WO2010123325A2 - 태양 전지 모듈용 스마트 정션박스 - Google Patents

태양 전지 모듈용 스마트 정션박스 Download PDF

Info

Publication number
WO2010123325A2
WO2010123325A2 PCT/KR2010/002584 KR2010002584W WO2010123325A2 WO 2010123325 A2 WO2010123325 A2 WO 2010123325A2 KR 2010002584 W KR2010002584 W KR 2010002584W WO 2010123325 A2 WO2010123325 A2 WO 2010123325A2
Authority
WO
WIPO (PCT)
Prior art keywords
junction box
ribbon cable
cable
solar cell
cell module
Prior art date
Application number
PCT/KR2010/002584
Other languages
English (en)
French (fr)
Other versions
WO2010123325A3 (ko
Inventor
한윤희
노희창
김훈호
윤용수
Original Assignee
커넥스일렉트로닉스(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 커넥스일렉트로닉스(주) filed Critical 커넥스일렉트로닉스(주)
Priority to US12/921,156 priority Critical patent/US8248804B2/en
Publication of WO2010123325A2 publication Critical patent/WO2010123325A2/ko
Publication of WO2010123325A3 publication Critical patent/WO2010123325A3/ko

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/34Electrical components comprising specially adapted electrical connection means to be structurally associated with the PV module, e.g. junction boxes
    • H02S40/345Electrical components comprising specially adapted electrical connection means to be structurally associated with the PV module, e.g. junction boxes with cooling means associated with the electrical connection means, e.g. cooling means associated with or applied to the junction box
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/34Electrical components comprising specially adapted electrical connection means to be structurally associated with the PV module, e.g. junction boxes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a smart junction box for a solar cell module.
  • the present invention relates to a smart junction box for a solar cell module that can be easily connected or disconnected ribbon cable according to the operation of the lever of the pressing unit to improve the contact stability of the ribbon cable.
  • the present invention also relates to a smart junction box for a solar cell module for effectively dissipating heat generated from a ribbon cable and a diode by forming a heat dissipation structure for fastening a ribbon cable, a diode, a bus bar and a heat sink in a surface contact state.
  • the present invention includes a sensor for detecting the current, voltage, temperature, etc. inside the junction box, and quickly and easily identify the problem occurred parts by informing the administrator through the smart module and the communication module to sense the data to respond quickly and easily
  • the present invention relates to an intelligent junction box for a solar cell module.
  • photovoltaic power generation is implemented in the form of power generation that receives sunlight and generates electricity directly from a solar cell made of a semiconductor material.
  • photovoltaic power generation is a method of generating by converting light energy from the sun directly into electrical energy.
  • the photovoltaic power generation system arranges solar cell modules (ie, solar panels) outside the building, and supplies power to various electric devices through the junction boxes, inverters, and distribution panels from the modules.
  • the solar cell module receives direct sunlight to generate direct current electricity, and thus, a junction box is required to collect and generate electricity generated by the solar cell module.
  • a junction box is connected to the solar cell module in series or in parallel, and is usually fixed to the back of the solar cell module while maintaining the watertightness by the sealing material.
  • the junction box is connected to the solar cell module using a flexible ribbon cable, and collects electricity generated in the solar cell module through the ribbon cable.
  • the ribbon cable when connecting the ribbon cable to the junction box, the ribbon cable is connected by soldering or lifting the driver insertion groove to insert the ribbon cable, or by folding the ribbon cable and inserting it into the terminal block.
  • soldering not only workability is poor, but also A / S replacement is difficult, and the busbar contact portion and the junction box body are connected because the ribbon cable is connected by applying a physical force by the driver to insert the ribbon cable into the driver insertion groove. It may be damaged.
  • the ribbon cable when the ribbon cable is folded, the ribbon cable is folded and used, so that the contact resistance is increased to generate heat and the contact safety is deteriorated.
  • the ribbon cable must be folded and connected, thus requiring further follow-up of the ribbon cable.
  • the junction box body when performing the A / S operation of the junction box, the junction box body may be damaged, and the junction box of the structure that can easily connect the ribbon cable because subsequent work for the ribbon cable is required. Is required.
  • the junction box heat is generated in the ribbon cable connection part, etc., but the junction box requires a heat dissipation structure for dissipating such heat to the outside.
  • the conventional solar cell module can only track the failure of the group of groups that bundle a plurality of modules when an abnormality occurs, it is difficult to determine whether there is an abnormality of the module unit, it is difficult to real-time management and measures are also required to solve the situation.
  • the present invention in consideration of the above-mentioned problems, the operator can easily connect or disconnect the ribbon cable according to the operation of the lever of the pressurizing unit solar cell module smart junction box that can improve the contact stability of the ribbon cable To provide.
  • the present invention provides a junction box for a solar cell module for effectively dissipating heat generated from the ribbon cable and diode by forming a heat dissipation structure for fastening the ribbon cable, diode, bus bar and the heat sink in a surface contact state.
  • the present invention includes a sensor for detecting the current, voltage, temperature, etc. inside the junction box, and quickly and easily identify the problem occurred parts by informing the administrator through the smart module and the communication module to sense the data to respond quickly and easily It provides a smart junction box for a solar cell module.
  • the bus bar for transmitting the electricity flowing from the ribbon cable;
  • a pressurizing unit for fastening or separating the ribbon cable located at a contact portion of the bus bar;
  • a diode having a hexahedron shape and having a metal for heat conduction formed on one surface thereof to make surface contact with a heat sink, and two terminals contacting the bus bar;
  • a heat sink in contact with the bus bar and dissipating heat conducted to the outside through the metal of the bus bar and the diode;
  • Fastening means for fastening the bus bar, the diode and the heat sink to each other;
  • an external cable for providing electricity transferred from the bus bar to the outside.
  • a comb-shaped knurled portion may be formed at the contact portion of the busbar where the ribbon cable is located.
  • the ribbon cable is connected to the solar cell module to receive electricity from the solar cell module.
  • the pressing unit the omega-shaped lever for fastening or releasing the ribbon cable to the bus bar; A lever fixing part for fixing the lever when the ribbon cable is fastened; And a movable contact portion of a metal material provided below the pressing unit.
  • the pressing unit may fasten or detach the ribbon cable depending on whether both ends of the lever are inserted into a groove formed in the main body by an operator's operation.
  • a plurality of protrusions may be formed in the movable contact portion of the metal material in contact with the ribbon cable.
  • the diode may provide a bypass path of current transmitted from the ribbon cable to an external cable when an abnormality occurs in a cell of the solar cell module.
  • the external cable may be crimped to the ring terminal to be screwed with the bus bar inside the junction box through the through-groove of the external cable connection part.
  • the outer cable connection portion is a rubber cable seal provided on the outer periphery of the outer cable for waterproofing; And a seal retainer assembled to the outside of the cable seal such that the waterproof of the cable seal is maintained even when the cable seal does not come off and the external cable is bent.
  • the smart junction box for a solar cell module is a sensor module that is built in the junction box for sensing the current, voltage, temperature, etc .; And it may further include a communication module for informing the administrator of the data detected from the sensor module to the wireless communication.
  • the sensor module may include a current / voltage sensor and a temperature sensor.
  • the present invention has the effect of connecting or disconnecting the ribbon cable with a wide contact area and a high contact pressure with respect to the ribbon cable by connecting the ribbon cable and the bus bar using the pressing unit.
  • the present invention by forming a heat dissipation structure for connecting the bus bar, the diode and the heat sink in a surface contact state, it is possible to effectively dissipate heat generated from the ribbon cable and diode to the outside.
  • the present invention can stably operate the junction box by using a diode to bypass the current when an abnormality occurs in the cell of the solar cell module.
  • the present invention can easily maintain the junction box because the operator can easily connect or disconnect the ribbon cable.
  • the present invention has a smart module embedded in the junction box to notify the administrator in real time in the event of failure or abnormality of each solar cell module to enable a quick response.
  • FIG. 1 is a perspective view showing a smart junction box for a solar cell module according to an embodiment of the present invention.
  • FIG. 2 is a perspective view showing the interior of the smart junction box for a solar cell module according to an embodiment of the present invention.
  • FIG. 3 is a perspective view of a part of the interior of the smart junction box for the solar cell module shown in FIG.
  • FIG. 4 is a perspective view illustrating a bus bar of the smart junction box for the solar cell module illustrated in FIG. 2.
  • FIG. 5 is a view showing a pressurizing unit of the smart junction box for the solar cell module shown in FIG.
  • FIG. 6 is a view illustrating (a) release and (b) fastening during the lever operation of the pressing unit shown in FIG. 5.
  • 7 to 9 is a view showing the operation of the pressing unit for the operator.
  • FIG. 10 is a perspective view illustrating a diode of the smart junction box for the solar cell module shown in FIG. 2.
  • 11 to 14 are diagrams illustrating a bypass path of a diode in a smart junction box for a solar cell module according to an embodiment of the present invention.
  • FIG. 15 is a perspective view illustrating a heat sink of a smart junction box for a solar cell module shown in FIG. 2.
  • 16 is a perspective view illustrating a cable seal of a smart junction box for a solar cell module according to an embodiment of the present invention.
  • FIG. 17 is a perspective view illustrating a seal retainer of a smart junction box for a solar cell module according to an embodiment of the present invention.
  • FIG. 18 is a conceptual diagram illustrating an operation principle of checking whether a solar cell module is abnormal in a smart junction box for a solar cell module according to an embodiment of the present invention.
  • FIG. 1 is a perspective view showing a smart junction box for a solar cell module according to an embodiment of the present invention
  • Figure 2 is a perspective view showing the inside of a smart junction box for a solar cell module according to an embodiment of the present invention
  • Figure 3 2 is a perspective view of a part of the interior of the smart junction box for a solar cell module shown in FIG.
  • the junction box 100 for a solar cell module is attached to the back of the solar cell module 110 and the component of the junction box is mounted;
  • the cover 120 covers an open upper surface of the main body 110.
  • the body 110 and the cover 120 may be made of synthetic resin or plastic, including polyphenylene oxide (PPO) and polyphenylene ether (PPE), but is not limited thereto.
  • the main body 110 and the cover 120 are detachably coupled to each other.
  • a plurality of locking grooves 111 are formed around the main body 110, and the locking groove of the main body 110 is formed on the cover 120.
  • the locking finger 121 is formed at a position corresponding to the 111. Accordingly, the user may lock the locking finger 121 of the cover 120 to the locking groove 111 of the body 110 and then engage the locking jaw, thereby coupling the cover 120 to the body 110.
  • the sealing member 112 made of silicone or rubber material is provided around the main body 110 or the cover 120, the rainwater or the foreign matter from the outside in the state where the main body 110 and the cover 120 are coupled to each other. It does not penetrate into the interior of the box 100.
  • the cover 120 may be formed with a plurality of through-holes 122 for dissipating heat from a point (for example, a heat sink, a bypass diode, etc.) where heat is concentrated inside the junction box to the outside.
  • the number and size of the through holes 122 is not particularly limited in the present invention, and may be appropriately set in consideration of heat generation of the junction box.
  • Selective permeable membrane that does not pass relatively large particles, such as rain water or moisture, but does not pass through relatively small particles, such as air so that rain or moisture does not easily penetrate the through-hole 122 (example And breathable fiber materials such as Gore-Tex).
  • junction box 100 for a solar cell module is a ribbon cable 210, bus bar 220, the pressing unit 230, a diode (specifically, as shown in Figure 2 and 3, Bypass diode) 240, a heat sink 250, a fastening means 260, and an external cable 130.
  • the junction box 100 of the present invention not only provides the contact stability of the ribbon cable 210, but also dissipates heat generated from the ribbon cable 210 and the bypass diode 240 to the outside. It has a heat dissipation structure.
  • the junction box 100 for a solar cell module of the present invention may provide contact stability of the ribbon cable 210 (see FIGS. 7 to 9 related to the following). That is, the junction box 100 for a solar cell module uses a spring pin type pressurizing unit 230 detachable in a hinged structure to force the ribbon cable 210 to contact the upper layer of the bus bar 220 by using a main body.
  • the ribbon cable 210 may be stably contacted or released from the bus bar 220 disposed on the bottom surface along the frame formed at 110. With this configuration, the ribbon cable 210 can be brought into contact with the busbar 220 at a high pressure without applying a physical force using a driver or the like or deforming the shape of the ribbon cable 210. ) Can be stably provided.
  • the junction box 100 for a solar cell module of the present invention forms a heat dissipation structure for dissipating heat generated from the ribbon cable 210, the bypass diode 240, and the like. That is, in the junction box 100 for a solar cell module, the bus bar 220, the bypass diode 240, and the heat sink 250 are connected to each other in a surface contact state, such that the ribbon cable 210 or the bypass diode 240 are connected to each other. Heat generated from the back is conducted to the heat sink 250 to be discharged. At this time, the bus bar 220, the bypass diode 240 and the heat sink 250 are firmly coupled using a fastening means 260, such as bolts or screws, to increase the contact efficiency.
  • the junction box 100 for the solar cell module is disposed through the through-hole 122 of the cover 120 in a portion corresponding to the heat sink 250, the heat released through the heat sink 250 It is desirable to allow easy release to the outside through convection.
  • FIG. 4 is a perspective view illustrating a bus bar 220 of the smart junction box for the solar cell module illustrated in FIG. 2.
  • the bus bar 220 is mounted along a frame formed at the bottom of the main body 110 to transmit electricity flowing from the ribbon cable 210 and function as a passage of heat flow.
  • the ribbon cable 210 is connected to a solar cell module (see reference numeral 10 of FIGS. 11 to 14) so that electricity is introduced from the solar cell module.
  • the surface area of the ribbon cable 210 is increased in order to increase the reliability of the contact when the ribbon cable 210 is contacted and fastened to the bus bar 220 by the spring pin type pressing unit 230.
  • a knurling portion 221 in the shape of a comb is formed at a portion of the bus bar 220 that the ribbon cable 210 contacts so as to sufficiently cover the gap.
  • the bus bar 220 has a bus bar fastening hole for connection in a surface contact state with fastening means 260 such as a bolt or a nut ( 222 is formed.
  • the bus bar 220 not only forms a passage through which the electricity flowing from the ribbon cable 210 flows to the external cable 130, but also is generated in the ribbon cable 210 and the bypass diode 240. A passage for conducting heat to the heat sink 250 is formed.
  • FIG 5 is a view showing the pressurizing unit 230 of the smart junction box for the solar cell module shown in Figure 2
  • Figure 6 is a release (a) during the operation of the lever 232 of the pressing unit shown in Figure 5 and ( b) It is a figure which shows when tightening.
  • the pressurizing unit 230 is a spring pin type that serves to contact or fasten or detach the ribbon cable 210 positioned in the knurling portion 221 of the bus bar 220, and interacts with the bus bar 220. This allows the ribbon cable 210 to be contacted at a pressure such that the ribbon cable 210 does not escape while securing all of its surface area as a passage of current.
  • the pressing unit 230 is fixed to the frame formed in the main body 110, the rotary support shaft 231 to rotate within the radius, the ribbon cable as it rotates within the radius
  • the ribbon cable 210 is brought into contact with the busbar 220 by an omega ( ⁇ ) -shaped lever 232 and a pressure unit 230 for contacting or releasing the 210 to the busbar 220.
  • the pressing unit 230 is formed with a handle 234 to facilitate the operator's operation when the ribbon cable 210 is fastened or released, it is easy to connect or disconnect the ribbon cable 210 by the operator Can be done.
  • a plurality of protrusions are provided on the movable contact portion 235 of the metal material which is in contact with the ribbon cable. Is formed.
  • the protrusion of the movable contact portion 235 corresponds to the comb-shaped groove formed in the knurling portion 221 described above, thereby ensuring contact reliability of the ribbon cable 210.
  • the pressing unit 230 has both ends of the lever 232 when the lever 232 is released.
  • the portion 236 does not protrude outward and can be rotated within a radius to release the ribbon cable 210 (see FIG. 6A), and at both ends of the lever 232 upon engagement of the lever 232.
  • the portion 236 protrudes outward and is inserted into a groove formed in the main body 110 to pressurize the ribbon cable 210 (see FIG. 6B).
  • the pressing unit 230 may fasten or detach the ribbon cable 210 depending on whether both ends 236 of the lever 232 are inserted into the grooves formed in the main body by the operator's manipulation.
  • FIGS. 7 to 9 are views showing the operation of the pressing unit 230 for the operator.
  • the operator releases the lever 232 to open the pressurizing unit 230 (after rotating upward in a radius), and then the ribbon cable 210 is connected to the busbar 220. And between the movable contact portion 235 of the pressure unit (see FIG. 7). Thereafter, the operator rotates the pressing unit 230 downward within the radius to close it (see FIG. 8), and then, by holding the handle 234 and fastening the lever 232 to the lever fixing part 233, the pressing unit 230. The ribbon cable 210 is contacted with the busbar 220 by the reference (see FIG. 9). At this time, the worker proceeds with the reverse operation of the ribbon cable 210 to separate the ribbon cable 210. As such, the operator may easily connect or disconnect the ribbon cable 210 using the pressing unit 230.
  • FIG. 10 is a perspective view illustrating a diode 240 of the smart junction box for a solar cell module shown in FIG. 2, and FIGS. 11 to 14 illustrate a diode 240 in a smart junction box for a solar cell module according to an embodiment of the present invention.
  • the bypass diode 240 has a hexahedral shape and has a structure in which a metal for heat conduction is embedded on one surface thereof, so that heat generated through the metal is transferred to the bus bar 220. Placed in contact with At this time, the bypass diode 240 is fastened in a surface contact state with the bus bar 220 and the heat sink 250 so that a heat dissipation structure can be formed, a diode fastening hole 241 for the fastening means 260 is formed. It is.
  • the bypass diode 240 has a terminal 242 for connecting to the bus bar 220, the terminal 242 is arranged to contact the bus bar 220, and then connected through the fastening of bolts or screws do.
  • the bypass diode 240 does not operate normally, and an abnormality occurs in the cell 20 mounted in the solar cell module 10 (in this embodiment, when three cells are mounted in series). Whereby it is used to form a bypass path (i.e. bypass) of the current. That is, the bypass diode 240 does not operate when all of the cells 20 mounted in series in the solar cell module 10 are normal (see FIG. 11). This is because electricity generated in the solar cell module flows along a path transmitted to the external cable 130 only through the bus bar 220 without passing through the bypass diode 240 (see the thick line in FIG. 11). However, the bypass diode 240 provides a bypass path through which electricity generated in the solar cell module can be transferred to the external cable 130 when the cell 20 mounted on the solar cell module 10 is abnormal. (Refer to the thick line in FIGS. 12-14). 12 to 14 illustrate a case where two cells 20 are abnormal.
  • FIG. 15 is a perspective view illustrating the heat sink 250 of the smart junction box for the solar cell module shown in FIG. 2.
  • the heat sink 250 is fastened by the bus bar 220, the bypass diode 240, and the fastening means 260 to form a heat dissipation structure, thereby forming a ribbon cable 210 or a bypass diode.
  • the heat generated at 240 is conducted and released to the outside.
  • a heat sink fastening hole 251 is formed in the heat sink 250 so that the bus bar 220 and the diode 240 may be fastened by the fastening means 260.
  • the heat dissipation plate 250 may improve the heat dissipation effect by allowing the generated heat to be discharged to the outside through the through hole 122 formed in the cover 120 using convection.
  • the heat dissipation plate 250 is implemented in a corrugated shape to secure a contact area to air, and high heat dissipation efficiency because it uses a material of high thermal conductivity.
  • FIG. 16 is a perspective view showing a cable seal of a smart junction box for a solar cell module according to an embodiment of the present invention
  • Figure 17 is a perspective view showing a seal retainer of a smart junction box for a solar cell module according to an embodiment of the present invention. to be.
  • an external cable 130 for providing electricity generated in the solar cell module to the outside through the ribbon cable 210, bus bar 220, etc. of the junction box 100 is It is connected to one side of the body (110).
  • the main body 110 is formed with an external cable connecting portion 113 to seal the rain water or moisture to pass through while passing through the external cable 130.
  • the external cable 130 may be crimped to the ring terminal to be screwed with the bus bar 220 inside the junction box through the through groove of the external cable connection 113.
  • the external cable connection portion 113 is a rubber cable seal 114 (see Fig.
  • a seal retainer 115 may be included outside the cable seal so that the waterproof of the cable seal 114 is maintained even when the 130 is bent.
  • FIG. 18 is a conceptual diagram illustrating an operation principle of checking whether a solar cell module is abnormal in a smart junction box for a solar cell module according to an embodiment of the present invention.
  • electricity of the cell 20 of the solar cell module 10 is supplied to the outside through the junction box 100.
  • the sensor module 310 for detecting the current, voltage, temperature, etc. built in the junction box 100 specifically the minute resistance of the bus bar 220 to detect the voltage / current sensor 311 and temperature Data or information detected from the temperature sensor 312 can be notified to the administrator by wire or wireless communication using the communication module 320 to determine whether the solar cell module 10 has an abnormality.

Abstract

본 발명은 태양 전지 모듈용 스마트 정션박스에 관한 것으로, 가압유닛의 레버의 동작에 따라 작업자가 용이하게 리본 케이블을 연결 또는 분리할 수 있도록 하여 리본 케이블의 접촉 안정성을 제공하고, 리본 케이블과 다이오드와 버스바를 면접촉 상태로 체결하는 방열 구조를 형성하여 리본 케이블, 다이오드 등에서 발생하는 열을 외부로 방열시키기 위한, 태양 전지 모듈용 스마트 정션박스를 제공한다. 이를 위하여, 본 발명의 태양 전지 모듈용 스마트 정션박스는, 리본 케이블로부터 유입되는 전기를 전달하기 위한 버스바; 및 작업자의 조작에 의해 돌출되는 오메가 형상의 레버 끝부분이 본체에 형성된 홈에 삽입되는지에 따라, 상기 버스바의 접촉부위에 위치하는 상기 리본 케이블을 체결 또는 분리하는 가압유닛을 포함한다.

Description

태양 전지 모듈용 스마트 정션박스
본 발명은 태양 전지 모듈용 스마트 정션박스에 관한 것이다. 구체적으로, 본 발명은 가압유닛의 레버의 동작에 따라 작업자가 용이하게 리본 케이블을 연결 또는 분리할 수 있어서 리본 케이블의 접촉 안정성을 향상시킬 수 있는 태양 전지 모듈용 스마트 정션박스에 관한 것이다. 또한, 본 발명은 리본 케이블, 다이오드, 버스바 및 방열판을 면접촉 상태로 체결하는 방열 구조를 형성하여 리본 케이블 및 다이오드 등에서 발생하는 열을 효과적으로 방열시키기 위한 태양 전지 모듈용 스마트 정션박스에 관한 것이다. 또한, 본 발명은 전류, 전압, 온도 등을 감지하는 센서를 정션박스 내부에 내장하고 센싱된 데이터를 스마트모듈과 통신모듈을 통해 관리자에게 알려주는 방식으로 문제가 발생된 부품을 빠르고 쉽게 확인하여 대응할 수 있는 태양 전지 모듈용 지능형 정션박스에 관한 것이다.
최근 들어, 세계 각국에서는 화석연료 사용증가로 인한 기후변화 위기, 세계인구의 증가와 브릭스(BRICs)의 급성장으로 인한 에너지 및 자원 위기 등을 극복하기 위해 저탄소 녹색기술 및 녹색산업을 신성장동력으로 하는 녹색 성장의 시대를 새로운 국가발전의 패러다임으로 채택하고 있다. 즉, 녹색 성장은 환경과 경제가 상충된다는 고정 관념에서 탈피하여 양자의 시너지를 극대화시켜, 경제성장이 환경개선에 기여하고 환경이 성장동력으로 전환되어 경제와 환경이 선순환하는 새로운 국가발전의 전력을 의미한다.
이러한 녹색 성장의 구체적 추진방향의 하나로, 태양광 발전은 탈석유 및 에너지 자립을 구현할 수 있는 하나의 수단으로 각광받고 있다. 일반적으로, 태양광 발전은 태양빛을 받아 반도체 물질로 이뤄진 태양 전지에서 바로 전기를 생성하는 발전 형태로 구현된다. 즉, 태양광 발전은 태양으로부터의 빛에너지를 직접 전기에너지로 변환시켜 발전하는 방식이다.
태양광 발전 시스템은 건물 외부에 태양 전지 모듈(즉, 태양 전지 패널)을 배열 설치하고, 그 모듈로부터 접속함, 인버터, 분배반을 통해 각종 전기기기에 전력을 공급한다. 이때, 태양 전지 모듈은 햇빛을 받아 직류 전기를 생성하는데, 이와 같이 태양 전지 모듈에 의해 생성된 전기를 수집하여 접속함에 제공하기 위한 정션박스가 필요하다. 이러한 정션박스는 태양 전지 모듈에 직렬 또는 병렬로 접속되며, 통상적으로 실링재에 의한 수밀성을 유지하여 태양 전지 모듈의 뒷면에 고정된다. 일반적으로, 정션박스는 구부러지기 쉬운 리본 케이블을 이용하여 태양 전지 모듈에 연결하고, 리본 케이블을 통해 태양 전지 모듈에서 생성된 전기를 수집한다.
종래에는 정션박스에 리본 케이블을 연결할 때, 납땜을 하거나 드라이버 삽입 홈을 들어올려 리본 케이블을 삽입하거나, 리본 케이블을 접어 터미널 블럭에 삽입하여 리본 케이블을 연결하였다. 상기 납땜의 경우 작업성이 저조할 뿐만 아니라 A/S 교체가 곤란하고 드라이버 삽입 홈에 리본 케이블을 삽입하기 위해 드라이버에 의한 물리적인 힘을 가하여 리본 케이블을 연결하므로 버스바 접촉부와 정션박스의 몸체가 파손될 우려가 있다. 또한, 리본 케이블을 접어 연결하는 경우 리본 케이블을 접어서 사용하므로 접촉저항이 커져 열이 발생하고 접촉 안전성이 떨어질 뿐만 아니라, 리본 케이블을 접어서 연결해야 하므로 리본 케이블에 대한 추가적인 후속작업이 필요하다.
이와 같이, 종래의 방식은 정션박스의 A/S 작업을 수행할 때, 정션박스의 몸체가 파손될 수 있고, 리본 케이블에 대한 후속작업이 필요하기 때문에 용이하게 리본 케이블을 연결할 수 있는 구조의 정션박스가 요구된다. 한편, 정션박스에 있어서, 리본 케이블 접속부위 등에는 열이 발생하는데, 정션박스는 이러한 열을 외부로 방출하기 위한 방열 구조가 필요한 실정이다.
따라서, 작업자가 리본 케이블을 용이하게 연결할 수 있을 뿐만 아니라 리본 케이블 본래의 접촉면적을 유지하면서 소정의 접촉압력으로 연결할 수 있도록 리본 케이블의 접촉 안정성을 제공할 필요가 있고, 내부 구성요소에서 발생되는 열을 효과적으로 외부로 방출할 수 있는 방열 구조가 필요하다.
또한, 종래의 태양광 전지 모듈은 이상 발생시 다수의 모듈을 묶은 그룹 단의 불량 추적만 가능하므로 모듈 단위의 이상 유무를 확인하기 어려워 실시간 관리 및 조치가 곤란하므로 이에 대한 해결도 필요한 실정이다.
따라서, 본 발명은 전술한 문제점을 고려하여, 가압유닛의 레버의 동작에 따라 작업자가 용이하게 리본 케이블을 연결 또는 분리할 수 있어서 리본 케이블의 접촉 안정성을 향상시킬 수 있는 태양 전지 모듈용 스마트 정션박스를 제공한다. 또한, 본 발명은 리본 케이블, 다이오드, 버스바 및 방열판을 면접촉 상태로 체결하는 방열 구조를 형성하여 리본 케이블 및 다이오드 등에서 발생하는 열을 효과적으로 방열시키기 위한 태양 전지 모듈용 정션박스를 제공한다. 또한, 본 발명은 전류, 전압, 온도 등을 감지하는 센서를 정션박스 내부에 내장하고 센싱된 데이터를 스마트모듈과 통신모듈을 통해 관리자에게 알려주는 방식으로 문제가 발생된 부품을 빠르고 쉽게 확인하여 대응할 수 있는 태양 전지 모듈용 스마트 정션박스를 제공한다.
본 발명의 일 실시예에 따른 태양 전지 모듈용 스마트 정션박스는, 리본 케이블로부터 유입되는 전기를 전달하기 위한 버스바; 상기 버스바의 접촉부위에 위치하는 상기 리본 케이블을 체결 또는 분리하는 가압유닛; 육면체 형상으로 일면에 열전도용 메탈이 내장되어 방열판과 면접촉이 이루어지고 두 개의 단자는 상기 버스바와 접촉하도록 배치되는 다이오드; 상기 버스바에 접촉되며, 상기 버스바와 다이오드의 메탈을 통해 전도되는 열을 외부로 방출하기 위한 방열판; 상기 버스바, 다이오드 및 방열판을 서로 체결하기 위한 체결수단; 및 상기 버스바로부터 전달된 전기를 외부로 제공하기 위한 외부 케이블을 포함한다.
상기 버스바와 리본 케이블의 접촉 신뢰성을 높이기 위해 상기 리본 케이블이 위치하는 버스바의 접촉부위에 빗살모양의 널링부가 형성될 수 있다. 또한, 상기 리본 케이블은 태양 전지 모듈에 연결되어 상기 태양 전지 모듈로부터 전기가 유입된다.
상기 가압유닛은, 상기 리본 케이블을 버스바에 체결 또는 해제시키기 위한 오메가 형상의 레버; 상기 리본 케이블의 체결시에 레버를 고정시키기 위한 레버 고정부; 및 상기 가압유닛의 하측에 구비되는 금속재의 가동 접점부를 포함한다.
상기 레버의 양 단부가 작업자의 조작에 의해 본체에 형성된 홈에 삽입되는지에 따라 상기 가압유닛은 리본 케이블을 체결 또는 분리시킬 수 있다. 상기 가압유닛과 리본 케이블의 접촉 신뢰성을 높이기 위해, 즉 높은 접촉압력과 넓은 접촉면적으로 확보하기 위해 상기 리본 케이블과 접촉되는 금속재의 가동 접점부에 다수의 돌기가 형성된 구조로 이루어질 수 있다.
상기 다이오드는, 태양 전지 모듈의 셀에 이상이 발생한 경우 상기 리본 케이블로부터 외부 케이블로 전달되는 전류의 우회경로를 제공할 수 있다.
상기 외부 케이블은 링터미날에 압착되어 외부케이블 연결부의 관통홈을 통해 정션박스 내부의 버스바와 스크류 체결될 수 있다.
상기 외부 케이블 연결부는 방수를 위해 상기 외부 케이블의 외주에 구비되는 고무재의 케이블 씰; 및 상기 케이블 씰이 빠지지 않고 외부 케이블이 꺾인 상태에서도 상기 케이블 씰의 방수가 유지되도록 상기 케이블 씰 외부에 조립되는 씰 리테이너를 포함할 수 있다.
또한, 본 발명의 일 실시예에 따른 태양 전지 모듈용 스마트 정션박스는 정션박스 내부에 내장되어 전류, 전압, 온도 등을 감지하는 센서모듈; 및 상기 센서모듈로부터 감지된 데이터를 무선통신으로 관리자에게 알려주는 통신모듈을 더 포함할 수 있다. 상기 센서모듈은 전류/전압 센서 및 온도 센서로 이루어질 수 있다.
전술한 바와 같이, 본 발명은 가압유닛을 이용하여 리본 케이블과 버스바를 접속시킴으로써 리본 케이블에 대해 넓은 접촉면적과 높은 접촉압력으로 리본 케이블을 연결 또는 분리할 수 있는 효과가 있다.
또한, 본 발명은 버스바와 다이오드와 방열판을 면접촉 상태로 연결시키는 방열 구조를 형성함으로써, 리본 케이블과 다이오드 등에서 발생되는 열을 외부로 효과적으로 방열시킬 수 있다.
또한, 본 발명은 태양 전지 모듈의 셀에 이상이 발생할 때 전류를 우회시키기 위한 다이오드를 이용하여 정션박스를 안정적으로 동작시킬 수 있다.
또한, 본 발명은 작업자가 리본 케이블을 용이하게 연결 또는 분리할 수 있기 때문에 정션박스를 간편하게 유지보수할 수 있다.
또한, 본 발명은 정션박스 내부에 스마트모듈을 내장하여 각각의 태양광 전지 모듈의 고장이나 이상 발생시 신속하게 실시간으로 관리자에게 통보되어 신속한 대응을 가능하게 한다.
도 1은 본 발명의 일 실시예에 따른 태양 전지 모듈용 스마트 정션박스를 나타낸 사시도이다.
도 2는 본 발명의 일 실시예에 따른 태양 전지 모듈용 스마트 정션박스의 내부를 나타낸 사시도이다.
도 3은 도 2에 도시된 태양 전지 모듈용 스마트 정션박스 내부 중 일부를 절단한 사시도이다.
도 4는 도 2에 도시된 태양 전지 모듈용 스마트 정션박스의 버스바를 나타낸 사시도이다.
도 5는 도 2에 도시된 태양 전지 모듈용 스마트 정션박스의 가압유닛을 나타낸 도면이다.
도 6은 도 5에 도시된 가압유닛의 레버 동작 중 (a)해제시 및 (b)체결시를 나타낸 도면이다.
도 7 내지 도 9는 작업자에 위한 가압유닛의 동작을 나타낸 도면이다.
도 10은 도 2에 도시된 태양 전지 모듈용 스마트 정션박스의 다이오드를 나타낸 사시도이다.
도 11 내지 도 14는 본 발명의 일 실시예에 따른 태양 전지 모듈용 스마트 정션박스에서 다이오드의 우회경로를 나타낸 도면이다.
도 15는 도 2에 도시된 태양 전지 모듈용 스마트 정션박스의 방열판을 나타낸 사시도이다.
도 16은 본 발명의 일 실시예에 따른 태양 전지 모듈용 스마트 정션박스의 케이블 씰을 나타낸 사시도이다.
도 17은 본 발명의 일 실시예에 따른 태양 전지 모듈용 스마트 정션박스의 씰 리테이너를 나타낸 사시도이다.
도 18은 본 발명의 일 실시예에 따른 태양 전지 모듈용 스마트 정션박스에 있어서 태양 전지 모듈의 이상 유무를 확인하는 작동원리를 나타낸 개념도이다.
전술한 목적, 특징들 및 장점은 첨부된 도면과 관련한 다음의 실시예를 통하여 보다 분명해질 것이다. 이하, 첨부된 도면을 참조하여 본 발명의 구체적인 실시예를 상세히 설명한다.
도 1은 본 발명의 일 실시예에 따른 태양 전지 모듈용 스마트 정션박스를 나타낸 사시도이고, 도 2는 본 발명의 일 실시예에 따른 태양 전지 모듈용 스마트 정션박스의 내부를 나타낸 사시도이고, 도 3은 도 2에 도시된 태양 전지 모듈용 스마트 정션박스 내부 중 일부를 절단한 사시도이다.
도 1 내지 도 3에 도시된 바와 같이, 본 발명의 일 실시예에 따른 태양 전지 모듈용 정션박스(100)는 태양 전지 모듈의 배면에 부착되어 정션박스의 구성요소가 탑재되는 본체(110)와 상기 본체(110)의 개방된 상면을 커버하는 덮개(120)를 포함한다. 본체(110) 및 덮개(120)는 폴리페닐렌옥사이드(PPO), 폴리페닐렌에테르(PPE)를 비롯한 합성수지 또는 플라스틱으로 제조될 수 있으나, 이에 한정되는 것은 아니다.
한편, 본체(110) 및 덮개(120)는 서로 착탈가능하게 결합되는데, 상기 본체(110)의 둘레에 복수개의 록킹홈(111)이 형성되고, 덮개(120)에는 본체(110)의 록킹홈(111)에 대응되는 위치에 록킹핑거(121)가 형성된다. 이에 따라, 사용자는 덮개(120)의 록킹핑거(121)를 본체(110)의 록킹홈(111)에 록킹한 후 걸림턱에 걸리게 함으로써, 덮개(120)를 본체(110)에 결합시킬 수 있다. 또한, 본체(110) 또는 덮개(120)의 둘레에 실리콘 또는 고무재의 실링부재(112)가 구비됨으로써, 상기 본체(110)와 덮개(120)가 서로 결합된 상태에서 외부로부터 빗물이나 이물질이 정션박스(100)의 내부로 침투되지 않는다.
또한, 상기 덮개(120)에는 정션박스 내부에서 발열이 집중되는 지점(일례로, 방열판, 바이패스 다이오드 등)의 열을 외부로 방출하기 위한 다수의 관통공(122)이 형성될 수 있다. 관통공(122)의 개수와 크기 등은 본 발명에서 특별히 한정되지 않으며, 정션박스의 발열을 고려하여 적절히 설정될 수 있다. 상기 관통공(122)에는 외부로부터 빗물이나 수분이 쉽게 침투되지 않도록, 빗물이나 수분과 같이 상대적으로 크기가 큰 입자를 통과시키지는 않지만 공기와 같이 상대적으로 크기가 작은 입자를 통과시키는 선택성 투과막(일례로, 고어텍스 등의 통기성 섬유재)을 채용한다. 이는 외부로부터 빗물이 침투하지 못하는 대신에 정션박스(100) 내부의 뜨거워진 공기가 통기성 섬유재가 채용된 관통공(122)을 통해 외부로 유동할 수 있도록 하기 위함이다. 부가적으로, 상기 본체(110)의 측면에 하방으로 통기구를 형성하고 입구를 메탈필터로 실링함으로써, 빗물이나 수분이 침투하지 못하도록 하고 외부 공기가 유입될 수 있는 구조를 적용할 수도 있다.
본 발명의 일 실시예에 따른 태양 전지 모듈용 정션박스(100)는 도 2 및 도 3에 나타낸 바와 같이 리본 케이블(210), 버스바(220), 가압유닛(230), 다이오드(구체적으로, 바이패스 다이오드)(240), 방열판(250), 체결수단(260), 및 외부 케이블(130)을 포함한다. 이러한 구성요소에 의해, 본 발명의 정션박스(100)는 리본 케이블(210)의 접촉 안정성을 제공할 뿐만 아니라, 리본 케이블(210) 및 바이패스 다이오드(240) 등에서 발생하는 열을 외부로 방출하는 방열 구조를 갖는다.
이하, 상기의 구성요소, 결합관계, 및 동작원리에 대해 상세히 설명한다. 먼저, 본 발명의 태양 전지 모듈용 정션박스(100)는 리본 케이블(210)의 접촉 안정성을 제공할 수 있다(후술할 내용과 관련된 도 7 내지 도 9 참조). 즉, 태양 전지 모듈용 정션박스(100)는 버스바(220)의 상층에 리본 케이블(210)을 강제로 접촉시키기 위해 힌지 구조로 착탈하는 스프링핀 타입의 가압유닛(230)을 이용함으로써, 본체(110)에 형성된 틀을 따라 바닥면에 배치된 버스바(220)에 리본 케이블(210)을 안정적으로 접촉시키거나 해제시킬 수 있다. 이러한 구성에 의해, 드라이버 등을 이용하여 물리적인 힘을 가하거나 리본 케이블(210)의 형상 변형 없이 높은 압력으로 리본 케이블(210)을 버스바(220)에 접촉시킬 수 있기 때문에, 리본 케이블(210)의 접촉을 안정적으로 제공할 수 있다.
다음으로, 본 발명의 태양 전지 모듈용 정션박스(100)는 리본 케이블(210), 바이패스 다이오드(240) 등에서 발생하는 열을 외부로 방출하는 방열 구조를 형성한다. 즉, 태양 전지 모듈용 정션박스(100)는 버스바(220), 바이패스 다이오드(240) 및 방열판(250)이 서로 면접촉 상태로 연결되어, 리본 케이블(210)이나 바이패스 다이오드(240) 등에서 발생되는 열이 방열판(250)까지 전도되어 방출되도록 한다. 이때, 버스바(220), 바이패스 다이오드(240) 및 방열판(250)은 접촉효율을 높이기 위해 볼트나 나사와 같은 체결수단(260)을 이용해 단단하게 결합시킨다. 여기에서, 상기 태양 전지 모듈용 정션박스(100)는 전술한 덮개(120)의 관통공(122)을 방열판(250)에 대응되는 부분에 배치함으로써, 상기 방열판(250)을 통해 방출되는 열이 대류 작용을 통해 외부로 쉽게 방출될 수 있게 하는 것이 바람직하다.
도 4는 도 2에 도시된 태양 전지 모듈용 스마트 정션박스의 버스바(220)를 나타낸 사시도이다. 상기 버스바(220)는 본체(110) 바닥에 형성된 틀을 따라 탑재되어, 리본 케이블(210)로부터 유입되는 전기를 전달하고, 열 흐름의 통로로서 기능을 한다. 여기서, 상기 리본 케이블(210)은 태양 전지 모듈(도 11 내지 도 14의 도면부호 10 참조)에 연결되어 상기 태양 전지 모듈로부터 전기가 유입된다.
도 4에 도시된 바와 같이, 스프링핀 타입의 가압유닛(230)으로 리본 케이블(210)을 버스바(220)에 접촉시켜 체결시킬 때 접촉의 신뢰성을 높이기 위하여, 상기 리본 케이블(210)의 표면적을 충분히 커버할 수 있게 리본 케이블(210)이 접촉하는 버스바(220)의 부위에 빗살모양의 널링부(knurling portion, 221)가 형성된다. 또한, 상기 버스바(220)에는 바이패스 다이오드(240)와 방열판(250)이 방열 구조를 형성할 때 볼트나 너트와 같은 체결수단(260)으로 면접촉 상태의 연결을 위한 버스바 체결공(222)이 형성된다. 이처럼, 상기 버스바(220)는 리본 케이블(210)로부터 유입된 전기가 외부 케이블(130)까지 흐를 수 있는 통로를 형성할 뿐만 아니라, 리본 케이블(210)과 바이패스 다이오드(240)에서 발생되는 열을 방열판(250)까지 전도시키는 통로를 형성한다.
도 5는 도 2에 도시된 태양 전지 모듈용 스마트 정션박스의 가압유닛(230)을 나타낸 도면이고, 도 6은 도 5에 도시된 가압유닛의 레버(232) 동작 중 (a)해제시 및 (b)체결시를 나타낸 도면이다.
상기 가압유닛(230)은 버스바(220)의 널링부(221)에 위치되는 리본 케이블(210)을 접촉시켜 체결하거나 또는 분리시키는 역할을 하는 스프링핀 타입으로서, 버스바(220)와 상호 작용하여 리본 케이블(210)이 전류의 통로로서 자체 표면적을 전부 확보하면서 이탈되지 않을 정도의 압력으로 접촉될 수 있게 한다.
도 5 및 도 6에 도시된 바와 같이, 가압유닛(230)은 본체(110)에 형성된 틀에 고정되어 반경 내에서 회전할 수 있도록 하는 회전지지축(231), 반경 내에서 회전함에 따라 리본 케이블(210)을 버스바(220)에 접촉 또는 해제시키기 위한 오메가(Ω) 형상의 레버(232), 가압유닛(230)에 의해 리본 케이블(210)을 버스바(220)에 접촉시켜 체결시킬 때 상기 레버(232)를 고정시키기 위한 레버 고정부(233), 및 가압유닛(230)의 하측에 구비되어 리본 케이블(210)의 접촉 신뢰성을 높일 수 있는 금속재의 가동 접점부(235)를 포함한다.
또한, 상기 가압유닛(230)은 리본 케이블(210)의 체결 또는 해제시에 작업자의 조작을 용이하게 하기 위한 손잡이(234)가 형성되어, 작업자에 의한 리본 케이블(210)의 연결 또는 분리가 손쉽게 이루어질 수 있다. 상기 가압유닛(230)과 리본 케이블(210)의 접촉 신뢰성을 높이기 위해, 즉 높은 접촉압력과 넓은 접촉면적으로 확보하기 위해 상기 리본 케이블과 접촉되는 금속재의 가동 접점부(235)에 다수의 돌기가 형성된다.
이때, 상기 가동 접점부(235)의 돌기는 전술한 널링부(221)에 형성된 빗살모양의 홈에 대응됨으로써, 상기 리본 케이블(210)의 접촉 신뢰성을 확보할 수 있다. 여기서, 가압유닛(230)의 레버(232)로 리본 케이블(210)을 체결하거나 해제하는 것에 대해 설명하면, 상기 가압유닛(230)은 레버(232)의 해제시에 레버(232)의 양쪽 끝부분(236)이 외부로 돌출되지 않아 반경 내에서 회전되어 리본 케이블(210)을 해제시킬 수 있고(도 6의 (a) 참조), 레버(232)의 체결시에 레버(232)의 양쪽 끝부분(236)이 외부로 돌출되어 본체(110)에 형성된 홈에 삽입됨으로써 리본 케이블(210)을 가압접촉시킬 수 있다(도 6의 (b) 참조). 이에 따라, 상기 레버(232)의 양 단부(236)가 작업자의 조작에 의해 본체에 형성된 홈에 삽입되는지에 따라 상기 가압유닛(230)은 리본 케이블(210)을 체결 또는 분리시킬 수 있다.
도 7 내지 도 9는 작업자에 위한 가압유닛(230)의 동작을 나타낸 도면이다. 도 7 내지 도 9에 나타낸 바와 같이, 작업자는 레버(232)를 해제시켜 가압유닛(230)을 개방한 후(반경 내에서 상방으로 회전시킨 후), 리본 케이블(210)을 버스바(220)와 가압유닛의 가동 접점부(235) 사이에 위치시킨다(도 7 참조). 이후, 작업자는 가압유닛(230)을 반경 내에서 하방으로 회전시켜 닫은 후(도 8 참조), 손잡이(234)를 잡고 레버(232)를 레버 고정부(233)에 체결시킴으로써, 가압유닛(230)에 의해 리본 케이블(210)을 버스바(220)에 접촉체결한다(도 9 참조). 이때, 작업자는 리본 케이블(210)의 연결순서와 반대로 작업을 진행하여 리본 케이블(210)을 분리한다. 이와 같이, 작업자는 가압유닛(230)을 이용하여 리본 케이블(210)을 손쉽게 연결 또는 분리할 수 있다.
도 10은 도 2에 도시된 태양 전지 모듈용 스마트 정션박스의 다이오드(240)를 나타낸 사시도이고, 도 11 내지 도 14는 본 발명의 일 실시예에 따른 태양 전지 모듈용 스마트 정션박스에서 다이오드(240)의 우회경로를 나타낸 도면이다.
도 10에 도시된 바와 같이, 바이패스 다이오드(240)는 육면체 형상으로서 일면에 열전도용 메탈이 내장된 구조를 갖는데, 메탈을 통해 발생되는 열이 버스바(220)로 전달되도록 버스바(220)에 접하여 배치된다. 이때, 바이패스 다이오드(240)는 버스바(220), 방열판(250)과 함께 면접촉 상태로 체결되어 방열 구조가 형성될 수 있도록, 체결수단(260)을 위한 다이오드 체결공(241)이 형성되어 있다. 또한, 바이패스 다이오드(240)는 버스바(220)에 접속시키기 위한 단자(242)를 구비하며, 단자(242)는 버스바(220)와 접촉하도록 배치된 후 볼트나 나사의 체결을 통해 접속된다.
이러한 바이패스 다이오드(240)는 정상시에는 동작하지 않고, 태양 전지 모듈(10)에 직렬로 탑재된 셀(20)(본 실시예에서는 3개의 셀이 직렬로 탑재된 경우임)에 이상이 발생하는 경우에 전류의 우회경로(즉, 바이패스)를 형성하는데 이용된다. 즉, 바이패스 다이오드(240)는 태양 전지 모듈(10)에 직렬로 탑재된 셀(20)이 모두 정상인 경우에 동작하지 않는다(도 11 참조). 이는 태양 전지 모듈에서 생성된 전기가 바이패스 다이오드(240)를 통과하지 않고 버스바(220)를 통해서만 외부 케이블(130)로 전달되는 경로를 따라 흐르기 때문이다(도 11의 굵은 선 참조). 하지만, 바이패스 다이오드(240)는 태양 전지 모듈(10)에 탑재된 셀(20)이 비정상인 경우에, 태양 전지 모듈에서 생성된 전기가 외부 케이블(130)로 전달될 수 있는 우회경로를 제공한다(도 12 내지 도 14에서 굵은 선 참조). 여기서, 도 12 내지 도 14는 2개의 셀(20)이 비정상인 경우에 대한 도면을 나타낸 것이다.
도 15는 도 2에 도시된 태양 전지 모듈용 스마트 정션박스의 방열판(250)을 나타낸 사시도이다. 도 15에 도시된 바와 같이, 방열판(250)은 버스바(220), 바이패스 다이오드(240)와 체결수단(260)에 의해 체결되어 방열 구조를 형성함으로써, 리본 케이블(210) 또는 바이패스 다이오드(240) 등에서 발생하는 열을 전도하여 외부로 방출한다.
상기 방열판(250)에는 체결수단(260)에 의해 버스바(220)와 다이오드(240)가 체결될 수 있도록 방열판 체결공(251)이 형성되어 있다. 특히, 방열판(250)은 발생되는 열이 대류를 이용하여 덮개(120)에 형성된 관통공(122)을 통해 외부로 방출되게 함으로써 방열 효과를 향상시킬 수 있다. 통상적으로, 방열판(250)은 공기에 대한 접촉면적을 확보하기 위해 주름 형상으로 구현되고, 높은 열전도율의 재질을 이용하기 때문에 방열 효율이 높다.
도 16은 본 발명의 일 실시예에 따른 태양 전지 모듈용 스마트 정션박스의 케이블 씰을 나타낸 사시도이고, 도 17은 본 발명의 일 실시예에 따른 태양 전지 모듈용 스마트 정션박스의 씰 리테이너를 나타낸 사시도이다.
도 1 및 도 2에 도시된 바와 같이, 태양 전지 모듈에서 생성된 전기를 정션박스(100)의 리본 케이블(210), 버스바(220) 등을 통해 외부로 제공하기 위한 외부 케이블(130)이 본체(110)의 일측에 연결된다. 이때, 본체(110)에는 외부 케이블(130)을 관통시키면서 빗물이나 수분이 유입되지 않도록 밀폐시키는 외부 케이블 연결부(113)가 형성된다. 여기서, 상기 외부 케이블(130)은 링터미날에 압착되어 외부케이블 연결부(113)의 관통홈을 통해 정션박스 내부의 버스바(220)와 스크류 체결될 수 있다. 또한, 상기 외부 케이블 연결부(113)는 방수를 위해 상기 외부 케이블(130)의 외주에 구비되는 고무재의 케이블 씰(114)(도 16 참조), 및 상기 케이블 씰(114)이 빠지지 않고 외부 케이블(130)이 꺾인 상태에서도 상기 케이블 씰(114)의 방수가 유지되도록 상기 케이블 씰 외부에 조립되는 씰 리테이너(115)(도 17 참조)를 포함할 수 있다.
도 18은 본 발명의 일 실시예에 따른 태양 전지 모듈용 스마트 정션박스에 있어서 태양 전지 모듈의 이상 유무를 확인하는 작동원리를 나타낸 개념도이다.
도 18의 개념도에 도시된 바와 같이, 태양 전지 모듈(10)의 셀(20)의 전기가 정션박스(100)를 통하여 외부로 공급된다. 이때, 상기 정션박스(100) 내부에 내장된 전류, 전압, 온도 등을 감지하는 센서모듈(310), 구체적으로 버스바(220)의 미세한 저항을 전압/전류 센서(311) 및 온도를 감지하는 온도 센서(312)로부터 감지된 데이터나 정보를 통신모듈(320)을 이용하여 유선이나 무선통신으로 관리자에게 알려주어 태양 전지 모듈(10)의 이상 유무를 확인할 수 있다.
이상에서 설명한 본 발명은, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 있어 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하므로 전술한 실시예 및 첨부된 도면에 의해 한정되는 것이 아니다.

Claims (10)

  1. 리본 케이블로부터 유입되는 전기를 전달하기 위한 버스바;
    상기 버스바의 접촉부위에 위치하는 상기 리본 케이블을 체결 또는 분리하는 가압유닛;
    육면체 형상으로 일면에 열전도용 메탈이 내장되어 방열판과 면접촉이 이루어지고 두 개의 단자는 상기 버스바와 접촉하도록 배치되는 다이오드;
    상기 버스바에 접촉되며, 상기 버스바와 다이오드의 메탈을 통해 전도되는 열을 외부로 방출하기 위한 방열판;
    상기 버스바, 다이오드 및 방열판을 서로 체결하기 위한 체결수단; 및
    상기 버스바로부터 전달된 전기를 외부로 제공하기 위한 외부 케이블
    을 포함하는 태양 전지 모듈용 스마트 정션박스.
  2. 제1항에 있어서,
    상기 버스바와 리본 케이블의 접촉 신뢰성을 높이기 위해 상기 리본 케이블이 위치하는 버스바의 접촉부위에 빗살모양의 널링부가 형성된
    태양 전지 모듈용 스마트 정션박스.
  3. 제1항에 있어서,
    상기 리본 케이블은 태양 전지 모듈에 연결되어 상기 태양 전지 모듈로부터 전기가 유입되는
    태양 전지 모듈용 스마트 정션박스.
  4. 제1항에 있어서,
    상기 가압유닛은, 상기 리본 케이블을 버스바에 체결 또는 해제시키기 위한 오메가 형상의 레버; 상기 리본 케이블의 체결시에 레버를 고정시키기 위한 레버 고정부; 및 상기 가압유닛의 하측에 구비되는 금속재의 가동 접점부를 포함하는
    태양 전지 모듈용 스마트 정션박스.
  5. 제4항에 있어서,
    상기 레버의 양 단부가 작업자의 조작에 의해 본체에 형성된 홈에 삽입되는지에 따라 상기 가압유닛은 리본 케이블을 체결 또는 분리시키는
    태양 전지 모듈용 스마트 정션박스.
  6. 제4항에 있어서,
    상기 가압유닛과 리본 케이블의 접촉 신뢰성을 높이기 위해 상기 리본 케이블과 접촉되는 금속재의 가동 접점부에 다수의 돌기가 형성된
    태양 전지 모듈용 스마트 정션박스.
  7. 제1항에 있어서,
    상기 다이오드는, 태양 전지 모듈의 셀에 이상이 발생한 경우 상기 리본 케이블로부터 외부 케이블로 전달되는 전류의 우회경로를 제공하는
    태양 전지 모듈용 스마트 정션박스.
  8. 제1항에 있어서,
    상기 외부 케이블은 링터미날에 압착되어 외부케이블 연결부의 관통홈을 통해 정션박스 내부의 버스바와 스크류 체결되는
    태양 전지 모듈용 스마트 정션박스.
  9. 제1항에 있어서,
    상기 외부 케이블 연결부는 방수를 위해 상기 외부 케이블의 외주에 구비되는 고무재의 케이블 씰; 및 상기 케이블 씰이 빠지지 않고 외부 케이블이 꺾인 상태에서도 상기 케이블 씰의 방수가 유지되도록 상기 케이블 씰 외부에 조립되는 씰 리테이너를 포함하는
    태양 전지 모듈용 스마트 정션박스.
  10. 제1항에 있어서,
    상기 정션박스 내부에 내장되어 전류, 전압, 온도를 감지하는 센서모듈; 및 상기 센서모듈로부터 감지된 데이터를 무선통신으로 관리자에게 알려주는 통신모듈을 더 포함하고,
    상기 센서모듈은 전류/전압 센서 및 온도 센서로 이루어지는
    태양 전지 모듈용 스마트 정션박스.
PCT/KR2010/002584 2009-04-24 2010-04-23 태양 전지 모듈용 스마트 정션박스 WO2010123325A2 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US12/921,156 US8248804B2 (en) 2009-04-24 2010-04-23 Smart junction box for solar cell module

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2009-0036105 2009-04-24
KR20090036105 2009-04-24
KR10-2009-0036104 2009-04-24
KR20090036104 2009-04-24

Publications (2)

Publication Number Publication Date
WO2010123325A2 true WO2010123325A2 (ko) 2010-10-28
WO2010123325A3 WO2010123325A3 (ko) 2011-02-03

Family

ID=43011643

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/002584 WO2010123325A2 (ko) 2009-04-24 2010-04-23 태양 전지 모듈용 스마트 정션박스

Country Status (3)

Country Link
US (1) US8248804B2 (ko)
KR (1) KR101024619B1 (ko)
WO (1) WO2010123325A2 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102231396A (zh) * 2011-05-11 2011-11-02 浙江鑫辉光伏科技有限公司 光伏接线盒
CN102412536A (zh) * 2010-09-17 2012-04-11 台达电子工业股份有限公司 接线盒及其导线连接装置
CN107394717A (zh) * 2017-08-09 2017-11-24 安徽红桥金属制造有限公司 一种太阳能光伏用接线盒
CN111525888A (zh) * 2020-07-02 2020-08-11 江苏泽润新材料有限公司 光伏组件接线盒的安装方法
DE102021210414A1 (de) 2021-09-20 2023-03-23 Volkswagen Aktiengesellschaft Verfahren und System zur Regulierung eines Klimatisierungssystems eines Kraftfahrzeugs

Families Citing this family (111)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US10693415B2 (en) 2007-12-05 2020-06-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US8473250B2 (en) 2006-12-06 2013-06-25 Solaredge, Ltd. Monitoring of distributed power harvesting systems using DC power sources
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8947194B2 (en) 2009-05-26 2015-02-03 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8319483B2 (en) 2007-08-06 2012-11-27 Solaredge Technologies Ltd. Digital average input current control in power converter
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US8319471B2 (en) 2006-12-06 2012-11-27 Solaredge, Ltd. Battery power delivery module
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US8816535B2 (en) 2007-10-10 2014-08-26 Solaredge Technologies, Ltd. System and method for protection during inverter shutdown in distributed power installations
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US8963369B2 (en) 2007-12-04 2015-02-24 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9088178B2 (en) 2006-12-06 2015-07-21 Solaredge Technologies Ltd Distributed power harvesting systems using DC power sources
US8618692B2 (en) 2007-12-04 2013-12-31 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US8384243B2 (en) 2007-12-04 2013-02-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8013472B2 (en) 2006-12-06 2011-09-06 Solaredge, Ltd. Method for distributed power harvesting using DC power sources
US8049523B2 (en) 2007-12-05 2011-11-01 Solaredge Technologies Ltd. Current sensing on a MOSFET
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
EP2722979B1 (en) 2008-03-24 2022-11-30 Solaredge Technologies Ltd. Switch mode converter including auxiliary commutation circuit for achieving zero current switching
EP3121922B1 (en) 2008-05-05 2020-03-04 Solaredge Technologies Ltd. Direct current power combiner
DE102008062034B4 (de) * 2008-12-12 2010-08-12 Tyco Electronics Amp Gmbh Verbindungsvorrichtung zum Anschluss an ein Solarmodul und Solarmodul mit einer solchen Verbindungsvorrichtung
EP2427915B1 (en) 2009-05-22 2013-09-11 Solaredge Technologies Ltd. Electrically isolated heat dissipating junction box
DE102010002565B8 (de) * 2010-03-04 2012-03-22 Tyco Electronics Amp Gmbh Anschlussvorrichtung für ein Solarmodul
US9101082B1 (en) 2010-05-03 2015-08-04 Sunpower Corporation Junction box thermal management
US8723031B2 (en) * 2010-08-30 2014-05-13 Hosiden Corporation Terminal box
US10347775B2 (en) * 2010-08-30 2019-07-09 Shoals Technologies Group, Llc Solar array recombiner box with wireless monitoring capability
US8388358B2 (en) * 2010-09-28 2013-03-05 Tyco Electronics Corporation Contact rail for a junction box
GB2485527B (en) 2010-11-09 2012-12-19 Solaredge Technologies Ltd Arc detection and prevention in a power generation system
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
GB2486408A (en) 2010-12-09 2012-06-20 Solaredge Technologies Ltd Disconnection of a string carrying direct current
GB2483317B (en) 2011-01-12 2012-08-22 Solaredge Technologies Ltd Serially connected inverters
KR101053065B1 (ko) * 2011-03-30 2011-08-01 한명전기주식회사 정션박스가 형성된 태양전지판
KR101077110B1 (ko) 2011-04-19 2011-10-26 김영춘 태양광 모듈의 정션박스 연결장치
DE102011002215A1 (de) * 2011-04-21 2012-10-25 Fpe Fischer Gmbh Anschlussdose für Solarmodule
GB2490499A (en) * 2011-05-03 2012-11-07 Solaredge Technologies Ltd Junction box assembly for electrical connections to photovoltaic panels
CH705106A2 (de) * 2011-06-03 2012-12-14 Huber+Suhner Ag Anschlussvorrichtung für Solarpanel.
KR101893816B1 (ko) * 2011-06-21 2018-08-31 엘지전자 주식회사 태양광 모듈
US9373959B2 (en) 2011-06-21 2016-06-21 Lg Electronics Inc. Photovoltaic module
US8907212B2 (en) * 2011-07-05 2014-12-09 Hon Hai Precision Industry Co., Ltd. Junction box with improved heat dissipation
TW201306408A (zh) * 2011-07-26 2013-02-01 Delta Electronics Inc 可分散與區域執行最大功率追蹤之太陽能發電系統及其接線盒
CN102291054B (zh) * 2011-09-05 2013-08-14 浙江鑫辉光伏科技有限公司 光伏接线盒连接端子的安装结构
JP5729648B2 (ja) * 2011-10-13 2015-06-03 ホシデン株式会社 太陽電池モジュール用端子ボックス
GB2498365A (en) 2012-01-11 2013-07-17 Solaredge Technologies Ltd Photovoltaic module
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
GB2498790A (en) 2012-01-30 2013-07-31 Solaredge Technologies Ltd Maximising power in a photovoltaic distributed power system
GB2498791A (en) 2012-01-30 2013-07-31 Solaredge Technologies Ltd Photovoltaic panel circuitry
GB2499991A (en) 2012-03-05 2013-09-11 Solaredge Technologies Ltd DC link circuit for photovoltaic array
US9635783B2 (en) * 2012-03-30 2017-04-25 Sunpower Corporation Electronic component housing with heat sink
CN202534666U (zh) * 2012-04-12 2012-11-14 浙江佳明天和缘光伏科技有限公司 一种太阳能电池接线盒
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
CA3110539C (en) * 2012-10-01 2024-01-30 Building Materials Investment Corporation Solar panel roof system with raised access panels
MX345857B (es) * 2012-10-02 2017-02-20 Building Materials Invest Corp Sistema de panel solar integrado en techo con microinversores montados a los lados.
US11894796B2 (en) * 2012-10-02 2024-02-06 Bmic Llc Roof integrated solar power system with top mounted electrical components and cables
US9105765B2 (en) 2012-12-18 2015-08-11 Enphase Energy, Inc. Smart junction box for a photovoltaic system
KR101425932B1 (ko) * 2013-02-08 2014-08-06 주식회사 씨엔플러스 정션 박스
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
EP3506370B1 (en) 2013-03-15 2023-12-20 Solaredge Technologies Ltd. Bypass mechanism
JP6094015B2 (ja) * 2013-04-12 2017-03-15 ホシデン株式会社 端子ボックス
CN103296115A (zh) * 2013-05-25 2013-09-11 吴军红 一种光伏电池保护模块封装用金属架
US9559508B2 (en) * 2013-10-10 2017-01-31 Hamilton Sundstrand Corporation Housings with embedded bus bars and standoffs
SG2013094396A (en) * 2013-12-19 2015-07-30 Rockwell Automation Asia Pacific Business Ctr Pte Ltd Slice-io housing with side ventilation
KR20160064688A (ko) 2014-11-28 2016-06-08 주식회사 하이솔루션 통신 기능을 갖는 태양광 전지 모듈의 정션 박스
WO2016164064A1 (en) * 2015-04-06 2016-10-13 Franklin Fueling Systems Electronic transition chamber
US9864352B2 (en) 2015-06-01 2018-01-09 Rockwell Automation Asia Pacific Business Ctr. Pte., Ltd. Slice I/O—field power bus breaker
KR101888521B1 (ko) * 2015-12-29 2018-08-14 고광수 저발열 버스 바를 구비한 태양광 발전장치용 접속반
CN107153212B (zh) 2016-03-03 2023-07-28 太阳能安吉科技有限公司 用于映射发电设施的方法
US11081608B2 (en) 2016-03-03 2021-08-03 Solaredge Technologies Ltd. Apparatus and method for determining an order of power devices in power generation systems
US10599113B2 (en) 2016-03-03 2020-03-24 Solaredge Technologies Ltd. Apparatus and method for determining an order of power devices in power generation systems
US11062588B2 (en) * 2016-03-23 2021-07-13 Solaredge Technologies Ltd. Conductor temperature detector
US10658833B2 (en) 2016-03-23 2020-05-19 Solaredge Technologies Ltd. Conductor temperature detector
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
CN106059486A (zh) * 2016-07-21 2016-10-26 湖南红太阳新能源科技有限公司 一种太阳能光伏接线盒
CA3159500A1 (en) 2019-11-27 2021-06-03 William Sirski Roof integrated photovoltaic module with spacer
US11398795B2 (en) 2019-12-20 2022-07-26 GAF Energy LLC Roof integrated photovoltaic system
CA3165505A1 (en) 2020-01-22 2021-07-29 Nathan Peterson Integrated photovoltaic roofing shingles, methods, systems, and kits thereof
MX2022010152A (es) 2020-02-18 2022-11-08 GAF Energy LLC Modulo fotovoltaico con superestrato texturizado que proporciona una apariencia de tejas.
MX2022010603A (es) 2020-02-27 2022-11-14 GAF Energy LLC Modulo fotovoltaico con encapsulante de dispersion de luz que proporciona apariencia de imitacion de teja.
CA3174671A1 (en) 2020-04-09 2021-10-14 GAF Energy LLC Three-dimensional laminate photovoltaic module
EP4143891A1 (en) 2020-04-30 2023-03-08 Gaf Energy LLC Photovoltaic module frontsheet and backsheet
US11177639B1 (en) 2020-05-13 2021-11-16 GAF Energy LLC Electrical cable passthrough for photovoltaic systems
US11251744B1 (en) 2020-06-04 2022-02-15 GAF Energy LLC Photovoltaic shingles and methods of installing same
MX2023000952A (es) 2020-07-22 2023-04-19 GAF Energy LLC Modulos fotovoltaicos.
CA3188361A1 (en) 2020-08-11 2022-02-17 Richard Perkins Roof mounted photovoltaic system and method for wireless transfer of electrical energy
MX2023002696A (es) 2020-09-03 2023-05-24 GAF Energy LLC Sistema fotovoltaico integrado en edificios.
USD950482S1 (en) 2020-10-02 2022-05-03 GAF Energy LLC Solar roofing system
USD950481S1 (en) 2020-10-02 2022-05-03 GAF Energy LLC Solar roofing system
US11545928B2 (en) 2020-10-13 2023-01-03 GAF Energy LLC Solar roofing system
WO2022081853A1 (en) 2020-10-14 2022-04-21 GAF Energy LLC Mounting apparatus for photovoltaic modules
WO2022094049A1 (en) 2020-10-29 2022-05-05 GAF Energy LLC System of roofing and photovoltaic shingles and methods of installing same
US11486144B2 (en) 2020-11-12 2022-11-01 GAF Energy LLC Roofing shingles with handles
WO2022103841A1 (en) 2020-11-13 2022-05-19 GAF Energy LLC Photovoltaic module systems and methods
KR102455177B1 (ko) * 2020-11-19 2022-10-17 인피니티에너지주식회사 태양전지 모듈의 정션박스 아이디부여 방법 및 운영관리방법
US11459757B2 (en) 2021-01-19 2022-10-04 GAF Energy LLC Watershedding features for roofing shingles
CA3208699A1 (en) 2021-02-19 2022-08-25 William Sirski Photovoltaic module for a roof with continuous fiber tape
US11527665B2 (en) 2021-05-06 2022-12-13 GAF Energy LLC Photovoltaic module with transparent perimeter edges
CA3215217A1 (en) 2021-06-02 2022-12-08 Richard Perkins Photovoltaic module with light-scattering encapsulant providing shingle-mimicking appearance
WO2023287584A1 (en) 2021-07-16 2023-01-19 GAF Energy LLC Roof material storage bracket
WO2023034432A1 (en) 2021-09-01 2023-03-09 GAF Energy LLC Photovoltaic modules for commercial roofing
WO2023141566A1 (en) 2022-01-20 2023-07-27 GAF Energy LLC Roofing shingles for mimicking the appearance of photovoltaic modules
KR20230158341A (ko) 2022-05-11 2023-11-20 유한회사 해신 시공이 간편한 구조를 포함하는 독립 mppt모듈 태양전지시스템
WO2024058191A1 (ja) * 2022-09-14 2024-03-21 株式会社オートネットワーク技術研究所 電気接続箱
US11811361B1 (en) 2022-12-14 2023-11-07 GAF Energy LLC Rapid shutdown device for photovoltaic modules

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002359389A (ja) * 2001-05-31 2002-12-13 Kitani Denki Kk 太陽光発電モジュール配線用端子ボックス
JP2005150277A (ja) * 2003-11-13 2005-06-09 Yukita Electric Wire Co Ltd 太陽電池モジュール用端子ボックス
JP2006269803A (ja) * 2005-03-24 2006-10-05 Mitsubishi Electric Corp 太陽電池モジュール用端子ボックス装置
US20060289053A1 (en) * 2005-06-03 2006-12-28 Guenther Spelsberg Gmbh & Co. Kg Electrical junction box for a solar cell module
KR100884815B1 (ko) * 2008-11-18 2009-02-20 주식회사 엘스콤 태양전지모듈용 접속단자함

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4460232A (en) * 1982-05-24 1984-07-17 Amp, Incorporated Junction box for solar modules
JP3624720B2 (ja) * 1998-10-29 2005-03-02 住友電装株式会社 太陽電池モジュール用端子ボックス装置
DE20311183U1 (de) * 2003-07-21 2004-07-08 Tyco Electronics Amp Gmbh Anschlussdose für ein Solarpaneel und Solarpaneel
DE20311184U1 (de) * 2003-07-21 2004-02-19 Tyco Electronics Amp Gmbh Anschlussdose zum Anschließen an ein Solarpaneel
JP3744531B1 (ja) * 2004-05-07 2006-02-15 住友電装株式会社 太陽電池モジュール用端子ボックス及び整流素子ユニット
JP3767618B2 (ja) * 2004-08-19 2006-04-19 住友電装株式会社 太陽電池モジュール用端子ボックス
JP3852710B1 (ja) * 2005-11-01 2006-12-06 住友電装株式会社 太陽電池モジュール用端子ボックス
US20080115911A1 (en) * 2006-11-22 2008-05-22 Tyco Electronics Corporation Heat dissipation system for solarlok photovoltaic interconnection system
US8473250B2 (en) * 2006-12-06 2013-06-25 Solaredge, Ltd. Monitoring of distributed power harvesting systems using DC power sources
US20080253092A1 (en) * 2007-04-13 2008-10-16 Tyco Electronics Corporation Heat Dissipation System for Photovoltaic Interconnection System
CN201038678Y (zh) * 2007-05-08 2008-03-19 康联精密机电(深圳)有限公司 一种太阳能接线盒
CN201051541Y (zh) * 2007-05-08 2008-04-23 康联精密机电(深圳)有限公司 一种接线装置
US8294451B2 (en) * 2007-12-03 2012-10-23 Texas Instruments Incorporated Smart sensors for solar panels
DE102008010026A1 (de) * 2008-02-20 2009-08-27 Kostal Industrie Elektrik Gmbh Elektrische Anschluss- und Verbindungsdose für ein Solarzellenmodul
DE102008022050B3 (de) * 2008-05-03 2009-02-26 Lumberg Connect Gmbh Anschlussdose für ein Solarmodul
US7591690B1 (en) * 2008-08-07 2009-09-22 Hong Tai Electric Industrial Co., Ltd. Connecting device for solar panel
EP2332399B1 (en) * 2008-08-29 2012-01-04 Heyco, Inc. Junction box for photovoltaic systems
US8083540B1 (en) * 2010-06-04 2011-12-27 Tyco Electronics Corporation Photovoltaic module connector assemblies having cable strain relief

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002359389A (ja) * 2001-05-31 2002-12-13 Kitani Denki Kk 太陽光発電モジュール配線用端子ボックス
JP2005150277A (ja) * 2003-11-13 2005-06-09 Yukita Electric Wire Co Ltd 太陽電池モジュール用端子ボックス
JP2006269803A (ja) * 2005-03-24 2006-10-05 Mitsubishi Electric Corp 太陽電池モジュール用端子ボックス装置
US20060289053A1 (en) * 2005-06-03 2006-12-28 Guenther Spelsberg Gmbh & Co. Kg Electrical junction box for a solar cell module
KR100884815B1 (ko) * 2008-11-18 2009-02-20 주식회사 엘스콤 태양전지모듈용 접속단자함

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102412536A (zh) * 2010-09-17 2012-04-11 台达电子工业股份有限公司 接线盒及其导线连接装置
CN102231396A (zh) * 2011-05-11 2011-11-02 浙江鑫辉光伏科技有限公司 光伏接线盒
CN102231396B (zh) * 2011-05-11 2012-11-21 浙江鑫辉光伏科技有限公司 光伏接线盒
CN107394717A (zh) * 2017-08-09 2017-11-24 安徽红桥金属制造有限公司 一种太阳能光伏用接线盒
CN111525888A (zh) * 2020-07-02 2020-08-11 江苏泽润新材料有限公司 光伏组件接线盒的安装方法
DE102021210414A1 (de) 2021-09-20 2023-03-23 Volkswagen Aktiengesellschaft Verfahren und System zur Regulierung eines Klimatisierungssystems eines Kraftfahrzeugs

Also Published As

Publication number Publication date
US20110058337A1 (en) 2011-03-10
WO2010123325A3 (ko) 2011-02-03
KR20100117541A (ko) 2010-11-03
US8248804B2 (en) 2012-08-21
KR101024619B1 (ko) 2011-03-25

Similar Documents

Publication Publication Date Title
WO2010123325A2 (ko) 태양 전지 모듈용 스마트 정션박스
WO2017082528A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩
KR20120042559A (ko) 태양 전지 모듈용 정션박스
WO2015152639A1 (ko) 배터리 모듈 어레이
WO2018105981A1 (en) Removable battery component carrier, battery system including removable battery component carriers and vehicle including the battery system
WO2010002139A9 (ko) 열 교환기를 가지고 있는 전지셀 어셈블리를 포함하는 전지모듈
WO2012023732A2 (ko) 콤팩트한 구조의 전지팩
WO2017014470A1 (ko) 배터리 모듈 어셈블리 및 이를 포함하는 배터리 팩
WO2012148160A2 (ko) 배터리팩 수납장치 및 이를 이용한 전력 저장용 배터리팩의 냉각 장치
WO2015057022A1 (ko) 배터리 팩
WO2015005612A1 (ko) 전지 어셈블리
WO2010002142A9 (ko) 정렬-결합 요소들을 가지고 있는 전지셀 어셈블리들을 포함하는 전지모듈
WO2021029549A1 (ko) 절연 및 방열 성능이 우수한 버스바 및 이를 구비한 배터리 모듈
WO2017094983A1 (ko) 배터리 팩 및 이러한 배터리 팩을 포함하는 자동차
WO2016068551A1 (ko) 단위 전지 팩
WO2018105957A1 (ko) 착탈식 전지 컴포넌트 캐리어, 착탈식 전지 컴포넌트 캐리어를 포함하는 전지 시스템 및 전지 시스템을 포함한 자동차
US10972046B2 (en) Circuits and methods for controlling current in a parallel-connected array
WO2011002261A2 (ko) 태양광 교류발전장치
WO2019078456A1 (ko) 누설 냉매 유입 방지 기능을 갖는 배터리 팩
WO2013129844A1 (ko) 안전성이 향상된 전지셀 어셈블리 및 이를 포함하는 전지모듈
WO2018016818A1 (ko) 배터리 모듈
WO2021025473A1 (ko) 상부 냉각 방식 배터리 팩
WO2012096548A2 (en) Solar cell module
CN110829186A (zh) 一种轨道式末端供配电母线单元
WO2022065650A1 (ko) 전지 모듈, 전지팩 및 이를 포함하는 자동차

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 12921156

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10767339

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10767339

Country of ref document: EP

Kind code of ref document: A2