WO2010131297A1 - マイクロリアクタシステム - Google Patents

マイクロリアクタシステム Download PDF

Info

Publication number
WO2010131297A1
WO2010131297A1 PCT/JP2009/002122 JP2009002122W WO2010131297A1 WO 2010131297 A1 WO2010131297 A1 WO 2010131297A1 JP 2009002122 W JP2009002122 W JP 2009002122W WO 2010131297 A1 WO2010131297 A1 WO 2010131297A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
microreactor
solution
fluid
raw material
Prior art date
Application number
PCT/JP2009/002122
Other languages
English (en)
French (fr)
Inventor
浅野由花子
宮本哲郎
富樫盛典
遠藤喜重
津留英一
加藤宗
Original Assignee
株式会社日立プラントテクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立プラントテクノロジー filed Critical 株式会社日立プラントテクノロジー
Priority to US13/318,691 priority Critical patent/US8591841B2/en
Priority to KR1020117026890A priority patent/KR20120019444A/ko
Priority to CN2009801592579A priority patent/CN102421515A/zh
Priority to JP2011513130A priority patent/JP5439479B2/ja
Priority to EP09844572.9A priority patent/EP2431090A4/en
Priority to PCT/JP2009/002122 priority patent/WO2010131297A1/ja
Publication of WO2010131297A1 publication Critical patent/WO2010131297A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0093Microreactors, e.g. miniaturised or microfabricated reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F25/00Flow mixers; Mixers for falling materials, e.g. solid particles
    • B01F25/40Static mixers
    • B01F25/42Static mixers in which the mixing is affected by moving the components jointly in changing directions, e.g. in tubes provided with baffles or obstructions
    • B01F25/43Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction
    • B01F25/432Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction with means for dividing the material flow into separate sub-flows and for repositioning and recombining these sub-flows; Cross-mixing, e.g. conducting the outer layer of the material nearer to the axis of the tube or vice-versa
    • B01F25/4321Mixing tubes, e.g. wherein the material is moved in a radial or partly reversed direction with means for dividing the material flow into separate sub-flows and for repositioning and recombining these sub-flows; Cross-mixing, e.g. conducting the outer layer of the material nearer to the axis of the tube or vice-versa the subflows consisting of at least two flat layers which are recombined, e.g. using means having restriction or expansion zones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/30Micromixers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F35/00Accessories for mixers; Auxiliary operations or auxiliary devices; Parts or details of general application
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00783Laminate assemblies, i.e. the reactor comprising a stack of plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00851Additional features
    • B01J2219/00867Microreactors placed in series, on the same or on different supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00889Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00781Aspects relating to microreactors
    • B01J2219/00891Feeding or evacuation

Definitions

  • the present invention relates to a microreactor and a microreactor system using the microreactor, and in particular, includes a flow path for mixing at least two kinds of fluids, and mixes and reacts the fluids by dividing and mixing the fluids at least once.
  • the present invention relates to a microreactor and a microreactor system suitable for so-called multistage reactions.
  • microreactors that target a so-called “one-stage reaction” in which two kinds of raw materials are mixed and the reaction proceeds.
  • application of a microreactor is also expected for a so-called “multistage reaction” in which a plurality of types of raw materials are mixed in order and the reaction proceeds.
  • reaction intermediate when the product produced in the middle of the reaction is a so-called “reaction intermediate”, precise temperature control and time control are required. It is known that there may be no. This is because the reaction intermediate is generally unstable and has a short lifetime, so that the so-called “hot spot” causes the reaction temperature to rise locally or the time until the next reaction is reached. If it is longer than this, it will be decomposed.
  • the characteristics of the synthesis reaction by the microreactor may not be fully utilized by simply connecting the microreactors for the single-stage reaction in series.
  • FIG. 2 shows a schematic diagram (in the case of a two-stage reaction) of a multi-stage reaction microreactor system related to the present invention.
  • the raw material 1 solution 101 and the raw material 2 solution 102 are passed through the raw material 1 solution introduction unit 107 and the raw material 2 solution introduction unit 108 using the syringe 105 and the syringe pump 106.
  • the first stage reaction product 110 is obtained by mixing and reacting the raw material 1 solution and the raw material 2 solution through the reaction section 110 of the first stage reaction.
  • the product solution of the first stage reaction and the raw material 3 solution 103 are introduced into the second stage reaction microreactor 202 via the raw material 3 solution introduction section 111 using the syringe 105 and the syringe pump 106.
  • the product solution 104 obtained by mixing and reacting the raw material 1 solution, the raw material 2 solution, and the raw material 3 solution is obtained through the reaction part 112 of the second-stage reaction.
  • the first is precise control of reaction time for each step of reaction.
  • the reaction proceeds while the microreactor is retained in the manifold, so the time staying in the manifold is effectively added to the reaction time in the previous reaction. . Therefore, a microreactor that does not require a manifold and enables precise reaction time control is desired.
  • the structure of the microreactor becomes complicated when trying to improve the mixing performance.
  • the more complicated the structure of the microreactor the more cost and time it takes to produce it. Therefore, it is desirable that the structure be simple while maintaining the mixing performance as much as possible.
  • an object of the present invention is to provide a microreactor that does not require a manifold that causes liquid pooling and that has high mixing performance even when the liquid flow rate is small. Furthermore, according to the present invention, a microreactor having a simple configuration is provided. In addition, an object of the present invention is to provide a microreactor system that can perform a multistage reaction using the above-described microreactor and is excellent in operability.
  • a microreactor having a flow path for mixing at least two kinds of fluids and mixing the fluids by dividing the fluids and merging the divided fluids. Inside thereof: (a) at least two flow paths for introducing a fluid formed in a plane; and (b) a flow for joining the introduced fluid formed in the plane. And (c) after the merged fluid flows in a substantially normal direction with respect to the plane, it is substantially parallel to the plane where the merged flow path exists and is substantially orthogonal to the merged flow path.
  • a flow path for changing the flow path in the direction (d) a flow path formed in a plane where the flow path exists and for dividing the merged fluid into two; (e) the diverted fluid Each of which flows in a substantially normal direction, (F) a flow path for changing the flow path in a direction substantially parallel to the plane in which the flow path exists and substantially perpendicular to the flow path to be diverted; A flow path for merging the diverted fluid in a direction substantially perpendicular to or substantially parallel to the plane; and (g) the flow path for merging the merged fluid after traveling in a substantially normal direction.
  • Each of the flow paths (b) to (g) is substantially parallel to a plane on which the gas flows, and a flow path for proceeding in a direction substantially perpendicular to the flow path to be joined.
  • At least two or more microreactors formed inside the microreactor are provided. With this configuration, it is possible to improve the mixing performance even if the liquid feeding flow rate is small without providing a manifold that causes liquid pooling.
  • the flow path is formed by facing two flat plates each having a flow path, and on the opposing surface of one plate, The flow paths (a), (b), (e) and (f) are formed, and the flow paths (c), (d) and (g) are formed on the opposing surfaces of the other plate. Therefore, a microreactor having a simple configuration can be realized.
  • a microreactor system for mixing at least three kinds of fluids: a liquid feeding unit for feeding the fluid; and a microreactor for reacting at least two kinds of fluids
  • the liquid supply unit, the reactor unit, and the temperature control unit include the reactor unit including at least two; a temperature control unit that controls the temperature of the reactor unit; and a control device.
  • the fluid is controlled and monitored by an apparatus, the fluid is fed by a syringe and a syringe pump included in the liquid feeding unit, the microreactor is installed in series from the upstream side to the downstream side, and the temperature of the microreactor is Each microreactor via the temperature control unit Are individually controlled, and the micro reactor is microreactor system is a microreactor as described in the is provided. According to such a configuration, a multistage reaction can be easily performed by using the microreactor.
  • the microreactor system described above it is preferable that at least one of the fluids is sent by simultaneously moving two syringes, or the control device is It is preferable that the at least two operations are continuously performed by instructing in advance simultaneously at least two operations to be performed performed by the liquid feeding unit.
  • the present invention it is possible to realize a microreactor having a high mixing performance even when the flow rate of liquid is small, and a microreactor system suitable for multistage reaction by using it without providing a manifold that causes liquid pooling. Demonstrate the excellent effect of being able to.
  • FIG. 1 is a schematic diagram (in the case of a two-stage reaction) showing a schematic configuration of a multi-reaction microreactor system according to the present invention. It is a figure which shows schematic structure of the microreactor system (in the case of intermittent liquid feeding) of the multistage reaction using the microreactor of the said invention. It is a figure which shows the microreactor system (in the case of continuous liquid feeding) of the multistage reaction using the microreactor of this invention.
  • FIG. 1 is an assembled view of a microreactor according to a first embodiment (Example 1) of the present invention. It is a figure which shows the flow-path formation plate of the microreactor which becomes the 1st Embodiment (Example 1) of this invention. It is the top view (Drawing 7 (a)) and perspective view (Drawing 7 (b)) which show the channel shape of the micro reactor used as the 1st embodiment (Example 1) of the present invention. It is a figure which shows the interface rotation of the fluid in the microreactor which becomes 1st Embodiment (Example 1) of this invention, and is a flow-path cross section which shows the mode of the interface rotation of a fluid (FIG. 8 (a)), and an upstream side.
  • FIG. 8B is a diagram illustrating a state of interface rotation of the fluid in each channel cross section when the downstream side is viewed from FIG. It is the figure which compared the interface rotation of the fluid in the micro reactor of the said 1st Embodiment (Example 1), Comprising: About a flow-path cross section which shows the mode of the interface rotation of the fluid of the said FIG. State of the interface rotation in the cross section of the channel when the interface rotates 90 degrees when moving in the direction and changing the course in the direction orthogonal to the upstream channel direction (FIG. 9 (a)), The state of interface rotation in the channel cross section when the interface rotates 45 degrees (FIG. 9B) and the state of interface rotation in the channel cross section when the interface does not rotate (FIG.
  • FIG. 10 is a figure which shows the modification of the microreactor of the said 1st Embodiment (Example 1), and is a perspective view (FIG.10 (a)) which shows the position of the fluid cross section for showing the interface rotation of the fluid within a microreactor.
  • FIG. 10 is a channel cross-sectional view (FIG. 10B) showing a state of fluid interface rotation in the channel cross section when the downstream side is viewed from the upstream side.
  • FIG. 10B shows a schematic diagram which shows the relationship between the mixing performance and the sum of the angle which the fluid rotated.
  • FIG. 10B shows the flow-path shape of the micro reactor used as the 2nd Embodiment (Example 2) of this invention, and is the top view (FIG.
  • FIG. 12 (a) and perspective view (FIG.12 (b)).
  • FIG. 12 (a) It is a figure for showing the interface rotation of the fluid in the micro reactor of the said 2nd Embodiment (Example 2), the perspective view (Drawing 13 (a)) which shows the position of the channel section showing interface rotation, and upstream 14 is a channel cross-sectional view (FIG. 13B) showing a state of fluid interface rotation in the flow channel cross section when the downstream side is viewed from the side.
  • FIG. 13B shows a top view which shows the flow-path shape of the micro reactor used as the 3rd Embodiment (Example 3) of this invention.
  • FIGS. 1, 3 and 4 the configuration of a multi-reaction microreactor system using the microreactor of the present invention will be described with reference to FIGS. 1, 3 and 4.
  • FIGS. 1, 3 and 4 the case of a two-stage reaction is shown, however, these configurations are not limited to a two-stage reaction.
  • FIG. 1 is a diagram showing a multi-reactor microreactor system using the microreactor of the present invention.
  • the multi-reactor microreactor system according to the present invention includes a liquid-feeding unit 113 for feeding a raw material solution, a reactor unit 114 for mounting a microreactor, and a temperature control unit for managing temperature. 115 and a control device 116.
  • the raw material 1 solution 101 and the raw material 2 solution 102 are used by using the syringe 105 and the syringe pump 106 in the liquid feeding unit 113, so that the raw material 1 solution introduction unit 107 and the raw material 2 are used.
  • the solution is introduced into the first-stage microreactor 109 in the reactor unit 114 via the solution introduction unit 108. Thereafter, a product solution of the first stage reaction in which the raw material 1 solution and the raw material 2 solution are mixed and reacted is obtained through the reaction section 110 of the first stage reaction.
  • the product solution of the first-stage reaction (reaction part 110 of the first-stage reaction) and the raw material 3 solution 103 are mixed with the raw material 3 solution using the syringe 105 and the syringe pump 106 in the liquid feeding unit 113. Is introduced into the second-stage microreactor 109 in the reactor unit 114. Thereafter, the product solution 104 obtained by mixing and reacting the raw material 1 solution, the raw material 2 solution, and the raw material 3 solution, which are the above three kinds of solutions, is obtained through the reaction section 112 of the second-stage reaction.
  • FIG. 3 attached herewith shows the details when the multi-reactor microreactor system using the microreactor of the present invention shown in FIG. 1 is applied particularly in the case of intermittent liquid feeding.
  • a liquid feeding unit 113 includes therein a pressure sensor 301 for monitoring the pressure in the system, a switching valve 302 for switching solution suction / liquid feeding / waste liquid operation, a waste liquid line 303, and a suction line 304.
  • the raw material 1 solution introduction unit 107, the raw material 2 solution introduction unit 108, the syringe 105, and the syringe pump 106 are not shown here, but a holder for fixing the syringe, a power switch, and an emergency operation when an abnormal operation occurs It includes a stop switch, a communication connector, a waste liquid line, a suction line, an introduction part for the raw material 1 solution, a fitting for connecting the introduction part for the raw material 2 solution, and the like.
  • FIG. 3 shows a case where four syringes are mounted in the liquid feeding unit 113.
  • the number of syringes is the number necessary for carrying out a predetermined reaction.
  • the number of syringes shown can be increased by an additional liquid feeding unit including two syringes as a set.
  • the reaction is actually carried out by intermittent liquid feeding.
  • a microreactor 109 is connected in series. That is, the microreactor 109 used for the first stage reaction is connected to the raw material 1 solution introduction section 107, the raw material 2 solution introduction section 108, and the first stage reaction reaction section 110 by fitting not shown here.
  • the microreactor 109 used for the second-stage reaction is connected to the first-stage reaction section 110, the raw material 3 solution introduction section 111, and the second-stage reaction section 112 by fitting not shown here. Yes.
  • a commercially available microreactor in addition to the microreactor of the present invention described in detail below, a commercially available microreactor, T-shaped tube, Y-shaped tube, or the like can be used.
  • the temperature adjustment unit 115 can individually control the temperature of each microreactor by performing temperature control and feedback 120 on the reactor unit 114.
  • a method of adjusting the temperature for example, there are a method of circulating a heat medium using a circulating thermostat, and a method of using a Peltier element.
  • examples of the objects whose temperatures are individually controlled include, for example, the heat medium circulating around the microreactor, the outside and the inside of the microreactor, etc., however, the actual flowing fluid or the actual flowing By controlling the location close to the fluid in question as the object of the control, temperature control can be performed more precisely.
  • the above three units are monitored and operated by the control device 116.
  • the liquid feeding unit 113 is monitored and operated by control of the liquid feeding unit indicated by an arrow and feedback 117 here.
  • the reactor unit 114 and the temperature control unit 115 are respectively connected by the data communication 119 between the reactor unit and the liquid feeding unit, also indicated by arrows, and the data communication 118 between the temperature control unit and the liquid feeding unit, that is, Monitoring and operation are performed via the liquid feeding unit 113.
  • the controller 116 switches the switching valve 302 in the liquid feeding unit 113 and operates the syringe 105 by the syringe pump 106 to suck the solution into the syringe or to feed the liquid. Further, an operation of discarding the solution in the syringe to a waste liquid tank (not shown) or the like is performed. In addition, the liquid feeding operation and the suction operation can be stopped or restarted on the way.
  • the size of each syringe, the suction amount and suction speed from the suction line 304, the liquid feed amount and liquid feed speed to the reactor unit 114, the liquid feed amount and liquid feed speed to the waste liquid line 303, and the like It is possible to set the temperature of the microreactor, that is, to set the reaction temperature. In addition, when sending the cleaning liquid after the reaction is completed, or when the amount of the raw material is expensive, the usage time is set to the minimum necessary. The liquid feeding start time can also be changed.
  • an input file for instructing two or more operations to be continued in relation to the operation of the syringe and the valve in the suction / liquid feeding process is created, and this file is sent to the control device 116.
  • the control device 116 can record temperature information obtained from the temperature adjustment unit 115, pressure data in the system obtained from the pressure sensor 301, time data, and the like. Further, the control device 116 determines a threshold value for the pressure in the system in advance from the pressure resistance of the pressure sensor, the switching valve, etc., and if the pressure in the system exceeds the threshold value, the entire system is Emergency stop.
  • Any material may be used as long as it does not adversely affect the reaction to be performed, and can be appropriately changed according to the temperature and physical properties of the solution flowing through the material.
  • the material include stainless steel, silicon, glass, hastelloy, silicon resin, and fluorine resin.
  • glass lining, a material such as stainless steel or silicon coated with nickel or gold, a material obtained by oxidizing the surface of silicon, or the like having improved corrosion resistance can be used.
  • FIG. 4 is a diagram showing details when the multi-reactor microreactor system using the microreactor of the present invention is applied particularly to continuous liquid feeding.
  • two syringes are connected as a set by a T-shaped connector 401 and connected to a microreactor.
  • the other syringe is connected.
  • the operation of feeding the solution with a syringe and simultaneously sucking the raw material into the empty syringe is repeated. According to this, continuous operation can be performed without causing a break in the liquid feeding operation.
  • This operation is continuously performed as a series of operations. According to such an operation, it is only necessary to first discard the liquid of the dead volume for one time. Further, even when this dead volume is larger than the capacity of one syringe, it is possible to perform liquid feeding.
  • this microreactor system can be applied to the multistage reaction more than the three-stage reaction in the case of intermittent liquid feeding as well as the case of continuous liquid feeding. .
  • the expression based on the assumption that the liquid reacts is used.
  • the reaction does not proceed in the microreactor system of the present invention.
  • it can also be applied to multistage mixing of solutions.
  • the microreactor system of the present invention is similarly used in the case where the quench reaction is continuously performed after the reaction, the case where the reaction is continuously performed after the mixing, and the case where the mixing and the reaction are alternately required, Can be applied.
  • the microreactor system of the present invention is applicable not only to homogeneous systems that mix with each other, but also to heterogeneous systems represented by emulsification processes that do not mix.
  • FIG. 5 shows a developed perspective view of the microreactor according to the first embodiment of the present invention
  • FIG. 6 shows a flow path forming plate constituting the microreactor.
  • the microreactor according to the first embodiment of the present invention is formed of a total of three plates, an upper plate 504, a lower plate 505, and a holder plate 506. Note that a packing (not shown) is inserted into a packing groove 509 formed on each surface of these three plates, and is fastened with screws (not shown) using screw holes 507 and threading 508. According to this, it is possible to form a microreactor with high sealing performance.
  • the flow channel 510 is formed on the surface of the upper plate 504 (FIG. 6B) and the surface of the lower plate 505 (FIG. 6A). It is configured by combining the formed flow path 510.
  • the raw material A solution 501 and the raw material B solution 502 are respectively introduced from the raw material A solution introduction port 511 and the raw material B solution introduction port 512, and then the product solution drainage through the channel 510.
  • the product solution 503 is obtained by being discharged from the outlet 513 and mixing and reacting the raw material A solution and the raw material B solution.
  • a fitting for connecting to a tube (not shown) corresponding to the raw material A solution inlet 511, the raw material B solution inlet 512, and further the product solution outlet 513 is provided on the back side of the holder plate 506, a fitting for connecting to a tube (not shown) corresponding to the raw material A solution inlet 511, the raw material B solution inlet 512, and further the product solution outlet 513 is provided. A threading process (not shown) is applied so that (not shown) can be connected.
  • the end of the introduction part connected to the liquid feed pump or the reaction connected to the preceding microreactor It is possible to reach the raw material A solution inlet 511, the raw material B solution inlet 512, and the product solution outlet 513, and according to this, the raw material A solution 501 and the raw material B It is possible to reduce the dead volume when introducing the solution 502 as much as possible.
  • the material of the upper plate 504, the lower plate 505, and the holder plate 506 may be any material that does not adversely affect the reaction to be performed, and may be changed as appropriate according to the type of reaction. You can also.
  • a material for example, stainless steel, silicon, gold, glass, hastelloy, silicon resin, fluorine resin, or the like can be used.
  • a glass lining, a metal surface coated with nickel, gold or the like, or a silicon surface oxidized, so-called one having improved corrosion resistance may be used.
  • the material of the above-described packing may be any material that does not adversely affect the reaction, and can be appropriately changed according to the type of reaction.
  • silicon resin, fluorine resin, or the like can be used.
  • the microreactor shown in FIG. 5 has a structure that can be disassembled by assembling with packing and screws.
  • the present invention is not limited to this.
  • the three plates are formed by diffusion bonding or the like. By joining these, a structure that cannot be disassembled can be obtained. If the microreactor has a structure that can be disassembled as described above, it is possible to disassemble and clean these plates when, for example, a clogging occurs inside the microreactor, thereby improving maintainability. And preferred.
  • FIG. 7 is a plan view (FIG. 7 (a)) and a perspective view (FIG. 7 (b)) for showing the channel shape of the microreactor described above.
  • the flow path 510 in the microreactor of the present invention is composed of an upper part (indicated by a solid line in the figure) and a lower part (indicated by a broken line). It has the following shape.
  • the introduced fluid of the raw material A solution 501 and the fluid of the raw material B solution 502 are first moved from the lower flow path to the upper flow path, that is, in the normal direction in the flow path changing unit 704.
  • the course is changed at a right angle to the direction of the upstream flow path (to the left in this example).
  • the fluid is divided into right and left in the flow path dividing unit 701.
  • the normal direction is changed from the upper side to the lower side and the path is changed (right direction in this example). )I do.
  • the fluid again moves in the normal direction from the lower flow path to the upper flow path in the flow path changing unit 703, and at the right angle. Change the course in the direction.
  • the flow path mentioned above is repeatedly formed in the inside of the microreactor.
  • the raw material A solution 501 and the raw material B solution 502 are rapidly mixed by the above-described flow path, and finally, the raw material A solution and the raw material B solution are mixed and reacted. As a result, a product solution 503 is obtained.
  • FIG. 8 is a diagram showing the rotation of the interface of the fluid in the flow path of the microreactor according to the first embodiment.
  • FIG. 8A shows the flow from the upstream side to the downstream side in the flow path.
  • the positions of the channel cross sections A to G set in sequence are shown, and
  • FIG. 8B shows the state of the interface rotation of the fluid in the channel cross sections A to G in the micro reactor channel.
  • the fluid interface rotation will be described.
  • the fluid having a straight interface flows by rotating the interface 90 degrees to the right on the downstream side.
  • the fluid having a straight interface flows by rotating the interface 90 degrees counterclockwise on the downstream side.
  • the angle formed by the upstream path and the downstream path and the angle at which the interface rotates are equal when the Reynolds number is about 2 or less. The angle at which the interface rotates depends on the viscosity and density of the fluid, as well as the feeding speed and the width and depth of the flow path.
  • the fluid when the fluid is divided, particularly when the volume ratio of the raw material A solution and the raw material B solution is not 1: 1, it is desirable to divide the fluid at right angles to the interface of the fluid. This is because the reaction proceeds during the period from the division to the merging, and it is necessary to keep the raw material A and the raw material B at a predetermined equivalence ratio during that time.
  • the volume ratio of the raw material A solution and the raw material B solution is 1: 1
  • the raw material A and the raw material B do not have a predetermined equivalent ratio in each of the divided portions.
  • the reaction at the target equivalent ratio may not proceed.
  • segmented fluid turns into a raw material A solution, and the other becomes a raw material B solution, Therefore, reaction may not advance during the divided period.
  • the raw material A solution 501 and the raw material B solution 502 to be introduced are fluids that form an interface therebetween (that is, do not mix with each other), and are introduced at a volume ratio of 1: 1.
  • the raw material A solution 501 and the raw material B solution 502 are left and right in the flow path.
  • the fluid is located (see channel cross section A).
  • the course is changed to the left at a right angle to the upstream flow path direction, and the fluid interface rotates 90 degrees to the left.
  • the raw material A solution 501 and the raw material B solution 502 are separated into a fluid that is positioned vertically (see channel cross section B). Thereafter, the fluid is divided in the left-right direction.
  • Each of the divided fluids is a fluid in which the raw material A solution 501 and the raw material B solution 502 are vertically positioned (see the flow path cross section C).
  • each of the divided fluids moves in the normal direction from the upper flow path to the lower flow path, and the course is changed in the right direction perpendicular to the upstream flow path direction. As a result, the fluid rotates 90 degrees in the left direction.
  • the other divided fluid covers the divided fluid, the raw material A solution 501 and the raw material B solution 502 are left and right. (See the cross section D of the flow path).
  • the course is changed in the right direction perpendicular to the upstream flow path direction, that is, the fluid rotates 90 degrees to the right.
  • the raw material A solution 501 and the raw material B solution 502 become fluids that are separated from each other in the vertical direction (see the flow path section E).
  • each of the divided fluids is a fluid in which the raw material A solution 501 and the raw material B solution 502 are separated from each other vertically (see the flow path section F).
  • each of the divided fluids moves in the normal direction from the upper flow path to the lower flow path and changes the course in the left direction perpendicular to the upstream flow path direction, that is, The fluid rotates 90 degrees in the right direction, but joins so that the other divided fluid covers the one divided fluid, so that the raw material A solution 501 and the raw material B solution 502 are again left and right. (See the cross section G of the flow path).
  • the raw material A solution 501 and the raw material B solution 502 to be introduced are fluids that form an interface between them (that is, they do not mix at all).
  • the fluids mix with each other in the process of repeating the diversion / merging. Therefore, after the fluid is diverted and merged, it moves in the normal direction from the lower flow path to the upper flow path, and the course is changed in a direction orthogonal to the upstream flow path direction.
  • the raw material A solution 501 and the raw material B solution 502 are always separated into upper and lower fluids, so that the fluid is divided and merged efficiently, and these solutions are mixed. It is thought to do.
  • FIG. 9 is a diagram comparing the interface rotation of the fluid in the microreactor according to the first embodiment.
  • the channel cross sections are the same as the channel cross sections A to G shown in FIG. 8A. And, it shows a state when moving between the upper and lower flow paths in the normal direction and changing the course in the direction orthogonal to the upstream flow path direction.
  • FIG. 9A shows a state when the interface rotates 90 degrees (similar to FIG. 8B above)
  • FIG. 9B shows a state when the interface rotates 135 degrees
  • FIGS. 9B and 9C show a state when the interface rotates 180 degrees.
  • FIGS. 9B and 9C correspond to the case where the Reynolds number increases and the influence of the swirling of the fluid appears.
  • the raw material A solution 501 and the raw material B solution 502 to be introduced are fluids that form an interface therebetween (that is, do not mix at all).
  • the interface rotates 135 degrees when moving between the upper and lower flow paths in the normal direction and the course is changed in the direction orthogonal to the upstream flow path direction.
  • the raw material A solution 501 and the raw material B solution 502 are fluids located on the left and right immediately after being introduced (see the flow path cross section A).
  • the interface rotates 135 degrees to the left, That is, the raw material A solution 501 and the raw material B solution 502 are fluids positioned in the diagonal direction (see the flow path cross section B).
  • each of the divided fluids becomes a fluid in which the raw material A solution 501 and the raw material B solution 502 are located in an oblique direction (see the channel cross section C).
  • the interface is changed. Although it rotates 135 degrees to the left, it merges so that the other divided fluid covers the one divided fluid, so the raw material A solution 501 and the raw material B solution 502 are alternately positioned in the vertical direction, It becomes a four-layer fluid (see channel cross section D).
  • the fluid rotates 135 degrees to the right, Accordingly, the raw material A solution 501 and the raw material B solution 502 are alternately positioned in the diagonal direction, resulting in a four-layer fluid (see flow path section E).
  • each of the divided fluids becomes a four-layer fluid alternately positioned in the diagonal direction (see the channel cross section F).
  • each of the divided fluids moves in the normal direction from the upper flow path to the lower flow path, and when the path is changed to the left at a right angle to the upstream flow path direction,
  • the raw material A solution 501 and the raw material B solution 502 are alternately positioned in the left-right direction again because the other divided fluid covers the one divided fluid so as to cover the other divided fluid.
  • the four layers of fluid are fluids positioned above and below (see channel cross section G).
  • the interface rotates 135 degrees when the course is changed in a direction orthogonal to the upstream flow path direction.
  • the raw material A solution 501 and the raw material B solution 502 are fluids located diagonally to each other, fluids located on the left and right, and It can be seen that there are cases where the fluid is located above and below, and that there is a repetition between them.
  • the raw material A solution 501 and the raw material B solution 102 to be introduced are fluids that form an interface between them (that is, do not mix at all).
  • these are mixed with each other in the process in which the fluid repeats the diversion / merging.
  • the raw material A solution 501 and the raw material B solution 502 are fluids located in a diagonal direction and a fluid which is located in a vertical direction, and the number of layers. It can be seen that mixing is promoted because of increasing.
  • the raw material A solution 501 and the raw material B solution 502 are fluids located in the diagonal direction before the fluid is divided, the raw material A solution 501 and the raw material B solution 502 are separated after the fluid is divided.
  • the flow rate ratio of the fluid may be lost.
  • the interface of the fluid is 180 even if the path is moved in the normal direction between the upper and lower flow paths and the course is changed in the direction orthogonal to the upstream flow path direction.
  • the raw material A solution 501 and the raw material B solution 502 are introduced, the raw material A solution 501 and the raw material B solution 502 are fluids positioned on the left and right sides (channel cross section A). See). Then, while moving in the normal direction from the lower flow path to the upper flow path, the course is changed in the left direction perpendicular to the upstream flow path direction. However, the fluid interface is 180 degrees in the left direction.
  • the order of the raw material A solution 501 and the raw material B solution 502 is interchanged, but the fluids remain in the left and right directions (see the flow path cross section B). Thereafter, the fluid is divided in the left-right direction, and one of the divided fluids is the raw material A solution 501 and the other is the raw material B solution 502 (see the channel cross section C). Thereafter, each of the divided fluids moves in the normal direction from the upper flow path to the lower flow path and changes the course to the right at a right angle to the upstream flow path direction, Again, the interface rotates 180 degrees to the left and merges so that the other divided fluid covers the other divided fluid, so that the raw material A solution 501 and the raw material B solution 502 are positioned above and below each other. It becomes a fluid (see channel cross section D).
  • each of the divided fluids is a fluid in which the raw material A solution 501 and the raw material B solution 502 are positioned above and below (see the flow path section F).
  • each of the divided fluids moves in the normal direction from the upper channel to the lower channel, and when the course is changed to the left at a right angle to the upstream channel direction,
  • the raw material A solution 501 and the raw material B solution 502 are alternately positioned, so that the other divided fluid covers the one divided fluid so as to cover the other divided fluid. It becomes the fluid of the layer (see channel cross section G).
  • the interface does not rotate.
  • the raw material A solution 501 and the raw material B solution 502 are always fluids positioned in the vertical direction, and the number of layers increases, so that mixing is promoted. You can see that
  • the fluid is divided even if the angle at which the interface rotates changes.
  • the normal flow moves from the lower flow path to the upper flow path, and the course is changed in a direction orthogonal to the upstream flow path direction.
  • the angle at which the interface rotates depends on the Reynolds number determined by the viscosity and density of the fluid, the liquid feeding speed, the width and depth of the flow path, etc. Shows that it is promoted.
  • the Reynolds number is large, the influence of fluid swirling appears, and it can be seen that the diversion / merging occurs more efficiently as the rotation angle of the interface increases. Therefore, by using the microreactor according to the present invention, the mixing performance can be ensured even when the liquid flow rate is small.
  • the microreactor according to the present invention does not introduce two kinds of raw material A solution 501 and raw material B solution 502 across multiple layers (upper plate 504, lower plate 505), that is, the most Since the structure is such that the lower holder plate 506 is introduced into the lower plate 505, there is no so-called manifold on the back side of the portion where the raw material is introduced. Therefore, particularly when the microreactor according to Example 1 is used as the microreactor in the second stage and thereafter, it is possible to control the reaction time strictly in the introduction part necessary for the multistage reaction. [Modification]
  • FIG. 10A shows the structure of the flow path, and as is clear from the figure, as described above, in the microreactor according to this modification, the microreactor according to the above-described embodiment was performed.
  • the normal flow from the lower flow path to the upper flow path after the fluid splitting / merging is not performed, and the course in the direction orthogonal to the upstream flow path direction is not changed, and the figure shows The positions of the channel cross sections A to F showing the state of the fluid interface rotation in the channel are shown.
  • FIG. 10B shows a state of interface rotation of the fluid in the channel cross sections A to F when the downstream side is viewed from the upstream side.
  • the raw material A solution 501 and the raw material B solution 502 to be introduced are fluids that form an interface therebetween (that is, do not mix at all).
  • the fluids are located on the left and right, respectively (see the flow path section A).
  • the course is changed in the left direction perpendicular to the upstream flow path direction, and the fluid interface rotates 90 degrees to the left.
  • the raw material A solution 501 and the raw material B solution 502 are fluids positioned above and below (see channel cross section B).
  • each of the divided fluids is a fluid in which the raw material A solution 501 and the raw material B solution 502 are positioned above and below (see channel cross section C).
  • each of the divided fluids moves in the normal direction from the upper flow path to the lower flow path, and changes the course in the right direction perpendicular to the upstream flow path direction.
  • the fluid rotates 90 degrees clockwise, but the other divided fluid covers and joins the one divided fluid, so that the raw material A solution 501 and the raw material B solution 502 are left and right respectively.
  • the fluid is located (see channel cross section D). The steps so far are the same as those in the case of FIG.
  • one of the divided fluids is the raw material A solution 501 and the other is the raw material B solution 502 (see the flow path section E). Thereafter, each of the divided fluids moves in the normal direction from the upper flow path to the lower flow path, and changes the course in the left direction perpendicular to the upstream flow path direction. At this time, the fluid rotates 90 degrees counterclockwise. However, since the other divided fluid covers and joins the one divided fluid, the raw material A solution 501 and the raw material B solution 502 are again brought into contact with each other. The fluid is located above and below (see channel cross section F).
  • FIG. 11 is a schematic diagram showing the relationship between the mixing performance and the sum of the angles at which the fluid has rotated.
  • the manifold that causes the liquid pool is not provided in between, the mixing performance is improved even if the liquid flow path is small, and A microreactor can be easily constructed with a plate. Moreover, according to the microreactor system using this microreactor, the multistage reaction can be easily performed.
  • the expression “right angle” or “orthogonal” is used as an angle for changing the course. Depending on the processing accuracy, it is not always exactly “90 degrees in the right direction” or “90 degrees in the left direction”. Further, although the angle at which the interface rotates depends on the Reynolds number, even if the angle for changing the course is not exactly “90 degrees to the right” or “90 degrees to the left”, the lower flow path It is clear that mixing is promoted by moving in the normal direction from the flow path to the upper flow path and changing the course in a direction orthogonal to the upstream flow path direction.
  • FIG. 12 (a) is a plan view showing a flow channel shape of a microreactor according to a second embodiment (Example 2) of the present invention
  • FIG. 12 (b) is a perspective view thereof.
  • the flow path 510 in the microreactor of the second embodiment is composed of an upper part and a lower part, and a fluid composed of the introduced raw material A solution 501 and raw material B solution 502 passes through the lower part in the flow path changing unit 704. While moving in the normal direction from the flow path on the side to the flow path on the upper side, the course is changed in the left direction perpendicular to the flow direction on the upstream side. Then, the flow path dividing unit 70 divides the flow path into left and right, and then the flow path changing unit 705 moves in the normal direction from the upper flow path to the lower flow path. Change the course to the right at right angles to the direction.
  • the divided fluid is positioned on the left and right in the flow path merging section 702, and then further moved in the normal direction from the lower flow path to the upper flow path in the flow path changing section 703, and on the upstream side
  • the course is changed to the right direction at right angles to the direction of the flow path. That is, the flow path 510 has a shape in which the above operation is repeated.
  • the raw material A solution 501 and the raw material B solution 502 are rapidly mixed, and finally, the raw material A solution and the raw material B solution are mixed and reacted to obtain the product solution 503. .
  • FIG. 13 shows the interface rotation of the fluid in the microreactor according to the second embodiment (Example 2).
  • FIG. 13A shows the flow path cross section A showing the state of the interface rotation of the fluid.
  • FIG. 13B shows the fluid interface rotation in the channel cross sections A to G when the channel is viewed from the upstream side to the downstream side. Show.
  • the raw material A solution 501 and the raw material B solution 502 to be introduced are fluids that form an interface therebetween (that is, do not mix at all).
  • the fluids are located on the left and right, respectively (see the flow path cross section A).
  • the course is changed to the left at a right angle to the upstream flow path direction.
  • the raw material A solution 501 and the raw material B solution 502 are fluids that are positioned above and below by rotating at a predetermined angle (see channel cross section B).
  • each of the divided fluids becomes a fluid in which the raw material A solution 501 and the raw material B solution 502 are positioned above and below (see channel cross section C).
  • each of the divided fluids moves in the normal direction from the upper flow path to the lower flow path, and changes the course to the right at a right angle to the upstream flow path direction. Rotate 90 degrees in the direction.
  • the raw material A solution 501 and the raw material B solution 502 become a four-layer fluid alternately positioned in the left-right direction by joining the left and right positions (see the flow path cross section D).
  • the raw material A solution 501 and the raw material B solution 502 become a four-layer fluid alternately positioned in the vertical direction (see the flow path cross section E).
  • each of the divided fluids becomes a four-layer fluid in which the raw material A solution 501 and the raw material B solution 502 are alternately positioned in the vertical direction (see the flow path section F).
  • Each of the divided fluids moves in the normal direction from the upper flow path to the lower flow path, changes the course to the left at a right angle to the upstream flow path direction, Rotate 90 degrees to the right.
  • the raw material A solution 501 and the raw material B solution 502 become an eight-layer fluid alternately positioned in the left and right direction (see the flow path cross section G).
  • the raw material A solution 501 and the raw material B solution 502 to be introduced are fluids that form an interface therebetween (that is, do not mix at all). Similar to (b) and FIG. 9, in practice, the fluid is mixed in the process of repeating the diversion / merging of the fluid. Therefore, after the fluid is diverted and merged, it moves in the normal direction from the lower flow path to the upper flow path, and the course is changed in a direction orthogonal to the upstream flow path direction. Before the fluid is divided, the raw material A solution 501 and the raw material B solution 502 are always vertically positioned fluids, and after the fluid is divided, the normal line from the upper channel to the lower channel is obtained.
  • FIG. 14 is a plan view showing, in particular, the flow channel shape of the microreactor according to the third embodiment (Example 3) of the present invention.
  • the flow path 510 in the microreactor according to the third embodiment is composed of an upper part and a lower part, and the introduced raw material A solution 501 and raw material B
  • the fluid composed of the solution 502 moves in the normal direction from the lower flow path to the upper flow path, and changes the course 704 in the left direction perpendicular to the upstream flow path direction.
  • the fluid is divided into right and left in the flow path dividing unit 701, moves in the normal direction from the upper flow path to the lower flow path, and travels in the right direction perpendicular to the upstream flow path direction. Is changed 705.
  • the flow path 510 has a shape that repeats the above operation.
  • the raw material A501 and the raw material B solution 502 are rapidly mixed, and finally, the raw material A solution and the raw material B solution are mixed and reacted, whereby the product solution 503 which is the product is obtained. can get.
  • FIG. 15 is a plan view showing the flow channel shape of the microreactor according to the fourth embodiment (Example 4).
  • the channel 510 in the microreactor according to the fourth embodiment is composed of an upper part and a lower part, and the introduced raw material A solution 501 and raw material B are introduced.
  • the fluid composed of the solution 502 moves in the normal direction from the lower flow path to the upper flow path, and changes the course 704 in the left direction perpendicular to the upstream flow path direction.
  • the flow path changing unit 705 moves in the normal direction from the upper flow path to the lower flow path and travels to the right in a direction perpendicular to the upstream flow path direction.
  • the divided fluids are merged so as to be positioned on the left and right.
  • the fluid further moves in the normal direction from the lower flow path to the upper flow path in the flow path changing unit 704 and changes the course to the left at a right angle to the upstream flow path direction.
  • the channel 510 has a shape that repeats the above operation.
  • the raw material A solution 501 and the raw material B solution 502 are quickly mixed, and finally, a composite solution 503 which is a product obtained by mixing and reacting the raw material A solution and the raw material B solution is obtained. can get.
  • the microreactor according to the fourth embodiment does not provide a manifold that causes liquid pooling between them, so that the mixing performance is high despite the small liquid flow path.
  • a microreactor can be easily constructed with two plates.
  • FIG. 16 is a top view which shows the flow-path shape of the micro reactor used as the 5th Embodiment (Example 5) of this invention.
  • the flow path 510 of the microreactor according to the fifth embodiment is also composed of an upper part and a lower part, and a fluid composed of the introduced raw material A solution 501 and raw material B solution 502 is
  • the flow path changing unit 704 moves in the normal direction from the lower flow path to the upper flow path, and changes the course in the left direction perpendicular to the upstream flow path direction.
  • the flow path dividing unit 701 is divided into flow paths in two directions, a straight direction and a right angle direction, with respect to the upstream flow direction.
  • the flow path changing unit 705 again moves in the normal direction from the upper flow path to the lower flow path, and changes the course in the right direction perpendicular to the upstream flow path direction.
  • the flow channel changing unit 703 moves in the normal direction from the lower flow channel to the upper flow channel, and upstream.
  • the course is changed in the right direction at right angles to the flow direction on the side. That is, the flow path 510 has a shape that repeats the above operation.
  • the raw material A solution 501 and the raw material B solution 502 are rapidly mixed, and finally, a product solution 503 which is a product obtained by mixing and reacting the raw material A solution and the raw material B solution is obtained. can get.
  • the reaction time can be more strictly controlled by making the flow path volume from the division of the fluid to the merge as equal as possible among the divided fluids.
  • FIG. 17 is a top view which shows the flow-path shape of the microreactor which becomes 6th Embodiment (Example 6).
  • the flow path 510 in the microreactor according to the sixth embodiment is also composed of an upper part and a lower part, as is apparent from the figure, and the introduced raw material A solution 501 and The fluid composed of the raw material B solution 502 moves in the normal direction from the lower flow path to the upper flow path in the flow path changing unit 704 and to the left at a right angle to the upstream flow path direction. Change course. Thereafter, the flow is divided into left and right in the flow dividing unit 701. At this time, the branching angle of the flow channel on the side where the fluid flowing at the time of merging enters the lower side is reduced, so that the time from division to merging is as much as possible. Try to be the same.
  • the flow path changing unit 705 moves in the normal direction from the upper flow path to the lower flow path, and changes the course in the right direction perpendicular to the upstream flow path direction.
  • the merging portion 702 the divided fluids are merged so as to be positioned up and down, and then again in the flow path changing portion 703, the lower flow path is moved in the normal direction to the upper flow path, and the upstream side Change the course in the right direction perpendicular to the flow direction. That is, the channel 510 has a shape that repeats the above operation.
  • a manifold that causes liquid pooling is not provided in between, and therefore, the mixing performance is improved even though the liquid flow path is small.
  • a microreactor can be easily configured with two plates.
  • the number of repetitions of division / mixing is not limited to the number described above, and the solution used Depending on the physical properties, reaction time, etc., it can be appropriately changed.
  • the expression “right angle” or “orthogonal” is used as an angle for changing the course.
  • It is not always exactly “90 degrees to the right” or “90 degrees to the left”.
  • the angle at which the interface rotates depends on the Reynolds number, but the angle for changing the course may not be exactly “90 degrees to the right” or “90 degrees to the left”. Is in the normal direction from the lower flow path to the upper flow path and is perpendicular to the upstream flow path direction within a range of 85 to 95 degrees to the right or left.
  • the expression “upper side” or “lower side” is used for convenience. The same effect can be obtained even if is positioned in reverse.
  • the relationship of “upper and lower” may be a relationship located on the left and right or right and left, or may be a relationship located obliquely.
  • the expression is based on the premise that the solution reacts inside.
  • the solution when the reaction does not proceed at all inside, that is, the solution is simply It can also be applied when mixing.
  • the present invention can be applied not only to homogeneous systems that mix with each other but also to non-uniform systems that do not mix.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Accessories For Mixers (AREA)

Abstract

 液溜まりがなく、送液流量が小さくても混合性能が高く、簡単な構成のマイクロリアクタ及びそれを用いてマイクロリアクタシステムに関し、少なくとも2種類の流体を混合させる流路を備え、少なくとも1回は流体の分割・混合を行うことにより流体の混合・反応を行う、所謂、多段反応に適したマイクロリアクタ及びマイクロリアクタシステム。

Description

マイクロリアクタシステム
 本発明は、マイクロリアクタ及びそれを用いたマイクロリアクタシステムに関し、特に、少なくとも2種類の流体を混合させる流路を備え、少なくとも1回は流体の分割・混合を行うことにより流体の混合・反応を行う、所謂、多段反応に適したマイクロリアクタ及びマイクロリアクタシステムに関する。
 近年、マイクロ加工技術などにより作製され、微細な流路内で流体を混合させる装置、所謂、マイクロリアクタを、バイオ・医療分野、あるいは化学反応の分野にも応用しようとする取り組みが盛んに行われている。
 従来、マイクロリアクタは、2種類の原料を混合させ反応を進行させる、所謂「一段反応」を対象にするものが多かった。しかし、近年、複数の種類の原料を順番に混合させ反応を進行させる、所謂「多段反応」に対しても、マイクロリアクタの適用が期待されている。
 特に、多段反応の中でも、反応の途中で生成する生成物が、所謂「反応中間体」である場合には、精密な温度制御や時間制御が求められるため、従来のバッチ法ではうまく反応が進行しない場合があることが知られている。何故なら、反応中間体は、一般的に不安定で寿命が短いため、所謂「ホットスポット」が起きることによって反応温度が局所的に高くなる場合や、次段の反応へ至るまでの時間が寿命以上に長い場合には、分解してしまうからである。
 マイクロリアクタによる合成反応における特徴として、反応場のサイズの低下に伴って、(1)高速混合が可能となること、(2)流体の体積に対する表面積が相対的に大きくなるため、熱交換の効率が極めて高くなり、精密な温度制御が可能となること、また、(3)原料の送液流量を制御することにより、精密な反応時間制御が可能となることなどが知られている。
 特に、上記(1)の高速混合を可能とするマイクロリアクタに関しては、これまで種々の開発や検討が行われている。第1には、2種類の原料を多層にして導入することにより、実質的な分子の拡散距離を短くするものが知られている。この場合、安定した層を形成するため、原料を導入する部分の裏側に、所謂、マニホールド(液溜まり)を設け、もって、導入する部分の全面からの原料の導入を可能にする方法が知られている(例えば、以下の特許文献1及び2を参照)。
 また、第2には、導入した2種類の原料の分流・合流を繰り返すことにより、実質的な分子の拡散距離を短くするものが知られている。この場合、原料の分流・合流による混合効率的に進めるために、幾つかの複雑な構造が知られている(例えば、以下の特許文献3~5参照)。
特開2007-69137号公報 特開2008-289449号公報 特許第3638151号公報 特許第3873929号公報 特許第3810778号公報
 しかしながら、マイクロリアクタを多段反応に適用しようとした場合、一段反応用のマイクロリアクタを直列に接続しただけでは、マイクロリアクタによる合成反応における特徴を十分に生かすことができない場合がある。
 図2に、本発明が関わる多段反応のマイクロリアクタシステムの模式図(二段反応の場合)を示す。この図2のマイクロリアクタシステムでは、原料1溶液101と原料2溶液102とを、シリンジ105及びシリンジポンプ106を用いて、原料1溶液の導入部107及び原料2溶液の導入部108を経て、一段目の反応用マイクロリアクタ201に導入し、もって、この一段目の反応の反応部110を経て、原料1溶液と原料2溶液とが混合・反応することによる一段目の反応の生成物溶液を得る。更に、前記一段目の反応の生成物溶液と原料3溶液103とを、シリンジ105及びシリンジポンプ106を用いて、原料3溶液の導入部111を経て、二段目の反応用マイクロリアクタ202に導入し、もって、この二段目の反応の反応部112を経て、原料1溶液、原料2溶液、原料3溶液が混合・反応することによる生成物溶液104を得る。
 しかしながら、上述したように、多段反応にマイクロリアクタを適用する際には、以下のような問題がある。
 1つめは、一段の反応毎の精密な反応時間の制御である。しかし、2段目以降のマイクロリアクタでは、マニホールドに停留している間にも反応が進行してしまうため、マニホールドに滞留している時間が、事実上、前段の反応における反応時間に加えられてしまう。従って、マニホールドを必要とせず、厳密な反応時間制御が可能なマイクロリアクタが望まれる。
 2つめは、上流側のマイクロリアクタでの混合性能の維持である。マイクロリアクタを直列に接続して多段反応に適用する場合には、上流側のマイクロリアクタでの送液流量が必然的に小さくなってしまう。送液流量が小さくなると混合性能は低下する傾向があるため、送液流量が小さい場合でも混合性能が高いマイクロリアクタが望まれる。特に、粘度が高い液体を送液する場合には、圧力損失上の問題から送液流量を小さくせざるを得ないことから、さらに上段側のマイクロリアクタでの送液流量が小さくなる可能性がある。
 ここで、下段側にいくに従って一段毎のマイクロリアクタの数を増やすことにより、上流側のマイクロリアクタでの送液流量を小さくしないことも可能ではある。しかし、マイクロリアクタの数が反応の段数より多くなってしまうことから、特に、反応の段数が多い場合には、現実的な解決方法ではないと考えられる。
 3つめは、混合性能を高めようとすると、マイクロリアクタの構造が複雑になることである。マイクロリアクタの構造が複雑になる程、その作製にコストと時間が掛かるため、可能な限り混合性能を維持しつつ、その構造が簡単であることが望まれる。
 4つめは、上記のマイクロリアクタを用いて多段反応を実施することが可能であり、かつ、その操作性の優れたマイクロリアクタシステムがないことである。上記図2に示したような多段反応用システムをバラックで構成することは可能ではあるが、しかしながら、反応の段数が多くなるに従って、その操作性が非常に悪くなることは明らかである。
 そこで、本発明では、液溜まりの原因となるマニホールドを設ける必要がなく、かつ、送液流量が小さくても混合性能が高いマイクロリアクタを提供することをその目的とする。更に、本発明によれば、その構成が簡単であるマイクロリアクタが提供される。加えて、本発明では、上記のマイクロリアクタを用いて多段反応を実施することが可能で、かつ、その操作性にも優れたマイクロリアクタシステムを提供することをその目的とする。
 上述した目的を達成するため、本発明によれば、まず、少なくとも2種類の流体を混合させる流路を有し、流体の分流及び分流した流体の合流を行うことにより、流体を混合させるマイクロリアクタであって、その内部に:(a)ある平面内に形成され、流体を導入するための少なくとも2本の流路と;(b)前記平面内に形成され、導入した流体を合流するための流路と;(c)合流した流体が、前記平面に対して略法線方向に流れた後に、前記合流する流路が存在する平面に略平行でかつ前記合流する流路に略直交している方向に流路を変更するための流路と;(d)前記流路が存在する平面内に形成され、合流した流体を2つに分流するための流路と;(e)分流された流体のそれぞれが、略法線方向に流れた後に、前記分流する流路が存在する平面に略平行でかつ前記分流する流路に略直交している方向に流路を変更するための流路と;(f)前記流路が存在する平面内に形成され、2つの分流された流体を前記平面に対して略垂直方向又は略平行方向に合流するための流路と;そして、(g)合流した流体が、略法線方向に進んだ後、前記合流する流路が存在する平面に略平行、かつ、前記合流する流路に略直交している方向に進むための流路とを有しており、前記(b)~(g)の流路の各々は、少なくとも2つ以上、当該マイクロリアクタの内部に形成されているマイクロリアクタが提供される。なお、かかる構成により、液溜まりの原因となるマニホールドを設けず、送液流量が小さくても混合性能を高くすることが可能となる。
 また、本発明では、前記に記載したマイクロリアクタにおいて、前記流路は、それぞれ流路を備えた2枚の平板状のプレートを対面させて形成され、かつ、一方のプレートの対向する面には、前記(a)、(b)、(e)及び(f)の流路が形成され、他方のプレートの対向する面には、前記(c)、(d)及び(g)の流路が形成されていることが好ましく、これにより簡単な構成のマイクロリアクタを実現することが出来る。
 加えて、本発明によれば、少なくとも3種類の流体を混合させるためのマイクロリアクタシステムであって:前記流体を送液するための送液ユニットと;少なくとも2種類の流体を反応させるためのマイクロリアクタを少なくとも2つ含むリアクタユニットと;前記リアクタユニットの温度制御を行う温度制御ユニットと;そして、制御装置とから構成されたものにおいて、前記送液ユニット、前記リアクタユニット及び前記温度制御ユニットは、前記制御装置により制御かつ監視され、前記流体は、前記送液ユニットに含まれるシリンジおよびシリンジポンプにより送液され、前記マイクロリアクタは、上流側から下流側に向かって直列に設置され、前記マイクロリアクタの温度は、前記温度制御ユニットを介して、各マイクロリアクタ毎に個別に制御され、そして、前記マイクロリアクタは、前記に記載されたマイクロリアクタであるマイクロリアクタシステムが提供される。かかる構成によれば、上記のマイクロリアクタを用いることにより、多段反応を容易に実施することが可能となる。
 加えて、本発明では、前記に記載したマイクロリアクタシステムにおいて、前記流体のうちの少なくとも1種類は、2本のシリンジを同時に動かすことにより送液されることが好ましく、又は、前記制御装置は、前記送液ユニットにより行われる少なくとも2つの連続させたい操作を予め同時に指示することにより、前記少なくとも2つの操作を連続して行うことが好ましい。
 本発明によれば、液溜まりの原因となるマニホールドを設けることなく、送液流量が小さくても混合性能が高いマイクロリアクタ、更には、それを利用して多段反応に適したマイクロリアクタシステムを実現することが出来るという優れた効果を発揮する。
本発明の一実施の形態になる多段反応用マイクロリアクタシステムとマイクロリアクタの概略構成を示す図である。 本発明が関わる多段反応のマイクロリアクタシステムの概略構成を示す模式図(二段反応の場合)である。 上記本発明のマイクロリアクタを用いた多段反応のマイクロリアクタシステム(間欠送液の場合)の概略構成を示す図である。 本発明のマイクロリアクタを用いた多段反応のマイクロリアクタシステム(連続送液の場合)を示す図である。 本発明の第1の実施形態(実施例1)になるマイクロリアクタの組み図である。 本発明の第1の実施形態(実施例1)になるマイクロリアクタの流路形成プレートを示す図である。 本発明の第1の実施形態(実施例1)になるマイクロリアクタの流路形状を示す平面図(図7(a))および斜視図(図7(b))である。 本発明の第1の実施形態(実施例1)になるマイクロリアクタ内の流体の界面回転を示す図であり、流体の界面回転の様子を示す流路断面(図8(a))と、上流側から下流側を見たときの各流路断面での流体の界面回転の様子を示す図(図8(b))である。 上記第1の実施形態(実施例1)のマイクロリアクタ内の流体の界面回転を比較した図であり、上記図8(a)の流体の界面回転の様子を示す流路断面について、流体が法線方向に移動し、かつ、上流側の流路方向に対して直交方向に進路を変更したときに、界面が90度回転するときの流路断面における界面回転の様子(図9(a))、界面が45度回転するときの流路断面における界面回転の様子(図9(b))、そして、界面が回転しないときの流路断面における界面回転の様子(図9(c))をそれぞれ示す図である。 上記第1の実施形態(実施例1)のマイクロリアクタの変形例を示す図であり、マイクロリアクタ内での流体の界面回転を示すための流体断面の位置を示す斜視図(図10(a))と、上流側から下流側を見たときの当該流路断面における流体の界面回転の様子を示す流路断面図(図10(b))である。 混合性能と流体が回転した角度の和の関係を示す模式図である。 本発明の第2の実施形態(実施例2)になるマイクロリアクタの流路形状を示す図であり、その平面図(図12(a))と斜視図(図12(b))である。 上記第2の実施形態(実施例2)のマイクロリアクタ内における流体の界面回転を示すための図であり、界面回転を示す流路断面の位置を示す斜視図(図13(a))と、上流側から下流側を見たときの当該流路断面での流体の界面回転の様子を示す流路断面図(図13(b))である。 本発明の第3の実施形態(実施例3)になるマイクロリアクタの流路形状を示す平面図である。 本発明の第4の実施形態(実施例4)になるマイクロリアクタの流路形状を示す平面図である。 本発明の第5の実施形態(実施例5)になるマイクロリアクタの流路形状を示す平面図である。 本発明の第6の実施形態(実施例6)によるマイクロリアクタの流路形状を示す平面図である。
 以下、本発明の実施形態について、添付の図面を参照しながら詳細に説明する。
 まず、添付の図1、図3及び図4を用いて、本発明のマイクロリアクタを用いた多段反応のマイクロリアクタシステムの構成について説明する。なお、これらの図では、二段反応の場合について示しているが、しかしながら、これらの構成は二段反応だけに限定されるものではない。
 まず、図1は、本発明のマイクロリアクタを用いた多段反応のマイクロリアクタシステムを示す図である。図にも示すように、本発明になる多段反応のマイクロリアクタシステムは、原料溶液を送液するための送液ユニット113、マイクロリアクタを搭載するためのリアクタユニット114、温度を管理するための温度調節ユニット115、そして、制御装置116から構成されている。
 なお、図1に示すマイクロリアクタシステムでは、原料1溶液101と原料2溶液102とを、送液ユニット113内のシリンジ105とシリンジポンプ106とを用いることにより、原料1溶液の導入部107及び原料2溶液の導入部108を経由して、リアクタユニット114内の一段目のマイクロリアクタ109に導入する。その後、一段目の反応の反応部110を経て、原料1溶液と原料2溶液とが混合・反応した一段目の反応の生成物溶液を得る。更に、前記一段目の反応(一段目の反応の反応部110)の生成物溶液と、原料3溶液103とを、送液ユニット113内のシリンジ105とシリンジポンプ106とを用いて、原料3溶液の導入部111を経由して、リアクタユニット114内の二段目のマイクロリアクタ109に導入する。その後、二段目の反応の反応部112を経て、上記三種の溶液である原料1溶液、原料2溶液及び原料3溶液が混合・反応した生成物溶液104を得る。
 次に、添付の図3は、以上の図1にも示した本発明のマイクロリアクタを用いた多段反応のマイクロリアクタシステムを、特に、間欠送液の場合に適用した場合の詳細を示している。
 図において、送液ユニット113は、その内部に、系内の圧力を監視するための圧力センサ301、溶液の吸引・送液・廃液操作を切り替えるための切り替えバルブ302、廃液ライン303、吸引ライン304、原料1溶液の導入部107、原料2溶液の導入部108、シリンジ105、シリンジポンプ106と共に、ここでは図示しないが、シリンジを固定するためのホルダ、電源スイッチ、異常動作を起こした場合の非常停止スイッチ、通信用コネクタ、廃液ライン、吸引ライン、原料1溶液の導入部、原料2溶液の導入部を接続するためのフィッティングなどを含んでいる。
 なお、上記図3には、上記送液ユニット113がその内部にシリンジが4本搭載されている場合を示しているが、しかしながら、シリンジの数は、所定の反応を実施するために必要な数だけあればよく、図示されたシリンジの数に限定されるものではない。また、後にも述べるが、例えば、シリンジ2本を一組とした追加送液ユニットにより、シリンジの数を増やすことも可能である。但し、この図3に示すシステムの場合には、一旦、シリンジ内の溶液を送り切って(使い切って)しまうと、その後、吸引ライン304から溶液を吸引するため、ある程度の時間を要する。そのため、事実上、間欠送液で反応を実施することになる。
 また、リアクタユニット114内には、マイクロリアクタ109が直列に接続されている。即ち、一段目の反応に用いるマイクロリアクタ109は、原料1溶液の導入部107、原料2溶液の導入部108、一段目の反応の反応部110と共に、ここでは図示しないフィッティングにより接続されている。一方、二段目の反応に用いるマイクロリアクタ109は、一段目の反応の反応部110、原料3溶液の導入部111、二段目の反応の反応部112と共に、ここでは図示しないフィッティングにより接続されている。なお、マイクロリアクタとしては、以下に詳述する本発明のマイクロリアクタの他にも、市販のマイクロリアクタやT字管又はY字管などを用いることもできる。
 温度調節ユニット115は、リアクタユニット114に対して温度の制御及びフィードバック120を行うことにより、各マイクロリアクタの温度を個別に制御することが可能である。温度調節の方法としては、例えば、循環恒温槽を用いて熱媒体を循環させる方法、ペルチェ素子を用いる方法なでがある。また、個別に温度を制御する対象としては、例えば、マイクロリアクタの周辺を循環している熱媒体、マイクロリアクタの外側や内部などが挙げられるが、しかしながら、実際に流れている流体、又は、実際に流れている流体に近い場所を当該制御の対象とすることにより、より精密に温度制御が可能となる。
 なお、上記の3つのユニットは、制御装置116により監視・操作される。まず、送液ユニット113は、ここでは矢印で示す送液ユニットの制御およびフィードバック117により、監視・操作される。さらに、リアクタユニット114と温度調節ユニット115は、それぞれ、やはり矢印で示すリアクタユニットと送液ユニットの間のデータ通信119、及び、温度調節ユニットと送液ユニットの間のデータ通信118により、即ち、送液ユニット113を介して監視・操作される。
 具体的には、制御装置116により、送液ユニット113内の切り替えバルブ302を切り替え、かつ、シリンジポンプ106によってシリンジ105を動作させることにより、シリンジ内に溶液を吸引し、又は、送液する操作を、更には、シリンジ内の溶液を廃液タンク(図示しない)などに廃棄する操作を行う。また、送液操作、吸引操作を途中で停止したり、再開したりすることも可能である。
 そして、制御装置116によれば、各シリンジのサイズ、吸引ライン304からの吸引量と吸引速度、リアクタユニット114への送液量と送液速度、廃液ライン303への送液量と送液速度、及び、マイクロリアクタの温度を設定すること、つまり反応温度を設定することが可能である。また、反応の終了後に洗浄液を送液する場合や、原料が高価であることからその使用量を必要最小限に抑える場合など、送液の「時間遅れ」を設定し、もって、シリンジ毎にその送液開始時間を変更することもできる。
 更には、吸引・送液過程に伴うシリンジの動作やバルブの動作に関連して、2つ以上の連続させたい動作を指示するための入力ファイルを作成しておき、当該制御装置116にこのファイルを読み込ませて実行させることによれば、前記の動作を一連の作業として、連続して動作させることも可能である。また、かかるファイルを当該制御装置116内に保存しておき、必要なときにファイルを読み込むことによって動作させること、更には、当該ファイルの内容を適宜書き換えることも可能である。
 そして、制御装置116は、温度調節ユニット115から得られる温度の情報や、圧力センサ301から得られる系内の圧力のデータ、更には、時間のデータなどを、その内部に記録することができる。また、制御装置116は、圧力センサや切り替えバルブなどの耐圧から、系内の圧力に対して予め閾値を決めておき、そして、系内の圧力が当該閾値を超えた場合には、システム全体を非常停止する。
 ここで、上述した吸引ライン304、廃液ライン303、原料1溶液の導入部107、原料2溶液の導入部108、一段目の反応の反応部110、二段目の反応の反応部112、マイクロリアクタ109などの材質については、行われる反応に悪影響を与えないものであればよく、また、その内部を流れる溶液の温度や物性に応じ、適宜、変更することも可能である。かかる材質としては、例えば、ステンレス、シリコン、ガラス、ハステロイ、シリコン樹脂、フッ素系樹脂などを挙げることができる。また、加えて、グラスライニング、ステンレスやシリコンなどの表面にニッケルや金などのコーティングをしたもの、シリコンの表面を酸化させたものなど、所謂、耐食性を向上させたものを用いることもできる。
 図4は、本発明のマイクロリアクタを用いた多段反応のマイクロリアクタシステムを、特に、連続送液に適用した場合の詳細を示す図である。
 上述した図3に示したマイクロリアクタシステムのように、間欠送液を行う場合、シリンジ内の液体を送り切った後は、必ず最初の系内の体積分の液体をデッドボリュームとして廃棄しなければならず、そのため、高価な原料を送液する場合や、送液速度が非常に遅い場合には、実験のデータ取得において弊害を生じる場合がある。また、マイクロリアクタでの結果を、実際の生産現場で適用する場合には、装置の連続運転や連続生産による評価が必要不可欠となる。
 この図4の実施例では、2本のシリンジを一組としてT字コネクタ401で接続し、これをマイクロリアクタに接続しており、かかる構成において、一方のシリンジからの送液が終わったら、他方のシリンジにより送液し、同時に、空になったシリンジに原料を吸引するという操作を繰り返す。このことによれば、送液動作に切れ目を生じることなく、連続運転を行うことができる。なお、この動作は、一連の作業として連続動作される。このような動作によれば、最初に、一回分だけのデッドボリュームの液体を廃棄すればよい。また、このデッドボリュームがシリンジ一本分の容量より大きい場合でも、送液を行うことは可能である。
 また、二段反応の場合、このような連続送液の方法を採用すると、シリンジが、計6本必要になる。上記の図4では、送液ユニット113内のシリンジの本数が4本であるが、しかしながら、例えば、シリンジ2本を一組とした、所謂、追加送液ユニット402を用いることによれば、必要に応じて、マイクロリアクタシステムを再構築することが可能となる。
 上述した追加送液ユニット402を用いることによれば、間欠送液の場合も、連続送液の場合と同様、三段反応以上の多段反応に対しても、このマイクロリアクタシステムを適用することが出来る。なお、本発明の実施形態になるマイクロリアクタシステムの以上の説明においては、液体が反応することを前提とした表現を用いているが、しかしながら、本発明のマイクロリアクタシステムは、その内部で反応が進行しない場合、つまり溶液の多段混合にも適用することができる。更に、本発明のマイクロリアクタシステムは、反応させた後に連続してクエンチ反応を行う場合や、混合させた後に連続して反応させる場合や、混合と反応が交互に必要な場合にも、同様に、適用することができる。加えて、本発明のマイクロリアクタシステムは、互いに混合し合う均一系の系だけでなく、混合し合わない乳化プロセスに代表される不均一系に対しても、同様に、適用可能である。
 続いて、添付の図5~図11を用いて、本発明のマイクロリアクタ109の構成、特に、第1の実施の形態(実施例1)になる構成について詳細に説明する。
 まず、図5は、本発明の実施例1になるマイクロリアクタの展開斜視図を示しており、図6は、当該マイクロリアクタを構成する流路形成プレートを示す。
 図5に示すように、本発明の実施例1になるマイクロリアクタは、上側プレート504、下側プレート505、そして、ホルダプレート506の、合計3枚のプレートから形成される。なお、これらの3枚のプレートに対し、それぞれの表面に形成されたパッキン溝509内に図示しないパッキンを挿入し、そして、ネジ用孔507とネジ切り508とを用いて、図示しないネジにより止めることによれば、シール性の高いマイクロリアクタを形成することができる。また、流路510は、図6にも示すように、上側プレート504(図6(b))の表面に形成された流路510と、下側プレート505(図6(a))の表面に形成された流路510とを合わせることにより構成されている。
 ここで、再び、図5において、原料A溶液501及び原料B溶液502は、それぞれ原料A溶液導入口511及び原料B溶液導入口512から導入され、その後、流路510を経て、生成物溶液排出口513から排出され、もって、原料A溶液と原料B溶液とが混合・反応することによる生成物溶液503が得られる。
 なお、ホルダプレート506の裏側には、上記原料A溶液導入口511及び原料B溶液導入口512、更には、生成物溶液排出口513に対応して、ここでは図示しないチューブと接続するためのフィッティング(図示せず)が接続できるように、ネジ切り加工(図示せず)が施されている。なお、このとき、例えば、フラットボトムタイプのフィッティングを接続できるようなネジ切り加工を施すことによれば、送液ポンプと接続されている導入部の終端や、前段のマイクロリアクタと接続されている反応部の終端を、原料A溶液導入口511及び原料B溶液導入口512、そして、生成物溶液排出口513にまで達するようにすることが可能となり、これによれば、原料A溶液501及び原料B溶液502の導入時におけるデッドボリュームを極力小さくすることが可能となる。
 ここで、上側プレート504、下側プレート505、そして、ホルダプレート506の材質としては、行われる反応に悪影響を与えないものであればよく、また、反応の種類に応じて、適宜、変更することも出来る。かかる材質としては、例えば、ステンレス、シリコン、金、ガラス、ハステロイ、シリコン樹脂、フッ素系樹脂などを用いることができる。また、グラスライニング、金属の表面にニッケルや金などのコーティングをしたもの、シリコンの表面を酸化させたものなど、所謂、耐食性を向上させたものを用いてもよい。
 そして、上述したパッキン(但し、図示せず)の材質も、反応に悪影響を与えないものであればよく、そして、反応の種類に応じて、適宜、変更することもできる。例えば、シリコン樹脂、フッ素系樹脂などを用いることができる。
 また、上記の図5に示したマイクロリアクタは、パッキン及びネジにより組み立てることにより、分解可能な構造となっているが、しかしながらこれに限定されることなく、例えば、拡散接合などにより上記3枚のプレートを接合することによれば、分解不可能な構造とすることもできる。なお、マイクロリアクタは、上述したような分解可能な構造とすることによれば、例えば、その内部で閉塞が起こった場合など、これらのプレートを分解して洗浄することができることから、メンテナンス性が向上し、好ましい。
 続いて、図7は、上述したマイクロリアクタの流路形状を示すための平面図(図7(a))及び斜視図(図7(b))である。
 図からも明らかなように、本発明のマイクロリアクタにおける流路510は、上側の部分(図では、実線で示す)と下側の部分(破線で示す)とから構成されており、この流路は以下のような形状となっている。例えば、導入された原料A溶液501の流体と原料B溶液502の流体は、まず、流路変更部704において、下側の流路から上側の流路へ、即ち、法線方向に移動されると共に、その進路を、上流側の流路の方向へ直角に(本例では左方向に)変更される。その後、上記の流体は、流路分割部701において左右に分割され、更に、再度、流路変更部705において、上側から下側への法線方向の移動と進路の変更(本例では右方向)を行う。そして、流路合流部702において、上下に合流された後、流体は、再び、流路変更部703において、下側の流路から上側の流路へ法線方向に移動すると共に、直角に右方向に進路を変更する。そして、上述した流路が、上記マイクロリアクタの内部において、繰り返して形成されている。
 即ち、マイクロリアクタの内部では、上述した流路により、原料A溶液501及び原料B溶液502の迅速な混合が行われ、そして、最終的には、原料A溶液及び原料B溶液が混合・反応することによる生成物溶液503が得られることとなる。
 なお、上述したマイクロリアクタ内における溶液の分割・混合の繰り返しの数については、上記図7(a)、(b)に示した流路形状に限定されるものではなく、用いる溶液の物性や反応時間などに応じて、適宜、変更することができることは、当業者であれば明らかであろう。
 次に、図8は、上記実施例1になるマイクロリアクタの流路内における流体の、界面の回転を示す図であり、特に、図8(a)は、流路内において上流側から下流側に順次設定された流路断面A~Gの位置を示し、そして、図8(b)は、マイクロリアクタの流路における上記流路断面A~Gでの流体の界面回転の様子を示している。
 まず、流体の界面回転について説明する。ここで、上流側の進路方向に向かって、直角に、右方向にその進路を変更する場合を考える。下側の流路から上側の流路へ法線方向に移動する場合には、直線状の界面を有する流体は、下流側でその界面を右方向に90度回転して流動する。一方、上側の流路から下側の流路へ法線方向に移動する場合には、直線状の界面を有する流体は、下流側でその界面を左方向に90度回転して流動する。但し、このように上流側の進路と下流側の進路とが成す角度と、界面が回転する角度とが等しくなるのは、レイノルズ数が約2以下の場合であることが知られており、実際には、界面が回転する角度は、流体の粘度や密度、更には、送液速度、流路の幅や深さにも依存する。
 一方、流体を分割するときには、特に、原料A溶液と原料B溶液の体積比が1:1でない場合には、流体の界面に対して直交して分割するのが望ましい。何故ならば、分割から合流までの間にも反応が進行することから、その間においても、原料A及び原料Bが所定の当量比にしておく必要があるからである。
 また、原料A溶液と原料B溶液の体積比が1:1の場合でも、流体の界面に対して斜めに分割すると、分割したそれぞれにおいて、原料A及び原料Bが所定の当量比にならず、目的の当量比での反応が進行しない可能性がある。また、流体の界面上で分割すると、分割した流体の一方が原料A溶液、他方が原料B溶液となり、そのため、分割している期間は反応が進行しない可能性がある。
 続いて、図8(b)では、導入する原料A溶液501と原料B溶液502とはその間に界面を形成する(即ち、互いに全く混合しない)流体であり、体積比が1:1で導入されたと仮定する。この図8(b)に示すように、まず、原料A溶液501及び原料B溶液502が導入された直後では、これらの原料A溶液501と原料B溶液502とが、流路内において互いに左右に位置する流体となっている(流路断面Aを参照)。そして、下側の流路から上側の流路へ法線方向に移動すると共に、上流側の流路方向に対して直角に左方向に進路を変更し、流体の界面が左方向に90度回転することにより、原料A溶液501と原料B溶液502とが上下に分離して位置する流体となる(流路断面Bを参照)。その後、流体は左右方向に分割される。なお、この分割された流体のそれぞれは、原料A溶液501と原料B溶液502とが上下に位置した流体となる(流路断面Cを参照)。その後、分割された流体のそれぞれが、上側の流路から下側の流路へ法線方向に移動すると共に、上流側の流路方向に対して直角に、右方向に進路を変更される。これにより、流体が左方向に90度回転するが、一方の分割した流体の上に他方の分割した流体が覆い被さるように合流するため、原料A溶液501と原料B溶液502とは、互いに左右に分離されて位置する流体となる(流路断面Dを参照)。
 更に、下側の流路から上側の流路へ法線方向に移動すると共に、上流側の流路方向に対して直角に右方向へ進路を変更し、即ち、流体が右方向に90度回転することにより、原料A溶液501と原料B溶液502とは、上下に分離して位置する流体となる(流路断面Eを参照)。
 その後、流体は左右方向に分割され、そして、分割された流体のそれぞれは、原料A溶液501と原料B溶液502とが互いに上下に分離されて位置する流体となる(流路断面Fを参照)。その後、分割された流体のそれぞれは、上側の流路から下側の流路へ法線方向に移動すると共に、上流側の流路方向に対して直角に左方向へ進路を変更し、即ち、流体が右方向に90度回転するが、一方の分割された流体の上に他方の分割された流体が覆い被さるように合流するため、再び、原料A溶液501と原料B溶液502とは、左右に分離して位置する流体となる(流路断面Gを参照)。
 ここで、上記の図8(b)では、導入する原料A溶液501と原料B溶液502はその間に界面を形成する(即ち、互いに全く混合しない)流体であると仮定したが、しかしながら、実際には、流体は、分流・合流を繰り返す過程において、互いに混合していく。従って、流体の分流・合流の後、下側の流路から上側の流路へ法線方向に移動し、そして、上流側の流路方向に対して直交方向に進路を変更させることによれば、流体が分割される前に、必ず、原料A溶液501と原料B溶液502とが上下に分離して位置する流体となることから、効率よく流体の分流・合流が起こり、これらの溶液が混合していくものと考えられる。
 先にも述べたように、界面が回転する角度は、流体の粘度や密度、送液速度、流路の幅や深さなどに依存する。添付の図9は、上記実施例1になるマイクロリアクタ内の流体の界面回転を比較した図であり、ここでも流路断面は、上記図8(a)に示した流路断面A~Gと同様であり、そして、上下の流路間を法線方向に移動し、上流側の流路方向に対して直交方向に進路を変更したときの様子を示している。特に、図9(a)は、界面が90度回転するとき(上記図8(b)と同様)の様子を、図9(b)は、界面が135度回転するときの様子を、そして、図9(c)は、界面が180度回転するときの様子を示している。図9(b)、(c)は、レイノルズ数が大きくなり、流体の旋回による影響が現れた場合に対応する。なお、ここでも、上記図8におけると同様に、導入する原料A溶液501と原料B溶液502とはその間に界面を形成する(即ち、互いに全く混合しない)流体であると仮定する。
 図9(b)に示すように、上下の流路間を法線方向に移動し、上流側の流路方向に対して直交方向に進路を変更したときに界面が135度回転する場合には、まず、原料A溶液501と原料B溶液502とが、導入された直後において左右に位置した流体である(流路断面Aを参照)。そして、下側の流路から上側の流路へ法線方向に移動すると共に、上流側の流路方向に対して直角に左方向へ進路を変更すると、界面が左方向に135度回転し、即ち、原料A溶液501と原料B溶液502とが対角線方向に位置した流体となる(流路断面Bを参照)。その後、流体は左右方向に分割され、分割された流体のそれぞれが、原料A溶液501と原料B溶液502とが斜め方向に位置する流体となる(流路断面Cを参照)。その後、分割された流体のそれぞれが、上側の流路から下側の流路へ法線方向に移動すると共に、上流側の流路方向に対して直角に右方向へ進路を変更すると、界面が左方向に135度回転するが、一方の分割した流体の上に他方の分割した流体が覆い被さるように合流するため、原料A溶液501と原料B溶液502交互に上下方向に位置することとなり、4層の流体となる(流路断面Dを参照)。
 さらに、下側の流路から上側の流路へ法線方向に移動すると共に、上流側の流路方向に対して直角に右方向へ進路を変更すると、流体が右方向に135度回転し、もって、原料A溶液501と原料B溶液502は交互に対角線方向に位置することとなり、4層の流体となる(流路断面Eを参照)。
 その後、流体は左右方向に分割され、分割した流体のそれぞれが交互に対角線方向に位置する4層の流体となる(流路断面Fを参照)。その後、分割した流体のそれぞれは、上側の流路から下側の流路へ法線方向に移動すると共に、上流側の流路方向に対して直角に左方向へ進路を変更すると、流体が左右方向に135度回転するが、一方の分割した流体の上に他方の分割した流体が覆い被さるように合流するため、再び、原料A溶液501と原料B溶液502とが交互に左右方向に位置する4層の流体が、上下に位置する流体となる(流路断面Gを参照)。
 以上の過程を繰り返すことにより、即ち、流路の上下間を法線方向に移動すると共に、上流側の流路方向に対して直交方向に進路を変更したときに、界面が135度回転するものと仮定した場合には、流体を分割するときに、原料A溶液501と原料B溶液502とが、互いに対角線方向に位置する流体となる場合と、左右に位置した流体になる場合と、そして、上下に位置する流体になる場合とが存在し、それらの間を繰り返すことが分かる。
 以上のように、図9(b)では、導入される原料A溶液501と原料B溶液102はその間に界面を形成する(即ち、互いに全く混合しない)流体であると仮定したが、しかしながら、実際には、上記図8(b)(又は、図9(a))と同様に、これらは、流体が分流・合流を繰り返す過程において、互いに混合していく。従って、流体の分流・合流後、下側の流路から上側の流路へ法線方向に移動し、そして、上流側の流路方向に対して直交方向に進路を変更することによれば、流体が分割される前に、原料A溶液501と原料B溶液502とが対角線方向に位置する流体となる場合と、上下方向に位置した流体となる場合とが必ず存在し、しかもその層の数が増えて行くことになるため、混合が促進されることが分かる。
 なお、流体が分割される前に、原料A溶液501と原料B溶液502とが対角線方向に位置する流体となる場合には、流体が分割された後に、原料A溶液501と原料B溶液502との流量比のバランスが崩れてしまう心配があるが、しかしながら、例えば、送液流量を十分に大きくし、あるいは、流体の分割から合流までの流路体積を小さくすることにより、流体の分割から合流までの時間を十分に短くすることが出来ることから、反応時間の制御に関しては、大きな問題は生じないものと考えられる。
 一方、図9(c)に示すように、上下の流路間を法線方向に移動すると共に、上流側の流路方向に対して直交方向に進路を変更しても、流体の界面が180度回転する場合には、まず、原料A溶液501と原料B溶液502とを導入した直後は、これらの原料A溶液501と原料B溶液502とが左右に位置する流体となる(流路断面Aを参照)。そして、下側の流路から上側の流路へ法線方向に移動すると共に、上流側の流路方向に対して直角左方向に進路を変更するが、しかしながら、流体の界面は左方向に180度回転することから、ここでは、原料A溶液501と原料B溶液502の順序は入れ替わるが、互いに左右に位置したままの流体となる(流路断面Bを参照)。その後、流体は左右方向に分割され、分割した流体の一方が原料A溶液501、他方が原料B溶液502となる(流路断面Cを参照)。その後、分割した流体のそれぞれが、上側の流路から下側の流路へ法線方向に移動すると共に、上流側の流路方向に対して直角に右方向へ進路を変更するが、しかし、ここでも界面は左方向に180度回転し、一方の分割した流体の上に他方の分割した流体が覆い被さるように合流するため、原料A溶液501と原料B溶液502とが互いに上下に位置する流体となる(流路断面Dを参照)。
 さらに、下側の流路から上側の流路へ法線方向に移動すると共に、上流側の流路方向に対して直角右方向に進路を変更し、流体の界面は右方向に180度回転する(流路断面E)。その後、流体は左右方向に分割され、分割した流体のそれぞれは、原料A溶液501と原料B溶液502とが上下に位置する流体となる(流路断面Fを参照)。その後、分割した流体のそれぞれは、上側の流路から下側の流路へ法線方向に移動すると共に、上流側の流路方向に対して直角に左方向へ進路を変更すると、流体は右方向に180度回転し、一方の分割した流体の上に他方の分割した流体が覆い被さるように合流することから、原料A溶液501と原料B溶液502は交互に位置することとなり、もって、4層の流体となる(流路断面Gを参照)。
 以上の過程を繰り返すことによれば、即ち、上下の流路間を法線方向に移動すると共に、上流側の流路方向に対して直交方向に進路を変更したときに、界面が回転しないと仮定した場合には、流体を分割するときには、必ず、原料A溶液501と原料B溶液502とが上下方向に位置する流体となり、しかもその層の数が増えて行くことになるため、混合が促進されることが分かる。
 ここで、図9(c)では、導入する原料A溶液501と原料B溶液502はその間に界面を形成する(即ち、互いに全く混合しない)流体であると仮定したが、しかしながら、上記の図8(b)((図9(a))と同様に、実際には、流体の分流・合流を繰り返す過程において、これらの溶液は混合していく。従って、流体が分割される前に、流体の分流・合流の後、下側の流路から上側の流路へ法線方向に移動し、上流側の流路方向に対して直交方向に進路を変更させることによれば、効率よく流体の分流・合流が生じ、もって、溶液を混合するものと考えられる。
 以上に述べた図8(b)(図9(a))、図9(b)、図9(c)の説明によれば、界面が回転する角度が変わったとしても、流体が分割される前に、流体の分流・合流の後、下側の流路から上側の流路へ法線方向に移動し、かつ、上流側の流路方向に対して直交方向に進路を変更させることによれば、流体の分流・合流が効率よく生じ、もって、混合されていくことが示された。なお、界面が回転する角度は、流体の粘度や密度、送液速度、流路の幅や深さなどによって決まるレイノルズ数に依存することから、レイノルズ数がどのような値であっても、混合が促進されることを示している。特に、レイノルズ数が大きく、流体の旋回による影響が現れ、界面の回転角度が大きくなるにつれ、より効率よく分流・合流が起こっていることがわかる。従って、本発明によるマイクロリアクタを用いることによれば、送液流量が小さい場合でも、混合性能が確保できることとなる。
 また、本発明によるマイクロリアクタは、上述したように、2種類の原料A溶液501と原料B溶液502とを、多層(上側プレート504、下側プレート505)に亘って導入していない、即ち、最下層のホルダプレート506から下側プレート505へ導入する構造であることから、原料を導入する部分の裏側には、所謂、マニホールドがない。従って、特に、2段目以降のマイクロリアクタとしても、上記実施例1になるマイクロリアクタを用いれば、多段反応に必要な、導入部における厳密な反応時間の制御が可能となる。
[変形例]
 以上に詳述した実施例1になるマイクロリアクタにおいては、流体の分流(流路分割部701)・合流(流路合流部702)の後、下側の流路から上側の流路へ法線方向に移動し、かつ、上流側の流路方向に対して直交方向に進路を変更(流路変更部703)する流路の構造について述べたが、次に、これを行わない場合の構造である第1の実施例(実施例1)の変形例について、以下に説明する。
 図10(a)は、の流路の構造を示しており、図からも明らかなように、上述したように、この変形例になるマイクロリアクタでは、上述した実施例になるマイクロリアクタでは行われた、流体の分流・合流後の下側の流路から上側の流路への法線方向の移動と上流側の流路方向に対する直交方向への進路の変更は行なわず、そして、図には、かかる流路における流体の界面回転の様子を示す流路断面A~Fの位置が示されている。そして、図10(b)は、上流側から下流側を見たときの、これらの流路断面A~Fでの流体の界面回転の様子を示す。
 この図10(b)でも、上記図8(b)と同様、導入する原料A溶液501と原料B溶液502とはその間に界面を形成する(即ち、互いに全く混合しない)流体であると仮定する。図にも示すように、まず、原料A溶液501と原料B溶液502とが導入された直後は、それぞれ左右に位置した流体となる(流路断面Aを参照)。そして、下側の流路から上側の流路へ法線方向に移動すると共に、上流側の流路方向に対して直角左方向に進路を変更し、流体の界面が左方向に90度回転することにより、原料A溶液501と原料B溶液502とはそれぞれが上下に位置する流体となる(流路断面Bを参照)。その後、流体は左右方向に分割され、その後、分割された流体のそれぞれは、原料A溶液501と原料B溶液502とが上下に位置する流体となる(流路断面Cを参照)。その後、分割された流体のそれぞれは、上側の流路から下側の流路へ法線方向に移動すると共に、上流側の流路方向に対して直角右方向に進路を変更する。この時、流体は右方向に90度回転するが、一方の分割した流体の上に他方の分割した流体が覆い被さって合流することから、原料A溶液501と原料B溶液502とがそれぞれ左右に位置する流体となる(流路断面Dを参照)。なお、ここまでは、上記図8(b)の場合と同様である。
 その後、流体は直ちに左右方向に分割されることから、分割した流体の一方は、原料A溶液501、他方は、原料B溶液502となる(流路断面Eを参照)。その後、分割した流体のそれぞれが、上側の流路から下側の流路へ法線方向に移動すると共に、上流側の流路方向に対して直角左方向に進路を変更する。この時、流体は左方向に90度回転するが、一方の分割した流体の上に他方の分割した流体が覆い被さって合流することから、再び、原料A溶液501と原料B溶液502とがそれぞれ上下に位置する流体となる(流路断面Fを参照)。
 従って、流体の分流・合流後に、下側の流路から上側の流路へ法線方向に移動し、上流側の流路方向に対して直交する方向に進路を変更しない場合には、流体が分割される前に、原料A溶液501と原料B溶液502とが上下に位置する流体となる場合と、左右に位置する流体となる場合とが存在するため、上記図8(b)で示した流体の分流・合流後に、下側の流路から上側の流路へ法線方向に移動し、かつ、上流側の流路方向に対して直交方向に進路を変更する場合に比較して、流体の分流・合流が効率よく起こらないことが分かる。
 また、実際には、流体が回転する時に、流体の界面が回転するだけではなく、流体の界面自体も乱される。従って、流体の回転する回数が多くなる、又は、回転する角度が大きくなると、流体の界面がより乱され、より流体が混合し易くなると考えられる。
 図11は、混合性能と、流体が回転した角度の和との関係を示す模式図である。原料A溶液501と原料B溶液502とを導入した後、分流・合流を2回繰り返した時点(流路断面Gを参照)において、上記図8(b)の下側の流路から上側の流路へ法線方向に移動し、かつ、上流側の流路方向に対して直交方向に進路を変更した場合には、回転した角度の和は、右方向及び左方向を合わせると360度である。一方、上記図10(b)にも示すように、進路の法線方向への移動と直交方向への変更を行わない場合には、回転した角度の和は、右方向及び左方向を合わせても270度である。ここで、図11からは、回転した角度の和が大きい程、混合性能が大きくなることから、「下側の流路から上側の流路へ法線方向に移動し、上流側の流路方向に対して直交方向に進路を変更する」という過程を加えた上記図8(b)の場合のほうが、その回転する角度において、必ず、大きくなるため、流体の界面自体の乱れという観点からも、より流体が混合し易くなると言える。
 従って、本発明の第1の実施例(実施例1)によるマイクロリアクタでは、液溜まりの原因となるマニホールドを間に設けず、送液流路が小さくても混合性能が高くなると共に、2枚のプレートで、簡便に、マイクロリアクタを構成することが出来る。また、このマイクロリアクタを用いたマイクロリアクタシステムによれば、多段反応が、容易に実施することが可能になる。
 なお、上述した本発明の第1の実施例(実施例1)になるマイクロリアクタの説明において、進路を変更する角度として「直角」又は「直交」という表現を用いているが、しかしながら、流路の加工精度により、必ずしも正確に「右方向に90度」又は「左方向に90度」になるとは限らない。また、界面が回転する角度はレイノルズ数に依存するが、進路を変更する角度が正確に「右方向に90度」又は「左方向に90度」になっていなくても、下側の流路から上側の流路へ法線方向に移動し、かつ、上流側の流路方向に対して直交方向に進路を変更することにより、混合が促進されることは明らかである。
 次に、図12及び図13を用いて、本発明の第2の実施形態(実施例2)になるマイクロリアクタの構成について説明する。
 まず、図12(a)は、本発明の第2の実施形態(実施例2)になるマイクロリアクタの流路形状を示す平面図であり、図12(b)は、その斜視図である。
 本実施例2のマイクロリアクタにおける流路510は、上側の部分と下側の部分とからなり、導入された原料A溶液501と原料B溶液502とからなる流体が、流路変更部704において、下側の流路から上側の流路へ法線方向に移動すると共に、上流側の流路方向に対して直角左方向に進路を変更する。そして、流路分割部70において、流路が左右に分割され、その後、流路変更部705において、上側の流路から下側の流路へ法線方向に移動すると共に、上流側の流路方向に対して直角に右方向へ進路を変更する。そして、流路合流部702において、分割した流体が左右に位置し、その後、更に、流路変更部703において、下側の流路から上側の流路へ法線方向に移動すると共に、上流側の流路方向に対して直角に右方向へ進路を変更する。即ち、流路510は、上記の動作を繰り返して行う形状となっている。
 これにより、原料A溶液501と原料B溶液502との迅速な混合が行われ、最終的には、原料A溶液と原料B溶液とが混合・反応することにより、その生成物溶液503が得られる。
 図13は、上記第2の実施形態(実施例2)になるマイクロリアクタ内における流体の界面回転を示しており、特に、図13(a)は、流体の界面回転の様子を示す流路断面A~Gの流路内における位置を、そして、図13(b)は、流路を上流側から下流側を見たときの、上記流路断面A~Gでの、流体の界面回転の様子を示している。
 特に、図13(b)では、導入される原料A溶液501と原料B溶液502とはその間に界面を形成する(即ち、互いに全く混合しない)流体であると仮定する。図にも示すように、まず、原料A溶液501と原料B溶液502とが導入された直後は、それぞれ、左右に位置する流体となっている(流路断面Aを参照)。そして、下側の流路から上側の流路へ法線方向に移動すると共に、上流側の流路方向に対して直角に左方向へ進路を変更し、更に、流体の界面が左方向に90度回転することにより、原料A溶液501と原料B溶液502とは、上下に位置する流体となる(流路断面Bを参照)。その後、流体は左右方向に分割され、分割した流体のそれぞれが、原料A溶液501と原料B溶液502とが上下に位置する流体となる(流路断面Cを参照)。その後、分割した流体のそれぞれが、上側の流路から下側の流路へ法線方向に移動すると共に、上流側の流路方向に対して直角に右方向へ進路を変更し、流体が左方向に90度回転する。そして、左右に位置して合流することにより、原料A溶液501と原料B溶液502とが左右方向に交互に位置する4層の流体となる(流路断面Dを参照)。
 更に、下側の流路から上側の流路へ法線方向に移動すると共に、上流側の流路方向に対して直角右方向に進路を変更し、更に、流体が右方向に90度回転することにより、原料A溶液501と原料B溶液502とが上下方向に交互に位置する4層の流体となる(流路断面Eを参照)。
 その後、流体は左右方向に分割され、分割した流体のそれぞれが、原料A溶液501と原料B溶液502とが上下方向に交互に位置する4層の流体となる(流路断面Fを参照)。そして、分割した流体がそれぞれ、上側の流路から下側の流路へ法線方向に移動すると共に、上流側の流路方向に対して直角に左方向へ進路を変更し、更に、流体が右方向に90度回転する。その後、左右に位置して合流することにより、原料A溶液501と原料B溶液502とが左右方向に交互に位置した、8層の流体となる(流路断面Gを参照)。
 ここで、上記図13(b)では、導入される原料A溶液501と原料B溶液502とはその間に界面を形成する(即ち、互いに全く混合しない)流体であると仮定したが、上記図8(b)や図9と同様、実際には、流体の分流・合流を繰り返す過程で混合していく。従って、流体の分流・合流の後、下側の流路から上側の流路へ法線方向に移動し、かつ、上流側の流路方向に対して直交方向に進路を変更させることによれば、流体が分割される前には、必ず、原料A溶液501と原料B溶液502とが上下に位置する流体となり、そして、流体の分割後、上側の流路から下側の流路へ法線方向に移動し、かつ、上流側の流路方向に対して直交方向に進路を変更し、かつ、左右に位置して合流することによれば、形成される層の数が増え、実質的な分子の拡散距離が短くなることになり、そのため、効率よく、流体の分流・合流が起こる。また、流体の界面自体の乱れという観点からも、「下側の流路から上側の流路へ法線方向に移動し、かつ、上流側の流路方向に対して直交方向に進路を変更させる」という過程により、より混合し易くなっている。
 従って、本発明の第2の実施形態(実施例2)になるマイクロリアクタでも、液溜まりの原因となるマニホールドを間に設けず、送液流路が小さくても混合性能が高くなると共に、2枚のプレートで、簡便に、マイクロリアクタを構成することが出来る。
 さらに、図14を用いて、本発明の第3の実施形態(実施例3)になるマイクロリアクタの流路形状について説明する。この図14は、本発明の第3の実施形態(実施例3)になるマイクロリアクタの、特に、その流路形状を示す平面図である。
 この図にも示すように、この第3の実施形態(実施例3)になるマイクロリアクタにおける流路510は、上側の部分と下側の部分とからなり、導入された原料A溶液501と原料B溶液502とからなる流体が、下側の流路から上側の流路へ法線方向に移動すると共に、上流側の流路方向に対して直角に左方向へ進路を変更704する。その後、流体は、流路分割部701において左右に分割され、上側の流路から下側の流路へ法線方向に移動すると共に、上流側の流路方向に対して直角に右方向へ進路を変更705する。その後、分割した流体が流路合流部702において、上記溶液が上下に位置する流体となった後、下側の流路から上側の流路へ法線方向に移動すると共に、上流側の流路方向に対して直角に左方向へ進路を変更704する。即ち、流路510は、上記の動作を繰り返す形状となっている。
 これにより、原料A501と原料B溶液502との迅速な混合が行われ、最終的には、原料A溶液と原料B溶液とが混合・反応することにより、その生成物である生成物溶液503が得られる。
 従って、この第3の実施例(実施例3)になるマイクロリアクタによっても、液溜まりの原因となるマニホールドを間に設けることなく、送液流路が小さいにもかかわらず混合性能が高くなると共に、2枚のプレートで、簡便に、マイクロリアクタを構成することが出来る。
 また、図15を用いて、本発明の第4の実施形態(実施例4)になるマイクロリアクタの流路形状について説明する。この図15は、第4の実施形態(実施例4)になるマイクロリアクタの流路形状を示す平面図である。
 図からも明らかなように、第4の実施形態(実施例4)になるマイクロリアクタにおける流路510は、上側の部分と下側の部分とからなり、導入された、原料A溶液501と原料B溶液502とからなる流体が、下側の流路から上側の流路へ法線方向に移動すると共に、上流側の流路方向に対して直角に左方向へ進路を変更704する。そして、左右に分割701され、流路変更部705において、上側の流路から下側の流路へ法線方向に移動すると共に、上流側の流路方向に対して直角に右方向へ進路を変更し、流路合流部702において、分割した流体が左右に位置するように合流する。その後、流体は、更に、流路変更部704において、下側の流路から上側の流路へ法線方向に移動すると共に、上流側の流路方向に対して直角に左方向へ進路を変更する。即ち、流路510は、以上の動作を繰り返す形状となっている。
 これにより、原料A溶液501と原料B溶液502との迅速な混合が行われ、最終的には、原料A溶液と原料B溶液とが混合・反応することによる生成物である合成物溶液503が得られる。
 従って、この第4の実施形態(実施例4)になるマイクロリアクタによっても、液溜まりの原因となるマニホールドを間に設けることはないことから、送液流路が小さいにもかかわらず混合性能が高くなると共に、2枚のプレートで、簡便に、マイクロリアクタを構成することが出来る。
 また、図16を用いて、本発明の第5の実施形態(実施例5)になるマイクロリアクタの流路形状について説明する。なお、この図16は、本発明の第5の実施形態(実施例5)になるマイクロリアクタの流路形状を示す平面図である。
 この第5の実施形態(実施例5)になるマイクロリアクタの流路510も、上側の部分と下側の部分とからなり、導入された原料A溶液501と原料B溶液502とからなる流体が、流路変更部704において、下側の流路から上側の流路へ法線方向に移動すると共に、上流側の流路方向に対して直角に左方向に進路を変更する。その後、流路分割部701において、上流側の流路方向に対し、直進方向と直角方向との2つに流路に分割される。そして、流路変更部705において、再び、上側の流路から下側の流路へ法線方向に移動すると共に、上流側の流路方向に対して直角に右方向へ進路を変更する。更に、流路合流部702において、分割した流体が上下に位置するように合流した後、流路変更部703において、下側の流路から上側の流路へ法線方向に移動すると共に、上流側の流路方向に対して直角に右方向へ進路を変更する。即ち、流路510は、上記の動作を繰り返す形状を有している。
 これにより、原料A溶液501と原料B溶液502との迅速な混合が行われ、最終的には、原料A溶液と原料B溶液とが混合・反応することによる生成物である生成物溶液503が得られる。また、分割された流体の間で、流体の分割から合流までの流路体積をできる限り等しくなるようにすることにより、反応時間の制御をより厳密に行うことが可能となる。
 従って、この第5の実施形態(実施例5)によるマイクロリアクタによっても、液溜まりの原因となるマニホールドを間に設けることなく、送液流路が小さいにもかかわらずその混合性能が高くなると共に、2枚のプレートで、簡便に、マイクロリアクタを構成することが出来る。
 そして、図17を用いて、本発明の第6の実施形態(実施例6)になるマイクロリアクタの流路形状について説明する。なお、この図17は、第6の実施形態(実施例6)になるマイクロリアクタの流路形状を示す平面図である。
 本第6の実施形態(実施例6)になるマイクロリアクタにおける流路510は、図にも明らかなように、やはり、上側の部分と下側の部分とからなり、導入された原料A溶液501と原料B溶液502とからなる流体は、流路変更部704において、下側の流路から上側の流路へ法線方向に移動すると共に、上流側の流路方向に対して直角に左方向へ進路を変更する。その後、流路分割部701において左右に分割されるが、このとき、合流時に流れる流体が下側に入り込む側の流路の分岐の角度を小さくし、もって、できる限り分割から合流までの時間が同じになるようにする。そして、流路変更部705において、上側の流路から下側の流路へ法線方向に移動すると共に、上流側の流路方向に対して直角右方向に進路を変更し、更に、流路合流部702において、分割した流体を上下に位置するように合流した後、再び、流路変更部703において、下側の流路から上側の流路へ法線方向に移動すると共に、上流側の流路方向に対して直角に右方向へ進路を変更する。即ち、流路510は、以上の動作を繰り返す形状を有している。
 これにより、原料A溶液501と原料B溶液502との迅速な混合が行われ、最終的には、原料A溶液と原料B溶液とが混合・反応することによる生成物である、生成物溶液503が得られる。また、左右に分割していることから、上記図16で示した本発明の第5の実施形態(実施例5)になるマイクロリアクタのように、流路が上流側の流路方向に対して直進方向と直角方向の2つに分割される場合に比較して、分割時に流体の流れが乱れる可能性が低くなる。
 従って、この第6の実施形態(実施例6)になるマイクロリアクタにおいても、液溜まりの原因となるマニホールドを間に設けることなく、そのため、送液流路が小さいにもかかわらず混合性能が高くなると共に、2枚のプレートで、簡便に、マイクロリアクタを構成することが可能となる。
 なお、以上に述べた本発明の第2~6の実施形態(実施例2~6)になるマイクロリアクタにおいて、分割・混合の繰り返し数については、上述した数に限定されるものではなく、用いる溶液の物性や反応時間などに応じて、適宜、変更することができる。
 また、上記第1の実施形態(実施例1)での説明と同様に、進路を変更する角度として「直角」又は「直交」という表現を用いているが、しかしながら、流路の加工精度により、正確に「右方向に90度」又は「左方向に90度」になるとは限らない。また、界面が回転する角度はレイノルズ数にも依存するが、進路を変更する角度が正確に「右方向に90度」又は「左方向に90度」になっていなくてもよく、例えば、好ましくは、右方向もしくは左方向に85~95度の範囲内であれば、下側の流路から上側の流路へ法線方向に移動し、かつ、上流側の流路方向に対して直交方向に進路を変更させることにより、混合が促進される。
 更に、上述した本発明の第1~6の実施形態(実施例1~6)になるマイクロリアクタの説明においては、便宜上、「上側」又は「下側」という表現を用いているが、しかしながら、上下が逆に位置していても同じ効果が得られる。また、「上下」の関係は、左右、又は右左に位置する関係でもよく、又は、斜めに位置する関係でもよい。
 また、上記の説明では、溶液はその内部で反応させることを前提とした表現を用いているが、しかしながら、本発明のマイクロリアクタは、その内部で反応が全く進行しない場合、つまり、溶液を単純に混合する場合に適用することも出来る。更には、互いに混合し合う均一系の系だけでなく、混合し合わない不均一系の系に対しても適用させることが出来る。
101…原料1溶液、102…原料2溶液、103…原料3溶液、104…原料1溶液、原料2溶液、原料3溶液の混合・反応による生成物溶液、105…シリンジ、106…シリンジポンプ、107…原料1溶液の導入部、108…原料2溶液の導入部、109…マイクロリアクタ、110…一段目の反応の反応部、111…原料3溶液の導入部、112…二段目の反応の反応部、113…送液ユニット、114…リアクタユニット、115…温度調節ユニット、116…制御装置、117…送液ユニットの制御およびフィードバック、118…温度調節ユニットと送液ユニットの間のデータ通信、119…リアクタユニットと送液ユニットの間のデータ通信、120…温度の制御およびフィードバック、201…一段目の反応用マイクロリアクタ、202…二段目の反応用マイクロリアクタ、301…圧力センサ、302…切り替えバルブ、303…廃液ライン、304…吸引ライン、401…T字コネクタ、402…追加送液ユニット、501…原料A溶液、502…原料B溶液、503…生成物溶液、504…上側プレート、505…下側プレート、506…ホルダプレート、507…ネジ用孔、508…ネジ切り、509…パッキン溝、510…流路、511…原料A溶液導入口、512…原料B溶液導入口、513…生成物溶液排出口、701…流路分割部、702…流路合流部、703、704、705、706…流路変更部。

Claims (8)

  1.  少なくとも2種類の流体を混合させる流路を有し、流体の分流及び分流した流体の合流を行うことにより、流体を混合させるマイクロリアクタであって、その内部に:
     (a)ある平面内に形成され、流体を導入するための少なくとも2本の流路と;
     (b)前記平面内に形成され、導入した流体を合流するための流路と;
     (c)合流した流体が、前記平面に対して略法線方向に流れた後に、前記合流する流路が存在する平面に略平行でかつ前記合流する流路に略直交している方向に流路を変更するための流路と;
     (d)前記流路が存在する平面内に形成され、合流した流体を2つに分流するための流路と;
     (e)分流された流体のそれぞれが、略法線方向に流れた後に、前記分流する流路が存在する平面に略平行でかつ前記分流する流路に略直交している方向に流路を変更するための流路と;
     (f)前記流路が存在する平面内に形成され、2つの分流された流体を前記平面に対して略垂直方向又は略平行方向に合流するための流路と;そして、
     (g)合流した流体が、略法線方向に進んだ後、前記合流する流路が存在する平面に略平行、かつ、前記合流する流路に略直交している方向に進むための流路とを有しており、
     前記(b)~(g)の流路の各々は、少なくとも2つ以上、当該マイクロリアクタの内部に形成されていることを特徴とするマイクロリアクタ。
  2.  前記請求項1に記載したマイクロリアクタにおいて、
     前記流路は、それぞれ流路を備えた2枚の平板状のプレートを対面させて形成され、かつ、
     一方のプレートの対向する面には、前記(a)、(b)、(e)及び(f)の流路が形成され、
     他方のプレートの対向する面には、前記(c)、(d)及び(g)の流路が形成されていることを特徴とするマイクロリアクタ。
  3.  少なくとも3種類の流体を混合させるためのマイクロリアクタシステムであって:
     前記流体を送液するための送液ユニットと;
     少なくとも2種類の流体を反応させるためのマイクロリアクタを少なくとも2つ含むリアクタユニットと;
     前記リアクタユニットの温度制御を行う温度制御ユニットと;そして、
     制御装置とから構成されたものにおいて、
     前記送液ユニット、前記リアクタユニット及び前記温度制御ユニットは、前記制御装置により制御かつ監視され、
     前記流体は、前記送液ユニットに含まれるシリンジおよびシリンジポンプにより送液され、
     前記マイクロリアクタは、上流側から下流側に向かって直列に設置され、
     前記マイクロリアクタの温度は、前記温度制御ユニットを介して、各マイクロリアクタ毎に個別に制御され、そして、
     前記マイクロリアクタは、請求項1に記載されたマイクロリアクタであることを特徴とするマイクロリアクタシステム。
  4.  前記請求項3に記載したマイクロリアクタシステムにおいて、
     前記流体のうちの少なくとも1種類は、2本のシリンジを同時に動かすことにより送液されることを特徴とするマイクロリアクタシステム。
  5.  前記請求項3に記載したマイクロリアクタシステムにおいて、
     前記制御装置は、前記送液ユニットにより行われる少なくとも2つの連続させたい操作を予め同時に指示することにより、前記少なくとも2つの操作を連続して行うことを特徴とするマイクロリアクタシステム。
  6.  少なくとも3種類の流体を混合させるためのマイクロリアクタシステムであって:
     前記流体を送液するための送液ユニットと;
     少なくとも2種類の流体を反応させるためのマイクロリアクタを少なくとも2つ含むリアクタユニットと;
     前記リアクタユニットの温度制御を行う温度制御ユニットと;そして、
     制御装置とから構成されたものにおいて、
     前記送液ユニット、前記リアクタユニット及び前記温度制御ユニットは、前記制御装置により制御かつ監視され、
     前記流体は、前記送液ユニットに含まれるシリンジおよびシリンジポンプにより送液され、
     前記マイクロリアクタは、上流側から下流側に向かって直列に設置され、
     前記マイクロリアクタの温度は、前記温度制御ユニットを介して、各マイクロリアクタ毎に個別に制御され、そして、
     前記マイクロリアクタは、請求項2に記載されたマイクロリアクタであることを特徴とするマイクロリアクタシステム。
  7.  前記請求項6に記載したマイクロリアクタシステムにおいて、
     前記流体のうちの少なくとも1種類は、2本のシリンジを同時に動かすことにより送液されることを特徴とするマイクロリアクタシステム。
  8.  前記請求項6に記載したマイクロリアクタシステムにおいて、
     前記制御装置は、前記送液ユニットにより行われる少なくとも2つの連続させたい操作を予め同時に指示することにより、前記少なくとも2つの操作を連続して行うことを特徴とするマイクロリアクタシステム。
PCT/JP2009/002122 2009-05-14 2009-05-14 マイクロリアクタシステム WO2010131297A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US13/318,691 US8591841B2 (en) 2009-05-14 2009-05-14 Microreactor system
KR1020117026890A KR20120019444A (ko) 2009-05-14 2009-05-14 마이크로 리액터 시스템
CN2009801592579A CN102421515A (zh) 2009-05-14 2009-05-14 微反应器系统
JP2011513130A JP5439479B2 (ja) 2009-05-14 2009-05-14 マイクロリアクタシステム
EP09844572.9A EP2431090A4 (en) 2009-05-14 2009-05-14 MICRORACTOR SYSTEM
PCT/JP2009/002122 WO2010131297A1 (ja) 2009-05-14 2009-05-14 マイクロリアクタシステム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/002122 WO2010131297A1 (ja) 2009-05-14 2009-05-14 マイクロリアクタシステム

Publications (1)

Publication Number Publication Date
WO2010131297A1 true WO2010131297A1 (ja) 2010-11-18

Family

ID=43084695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/002122 WO2010131297A1 (ja) 2009-05-14 2009-05-14 マイクロリアクタシステム

Country Status (6)

Country Link
US (1) US8591841B2 (ja)
EP (1) EP2431090A4 (ja)
JP (1) JP5439479B2 (ja)
KR (1) KR20120019444A (ja)
CN (1) CN102421515A (ja)
WO (1) WO2010131297A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013052366A (ja) * 2011-09-06 2013-03-21 Ymc Co Ltd マイクロリアクタ及びその使用方法
WO2013111789A1 (ja) * 2012-01-23 2013-08-01 旭有機材工業株式会社 スタティックミキサーおよびスタティックミキサーを用いた装置
WO2016059874A1 (ja) * 2014-10-14 2016-04-21 アルプス電気株式会社 流体混合装置
US11192084B2 (en) 2017-07-31 2021-12-07 Corning Incorporated Process-intensified flow reactor

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8764279B2 (en) * 2008-07-18 2014-07-01 3M Innovation Properties Company Y-cross mixers and fluid systems including the same
CN107533076A (zh) 2015-02-24 2018-01-02 不列颠哥伦比亚大学 连续流微流体系统
DE102015113432A1 (de) * 2015-08-14 2017-02-16 Karlsruher Institut für Technologie Strömungsleitelemente in einem Kanal
EP3400097B1 (en) * 2016-01-06 2021-01-27 The University Of British Columbia Bifurcating mixers and methods of their use and manufacture
TWI640357B (zh) * 2017-03-23 2018-11-11 綠點高新科技股份有限公司 混煉裝置
CN107357343B (zh) * 2017-08-25 2021-01-26 山东豪迈化工技术有限公司 一种微反应设备的在线检测方法及系统
CN109847666B (zh) * 2019-01-18 2021-06-08 杭州沈氏节能科技股份有限公司 一种微通道反应组件及微通道反应器
CN114505026B (zh) * 2022-02-16 2023-09-26 微流科技(湖州)有限公司 一种多层级的微通道反应结构
CN114870766B (zh) * 2022-05-31 2023-01-10 浙江大学 一种用于硝化反应的串联盘管式微反应器系统

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11511689A (ja) * 1996-03-28 1999-10-12 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング 少量液体の混合デバイス
JP2004077411A (ja) * 2002-08-22 2004-03-11 Aisin Seiki Co Ltd 表面プラズモン・センサー及びspr装置
JP2005319419A (ja) * 2004-05-11 2005-11-17 Alps Electric Co Ltd 流体混合器およびこれを用いた液体燃料供給システム
WO2006001195A1 (ja) * 2004-06-24 2006-01-05 The University Of Tokyo マイクロミキサー、及び流体混合方法
JP3810778B2 (ja) 2004-07-02 2006-08-16 雄志 平田 平板静止型混合器
JP3873929B2 (ja) 2003-05-27 2007-01-31 株式会社島津製作所 液体混合装置
JP2007069137A (ja) 2005-09-08 2007-03-22 Hitachi Plant Technologies Ltd マイクロ化学反応装置
JP2007260569A (ja) * 2006-03-28 2007-10-11 Fujifilm Corp 流体混合装置及び流体混合方法
JP2008215859A (ja) * 2007-02-28 2008-09-18 Gl Sciences Inc 試料溶液の固相抽出装置
JP2008221095A (ja) * 2007-03-12 2008-09-25 Hitachi Ltd マイクロリアクタシステム
JP2008289449A (ja) 2007-05-28 2008-12-04 Hitachi Plant Technologies Ltd アルコール飲料の改質方法および改質装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19511603A1 (de) 1995-03-30 1996-10-02 Norbert Dr Ing Schwesinger Vorrichtung zum Mischen kleiner Flüssigkeitsmengen
US20040228211A1 (en) * 2003-05-13 2004-11-18 Koripella Chowdary R. Internal micromixer
JP2006255522A (ja) * 2005-03-15 2006-09-28 Hitachi Ltd 物質の製造装置および製造方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11511689A (ja) * 1996-03-28 1999-10-12 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング 少量液体の混合デバイス
JP3638151B2 (ja) 1996-03-28 2005-04-13 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング 少量液体の混合デバイス
JP2004077411A (ja) * 2002-08-22 2004-03-11 Aisin Seiki Co Ltd 表面プラズモン・センサー及びspr装置
JP3873929B2 (ja) 2003-05-27 2007-01-31 株式会社島津製作所 液体混合装置
JP2005319419A (ja) * 2004-05-11 2005-11-17 Alps Electric Co Ltd 流体混合器およびこれを用いた液体燃料供給システム
WO2006001195A1 (ja) * 2004-06-24 2006-01-05 The University Of Tokyo マイクロミキサー、及び流体混合方法
JP3810778B2 (ja) 2004-07-02 2006-08-16 雄志 平田 平板静止型混合器
JP2007069137A (ja) 2005-09-08 2007-03-22 Hitachi Plant Technologies Ltd マイクロ化学反応装置
JP2007260569A (ja) * 2006-03-28 2007-10-11 Fujifilm Corp 流体混合装置及び流体混合方法
JP2008215859A (ja) * 2007-02-28 2008-09-18 Gl Sciences Inc 試料溶液の固相抽出装置
JP2008221095A (ja) * 2007-03-12 2008-09-25 Hitachi Ltd マイクロリアクタシステム
JP2008289449A (ja) 2007-05-28 2008-12-04 Hitachi Plant Technologies Ltd アルコール飲料の改質方法および改質装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2431090A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013052366A (ja) * 2011-09-06 2013-03-21 Ymc Co Ltd マイクロリアクタ及びその使用方法
WO2013111789A1 (ja) * 2012-01-23 2013-08-01 旭有機材工業株式会社 スタティックミキサーおよびスタティックミキサーを用いた装置
WO2016059874A1 (ja) * 2014-10-14 2016-04-21 アルプス電気株式会社 流体混合装置
JPWO2016059874A1 (ja) * 2014-10-14 2017-07-20 アルプス電気株式会社 流体混合装置
US11192084B2 (en) 2017-07-31 2021-12-07 Corning Incorporated Process-intensified flow reactor
US11679368B2 (en) 2017-07-31 2023-06-20 Corning Incorporated Process-intensified flow reactor

Also Published As

Publication number Publication date
EP2431090A1 (en) 2012-03-21
KR20120019444A (ko) 2012-03-06
US8591841B2 (en) 2013-11-26
US20120045370A1 (en) 2012-02-23
JPWO2010131297A1 (ja) 2012-11-01
JP5439479B2 (ja) 2014-03-12
EP2431090A4 (en) 2014-04-02
CN102421515A (zh) 2012-04-18

Similar Documents

Publication Publication Date Title
JP5439479B2 (ja) マイクロリアクタシステム
KR101211752B1 (ko) 혼합 및 압력 강하를 최적화하는 미세구조 설계
KR101666635B1 (ko) 공정 강화된 미세유체 장치
JP5604038B2 (ja) 反応装置及び反応プラント
JP2009000592A (ja) 反応器および反応システム
WO2006043642A1 (ja) 流体反応装置
JP2006239638A (ja) 混合器および混合方法
JP2008093498A (ja) マイクロリアクタ
JP5023902B2 (ja) 乳化装置
US10464039B2 (en) Microreactor, chemical product manufacturing system and microreactor manufacturing method
JP3810778B2 (ja) 平板静止型混合器
US7374726B2 (en) Chemical reactor
TW201325709A (zh) 微反應器及反應生成物之製造方法
JP5885548B2 (ja) 多流路機器の運転方法及び多流路機器
JP4298671B2 (ja) マイクロデバイス
JP2005127864A (ja) マイクロミキシングデバイス
WO2022102222A1 (ja) 液体混合器、電解質分析装置及び液体混合方法
WO2023008096A1 (ja) マイクロリアクタおよび生成物生成方法
JP5712610B2 (ja) マイクロリアクタ―及び混合流体の製造方法
CN116870976A (zh) 一种微流控滑动芯片结构及其制备方法和应用
TWI425981B (zh) 微反應器流體分配之裝置及方法
JP2006167527A (ja) マイクロチャンネル構造体、それを用いたマイクロチップ、マイクロリアクター、及び向流接触方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980159257.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09844572

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011513130

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13318691

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20117026890

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2009844572

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009844572

Country of ref document: EP