WO2010125539A1 - Paroi radiante de bâtiment et applications - Google Patents

Paroi radiante de bâtiment et applications Download PDF

Info

Publication number
WO2010125539A1
WO2010125539A1 PCT/IB2010/051890 IB2010051890W WO2010125539A1 WO 2010125539 A1 WO2010125539 A1 WO 2010125539A1 IB 2010051890 W IB2010051890 W IB 2010051890W WO 2010125539 A1 WO2010125539 A1 WO 2010125539A1
Authority
WO
WIPO (PCT)
Prior art keywords
wall
building
fluid passage
temperature
filling element
Prior art date
Application number
PCT/IB2010/051890
Other languages
English (en)
Inventor
Jean-Claude Rey
Original Assignee
Courtirey Conception
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Courtirey Conception filed Critical Courtirey Conception
Publication of WO2010125539A1 publication Critical patent/WO2010125539A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/023Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material being enclosed in granular particles or dispersed in a porous, fibrous or cellular structure
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/44Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the purpose
    • E04C2/52Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the purpose with special adaptations for auxiliary purposes, e.g. serving for locating conduits
    • E04C2/521Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the purpose with special adaptations for auxiliary purposes, e.g. serving for locating conduits serving for locating conduits; for ventilating, heating or cooling
    • E04C2/525Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by the purpose with special adaptations for auxiliary purposes, e.g. serving for locating conduits serving for locating conduits; for ventilating, heating or cooling for heating or cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/02Central heating systems using heat accumulated in storage masses using heat pumps
    • F24D11/0257Central heating systems using heat accumulated in storage masses using heat pumps air heating system
    • F24D11/0264Central heating systems using heat accumulated in storage masses using heat pumps air heating system combined with solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D5/00Hot-air central heating systems; Exhaust gas central heating systems
    • F24D5/06Hot-air central heating systems; Exhaust gas central heating systems operating without discharge of hot air into the space or area to be heated
    • F24D5/10Hot-air central heating systems; Exhaust gas central heating systems operating without discharge of hot air into the space or area to be heated with hot air led through heat-exchange ducts in the walls, floor or ceiling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F5/00Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
    • F24F5/0007Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
    • F24F5/0017Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using cold storage bodies, e.g. ice
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/60Solar heat collectors integrated in fixed constructions, e.g. in buildings
    • F24S20/66Solar heat collectors integrated in fixed constructions, e.g. in buildings in the form of facade constructions, e.g. wall constructions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/13Hot air central heating systems using heat pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present invention relates to the means for thermoregulating a building, and a building provided with such means.
  • radiators To regulate the internal temperature of a building, radiators are usually used. There are different types of radiators, among which are electric radiators with inertia.
  • Such radiators are in the form of two plates spaced from one another and defining between them an interior space. They also include an inlet and an outlet of a heat transfer fluid. The heat transfer fluid, previously conditioned in temperature, circulates between the two plates in pipes.
  • the heat transfer fluid When the heat transfer fluid circulates in the pipes between the inlet and the outlet, the heat of the coolant is transmitted to a heat storage material such as cast iron.
  • This heat storage material is chosen to store the heat received and restore it gradually. It's inertia.
  • the heat transfer fluid used may be in gaseous or liquid form. Usually, water or oil is used.
  • Each radiator can be controlled from a control positioned on the radiator or away from the radiator.
  • the control may also be coupled to a temperature sensor to maintain the temperature of the building interior in the vicinity of a predetermined value.
  • a temperature sensor to maintain the temperature of the building interior in the vicinity of a predetermined value.
  • To thermoregulate a building such radiators are fixed to the walls that form the building. The variation of the temperature of the radiators, by the action of the control, makes it possible to modulate the thermal energy delivered by the radiators towards the interior of the building to compensate for the heat exchanges variable with the outside.
  • these radiators deteriorate the aesthetics of the interior of a building, occupy a significant place, and hinder furnishings.
  • a first problem proposed by the present invention is to provide means for thermoregulating a building, which reliably and efficiently fulfill the desired function of thermoregulation of a building, and which are invisible in the building.
  • the invention proposes, in a first aspect, a wall of a building, comprising two plates of a first material, spaced from one another and defining an interior space, and a filling element in the interior space, wherein:
  • the wall comprises a first fluid passage and a second fluid passage
  • the filling element is structured to allow the passage of a heat transfer fluid between the first fluid passage and the second fluid passage
  • At least one of the two plates is heat conducting, and the filling element comprises clay in granular form.
  • thermoregulating a building in the form of a wall is more aesthetic.
  • the wall does not create an obstacle for furniture.
  • the idea underlying the invention is to associate this wall with a heat transfer fluid previously conditioned in temperature.
  • the heat transfer fluid enters the wall and transmits its heat to the granular clay filling element.
  • the granular clay filling element can store the heat and then return it gradually, and its temperature varies during these stages.
  • the heat transfer fluid exits through the outlet.
  • the wall is thus designed to fulfill the thermoregulation function of a building.
  • the temperature conditioning consists in bringing the coolant to a chosen temperature.
  • the coolant can be warmer or cooler than the desired indoor temperature of the building.
  • Such a wall allows to heat or cool a building in a simple way.
  • Clay is a material that effectively accumulates heat. Clay is an inexpensive, porous and non-powdery material.
  • microorganisms do not grow on clay, fungi, or any flora. Thus, the wall remains healthy despite the possible moisture present inside the wall.
  • the expanded clay may be manufactured by heat treatment of the clay at about 1100 ° C. in a rotary kiln.
  • the granular shape promotes the circulation of heat transfer fluid.
  • Such a wall also makes it possible to take a modulable temperature, which makes it possible to thermoregulate the internal temperature of a building according to a set temperature which can itself be freely chosen and changed by a user.
  • the grains have a size of between about 0.5 mm and about 20 mm.
  • the filling element comprises volcanic stone in pieces. Such a material is inexpensive.
  • the first material is Fermacell ®.
  • Fermacell ® is a moisture resistant material. Thus, even if moisture condenses inside the wall, this moisture does not deteriorate the quality of the wall. In addition, Fermacell ® is a heat conductor.
  • the first fluid passage is provided at one end of the wall while the second fluid passage is provided at the opposite end of the wall.
  • the coolant is air.
  • Air is the heat transfer fluid that requires the least energy to be heated. In addition, it is free and is a natural resource.
  • the invention also provides a control system for thermoregulating a building, comprising:
  • a temperature sensor a source of a heat transfer fluid provided with a regulating member for regulating the flow rate of the heat transfer fluid
  • a wall according to the invention provided with a first fluid passage and a second fluid passage
  • control unit powered by a power source, receiving the signals coming from the temperature sensor, driving the regulator, and programmed to control the regulator so that the temperature of the building is maintained in the vicinity a predetermined value. Equipped with such a control system, the building is heated or cooled only when necessary. We minimize the energy losses.
  • the energy source is photovoltaic.
  • the energy source does not use fossil fuels, but rather the solar energy captured on site.
  • the system for thermoregulating a building further comprises a moisture recuperator near the second fluid passage of the wall.
  • a second problem proposed by the present invention is to provide a building that is inexpensive and autonomous in heating.
  • the invention provides, according to a second aspect of the invention, a building that is provided with a wall as defined above, or a control system as defined above.
  • the wall is horizontal to achieve a ceiling, vertical to achieve a wall, or oblique to achieve a roofing.
  • FIG. 1 is a schematic view of a wall according to one embodiment of the invention.
  • FIG. 2 is a schematic view of a control system according to a first embodiment of the invention
  • FIG. 3 is a schematic view of a control system according to a second embodiment of the invention.
  • - Figure 4 is a schematic sectional view of a building with a wall according to one embodiment of the invention.
  • FIG. 1 illustrates a wall 1 according to one embodiment of the invention.
  • the wall 1 comprises two plates P1 and P2 of a first material, spaced from one another and defining an inner space ⁇ .
  • the first material is advantageously Fermacell ®.
  • Fermacell ® is a material that is both heat conducting and whose properties do not deteriorate with the presence of moisture.
  • the wall 1 comprises at one of its ends a first fluid passage 6 connected to a first pipe 60. At the opposite end, the wall 1 comprises a second fluid passage 7 connected to a second pipe 70.
  • the internal space ⁇ is filled by a filling element 2.
  • the filling element 2 consists of clay in granular form.
  • the use of grains of different sizes is advantageous because it makes it possible to fill the interior space well while allowing the passage of a fluid such as air in this interior space ⁇ from the first fluid passage 6 to the second passage of fluid 7.
  • the plate P1 is the only conductive plate of the heat.
  • the reasonings that follow are identical even if the second plate P2 is also heat conducting.
  • the coolant is previously conditioned to a temperature to obtain the desired temperature in the interior of a building.
  • the coolant is injected into the inner space ⁇ of a wall 1 identical to that of FIG. 1.
  • the heat transfer fluid passes between the clay balls forming the filling element 2, it transfers its heat or its freshness. to clay balls.
  • the clay balls accumulate heat or coolness and gradually return it to the heat conducting plate or plates.
  • Figure 2 illustrates a system for thermoregulating a building.
  • a wall 1 identical to that of Figure 1, is shown.
  • the wall 1 marks the separation between two spaces. Int is the interior of the room. Ext is the outside of this room.
  • the wall 1 comprises a plate P1 which is heat conducting.
  • a temperature sensor 3 is positioned inside Int of the building room. This temperature sensor 3 measures the temperature of the room whose temperature is to be regulated and supplies a temperature measurement signal Tm to a control unit 8.
  • the control unit 8 is powered by a power source 9 which is advantageously photovoltaic.
  • Solar collectors positioned on the roof of the building, which receive solar energy, transform it into electrical energy, and transmit it to an accumulator can be provided.
  • the accumulator stores the electrical energy and returns it to the control unit 8 when necessary.
  • the control unit 8 controls two adjustment members 5a and 5b such as valves as a function of a set temperature Tb chosen by the user, and acts in such a way that the temperature of the building is kept close to the temperature of the setpoint Tb predetermined. To do this, the control unit 8 controls one or other of the adjustment members 5a or 5b so that the fluid will be directed towards the first fluid passage 6 or to the second fluid passage 7.
  • the source 4 of the heat transfer fluid also comprises heat transfer fluid conditioning means, by which the temperature of the coolant can be increased or decreased depending on the need to heat or cool the building.
  • the wall 1 is placed on a support, floor or other carrier element so that the first fluid passage 6 carries the upper end of the wall 1 and the second fluid passage carries the lower end of the wall 1.
  • control unit 8 causes the opening of the regulating member 5a so that hot air is injected into the the wall 1 by the first pipe 60.
  • the control unit 8 causes the opening of the adjustment member 5b so that cold pulsed air is injected into the the wall 1 by the second pipe 70.
  • the embodiment of FIG. 3 differs from that of FIG. 2 in that a moisture recuperator 100 is provided in the second pipe 70 of the wall 1.
  • the same essential means are identified by the same reference numerals as in the embodiment of Figure 2.
  • the condensation created by the thermal changes inside the wall 1 falls into the moisture collector 100 and is evacuated in a circuit provided for this purpose. The moisture of the wall 1 is removed, there is thus less risk that the wall 1 is damaged.
  • Figure 4 illustrates a use of the radiant wall 1 to be contiguous to the load-bearing walls M of the building.
  • the wall 1 is contiguous so that its non-heat conducting plate P2 comes into contact with the inner face of the bearing wall M.
  • the operation of the wall 1 is identical to that explained above.
  • the coolant used is air that is drawn.
  • the air inlet zone is located at the top of the wall 1 in the case of a cold air injection, and the air inlet zone is located at the bottom of the wall 1 in the case of a hot air injection.
  • the filling element When the filling element is a volcanic stone, it takes 15 minutes for the room to reach a pleasant temperature of about 20 ° C.
  • the filling element is in the form of clay balls, in only 5 minutes the room reaches a comfortable temperature.
  • a box with a lower wall for the floor and an upper wall for the roof were made, both of these walls being made of wood panels (OSB).
  • OSB wood panels
  • Four vertical peripheral walls have also been provided, each comprising an insulating outer wall and an inner wall (12/100/12) having two gypsum plates 12 mm thick spaced 100 mm apart to define an interior space.
  • the box had an internal dimension to the ground of 1 10 cm by 150 cm, and a height of 100 cm.
  • First tests were carried out with the box whose interior space was devoid of clay balls, and second tests were carried out with the box whose interior space was provided with clay balls as provided by the invention. .
  • the box was equipped with a heat generator blowing 1, 8 kW to blow hot air inside the radiant wall of the box, a programmer-regulator to ensure a temperature of departure identical of 25 0 C during the first and second tests, and several temperature and hygrometry recorders.
  • the thermal resistance of a 12/100/12 wall with clay balls is 1, 2 m 2 ° K / W, which is 20% more than the thermal resistance prescribed in the technical specifications. of 2012 for the vertical walls.
  • the measurements carried out prove that the box comprising radiant walls with clay balls according to the invention has a greater thermal inertia than the box without clay balls.
  • thermal inertia gain is all the more visible after a longer cooling period as shown by the results grouped in the table below:

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Combustion & Propulsion (AREA)
  • Sustainable Energy (AREA)
  • Dispersion Chemistry (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Building Environments (AREA)

Abstract

L'invention concerne une paroi (1) d'un bâtiment, comprenant deux plaques (P1, P2) d'un premier matériau, espacées l'une de l'autre et définissant un espace intérieur (ε), et un élément de remplissage (2) dans l'espace intérieur (ε), dans laquelle : - la paroi (1) comprend un premier passage de fluide (6) et un second passage de fluide (7), - l'élément de remplissage (2) est structuré pour permettre le passage d'un fluide caloporteur entre le premier passage de fluide (6) et le second passage de fluide (7), - l'une au moins des deux plaques (P1, P2) est conductrice de la chaleur, et - l'élément de remplissage comprend de l'argile sous forme granulaire.

Description

PAROI RADIANTE DE BÂTIMENT ET APPLICATIONS
DOMAINE TECHNIQUE DE L'INVENTION
La présente invention concerne les moyens pour thermoréguler un bâtiment, ainsi qu'un bâtiment muni de tels moyens.
Pour réguler la température intérieure d'un bâtiment, on utilise habituellement des radiateurs. Il existe différents types de radiateurs, parmi lesquels les radiateurs électriques à inertie.
De tels radiateurs se présentent sous la forme de deux plaques espacées l'une de l'autre et définissant entre elles un espace intérieur. Ils comprennent également une entrée et une sortie d'un fluide caloporteur. Le fluide caloporteur, préalablement conditionné en température, circule entre les deux plaques dans des canalisations.
Lorsque le fluide caloporteur circule dans les canalisations entre l'entrée et la sortie, la chaleur du fluide caloporteur est transmise à un matériau accumulateur de chaleur comme par exemple la fonte. Ce matériau accumulateur de chaleur est choisi pour pouvoir emmagasiner la chaleur reçue et la restituer progressivement. C'est l'inertie.
Le fluide caloporteur utilisé peut être sous forme gazeuse ou liquide. Habituellement, on utilise l'eau ou l'huile.
Chaque radiateur peut être commandé depuis une commande positionnée sur le radiateur ou à distance du radiateur. La commande peut également être couplée à un capteur de température afin de maintenir la température de l'intérieur du bâtiment au voisinage d'une valeur prédéterminée. Pour thermoréguler un bâtiment, on fixe de tels radiateurs aux parois qui forment le bâtiment. La variation de la température des radiateurs, par l'action de la commande, permet de moduler l'énergie thermique délivrée par les radiateurs vers l'intérieur du bâtiment pour compenser les échanges thermiques variables avec l'extérieur. Cependant, ces radiateurs détériorent l'esthétique de l'intérieur d'un bâtiment, occupent une place non négligeable, et gênent l'ameublement.
On connaît du document DE 10 2004 017 021 A1 , un système qui maintient une paroi d'un bâtiment à température constante grâce à la présence d'un matériau à changement de phase dans l'intérieur de la paroi. Cependant, un tel système ne permet pas de maintenir l'intérieur d'un bâtiment à température constante (thermorégulation) lorsqu'au moins une autre paroi du bâtiment est dépourvue de ce système. EXPOSE DE L'INVENTION
Un premier problème proposé par la présente invention est de prévoir des moyens pour thermoréguler un bâtiment, qui remplissent de façon fiable et efficace la fonction recherchée de thermorégulation d'un bâtiment, et qui soient invisibles dans le bâtiment.
Pour atteindre ces buts ainsi que d'autres, l'invention propose, selon un premier aspect, une paroi d'un bâtiment, comprenant deux plaques d'un premier matériau, espacées l'une de l'autre et définissant un espace intérieur, et un élément de remplissage dans l'espace intérieur, dans laquelle :
- la paroi comprend un premier passage de fluide et un second passage de fluide,
- l'élément de remplissage est structuré pour permettre le passage d'un fluide caloporteur entre le premier passage de fluide et le second passage de fluide,
- l'une au moins des deux plaques est conductrice de la chaleur, et - l'élément de remplissage comprend de l'argile sous forme granulaire.
La réalisation de moyens pour thermoréguler un bâtiment sous la forme d'une paroi est plus esthétique. La paroi ne créée pas un obstacle pour l'ameublement.
L'idée qui est à la base de l'invention est d'associer cette paroi à un fluide caloporteur préalablement conditionné en température. Le fluide caloporteur pénètre dans la paroi et transmet sa chaleur à l'élément de remplissage en argile granulaire. L'élément de remplissage en argile granulaire peut emmagasiner la chaleur et la restituer ensuite progressivement, et sa température varie lors de ces étapes. Le fluide caloporteur ressort par la sortie. La paroi est ainsi conçue pour remplir la fonction de thermorégulation d'un bâtiment.
Le conditionnement en température consiste à porter le fluide caloporteur à une température choisie. Le fluide caloporteur peut être plus chaud ou plus froid que la température intérieure désirée du bâtiment. Une telle paroi permet donc de chauffer ou de refroidir un bâtiment de façon simple. L'argile est un matériau qui accumule efficacement la chaleur. L'argile est un matériau peu coûteux, poreux et qui ne fait pas de poudre. De plus, les microorganismes ne se développent pas sur l'argile, ni les champignons, ni aucune flore. Ainsi, la paroi demeure saine malgré l'humidité éventuelle présente à l'intérieur de la paroi. De façon avantageuse, on peut prévoir d'utiliser de l'argile expansée.
L'argile expansée peut être fabriquée par un traitement thermique de l'argile à environ 1100 0C dans un four rotatif. La forme granulaire favorise la circulation du fluide caloporteur.
Une telle paroi permet en outre de prendre une température modulable, ce qui permet de thermoréguler la température intérieure d'un bâtiment selon une température de consigne qui peut elle-même être choisie librement et changée par un utilisateur.
De façon avantageuse, on peut prévoir que les grains présentent une taille comprise entre environ 0,5 mm et environ 20 mm.
On peut avantageusement prévoir que l'élément de remplissage comprend de la pierre volcanique en morceaux. Un tel matériau est peu coûteux.
Avantageusement, on peut prévoir que le premier matériau est du Fermacell ®.
Le Fermacell ® est un matériau résistant à l'humidité. Ainsi, même si de l'humidité se condense à l'intérieur de la paroi, cette humidité ne détériore pas la qualité de la paroi. De plus, le Fermacell ® est conducteur de la chaleur.
De façon avantageuse, on peut prévoir que le premier passage de fluide est prévu à une extrémité de la paroi tandis que le second passage de fluide est prévu à l'extrémité opposée de la paroi.
Avantageusement, on peut prévoir que le fluide caloporteur est de l'air. L'air est le fluide caloporteur qui nécessite le moins d'énergie pour être chauffé. De plus, il est gratuit et il constitue une ressource naturelle.
L'invention prévoit également un système de régulation pour thermoréguler un bâtiment, comprenant :
- un capteur de température, - une source d'un fluide caloporteur munie d'un organe de réglage pour régler le débit du fluide caloporteur,
- une paroi selon l'invention munie d'un premier passage de fluide et d'un second passage de fluide,
- une première conduite pour guider le fluide caloporteur depuis la source jusqu'au premier passage de fluide de la paroi,
- une seconde conduite pour collecter les résidus au niveau du second passage de fluide de la paroi,
- une unité de commande, alimentée par une source d'énergie, recevant les signaux provenant du capteur de température, pilotant l'organe de réglage, et programmée pour commander l'organe de réglage de façon que la température du bâtiment soit maintenue au voisinage d'une valeur prédéterminée. Muni d'un tel système de régulation, le bâtiment n'est chauffé ou refroidi que lorsque cela est nécessaire. On minimise les pertes d'énergie.
On peut avantageusement prévoir que la source d'énergie est photovoltaïque. Ainsi, la source d'énergie n'utilise pas d'énergies fossiles, mais plutôt l'énergie solaire captée sur site.
Avantageusement, on peut prévoir que le système pour thermoréguler un bâtiment comprend en outre un récupérateur d'humidité à proximité du second passage de fluide de la paroi. Un second problème proposé par la présente invention est de prévoir un bâtiment qui soit peu coûteux et autonome en chauffage.
L'invention prévoit, selon un second aspect de l'invention, un bâtiment qui est muni d'une paroi telle que définie ci-dessus, ou d'un système de régulation tel que défini ci-dessus. Avantageusement, on peut prévoir que la paroi est horizontale pour réaliser un plafond, verticale pour réaliser un mur, ou oblique pour réaliser un pan de toiture.
Ainsi, l'utilisateur possède une grande liberté d'utilisation des parois selon l'invention. DESCRIPTION SOMMAIRE DES DESSINS
D'autres objets, caractéristiques et avantages de la présente invention ressortiront de la description suivante de modes de réalisation particuliers, faite en relation avec les figures jointes, parmi lesquelles :
- la figure 1 est une vue schématique d'une paroi selon un mode de réalisation de l'invention ;
- la figure 2 est une vue schématique d'un système de régulation selon un premier mode de réalisation de l'invention ;
- la figure 3 est une vue schématique d'un système de régulation selon un second mode de réalisation de l'invention ; et - la figure 4 est une vue schématique en coupe d'un bâtiment muni d'une paroi selon un mode de réalisation de l'invention.
DESCRIPTION DES MODES DE REALISATION PREFERES La figure 1 illustre une paroi 1 selon un mode de réalisation de l'invention. La paroi 1 comprend deux plaques P1 et P2 d'un premier matériau, espacées l'une de l'autre et définissant un espace intérieur ε. Le premier matériau est avantageusement du Fermacell ®. Le Fermacell ® est un matériau qui est à la fois conducteur de chaleur et dont les propriétés ne se détériorent pas avec la présence d'humidité.
La paroi 1 comprend à l'une de ses extrémités un premier passage de fluide 6 relié à une première conduite 60. A l'extrémité opposée, la paroi 1 comprend un second passage de fluide 7 relié à une seconde conduite 70.
L'espace intérieur ε est rempli par un élément de remplissage 2. L'élément de remplissage 2 est constitué, dans ce mode de réalisation particulier, d'argile sous forme granulaire. L'utilisation de grains de tailles différentes est avantageuse car cela permet de bien remplir l'espace intérieur en autorisant toutefois le passage d'un fluide tel que l'air dans cet espace intérieur ε depuis le premier passage de fluide 6 vers le second passage de fluide 7.
Dans ce mode de réalisation, la plaque P1 est la seule plaque conductrice de la chaleur. Les raisonnements qui suivent sont identiques même si la seconde plaque P2 est également conductrice de chaleur.
Le fluide caloporteur est préalablement conditionné à une température permettant d'obtenir la température souhaitée dans l'intérieur d'un bâtiment. Le fluide caloporteur est injecté dans l'espace intérieur ε d'une paroi 1 identique à celle de la figure 1. Lorsque le fluide caloporteur passe entre les billes d'argile formant l'élément de remplissage 2, il transfère sa chaleur ou sa fraîcheur aux billes d'argile. Les billes d'argile accumulent la chaleur ou la fraîcheur et la restituent progressivement à la plaque ou aux plaques conductrices de la chaleur.
La figure 2 illustre un système pour thermoréguler un bâtiment. Sur cette figure, une paroi 1 , identique à celle de la figure 1 , est représentée. Dans le mode de réalisation illustré, la paroi 1 marque la séparation entre deux espaces. Int est l'intérieur de la pièce. Ext est l'extérieur de cette pièce.
La paroi 1 comprend une plaque P1 qui est conductrice de la chaleur. Un capteur de température 3 est positionné à l'intérieur Int de la pièce du bâtiment. Ce capteur de température 3 mesure la température de la pièce dont on veut réguler la température et fournit un signal de mesure de température Tm à une unité de commande 8.
L'unité de commande 8 est alimentée par une source d'énergie 9 qui est avantageusement photovoltaïque. On peut prévoir des capteurs solaires positionnés sur le toit du bâtiment, qui reçoivent l'énergie solaire, qui la transforment en énergie électrique, et qui la transmettent à un accumulateur. L'accumulateur emmagasine l'énergie électrique et la restitue à l'unité de commande 8 lorsque cela est nécessaire.
L'unité de commande 8 pilote deux organes de réglage 5a et 5b tels que des vannes en fonction d'une température de consigne Tb choisie par l'utilisateur, et agit de façon que la température du bâtiment soit maintenue au voisinage de la température de consigne Tb prédéterminée. Pour ce faire, l'unité de commande 8 pilote l'un ou l'autre des organes de réglage 5a ou 5b de sorte que le fluide va être dirigé vers le premier passage de fluide 6 ou vers le second passage de fluide 7.
La source 4 du fluide caloporteur comprend également des moyens de conditionnement de fluide caloporteur, par lesquels la température du fluide caloporteur peut être augmentée ou diminuée suivant le besoin de chauffer ou de refroidir le bâtiment.
Lors de son utilisation, la paroi 1 est posée sur un support, plancher ou autre élément porteur de sorte que le premier passage de fluide 6 réalise l'extrémité haute de la paroi 1 et le second passage de fluide réalise l'extrémité basse de la paroi 1.
Lorsque la température mesurée Tm par le capteur de température 3 est inférieure à la température de consigne Tb du bâtiment, l'unité de commande 8 provoque l'ouverture de l'organe de réglage 5a pour que de l'air chaud puisé soit injecté dans la paroi 1 par la première conduite 60.
Lorsque la température mesurée Tm par le capteur de température 3 est supérieure à la température de consigne Tb du bâtiment, l'unité de commande 8 provoque l'ouverture de l'organe de réglage 5b pour que de l'air froid puisé soit injecté dans la paroi 1 par la seconde conduite 70. Le mode de réalisation de la figure 3 diffère de celui de la figure 2 en ce qu'un récupérateur d'humidité 100 est prévu dans la seconde conduite 70 de la paroi 1. Dans le mode de réalisation de la figure 3, les mêmes moyens essentiels sont repérés par les mêmes références numériques que dans le mode de réalisation de la figure 2. La condensation créée par les changements thermiques à l'intérieur de la paroi 1 tombe dans ce récupérateur d'humidité 100 et est évacuée dans un circuit prévu à cet effet. L'humidité de la paroi 1 est évacuée, il y a ainsi moins de risques que la paroi 1 soit détériorée.
La figure 4 illustre une utilisation de la paroi radiante 1 pour être accolée aux murs porteurs M du bâtiment. La paroi 1 est accolée de sorte que sa plaque P2 non conductrice de la chaleur vienne au contact de la face intérieure du mur porteur M. Le fonctionnement de la paroi 1 est identique à ce qui a été explicité ci-dessus.
Dans les modes de réalisation avantageux, on prévoit que le fluide caloporteur utilisé est de l'air qui est puisé. On obtient alors d'excellents résultats. De préférence, la zone d'entrée d'air est située en haut de la paroi 1 dans le cas d'une injection d'air froid, et la zone d'entrée d'air est située en bas de la paroi 1 dans le cas d'une injection d'air chaud.
Plusieurs essais effectués ont montré l'efficacité de l'invention dans le cas d'un local de 30 m2 environ dont une des parois est selon le principe de l'invention une paroi radiante d'un mètre cinquante par un mètre cinquante, alimentée en air chaud.
Lorsque l'élément de remplissage est une pierre volcanique, il faut 15 minutes pour que le local atteigne une température agréable d'environ 20 0C.
En l'absence d'élément de remplissage dans l'espace intérieur de la paroi, il faut 30 minutes pour que le local atteigne une température agréable d'environ 20 0C.
Lorsque l'élément de remplissage est sous forme de billes d'argile, en 5 minutes seulement le local atteint une température confortable.
D'autres essais ont été effectués pour montrer l'amélioration apportée par les parois d'un bâtiment selon un mode de réalisation de l'invention en terme d'inertie thermique et en terme de résistance thermique.
Pour simuler le bâtiment, on a réalisé un caisson avec une paroi inférieure pour le sol et une paroi supérieure pour le toit, ces deux parois étant réalisées dans des panneaux de bois (OSB). Ont également été prévus quatre murs périphériques verticaux, comprenant chacun une paroi extérieure isolante et une paroi intérieure (12/100/12) ayant deux plaques de gypse de 12 mm d'épaisseur espacées l'une de l'autre de 100 mm pour définir un espace intérieur. Le caisson présentait une dimension intérieure au sol de 1 10 cm par 150 cm, et une hauteur de 100 cm. Des premiers tests ont été effectués avec le caisson dont l'espace intérieur était dépourvu de billes d'argile, et des seconds tests ont été effectués avec le caisson dont l'espace intérieur était pourvu de billes d'argile comme le prévoit l'invention.
Pour les tests, le caisson a été équipé d'un générateur de chaleur soufflant de 1 ,8 kW pour souffler de l'air chaud à l'intérieur de la paroi radiante du caisson, d'un programmateur-régulateur pour assurer une température de départ identique de 25 0C lors des premiers et des seconds tests, et de plusieurs enregistreurs de température et d'hygrométrie.
La résistance thermique d'une paroi 12/100/12 avec les billes d'argile s'élève à 1 ,2 m2.°K/W, ce qui représente 20% de plus que la résistance thermique réglementaire prévue dans les spécifications techniques de 2012 pour les parois verticales.
Concernant l'inertie thermique, des relevés de températures à l'intérieur (Tint) et à l'extérieur (Text) du caisson ont été effectués en fin de chauffe après deux heures de chauffe, puis après trois heures sans chauffe. Les résultats obtenus sont contenus dans le tableau ci-dessous :
Figure imgf000010_0001
Ainsi, les mesures effectuées prouvent que le caisson comprenant des parois radiantes à billes d'argile selon l'invention présente une plus grande inertie thermique que le caisson sans billes d'argile.
Le gain d'inertie thermique est d'autant plus visible après une période de refroidissement plus longue comme le montrent les résultats regroupés dans le tableau ci-dessous :
Figure imgf000010_0002
La déperdition de chaleur est donc moindre dans le caisson avec billes d'argile.
La présente invention n'est pas limitée aux modes de réalisation qui ont été explicitement décrits, mais elle en inclut les diverses variantes et généralisations contenues dans le domaine des revendications ci-après.

Claims

REVENDICATIONS
1 - Paroi (1 ) d'un bâtiment, comprenant deux plaques (P1 , P2) d'un premier matériau, espacées l'une de l'autre et définissant un espace intérieur (ε), et un élément de remplissage (2) dans l'espace intérieur (ε), dans laquelle : - la paroi (1 ) comprend un premier passage de fluide (6) et un second passage de fluide (7),
- l'élément de remplissage (2) est structuré pour permettre le passage d'un fluide caloporteur entre le premier passage de fluide (6) et le second passage de fluide (7), et - l'une au moins des deux plaques (P1 , P2) est conductrice de la chaleur, caractérisée en ce que l'élément de remplissage (2) comprend de l'argile sous forme granulaire.
2 - Paroi (1 ) selon la revendication 1 , caractérisée en ce que les grains présentent une taille comprise entre environ 0,5 mm et environ 20 mm. 3 - Paroi (1 ) selon l'une des revendications 1 ou 2, caractérisée en ce que l'élément de remplissage (2) comprend de la pierre volcanique en morceaux.
4 - Paroi (1 ) selon l'une quelconque des revendications 1 à 3, caractérisée en ce que le premier matériau est du Fermacell ®.
5 - Paroi (1 ) selon l'une quelconque des revendications 1 à 4, caractérisée en ce que le premier passage de fluide (6) est prévu à une extrémité de la paroi (1 ) tandis que le second passage de fluide (7) est prévu à l'extrémité opposée de la paroi (1 ).
6 - Paroi (1 ) selon l'une quelconque des revendications 1 à 5, caractérisée en ce que le fluide caloporteur est de l'air. 7 - Système de régulation pour thermoréguler un bâtiment, comprenant :
- un capteur de température (3),
- une source (4) d'un fluide caloporteur munie d'un organe de réglage (5a, 5b) pour régler le débit du fluide caloporteur, - une paroi (1 ) selon l'une quelconque des revendications 1 à 6 munie d'un premier passage de fluide (6) et d'un second passage de fluide (7),
- une première conduite (60) pour guider le fluide caloporteur depuis la source (4) jusqu'au premier passage de fluide (6) de la paroi (1 ),
- une seconde conduite (70) pour collecter les résidus au niveau du second passage de fluide (7) de la paroi (1 ),
- une unité de commande (8), alimentée par une source d'énergie (9), recevant les signaux (Tm) provenant du capteur de température (3), pilotant l'organe de réglage (5a-5b), et programmée pour commander l'organe de réglage (5a-5b) de façon que la température (Tm) du bâtiment soit maintenue au voisinage d'une valeur (Tb) prédéterminée.
8 - Système pour thermoréguler un bâtiment selon la revendication 7, caractérisé en ce que la source d'énergie (9) est photovoltaïque.
9 - Système pour thermoréguler un bâtiment selon l'une des revendications 7 ou 8, caractérisé en ce qu'il comprend en outre un récupérateur d'humidité (100) à proximité du second passage de fluide (7) de la paroi (1 ).
10 - Bâtiment, caractérisé en ce qu'il est muni d'une paroi (1 ) selon l'une quelconque des revendications 1 à 6, ou d'un système de régulation selon l'une quelconque des revendications 7 à 9.
1 1 - Bâtiment selon la revendication 10, caractérisé en ce que la paroi (1 ) est horizontale pour réaliser un plafond, verticale pour réaliser un mur, ou oblique pour réaliser un pan de toiture.
PCT/IB2010/051890 2009-04-30 2010-04-29 Paroi radiante de bâtiment et applications WO2010125539A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0952938 2009-04-30
FR0952938A FR2945059A1 (fr) 2009-04-30 2009-04-30 Paroi radiante de batiment et applications

Publications (1)

Publication Number Publication Date
WO2010125539A1 true WO2010125539A1 (fr) 2010-11-04

Family

ID=41360194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2010/051890 WO2010125539A1 (fr) 2009-04-30 2010-04-29 Paroi radiante de bâtiment et applications

Country Status (2)

Country Link
FR (1) FR2945059A1 (fr)
WO (1) WO2010125539A1 (fr)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1778982A1 (de) * 1968-06-25 1971-08-19 Fischer Rudolf Dipl Ing Elektrisch beheizter Waermespeicher
DE2117127A1 (en) * 1971-04-07 1972-11-02 IPAK Franz Kettenbauer, 7887 Murg Foam concrete backed ceramic components - for use as heat storage elements,etc
DE3111888A1 (de) * 1981-03-26 1982-10-28 Stiebel Eltron Gmbh & Co Kg, 3450 Holzminden Latentwaermespeicher
DE19716863A1 (de) * 1997-01-16 1998-07-23 Kundo Systemtechnik Gmbh Fußbodenheizung mit einer Temperaturregeleinrichtung
AT405746B (de) * 1996-03-06 1999-11-25 Honis Rupert Leichtbauwandelement
DE102004017021A1 (de) * 2004-04-02 2005-10-20 Ardex Gmbh Latentwärmespeicher
WO2006018130A1 (fr) * 2004-08-10 2006-02-23 Basf Aktiengesellschaft Preparation de microcapsules a grosses particules
DE102005001519A1 (de) * 2005-01-13 2006-08-24 Baumgärtner, Ulrich, Dr.-Ing. Verfahren und Vorrichtung zur Raumkühlung

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1778982A1 (de) * 1968-06-25 1971-08-19 Fischer Rudolf Dipl Ing Elektrisch beheizter Waermespeicher
DE2117127A1 (en) * 1971-04-07 1972-11-02 IPAK Franz Kettenbauer, 7887 Murg Foam concrete backed ceramic components - for use as heat storage elements,etc
DE3111888A1 (de) * 1981-03-26 1982-10-28 Stiebel Eltron Gmbh & Co Kg, 3450 Holzminden Latentwaermespeicher
AT405746B (de) * 1996-03-06 1999-11-25 Honis Rupert Leichtbauwandelement
DE19716863A1 (de) * 1997-01-16 1998-07-23 Kundo Systemtechnik Gmbh Fußbodenheizung mit einer Temperaturregeleinrichtung
DE102004017021A1 (de) * 2004-04-02 2005-10-20 Ardex Gmbh Latentwärmespeicher
WO2006018130A1 (fr) * 2004-08-10 2006-02-23 Basf Aktiengesellschaft Preparation de microcapsules a grosses particules
DE102005001519A1 (de) * 2005-01-13 2006-08-24 Baumgärtner, Ulrich, Dr.-Ing. Verfahren und Vorrichtung zur Raumkühlung

Also Published As

Publication number Publication date
FR2945059A1 (fr) 2010-11-05

Similar Documents

Publication Publication Date Title
EP2633245B1 (fr) Système d'échange thermique entre de l'air situé à l'intérieur d'un espace et de l'air situé à l'extérieur de l'espace et procédé de réalisation d'échange thermique mettant en oeuvre un tel système
CA2875216A1 (fr) Dispositif de stockage d'energie thermique
FR2954970A3 (fr) Procede et dispositif de regulation de temperature a l'interieur d'un batiment d'habitation
FR2549585A1 (en) Evaporator for an installation with a closed thermodynamic loop for the flow of a working fluid, and installation incorporating this evaporator
CA1038712A (fr) Appareil de chauffage utilisant l'energie solaire par accumulation
FR2999830B1 (fr) Element de traitement d'un rayonnement solaire ameliore ainsi qu'un suiveur solaire et une centrale solaire equipee d'un tel element
WO2010125539A1 (fr) Paroi radiante de bâtiment et applications
EP2775245A1 (fr) Dispositif de stockage d'énergie thermique
WO2014003526A1 (fr) Chauffe-eau cuve matière synthétique
FR2468086A1 (fr) Dispositif, panneau et procede destines au chauffage, a la refrigeration, a la climatisation ou au controle de l'humidite d'un habitat industriel ou commercial
CN205546718U (zh) 一种温室系统
WO2013137705A1 (fr) Chauffe-eau réservoir sans pression avec échangeur thermosiphon
EP2770269B1 (fr) Appareil de chauffage et de production d'eau chaude
EP3221645A1 (fr) Bâtiment basse consommation ou à énergie positive et procédé de régulation de la température et de l'humidité relative dans ce bâtiment
FR2680564A1 (fr) Capteur solaire orientable a air avec loupes rectilignes et accumulateur a eau chaude.
CH640629A5 (fr) Pompe a chaleur.
FR2995668A1 (fr) Installation de pompe a chaleur
FR2514868A1 (fr) Plancher chauffant pose sur un stock de chaleur
WO2013092675A1 (fr) Installation thermique
FR2993292A1 (fr) Dispositif de capture thermique solaire a l'aide d'elements conducteurs a effet de "corps noir". application exemplaire en toiture d'ardoise sans modification externe de couverture
FR3002027A1 (fr) Chauffage solaire integral
FR2468840A1 (fr) Recuperateur de calories a regulation thermique
EP1136760A1 (fr) Installation de chauffage et de climatisation avec caisson à façade rayonnante
FR3031581A1 (fr) Dispositif de production d'eau par effet de condensation obtenu par conduction de la chaleur d'un fluide caloporteur
FR3046667A1 (fr) Installation perfectionnee de chauffage et de refroidissement, notamment d'un local, et procedes de pilotage et de mise en place de ladite installation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10719404

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10719404

Country of ref document: EP

Kind code of ref document: A1