WO2010127568A1 - 主动控制型电动扭振减振器及其实现方法 - Google Patents

主动控制型电动扭振减振器及其实现方法 Download PDF

Info

Publication number
WO2010127568A1
WO2010127568A1 PCT/CN2010/070529 CN2010070529W WO2010127568A1 WO 2010127568 A1 WO2010127568 A1 WO 2010127568A1 CN 2010070529 W CN2010070529 W CN 2010070529W WO 2010127568 A1 WO2010127568 A1 WO 2010127568A1
Authority
WO
WIPO (PCT)
Prior art keywords
torsional vibration
magnetic field
module
shaft system
conductive coil
Prior art date
Application number
PCT/CN2010/070529
Other languages
English (en)
French (fr)
Inventor
罗清
Original Assignee
上海勤知诚机电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海勤知诚机电科技有限公司 filed Critical 上海勤知诚机电科技有限公司
Priority to US12/865,116 priority Critical patent/US8707822B2/en
Publication of WO2010127568A1 publication Critical patent/WO2010127568A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/10Suppression of vibrations in rotating systems by making use of members moving with the system
    • F16F15/18Suppression of vibrations in rotating systems by making use of members moving with the system using electric, magnetic or electromagnetic means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T74/00Machine element or mechanism
    • Y10T74/21Elements
    • Y10T74/2121Flywheel, motion smoothing-type
    • Y10T74/2127Flywheel, motion smoothing-type with electrical or magnetic damping

Definitions

  • the present invention relates to the field of vibration damping technology for rotating machinery.
  • Torsional vibration is a common problem in rotating mechanical devices. It is caused by cyclical fluctuations of the torque load around its mean value, and in general, the torque and its torsional vibration exhibit complex periodic characteristics, that is, A range of harmonic frequency components, such as automotive and marine internal combustion engines, propeller drive systems, pump mechanisms, and more. When a certain frequency component of such a dynamic load tends to coincide with the inherent torsional frequency of the structure, the mechanism may generate severe torsional resonance, which may easily cause damage and failure of the component; even if it is not negative for the expected service life The small amplitude torsional vibration of the effect - this should be the most common situation at present.
  • the methods to improve the torsional vibration problem can be divided into two categories: One is related to the structure of the equipment itself, and one of the important aspects is that the inherent torsional frequency of the structure is offset from the frequency of the torque load by the vibration characteristic design; There are also measures in functional design, such as increasing the number of cylinders for the internal combustion engine, which both smoothes the torque fluctuations and increases the output power, but the design and manufacturing requirements for the equipment are higher, and the size, weight and cost of the equipment are also It has increased significantly.
  • the other is to design a special add-on or additional function, typically a flywheel combined with a torsional vibration damper, which is relatively inexpensive and has limited variations on the mainframe.
  • the torsional vibration damper is a passive elastic damping type, that is, the vibration is separated by the elastic element, the vibration is blocked by the rubber and the viscous liquid, and the mechanical energy is converted into the friction heat.
  • the flywheel is usually divided into The two parts, connected by elastic elements, can move relative to each other within a certain elastic range, filling a highly damped material between them.
  • the biggest drawback of this solution is that the frequency and amplitude of torsional vibrations experienced by modern rotating machinery can change rapidly over a wide range.
  • the semi-active control type is also developed in technology, that is, the characteristic parameters of the elastic element and the damping element can be changed in real time according to requirements within a certain range, but the practical effect of applying the torsional vibration damping is to be treated. Observed.
  • the present invention is in the category of actively controlled vibration damping, which uses a control system to dynamically track the frequency, amplitude and phase of multiple harmonics of the torsional vibration and provide The driving current is applied to the electric torsional vibration damper to instantaneously emit torques having the same frequency, opposite phase, and amplitude, thereby achieving the effect of canceling the torsional vibration.
  • the method utilizes the advanced technology of modern integrated circuits and effective control theory to greatly reduce the vibration damping measures required for the equipment itself while achieving significant vibration damping effects.
  • the object of the present invention is to provide an active control type electric torsional vibration damper and an implementation method thereof for generating a torque opposite to the torsional vibration direction of a rotating mechanical shaft system by electromagnetic excitation to cancel the torsional vibration of the shaft system .
  • An active control type electric torsional vibration damper characterized in that the shock absorber comprises the following components: a fixed module, which is rigidly fixed on the shaft system;
  • a relative rotation module which is elastically fixed to the shaft system by a spring
  • a conductive coil disposed on one of the fixed module and the opposite rotating module
  • a magnetic field generating device is disposed on the fixed module or the relative rotating module on which the conductive coil is not disposed to generate a magnetic field capable of passing through the coil of the wire.
  • the shock absorber further includes the following technical features:
  • a brush is provided on the shaft system for energizing the conductive coil.
  • the fixing module is realized by an X-shaped fixing structure which is extended by two ends, and a curved conductive coil structure is arranged between two adjacent branches, and another section is arranged between the opposite two branches. Curved conductive coil architecture.
  • At least one of the two sides of the conductive coil is provided with a magnetic field generating device.
  • the adjacent bifurcation of the conductive coil is not provided, and includes two positions, and at least one of the two positions is provided with a fixing block for defining a range of rotation of the relative rotation module.
  • the relative rotation module is fixed to the shaft system by two springs symmetrical along the shaft system.
  • the magnetic field generating device With respect to the aforementioned conductive coil, it is provided in the magnetic field generating device to generate a mutually exclusive magnetic field or a mutual magnetic field.
  • An implementation method of an actively controlled electric torsional vibration damper is realized in the following manner, the method comprising the following steps: Step 1, a conductive coil is mounted on one of the fixed module and the opposite rotating module, and a magnetic field generating device matched with the position of the conductive coil is mounted on the other module;
  • Step 2 mounting the fixed module and the relative rotation module on the rotating shaft system, wherein the fixed module is rigidly fixed on the shaft system, and the relative rotating module is elastically fixed on the shaft system by a spring;
  • Step 3 The control system detects the torsional vibration condition of the shaft system through the sensor;
  • Step 4 The control system energizes the conductive coil to generate a torque that is consistent with the torsional vibration frequency of the shaft system and has the same amplitude and opposite phase to compensate for the torsional vibration of the shaft system. Further, the foregoing method further includes the following technical features:
  • the fixing module is realized by an X-shaped fixing structure which is extended by two ends, and a curved conductive coil structure is arranged between two adjacent branches, and another section is arranged between the opposite two branches. Curved conductive coil architecture.
  • At least one of the two sides of the conductive coil is provided with a magnetic field generating device.
  • the relative rotation module is fixed to the shaft system by two springs symmetrical along the shaft system.
  • the magnetic field generating device With respect to the aforementioned conductive coil, it is provided in the magnetic field generating device to generate a mutually exclusive magnetic field or a mutual magnetic field.
  • Advantages of the active control type electric torsional vibration damper :
  • the metal spring has a low damping characteristic so that the output torque peak of the damper can be maximized.
  • the working temperature can be close to 100 ° Celsius.
  • compact structure can be installed in combination with the original flywheel of the vibration damping object, or can be installed independently.
  • venting holes can be properly opened on the shaft system of the damper (if installed in conjunction with the flywheel, which is the shaft system of the flywheel), and cooled by the airflow generated when it rotates with the shaft system.
  • FIG. 1 is a schematic structural view of an active control type electric torsional vibration damper according to the present invention.
  • Figure 2 is a side cross-sectional view of the active control type electric torsional vibration damper of the present invention.
  • FIG. 3 is a schematic structural view of a conductive coil on an active control type electric torsional vibration damper according to the present invention.
  • FIG. 4 is a flow chart showing an implementation method of the active control type electric torsional vibration damper according to the present invention. detailed description
  • the active control type electric torsional vibration damper of the present invention is mainly composed of a relative rotation module I and a fixed module II.
  • the relative rotation module I includes a core ring 0, an inner ring 1, a middle ring 2, an outer ring 3, and an annular NdFeB magnet block 4, 5, 6, and 7. Its center ring 0, inner ring 1, middle ring 2 and outer ring 3 are fixed together by a pair of spoke beams 8 separated by a central angle of 180°.
  • the ring-shaped neodymium iron boron magnetic blocks 4, 5, 6, and 7 belong to a permanent magnet, which is an embodiment of the magnetic field generator in the present invention, and the other includes a magnetic field realized by an electromagnetic effect, such as generating a magnetic field by using a conductive coil. , and many more.
  • the magnet blocks 4 and 5 are fixed to the outside of the inner ring 1 by an adhesive or other suitable means, and are arranged symmetrically.
  • the magnet blocks 6 and 7 are fixed to the inner side of the outer ring 3 by an adhesive or other suitable means, and are also symmetrical between the spoke beams 8, so that the magnetic blocks 4 and 6 and the magnetic blocks 5 and 7 are respectively separated.
  • the middle ring 2 is arranged oppositely, and the magnetic field direction of the magnetic block is along the radial direction of the circle.
  • the magnetic field generator is disposed on both sides of the conductive coils 11 and 12. Further, the magnetic field generator may be disposed on the inner side or the outer side alone.
  • the fixed module II includes a pair of annular ferrules 9 and 10, conductive coils 11 and 12 wound and fixed to the ferrule, and an X-shaped fixed bracket 13.
  • the ferrules 9 and 10 are respectively placed on the middle ring 2, symmetrically arranged between the spoke beams 8, and the inner side of the ferrule is completely out of contact with the middle ring 2, so that it can move freely with respect to the middle ring 2, which is the electric twist
  • the reason why the relative rotation module I of the vibration damper can rotate relative to the fixed module II is.
  • the conductive coil 11 is tightly wrapped and fixed to the ferrule 9 with an adhesive
  • the conductive coil 12 is tightly surrounded and fixed to the ferrule 10 with an adhesive.
  • Such a configuration is such that both sides of each set of copper coils are in an annular radial magnetic field air gap formed between the magnetic block and the middle ring 2, and the direction of the copper coil, that is, the direction of the current, and the direction of the magnetic field It is vertical.
  • the ferrule needs to be made of a non-magnetic material such as copper, aluminum or plastic.
  • the middle ring 2 can be disconnected at the spoke beam 8, first the ferrule 10 is placed in the middle ring Outside of 2, the middle ring 2 is then bolted to the spoke beam 8.
  • the other parts of the damper further include: a fixed block 15, a mandrel 16, a rolling bearing 17, a brush 18, a spring seat 19 and a spring seat 20.
  • the X-shaped fixing bracket 13 between the adjacent branches which are not provided with the conductive coil 12, there are two positions in total, and at least one of the two positions is provided, and a fixing block 15 for defining the range of rotation of the relative rotating module 1 is provided. .
  • the fixing block 15 is fixed on the middle ring 2 near the spoke beam 8, and its function is to limit the movement of the ferrule to prevent the ferrule from impacting the spoke beam 8 under overload conditions.
  • the mandrel 16 is actually part of a rotating mechanical shaft system that requires damping, and the rolling bearing 17 supports the core ring 0 on the mandrel 16 such that the heart ring 0 and its relative rotational module I are rotatable relative to the shaft system.
  • the brush 18 is attached to the shaft 16 to provide varying alternating current to the conductive coils 11 and 12 at high speeds throughout the system.
  • the above-mentioned fixing module II that is, the ferrules 9 and 10, including the upper coils 11 and 12, is fixed to the mandrel 16 by the bracket 13, and rotates together with the shaft system.
  • the aforementioned pair of springs 14 are symmetrically arranged on the outer side of the outer ring, one end of each coil spring is fixed on the outer ring by the spring seat 19, and the other end is fixed on the shaft system rigidly coupled with the mandrel by the spring seat 20, and can pass The extended structure is directly attached to the mandrel.
  • the main relative rotation module I can be oscillated back and forth about its steady-state position relative to the fixed module II and the rotating shaft system under the action of the spring 14 by means of the rolling bearing 17. Further clarification of other structural points of the torsional vibration damper:
  • the direction of the air gap magnetic field formed by the magnetic block and the middle ring 2 is a circular radial direction.
  • the relationship between the magnetic field directions may be There are two options:
  • the first type is that the magnetic fields of the oppositely arranged magnetic blocks are oppositely repulsive, and the second type is the same. The following are introduced separately:
  • the magnetic fields 4 and 6 are mutually exclusive (opposite) with respect to the direction of the magnetic field of the middle ring 2, and the magnetic field directions of the other blocks 5 and 7 of the middle ring 2 are also mutually exclusive (opposite).
  • the magnetic block uses a high-performance rare earth permanent magnet neodymium iron boron magnet
  • the middle ring 2 uses a high magnetic permeability soft magnetic material
  • the middle ring 2 The gap between the magnetic blocks is as small as possible under the premise that the inner side of the retaining ring and the middle ring 2, the outer side of the ring and the magnetic block are not in contact; when the copper coil on the outer ring of the middle ring 2 is energized In the middle circle 2 two
  • the direction of the current in the copper coil in the side magnetic field is opposite, and the direction of the magnetic field on both sides is also opposite, that is, the wire current of the conductive coil 11 or 12 in the magnetic field of the magnetic block 4 and the magnetic field in the magnetic block 6
  • the wire current is reversed, and the direction of the magnetic field of the magnet block 4 is opposite to the direction of the magnetic field of the magnet block 6.
  • the direction of the current is controlled by the connection between the two sets of copper coil end lines, so that the circumferential forces generated by the two sets of the conductive coils 11 and 12 in the magnetic field are just right.
  • Equal in size, opposite in direction, and both clockwise or counterclockwise, thus forming a magnetic force pure torque its value should be equal to the sum of the circumferential forces generated by a set of coils on both sides of the magnetic field multiplied by the middle ring 2 The diameter of the midline.
  • the relative rotation module 1 Under the action of the magnetic field pure torque, the relative rotation module 1 will rotate relative to the fixed module II and the shaft system, which causes the spring deformation to cause a spring force. Since the pair of springs are symmetrically arranged in the circumferential direction, the pair of springs generate forces of equal magnitude and opposite directions, and are either clockwise or counterclockwise, which also forms a spring force pure torque.
  • the magnetic fields 4 and 6 are attracted by the same magnetic field direction of the middle ring 2, and the magnetic field directions of the other blocks 5 and 7 separated by the middle ring 2 are also the same, but the coil is magnetic.
  • Block 4 Magnetic 5
  • the current in the magnetic field is opposite to the current in the magnetic field of the magnetic block 6 (magnetic block 7). Therefore, the circumferential force generated by the conductive coil in the magnetic field on both sides is reversed.
  • the torque generated by each set of coils should be equal to the circumferential force on one side of the coil multiplied by the width between the coils on both sides, and the total magnetic force is the sum of the torques produced by the two sets of coils.
  • the invention also relates to an implementation method of an active control type electric torsional vibration damper. In combination with the foregoing description and FIG. 4, the method mainly comprises the following steps:
  • Step 1 A conductive coil 11 or 12 is mounted on one of the fixed module II and the relative rotating module I, and a magnetic field generating device matched with the position of the conductive coil is mounted on the other module;
  • Step 2 the fixed module II and the relative rotation module I are mounted on the rotating shaft system, wherein the fixed module II is rigidly fixed on the shaft system, and the relative rotating module I is elastically fixed on the shaft system by spring;
  • Step 3 The control system detects the torsional vibration condition of the shaft system through the sensor;
  • Step 4 The control system energizes the conductive coil to generate a torque that is consistent with the torsional vibration frequency of the shaft system and has the same amplitude and opposite phase to compensate for the torsional vibration of the shaft system.
  • the control system described herein includes the ability to process and control the detection signals obtained by the sensors.
  • the sensor should be able to detect the vibration condition of the shaft system.
  • it can be realized by a torsional vibration sensor.
  • a torque sensor there is no limitation, such as adding a torque sensor.
  • the working principle of the active control type electric torsional vibration damper is summarized in conjunction with a specific embodiment:
  • the interaction of the conductive coils 11 or 12 with the magnetic blocks in the magnetic field generator produces a magnetic field pure torque about the mandrel 16, and the magnitude and direction of the torque can be controlled by the magnitude and direction of the current.
  • a varying torque is applied to the relative rotation module I described above, causing the portion to vibrate and causing the spring to produce a varying pure torque about the mandrel 16.
  • the above-mentioned magnetic force torque and spring torque are also applied to the above fixed module II, and then transmitted to the rotating mechanical shaft system.
  • a control system is configured, which can detect the amplitude, frequency and phase of the harmonics of several components in the torsional vibration of the rotating mechanical shaft system in real time, and accordingly provide current signals with the same frequency, amplitude and phase, and drive
  • the torsional vibration damper emits corresponding magnetic field torque and spring torque, and acts on the rotating shaft system to generate torsional vibrations having the same frequency but opposite amplitudes to offset the original torsional vibration of the shaft system.
  • the magnitude of the output torque depends on the magnitude of the circumferential amperage of the magnetic field on the energized coil and the distance from the circumferential force to the axis of the mandrel 16; and the amperage is proportional to the intensity of the magnetic field, the length of the energized coil perpendicular to the direction of the magnetic field, and the current. strength.
  • the larger the diameter of the damper circle, the larger the force arm of the moment, and the longer the arc of the magnet block and the ferrule, so the length of the surrounding coil in the magnetic field is
  • the thicker the damper circle is in the axial direction of the rotating shaft system
  • the magnet block, the middle ring 2 and the ferrule can be correspondingly thickened, and the longer the coil is in the magnetic field
  • the length can be multiplied by a multilayer coil;
  • a suitable copper wire cross-sectional dimension can provide several amps of current without overheating.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Vibration Prevention Devices (AREA)

Description

主动控制型电动扭振减振器及其实现方法
技术领域 本发明涉及到旋转机械的减振技术领域。
背景技术 扭振现象是旋转机械装置中普遍存在的问题, 它是由于扭矩载荷围绕其均值作周期性 波动所引起的, 而且在一般情况下扭矩及其扭振呈现复杂周期性的特征, 即包含了一系列 的谐波频率成分, 诸如汽车和船舶内燃机, 螺旋桨驱动系统, 泵机构, 等等。 当这样的动 态载荷中某个频率成分与结构固有扭转频率趋于一致时, 机构可能会产生剧烈的扭转共振 现象, 这极易导致零部件的损坏和失效; 即便是对于预期设备使用寿命没有负面效果的小 幅度扭振——这应该是当前最普遍的情况, 如果考虑机械设备对于周边环境辐射振动和噪 声的有害影响, 也将是不容忽视的问题。 总的来看, 改善扭振问题的方法可以分为两大类: 一类是涉及到设备结构本身的, 其 中的一个重要方面是通过振动特性设计将结构固有扭转频率与扭矩载荷频率错开; 此外还 有在功能设计方面的措施, 如对于内燃机增加汽缸的数量, 这样既熨平扭矩波动, 又提高 输出功率, 但是对于设备的设计和制造要求更高了, 并且设备的体积、 重量和成本也随之 显著增加。 另一类是设计一种专门的附加装置或附加功能, 典型的如飞轮结合扭振减振器, 此类 方法相对而言成本较低, 对于主机的变动有限。 目前普遍实用的扭振减振器是被动弹性阻尼式的,即利用弹性元件隔离振动, 以橡胶、 粘性液体阻碍振动, 将运动机械能转化为摩擦热散发掉; 在构造原理上, 通常将飞轮分成 两个部分, 通过弹性元件联接, 它们可以在一定的弹性范围内发生相对运动, 在它们之间 填充高阻尼材料。 这种方案的最大缺陷在于: 现代旋转机械设备所承受的扭振的频率和幅 值会在很宽广的范围内快速地变化, 系统特性相对固定的减振装置显然无法满足这种特点 下比较高的要求。 除了上述被动式的结构, 技术上还发展了半主动控制式, 即可以在一定的范围内根据 需要实时改变弹性元件和阻尼元件的特性参数, 但是应用在扭振减振方面的实际效果有待 观察。 与以上两种技术线路完全不同的是, 本发明属于主动控制式消振的范畴, 这类方法是 运用一套控制系统动态跟踪扭振的多个谐波的频率、 幅值和相位, 并提供驱动电流给所述 的电动扭振减振器, 使其瞬时发出频率相同、 相位相反、 幅值对应的扭矩, 从而达到抵消 扭振的效果。 该方法利用现代集成电路的先进技术和有效的控制理论, 在取得显著消振效 果的同时大大减少了对于设备本身需要采取的减振措施。
发明内容
本发明的目的是提供一种主动控制型电动扭振减振器及其实现方法, 用以通过电磁激 励的方式产生一个与旋转机械轴系统扭振方向相反的扭矩, 来抵消轴系统的扭振。
一种主动控制型电动扭振减振器, 其特征在于该减震器包括有如下组成部分: 固定模块, 它刚性固定在轴系统上;
相对转动模块, 它通过弹簧弹性固定在轴系统上;
导电线圈, 它设置在固定模块和相对转动模块两者其一上;
磁场发生器件, 它设置在那个没有设置前述导电线圈的固定模块或相对转动模块上, 用以产生能够穿过导线线圈的磁场。 进一步, 所述的减震器还包括有如下技术特征:
在轴系统上设置有电刷, 用以向所述的导电线圈通电。
所述的固定模块是通过两端分叉延伸的 X 型固定结构实现的,两相邻分叉之间设置有 弧形的导电线圈架构, 同时相对的另两个分叉之间设置有另一段弧形导电线圈架构。
在所述导电线圈的两侧至少其一处, 设置有磁场发生器件。
没有设置导电线圈的相邻分叉, 共包括两处位置, 在这两处位置至少其一处, 设置有 用以限定相对转动模块转动范围的固定块。
相对转动模块上通过沿转轴系统对称的两个弹簧, 固定在轴系统上。
针对前述的导电线圈, 所设置在磁场发生器件, 能够产生互斥磁场或者互吸磁场。
一种主动控制型电动扭振减振器的实现方法, 它是这样实现的, 该方法包括有如下步 骤: 步骤 1, 在固定模块和相对转动模块两者其一上安装有导电线圈, 在另一个模块上安 装有与导电线圈位置相配套的磁场发生器件;
步骤 2, 将固定模块和相对转动模块安装在旋转轴系统上, 其中固定模块被刚性固定 在轴系统上, 相对转动模块通过弹簧弹性固定在轴系统上;
步骤 3, 控制系统通过传感器探测轴系统的扭振状况;
步骤 4, 控制系统向导电线圈通电, 产生一个与轴系统扭振频率一致、 振幅相当、 相 位相反的扭矩, 用以抵消轴系统的扭振。 进一步, 前述的方法还包括有如下技术特征:
所述的固定模块是通过两端分叉延伸的 X 型固定结构实现的,两相邻分叉之间设置有 弧形的导电线圈架构, 同时相对的另两个分叉之间设置有另一段弧形导电线圈架构。
在所述导电线圈的两侧至少其一处, 设置有磁场发生器件。
相对转动模块上通过沿转轴系统对称的两个弹簧, 固定在轴系统上。
针对前述的导电线圈, 所设置在磁场发生器件, 能够产生互斥磁场或者互吸磁场。 所述主动控制型电动扭振减振器的优点:
1, 可以在很宽的频率范围内发挥减振效果。
2, 在设计原理上仅提供纯扭矩, 不会对轴系统产生不可忽略的附加径向力或轴向力。 3, 输出扭矩大。
4, 低阻尼性。 金属弹簧具有较低的阻尼特性, 这样可以尽量发挥该减振器的输出扭 矩峰值。
5, 稀土永磁材料容易获得、 成本低。
6, 性能可靠, 对于环境要求低, 耐油耐脏。 其中, 工作温度可以接近摄氏 100° 。 7, 结构紧凑, 可以与减振对象原有的飞轮结合安装, 也可以独立安装。
8, 可以在所述减振器的轴系统上 (假如与飞轮结合安装, 那就是飞轮的轴系统上) 适当开通风孔, 利用其随轴系统一起旋转时产生的气流进行冷却。 附图说明
下面结合附图对本发明进行更详细的说明。 图 1 是本发明所述的主动控制型电动扭振减振器的结构示意图。
图 2 是本发明所述的主动控制型电动扭振减振器的侧向剖视图。
图 3 是本发明所述的主动控制型电动扭振减振器上的导电线圈的结构示意图。
图 4 是本发明所述的主动控制型电动扭振减振器的实现方法的流程图。 具体实施方式
结合各附图所示, 本发明所述的主动控制型电动扭振减振器主要由相对转动模块 I和 固定模块 II组成。
它们之间通过一对弹簧 14连接, 可以作相对弹性转动。 本实施中的弹簧 14 为环形螺 旋弹簧, 这是典型的实施例而非限定。 其中相对转动模块 I包括心圈 0, 内圈 1, 中圈 2, 外 圈 3, 以及环形的钕铁硼磁块 4、 5、 6、 7。 其中心圈 0、 内圈 1、 中圈 2和外圈 3 通过相隔 180° 圆心角的一对辐条梁 8 固定在一起。
其中环形的钕铁硼磁块 4、 5、 6、 7, 属于永磁体, 为本发明中的磁场发生器的一种实 施例, 其它还包括通过电磁效应实现的磁场, 如利用导电线圈产生磁场, 等等。
在辐条梁 8 之间, 磁块 4和 5 用粘合剂或其它适当的方式固定在内圈 1 的外侧, 并呈 对称布置状态。 类似地, 磁块 6 和 7 用粘合剂或其它适当的方式固定在外圈 3 的内侧, 也 在辐条梁 8 之间呈对称状, 这样磁块 4 与 6、 磁块 5 与 7 分别隔着中圈 2相对布置, 而磁 块的磁场方向沿着圆形的径向。
上述结构中, 在所述导电线圈 11 和 12 的两侧均布置磁场发生器, 此外, 还可以单独 在内侧或外侧布置磁场发生器。
固定模块 II包括一对环形套圈 9 和 10, 缠绕并固定在套圈上的导电线圈 11 和 12, 以 及 X 型固定支架 13。 套圈 9 和 10 分别套在中圈 2 上, 在辐条梁 8 之间对称布置, 套圈的 内侧与中圈 2 完全不接触, 因此可以相对于中圈 2 自由移动, 这就是所述电动扭振减振器 的相对转动模块 I可以相对固定模块 II转动的原因所在。
导电线圈 11 紧紧环绕并用粘合剂固定在套圈 9 上, 导电线圈 12紧紧环绕并用粘合剂 固定在套圈 10 上。 这样的构造使得每一组铜线圈的两侧均处于所述磁块与中圈 2之间所 形成的环形径向磁场气隙中, 并且铜线圈的走向, 也即电流的方向, 与磁场方向是垂直的。 所述套圈需采用铜、 铝或塑料等非磁性材料。
为了让套圈 10 套在中圈 2 上, 中圈 2 可以在辐条梁 8 处断开, 先将套圈 10 套在中圈 2 的外面, 然后把中圈 2用螺栓固定在辐条梁 8 上。
除了上述构件以外, 所述减振器其它部分还包括: 固定块 15, 心轴 16, 滚动轴承 17, 电刷 18, 弹簧座 19 和弹簧座 20。
X 型固定支架 13 中, 没有设置导电线圈 12 的相邻分叉之间, 共包括两处位置, 在这 两处位置至少其一处, 设置有用以限定相对转动模块 I转动范围的固定块 15。
固定块 15 固定在中圈 2 上靠近辐条梁 8 的位置, 其作用是限制套圈的运动, 防止过 载情况下套圈冲击辐条梁 8。
心轴 16 实际上就是需要减振的旋转机械轴系统的一部分, 滚动轴承 17 将心圈 0 支撑 在心轴 16 上, 使得心圈 0 及其所在的上述相对转动模块 I可以相对于轴系统转动。
电刷 18 固定在轴 16 上, 保证在整个系统高速旋转的情况下给导电线圈 11 和 12提供 变化的交流电。
上述固定模块 II, 即套圈 9 和 10, 包括上面的线圈 11 和 12, 通过支架 13 固定在心轴 16 上, 随轴系统一起旋转。
前述的一对弹簧 14对称布置在外圈的外侧, 每一个螺旋弹簧的一端通过弹簧座 19 固 定在外圈上, 另一端通过弹簧座 20 固定在与心轴刚性联接在一起的轴系统上, 可以通过 延伸的结构直接固定在心轴上。
这样, 上述主要相对转动模块 I可以借助滚动轴承 17 在弹簧 14的作用下, 相对于上述 固定模块 II以及所作用的旋转轴系统, 围绕其稳态位置来回摆动。 进一步阐述所述扭振减振器的其它结构要点:
作为举例而非限定, 上述磁块与中圈 2所形成的气隙磁场方向为圆形的径向, 在所述 中圈 2 两侧相对布置的磁场发生器中, 磁场方向之间的关系可以有两种选择方案:
第一种是两侧相对布置的磁块的磁场方向相反相斥, 第二种是两者相同相吸。 下面分 别给予介绍:
首先说明第一种方案。此时磁块 4 与 6 隔着中圈 2 的磁场方向是相对互斥的(相反), 同样另一组隔着中圈 2 的磁块 5 与 7 的磁场方向也是相对互斥的(相反);为增强中圈 2 与 两侧磁块之间气隙的磁感应强度, 磁块采用高性能的稀土永磁钕铁硼磁铁, 中圈 2采用高 磁导率的软磁材料, 中圈 2 与磁块之间的间隙在保持套圈内侧与中圈 2、 套圈外侧与磁块 之间不接触的前提下尽可能地小; 当套在中圈 2外的套圈上的铜线圈通电时, 在中圈 2 两 侧磁场中的铜线圈内的电流方向是相反的, 而两侧磁场的方向也是相反的, 也就是说, 导 电线圈 11或 12在磁块 4磁场中的导线电流与在磁块 6 磁场中的导线电流是反向的, 而磁 块 4 的磁场方向与磁块 6 的磁场方向也是相反的。 这样根据描述磁感应强度、 电流及安培 力之间关系的安培定律, 两侧磁场给予导电线圈的作用力恰好是沿着圆周方向并同向, 作 用力的幅值与电流强度成正比, 方向随电流的方向变化而变化。
由于两组导电线圈 11 与 12在圆周方向上完全对称布置, 因此通过所述两组铜线圈端 线之间的联接来控制电流的走向, 使得磁场中两组导电线圈 11 和 12产生的圆周力恰好大 小相等、 方向相反, 且同为顺时针或同为逆时针, 这样就形成了一个磁场力纯扭矩, 它的 数值应该等于一组线圈在两侧磁场中产生圆周力之和乘以中圈 2 中线的直径。
在上述磁场纯扭矩的作用下, 上述相对转动模块 I将相对于上述固定模块 II及轴系统 发生转动, 这导致所述弹簧变形引起弹簧力。 由于所述一对弹簧在圆周方向上对称布置, 因此所述一对弹簧产生的力为大小相等、 方向相反, 且同为顺时针或同为逆时针, 这样也 形成了一个弹簧力纯扭矩。
现在简要说明第二种方案。 此时磁块 4 与 6 隔着中圈 2 的磁场方向是相同相吸的, 同 样另一组隔着中圈 2 的磁块 5 与 7 的磁场方向也是相同相吸的, 但由于线圈在磁块 4 (磁 块 5) 磁场中的导线电流与磁块 6 (磁块 7) 磁场中的导线电流是反向的, 所以, 所述导电 线圈在两侧磁场中产生的圆周力是反向的, 这样每一组线圈产生的扭矩应该等于线圈一侧 的圆周力乘以两侧线圈之间的宽度, 而总的磁场力纯扭矩就是两组线圈产生的扭矩之和。 本发明还涉及一种主动控制型电动扭振减振器的实现方法, 结合前面的描述以及图 4 所示, 该方法主要包括有如下步骤:
步骤 1, 在固定模块 II和相对转动模块 I两者其一上安装有导电线圈圈 11 或 12, 在另 一个模块上安装有与导电线圈位置相配套的磁场发生器件;
步骤 2, 将固定模块 II和相对转动模块 I安装在旋转轴系统上, 其中固定模块 II被刚性 固定在轴系统上, 相对转动模块 I通过弹簧弹性固定在轴系统上;
步骤 3, 控制系统通过传感器探测轴系统的扭振状况;
步骤 4, 控制系统向导电线圈通电, 产生一个与轴系统扭振频率一致、 振幅相当、 相 位相反的扭矩, 用以抵消轴系统的扭振。
这儿所述的控制系统, 包括能够对传感器所获得的探测信号进行运算处理并发出控制 指令的运算处理器, 并存储有用以实现本发明的程序。
该传感器, 应当能够探测轴系统的振动状况, 比如, 可以采用扭振传感器来实现, 当 然, 也不作任何限定, 如增设扭矩传感器等。 结合着具体实施例, 总结所述主动控制型电 动扭振减振器的工作原理:
所述导电线圈 11 或 12 与磁场发生器中的磁块的相互作用, 产生绕所述心轴 16 的磁 场纯扭矩, 且可以通过电流的大小和方向控制扭矩的大小与方向。 变化的扭矩施加在上述 相对转动模块 I, 引起该部分振动并导致所述弹簧产生变化的绕心轴 16 的纯扭矩。 根据牛 顿作用力与反作用力原理, 上述磁场力扭矩与弹簧扭矩也作用到上述固定模块 II, 然后再 传递到旋转机械轴系统上。
因此, 配置一套控制系统, 它可以实时检测到的旋转机械轴系统扭振中若干成分突出 谐波的幅度、 频率和相位, 并据此提供频率相同、 幅值和相位对应的电流信号, 驱动所述 扭振减振器发出相应的磁场扭矩和弹簧扭矩, 作用到旋转轴系统上产生频率相同、 但幅值 相反的扭振以抵消轴系统原来的扭振。
输出扭矩的大小取决于磁场对于通电线圈的圆周向安培力的大小以及圆周力到心轴 16 轴线的距离; 而安培力又正比于磁场感应强度、 磁场内与磁场方向垂直的通电线圈长 度和电流强度。 在所述的装置中, 减振器圆形的直径越大, 则力矩的力臂也越大, 同时磁 块和套圈的弧线也可以越长, 因而环绕的线圈在磁场中的长度就越长; 另外, 减振器圆形 在旋转轴系统的轴线方向上越厚, 则磁块、 中圈 2和套圈也可以相应地增厚, 则线圈在磁 场中的长度就越长, 并且还可以通过多层线圈以成倍增加其长度; 最后, 适合的铜导线截 面尺寸可以提供数安培的电流而不至于过热。 这些特点使得我们可以在很大的范围内灵活 设计减振器的输出扭矩, 非常有利于从小型轴系统到大型轴系统的主动控制型减振或扭振 试验需求。 以上是对本发明的描述, 而非限制, 基于本发明思想的其它实施方案, 亦在本发明的 保护范围之内。

Claims

权利要求书
1, 一种主动控制型电动扭振减振器, 其特征在于该减震器包括有如下组成部分:
固定模块, 它刚性固定在轴系统上;
相对转动模块, 它通过弹簧弹性固定在轴系统上;
导电线圈, 它设置在固定模块和相对转动模块两者其一上;
磁场发生器件, 它设置在那个没有设置前述导电线圈的固定模块或相对转动模块上, 用以产生能够穿过导线线圈的磁场。
2, 根据权利要求 1 所述的主动控制型电动扭振减振器, 其特征在于: 在轴系统上设置有 电刷, 用以向所述的导电线圈通电。
3, 根据权利要求 1 所述的主动控制型电动扭振减振器, 其特征在于: 所述的固定模块是 通过两端分叉延伸的 X 型固定结构实现的, 两相邻分叉之间设置有弧形的导电线圈架 构, 同时相对的另两个分叉之间设置有另一段弧形导电线圈架构。
4, 根据权利要求 1 或 3 所述的主动控制型电动扭振减振器, 其特征在于: 在所述导电线 圈的两侧至少其一处, 设置有磁场发生器件。
5, 根据权利要求 3 所述的主动控制型电动扭振减振器, 其特征在于: 没有设置导电线圈 的相邻分叉, 共包括两处位置, 在这两处位置至少其一处, 设置有用以限定相对转动 模块转动范围的固定块。
6, 根据权利要求 1 所述的主动控制型电动扭振减振器, 其特征在于: 相对转动模块上通 过沿转轴系统对称的两个弹簧, 固定在轴系统上。
7, 根据权利要求 1 所述的主动控制型电动扭振减振器, 其特征在于: 针对前述的导电线 圈, 所设置在磁场发生器件, 能够产生互斥磁场或者互吸磁场。
8, 一种主动控制型电动扭振减振器的实现方法, 其特征在于该方法包括有如下步骤: 步骤 1, 在固定模块和相对转动模块两者其一上安装有导电线圈, 在另一个模块上安装 有与导电线圈位置相配套的磁场发生器件;
步骤 2, 将固定模块和相对转动模块安装在旋转轴系统上, 其中固定模块被刚性固定在 轴系统上, 相对转动模块通过弹簧弹性固定在轴系统上;
步骤 3, 控制系统通过传感器探测轴系统的扭振状况;
步骤 4, 控制系统向导电线圈通电, 产生一个与轴系统扭振频率一致、 振幅相当、 相位 相反的扭矩, 用以抵消轴系统的扭振。
9, 根据权利要求 8 所述的主动控制型电动扭振减振器, 其特征在于: 所述的固定模块是 通过两端分叉延伸的 X 型固定结构实现的, 两相邻分叉之间设置有弧形的导电线圈架 构, 同时相对的另两个分叉之间设置有另一段弧形导电线圈架构。
10, 根据权利要求 8 所述的主动控制型电动扭振减振器, 其特征在于: 在所述导电线圈的 两侧至少其一处, 设置有磁场发生器件。
11, 根据权利要求 8 所述的主动控制型电动扭振减振器, 其特征在于: 相对转动模块上通 过沿转轴系统对称的两个弹簧, 固定在轴系统上。
12, 根据权利要求 8 所述的主动控制型电动扭振减振器, 其特征在于: 针对前述的导电线 圈, 所设置在磁场发生器件, 能够产生互斥磁场或者互吸磁场。
PCT/CN2010/070529 2009-05-02 2010-02-05 主动控制型电动扭振减振器及其实现方法 WO2010127568A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/865,116 US8707822B2 (en) 2009-05-02 2010-02-05 Active electric torsional vibration damper and method to realize the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2009100505221A CN101550986B (zh) 2009-05-02 2009-05-02 主动控制型电动扭振减振器及其实现方法
CN200910050522.1 2009-05-02

Publications (1)

Publication Number Publication Date
WO2010127568A1 true WO2010127568A1 (zh) 2010-11-11

Family

ID=41155399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/070529 WO2010127568A1 (zh) 2009-05-02 2010-02-05 主动控制型电动扭振减振器及其实现方法

Country Status (3)

Country Link
US (1) US8707822B2 (zh)
CN (1) CN101550986B (zh)
WO (1) WO2010127568A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107063610A (zh) * 2017-06-02 2017-08-18 南方英特空调有限公司 一种四轴电磁扭振综合测试平台

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101550986B (zh) * 2009-05-02 2011-06-22 罗清 主动控制型电动扭振减振器及其实现方法
CN103089837B (zh) * 2013-01-18 2015-04-22 北京理工大学 正负弹簧并联式半主动控制型联轴器
US20150000952A1 (en) * 2013-06-28 2015-01-01 Magnetic Innovations Llc Magnetically Enhanced Electrical Signal Conduction Cables and Methods
US9702432B2 (en) * 2014-12-12 2017-07-11 Dayco Ip Holdings, Llc Damper isolator with magnetic spring
CN105468046B (zh) * 2016-01-08 2017-08-11 中国船舶重工集团公司第七0四研究所 船舶主推进系统多功率分支局部振动控制方法
US10293481B1 (en) 2016-12-14 2019-05-21 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Relative deflection detector
JP6830423B2 (ja) * 2017-09-22 2021-02-17 Ntn株式会社 トルク検出装置
CN108167386B (zh) * 2017-12-26 2019-07-05 潍柴动力股份有限公司 一种曲轴减振器及曲轴减振器的控制方法
DE102018207140B4 (de) * 2018-05-08 2023-12-28 Airbus Helicopters Technik Gmbh Verfahren zur Dämpfung von Torsionsschwingungen in einem Antriebsstrang und Antriebsstrang
ES2870227T3 (es) * 2018-08-06 2021-10-26 Soltec Energias Renovables Sl Seguidor solar de un solo eje con dispositivo de amortiguación de vibraciones torsionales
CN113809871A (zh) * 2020-06-11 2021-12-17 中国船舶重工集团公司第七一一研究所 一种用于抑制扭矩波动的自动控制装置
CN113708595B (zh) * 2021-08-27 2023-02-14 安徽工程大学 带扭振主动抑制功能的轮边永磁直驱传动装置及工作方法
CN114465443B (zh) * 2022-02-16 2023-12-22 东北大学 一种基于磁斥力原理的抑制扭振用永磁非线性能量阱

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59158331A (ja) * 1983-03-01 1984-09-07 Nissan Motor Co Ltd エンジンのトルク平滑化装置
JPS6161925A (ja) * 1984-08-31 1986-03-29 Mazda Motor Corp エンジンのトルク変動制御装置
US5468055A (en) * 1993-05-14 1995-11-21 Hutchinson Device for attenuating the rolling noise of vehicles
US5664534A (en) * 1995-05-20 1997-09-09 Fev Motorentechnik Gmbh & Co., Kg Flywheel system for a rotary machine
JP2002266944A (ja) * 2001-03-09 2002-09-18 Maruyasu Industries Co Ltd トーショナルダンパ付きフライホイール
EP1365170A1 (de) * 2002-05-25 2003-11-26 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Bedämpfung von Drehmomentschwankungen im Antriebsstrang eines Kraftfahrzeugs
CN101545804A (zh) * 2009-05-03 2009-09-30 罗清 电动扭转激振器及其实现方法
CN101550986A (zh) * 2009-05-02 2009-10-07 罗清 主动控制型电动扭振减振器及其实现方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8816091D0 (en) * 1988-07-06 1988-08-10 Jaguar Cars Balancers
CN1023746C (zh) * 1990-12-03 1994-02-09 浙江大学 电动式扭转激振器
EP0612933B1 (en) * 1993-02-24 1998-05-06 Shinko Electric Co. Ltd. Vibration control device for rotating machine
DE19631384C1 (de) * 1996-08-02 1997-10-16 Clouth Gummiwerke Ag Elektrische Maschine in einem Antriebsstrang, z. B. eines Kraftfahrzeuges
US5829319A (en) * 1996-10-04 1998-11-03 Vibratech, Inc. Magneto-rheological torsional vibration damper
FR2824374B1 (fr) * 2001-05-04 2005-11-11 Valeo Dispositif de filtration de vibrations en rotation et transmission pour vehicule automobile comportant un tel dispositif
GB0319552D0 (en) * 2003-08-20 2003-09-24 Reactec Ltd Improvments in or relating to vibration contol
US7584685B2 (en) * 2004-10-20 2009-09-08 Dayco Products, Llc Active vibrational damper
EP1862697A1 (en) * 2006-05-30 2007-12-05 The Technical University of Denmark (DTU) Torsional vibration damper
US8203316B2 (en) * 2008-12-18 2012-06-19 Hamilton Sundstrand Corporation Eddy current torsional damper for generator
CN201401478Y (zh) * 2009-05-02 2010-02-10 罗清 一种主动控制型电动扭振减振器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59158331A (ja) * 1983-03-01 1984-09-07 Nissan Motor Co Ltd エンジンのトルク平滑化装置
JPS6161925A (ja) * 1984-08-31 1986-03-29 Mazda Motor Corp エンジンのトルク変動制御装置
US5468055A (en) * 1993-05-14 1995-11-21 Hutchinson Device for attenuating the rolling noise of vehicles
US5664534A (en) * 1995-05-20 1997-09-09 Fev Motorentechnik Gmbh & Co., Kg Flywheel system for a rotary machine
JP2002266944A (ja) * 2001-03-09 2002-09-18 Maruyasu Industries Co Ltd トーショナルダンパ付きフライホイール
EP1365170A1 (de) * 2002-05-25 2003-11-26 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Bedämpfung von Drehmomentschwankungen im Antriebsstrang eines Kraftfahrzeugs
CN101550986A (zh) * 2009-05-02 2009-10-07 罗清 主动控制型电动扭振减振器及其实现方法
CN101545804A (zh) * 2009-05-03 2009-09-30 罗清 电动扭转激振器及其实现方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107063610A (zh) * 2017-06-02 2017-08-18 南方英特空调有限公司 一种四轴电磁扭振综合测试平台

Also Published As

Publication number Publication date
US20110056787A1 (en) 2011-03-10
CN101550986A (zh) 2009-10-07
CN101550986B (zh) 2011-06-22
US8707822B2 (en) 2014-04-29

Similar Documents

Publication Publication Date Title
WO2010127568A1 (zh) 主动控制型电动扭振减振器及其实现方法
US10267373B2 (en) Characteristic value variable dynamic vibration absorber and characteristic value variable vibration isolator
KR101184284B1 (ko) 차량용 능동 동흡진기 장치
JP5743785B2 (ja) 電磁サスペンション
US20150345134A1 (en) Damping device and vibration control apparatus for structure
JP6058527B2 (ja) トルクロッドの振動低減装置
US8662266B2 (en) Electromotive active dynamic vibration absorber apparatus for vehicle
JP5834595B2 (ja) 車両用防振装置
de Araujo et al. Electromagnetic harvester for lateral vibration in rotating machines
CN101545804B (zh) 电动扭转激振器及其实现方法
JP6420627B2 (ja) 防振装置
CN108343694A (zh) 一种采用双环串接式永磁铁的混合型动力吸振器
JP6369901B2 (ja) ダイナミックダンパ制御装置
CN109027124B (zh) 一种负刚度可调的扭转准零刚度隔振器及控制方法
CN201401478Y (zh) 一种主动控制型电动扭振减振器
JP2015209929A (ja) 回転軸制振制動装置
JP3697899B2 (ja) 能動的防振型サスペンション部材
JP2014040880A (ja) ダンパ装置
JP2006057668A (ja) 緩衝器
CN109538725A (zh) 动态减振装置
WO2017038750A1 (ja) 発電素子、ダイナミックダンパーおよびトーショナルダンパー
Kitayama et al. Linear oscillatory actuator using new magnetic movement converter
JP2004011753A (ja) 電磁緩衝器
Loussert Magnetic actuators for active powertrain vibration control
JP2007110816A (ja) 発電装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 12865116

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10771971

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10771971

Country of ref document: EP

Kind code of ref document: A1