WO2010125717A1 - 化学センサ - Google Patents

化学センサ Download PDF

Info

Publication number
WO2010125717A1
WO2010125717A1 PCT/JP2010/000748 JP2010000748W WO2010125717A1 WO 2010125717 A1 WO2010125717 A1 WO 2010125717A1 JP 2010000748 W JP2010000748 W JP 2010000748W WO 2010125717 A1 WO2010125717 A1 WO 2010125717A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
sample
electrode
tft
chemical sensor
Prior art date
Application number
PCT/JP2010/000748
Other languages
English (en)
French (fr)
Inventor
柴田佳典
足立昌浩
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to CN2010800060820A priority Critical patent/CN102301227A/zh
Priority to US13/147,798 priority patent/US20110291673A1/en
Publication of WO2010125717A1 publication Critical patent/WO2010125717A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • G01N27/4145Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS specially adapted for biomolecules, e.g. gate electrode with immobilised receptors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/414Ion-sensitive or chemical field-effect transistors, i.e. ISFETS or CHEMFETS
    • G01N27/4148Integrated circuits therefor, e.g. fabricated by CMOS processing

Definitions

  • the present invention relates to a chemical sensor, and more particularly to a chemical sensor using a thin film transistor.
  • FIG. 6 is a cross-sectional view showing the configuration of a conventional ISFET.
  • the ISFET 100 has a structure in which the gate electrode is removed from a normal MOSFET and the region of the channel 104 is covered with an ion sensitive film 106.
  • specific ions to be detected in the sample solution 108 selectively react with the ion sensitive film 106.
  • the surface potential of the gate portion changes, and the drain current changes.
  • the biosensor ISFET100 and detects the change in the drain current I d.
  • Patent Documents 1 and 2 describe a biosensor using a thin film device such as a polysilicon TFT as an ISFET. Further, an ISFET array in which a plurality of ISFETs are two-dimensionally arranged is also known, and Patent Document 3 describes an ISFET array in which the influence of noise due to a switching operation is reduced.
  • the ISFET uses an ion sensitive membrane to detect specific ions. Therefore, it is necessary to use different ion sensitive membranes depending on ions to be detected. Therefore, it is disadvantageous in terms of cost in order to meet the need to use various sample solutions.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a chemical sensor that does not require an ion-sensitive film.
  • a chemical sensor for detecting an object in a sample, and includes a gate electrode, a gate insulating layer, a semiconductor layer, a source electrode, and a drain electrode on a substrate.
  • a channel region is formed in the semiconductor layer in the opening between the source electrode and the drain electrode, and further includes a current extraction unit that extracts a leakage current generated in the channel region. It is the composition which is.
  • the chemical sensor includes the thin film transistor having the gate electrode, the gate insulating layer, the semiconductor layer, the source electrode, and the drain electrode on the substrate, and the current extraction unit that extracts the leakage current.
  • a thin film transistor an opening is formed between a source electrode and a drain electrode, and a channel region is formed in a semiconductor layer in the opening. Therefore, the object in the sample can approach the channel region from the opening.
  • the leakage current can change in the channel region due to the back channel effect.
  • the current extraction unit can detect a change in the leakage current by extracting the leakage current. Therefore, according to the chemical sensor of the present invention, the presence or absence of an object in the sample can be detected as a change in the intensity of the leakage current. For this reason, an object can be detected without providing an ion sensitive film like a conventional ISFET.
  • the back channel effect is a phenomenon in which holes or electrons are induced in the back channel by external ions or the like.
  • the back channel is a path through which a leak current flows on the surface of the semiconductor layer at the opening between the source electrode and the drain electrode.
  • a detection method for detecting an object in a sample, and includes a gate electrode, a gate insulating layer, a semiconductor layer, a source electrode, and a drain electrode on a substrate.
  • a thin film transistor in which a channel region is formed in the semiconductor layer in an opening between the source electrode and the drain electrode, and a current extraction unit that extracts a leakage current generated in the channel region.
  • a step of bringing the sample into contact with a chemical sensor, a step of taking out the leakage current generated when the sample is brought into contact with a current extraction unit, and a change in intensity of the taken out leakage current And a step of detecting the object.
  • the detection of the target is performed by taking out the leak current generated by the presence or absence of the target in the sample and using the change in the leak current. That is, the presence / absence of an object in the sample can be detected as a change in the intensity of the leakage current. Therefore, the object in the sample can be detected without using the ion sensitive membrane.
  • the chemical sensor according to the present invention includes a thin film transistor having a semiconductor layer and a current extraction unit that extracts a leakage current generated in a channel region of the semiconductor layer, and an opening between the source electrode and the drain electrode. Since the channel region is formed in the portion, the presence / absence of the object in the sample can be detected as a change in the intensity of the leakage current.
  • FIG. 4C is a characteristic graph of the relationship between the gate voltage and the drain current in FIG. 4A
  • FIG. 4D is the graph in FIG. It is a characteristic graph of the relationship between gate voltage and drain current.
  • It is a double view which shows the external appearance of one Embodiment in the chemical sensor of this invention.
  • It is a schematic sectional drawing of the conventional ISFET sensor. It is a top view which shows the external appearance of another embodiment in the chemical sensor of this invention.
  • FIG. 1 is a block diagram showing the configuration of the biosensor of the present invention.
  • the biosensor 1 includes a sensor array 2, a sensor array driving circuit 22 and a scanning signal line driving circuit 23 that send signals to the sensor array 2, and a sensor signal amplification and extraction circuit ( (Current extraction part) 24 is comprised.
  • the sensor array 2 includes a plurality of sensor TFTs (thin film transistors) 7.
  • FIG. 2 is a cross-sectional view showing a schematic configuration of the sensor TFT 7.
  • the sensor TFT 7 includes a glass substrate (substrate) 8, a base coat film 9, a gate electrode 10, a gate oxide film (gate insulating layer) 11, a silicon layer (semiconductor layer) 12, an n + layer 13, and a source electrode. 14, a drain electrode 15, a passivation film 16 and a shield film 17.
  • a channel region 18 is formed in an opening between the source electrode 14 and the drain electrode 15 in the silicon layer 12.
  • a TFT conventionally used for driving a liquid crystal panel can be used.
  • the back channel in the present embodiment refers to a path through which a leakage current flows on the silicon layer 12 side at the interface between the silicon layer 12 and the passivation film 16 in the opening between the source electrode 14 and the drain electrode 15.
  • a region where a back channel is formed is referred to as a back channel region.
  • the shield film 17 plays a role of electrically shielding the sample base material from the source electrode 14 and the drain electrode 15 when the sample base material (target object) to be detected is charged.
  • an oxide film containing conductive particles uniformly may be used, or an oxide film having a very large film thickness may be used.
  • the passivation film 16 is not particularly limited as long as it is not affected by the sample solution used for detection.
  • a SiNx film can be used as the passivation film 16.
  • the sample base material in the sample can approach the channel region 18.
  • the biosensor 1 detects a change in the intensity of leak current that may occur when the sample substrate approaches the channel region 18. Therefore, the presence or absence of the sample base material can be detected by detecting the change in the leakage current.
  • the leak current resulting from the presence or absence of the sample base material is generated by the following process. For example, when the sample substrate contained in the sample solution is positively charged as a whole, the entire passivation film 16 is polarized with the sample solution side negative and the silicon layer 12 side positive.
  • the passivation film 16 Due to the polarization of the passivation film 16, electrons are attracted to the vicinity of the interface of the silicon layer 12 with the passivation film 16, thereby forming a channel (back channel). Since a back channel is formed in the silicon layer 12, a leakage current is generated.
  • the passivation film 16 preferably contains impurity ions.
  • the negative impurity ions in the passivation film 16 are attracted to the sample solution side due to the presence of the positively charged sample base material, and the sample solution and It is distributed at the interface with the passivation film 16.
  • the polarization in the passivation film 16 becomes larger than that in the case where the passivation film does not contain impurities, and a larger leakage current can be generated. That is, the biosensor 1 does not require an ion sensitive film used in a conventional ISFET sensor.
  • size of drain current is amplified by making the gate oxide film 11 thin, and it can improve a measurement sensitivity by this.
  • the glass substrate 8 is used as the substrate of the sensor TFT 7, but a substrate formed of a polymer material such as polycarbonate may be used.
  • a substrate formed of a polymer material such as polycarbonate
  • the gate electrode 10, the gate oxide film 11, the silicon layer 12, the n + layer 13, the source electrode 14, the drain electrode 15, and the passivation film 16 may be formed of an organic material.
  • the gate electrode 10, the source electrode 14, and the drain electrode 15 can be formed using an organic conductor such as polyacetylene.
  • the gate oxide film 11 and the passivation film 16 can be formed using an organic insulator such as polyimide.
  • the silicon layer 12 and the n + layer 13 can be formed using an organic semiconductor such as pentacene.
  • the sensor array 2 includes n gate voltage signal lines G 1 to G n , m sensor reset signal lines RS 1 to RS m , and m sensor read signal lines RW 1 to RW m. , And (m ⁇ n) sensor circuits 28.
  • the sensor array 2 further includes n extraction signal lines (current extraction units) PAS 1 to PAS n .
  • m and n are integers of 1 or more.
  • the gate voltage signal lines G 1 to G n are arranged in parallel to each other.
  • the sensor reset signal lines RS 1 to RS m and the sensor readout signal lines RW 1 to RW m are arranged in parallel to each other so as to be orthogonal to the gate voltage signal lines G 1 to G n .
  • the sensor circuit 28 includes a sensor TFT 7, a preamplifier TFT 25, and a capacitor 26, and is arranged on the sensor array 2 in an array.
  • the gate terminal of the sensor TFT 7 is connected to a gate voltage signal line G i (i is an integer of 1 to n).
  • a source terminal of the sensor TFT 7 is connected to a sensor reset signal line RS j (j is an integer of 1 to m).
  • the drain terminal of the sensor TFT 7 is connected to one electrode of the capacitor 26.
  • the other electrode of the capacitor 26 is connected to the sensor readout signal line RW j .
  • the gate terminal of the preamplifier TFT 25 is connected to the drain terminal of the sensor TFT 7 at the contact P.
  • a power supply voltage V DD is applied to the source terminal of the preamplifier TFT 25.
  • the drain terminal of the preamplifier TFT25 is connected to the signal line PAS i extraction.
  • the scanning signal line driving circuit 23 is a circuit that transmits gate voltage signals G 1 to G n for controlling on / off of the sensor TFT 7 to each sensor TFT 7 on the sensor array 2.
  • the sensor array driving circuit 22 is a circuit that transmits sensor read signals RW 1 to RW m and sensor reset signals RS 1 to RS m to each sensor TFT 7 on the sensor array 2.
  • the gate voltage signals G 1 to G n can be controlled by the timing control signal C 1 from the host CPU 21, and the sensor read signals RW 1 to RW m and the sensor reset signals RS 1 to RS m are controlled by the timing control signal from the host CPU 21. It can be controlled by a signal C 2.
  • the sensor signal amplification / extraction circuit 24 extracts the signals PAS 1 to PAS n of the sensor TFT 7 from the sensor array 2, amplifies the signals, and transmits them to the host CPU 21.
  • the operation in the sensor circuit 28 in the detection method for detecting the sample base material in the sample using the biosensor 1 will be described.
  • this detection method first, the sample is brought into contact with the vicinity of the channel region 18 of the sensor TFT 7. At this time, due to the back channel effect due to the presence or absence of the sample base material in the sample, the leakage current intensity changes in the back channel region of the TFT 7 and the drain current changes.
  • the sample base material in the sample is detected by taking out the leak current / drain current and examining the change in the leak current.
  • FIG. 3 is a diagram showing one of the sensor circuits 28 of the sensor array 2 extracted.
  • a predetermined voltage is applied to the sensor readout line RW i and the sensor reset line RS i , and a power supply voltage V DD is applied to the source terminal of the preamplifier TFT 25.
  • V DD power supply voltage
  • a sample substrate is present in the vicinity of the channel region 18 of the sensor TFT 7
  • a back channel 27 is formed in the sensor TFT 7. Due to the back channel effect, the leakage current in the back channel 27 increases, and the drain current of the sensor TFT 7 increases.
  • the voltage at the contact P decreases by the amount of the flowing current.
  • a high voltage is applied to the sensor readout line RW i to increase the voltage at the contact P
  • the gate voltage of the preamplifier TFT 25 is set to be equal to or higher than a threshold value
  • the power supply voltage V DD is applied to the source terminal side of the preamplifier TFT 25.
  • the power supply voltage V DD is applied, the voltage at the contact P is amplified by the preamplifier TFT 25, and the amplified voltage is output to the drain terminal side of the preamplifier TFT 25.
  • the sensor signal amplifying / extracting circuit 24 transmits this detection result to the host CPU 21, and the host CPU 21 performs arithmetic processing.
  • the host CPU 21 detects the sample base material from the change in the leak current by a calculation process.
  • FIG. 4 is a diagram showing the difference in drain current caused by the presence or absence of the sample base material 19.
  • FIG. 4A shows the sensor TFT 7 when the sample base material 19 to be detected does not exist in the surroundings
  • FIG. 4C shows characteristics representing the relationship between the gate voltage and the drain current at that time. It is a graph.
  • FIG. 4B shows the sensor TFT 7 when the sample base material 19 exists in the surroundings
  • FIG. 4D is a characteristic graph showing the relationship between the gate voltage and the drain current at this time. is there.
  • the drain current for the same gate voltage increases as compared to FIG. 4C showing the case where the sample base material 19 does not exist. That is, an increase in leak current can be detected from an increase in drain current, whereby the presence of the sample substrate 19 can be detected. Further, it differs depending on the amount of leakage current, the shape of the drain current-gate voltage characteristic graph, or the use of the sensor array 2 which is the array-shaped biosensor 1 shown in FIG. It is possible to identify the type of sample base material 19.
  • FIG. 5 is a schematic two-view diagram of an embodiment of the biosensor 1, showing a top view and a cross-sectional view.
  • the biosensor 1 has a matrix structure that is partitioned into a plurality of ridge-like structures 3 by partitioning a base body 4, and forms a sensor array 2 that is in the form of an array.
  • a sensor TFT 7 having a comb source electrode 14 and a drain electrode 15 is arranged on the bottom surface of each bowl-like structure 3.
  • a sample solution 5 is added to each bowl-like structure 3 and detection is performed by the sensor TFT 7. Note that different sample solutions can be added to each bowl-like structure 3. Therefore, it is possible to perform detection work on a plurality of different samples at the same time. Further, by using the array sensor 2 as described above, different types of sample base materials 19 can be identified.
  • FIG. 7 is a plan view schematically showing the sensor array 2.
  • the sensor array is composed of four sections each having a sensor TFT 7.
  • any one of the substances A to D is put in each of the sections a to d.
  • chemical reaction conditions for the substances X and Y in the substances A to D are determined as shown in Table 1.
  • each substance is ionized by this chemical reaction, and a leak current is generated in the sensor TFT 7 due to the presence of the generated ions.
  • the method for identifying the type of sample base material is not limited to using the sensor array 2.
  • the substance A becomes a divalent ion by the reaction with the substance X and the substance B becomes a monovalent ion by the reaction with the substance X
  • the ion concentration of the ions generated by the reaction becomes different.
  • the amount of carriers induced in the back channel is different, and the magnitude of the leak current generated is different. Therefore, even if the biosensor 1 is not in the array form, it is possible to identify the type of the sample base material by measuring the magnitude of the leakage current.
  • the measurement object of the biosensor 1 according to the present invention is not particularly limited. For example, it is possible to detect ions in the sample solution. Further, as described above, it is also possible to detect ions generated by a chemical reaction between a substance contained in a sample and another substance. When the ion concentration is different, the amount of polarization charge in the passivation film 16 is also different. As a result, since the amount of carriers induced in the back channel of the silicon layer 12 is different, the magnitude of the leakage current is also different. That is, the back channel effect varies depending on the difference in ion concentration in the sample solution, and the magnitude of the leakage current changes accordingly.
  • a DNA chip that detects the presence or absence of target DNA by the presence or absence of hybridization as follows.
  • the complementary strand of the target DNA is bonded to the passivation film 16 or the shield film 17 between or near the source electrode 14 and the drain electrode 15 and ionized.
  • ionization of the complementary strand is eliminated.
  • a change occurs in the ionization state in the vicinity of the back channel region depending on the presence or absence of hybridization, resulting in a change in leakage current.
  • binding of complementary strand DNA to the passivation film 16 and the like, ionization, and the like may be performed by a conventionally known method.
  • the sample substrate 19 is detected by utilizing the back channel effect of the TFT. Therefore, an ion sensitive film is not necessary, and the sensor TFT 7 can be manufactured in a conventional TFT process used for manufacturing a liquid crystal panel. Since the materials and processes used for manufacturing generally follow the conventional TFT manufacturing process, the same production amount and cost as those of the TFT portion of the conventional liquid crystal panel can be secured.
  • the gate voltage can be actively applied to the sensor TFT 7 by the gate electrode 10. As a result, the drain current can be controlled.
  • the substrate is preferably made of a polymer material.
  • the chemical sensor can be further reduced in weight.
  • At least one of the gate electrode, the gate insulating layer, the semiconductor layer, the source electrode, and the drain electrode is formed of an organic material.
  • the chemical sensor can be further reduced in weight.
  • the chemical sensor can be made flexible by forming all of it with an organic material.
  • the plurality of thin film transistors are arranged in an array, and each of the plurality of thin film transistors is partitioned by a partition.
  • each of a plurality of different samples can be provided to each thin film transistor. Therefore, it is possible to perform detection work on a plurality of samples at the same time.
  • the present invention can be used in the medical field for analyzing biological samples and other chemical substances.
  • Biosensor (chemical sensor) 2 Sensor array 7 Sensor TFT (Thin Film Transistor) 8 Glass substrate (substrate) 9 Base coat film 10 Gate electrode 11 Gate oxide film (gate insulating layer) 12 Silicon layer (semiconductor layer) 13 n + layer 14 Source electrode 15 Drain electrode 16 Passivation film 17 Shielding film 18 Channel region 19 Sample base material (object) 22 sensor array driving circuit 23 scanning signal line driving circuit 24 sensor signal amplification / extraction circuit (current extraction unit) 25 Preamplifier TFT 27 Back channel 28 Sensor circuit 100 ISFET 101 Substrate 102 Drain electrode 103 Source electrode 104 Channel 105 Protective insulating film 106 Ion sensitive film 107 Reference electrode 108 Sample solution

Abstract

 イオン感応膜が不要な化学センサを提供するために、本発明に係る化学センサ(1)は、試料中のサンプル基材(19)を検出するためのバイオセンサ(1)であって、ガラス基板(8)上にゲート電極(10)、ゲート酸化膜(11)、シリコン層(12)、ソース電極(14)およびドレイン電極(15)を有するセンサTFT(7)を備えており、ソース電極(14)とドレイン電極(15)との間の開口部分においてシリコン層(12)にチャネル領域(18)が形成されており、チャネル領域(18)に生じるリーク電流を取り出す取り出し信号線PAS~PASおよびセンサ信号増幅・取り出し回路(24)をさらに備えている。

Description

化学センサ
 本発明は、化学センサに関し、より詳細には薄膜トランジスタを用いた化学センサに関する。
 従来、試料中の化学物質または生体物質を検出および測定する技術として、例えばISFET(Ion Sensitive FET)と呼ばれているバイオセンサが知られている。図6は従来のISFETの構成を示す断面図である。ISFET100は、通常のMOSFETからゲート電極を除去し、チャネル104の領域をイオン感応膜106によって被覆した構造である。ISFET100では、試料溶液108中における検出対象となる特定のイオンが、イオン感応膜106に対し選択的に反応する。これにより、ゲート部分の表面電位が変化し、ドレイン電流が変化する。ISFET100のバイオセンサでは、このドレイン電流Iの変化を検出している。
 ISFETを用いたバイオセンサの別の例として、特許文献1および2には、ポリシリコンTFTなどの薄膜デバイスをISFETとして用いているバイオセンサが記載されている。また、ISFETを二次元的に複数個配置したISFETアレイも従来知られており、特許文献3には、スイッチング動作によるノイズ影響を低減しているISFETアレイが記載されている。
日本国公開特許公報「特開2002-296228号公報(2002年10月9日公開)」 日本国公開特許公報「特開2002-296229号公報(2002年10月9日公開)」 日本国公開特許公報「特開2000-55874号公報(2000年2月25日公開)」
 上述の通り、ISFETでは、特定のイオンを検出するためにイオン感応膜を使用している。そのため、検出対象となるイオンに応じて異なるイオン感応膜を使用する必要がある。したがって、多様な試料溶液に応じて使用したいというニーズに応えるためには、コスト面で不利となっている。
 そこで、本発明は上記の問題点に鑑みてなされたものであり、その目的は、イオン感応膜が不要な化学センサを提供することにある。
 本発明に係る化学センサは、上記課題を解決するために、試料中の対象物を検出するための化学センサであって、基板上にゲート電極、ゲート絶縁層、半導体層、ソース電極およびドレイン電極を有する薄膜トランジスタを備えており、該ソース電極と該ドレイン電極との間の開口部分において該半導体層にチャネル領域が形成されており、上記チャネル領域に生じるリーク電流を取り出す電流取り出し部をさらに備えている構成である。
 上記構成によれば、化学センサは、基板上にゲート電極、ゲート絶縁層、半導体層、ソース電極およびドレイン電極を有する薄膜トランジスタと、リーク電流を取り出す電流取り出し部とを備えている。薄膜トランジスタにおいて、ソース電極とドレイン電極との間は開口しており、その開口部分の半導体層にチャネル領域が形成されている。そのため、試料中の対象物は開口部分からチャネル領域に近づくことができる。開口している部分に試料中の対象物が到達し、開口部近辺の電荷分布が変化すると、バックチャネル効果により、チャネル領域においてリーク電流の変化が生じ得る。電流取り出し部はこのリーク電流を取り出すことにより、リーク電流の変化を検出できる。したがって、本発明に係る化学センサによれば、試料中の対象物の有無を、リーク電流の強度の変化として検出することができる。このため、従来のISFETのようにイオン感応膜を設けることなく、対象物を検出できる。
 ここで、バックチャネル効果とは、外部からのイオン等によってバックチャネルに正孔または電子が誘起される現象のことである。
 また、バックチャネルとは、ソース電極とドレイン電極との間の開口部分における半導体層表面の、リーク電流の流れる経路のことである。
 本発明に係る検出方法は、上記課題を解決するために、試料中の対象物を検出するための検出方法であって、基板上にゲート電極、ゲート絶縁層、半導体層、ソース電極およびドレイン電極を有しており、該ソース電極と該ドレイン電極との間の開口部分において該半導体層にチャネル領域が形成されている薄膜トランジスタと、該チャネル領域に生じるリーク電流を取り出す電流取り出し部とを備えている化学センサに、上記試料を接触させる工程と、上記試料を接触させたときに生じている上記リーク電流を、電流取り出し部により取り出す工程と、取り出した上記リーク電流の強度の変化を利用して、上記対象物を検出する工程とを含む構成である。
 上記構成によれば、試料中の対象物の有無によって生じるリーク電流を取り出し、リーク電流の変化を利用することによって、対象物の検出をおこなう。すなわち、試料中の対象物の有無を、リーク電流の強度の変化として検出することができる。したがって、イオン感応膜を用いることなく試料中の対象物を検出することができる。
 本発明に係る化学センサは、以上のように、半導体層を有する薄膜トランジスタと、半導体層のチャネル領域に生じるリーク電流を取り出す電流取り出し部とを備えており、ソース電極とドレイン電極との間の開口部分にチャネル領域が形成されているため、試料中の対象物の有無を、リーク電流の強度の変化として検出することができる。
本発明の化学センサの構成を示すブロック図である。 本発明の化学センサに含まれるセンサTFTの構成を示す断面図である。 図1の化学センサにおけるセンサ回路の構成を示す図である。 図4の(a)は、対象物が周囲に存在しないときのセンサTFTを示す断面図であり、図4の(b)は、対象物が周囲に存在するときのセンサTFTを示す断面図であり、図4の(c)は、図4の(a)のときのゲート電圧とドレイン電流との関係の特性グラフであり、図4の(d)は、図4の(b)のときのゲート電圧とドレイン電流との関係の特性グラフである。 本発明の化学センサにおける一実施形態の外観を示す二面図である。 従来のISFETセンサの概略断面図である。 本発明の化学センサにおける別の実施形態の外観を示す平面図である。
 〔化学センサ〕
 本発明に係る化学センサの一実施形態について、図1~図5、および図7に基づいて説明すれば以下の通りである。なお本実施の形態では、化学センサとして、生体試料中のサンプルを測定するためのバイオセンサについて説明する。
 図1は、本発明のバイオセンサの構成を表すブロック図である。図1に示すようにバイオセンサ1は、センサアレイ2、センサアレイ2に信号を送るセンサ列駆動回路22および走査信号線駆動回路23、ならびにセンサアレイ2から信号を取り出すセンサ信号増幅・取り出し回路(電流取り出し部)24を含んで構成されている。センサアレイ2は、複数のセンサTFT(薄膜トランジスタ)7により構成されている。
 まずセンサTFT7の構成について図2を参照して説明する。図2は、センサTFT7の概略構成を示す断面図である。図2に示すように、センサTFT7は、ガラス基板(基板)8、ベースコート膜9、ゲート電極10、ゲート酸化膜(ゲート絶縁層)11、シリコン層(半導体層)12、n+層13、ソース電極14、ドレイン電極15、パッシベーション膜16およびシールド膜17を備えている。シリコン層12においてソース電極14とドレイン電極15との間の開口部分にチャネル領域18が形成される。上記の構成を有するセンサTFT7としては、従来液晶パネルの駆動に用いられているTFTを利用することができる。
 なお、本実施形態におけるバックチャネルは、ソース電極14とドレイン電極15との間の開口部分における、シリコン層12とパッシベーション膜16との界面の、シリコン層12側のリーク電流の流れる経路をいう。また、バックチャネルが形成される領域をバックチャネル領域と称する。
 シールド膜17は、検出対象となるサンプル基材(対象物)が電荷を帯びている場合に、サンプル基材とソース電極14およびドレイン電極15とを電気的に遮蔽する役割を担っている。シールド膜17としては、導電性粒子を均一に含む酸化膜を用いてもよいし、膜厚が非常に厚い酸化膜を用いてもよい。
 パッシベーション膜16は、検出に用いる試料溶液によって侵されないものであれば特に制限はない。パッシベーション膜16として、例えばSiNx膜を使用できる。
 以上のようにセンサTFT7では、ソース電極14とドレイン電極15との間の開口部分にチャネル領域18が形成されているため、試料中のサンプル基材がチャネル領域18に近づくことができる。バイオセンサ1では、サンプル基材がチャネル領域18に近づくことにより生じ得るリーク電流の強度の変化を検出する。したがってリーク電流の変化を検出することによりサンプル基材の有無を検出できる。なお、サンプル基材の有無に起因するリーク電流は、以下のような過程によって生じる。例えば試料溶液に含まれるサンプル基材が全体として正に帯電している場合に、パッシベーション膜16全体は試料溶液側を負、シリコン層12側を正として分極する。パッシベーション膜16の分極により、シリコン層12におけるパッシベーション膜16との界面近傍に電子が引き寄せられ、これによりチャネル(バックチャネル)が形成される。シリコン層12にバックチャネルが形成されるため、リーク電流が発生するようになる。なお、パッシベーション膜16には不純物イオンが含まれていることが好ましい。例えばここで負の不純物イオンがパッシベーション膜16に含まれていると、正に帯電しているサンプル基材の存在により、パッシベーション膜16における負の不純物イオンは試料溶液側に引き寄せられ、試料溶液とパッシベーション膜16との界面に分布するようになる。そのため、パッシベーション膜16における分極が、パッシベーション膜が不純物を含まない場合よりも大きくなり、より大きなリーク電流を発生させることができるようになる。
すなわち、バイオセンサ1では、従来のISFETセンサに用いられるイオン感応膜は不要となる。
 なお、ゲート酸化膜11を薄くすることによりドレイン電流の大きさが増幅し、これにより測定感度を向上させることができる。
 本実施の形態においては、センサTFT7の基板としてガラス基板8を用いているが、ポリカーボネートなどの高分子材料によって形成される基板を用いてもよい。これによりバイオセンサ1の軽量化を図ることができ、安価な材料を選択することにより低コスト化を図ることができる。
 また、ゲート電極10、ゲート酸化膜11、シリコン層12、n+層13、ソース電極14、ドレイン電極15およびパッシベーション膜16を有機材料によって形成してもよい。例えば、ゲート電極10、ソース電極14およびドレイン電極15を、ポリアセチレンなどの有機伝導体を用いて形成することが可能である。また、ゲート酸化膜11およびパッシベーション膜16を、ポリイミドなどの有機絶縁体を用いて形成することが可能である。また、シリコン層12およびn+層13を、ペンタセンなどの有機半導体を用いて形成することが可能である。これらの材料によって形成することにより、バイオセンサ1の軽量化を図ることができる。また、安価な材料を選択することにより低コスト化を図ることができる。さらに上述のように高分子材料によって形成される基板を用いることにより、センサTFT7全体のフレキシブル化を図ることができる。
 次に、バイオセンサ1の電気的構成について、図1および図3を参照しながら説明する。
 図1に示すように、センサアレイ2は、n本のゲート電圧信号線G~G、m本のセンサリセット信号線RS~RS、m本のセンサ読み出し信号線RW~RW、および(m×n)個のセンサ回路28を備えている。さらにセンサアレイ2は、n本の取り出し信号線(電流取り出し部)PAS~PASを備えている。ここで、mおよびnは1以上の整数である。
 ゲート電圧信号線G~Gは、互いに平行に配置される。センサリセット信号線RS~RSおよびセンサ読み出し信号線RW~RWは、ゲート電圧信号線G~Gと直交するように互いに平行に配置される。
 センサ回路28は、センサTFT7と、プリアンプTFT25と、コンデンサ26とを含んで構成されており、センサアレイ2上にアレイ状に並んでいる。センサTFT7のゲート端子はゲート電圧信号線G(iは1以上n以下の整数)に接続されている。センサTFT7のソース端子はセンサリセット信号線RS(jは1以上m以下の整数)に接続されている。センサTFT7のドレイン端子はコンデンサ26の一方の電極に接続される。コンデンサ26の他方の電極はセンサ読み出し信号線RWに接続される。プリアンプTFT25のゲート端子は接点PにおいてセンサTFT7のドレイン端子に接続されている。プリアンプTFT25のソース端子には電源電圧VDDが印加される。プリアンプTFT25のドレイン端子は取り出し信号線PASに接続されている。
 走査信号線駆動回路23は、センサTFT7のオン・オフを司るゲート電圧信号G~Gをセンサアレイ2上の各センサTFT7に送信する回路である。センサ列駆動回路22は、センサ読み出し信号RW~RW、およびセンサリセット信号RS~RSをセンサアレイ2上の各センサTFT7に送信する回路である。ゲート電圧信号G~Gは、ホストCPU21からのタイミング制御信号Cによって制御可能であり、センサ読み出し信号RW~RWおよびセンサリセット信号RS~RSは、ホストCPU21からのタイミング制御信号Cによって制御可能である。
 センサ信号増幅・取り出し回路24は、センサアレイ2からセンサTFT7の信号PAS~PASを取り出して、信号を増幅した後、ホストCPU21に送信する。
 〔検出方法〕
 次に、バイオセンサ1を用いて試料中のサンプル基材を検出する検出方法における、センサ回路28における動作について説明する。本検出方法では、まず、試料をセンサTFT7のチャネル領域18の近傍に接触させる。このとき、試料中のサンプル基材の有無によるバックチャネル効果によって、TFT7のバックチャネル領域においてリーク電流の強度の変化が生じ、ドレイン電流が変化する。本検出方法は、このリーク電流・ドレイン電流を取り出し、リーク電流の変化を調べることにより、試料中のサンプル基材を検出するものである。
 また、本明細書において、「リーク電流の変化」および「リーク電流の強度の変化」は交換可能に用いられている。
 図3は、センサアレイ2のセンサ回路28の一つを抽出して表した図である。バックチャネル効果により変調されたドレイン電流の変化を検出するために、センサ読み出し線RWおよびセンサリセット線RSに所定の電圧を印加し、プリアンプTFT25のソース端子に電源電圧VDDを印加する。センサTFT7のチャネル領域18近傍にサンプル基材が存在すると、センサTFT7にバックチャネル27が形成される。バックチャネル効果によりバックチャネル27におけるリーク電流が増加し、センサTFT7のドレイン電流が増加する。リーク電流の増加によってドレイン電流が増加すると、接点Pの電圧は流れた電流の分だけ低下する。そのタイミングでセンサ読み出し線RWに高い電圧を印加することによって接点Pの電圧を上昇させ、プリアンプTFT25のゲート電圧を閾値以上にした上でプリアンプTFT25のソース端子側に電源電圧VDDを印加する。電源電圧VDDを印加すると、接点Pの電圧はプリアンプTFT25で増幅され、プリアンプTFT25のドレイン端子側に増幅後の電圧が出力される。このようにして取り出し信号線PASに出力される信号の変化によってバックチャネル効果によるセンサTFT7におけるドレイン電流の変化およびリーク電流の変化を検出する。センサ信号増幅・取り出し回路24は、この検出結果をホストCPU21に送信し、ホストCPU21において演算処理を行う。ホストCPU21は、演算処理によりリーク電流の変化から、サンプル基材の検出を行う。
 図4は、サンプル基材19の有無により生じるドレイン電流の違いを表す図である。図4の(a)は検出対象であるサンプル基材19が周囲に存在しないときのセンサTFT7を表しており、図4の(c)はそのときのゲート電圧とドレイン電流との関係を表す特性グラフである。一方、図4の(b)はサンプル基材19が周囲に存在するときのセンサTFT7を表しており、図4の(d)はこのときのゲート電圧とドレイン電流との関係を表す特性グラフである。
 サンプル基材19が存在するとセンサTFT7にバックチャネル効果が生じ、これによりリーク電流が増加する。そのため、図4の(d)に示すように、サンプル基材19が存在しない場合を示す図4の(c)に比べ、同じゲート電圧に対するドレイン電流が増加する。すなわち、ドレイン電流の増加からリーク電流の増加を検出し、これによりサンプル基材19の存在を検出できる。また、リーク電流の量、ドレイン電流-ゲート電圧の特性グラフの形状を利用することにより、または、後述する図5に示されるアレイ状のバイオセンサ1であるセンサアレイ2を利用することによって、異なる種類のサンプル基材19を識別することが可能となる。
 図5は、バイオセンサ1の一実施形態における概略二面図であり、上面図および断面図を示している。バイオセンサ1は基体4の仕切りにより複数の枡状構造3に区画化されているマトリックス構造をとっており、アレイ状の形態であるセンサアレイ2を形成している。各の枡状構造3の底面には、櫛形ソース電極14およびドレイン電極15を有するセンサTFT7が配置されている。各の枡状構造3に試料溶液5を添加し、センサTFT7により検出を行う。なお、各の枡状構造3には互いに異なる試料溶液を加えることができる。そのため、複数の異なる試料について同時に検出作業を行うことができる。また、上述のようにアレイセンサ2を利用することにより、異なる種類のサンプル基材19を識別することが可能となる。
 ここで、異なる種類のサンプル基材19の識別方法について、図7を参照して説明する。図7は、センサアレイ2を模式的に示した平面図であり、説明の便宜上、それぞれにセンサTFT7を有する4つの区画からなるセンサアレイとしている。まず、区画a~区画dのそれぞれに、物質A~物質Dの何れかを入れるとする。なお、物質A~物質Dにおける物質Xおよび物質Yに対する化学反応条件が表1のように判別しているとする。また、この化学反応により各物質はイオン化し、生じたイオンの存在によってセンサTFT7にリーク電流が発生するものとする。
Figure JPOXMLDOC01-appb-T000001
 表1において「○」は化学反応を起こす場合を示しており、「×」は化学反応を起こさない場合を示している。このようなセンサアレイ2を2つ用意し(2つのセンサアレイ間で対応する区画には同一物質が入っている)、一方に物質X、他方に物質Yをさらに添加する。物質Xまたは物質Yの添加によって、各物質A~物質Dが表1に従ったそれぞれの反応を起こす。反応が起こるとリーク電流が発生するため、2つのセンサアレイ2の各区画に生じたリーク電流を検出することにより、物質A~物質Dの何れかであるかを判定することが可能である。
 なお、サンプル基材の種類を識別する方法は、センサアレイ2を利用する場合に限られない。例えば、物質Aが物質Xとの反応により二価のイオンとなり、物質Bが物質Xとの反応により一価のイオンとなる場合には、その反応により生じるイオンのイオン濃度が異なるものとなるため、後述するように、バックチャネルに誘起されるキャリアの量が異なるものとなり、発生するリーク電流の大きさが異なることとなる。したがって、アレイ形態のバイオセンサ1でなくても、リーク電流の大きさを測定することにより、サンプル基材の種類の識別が可能となる。
 本発明に係るバイオセンサ1の測定対象物は特に限定されない。例えば、試料溶液中のイオンを検出することが可能である。また、上述のように、試料中に含まれる物質と他の物質との化学反応により生じるイオンを検出することも可能である。
イオン濃度が異なると、パッシベーション膜16における分極電荷の量も異なるものとなる。これにより、シリコン層12のバックチャネルに誘起されるキャリアの量が異なることとなるため、リーク電流の大きさも異なるものとなる。すなわち、試料溶液中のイオン濃度の違いにより、バックチャネル効果にも違いが生じ、これによりリーク電流の大きさが変化する。
 また、以下のようにして、ハイブリダイゼーションの有無によりターゲットDNAの有無を検出するDNAチップへ適用することも可能である。ターゲットDNAの相補鎖をソース電極14とドレイン電極15との間もしくはその近傍のパッシベーション膜16、またはシールド膜17に結合させ、これをイオン化しておく。そして、この相補鎖とターゲットDNAとが二本鎖を形成したときに相補鎖のイオン化が解消するようにしておく。これによれば、ハイブリダイゼーションの有無によりバックチャネル領域近傍のイオン化状態に変化が生じ、結果としてリーク電流の変化を生じさせる。なお、相補鎖DNAのパッシベーション膜16等への結合、およびイオン化等は従来公知の方法により行えばよい。
 以上のように、本発明に係るバイオセンサ1では、TFTのバックチャネル効果を利用することによりサンプル基材19の検出を行っている。そのため、イオン感応膜は不要となり、液晶パネル作製に用いられるような従来のTFT工程において、センサTFT7を作製できる。作製に用いる材料およびプロセスも概ね従来のTFT作製工程に従うため、従来の液晶パネルのTFT部位と同様の生産量およびコストを確保できる。
 また、バックチャネル効果を利用しているため、センサTFT7では、ゲート電極10によってゲート電圧を能動的に加えることができる。これにより、ドレイン電流を制御することが可能である。
 なお、本発明に係る化学センサでは、上記基板が高分子材料によって形成されていることが好ましい。
 上記構成によれば、化学センサをより軽量化することができる。
 また、本発明に係る化学センサでは、上記ゲート電極、上記ゲート絶縁層、上記半導体層、上記ソース電極および上記ドレイン電極のうち少なくとも何れか1つが有機材料によって形成されていることが好ましい。
 上記構成によれば、化学センサをより軽量化することができる。また、すべてを有機材料によって形成することにより化学センサのフレキシブル化を図ることができる。
 また、本発明に係る化学センサでは、複数の上記薄膜トランジスタがアレイ状に配置されており、該複数の薄膜トランジスタのそれぞれは仕切りにより区画化されていることが好ましい。
 上記構成によれば、互いに異なる複数の試料のそれぞれを、各薄膜トランジスタに提供できる。そのため、複数の試料について同時に検出作業を行うことができる。
 本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。すなわち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 本発明は、生体試料およびその他の化学物質の分析を行う医用分野に利用することができる。
  1  バイオセンサ(化学センサ)
  2  センサアレイ
  7  センサTFT(薄膜トランジスタ)
  8  ガラス基板(基板)
  9  ベースコート膜
 10  ゲート電極
 11  ゲート酸化膜(ゲート絶縁層)
 12  シリコン層(半導体層)
 13  n+層
 14  ソース電極
 15  ドレイン電極
 16  パッシベーション膜
 17  シールド膜
 18  チャネル領域
 19  サンプル基材(対象物)
 22  センサ列駆動回路
 23  走査信号線駆動回路
 24  センサ信号増幅・取り出し回路(電流取り出し部)
 25  プリアンプTFT
 27  バックチャネル
 28  センサ回路
100  ISFET
101  基板
102  ドレイン電極
103  ソース電極
104  チャネル
105  保護絶縁膜
106  イオン感応膜
107  参照電極
108  試料溶液

Claims (5)

  1.  試料中の対象物を検出するための化学センサであって、
     基板上にゲート電極、ゲート絶縁層、半導体層、ソース電極およびドレイン電極を有する薄膜トランジスタを備えており、該ソース電極と該ドレイン電極との間の開口部分において該半導体層にチャネル領域が形成されており、
     上記チャネル領域に生じるリーク電流を取り出す電流取り出し部をさらに備えていることを特徴とする化学センサ。
  2.  上記基板が高分子材料によって形成されていることを特徴とする請求項1に記載の化学センサ。
  3.  上記ゲート電極、上記ゲート絶縁層、上記半導体層、上記ソース電極および上記ドレイン電極のうち少なくとも何れか1つが有機材料によって形成されていることを特徴とする請求項1または2に記載の化学センサ。
  4.  複数の上記薄膜トランジスタがアレイ状に配置されており、該複数の薄膜トランジスタのそれぞれは仕切りにより区画化されていることを特徴とする請求項1から3までの何れか1項に記載の化学センサ。
  5.  試料中の対象物を検出するための検出方法であって、
     基板上にゲート電極、ゲート絶縁層、半導体層、ソース電極およびドレイン電極を有しており、該ソース電極と該ドレイン電極との間の開口部分において該半導体層にチャネル領域が形成されている薄膜トランジスタと、該チャネル領域に生じるリーク電流を取り出す電流取り出し部とを備えている化学センサに、上記試料を接触させる工程と、
     上記試料を接触させたときに生じている上記リーク電流を、電流取り出し部により取り出す工程と、
     取り出した上記リーク電流の強度の変化を利用して、上記対象物を検出する工程とを含むことを特徴とする検出方法。
PCT/JP2010/000748 2009-04-27 2010-02-08 化学センサ WO2010125717A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2010800060820A CN102301227A (zh) 2009-04-27 2010-02-08 化学传感器
US13/147,798 US20110291673A1 (en) 2009-04-27 2010-02-08 Chemical sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009108442 2009-04-27
JP2009-108442 2009-04-27

Publications (1)

Publication Number Publication Date
WO2010125717A1 true WO2010125717A1 (ja) 2010-11-04

Family

ID=43031877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/000748 WO2010125717A1 (ja) 2009-04-27 2010-02-08 化学センサ

Country Status (3)

Country Link
US (1) US20110291673A1 (ja)
CN (1) CN102301227A (ja)
WO (1) WO2010125717A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011102729A (ja) * 2009-11-10 2011-05-26 Sharp Corp 分析チップ装置、分析チップ装置に用いる化学センサチップ収納アダプター及び分析装置ならびに分析チップ装置を用いた分析方法
JP2012122749A (ja) * 2010-12-06 2012-06-28 Dainippon Printing Co Ltd バイオセンサ
WO2014132343A1 (ja) * 2013-02-26 2014-09-04 株式会社日立製作所 Fetアレイ基板、分析システム、及び方法
WO2014207877A1 (ja) * 2013-06-27 2014-12-31 株式会社日立製作所 半導体装置およびその製造方法
JP2015190848A (ja) * 2014-03-28 2015-11-02 Nltテクノロジー株式会社 Tftイオンセンサ並びにこれを用いた測定方法及びtftイオンセンサ機器
JP2015210233A (ja) * 2014-04-30 2015-11-24 国立大学法人名古屋大学 超並列的生体分子検出方法および装置
JP2022503639A (ja) * 2019-04-02 2022-01-12 エルジー エレクトロニクス インコーポレイティド 嗅覚センサアセンブリおよびその制御方法

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011169692A (ja) * 2010-02-17 2011-09-01 Mitsumi Electric Co Ltd バイオセンサの製造方法
CN104838249B (zh) 2012-10-16 2018-06-22 雅培制药有限公司 包括局部脱盐系统的生物传感器设备和方法
CN103822953B (zh) * 2014-02-24 2016-02-03 电子科技大学 背栅式离子敏感场效应晶体管
JP6434744B2 (ja) * 2014-08-07 2018-12-05 ローラス株式会社 半導体バイオセンサー
JP6656507B2 (ja) * 2015-09-18 2020-03-04 Tianma Japan株式会社 バイオセンサ及び検出装置
WO2017132567A1 (en) 2016-01-28 2017-08-03 Roswell Biotechnologies, Inc. Massively parallel dna sequencing apparatus
JP7280590B2 (ja) * 2016-01-28 2023-05-24 ロズウェル バイオテクノロジーズ,インコーポレイテッド 大スケールの分子電子工学センサアレイを使用する被分析物を測定するための方法および装置
US10737263B2 (en) 2016-02-09 2020-08-11 Roswell Biotechnologies, Inc. Electronic label-free DNA and genome sequencing
US10597767B2 (en) 2016-02-22 2020-03-24 Roswell Biotechnologies, Inc. Nanoparticle fabrication
US10522400B2 (en) 2016-05-27 2019-12-31 Taiwan Semiconductor Manufacturing Co., Ltd. Embedded temperature control system for a biosensor
US9829456B1 (en) 2016-07-26 2017-11-28 Roswell Biotechnologies, Inc. Method of making a multi-electrode structure usable in molecular sensing devices
KR20180057915A (ko) * 2016-11-23 2018-05-31 주식회사 엘지화학 바이오센서
US10101295B2 (en) * 2016-12-15 2018-10-16 Taiwan Semiconductor Manufacturing Co., Ltd. On-chip reference electrode for biologically sensitive field effect transistor
CA3052062A1 (en) 2017-01-10 2018-07-19 Roswell Biotechnologies, Inc. Methods and systems for dna data storage
KR20230158636A (ko) 2017-01-19 2023-11-20 로스웰 바이오테크놀로지스 인코포레이티드 2차원 레이어 재료를 포함하는 솔리드 스테이트 시퀀싱 디바이스들
US10508296B2 (en) 2017-04-25 2019-12-17 Roswell Biotechnologies, Inc. Enzymatic circuits for molecular sensors
CN110546276A (zh) 2017-04-25 2019-12-06 罗斯威尔生命技术公司 用于分子传感器的酶电路
CN110651182B (zh) 2017-05-09 2022-12-30 罗斯威尔生命技术公司 用于分子传感器的结合探针电路
WO2019046589A1 (en) 2017-08-30 2019-03-07 Roswell Biotechnologies, Inc. PROCESSIVE ENZYME MOLECULAR ELECTRONIC SENSORS FOR STORING DNA DATA
CN111373051A (zh) 2017-10-10 2020-07-03 罗斯威尔生命技术公司 用于无扩增dna数据存储的方法、装置和系统
JP7020644B2 (ja) * 2017-12-21 2022-02-16 Tianma Japan株式会社 静電センサ装置
CN108389909A (zh) * 2018-01-31 2018-08-10 京东方科技集团股份有限公司 薄膜晶体管及其制备方法、显示装置及检测离子浓度方法
CN108896717B (zh) * 2018-07-24 2021-08-03 京东方科技集团股份有限公司 一种化学传感单元及化学传感器、化学传感装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002296229A (ja) * 2001-03-30 2002-10-09 Seiko Epson Corp バイオセンサ
WO2004017068A1 (ja) * 2002-08-12 2004-02-26 Hitachi High-Technologies Corporation Dnaマイクロアレイを用いた核酸検出方法及び核酸検出装置
JP2005077237A (ja) * 2003-08-29 2005-03-24 Seiko Epson Corp バイオセンサ
JP2006258661A (ja) * 2005-03-17 2006-09-28 Canon Inc 有機トランジスタ型バイオセンサーおよびバイオセンサ測定方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7202179B2 (en) * 2004-12-22 2007-04-10 Hewlett-Packard Development Company, L.P. Method of forming at least one thin film device
US7470544B2 (en) * 2005-05-26 2008-12-30 Hewlett-Packard Development Company, L.P. Sensor array using sail

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002296229A (ja) * 2001-03-30 2002-10-09 Seiko Epson Corp バイオセンサ
WO2004017068A1 (ja) * 2002-08-12 2004-02-26 Hitachi High-Technologies Corporation Dnaマイクロアレイを用いた核酸検出方法及び核酸検出装置
JP2005077237A (ja) * 2003-08-29 2005-03-24 Seiko Epson Corp バイオセンサ
JP2006258661A (ja) * 2005-03-17 2006-09-28 Canon Inc 有機トランジスタ型バイオセンサーおよびバイオセンサ測定方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011102729A (ja) * 2009-11-10 2011-05-26 Sharp Corp 分析チップ装置、分析チップ装置に用いる化学センサチップ収納アダプター及び分析装置ならびに分析チップ装置を用いた分析方法
JP2012122749A (ja) * 2010-12-06 2012-06-28 Dainippon Printing Co Ltd バイオセンサ
WO2014132343A1 (ja) * 2013-02-26 2014-09-04 株式会社日立製作所 Fetアレイ基板、分析システム、及び方法
JPWO2014132343A1 (ja) * 2013-02-26 2017-02-02 株式会社日立製作所 Fetアレイ基板、分析システム、及び方法
WO2014207877A1 (ja) * 2013-06-27 2014-12-31 株式会社日立製作所 半導体装置およびその製造方法
JP2015190848A (ja) * 2014-03-28 2015-11-02 Nltテクノロジー株式会社 Tftイオンセンサ並びにこれを用いた測定方法及びtftイオンセンサ機器
JP2015210233A (ja) * 2014-04-30 2015-11-24 国立大学法人名古屋大学 超並列的生体分子検出方法および装置
JP2022503639A (ja) * 2019-04-02 2022-01-12 エルジー エレクトロニクス インコーポレイティド 嗅覚センサアセンブリおよびその制御方法
JP7174838B2 (ja) 2019-04-02 2022-11-17 エルジー エレクトロニクス インコーポレイティド 嗅覚センサアセンブリおよびその制御方法

Also Published As

Publication number Publication date
CN102301227A (zh) 2011-12-28
US20110291673A1 (en) 2011-12-01

Similar Documents

Publication Publication Date Title
WO2010125717A1 (ja) 化学センサ
US11008611B2 (en) Double gate ion sensitive field effect transistor
TWI422818B (zh) 氫離子感測場效電晶體及其製造方法
TW201225304A (en) Chemically sensitive sensor with lightly doped drains
Reddy et al. High-k dielectric Al 2 O 3 nanowire and nanoplate field effect sensors for improved pH sensing
JP5181837B2 (ja) センサ及びその製造方法
US8283736B2 (en) Hydrogen ion sensing device using of arrayed gated lateral BJT
TW201224478A (en) Methods and apparatus for testing ISFET arrays
JP4927785B2 (ja) 電界効果型センサ
US9719959B2 (en) Hydrogen ion sensor
JP5488372B2 (ja) バイオセンサ
Shah et al. Biosensing platform on a flexible substrate
US20070000778A1 (en) Multi-parameter sensor with readout circuit
Yue et al. Fabrication of integrated field-effect transistors and detecting system based on CVD grown graphene
Chen et al. Contacting versus insulated gate electrode for Si nanoribbon field-effect sensors operating in electrolyte
US20140295573A1 (en) Biosensor with dual gate structure and method for detecting concentration of target protein in a protein solution
WO2013051790A2 (ko) 전계효과 트랜지스터를 이용한 바이오센서
JP5903872B2 (ja) トランジスタ型センサ、およびトランジスタ型センサの製造方法
Kwon et al. Drift-free pH detection with silicon nanowire field-effect transistors
Fernandes et al. Effect of back-gate biasing on floating electrolytes in silicon-on-insulator-based nanoribbon sensors
CN103822953A (zh) 背栅式离子敏感场效应晶体管
JP2019056581A (ja) 電荷検出センサおよび電位計測システム
JP5640704B2 (ja) バイオセンサ
US9863910B1 (en) TFT-based sensor with multiple sensing modalities
Gonçalves et al. Label-free electronic detection of biomolecules using a-Si: H field-effect devices

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080006082.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10769419

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13147798

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10769419

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP