガリウムナイトライド(GaN)等は、一般的なシリコン(Si)よりも高周波整流特性に優れていることが知られている。
 リレーRY1は、整流部102のノードN1と非接触受電部36との間に設けられる。リレーRY2は、整流部102のノードN1と受電端子34との間に設けられる。そして、リレーRY1,RY2は、それぞれ充電ECU40からの信号SE1,SE2に応じてオン/オフされる。
 充電ECU40は、受電端子34からケーブル接続信号PISWおよびパイロット信号CPLTを受ける。ケーブル接続信号PISWは、図示されない充電ケーブルと受電端子34との接続を示す信号である。パイロット信号CPLTは、受電端子34に接続される充電ケーブルから送信されるパルス信号であり、たとえばパルスのデューティーによって充電電力の定格電流が示される。
 電圧センサ62は、受電端子34の入力電圧を示す電圧VACを検出し、その検出値を充電ECU40へ出力する。通信装置41は、図示されない交流電源52の給電設備から非接触受電部36へ送電される電力Pに関する情報を給電設備から受信し、その受信した電力Pに関する情報を充電ECU40へ出力する。
 そして、充電ECU40は、パイロット信号CPLTにより示される定格電流値と電圧センサ62の電圧検出値とに基づいて、受電端子34から入力される電力すなわちコンダクティブ受電電力を算出する。また、充電ECU40は、通信装置41により受信される電力Pの情報に基づいて、非接触受電部36により受電される電力すなわち非接触受電電力を算出する。そして、充電ECU40は、非接触受電電力をコンダクティブ受電電力と比較し、非接触受電電力の方がコンダクティブ受電電力よりも大きいときは、リレーRY1,RY2をそれぞれオン,オフさせる。これにより、非接触受電部36により受電された電力(交流)が整流部102に供給され、整流部102は、非接触受電部36から受ける電力を整流してインバータ104へ出力する。そして、インバータ104は、整流部102から出力される電力(直流)を交流に変換し、整流部108は、絶縁トランス106から受ける電力(交流)を整流して正極線PLおよび負極線NLへ出力する。このように、非接触受電電力の方がコンダクティブ受電電力よりも大きいときは、非接触受電部36を用いた非接触充電が行なわれる。
 一方、非接触受電電力がコンダクティブ受電電力以下のときは、充電ECU40は、リレーRY1,RY2をそれぞれオフ,オンさせる。これにより、受電端子34から入力される電力(交流)が整流部102に供給され、整流部102は、受電端子34から入力される電力を整流してインバータ104へ出力する。その後のインバータ104、絶縁トランス106および整流部108については、上述したとおりである。このように、非接触受電電力がコンダクティブ受電電力以下のときは、受電端子34から入力される電力によって充電を行なうコンダクティブ充電が行なわれる。
 図3は、非接触受電部36による受電形態の一例である共鳴法を説明するための図である。図3を参照して、共鳴法では、2つの音叉が共鳴するのと同様に、同じ固有振動数を有する2つのLC共振コイルが電磁場(近接場)において共鳴することによって、一方のコイルから他方のコイルへ電磁場を介して電力が伝送される。
 たとえば、交流電源52に一次コイル54-2が接続され、電磁誘導により一次コイル54-2と磁気的に結合される一次自己共振コイル54-1へ1M~10数MHzの高周波電力が給電される。一次自己共振コイル54-1は、コイル自身のインダクタンスと浮遊容量とによるLC共振器であり、一次自己共振コイル54-1と同じ共振周波数を有する二次自己共振コイル38-1と電磁場(近接場)を介して共鳴する。そうすると、一次自己共振コイル54-1から二次自己共振コイル38-1へ電磁場を介してエネルギー(電力)が移動する。二次自己共振コイル38-1へ移動したエネルギー(電力)は、電磁誘導により二次自己共振コイル38-1と磁気的に結合される二次コイル38-2によって取出され、負荷56へ供給される。なお、共鳴法による送電は、一次自己共振コイル54-1と二次自己共振コイル38-1との共鳴強度を示すQ値がたとえば100よりも大きいときに実現される。
 なお、二次自己共振コイル38-1および二次コイル38-2は、図2の受電コイル38を構成し、一次自己共振コイル54-1および一次コイル54-2は、図1の送電コイル54を構成する。
 なお、上述したように、交流電源52の送電コイル54から非接触受電部36の受電コイル38へ電磁誘導を用いて送電してもよい。
 図4,図5は、充電ECU40により実行される充電制御をより詳細に説明するための図である。
 図4は、受電端子34に充電ケーブルのコネクタが接続されたときの充電ECU40の処理手順を示すフローチャートである。なお、受電端子34に充電ケーブルのコネクタが接続されたことは、受電端子34からのケーブル接続信号PISW(図2)に基づいて判定される。
 図4を参照して、受電端子34に充電ケーブルのコネクタが接続されると、充電ECU40は、非接触受電部36を用いた非接触充電の実行中か否かを判定する(ステップS110)。非接触充電中でないと判定されると(ステップS110においてNO)、充電ECU40は、リレーRY1,RY2(図2)をそれぞれオフ,オンさせ、受電端子34から入力される電力によって充電を実行するコンダクティブ充電を開始する(ステップS120)。
 ステップS110において非接触充電の実行中であると判定されると(ステップS110においてYES)、充電ECU40は、非接触受電電力(非接触受電部36により受電される電力)がコンダクティブ受電電力(受電端子34から入力される電力)よりも大きいか否かを判定する(ステップS130)。なお、非接触受電電力は、通信装置41(図2)により受信される、給電設備からの電力出力情報に基づいて算出される。また、コンダクティブ受電電力は、充電ケーブルから受電端子34を介して受けるパイロット信号CPLT(図2)により示される定格電流値と電圧センサ62(図2)により検出される電圧検出値に基づいて算出される。
 そして、ステップS130において非接触受電電力の方がコンダクティブ受電電力よりも大きいと判定されると(ステップS130においてYES)、充電ECU40は、非接触受電部36を用いた非接触充電を継続する(ステップS140)。
 一方、ステップS130において非接触受電電力がコンダクティブ受電電力以下であると判定されると(ステップS130においてNO)、充電ECU40は、非接触充電を停止する(ステップS150)。そして、充電ECU40は、リレーRY1をオンからオフへ切替えるとともにリレーRY2をオフからオンへ切替え、コンダクティブ充電を開始する(ステップS160)。
 図5は、非接触受電部36を用いた非接触充電の開始が指示されたときの充電ECU40の処理手順を示すフローチャートである。なお、非接触充電開始の指示は、たとえば、運転席に設けられる非接触充電スイッチが運転者によりオンされたかにより判定される。
 図5を参照して、非接触充電の開始が指示されると、充電ECU40は、コンダクティブ充電中であるか否かを判定する(ステップS210)。コンダクティブ充電中でないと判定されると(ステップS210においてNO)、充電ECU40は、リレーRY1,RY2(図2)をそれぞれオン,オフさせ、非接触受電部36を用いた非接触充電を開始する(ステップS220)。
 ステップS210においてコンダクティブ充電中であると判定されると(ステップS210においてYES)、充電ECU40は、非接触受電電力がコンダクティブ受電電力よりも大きいか否かを判定する(ステップS230)。非接触受電電力の方がコンダクティブ受電電力よりも大きいと判定されると(ステップS230においてYES)、充電ECU40は、コンダクティブ充電を停止する(ステップS240)。そして、充電ECU40は、リレーRY1をオフからオンへ切替えるとともにリレーRY2をオンからオフへ切替え、非接触充電を開始する(ステップS250)。
 一方、ステップS230において非接触受電電力がコンダクティブ受電電力以下であると判定されると(ステップS230においてNO)、充電ECU40は、コンダクティブ充電を継続する(ステップS260)。
 以上のように、この実施の形態1においては、受電端子34によるコンダクティブ充電用の充電器32に非接触受電部36が接続される。そして、充電ECU40は、コンダクティブ受電電力と非接触受電電力とのうち大きい方を用いて充電を実行するように充電器32を制御するので、充電時間が短縮される。したがって、この実施の形態1によれば、コンダクティブ充電(プラグイン充電)と非接触充電との双方を用いて充電可能な車両用充電装置において、効率的な充電を実現することができる。
 [実施の形態2]
 この実施の形態2では、さらに、非接触受電部36を用いた非接触充電の効率低下が判定されると、非接触充電が禁止され、コンダクティブ充電が実行される。
 この実施の形態2における車両の全体構成は、図1に示した車両1と同じである。また、充電器32や非接触受電部36の構成も、図2に示した構成と同じである。
 図6は、充電ECU40により実行される非接触充電禁止処理の手順を示すフローチャートである。図6を参照して、充電ECU40は、運転席に設けられる非接触充電スイッチが運転者によりオンされたか否かを判定する(ステップS310)。スイッチがオフであると判定されると(ステップS310においてNO)、充電ECU40は非接触充電を実施しない(ステップS320)。
 ステップS310において非接触充電スイッチがオンされたと判定されると(ステップS310においてYES)、充電ECU40は、コンダクティブ充電中であるか否かを判定する(ステップS330)。コンダクティブ充電中でないと判定されると(ステップS330においてNO)、充電ECU40は、非接触受電部36を用いた非接触充電を開始する(ステップS340)。
 一方、ステップS330においてコンダクティブ充電中であると判定されると(ステップS330においてYES)、充電ECU40は、非接触受電電力がコンダクティブ受電電力よりも大きいか否かを判定する(ステップS350)。
 非接触受電電力の方がコンダクティブ受電電力よりも大きいと判定されると(ステップS350においてYES)、充電ECU40は、給電設備の送電コイル54(図1)に対する非接触受電部36の受電コイル38(図1)の位置ずれ量を検知し、その位置ずれ量が所定量よりも小さいか否かを判定する(ステップS360)。なお、位置ずれ量は、位置検出センサ等によって検知することができる。また、判定に用いられる所定量は、非接触受電部36を用いた非接触充電の効率に基づいて予め設定される。
 そして、受電コイルの位置ずれ量が所定値よりも小さいと判定されると(ステップS360においてYES)、充電ECU40は、コンダクティブ充電を停止する(ステップS370)。そして、充電ECU40は、リレーRY1をオフからオンへ切替えるとともにリレーRY2をオンからオフへ切替え、非接触充電を開始する(ステップS380)。
 一方、ステップS350において非接触受電電力がコンダクティブ受電電力以下であると判定されたとき(ステップS350においてNO)、あるいはステップS360において受電コイルの位置ずれ量が所定量以上であると判定されたとき(ステップS360においてNO)、充電ECU40は、リレーRY1,RY2を切替えることなくコンダクティブ充電を継続する(ステップS390)。
 なお、上記においては、給電設備の送電コイル54に対する受電コイル38の位置ずれ量を検知し、位置ずれ量が所定値以上のときは非接触充電の効率が低下しているものとして、非接触充電を禁止してコンダクティブ充電を行なうものとしたが、物理的な位置ずれ量を検知することなく、送電コイル54から実際に送電し、受電コイル38により実際に受電された電力を送電電力と比較することによって受電効率を実際に検知してもよい。
 以上のように、この実施の形態2によれば、受電効率の悪い非接触充電が選択されるのを防止することができる。
 [実施の形態3]
 実施の形態1,2では、非接触受電部36は、充電器32の整流部102に接続されるものとしたが、非接触受電部に整流器を設けて充電器の直流部に非接触受電部を接続してもよい。
 図7は、実施の形態3における充電システムの構成を示した図である。図7を参照して、実施の形態3における充電システムは、受電端子34と、充電器32Aと、非接触受電部36Aと、充電ECU40と、通信装置41とを含む。
 充電器32Aの構成は、図2に示した充電器32と基本的に同じであるが、整流部102とインバータ104との間の直流リンクにおけるノードN3,N4に非接触受電部36Aが接続され、ノードN3と非接触受電部36Aとの間にリレーRY1が設けられる点が充電器32と異なる。
 非接触受電部36Aは、受電コイル38と、整流部110と、電磁シールド材112とを含む。整流部110は、受電コイル38に接続され、受電コイル38によって受電された交流電力を整流して充電器32Aへ出力する。たとえば、整流部110は、充電器32A内の整流部102,108と同様に、並列接続される2つの上下アームを含み、各上下アームは、直列接続される2つの整流素子(ダイオード)を含む。そして、各上下アームの中間点に受電コイル38が接続される。
 電磁シールド材112は、受電コイル38による受電に伴ない受電コイル38および整流部110の周囲に発生する高周波の電磁波(共鳴法の場合には、周波数が1M~10数MHzになり得る。)を遮蔽する。すなわち、受電コイル38によって受電された交流電力を整流する整流部110にも高周波の電磁波が伝播するところ、電磁シールド材112は、受電コイル38および整流部110を一体的にシールドする。これにより、非接触充電に伴ない発生する高周波の電磁波が周囲に拡散するのを防止できる。なお、電磁シールド材112として、電磁遮蔽効果の高い鉄などの金属製部材や、電磁波遮蔽効果を有する布などを採用可能である。
 以上のように、この実施の形態3によっても、実施の形態1,2と同様の効果を得ることが可能である。また、この実施の形態3によれば、受電コイル38と整流部110とを一体的に電磁シールド可能であり、シールドの構成が簡易になる。
 [実施の形態4]
 この実施の形態4では、受電端子34からのコンダクティブ充電と非接触受電部36Aを用いた非接触充電とを同時に実行可能である。そして、コンダクティブ充電と非接触充電とが同時に実行されるとき、充電器において非接触受電部36Aが接続される直流リンクの電圧が、非接触受電電力の大きさに基づいて制御される。これにより、非接触充電において送電側と受電側とでインピーダンスマッチングをとることができ、高効率な非接触充電を実現できる。
 図8は、実施の形態4における充電システムの構成を示した図である。図8を参照して、実施の形態4における充電システムは、受電端子34と、充電器32Bと、非接触受電部36Aと、充電ECU40Aと、通信装置41とを含む。
 充電器32Bは、図7に示した実施の形態3における充電器32Aの構成において、リレーRY1,RY2を含まず、電圧センサ64および電流センサ66をさらに含む。すなわち、リレーRY1,RY2が設けられなくても、非接触受電部36Aに整流部110が設けられることによって、受電端子34から入力された電力が非接触受電部36Aの受電コイル38へ流れることはなく、また、充電器32Bの整流部102によって、非接触受電部36Aの受電コイル38によって受電された電力が受電端子34へ流れることもない。したがって、この実施の形態4では、受電端子34からのコンダクティブ充電と非接触受電部36Aを用いた非接触充電とを同時に実行可能である。
 電圧センサ64は、非接触受電部36Aが接続されるノードN3,N4間の電圧VHを検出し、その検出値を充電ECU40Aへ出力する。電流センサ66は、インバータ104の入力電流を示す電流Iを検出し、その検出値を充電ECU40Aへ出力する。
 充電ECU40Aは、受電端子34からのコンダクティブ充電と非接触受電部36Aを用いた非接触充電とが同時に実行されるとき、非接触受電部36Aにより受電される電力(非接触受電電力)および電圧センサ64からの電圧VHに基づいて、電圧VHを所定の目標電圧に制御する。具体的には、充電ECU40Aは、非接触受電電力の大きさに基づいて、電圧VHの目標電圧を次式により設定する。
 VHref=√(P×R) …(1)
 ここで、Pは、非接触受電電力であり、Rは、目標インピーダンスである。非接触受電部36Aが接続されるノードN3,N4間の電圧VHを上記の目標電圧VHrefに制御することにより、受電電力に依存することなくインピーダンスを目標インピーダンスRに設定することができる。そして、たとえば目標インピーダンスRを給電設備側のインピーダンス値に基づいて設定することにより、非接触充電において送電側と受電側とでインピーダンスマッチングをとることができる。
 図9は、図8に示した充電ECU40Aによる電圧VHの制御に関する部分の機能ブロック図である。図9を参照して、充電ECU40Aは、目標電圧設定部72と、直流電圧制御部74とを含む。目標電圧設定部72は、非接触受電電力Pと目標インピーダンスRとに基づいて、上記の(1)式に従って目標電圧VHrefを算出する。
 直流電圧制御部74は、電圧センサ64(図8)によって検出された電圧VHが目標電圧VHrefに一致するように、インバータ104を駆動するための信号PWM2および/または整流部102を駆動するための信号PWM1(コンダクティブ充電同時実行時)を生成し、その生成した信号をそれぞれインバータ104および/または整流部102へ出力する。
 以上のように、この実施の形態4においては、非接触受電部36Aが接続されるノードN3,N4間の電圧VHが非接触受電電力の大きさに基づいて調整されるので、送電側(給電設備)と受電側(車両)とでインピーダンスマッチングをとることが可能である。したがって、この実施の形態4によれば、コンダクティブ充電(プラグイン充電)と非接触充電との双方を用いて充電可能な車両用充電装置において、より効率的な充電を実現することができる。
 なお、上記の各実施の形態においては、車両1は、コンバータ24を備え、コンバータ24とシステムメインリレー(SMR)28との間に充電器32(32A,32B)およびDC/DCコンバータ42が接続されるものとしたが、図10に示すように、コンバータ24を備えない車両1Aについても本願発明は適用可能である。
 また、上記の実施の形態1においては、非接触受電部36は、整流部102に接続されるものとしたが、整流部108に接続してもよい。たとえば、整流部108にSiCやGaN等の高周波交流特性の優れた整流素子を用い、整流部102には一般的なSiから成る整流素子を用い、高周波整流特性に優れる整流部108に非接触受電部36を接続してもよい。
 また、上記においては、非接触受電部36,36Aの受電形態の一例として図3において共鳴法を説明したが、この発明は、非接触受電部36,36Aの受電形態が共鳴法のものに限定されるものではなく、たとえば電磁誘導であってもよい。
 また、上記の各実施の形態においては、充電器は、正極線PLおよび負極線NLに接続されるものとしたが、主正母線MPLおよび主負母線MNLに接続されてもよい。
 また、上記の各実施の形態においては、車両1(または1A)として、動力分割装置16によりエンジン10の動力を分割して駆動輪18とモータジェネレータ12とに伝達可能なシリーズ/パラレル型のハイブリッド車について説明したが、この発明は、その他の形式のハイブリッド車にも適用可能である。すなわち、たとえば、モータジェネレータ12を駆動するためにのみエンジン10を用い、モータジェネレータ14でのみ車両の駆動力を発生する、いわゆるシリーズ型のハイブリッド車や、エンジン10が生成した運動エネルギーのうち回生エネルギーのみが電気エネルギーとして回収されるハイブリッド車、エンジンを主動力として必要に応じてモータがアシストするモータアシスト型のハイブリッド車などにもこの発明は適用可能である。
 また、この発明は、エンジン10を備えずに電力のみで走行する電気自動車や、直流電源として蓄電装置26に加えて燃料電池をさらに備える燃料電池車にも適用可能である。
 なお、上記において、充電ECU40,40Aは、この発明における「制御装置」に対応し、整流部102は、この発明における「第1の整流部」に対応する。また、整流部108は、この発明における「第2の整流部」に対応し、整流部110は、この発明における「第3の整流部」に対応する。
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1,1A 車両、10 エンジン、12,14 モータジェネレータ、16 動力分割装置、18 駆動輪、20,22 インバータ、24 コンバータ、26 蓄電装置、28 システムメインリレー、30 MG-ECU、32,32A,32B 充電器、34 受電端子、36,36A 非接触受電部、38 受電コイル、38-1 二次自己共振コイル、38-2 二次コイル、40,40A 充電ECU、41 通信装置、42 DC/DCコンバータ、44 補機、50,52 交流電源、54 送電コイル、54-1 一次自己共振コイル、54-2 一次コイル、56 負荷、62,64 電圧センサ、66 電流センサ、72 目標電圧設定部、74 直流電圧制御部、102,108,110 整流部、104 インバータ、106 絶縁トランス、112 電磁シールド材、PL 正極線、NL 負極線、MPL 主正母線、MNL 主負母線、RY1,RY2 リレー、N1~N4 ノード。

Claims (7)

  1.  車両に搭載された蓄電装置(26)を車両外部の交流電源から充電するための車両用充電装置であって、
     前記交流電源に電気的に接続可能に構成された受電端子(34)と、
     前記受電端子から入力される交流電力を所定の直流電圧に変換するように構成された充電器(32,32A)と、
     前記交流電源の送電部と磁気的に結合することによって前記交流電源から非接触で受電するように構成された非接触受電部(36,36A)とを備え、
     前記非接触受電部は、前記充電器の電力変換回路に接続され、さらに、
     前記受電端子から入力される電力を示す第1の受電電力と前記非接触受電部により受電される電力を示す第2の受電電力とを比較し、その比較結果に基づいて、前記第1および第2の受電電力のうち大きい方を用いて充電を実行するように前記充電器を制御する制御装置(40)を備える車両用充電装置。
  2.  前記制御装置は、前記非接触受電部による受電の効率低下を示す状態量に基づいて受電効率の低下が検知されると、前記第1の受電電力を用いて充電を実行するように前記充電器を制御する、請求の範囲1に記載の車両用充電装置。
  3.  前記充電器(32)は、
     前記受電端子から入力される交流電力を整流可能に構成された第1の整流部(102)と、
     前記第1の整流部に接続されるインバータ(104)と、
     前記インバータに接続される絶縁トランス(106)と、
     前記絶縁トランスの出力を整流するように構成された第2の整流部(108)とを含み、
     前記非接触受電部(36)は、前記第1および第2の整流部のいずれかに接続される、請求の範囲1または2に記載の車両用充電装置。
  4.  前記充電器(32A)は、
     前記受電端子から入力される交流電力を整流可能に構成された第1の整流部(102)と、
     前記第1の整流部に接続されるインバータ(104)と、
     前記インバータに接続される絶縁トランス(106)と、
     前記絶縁トランスの出力を整流するように構成された第2の整流部(108)とを含み、
     前記非接触受電部(36A)は、
     前記送電部に設けられる送電コイルと磁気的に結合するように構成された受電コイル(38)と、
     前記受電コイルの出力を整流するように構成された第3の整流部(110)とを含み、
     前記第1の整流部と前記インバータとの間に前記第3の整流部が接続される、請求の範囲1または2に記載の車両用充電装置。
  5.  車両に搭載された蓄電装置を車両外部の交流電源から充電するための車両用充電装置であって、
     前記交流電源に電気的に接続可能に構成された受電端子(34)と、
     前記受電端子から入力される交流電力を所定の直流電圧に変換するように構成された充電器(32B)と、
     前記交流電源の送電部と磁気的に結合することによって前記交流電源から非接触で受電するように構成された非接触受電部(36A)と、
     前記充電器を制御する制御装置(40A)とを備え、
     前記充電器は、
     前記受電端子から入力される交流電力を整流可能に構成された第1の整流部(102)と、
     前記第1の整流部に接続されるインバータ(104)と、
     前記インバータに接続される絶縁トランス(106)と、
     前記絶縁トランスの出力を整流するように構成された第2の整流部(108)とを含み、
     前記非接触受電部は、
     前記送電部に設けられる送電コイルと磁気的に結合するように構成された受電コイル(38)と、
     前記受電コイルの出力を整流するように構成された第3の整流部(110)とを含み、
     前記第1の整流部と前記インバータとの間に前記第3の整流部が接続され、
     前記制御装置は、前記非接触受電部により受電される電力を用いて充電が実行されるとき、前記第3の整流部が接続される前記第1の整流部と前記インバータとの間の直流電圧を前記非接触受電部により受電される電力の大きさに基づいて調整する、車両用充電装置。
  6.  前記制御装置は、前記非接触受電部により受電される電力および前記受電端子から入力される電力の双方を用いて同時に充電が実行されるとき、前記第3の整流部が接続される前記第1の整流部と前記インバータとの間の直流電圧を前記非接触受電部により受電される電力の大きさに基づいて調整する、請求の範囲5に記載の車両用充電装置。
  7.  前記制御装置は、前記非接触受電部の受電電力値に目標インピーダンスを乗算した値の平方根から成る値に前記直流電圧を調整する、請求の範囲5または6に記載の車両用充電装置。
PCT/JP2009/058979 2009-05-14 2009-05-14 車両用充電装置 WO2010131349A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2009/058979 WO2010131349A1 (ja) 2009-05-14 2009-05-14 車両用充電装置
CN200980159272.3A CN102421628B (zh) 2009-05-14 2009-05-14 车辆用充电装置
EP09844622.2A EP2431214B1 (en) 2009-05-14 2009-05-14 Vehicle charging unit
JP2011513185A JP4930653B2 (ja) 2009-05-14 2009-05-14 車両用充電装置
US13/203,862 US8810205B2 (en) 2009-05-14 2009-05-14 Charging device for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/058979 WO2010131349A1 (ja) 2009-05-14 2009-05-14 車両用充電装置

Publications (1)

Publication Number Publication Date
WO2010131349A1 true WO2010131349A1 (ja) 2010-11-18

Family

ID=43084739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058979 WO2010131349A1 (ja) 2009-05-14 2009-05-14 車両用充電装置

Country Status (5)

Country Link
US (1) US8810205B2 (ja)
EP (1) EP2431214B1 (ja)
JP (1) JP4930653B2 (ja)
CN (1) CN102421628B (ja)
WO (1) WO2010131349A1 (ja)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120153717A1 (en) * 2010-12-16 2012-06-21 Denso Corporation Power supply apparatus for vehicles
JP2012130193A (ja) * 2010-12-16 2012-07-05 Denso Corp 車両用電源装置
JP2012200064A (ja) * 2011-03-21 2012-10-18 Denso Corp 給電装置
WO2012160660A1 (ja) * 2011-05-25 2012-11-29 株式会社日立製作所 充電システム
JP2013034369A (ja) * 2011-07-11 2013-02-14 Delphi Technologies Inc 無線エネルギー伝送のためのエネルギー結合装置を有する充電システム
WO2013076803A1 (ja) * 2011-11-22 2013-05-30 トヨタ自動車株式会社 車両用受電装置およびそれを備える車両、給電設備、ならびに電力伝送システム
WO2012084099A3 (de) * 2010-12-23 2013-06-06 Daimler Ag Kraftfahrzeugvorrichtung
DE102011089989A1 (de) * 2011-12-27 2013-06-27 Continental Automotive Gmbh Anordnung zum Laden einer Batterie
WO2013114522A1 (ja) 2012-01-30 2013-08-08 トヨタ自動車株式会社 車両用受電装置、給電設備、および電力伝送システム
JP2013240205A (ja) * 2012-05-16 2013-11-28 Ihi Corp プラグイン充電と非接触給電の共用充電装置
JP2013240206A (ja) * 2012-05-16 2013-11-28 Ihi Corp プラグイン充電と非接触給電の共用充電装置
JP2014117049A (ja) * 2012-12-07 2014-06-26 Sekisui Chem Co Ltd 非接触給電システム、送電システム、受電システム、送電方法、受電方法及びプログラム
CN104011960A (zh) * 2011-12-22 2014-08-27 索尼公司 电子设备和馈电系统
WO2014157095A1 (ja) 2013-03-29 2014-10-02 日産自動車株式会社 給電装置、車両及び非接触給電システム
US8937400B2 (en) 2010-04-27 2015-01-20 Denso Corporation Power supply apparatus for vehicle
JPWO2013088554A1 (ja) * 2011-12-15 2015-04-27 パイオニア株式会社 車両駆動装置
JP2015513886A (ja) * 2012-02-27 2015-05-14 ヴァレオ システム ドゥ コントロール モトゥール 電気ネットワークによって少なくとも1つの電気エネルギー蓄積ユニットを充電するための電気回路
EP2716488A4 (en) * 2011-06-03 2015-09-23 Toyota Motor Co Ltd VEHICLE, ELECTRICAL DEVICE AND POWER TRANSMISSION / RECEPTION SYSTEM
EP2716489A4 (en) * 2011-06-03 2015-09-30 Toyota Motor Co Ltd VEHICLE AND POWER TRANSMISSION / RECEIVING SYSTEM
US9434263B2 (en) 2012-09-05 2016-09-06 Lear Corporation Multi-mode battery charger
JP2018198535A (ja) * 2011-12-07 2018-12-13 株式会社半導体エネルギー研究所 非接触給電システム
JP2019009855A (ja) * 2017-06-21 2019-01-17 トヨタ自動車株式会社 車両

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102421627B (zh) * 2009-05-14 2014-04-16 丰田自动车株式会社 车辆用充电装置
CN102695629B (zh) 2010-01-05 2015-03-25 捷通国际有限公司 用于电动车辆的感应充电系统
GB2509015B (en) * 2010-01-05 2014-11-05 Access Business Group Int Llc Inductive charging system for electric vehicle
US9561730B2 (en) 2010-04-08 2017-02-07 Qualcomm Incorporated Wireless power transmission in electric vehicles
US10343535B2 (en) 2010-04-08 2019-07-09 Witricity Corporation Wireless power antenna alignment adjustment system for vehicles
US8841881B2 (en) 2010-06-02 2014-09-23 Bryan Marc Failing Energy transfer with vehicles
DE102011003543A1 (de) * 2011-02-02 2012-08-02 Bayerische Motoren Werke Aktiengesellschaft Ladevorrichtung für einen elektrischen Energiespeicher in einem Kraftfahrzeug
CN102097849B (zh) * 2011-02-11 2013-11-06 蒋小平 直流电机电动车用感应器电能量回收装置
EP2524834A1 (de) 2011-05-18 2012-11-21 Brusa Elektronik AG Vorrichtung zum induktiven Laden zumindest eines elektrischen Energiespeichers eines Elektrofahrzeuges
KR101261338B1 (ko) * 2011-06-10 2013-05-06 주식회사 한림포스텍 무접점 및 접점 겸용 충전 장치 및 그 제어 방법
FR2981521A1 (fr) * 2012-03-19 2013-04-19 Continental Automotive France Dispositif reversible de charge de batteries de vehicules electriques ou hybrides
EP2657063A1 (de) * 2012-04-27 2013-10-30 Brusa Elektronik AG Ladevorrichtung
KR102158288B1 (ko) * 2012-07-09 2020-09-21 삼성전자주식회사 배터리를 충전하기 위한 방법 및 그 전자 장치
JP5853889B2 (ja) * 2012-07-11 2016-02-09 株式会社豊田自動織機 受電機器及び電力伝送システム
JP6104254B2 (ja) * 2012-09-05 2017-03-29 富士機械製造株式会社 非接触給電装置
FR2996376B1 (fr) * 2012-10-03 2015-11-06 Renault Sas Procede de charge d'une batterie d'accumulateurs d'un vehicule automobile
JP2014176170A (ja) * 2013-03-07 2014-09-22 Toshiba Corp 受電装置および充電システム
JP5857999B2 (ja) * 2013-04-26 2016-02-10 トヨタ自動車株式会社 受電装置、駐車支援装置、および電力伝送システム
US9531256B2 (en) * 2013-12-03 2016-12-27 Avogy, Inc. AC-DC converter with adjustable output
JP6684579B2 (ja) * 2015-12-07 2020-04-22 国立大学法人広島大学 非接触給電システム
US20170182903A1 (en) * 2015-12-26 2017-06-29 Intel Corporation Technologies for wireless charging of electric vehicles
US10144301B2 (en) 2016-02-18 2018-12-04 Denso International America, Inc. Optimized compensation coils for wireless power transfer system
KR101635084B1 (ko) * 2016-03-31 2016-06-30 주식회사 핀크래프트엔지니어링 전압 및 전류 제어를 통한 멀티 충전이 가능한 충전 장치
US10112496B2 (en) 2016-07-12 2018-10-30 Denso International America, Inc. Vehicular wireless power transfer system with performance monitoring
EP3276787B1 (de) * 2016-07-29 2019-01-02 Ford Global Technologies, LLC Elektrisches bordnetzsystem für kraftfahrzeuge mit einem konverter und einem hochlastverbraucher
KR101915008B1 (ko) * 2016-08-12 2018-11-06 (주)그린파워 전기 자동차용 유무선 겸용 충전 시스템
WO2018061200A1 (ja) * 2016-09-30 2018-04-05 富士機械製造株式会社 非接触給電装置
CN109792162B (zh) * 2016-10-18 2023-05-16 株式会社富士 非接触供电装置
JP6776889B2 (ja) * 2016-12-27 2020-10-28 株式会社ダイフク 搬送台車
WO2019113771A1 (en) * 2017-12-12 2019-06-20 Abb Schweiz Ag Reconfigurable electric vehicle charging system
JP6756783B2 (ja) * 2018-08-09 2020-09-16 トヨタ自動車株式会社 車載制御システム及び車両
JP2020108217A (ja) 2018-12-26 2020-07-09 トヨタ自動車株式会社 電気自動車
CN117615933A (zh) * 2021-06-28 2024-02-27 麦格纳动力系有限公司 用于插电式电动运载工具中的充电器和dc-dc转换器
US11949330B2 (en) 2021-10-19 2024-04-02 Volvo Car Corporation Integrated power conversion topology for electric vehicles

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11252810A (ja) * 1998-03-03 1999-09-17 Toyota Autom Loom Works Ltd バッテリ車の車載側充電装置
JP2003047163A (ja) 2001-08-01 2003-02-14 Honda Motor Co Ltd 充電方式変換装置
JP2008220130A (ja) 2007-03-07 2008-09-18 Toyota Motor Corp 車両用電源システム
WO2009054221A1 (ja) * 2007-10-25 2009-04-30 Toyota Jidosha Kabushiki Kaisha 電動車両および車両用給電装置

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4840199B1 (ja) * 1969-08-28 1973-11-29
AU669853B2 (en) * 1991-08-01 1996-06-27 Ea Technology Limited Battery powered electric vehicle and electrical supply system
JPH07236204A (ja) * 1994-02-22 1995-09-05 Hitachi Ltd 電気自動車の充電システムおよび充電方法
KR100310100B1 (ko) * 1996-07-10 2001-12-17 윤종용 휴대용 컴퓨터시스템의 전원공급장치 그리고 이에 적합한 dc입력선택회로
US5803215A (en) * 1997-01-22 1998-09-08 Schott Power Systems Incorporated Method and apparatus for charging a plurality of electric vehicles
JP3363341B2 (ja) * 1997-03-26 2003-01-08 松下電工株式会社 非接触電力伝達装置
JP3365745B2 (ja) * 1999-05-13 2003-01-14 インターナショナル・ビジネス・マシーンズ・コーポレーション 充電電流制御装置
DE19935873A1 (de) * 1999-07-30 2001-03-01 Zahnradfabrik Friedrichshafen Schaltungsanordnung für ein Hybridfahrzeug
JP2004282826A (ja) * 2003-03-13 2004-10-07 Honda Motor Co Ltd エンジン駆動式発電機
JP4165601B2 (ja) * 2004-11-30 2008-10-15 トヨタ自動車株式会社 交流電力供給システム、電源装置およびそれを備えた車両
US7451839B2 (en) * 2005-05-24 2008-11-18 Rearden, Llc System and method for powering a vehicle using radio frequency generators
WO2007008646A2 (en) 2005-07-12 2007-01-18 Massachusetts Institute Of Technology Wireless non-radiative energy transfer
US7825543B2 (en) 2005-07-12 2010-11-02 Massachusetts Institute Of Technology Wireless energy transfer
JP4179352B2 (ja) * 2006-07-10 2008-11-12 トヨタ自動車株式会社 車両の電力制御装置
CN101150259B (zh) * 2006-09-18 2010-05-12 比亚迪股份有限公司 电动车充电系统
JP2008182822A (ja) * 2007-01-24 2008-08-07 Matsushita Electric Ind Co Ltd 充電装置
JP4144646B1 (ja) * 2007-02-20 2008-09-03 トヨタ自動車株式会社 電動車両、車両充電装置および車両充電システム
US7872443B2 (en) * 2007-02-23 2011-01-18 Ward Thomas A Current limiting parallel battery charging system to enable plug-in or solar power to supplement regenerative braking in hybrid or electric vehicle
KR20110117732A (ko) 2007-03-27 2011-10-27 메사추세츠 인스티튜트 오브 테크놀로지 무선 에너지 전달
CN101657336B (zh) * 2007-04-17 2013-03-20 株式会社能量应用技术研究所 电动式移动体及电动式移动体的快速充电方法
DE102009000328A1 (de) * 2009-01-20 2010-07-22 Semikron Elektronik Gmbh & Co. Kg Batterieladegerät und Verfahren zu dessen Betrieb
US8810061B2 (en) * 2010-10-14 2014-08-19 Toyota Jidosha Kabushiki Kaisha Vehicular power supply apparatus, vehicle including the same, and method for controlling vehicle-mounted charger
US8933661B2 (en) * 2012-04-30 2015-01-13 Tesla Motors, Inc. Integrated inductive and conductive electrical charging system
US9434263B2 (en) * 2012-09-05 2016-09-06 Lear Corporation Multi-mode battery charger

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11252810A (ja) * 1998-03-03 1999-09-17 Toyota Autom Loom Works Ltd バッテリ車の車載側充電装置
JP2003047163A (ja) 2001-08-01 2003-02-14 Honda Motor Co Ltd 充電方式変換装置
JP2008220130A (ja) 2007-03-07 2008-09-18 Toyota Motor Corp 車両用電源システム
WO2009054221A1 (ja) * 2007-10-25 2009-04-30 Toyota Jidosha Kabushiki Kaisha 電動車両および車両用給電装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2431214A4 *

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8937400B2 (en) 2010-04-27 2015-01-20 Denso Corporation Power supply apparatus for vehicle
JP2012130193A (ja) * 2010-12-16 2012-07-05 Denso Corp 車両用電源装置
US9278625B2 (en) * 2010-12-16 2016-03-08 Denso Corporation Power supply apparatus for vehicles that selects between conductive and non-conductive power transfer
US20120153717A1 (en) * 2010-12-16 2012-06-21 Denso Corporation Power supply apparatus for vehicles
CN103269900A (zh) * 2010-12-23 2013-08-28 戴姆勒股份公司 机动车装置
WO2012084099A3 (de) * 2010-12-23 2013-06-06 Daimler Ag Kraftfahrzeugvorrichtung
US9352657B2 (en) 2010-12-23 2016-05-31 Daimler Ag Motor vehicle device
JP2014507919A (ja) * 2010-12-23 2014-03-27 ダイムラー・アクチェンゲゼルシャフト 自動車装置
JP2012200064A (ja) * 2011-03-21 2012-10-18 Denso Corp 給電装置
KR101577517B1 (ko) * 2011-05-25 2015-12-14 가부시키가이샤 히타치세이사쿠쇼 충전 시스템
CN103548231B (zh) * 2011-05-25 2016-12-28 株式会社日立制作所 充电系统
WO2012160660A1 (ja) * 2011-05-25 2012-11-29 株式会社日立製作所 充電システム
US9231424B2 (en) 2011-05-25 2016-01-05 Hitachi, Ltd. Charging system
CN103548231A (zh) * 2011-05-25 2014-01-29 株式会社日立制作所 充电系统
US9381878B2 (en) 2011-06-03 2016-07-05 Toyota Jidosha Kabushiki Kaisha Vehicle and power transmission/reception system
EP2716489A4 (en) * 2011-06-03 2015-09-30 Toyota Motor Co Ltd VEHICLE AND POWER TRANSMISSION / RECEIVING SYSTEM
EP2716488A4 (en) * 2011-06-03 2015-09-23 Toyota Motor Co Ltd VEHICLE, ELECTRICAL DEVICE AND POWER TRANSMISSION / RECEPTION SYSTEM
US9707853B2 (en) 2011-07-11 2017-07-18 Delphi Technologies, Inc. Wireless electrical charging system and method of operating same
JP2013034369A (ja) * 2011-07-11 2013-02-14 Delphi Technologies Inc 無線エネルギー伝送のためのエネルギー結合装置を有する充電システム
JPWO2013076803A1 (ja) * 2011-11-22 2015-04-27 トヨタ自動車株式会社 車両用受電装置およびそれを備える車両、給電設備、ならびに電力伝送システム
WO2013076803A1 (ja) * 2011-11-22 2013-05-30 トヨタ自動車株式会社 車両用受電装置およびそれを備える車両、給電設備、ならびに電力伝送システム
KR20140102231A (ko) 2011-11-22 2014-08-21 도요타지도샤가부시키가이샤 차량용 수전 장치 및 그것을 구비하는 차량, 급전 설비 및 전력 전송 시스템
EP2783897A4 (en) * 2011-11-22 2016-03-30 Toyota Motor Co Ltd CURRENT DEVICE FOR A VEHICLE, VEHICLE THEREOF, POWER SUPPLY APPARATUS AND POWER TRANSMISSION SYSTEM
US9469209B2 (en) 2011-11-22 2016-10-18 Toyota Jidosha Kabushiki Kaisha Vehicular power reception device and vehicle equipped with the same, power supply apparatus, and electric power transmission system
JP2018198535A (ja) * 2011-12-07 2018-12-13 株式会社半導体エネルギー研究所 非接触給電システム
JPWO2013088554A1 (ja) * 2011-12-15 2015-04-27 パイオニア株式会社 車両駆動装置
CN108832725A (zh) * 2011-12-22 2018-11-16 索尼公司 受电设备和馈电装置
CN104011960A (zh) * 2011-12-22 2014-08-27 索尼公司 电子设备和馈电系统
US9680328B2 (en) 2011-12-22 2017-06-13 Sony Corporation Electronic apparatus and feed system
DE102011089989A1 (de) * 2011-12-27 2013-06-27 Continental Automotive Gmbh Anordnung zum Laden einer Batterie
WO2013114522A1 (ja) 2012-01-30 2013-08-08 トヨタ自動車株式会社 車両用受電装置、給電設備、および電力伝送システム
US9533591B2 (en) 2012-01-30 2017-01-03 Toyota Jidosha Kabushiki Kaisha Vehicular power reception device, power supply apparatus, and electric power transfer system
JPWO2013114522A1 (ja) * 2012-01-30 2015-05-11 トヨタ自動車株式会社 車両用受電装置、給電設備、および電力伝送システム
JP2015513886A (ja) * 2012-02-27 2015-05-14 ヴァレオ システム ドゥ コントロール モトゥール 電気ネットワークによって少なくとも1つの電気エネルギー蓄積ユニットを充電するための電気回路
JP2013240205A (ja) * 2012-05-16 2013-11-28 Ihi Corp プラグイン充電と非接触給電の共用充電装置
JP2013240206A (ja) * 2012-05-16 2013-11-28 Ihi Corp プラグイン充電と非接触給電の共用充電装置
US9434263B2 (en) 2012-09-05 2016-09-06 Lear Corporation Multi-mode battery charger
JP2014117049A (ja) * 2012-12-07 2014-06-26 Sekisui Chem Co Ltd 非接触給電システム、送電システム、受電システム、送電方法、受電方法及びプログラム
JP5979310B2 (ja) * 2013-03-29 2016-08-24 日産自動車株式会社 給電装置、車両及び非接触給電システム
WO2014157095A1 (ja) 2013-03-29 2014-10-02 日産自動車株式会社 給電装置、車両及び非接触給電システム
US9878628B2 (en) 2013-03-29 2018-01-30 Nissan Motor Co., Ltd. Power supply device, vehicle and non-contact power supply system
JP2019009855A (ja) * 2017-06-21 2019-01-17 トヨタ自動車株式会社 車両

Also Published As

Publication number Publication date
EP2431214A4 (en) 2017-05-03
EP2431214A1 (en) 2012-03-21
EP2431214B1 (en) 2019-02-27
CN102421628A (zh) 2012-04-18
US8810205B2 (en) 2014-08-19
US20120043807A1 (en) 2012-02-23
JP4930653B2 (ja) 2012-05-16
JPWO2010131349A1 (ja) 2012-11-01
CN102421628B (zh) 2014-04-23

Similar Documents

Publication Publication Date Title
JP4930653B2 (ja) 車両用充電装置
JP4909446B2 (ja) 車両用充電装置
US11312248B2 (en) Non-contact power reception device and vehicle including the same
US9421868B2 (en) Electrical powered vehicle and power feeding device for vehicle
EP2576273B1 (en) Power feeding system and vehicle
US8380380B2 (en) Electric power reception apparatus and electrical powered vehicle
EP2346141B1 (en) Power feeding system
JP2015027224A (ja) 非接触受電装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980159272.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09844622

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13203862

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2011513185

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2009844622

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE