WO2010124580A1 - 位置检测装置及其信号处理装置和方法 - Google Patents

位置检测装置及其信号处理装置和方法 Download PDF

Info

Publication number
WO2010124580A1
WO2010124580A1 PCT/CN2010/071986 CN2010071986W WO2010124580A1 WO 2010124580 A1 WO2010124580 A1 WO 2010124580A1 CN 2010071986 W CN2010071986 W CN 2010071986W WO 2010124580 A1 WO2010124580 A1 WO 2010124580A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
magnetic
position detecting
detecting device
track
Prior art date
Application number
PCT/CN2010/071986
Other languages
English (en)
French (fr)
Inventor
郝双晖
郝明晖
Original Assignee
浙江关西电机有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江关西电机有限公司 filed Critical 浙江关西电机有限公司
Publication of WO2010124580A1 publication Critical patent/WO2010124580A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/245Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains using a variable number of pulses in a train
    • G01D5/2451Incremental encoders

Definitions

  • the present invention relates to a position detecting device and a signal processing device and method thereof, and more particularly to a position detecting device for precise position control of a linear distance and a signal processing device and method thereof.
  • the positional magnetic sensing elements used are generally classified into a rotary type and a linear type.
  • the rotary magnetic induction element is generally an encoder applied in the field of motor control, and the encoder is a position magnetic induction element that converts a physical quantity such as a rotational angular position and an angular velocity of the motor into an electrical signal, and the manufacture of the encoder and the level of signal processing directly affect To the level of automation.
  • Linear magnetic induction elements are generally referred to as linear displacement magnetic induction elements.
  • linear motor manufacturing technology With the continuous development of linear motor manufacturing technology, the screw has been gradually replaced in many industrial control fields.
  • the high-precision closed-loop control of linear motors is directly dependent on the linear resolution of the linear sensing position of the magnetic sensing element.
  • the manufacturing level of the linear magnetic induction element directly affects the control accuracy and control effect of the system.
  • the linear displacement magnetic induction components applied on linear motors and machine tools are mainly grating scales.
  • the gratings mainly utilize the transmission and reflection phenomena of light, and the transmission gratings are formed by light-transmitting and opaque stripes at a certain interval on the glass surface. Commonly used for displacement measurement, with high resolution, better than 0.1 ⁇ .
  • the metering grating has a pulse reading rate of several hundred times per millisecond, making it ideal for dynamic measurements.
  • the basis of the grating displacement magnetic sensing element is the moiré fringe, which superimposes two gratings (main grating, indicating grating) together and makes their scribe lines at a small angle ⁇ . Due to the shading effect, the bright lines are formed at the intersection of the reticle lines of the two gratings, and the dark bands are formed at the intersection of the slits. In the direction perpendicular to the reticle of the grating, light and dark stripes appear. Due to the presence of moiré fringes, when the identification grating moves relative to the indicating grating, a sinusoidal distribution of light-dark interlaced fringe stripes is formed.
  • These stripes move at the relative motion speed of the grating and directly illuminate the optoelectronic components, and receive a series of electrical pulses at their output terminals.
  • the digital signal output is generated by the amplification, shaping, discrimination and counting system to directly display the measured displacement. the amount.
  • the grating displacement magnetic induction component technology has been quite mature, with many varieties and full functions.
  • the grating displacement magnetic induction element also has many disadvantages: In terms of use, the brittleness of the glass material makes it resistant to impact, and is easily broken in some places with strong vibration, and is resistant to oil stains, and the dust ability is not strong; There is a limit value (10 ⁇ 20 ⁇ ) which is difficult to miniaturize; in terms of production, the marking of the glass code plate requires high precision, on the machine The accuracy requirements of mechanical components are also very high, so for high-resolution products, it is difficult to reduce the cost, the higher the accuracy, the lower the cost performance; to ensure accurate measurement, it must have high assembly precision, so Will affect the improvement of production efficiency.
  • the traditional magnetic grid displacement magnetic induction element utilizes the magnetic head and magnetic A device for performing displacement measurement by mutual magnetic interaction of the grid. It is mainly composed of control circuit, magnetic head, magnetic tape, etc.
  • the magnetic ruler is made of non-magnetic metal as the ruler, or the surface of the steel is coated with a layer of diamagnetic material, such as 0.15-0.20mm thick copper. Ruler base.
  • a magnetic film having a thickness of 0.10-0.20 mm is uniformly coated on the surface of the base, and a Ni-Co-P alloy is usually used, and then a magnetic signal of a certain wavelength (small magnetic poles equidistantly arranged) is recorded.
  • the magnetic field strength on the magnetic scale changes periodically.
  • the magnetic head has two types of dynamic heads and static heads.
  • the grid head consists of a core and a coil.
  • the manufacturing process is complicated, generally an incremental output, and there are two types of dynamic heads and static heads.
  • the static head has no output when it is stationary and is not suitable for length measurement.
  • the dynamic head performs a static measurement with a certain excitation signal, but the excitation signal is difficult to control, and the error is easy to occur, so that the measurement accuracy is not high.
  • the patent application with the application number 200520023253.7 proposes a magnetic scale length measuring device containing a tunable zero GMR, the GMR magnetic film being photolithographically formed into 0.5 to 50 micrometers, spaced magnetoresistive strips, and
  • the free layer of the GMR magnetic film is composed of some special materials, and is deposited on the low surface of the oxidized silicon liner, and has a thickness of 10 to 100 nm.
  • the manufacturing process is complicated, which inevitably leads to high cost and can only realize incremental output.
  • the patent application No. 200410009165.1 (CN 1584504A) proposes a magnetic scale displacement magnetic induction element using a metal thin film magnetoresistive probe whose metal film is a Ni, Co, Fe elemental metal layer, or NiFe, NiCo, CoFe , NiCu, AuCo, a metal alloy layer based on Ni, Co, Fe, or an elemental ferromagnetic metal layer such as iron containing 5% to 40% of oxygen atoms and NiFe containing 5% to 40% of oxygen atoms Metal alloy ferromagnetic layer, etc.
  • the manufacturing process is complicated, and only incremental detection can be realized in this way.
  • the technical problem to be solved by the present invention is that, in view of the deficiencies of the prior art, a position detecting device and a signal processing device and method thereof are proposed, which simplifies the production process, improves the detection precision, reduces the product cost, and increases the price. Than.
  • the present invention provides a position detecting device including a magnetic head and a magnetic grid base, and the magnetic grid base and the magnetic head can generate relative motion;
  • m (m is an integral multiple of 2 or 3) uniformly arranged magnetic induction elements are provided directly above the first track;
  • the magnetic sensing element converts the sensed magnetic signal into a voltage signal and outputs the voltage signal to a controller.
  • the length of each of the magnetic poles in the second track is; the pitch of the adjacent two poles on the first track is less than or equal to.
  • the distance between each adjacent two magnetic induction elements corresponding to the second track is; the distance between each adjacent two magnetic induction elements corresponding to the first track is /m.
  • the magnetic sensing element is a Hall sensing element.
  • the present invention also provides a signal processing apparatus based on the above position detecting apparatus, comprising:
  • the A/D conversion module performs A/D conversion on the voltage signal sent by the position detecting device, and converts the analog signal into a digital signal;
  • a relative offset ⁇ calculation module configured to calculate a relative offset of the first voltage signal sent by the magnetic sensing element corresponding to the first track in the position detecting device during the signal period;
  • the absolute offset calculation module determines, according to the second voltage signal sent by the magnetic induction element corresponding to the second track in the position detecting device, the absolute offset of the first position of the signal period in which the first voltage signal is located;
  • a displacement synthesis and output module configured to add the relative offset amount ⁇ and the absolute offset to synthesize the displacement represented by the first voltage signal at the moment
  • a storage module for storing data.
  • the signal processing device further includes a signal amplifying module for amplifying the voltage signal from the position detecting device before the A/D conversion module performs A/D conversion.
  • the relative offset calculation module in the signal processing device includes a first synthesis unit and a first displacement acquisition unit, and the first synthesis unit transmits a plurality of A/D conversions sent by the position detection device.
  • the voltage signal is processed to obtain a reference signal D.
  • the first displacement acquiring unit selects a displacement corresponding thereto as an offset displacement ⁇ in the first standard displacement table according to the reference signal D.
  • the relative offset amount calculation module further includes a temperature compensation unit for canceling the influence of the temperature on the voltage signal sent from the position detecting device.
  • the output of the first synthesizing unit further includes a second reference signal R.
  • the temperature compensating unit includes a coefficient aligner and a multiplier, and the second determinator of the output of the synthesizing module by the coefficient aligner
  • the signal R is compared with the signal R0 in the standard state corresponding to the signal to obtain an output signal K;
  • the multiplier is a plurality, and each of the multipliers transmits an A/D converted one from the position detecting device.
  • the voltage signal is multiplied by the output signal K of the coefficient correction module, and the multiplied result is output to the first synthesis unit.
  • the absolute offset amount calculation module in the signal processing device includes a second synthesis unit and a second displacement acquisition unit, and the second synthesis unit is configured to send the position detection device corresponding to the second track
  • the second voltage signal is synthesized to obtain a signal E.
  • the second displacement acquiring unit selects a displacement corresponding thereto in the second standard displacement table according to the signal E as an absolute position of the first position of the signal period where the first voltage signal is located. Offset.
  • the present invention also provides a signal processing method based on the above position detecting device, characterized in that it comprises the following steps:
  • Step one performing A/D conversion on the voltage signal sent by the position detecting device
  • Step two calculating a relative offset of the first voltage signal sent by the magnetic sensing element corresponding to the first track in the position detecting device in the signal period ⁇ ;
  • Step 3 determining, according to the second voltage signal sent by the magnetic sensing element corresponding to the second track in the position detecting device, the absolute offset of the first position of the signal period where the first voltage signal is located by calculating;
  • Step 4 is configured to add the relative offset amount ⁇ and the absolute offset to synthesize the displacement represented by the first voltage signal at the moment.
  • step 2 specifically includes the following steps:
  • the displacement relative thereto is selected as the offset displacement ⁇ in the first standard displacement table.
  • the second reference signal R is obtained while obtaining the reference signal D.
  • the method further includes: querying, according to the obtained second reference signal R, the signal R0 in a standard state opposite to the memory, and performing a comparison operation on the two to obtain a signal K.
  • the plurality of voltage signals are respectively multiplied by the signal K to realize temperature compensation of the voltage signals.
  • Step 2 of the foregoing signal processing method specifically includes the following steps:
  • the position detecting device, the signal processing circuit and the processing method thereof provided by the invention have the following advantages:
  • the manufacturing process is extremely simple.
  • the magnetic grid readhead consists of a magnetic sensing element and a printed circuit board. No additional excitation signals are required, and the circuit and mechanical structure are simple.
  • the magnetic grid base is magnetized with permanent magnets, no special materials are required, and the price is low and the processing is simple.
  • Figure 1 is a schematic view showing the structure of a track of the present invention
  • FIG. 2 is a schematic view showing the distribution of a first track and a magnetic sensing element according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic view showing the distribution of a second track and a magnetic induction element according to Embodiment 1 of the present invention.
  • FIG. 4 is a block diagram of a signal processing apparatus of a position detecting apparatus according to an embodiment of the present invention.
  • Figure 5 is a flow chart of the algorithm for the magnetization magnetic sequence of the second track
  • FIG. 6 is a schematic view showing the distribution of a first track and a magnetic sensing element according to Embodiment 2 of the present invention.
  • FIG. 7 is a schematic view showing the distribution of a second track and a magnetic induction element according to Embodiment 2 of the present invention.
  • FIG. 8 is a block diagram of a signal processing apparatus of a position detecting apparatus according to Embodiment 2 of the present invention.
  • FIG. 9 is a schematic diagram showing the distribution of a first track and a magnetic sensing element according to Embodiment 3 of the present invention.
  • FIG. 10 is a schematic diagram showing the distribution of a second track and a magnetic sensing element according to Embodiment 3 of the present invention.
  • FIG. 11 is a block diagram of a signal processing apparatus of a three position detecting apparatus according to an embodiment of the present invention
  • 12 is a schematic view showing the distribution of a first track and a magnetic sensing element according to Embodiment 4 of the present invention
  • FIG. 13 is a schematic view showing the distribution of a second track and a magnetic sensing element according to Embodiment 4 of the present invention
  • Figure 14 is a block diagram of a signal processing apparatus of a four position detecting apparatus according to an embodiment of the present invention. detailed description
  • the present invention provides a position detecting apparatus comprising a magnetic head and a magnetic grid base, the magnetic grid base and the magnetic head being capable of generating relative motion, such as a magnetic grid base fixed, the magnetic head being fixed to the apparatus as the apparatus moves.
  • the magnetic grid substrate has two columns of magnetized magnetic grids. As shown in FIG.
  • the magnetic head not shown in FIG.
  • the magnetic sensing element is directly attached to a printed circuit board of the magnetic head.
  • the present invention also provides a signal processing apparatus for the above position detecting apparatus, comprising an A/D conversion module, a relative offset amount calculation module, an absolute offset amount calculation module, a displacement synthesis and output module, and a storage module, wherein
  • the A/D conversion module performs A/D conversion on the voltage signal sent by the position detecting device, and converts the analog signal into a digital signal;
  • the relative offset amount calculation module is used to calculate a position detecting device corresponding to the The relative offset of the first voltage signal sent by the magnetic sensing element of the first track in the signal period, the absolute offset, and the calculation module, according to the magnetic sensing element corresponding to the second track in the position detecting device
  • the second voltage signal is determined by calculation to determine an absolute offset of the first position of the signal period at which the first voltage signal is located.
  • the displacement synthesis and output module is configured to add the relative offset amount ⁇ and the absolute offset amount to form The displacement X at the moment represented by the first voltage signal;
  • the storage module is configured to store the displacement
  • FIG. 2 to FIG. 2 is a schematic diagram showing the distribution of the first track and the magnetic sensing element according to the first embodiment of the present invention
  • FIG. 3 is a schematic view showing the distribution of the second track and the magnetic sensing element according to the first embodiment of the present invention.
  • the first track 1 is magnetized into 8 pairs of magnetic poles, and the adjacent poles have opposite polarities.
  • Two magnetic sensing elements are placed directly above the first track 1, and the spacing between the magnetic sensing elements is 4/4, as shown in FIG.
  • the first track 2 is magnetized For 8 magnetic poles, put on the second track 2, place 3 magnetic induction elements (the specific number is determined by the measurement range, take 3 in 8 cycles), and the distance between the magnetic induction elements is 4, as shown in Figure 3 ( In the figure, 8 cycles are taken as an example for analysis). All of the magnetic sensing elements are arranged on a printed circuit board on the magnetic head, and the magnetic head is capable of relative movement along the tracks.
  • the detection principle of the present invention is:
  • the displacement length corresponding to any "NS” is 4, and it is assumed that the displacement of the head can be considered by the moment when the head is located in the " ⁇ 3 ⁇ 4 signal period.
  • the two parts are composed: 1.
  • the signal processing will be described by taking the structure in Figs. 2 and 3 as an example.
  • the block diagram of the corresponding signal processing apparatus is shown in Fig. 4.
  • the output signals of the sensors l_la and l_2a are amplified by the amplifying circuits 2_la, 2_2a, and then connected to the A/D converters 3_la, 3_2a, and subjected to analog-to-digital conversion to obtain output signal multipliers 4a, 5a, and the coefficient corrector 10a outputs signal multiplication method.
  • the input ends of the multipliers 4a, 5a, the output signals A, B of the multipliers 4a, 5a are connected to the input terminals of the first synthesizer 6a, and the output signals D, R of the first synthesizer 6a are stored in the memory 8a and the memory 9a, respectively.
  • the coefficient straightener 10a finds a signal R0 corresponding to the signal R from the memory 9a, and obtains a signal K based on the signals R and R0, which is used as an input signal to the multipliers 4a, 5a.
  • the first standard displacement table is queried from the memory 8 based on the signal D, thereby obtaining a relative offset ⁇ and serving as an input of the adder 13a.
  • the output signals of the sensors l_3a, l_4a, l_5a are respectively amplified by the amplifiers 2_3a, 2_4a, 2_5a, then connected to the A/D converter for analog-to-digital conversion, and then output to the second synthesizer 7a for operation to obtain the signal E, and then according to the signal E
  • the second standard displacement table is queried in the memory 11a, and is used as an input terminal of the adder 13a, and an absolute linear displacement output measured by the adder 13a.
  • the output of the first synthesizer 6a is performed as follows:
  • _0 indicates the value bit of the data X (the absolute value of the data), that is, the remaining data bits are removed from the sign bit.
  • R l A 2 + B 2 .
  • the output of the second synthesizer 7a is performed as follows:
  • the signal K is generally obtained by dividing the signals R0 and R.
  • first and second standard displacement tables two tables are stored in the memory, each table corresponding to a series of codes, each code corresponding to one displacement.
  • the table is obtained by calibration, and the calibration method is: using the detecting device of the embodiment and a high-precision position magnetic sensing element, the signal outputted by the magnetic sensing element in the embodiment and the displacement outputted by the high-precision position magnetic sensing element are performed.
  • a table of the relationship between the signal output and the displacement of a magnetic induction element is established. That is, a first standard displacement table is stored corresponding to the signal D, and each signal D represents a relative offset ⁇ .
  • a second standard displacement table is stored, each signal representing an absolute offset of 3 ⁇ 4.
  • FIG. 6 is a schematic diagram showing the distribution of the first track and the magnetic sensing element according to the second embodiment of the present invention
  • FIG. 7 is a schematic view showing the distribution of the second track and the magnetic sensing element according to the second embodiment of the present invention.
  • the magnetic track in the second embodiment of the present invention and the magnetic induction element corresponding to the second track are the same as in the first embodiment, except that the number of magnetic induction elements corresponding to the first track is three, between each two The spacing is ⁇ 3.
  • FIG. 8 is a block diagram of a signal processing device of a position detecting device according to a second embodiment of the present invention. As in the first embodiment, since the number of magnetic sensing elements corresponding to the first track is three, it is finally sent to the first synthesizer.
  • the signal of 7b is three, so the process of obtaining the first reference signal D and the second reference signal R from the first synthesizer 7b according to the three input signals is slightly different from that of the first embodiment.
  • the description is as follows:
  • the coincidence bits of the three signals are judged, and the magnitudes of the values of the signals conforming to the same bit are compared, and the signal D for the output is small, and the structure of the signal D is ⁇ the coincidence of the first signal, and the second signal Compliance bit, coincidence bit of the third signal, value bit of the signal of the smaller value ⁇ .
  • _0 indicates the value bit of the data X (the absolute value of the data), that is, the remaining data bits are removed from the sign bit.
  • FIG. 9 is a schematic diagram showing the distribution of the first track and the magnetic sensing element according to the second embodiment of the present invention
  • FIG. 10 is a schematic view showing the distribution of the second track and the magnetic sensing element according to the second embodiment of the present invention.
  • the difference from the first embodiment is that the number of magnetic induction elements corresponding to the first track is four, and the spacing between each two is /4 .
  • the signal processing device is basically the same as that of the first embodiment, except that the amplifier used in the embodiment is a differential amplifier, and differential amplification is performed first when performing A/D conversion. Others are the same as in the first embodiment, and are no longer here. Narration.
  • FIG. 12 to FIG. 12 are schematic diagrams showing the distribution of the first track and the magnetic sensing element according to the second embodiment of the present invention
  • FIG. 13 is a schematic view showing the distribution of the second track and the magnetic sensing element according to the second embodiment of the present invention.
  • the difference from the first embodiment is that the number of magnetic induction elements corresponding to the first track is six, and the spacing between each two is /6 .
  • the signal processing device is basically the same as that of the second embodiment, except that the amplifier used in the embodiment is a differential amplifier, and differential amplification is performed first when performing A/D conversion. Others are the same as the second embodiment, and are not described here.
  • the number of the magnetic induction elements corresponding to the second track is 3, and the present invention is not limited to the number of magnetic induction elements being 3, the number of which is determined by the range, and the magnetic pole pair of the first track
  • the total number of magnetic poles of the second track is N.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Description

位置检测装置及其信号处理装置和方法
技术领域
本发明涉及一种位置检测装置及其信号处理装置与方法, 具体地涉及一种用于直 线距离的精确位置控制的位置检测装置及其信号处理装置和方法。 背景技术
在对位置进行精确控制时, 使用到的位置磁感应元件一般分为旋转式和直线式。 旋转式磁感应元件一般为电机控制领域中应用的编码器, 所述编码器是一种将电机旋 转角位置、 角速度等物理量转换为电信号的位置磁感应元件, 编码器的制造以及信号 处理水平直接影响到自动化水平。
直线式磁感应元件一般称为直线位移磁感应元件。 随着直线电机制造技术的不断 发展, 在许多工控领域已逐步取代丝杆。 对直线电机的高精度闭环控制直接依赖于其 所用直线式位置检测磁感应元件的输出分辨力。 直线式磁感应元件的制造水平直接影 响到系统的控制精度以及控制效果。
目前直线电机和机床上应用的直线位移磁感应元件主要是光栅尺, 光栅主要是利 用光的透射和反射现象, 在玻璃表面上按一定间隔制成透光和不透光的条纹构成透射 光栅, 光栅常用于位移测量, 有很高的分辨力, 可优于 0.1 μηι。 另外计量光栅的脉冲 读数速率可达每毫秒几百次之高, 非常的适用于动态测量。
光栅位移磁感应元件的基础是莫尔条纹, 将两块光栅 (主光栅、 指示光栅)叠合在 一起, 并且使它们的刻线之间成一个很小的角度 Θ。 由于遮光效应, 两块光栅的刻线 相交处形成亮带, 缝隙相交处形成暗带, 在与光栅刻线垂直的方向, 将出现明暗相间 的条纹。 由于莫尔条纹的存在, 标识光栅相对于指示光栅移动时, 便形成按正弦规律 分布的明暗相间的叠栅条纹。 这些条纹以光栅的相对运动速度移动, 并直接照射到光 电元件上, 在它们的输出端得到一串电脉冲, 通过放大、 整形、 辨向和计数系统产生 数字信号输出, 直接显示被测的位移量。
光栅位移磁感应元件技术已经相当成熟, 品种多, 功能全。 但是光栅位移磁感应 元件也有着许多缺点: 在使用方面, 玻璃材料的脆性使其抗冲击能力有限, 在某些有 较强振动的场合易破碎, 并且抗油污, 粉尘能力不强; 由于刻线间距有极限值 ( 10μηι〜20μηι) 很难做到小型化; 在生产方面, 玻璃码盘的刻线要求精度很高, 对机 械部件的精度要求也很高, 所以对于高分辨力的产品, 很难降低成本, 精度越高, 相 对来说性价比越低; 要保证准确的测量, 必须要有很高的装配精度, 这样就会影响到 生产效率的提高。
与光栅相比, 磁栅的抗振动和冲击能力强, 能适应恶劣的工作环境, 但其分辨力 较低且成本较高, 制约了其应用, 传统的磁栅位移磁感应元件是利用磁头与磁栅的相 互磁作用而进行位移测量的装置。 主要由控制电路、 磁头、 磁尺等几部分组成, 磁尺 是用不导磁的金属做尺基,或者采用在钢材表面上镀上一层抗磁材料,如 0.15-0.20mm 厚的铜做尺基。 在尺基表面均匀地涂覆一层厚度为 0.10-0.20mm的磁性薄膜, 常用的 是 Ni-Co-P合金, 然后录上一定波长的磁信号 (等距离排列的小磁极)。 磁尺上的磁场 强度是周期变化的。
磁头有动态磁头和静态磁头两种。 栅磁头由铁心和线圈构成, 制造工艺复杂, 一 般为增量式输出, 有动态磁头和静态磁头两种。 静态磁头静止时候没有输出, 不适合 于长度测量。 动态磁头加以一定励磁信号实现了静态测量, 但是励磁信号难以控制, 容易产生误差, 使得测量精度不高。
例如, 申请号为 200520023253.7 ( CN 2828752Y) 的专利申请提出一种含有可调 零的 GMR的磁栅尺长度测量装置, 其 GMR磁性薄膜被光刻成 0.5〜50微米, 间隔的 磁电阻条, 并且其 GMR磁性薄膜自由层为一些特殊材料构成, 并且要淀积在氧化的 硅衬低上, 厚度为 10〜100纳米, 其制作工艺复杂, 必然导致成本高, 并且只能实现增 量式输出。
例如, 申请号为 200410009165.1 ( CN 1584504A) 的专利申请提出了一种使用金 属薄膜磁电阻探头的磁栅尺位移磁感应元件, 其金属薄膜为 Ni, Co, Fe单质金属层, 或 NiFe, NiCo, CoFe, NiCu, AuCo禾卩以 Ni, Co, Fe为基的金属合金层, 或含 5%-40% 氧原子的铁原子的铁等单质铁磁性金属层和含 5%-40%氧原子的 NiFe金属合金铁磁性 层等。 其制作工艺复杂, 并且采用此方式只能实现增量式检测。
申请号为 200710091809.X ( CN 101042956A) 的专利申请同样有制作工艺复杂, 不利于产业化等缺点。 发明内容
本发明要解决的技术问题在于, 针对现有技术的不足, 提出了一种位置检测装置 及其信号处理装置与方法, 简化生产工艺, 提高检测精度, 减少产品成本, 提高性价 比。
为解决上述技术问题, 本发明提供了一种位置检测装置, 包括磁头和磁栅基体, 所述磁栅基体和所述磁头能产生相对运动;
其中, 在所述磁栅基体分布有第一磁道和第二磁道, 所述第一磁道被均匀地磁化 为N [ N<=2n(n=0, 1, 2〜n) ]对磁极, 相邻两极的极性相反; 所述第二磁道的磁极 总数为 N, 并按照特定的顺序排列;
在所述磁头上, 对应于第一磁道的正上方设有 m(m为 2或 3的整数倍) 个均匀排 列的磁感应元件;
在所述磁头上, 对应于第二磁道的正上方设有 n(n=0, 1, 2〜n)个均匀排列的磁感 应元件;
所述磁感应元件将感测到的磁信号转变为电压信号, 并将该电压信号输出给一控 制器。
进一步地, 所述第二磁道中每个磁极的长度为 ; 所述第一磁道上相邻两极的节 距小于等于 。
更进一步地, 对应于第二磁道的每相邻两个磁感应元件之间的距离为 ; 对应于 第一磁道的每相邻两个磁感应元件之间的距离为 /m。
更进一步地, 所述的磁感应元件为霍尔感应元件。
本发明还提供了一种基于上述位置检测装置的信号处理装置, 包括:
A/D转换模块, 对位置检测装置发送来的电压信号进行 A/D转换, 将模拟信号转 换为数字信号;
相对偏移量 ^计算模块, 用于计算位置检测装置中对应于第一磁道的磁感应元件 发送来的第一电压信号在所处信号周期内的相对偏移量 ^;
绝对偏移量 计算模块, 根据位置检测装置中对应于第二磁道的磁感应元件发送 来的第二电压信号, 通过计算来确定第一电压信号所处的信号周期首位置的绝对偏移 量 ;
位移合成及输出模块, 用于将上述相对偏移量 ^和绝对偏移量 相加, 合成所述 第一电压信号所代表的在该时刻的位移
存储模块, 用于存储数据。
进一步地, 上述信号处理装置还包括用于在 A/D转换模块进行 A/D转换之前, 对 来自于位置检测装置的电压信号进行放大的信号放大模块。 进一步地, 上述信号处理装置中的所述相对偏移量 计算模块包括第一合成单元 和第一位移获取单元, 所述第一合成单元对位置检测装置发送来的经过 A/D转换的多 个电压信号进行处理, 得到基准信号 D; 所述第一位移获取单元根据该基准信号 D, 在第一标准位移表中选择与其相对的位移作为偏移位移 ^。
更进一步地, 所述相对偏移量 ^计算模块还包括用于消除温度对位置检测装置发 送来的电压信号的影响的温度补偿单元。
另外, 所述第一合成单元的输出还包括第二基准信号 R, 此时, 所述温度补偿单 元包括系数矫正器和乘法器, 所述系数矫正器对所述合成模块的输出的第二基准信号 R和对应该信号的标准状态下的信号 R0进行比较得到输出信号 K;所述乘法器为多个, 每一所述乘法器将从位置检测装置发送来的、 经过 A/D转换的一个电压信号与所述系 数矫正模块的输出信号 K相乘, 将相乘后的结果输出给第一合成单元。
进一步地, 所述信号处理装置中的所述绝对偏移量 ^计算模块包括第二合成单元 和第二位移获取单元, 所述第二合成单元用于对对应于第二磁道的位置检测装置发送 来的第二电压信号进行合成, 得到信号 E; 所述第二位移获取单元根据该信号 E在第 二标准位移表中选择与其相对的位移作为第一电压信号所处的信号周期首位置的绝对 偏移量 。
本发明还提供了一种基于上述位置检测装置的信号处理方法, 其特征在于, 包括 以下步骤:
步骤一, 用于对位置检测装置发送来的电压信号进行 A/D转换;
步骤二, 计算位置检测装置中对应于第一磁道的磁感应元件发送来的第一电压信 号在所处信号周期内的相对偏移量 ^;
步骤三, 根据位置检测装置中对应于第二磁道的磁感应元件发送来的第二电压信 号, 通过计算来确定第一电压信号所处的信号周期首位置的绝对偏移量 ^;
步骤四, 用于将上述相对偏移量 ^和绝对偏移量 相加, 合成所述第一电压信号 所代表的在该时刻的位移 。
进一步地, 所述步骤二具体包括以下步骤:
对位置检测装置发送来的经过 A/D转换的多个电压信号进行处理, 得到基准信号
D;
根据该基准信号 D, 在第一标准位移表中选择与其相对的位移作为偏移位移 ^。 更进一步地, 在上述方法中, 在得到基准信号 D的同时得到第二基准信号 R。 更进一步地, 在上述方法中, 还包括根据得到的第二基准信号 R查询存储器中与 其相对的标准状态下的信号 R0, 并对二者进行比较运算, 得到信号 K的步骤。
另外, 在对位置检测装置发送来的经过 A/D转换的多个电压信号进行处理之前, 将所述多个电压信号分别与信号 K相乘, 从而实现对电压信号的温度补偿。
上述信号处理方法的步骤二具体包括以下步骤:
对对应于第二磁道的位置检测装置发送来的第二电压信号进行合成,得到信号 E; 根据该信号 E在第二标准位移表中选择与其相对的位移作为第一电压信号所处的 信号周期首位置的绝对偏移量 ^。
本发明提供的位置检测装置及其信号处理电路和处理方法, 具有以下优点:
1 . 抗冲击, 振动能力强, 不易受油污, 尘埃, 结露等恶劣环境影响。
2. 工作温度范围宽, 能适用于极端环境下高精度位置检测。
3. 制造加工工艺极为简单。 磁栅读数头采用磁感应元件和印刷电路板组成, 无 需额外加入励磁信号, 电路及机械结构简单。
4. 成本低, 性价比高, 生产过程简单。
5. 磁栅基体采用永磁体充磁而成, 无需特殊材料, 价格低廉, 加工简单。
6. 能同时实现动态和静态测量, 并且能实现绝对式位置检测。
7. 信号处理简单, 系统响应速度快。 附图说明
图 1为本发明的磁道结构示意图;
图 2为本发明实施例一的第一磁道及磁性感应元件的分布示意图;
图 3为本发明实施例一的第二磁道及磁性感应元件的分布示意图;
图 4为本发明实施例一位置检测装置的信号处理装置的框图;
图 5第二磁道的充磁磁序的算法流程图;
图 6为本发明实施例二的第一磁道及磁性感应元件的分布示意图;
图 7为本发明实施例二的第二磁道及磁性感应元件的分布示意图;
图 8为本发明实施例二位置检测装置的信号处理装置的框图;
图 9为本发明实施例三的第一磁道及磁性感应元件的分布示意图;
图 10为本发明实施例三的第二磁道及磁性感应元件的分布示意图;
图 11为本发明实施例三位置检测装置的信号处理装置的框图; 图 12为本发明实施例四的第一磁道及磁性感应元件的分布示意图; 图 13为本发明实施例四的第二磁道及磁性感应元件的分布示意图;
图 14为本发明实施例四位置检测装置的信号处理装置的框图。 具体实施方式
本发明提供了一种位置检测装置, 包括磁头和磁栅基体, 所述磁栅基体和所述磁 头能产生相对运动, 如磁栅基体固定, 磁头固定在装置上, 随着装置移动。 磁栅基体 上有两列充磁的磁栅, 如图 1所示, 这两列磁栅分别形成第一磁道 1和第二磁道 2, 第一磁道 1被均匀地磁化为 NCN<=2nCn=0, 1, 2〜n) )对磁极, 并且相邻两极的极性相 反, 相邻两极的节距小于或等于 ; 第二磁道的磁极总数为 N, 其磁序按照磁序算法 确定, 该算法在以下的说明中说明, 所述第二磁道中每个磁极的长度为 。在磁头(图 1中未示出) 上, 对应于第一磁道的正上方设有 m(m为 2或 3的整数倍) 个均匀排列 的磁感应元件, 每相邻两个磁感应元件之间的距离小于或等于 /m; 对应于第二磁道 的正上方设有 n(n=0, 1, 2〜n)个均匀排列的磁感应元件上, 每相邻两个磁感应元件之 间的距离为 。 所述磁感应元件直接固定在磁头的印刷电路板上。
本发明还提供了一种上述位置检测装置的信号处理装置, 其包括 A/D转换模块、 相对偏移量 ^计算模块、 绝对偏移量 ^计算模块、 位移合成及输出模块和存储模块, 其中, 所述 A/D转换模块对位置检测装置发送来的电压信号进行 A/D转换, 并将模拟 信号转换为数字信号; 所述相对偏移量 ^计算模块用于计算位置检测装置中对应于第 一磁道的磁感应元件发送来的第一电压信号在所处信号周期内的相对偏移量 所述 绝对偏移量 ^计算模块根据位置检测装置中对应于第二磁道的磁感应元件发送来的 第二电压信号, 通过计算来确定第一电压信号所处的信号周期首位置的绝对偏移量 所述位移合成及输出模块用于将上述相对偏移量 ^和绝对偏移量 ^相加, 合成所 述第一电压信号所代表的在该时刻的位移 X; 所述存储模块用于存储标定过程中得到 的位移和系数 K矫正用数据。
实施例一
参见图 2-5, 图 2为本发明实施例一的第一磁道及磁性感应元件的分布示意图, 图 3为本发明实施例一的第二磁道及磁性感应元件的分布示意图。
第一磁道 1被磁化为 8对磁极, 相邻两极的极性相反, 在第一磁道 1正上方, 放 置 2个磁感应元件, 磁感应元件之间的间距为 4/4, 如图 2所示。 第一磁道 2被磁化 为 8个磁极, 在第二磁道 2正上放, 放置 3个磁感应元件(具体数目由测量量程决定, 8个周期时取 3 ), 磁感应元件之间的距离为 4, 如图 3所示 (图中以 8个周期为例进 行分析)。所有的磁感应元件布置于磁头上的印刷电路板上, 磁头能够沿磁道作相对移 动。
第二磁道的磁极磁序通过图 5所示的算法确定。如图 5所示,首先进行初始化 a[0]=
" 0…… 0"; 然后将当前编码入编码集, 即编码集中有 " 0…… 0"; 接着检验入编码集 的集合元素是否达到 8, 如果是则程序结束, 反之将当前编码左移一位, 后面补 0; 然 后检验当前编码是否已入编码集, 如果未入编码集则将当前编码入编码集继续进行上 述步骤, 如果已入编码集则将当前码末位去 0补 1 ; 接着检验当前编码是否已入编码 集, 如果未入编码集则将当前编码入编码集继续进行上述步骤, 如果已入编码集则检 验当前码是否为 " 0…… 0 ", 是则结束, 否则将当前编码的直接前去码末位去 0补 1 ; 接着检验当前编码是否已入编码集, 如果未入编码集则将当前编码入编码集继续进行 上述步骤,如果已入编码集则检验当前码是否为" 0…… 0",然后继续进行下面的程序。 其中 0磁化为 "N/S ", 1磁化为 " S/N"。 这样得到了图 3所示的第二磁道 2的充磁磁 序。
本发明的检测原理是:
定义磁道 1中相邻一对 "N-S " 为一个信号周期, 因此, 任一 "N-S "对应的位移 长度为 4, 假定磁头在 ^时刻位于第" ί¾信号周期内, 则此时刻位移 可认为由两部分构 成: 1. 在第" ί¾信号周期内的相对偏移量, 传感器 和 2感应磁道 1的磁场来确定在 此 " N-S "信号周期内的偏移量 ^ (值大于 0小于 ); 2. 第" '¾信号周期首位置的绝对 偏移量 "¾, 用传感器^3, H4 , ... ^«感应磁道 2的磁场来确定此时磁头究竟是处于哪 一个 "N-S " 来得到 "¾。
以图 2、 3中的结构为例, 对信号处理进行说明, 其中, 对应的信号处理装置的框 图如图 4所示。 传感器 l_la和 l_2a的输出信号接放大电路 2_la, 2_2a进行放大, 然 后接 A/D转换器 3_la, 3_2a, 经模数转换后得到输出信号接乘法器 4a, 5a, 系数矫正 器 10a输出信号接乘法器 4a, 5a的输入端, 乘法器 4a, 5a的输出信号 A, B接第一 合成器 6a的输入端, 第一合成器 6a的输出信号 D, R分别存储到存储器 8a和存储器 9a中, 系数矫正器 10a从存储器 9a查到对应于信号 R的信号 R0, 根据信号 R和 R0 得到信号 K, 该信号 Κ作为接乘法器 4a, 5a的输入信号。 根据信号 D从存储器 8中 查询第一标准位移表, 从而得到相对偏移量 ^, 并作为加法器 13a的输入端。 传感器 l_3a, l_4a, l_5a的输出信号分别接放大器 2_3a, 2_4a,2_5a进行放大, 然后接 A/D转换器进行模数转换后输出给第二合成器 7a进行运算得到信号 E,然后根 据该信号 E在存储器 11 a得中查询第二标准位移表得到 , 并作为加法器 13a的输入 端, 和 通过加法器 13a得到测量的绝对直线位移 输出。
其中, 在信号的处理过程中, 第一合成器 6a的输出按以下方式进行:
约定:
当数据 X为有符号数时,数据 X的第 0位(二进制左起第 1位)为符号位, X_0= 1 表示数据 X为负, X_0=0表示数据 X为正。
_0表示数据 X的数值位 (数据的绝对值), 即去除符号位剩下数据位。
比较两个信号的数值的大小, 数值小的用于输出的信号 D, 信号 D的结构为 {第 一个信号的符合位, 第二个信号的符合位, 较小数值的信号的数值位 }。 具体如下: 如果 A_D>=B_D
D= { A O; B O; B D }
Figure imgf000010_0001
否则:
D= { A O; B O; A D }
R= l A2 + B2
第二合成器 7a的输出按以下方式进行:
E= { C3 0; C4 0; . .. Cn_0 }
信号 K一般是通过将信号 R0和 R进行除法运算得到。
关于第一、 二标准位移表, 在存储器中存储了两个表, 每个表对应于一系列的码, 每一个码对应于一个位移。 该表是通过标定得到的, 标定方法是, 利用本施例的检测 装置和一高精度位置磁感应元件, 将本施例中的磁感应元件输出的信号和该高精度位 置磁感应元件输出的位移进行一一对应, 以此建立出一磁感应元件输出的信号与位移 之间的关系表。 也就是, 对应于信号 D存储了一个第一标准位移表, 每一个信号 D代 表一个相对偏移量 ^。 对应于信号 Ε, 存储了一个第二标准位移表, 每一个信号 Ε代 表一个绝对偏移量 ¾。
实施例二
参见图 6-8, 图 6为本发明实施例二的第一磁道及磁性感应元件的分布示意图, 图 7为本发明实施例二的第二磁道及磁性感应元件的分布示意图。 本发明的实施例二中的磁道及对应于第二磁道的磁感应元件与实施例一相同, 不 同之处在于, 对应于第一磁道的磁感应元件的个数为 3个, 每两个之间的间距为 ^3。
图 8为本发明实施例二位置检测装置的信号处理装置的框图; 如实施例一不同的 是, 由于对应于第一磁道的磁感应元件的个数为 3个, 所以最终发送给第一合成器 7b 的信号为三个, 所以, 第一合成器 7b根据三个输入信号得到第一基准信号 D和第二 基准信号 R的过程与实施例一略有不同。 现说明如下:
先判断三个信号的符合位, 并比较符合位相同的信号的数值的大小, 数值小的用 于输出的信号 D, 信号 D的结构为 {第一个信号的符合位, 第二个信号的符合位, 第 三个信号的符合位, 较小数值的信号的数值位 }。 以本实施例为例:
约定:
当数据 X为有符号数时,数据 X的第 0位(二进制左起第 1位)为符号位, X_0=1 表示数据 X为负, X_0=0表示数据 X为正。
_0表示数据 X的数值位 (数据的绝对值), 即去除符号位剩下数据位。
如果 {A_0; B 0 C_0}=010 并且 A_D>=C_D
D={ A O B O; C O; C D } 如果 {A_0; B O C_0}=010 并且 A_D<C_D
D={ A O B O; C O; A D}; 如果 {A_0; B O C_0} = 101 并且 A_D>=C_D
D={ A O B O; C O; C D}; 如果 {A_0; B O C_0} = 101 并且 A_D<C_D
D={ A O B O; C O; A D}; 如果 {A_0; B O C_0}=011 并且 B_D>=C_D
D={ A O B O; C O; C D}; 如果 {A_0; B O C_0}=011 并且 B_D<C_D
D={ A O B O; C O; B D }; 如果 {A O; B O; C_0} = 100 并且 B_D>=C_D
D={ A O; B O; C O; C D }; 如果 {A O; B O; C_0} = 100 并且 B_D<C_D
D={ A O; B O; C O; B_D }; 如果 {A O; B O; C_0}=001 并且 B_D>=A_D
D={ A O; B O; C O; A D };
{A O; B O; C_0}=001 并且 B_D<A_D
D={ A O; B O; C O; B_D }; 如果 {A_0; B O; C_0} = 110 并且 B_D>=A_D
D={ A O; B O; C O; A D };
如果 {A_0; B O; C O} = 110 并且 B_D<A_D
D={ A O; B O; C O; B D }; a = A-Bx cos(y) -Cx cos(y)
^ = 5xsin( )-Cxsin( )
Figure imgf000012_0001
信号 E及 K的算法与实施例一相同, 在此不再重复说明。
实施例三
参见图 9-11, 图 9为本发明实施例二的第一磁道及磁性感应元件的分布示意图, 图 10为本发明实施例二的第二磁道及磁性感应元件的分布示意图。
与实施例一不同之处在于, 对应于第一磁道的磁感应元件的个数为 4个, 每两个 之间的间距为 /4
其信号处理装置与实施例一基本相同, 不同之处在于, 本实施例用到的放大器为 差动放大器, 在进行 A/D转换时先进行了差动放大。 其他与实施例一相同, 在此不再 赘述。
实施例四
参见图 12-14,图 12为本发明实施例二的第一磁道及磁性感应元件的分布示意图, 图 13为本发明实施例二的第二磁道及磁性感应元件的分布示意图。
与实施例一不同之处在于, 对应于第一磁道的磁感应元件的个数为 6个, 每两个 之间的间距为 / 6
其信号处理装置与实施例二基本相同, 不同之处在于, 本实施例用到的放大器为 差动放大器, 在进行 A/D转换时先进行了差动放大。 其他与实施例二相同, 在此不再 赘述。
上述实施例中均是以对应第二磁道的磁感应元件的个数为 3时的实施例, 而本发 明并不限于磁感应元件的个数为 3, 其数目由量程决定, 第一磁道的磁极对数和第二 磁道的磁极个数也不限于本发明中的 8对和 8个, 只要公式第一磁道的磁极对数 N小 于等于 2n(n为对应第二磁道的磁感应元件的个数, 其中 n=0, 1, 2〜n)第二磁道的磁 极总数为 N即可。
以上参照附图详细描述了本发明的各个实施例, 然而本发明并不局限于所述实施 例, 而是在不脱离权利要求书的范围的情况下, 可以做出各种变化和改进。

Claims

权利要求书
1 . 一种位置检测装置, 其特征在于, 包括磁头和磁栅基体, 所述磁栅基体和所述 磁头能产生相对运动;
其中, 在所述磁栅基体上分布有第一磁道和第二磁道, 所述第一磁道被均匀地磁 化为 N对磁极, 这里 N<=2n, n=0, 1, 2〜n, 相邻两极的极性相反; 所述第二磁道的 磁极总数为 N, 并按照磁序算法生成的顺序排列;
在所述磁头上, 对应于第一磁道的正上方设有 m个均匀排列的磁感应元件, 这里 m为 2或 3的整数倍;
在所述磁头上, 对应于第二磁道的正上方设有 n个均匀排列的磁感应元件; 所述磁感应元件将感测到的磁信号转变为电压信号, 并将该电压信号输出给信号 处理装置。
2. 如权利要求 1所述的位置检测装置, 其特征在于, 所述第二磁道中每个磁极的 长度为 。
3. 如权利要求 2所述的位置检测装置, 其特征在于, 所述第一磁道上相邻两极的 节距小于或等于 。
4. 如权利要求 2所述的位置检测装置, 其特征在于, 对应于第二磁道的每相邻两 个磁感应元件之间的距离为 。
5. 如权利要求 2所述的位置检测装置, 其特征在于, 对应于第一磁道的每相邻两 个磁感应元件之间的距离小于或等于 /m。
6. 如权利要求 1所述的位置检测装置, 其特征在于, 所述的磁感应元件为霍尔感 应元件。
7. 一种基于上述权利要求 1-6任一所述位置检测装置的信号处理装置, 其特征在 于, 包括:
A/D转换模块, 对位置检测装置发送来的电压信号进行 A/D转换, 将模拟信号转 换为数字信号;
相对偏移量 ^计算模块, 用于计算位置检测装置中对应于第一磁道的磁感应元件 发送来的第一电压信号在所处信号周期内的相对偏移量 ^;
绝对偏移量 计算模块, 根据位置检测装置中对应于第二磁道的磁感应元件发送 来的第二电压信号, 通过计算来确定第一电压信号所处的信号周期首位置的绝对偏移 位移合成及输出模块, 用于将上述相对偏移量 ^和绝对偏移量 相加, 合成所述 第一电压信号所代表的在该时刻的位移
存储模块, 用于存储数据。
8. 根据权利要求 7所述的位置检测装置的信号处理装置, 其特征在于, 还包括: 信号放大模块, 用于在 A/D转换模块进行 A/D转换之前, 对来自于位置检测装置 的电压信号进行放大。
9. 根据权利要求 7所述的位置检测装置的信号处理装置, 其特征在于, 所述相对 偏移量 ^计算模块包括第一合成单元和第一位移获取单元, 所述第一合成单元对位置 检测装置发送来的经过 A/D转换的多个电压信号进行处理, 得到基准信号 D; 所述第 一位移获取单元根据该基准信号 D, 在第一标准位移表中选择与其相对的位移作为偏 移位移 ^。
10. 如权利要求 9所述的位置检测装置的信号处理装置, 其特征在于, 所述相对 偏移量 ^计算模块还包括用于消除温度对位置检测装置发送来的电压信号的影响的温 度补偿单元。
11 . 如权利要求 10所述的位置检测装置的信号处理装置, 其特征在于, 所述第一 合成单元的输出还包括第二基准信号 R。
12. 如权利要求 11所述的位置检测装置的信号处理装置, 其特征在于, 所述温度 补偿单元包括系数矫正器和乘法器, 所述系数矫正器对所述合成模块的输出的第二基 准信号 R和对应该信号的标准状态下的信号 R0进行比较得到输出信号 K; 所述乘法 器为多个, 每一所述乘法器将从位置检测装置发送来的、 经过 A/D转换的一个电压信 号与所述系数矫正模块的输出信号 K相乘, 将相乘后的结果输出给第一合成单元。
13. 根据权利要求 7所述的位置检测装置的信号处理装置, 其特征在于, 所述绝 对偏移量 计算模块包括第二合成单元和第二位移获取单元, 所述第二合成单元用于 对对应于第二磁道的位置检测装置发送来的第二电压信号进行合成, 得到信号 E ; 所 述第二位移获取单元根据该信号 E在第二标准位移表中选择与其相对的位移作为第一 电压信号所处的信号周期首位置的绝对偏移量 ^。
14. 一种基于上述权利要求 1-6任一所述位置检测装置的信号处理方法, 其特征 在于, 包括以下步骤:
步骤一, 用于对位置检测装置发送来的电压信号进行 A/D转换;
步骤二, 计算位置检测装置中对应于第一磁道的磁感应元件发送来的第一电压信 号在所处信号周期内的相对偏移量 ^;
步骤三, 根据位置检测装置中对应于第二磁道的磁感应元件发送来的第二电压信 号, 通过计算来确定第一电压信号所处的信号周期首位置的绝对偏移量 ^;
步骤四, 用于将上述相对偏移量 ^和绝对偏移量 相加, 合成所述第一电压信号 所代表的在该时刻的位移 。
15. 根据权利要求 14所述的位置检测装置的信号处理方法, 其特征在于, 所述步 骤二中, 具体包括以下步骤:
对位置检测装置发送来的经过 A/D转换的多个电压信号进行处理, 得到基准信号
D;
根据该基准信号 D, 在第一标准位移表中选择与其相对的位移作为偏移位移 ^。
16. 根据权利要求 15所述的位置检测装置的信号处理方法, 其特征在于, 在得到 基准信号 D的同时得到第二基准信号 R。
17. 根据权利要求 16所述的位置检测装置的信号处理方法, 其特征在于, 还包括 根据得到的第二基准信号 R查询存储器中与其相对的标准状态下的信号 R0,并对二者 进行比较运算, 得到信号 κ的步骤。
18. 根据权利要求 17所述的位置检测装置的信号处理方法, 其特征在于, 在对位 置检测装置发送来的经过 A/D转换的多个电压信号进行处理之前, 将所述多个电压信 号分别与信号 K相乘, 从而实现对电压信号的温度补偿。
19. 根据权利要求 14所述的位置检测装置的信号处理方法, 其特征在于, 所述步 骤二具体包括以下步骤:
对对应于第二磁道的位置检测装置发送来的第二电压信号进行合成,得到信号 E; 根据该信号 E在第二标准位移表中选择与其相对的位移作为第一电压信号所处的 信号周期首位置的绝对偏移量 ^。
PCT/CN2010/071986 2009-04-30 2010-04-21 位置检测装置及其信号处理装置和方法 WO2010124580A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910137776.7 2009-04-30
CN 200910137776 CN101876557B (zh) 2009-04-30 2009-04-30 位置检测装置及其信号处理方法

Publications (1)

Publication Number Publication Date
WO2010124580A1 true WO2010124580A1 (zh) 2010-11-04

Family

ID=43019174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/071986 WO2010124580A1 (zh) 2009-04-30 2010-04-21 位置检测装置及其信号处理装置和方法

Country Status (2)

Country Link
CN (1) CN101876557B (zh)
WO (1) WO2010124580A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109990805A (zh) * 2019-04-12 2019-07-09 广东工业大学 旋转编码器
CN115930763A (zh) * 2022-12-08 2023-04-07 楚瑞智能科技(苏州)有限公司 一种基于磁栅尺的位移测量方法及装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102607391B (zh) 2012-03-01 2014-06-18 清华大学 一种平面电机动子位移的测量方法
CN102795304B (zh) * 2012-07-28 2014-02-05 成都宽和科技有限责任公司 链盘上设多磁块不均匀分布磁通量传感器的助力自行车
CN102785745B (zh) * 2012-07-28 2014-02-05 成都宽和科技有限责任公司 装多磁块位置不均匀分布转盘式传感器的助力自行车
CN102785743B (zh) * 2012-07-28 2014-02-05 成都宽和科技有限责任公司 在壳体内多磁块不均匀分布磁通量的传感器
JP6877170B2 (ja) * 2017-02-14 2021-05-26 日本電産サンキョー株式会社 ロータリエンコーダ及びその絶対角度位置検出方法
CN107764295B (zh) * 2017-11-24 2023-11-17 广州充圆精密光电仪器有限公司 用于便携式三坐标测量机角度编码器的温度补偿电路
CN110500975B (zh) * 2018-05-16 2021-03-05 西门子(中国)有限公司 转子上磁极设置位置的检测方法、装置、系统和存储介质
CN112857405B (zh) * 2021-04-17 2022-05-24 哈尔滨工业大学 一种动磁式绝对位置检测装置
CN113593810B (zh) * 2021-09-29 2021-12-03 宁波兴隆磁性技术有限公司 一种编码不规则磁栅尺的编码充磁方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1097864A (zh) * 1993-07-20 1995-01-25 陆济群 磁栅数显长度计量器具
JPH0921605A (ja) * 1995-07-10 1997-01-21 Hitachi Constr Mach Co Ltd 建設機械の旋回角度検出装置
CN1260871A (zh) * 1997-04-16 2000-07-19 株式会社安川电机 磁编码装置
CN101375131A (zh) * 2006-01-12 2009-02-25 铁姆肯美国公司 具有高分辨率磁道和低分辨率磁道的磁传感器
CN101395450A (zh) * 2006-03-06 2009-03-25 日本电产三协株式会社 磁传感器装置、磁编码器装置及磁尺的制造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1445739A (fr) * 1965-06-04 1966-07-15 Alcatel Sa Procédé de codage numérique et ses applications
CN1420635A (zh) * 2002-12-03 2003-05-28 浙江大学 绝对式编码器的单道编码方法和编码器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1097864A (zh) * 1993-07-20 1995-01-25 陆济群 磁栅数显长度计量器具
JPH0921605A (ja) * 1995-07-10 1997-01-21 Hitachi Constr Mach Co Ltd 建設機械の旋回角度検出装置
CN1260871A (zh) * 1997-04-16 2000-07-19 株式会社安川电机 磁编码装置
CN101375131A (zh) * 2006-01-12 2009-02-25 铁姆肯美国公司 具有高分辨率磁道和低分辨率磁道的磁传感器
CN101395450A (zh) * 2006-03-06 2009-03-25 日本电产三协株式会社 磁传感器装置、磁编码器装置及磁尺的制造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109990805A (zh) * 2019-04-12 2019-07-09 广东工业大学 旋转编码器
CN109990805B (zh) * 2019-04-12 2021-03-16 广东工业大学 旋转编码器
CN115930763A (zh) * 2022-12-08 2023-04-07 楚瑞智能科技(苏州)有限公司 一种基于磁栅尺的位移测量方法及装置
CN115930763B (zh) * 2022-12-08 2023-12-05 楚瑞智能科技(苏州)有限公司 一种基于磁栅尺的位移测量方法及装置

Also Published As

Publication number Publication date
CN101876557A (zh) 2010-11-03
CN101876557B (zh) 2013-03-06

Similar Documents

Publication Publication Date Title
WO2010124580A1 (zh) 位置检测装置及其信号处理装置和方法
JP5571700B2 (ja) ポジションエンコーダ装置
US9958294B2 (en) Absolute position encoder including scale with varying spatial characteristic and utilizing Fourier transform or other signal processing
CN103940332B (zh) 一种基于霍尔磁敏元件阵列的磁栅位移传感器
CN109075690B (zh) 位置编码器
JP3168451B2 (ja) ロータリーエンコーダ
WO2014089892A1 (zh) 差分电容位移量的转换和细分方法及电容型线性位移测量系统
CN1695037A (zh) 磁性位移测量装置
CN101556138A (zh) 一种时栅直线位移传感器
CN112504305A (zh) 编码器、电机及编码器绝对位置的检测方法
CN201503273U (zh) 位置检测装置及其信号处理装置
Lin et al. Novel method for determining absolute position information from magnetic patterns
TW202006323A (zh) 角度檢測器
JP2008064498A (ja) 電磁誘導式エンコーダ
US4623790A (en) Apparatus for digital angular measurement
JP4224154B2 (ja) 自己校正型角度検出装置及び検出精度校正方法
JPH02272320A (ja) 絶対位置計測装置
CN208399786U (zh) 一种采用音圈马达控制的变焦镜头
JP2678386B2 (ja) 位置検出装置
CN117232554A (zh) 磁感应直线位移绝对值编码器及其数据处理方法和设备
JPS6365316A (ja) 光学式変位検出装置
JP4420652B2 (ja) 位置検出装置
JP2008261786A (ja) 絶対角検出装置
Wang et al. Recent Patents on Magnetic Encoder and its use in Rotating Mechanism
JPH10253391A (ja) リニア巻線型検出器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10769269

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10769269

Country of ref document: EP

Kind code of ref document: A1