WO2010122799A1 - 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子 - Google Patents

芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
WO2010122799A1
WO2010122799A1 PCT/JP2010/002918 JP2010002918W WO2010122799A1 WO 2010122799 A1 WO2010122799 A1 WO 2010122799A1 JP 2010002918 W JP2010002918 W JP 2010002918W WO 2010122799 A1 WO2010122799 A1 WO 2010122799A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
unsubstituted
aromatic amine
aromatic
Prior art date
Application number
PCT/JP2010/002918
Other languages
English (en)
French (fr)
Inventor
水木由美子
舟橋正和
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to JP2011510227A priority Critical patent/JPWO2010122799A1/ja
Priority to CN201080017704XA priority patent/CN102414164A/zh
Priority to EP10766860A priority patent/EP2423179A4/en
Priority to US13/266,000 priority patent/US8932735B2/en
Publication of WO2010122799A1 publication Critical patent/WO2010122799A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/91Dibenzofurans; Hydrogenated dibenzofurans
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/82Purification; Separation; Stabilisation; Use of additives
    • C07C209/86Separation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/54Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to two or three six-membered aromatic rings
    • C07C211/56Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to two or three six-membered aromatic rings the carbon skeleton being further substituted by halogen atoms or by nitro or nitroso groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/57Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton
    • C07C211/58Naphthylamines; N-substituted derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/57Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton
    • C07C211/61Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton with at least one of the condensed ring systems formed by three or more rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/49Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C255/58Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton containing cyano groups and singly-bound nitrogen atoms, not being further bound to other hetero atoms, bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/56Ring systems containing three or more rings
    • C07D209/80[b, c]- or [b, d]-condensed
    • C07D209/82Carbazoles; Hydrogenated carbazoles
    • C07D209/86Carbazoles; Hydrogenated carbazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D235/00Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings
    • C07D235/02Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, condensed with other rings condensed with carbocyclic rings or ring systems
    • C07D235/04Benzimidazoles; Hydrogenated benzimidazoles
    • C07D235/06Benzimidazoles; Hydrogenated benzimidazoles with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached in position 2
    • C07D235/08Radicals containing only hydrogen and carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D239/00Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
    • C07D239/02Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
    • C07D239/24Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
    • C07D239/28Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
    • C07D239/32One oxygen, sulfur or nitrogen atom
    • C07D239/42One nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/06Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring carbon atoms
    • C07D333/14Radicals substituted by singly bound hetero atoms other than halogen
    • C07D333/20Radicals substituted by singly bound hetero atoms other than halogen by nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/76Dibenzothiophenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/10Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/0805Compounds with Si-C or Si-Si linkages comprising only Si, C or H atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/081Compounds with Si-C or Si-Si linkages comprising at least one atom selected from the elements N, O, halogen, S, Se or Te
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/06Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members
    • C07C2603/10Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings
    • C07C2603/12Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings only one five-membered ring
    • C07C2603/18Fluorenes; Hydrogenated fluorenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/22Ortho- or ortho- and peri-condensed systems containing three rings containing only six-membered rings
    • C07C2603/26Phenanthrenes; Hydrogenated phenanthrenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/40Ortho- or ortho- and peri-condensed systems containing four condensed rings
    • C07C2603/42Ortho- or ortho- and peri-condensed systems containing four condensed rings containing only six-membered rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/93Spiro compounds
    • C07C2603/94Spiro compounds containing "free" spiro atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1029Heterocyclic compounds characterised by ligands containing one nitrogen atom as the heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1088Heterocyclic compounds characterised by ligands containing oxygen as the only heteroatom
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1092Heterocyclic compounds characterised by ligands containing sulfur as the only heteroatom
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/917Electroluminescent

Definitions

  • the present invention relates to an aromatic amine derivative and an organic electroluminescence device using the same. More specifically, the present invention relates to an aromatic amine derivative capable of realizing organic electroluminescence having a high blue purity and high luminous efficiency and a long lifetime, and organic electroluminescence having a high blue purity and high luminous efficiency and a long lifetime.
  • Organic electroluminescence (EL) devices using organic substances are promising for use as solid-state, inexpensive, large-area full-color display devices, and many developments have been made.
  • an EL element is composed of a light emitting layer and a pair of counter electrodes sandwiching the layer.
  • light emission when an electric field is applied between both electrodes, electrons are injected from the cathode side and holes are injected from the anode side.
  • this is a phenomenon in which electrons recombine with holes in the light emitting layer to generate an excited state, and energy is emitted as light when the excited state returns to the ground state.
  • Patent Documents 1 to 4 Some organic EL elements and materials for organic EL elements have been proposed in order to achieve high luminous efficiency and long life (Patent Documents 1 to 4), but further improvements have been demanded.
  • the objective of this invention is providing the aromatic amine derivative which can improve the blue purity, luminous efficiency, and lifetime of an organic EL element.
  • An object of the present invention is to provide an organic EL device having high blue purity, high luminous efficiency, and long life.
  • An aromatic amine derivative represented by the following formula (1) (In the formula, A 1 represents a substituted or unsubstituted alkyl group, a substituted or unsubstituted aromatic group, a substituted or unsubstituted heterocyclic group, or an organic group represented by the following formula (2).
  • X 1 , X 2 and X 3 are each a substituted or unsubstituted aromatic group, or a substituted or unsubstituted heterocyclic group, X 1 and X 2 are linking groups different from each other.
  • B 1 , B 2 and B 3 are each a substituted or unsubstituted aromatic group or a substituted or unsubstituted heterocyclic group.
  • One of X 1 and X 2 is a substituted or unsubstituted condensed aromatic ring group having 10 to 30 ring carbon atoms or a condensed heterocyclic group having 10 to 30 ring atoms; 3.
  • R 1 and R 2 are each an alkyl group, an aromatic group, a fluorine atom, an alkoxy group, or a substituted or unsubstituted silyl group, R 1 and R 2 may be bonded to each other to form a saturated or unsaturated cyclic structure. ) 5).
  • the aromatic amine derivative according to any one of 1 to 3 represented by the following formula (5): (In the formula, X 2 , X 3 , B 1 , B 2 and B 3 are the same as in formula (1).) 6). 6. The aromatic amine derivative according to any one of 1 to 5, wherein X 2 and X 3 are both phenylene groups. 7). 6. The aromatic amine derivative according to any one of 1 to 5, wherein X 3 is a fluorenylene group. 8). An aromatic amine derivative according to any one of B 1, B 2 and 1-7 either aromatic or heterocyclic group B 3 is having a substituted or unsubstituted silyl group as a substituent. 9. 2.
  • 12 In the organic electroluminescence device in which at least one organic thin film layer including at least a light emitting layer is sandwiched between a cathode and an anode, at least one layer of the organic thin film layer contains the aromatic amine derivative according to any one of 1 to 9 An organic electroluminescence element to be contained. 13.
  • a 1 is a substituted or unsubstituted aromatic group or a substituted or unsubstituted heterocyclic group.
  • Ar 11 and Ar 12 are each independently a substituted or unsubstituted monocyclic group having 5 to 50 ring atoms or a condensed or unsubstituted ring atom having 8 to 50 ring atoms.
  • a cyclic group, R 1 to R 8 are each independently a hydrogen atom, a substituted or unsubstituted monocyclic group having 5 to 50 ring atoms, a substituted or unsubstituted condensed ring group having 8 to 50 ring atoms, substituted or unsubstituted, An unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, a substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, a substituted or unsubstituted carbon number A group selected from a 7 to 50 aralkyl group, a substituted or unsubstituted aryloxy group having 6 to 50 ring carbon atoms, a substituted or unsubstituted silyl group, a halogen atom, and a cyano group.
  • the aromatic amine derivative which can improve the blue purity, luminous efficiency, and lifetime of an organic EL element can be provided. According to the present invention, it is possible to provide an organic EL element having high blue purity, high luminous efficiency, and long life.
  • the aromatic amine derivative of the present invention is a compound represented by the following formula (1).
  • a 1 represents a substituted or unsubstituted alkyl group, a substituted or unsubstituted aromatic group, a substituted or unsubstituted heterocyclic group, or an organic group represented by the following formula (2).
  • a 1 is a substituted or unsubstituted aromatic group or a substituted or unsubstituted heterocyclic group.
  • X 1, X 2 and X 3 are each a substituted or unsubstituted aromatic group, or a substituted or unsubstituted heterocyclic group.
  • X 1 and X 2 are linking groups different from each other.
  • B 1 , B 2 and B 3 are each a substituted or unsubstituted aromatic group or a substituted or unsubstituted heterocyclic group.
  • X 1 and X 2 are different linking groups.
  • the aromatic amine derivative of the present invention it is presumed that the skeleton from the nitrogen atom to two double bond sites is mainly involved in light emission. By making the structure of the emission center asymmetric, an effect of preventing stacking between molecules can be obtained, and it is speculated that the effect of preventing stacking around the emission center structure is particularly great. Due to this effect, the aromatic amine derivative of the present invention can improve the blue purity, luminous efficiency and lifetime of the organic EL device.
  • Examples of the substituted or unsubstituted alkyl group of A 1, having 1 to 10 carbon atoms (preferably 1 to 8 carbon atoms, more preferably 1 to 6 carbon atoms) or a substituted or unsubstituted alkyl group specific examples Substituted or unsubstituted methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, s-butyl group, isobutyl group, t-butyl group, n-pentyl group, n-hexyl group, n-heptyl group N-octyl group, fluoromethyl group, difluoromethyl group, trifluoromethyl group, fluoroethyl group, trifluoromethylmethyl group, aminomethyl group, cyanomethyl group, cyanoethyl group, nitromethyl group, nitroethyl group and the like.
  • the substituted or unsubstituted aromatic group of A 1 and B 1 to B 3 has 6 to 30 ring carbon atoms (preferably 6 to 20 ring carbon atoms, more preferably 6 to 12 ring carbon atoms).
  • Substituted or unsubstituted aromatic group specific examples include substituted or unsubstituted phenyl group, naphthyl group, anthryl group, phenanthryl group, naphthacenyl group, anthracenyl group, chrycenyl group, fluorenyl group, triphenylenyl group, pyrenyl group, Biphenyl group, p-terphenyl group, m-terphenyl group, o-tolyl group, m-tolyl group, p-tolyl group, pt-butylphenyl group, p- (phenylpropyl) phenyl group, methylnaphthyl group , Methylanthryl group
  • an aromatic group obtained by combining a phenyl group, a phenylene group, a naphthyl group, and a naphthalene group for example, a phenylnaphthyl group, a naphthylphenyl group, a naphthylnaphthyl group, a naphthylnaphthylnaphthyl group, a phenylphenylnaphthyl group, a naphthylnaphthylphenyl group, a naphthyl group)
  • a phenylnaphthyl group, a naphthylphenylphenyl group, a phenylnaphthylnaphthyl group, a phenylnaphthylphenyl group, etc. A phenylnaphthyl group, a naphthylphenyl
  • a 1 and B 1 to B 3 are preferably aromatic groups such as a substituted or unsubstituted phenyl group, biphenyl group, terphenyl group, naphthyl group, phenanthryl group, anthracenyl group, chrysenyl group, and fluorenyl group.
  • a 1 is a substituted or unsubstituted phenyl group, biphenyl group, naphthyl group, or fluorenyl group.
  • the substituted or unsubstituted heterocyclic group of A 1 and B 1 to B 3 has 5 to 30 ring forming atoms (preferably 5 to 20 ring forming atoms, more preferably 5 to 12 ring forming atoms).
  • Substituted or unsubstituted heterocyclic group and specific examples include substituted or unsubstituted pyrrolyl group, pyrazinyl group, pyridinyl group, indolyl group, isoindolyl group, furyl group, benzofuranyl group, dibenzofuranyl group, isobenzofuranyl group Group, quinolyl group, isoquinolyl group, quinoxalinyl group, carbazolyl group, phenanthridinyl group, acridinyl group, phenanthrolinyl group, phenazinyl group, phenothiazinyl group, phenoxazinyl group, oxazolyl group, ox
  • a 1 is a substituted or unsubstituted dibensofuranyl group.
  • Examples of the substituted or unsubstituted aromatic group of X 1 to X 3 include divalent groups of the substituted or unsubstituted aromatic groups of A 1 and B 1 to B 3 .
  • Examples of the substituted or unsubstituted heterocyclic group represented by X 1 to X 3 include divalent groups of the substituted or unsubstituted heterocyclic group represented by A 1 and B 1 to B 3 .
  • Preferred are a substituted or unsubstituted dibenzofuranylene group, a pyridinylene group, and a carbazolylene group.
  • Substituents possessed by a substituted or unsubstituted aromatic group of A 1 , X 1 to X 3 and B 1 to B 3, and a substituted or unsubstituted heterocyclic group of X 1 to X 3 and B 1 to B 3 ( Hereinafter, it may be simply referred to as a substituent that an aromatic group or heterocyclic group has), and can be appropriately selected by those skilled in the art.
  • an alkyl group, an aromatic group, a fluorine atom examples thereof include an alkoxy group, a substituted or unsubstituted silyl group, a cyano group, and a cycloalkyl group.
  • Alkyl groups and aromatic groups substituents of the aromatic group or heterocyclic group are the same alkyl groups and aromatic groups A 1.
  • the alkoxy group as the substituent of the aromatic group or heterocyclic group is a group represented by, for example, —OY, and Y is selected from the alkyl group of A 1 .
  • the alkoxy group is, for example, a methoxy group or an ethoxy group.
  • Examples of the substituted or unsubstituted silyl group of the substituent of the aromatic group or heterocyclic group include a trimethylsilyl group, a triethylsilyl group, a t-butyldimethylsilyl group, a vinyldimethylsilyl group, a propyldimethylsilyl group, and a triphenylsilyl group. Group, triisopropylsilyl group and the like.
  • the substituent cycloalkyl group of the aromatic group or heterocyclic group is a cycloalkyl having 3 to 10 ring carbon atoms (preferably 3 to 8 ring carbon atoms, more preferably 3 to 6 carbon atoms).
  • Group for example, cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group and the like.
  • the substituent that the aromatic group or heterocyclic group has is preferably an alkyl group, an aromatic group, or a substituted or unsubstituted silyl group, and particularly preferably a substituted or unsubstituted silyl group (for example, an alkylsilyl group).
  • the aromatic amine derivative of the present invention is preferably an aromatic amine derivative represented by the following formula (3).
  • X 1 , X 2 , X 3 , B 1 , B 2 and B 3 are the same as in formula (1).
  • one of X 1 and X 2 is a substituted or unsubstituted condensed aromatic ring having 10 to 30 ring carbon atoms.
  • a condensed heterocyclic group having 10 to 30 ring atoms and the other is a substituted or unsubstituted non-condensed aromatic ring group having 6 to 30 ring carbon atoms, or a non-fused ring group having 6 to 30 ring atoms. It is a fused heterocyclic group.
  • the substituted or unsubstituted condensed aromatic ring group having 10 to 30 ring carbon atoms or the condensed heterocyclic group having 10 to 30 ring atoms is preferably a substituted or unsubstituted ring group having 10 to 20 ring carbon atoms.
  • the substituted or unsubstituted non-condensed aromatic ring group having 6 to 30 ring carbon atoms or the non-fused heterocyclic group having 6 to 30 ring atoms is preferably a substituted or unsubstituted ring group having 6 to 20 ring carbon atoms.
  • Non-condensed heterocyclic group having 6 to 12 atoms specifically, substituted or unsubstituted phenylene group, biphenylene group, terphenylene group, pyridylene group, etc., particularly preferably substituted or unsubstituted phenylene group Or it is a biphenylene group.
  • the aromatic amine derivative of the present invention represented by the above formulas (1) and (3) is preferably an aromatic amine derivative represented by the following formula (4) or (5).
  • the aromatic amine derivative represented by the formula (4) is an aromatic amine derivative represented by the formula (3) in which X 1 is a substituted fluorenylene group.
  • X 2, X 3, B 1, B 2 and B 3 are the same as equation (1).
  • R 1 and R 2 are each an alkyl group, an aromatic group, a fluorine atom, an alkoxy group, or a substituted or unsubstituted silyl group, R 1 and R 2 may be bonded to each other to form a saturated or unsaturated cyclic structure.
  • alkyl group, aromatic group, alkoxy group and substituted or unsubstituted silyl group of R 1 and R 2 in Formula (4) are the same as the substituents that the above-described aromatic group or heterocyclic group has.
  • the aromatic amine derivative represented by the formula (5) is an aromatic amine derivative represented by the formula (3) in which X 1 is an unsubstituted naphthylene group. (In the formula, X 2 , X 3 , B 1 , B 2 and B 3 are the same as in formula (1).)
  • X 2 and X 3 are preferably both phenylene groups.
  • X 3 is preferably a fluorenylene group.
  • any of the aromatic group or heterocyclic group of B 1 , B 2 and B 3 is substituted or unsubstituted as a substituent.
  • the method for producing the aromatic amine derivative of the present invention is not particularly limited, and may be produced by a known method.
  • tetrahedron 40 (1984) 1435 to 1456 is described for an amine derivative and an aromatic halogenated compound.
  • the aromatic amine derivative of the present invention is preferably used as a material for an organic EL device, more preferably used as a light emitting material or a hole transport material for an organic EL device, and particularly preferably used as a doping material.
  • the organic EL device of the present invention is, for example, an organic electroluminescence device in which one or more organic compound layers including at least a light emitting layer are sandwiched between a pair of electrodes, and at least one of the organic compound layers is the present invention. And at least one aromatic amine derivative.
  • the light emitting layer preferably contains at least one aromatic amine derivative of the present invention, and the light emitting layer contains 0.01 to 20% by weight of the aromatic amine derivative of the present invention. More preferably, it is contained in an amount of 0.5 to 20% by weight, more preferably 0.5 to 15% by weight, and most preferably 0.5 to 10% by weight.
  • the hole transport layer preferably contains at least one aromatic amine derivative of the present invention, and the hole transport layer contains 50 to 100% by weight of the aromatic amine derivative of the present invention. Preferably, it is contained in an amount of 80 to 100% by weight.
  • the light emitting layer contains at least one aromatic amine derivative and at least one anthracene derivative represented by the following formula (2A). It is preferable in terms of providing an organic EL element that has high luminous efficiency and is difficult to deteriorate even when used for a long time and has a long life.
  • anthracene derivative represented by the formula (2A) will be described.
  • the anthracene derivative represented by the formula (2A) is the following compound.
  • Ar 11 and Ar 12 are each independently a substituted or unsubstituted monocyclic group having 5 to 50 ring atoms or a condensed or unsubstituted ring atom having 8 to 50 ring atoms.
  • a cyclic group, R 1 to R 8 are each independently a hydrogen atom, a substituted or unsubstituted monocyclic group having 5 to 50 ring atoms, a substituted or unsubstituted condensed ring group having 8 to 50 ring atoms, a monocycle A group composed of a combination of a group and a condensed ring group, a substituted or unsubstituted alkyl group having 1 to 50 carbon atoms, a substituted or unsubstituted cycloalkyl group having 3 to 50 ring carbon atoms, a substituted or unsubstituted group An alkoxy group having 1 to 50 carbon atoms, a substituted or unsubstituted aralkyl group having 7 to 50 carbon atoms, a substituted or unsubstituted aryloxy group having 6 to 50 ring carbon atoms, a substituted or unsubstituted silyl group, a halogen atom ,
  • the monocyclic group is a group composed only of a ring structure having no condensed structure.
  • monocyclic groups having 5 to 50 ring atoms include phenyl, biphenyl, terphenyl, and quarter
  • An aromatic group such as a phenyl group and a heterocyclic group such as a pyridyl group, pyrazyl group, pyrimidyl group, triazinyl group, furyl group, and thienyl group are preferable.
  • a phenyl group, a biphenyl group, and a terphenyl group are preferable.
  • the condensed ring group is a group in which two or more ring structures are condensed.
  • Specific examples of the condensed ring group having 8 to 50 ring atoms include naphthyl group, phenanthryl group, anthryl group, chrysenyl group.
  • An aromatic ring group, and a condensed heterocyclic group such as a benzofuranyl group, a benzothiophenyl group, an indolyl group, a dibenzofuranyl group, a dibenzothiophenyl group, a carbazolyl group, a quinolyl group, and a phenanthrolinyl group are preferable.
  • a naphthyl group, a phenanthryl group, an anthryl group, a fluorenyl group, a fluoranthenyl group, a benzoanthryl group, a dibenzothiophenyl group, a dibenzofuranyl group, and a carbazolyl group are preferable.
  • alkyl group in formula (2A) are the same as the specific examples of the alkyl group of A 1 described above.
  • Specific examples of the cycloalkyl group, the alkoxy group, and the silyl group in the formula (2A) are the same as the specific examples of the substituent that the aromatic group or heterocyclic group of A 1 has.
  • Specific examples of each group of the aralkyl group, aryloxy group and halogen atom in the formula (2A) will be described later.
  • substituents of “substituted or unsubstituted” in Ar 11 , Ar 12 , R 1 to R 8 monocyclic groups, condensed ring groups, alkyl groups, cycloalkyl groups, silyl groups, alkoxy groups, cyano groups, fluorine And particularly preferably a monocyclic group or a condensed ring group, and preferable specific substituents are the same as those in the above-mentioned groups of the formula (2A) and the aromatic group or heterocyclic group of A 1. It is.
  • the anthracene derivative represented by the formula (2A) is preferably any of the following anthracene derivatives (A), (B), and (C), and is selected depending on the configuration of the organic EL element to be applied and the required characteristics. .
  • Ar 11 and Ar 12 in the formula (2A) are each independently a substituted or unsubstituted condensed ring group having 8 to 50 ring atoms.
  • the anthracene derivative can be classified into a case where Ar 11 and Ar 12 are the same substituted or unsubstituted condensed ring group and a case where they are different substituted or unsubstituted condensed ring groups.
  • Anthracene derivatives which are substituted or unsubstituted condensed ring groups in which Ar 11 and Ar 12 in formula (2A) are different (including differences in substitution position) are particularly preferred, and preferred specific examples of the condensed ring are as described above.
  • a naphthyl group, a phenanthryl group, a benzanthryl group, a fluorenyl group, and a dibenzofuranyl group are preferable.
  • the anthracene derivative is a monocyclic group one is substituted or unsubstituted ring atoms 5-50 of Ar 11 and Ar 12 in the formula (2A), the other is a substituted or unsubstituted ring atoms 8 - 50 condensed ring groups.
  • Ar 12 is a naphthyl group, phenanthryl group, benzoanthryl group, fluorenyl group, dibenzofuranyl group, and Ar 11 is unsubstituted or a phenyl group substituted with a monocyclic group or a condensed ring group. . Specific groups of preferred monocyclic groups and condensed ring groups are as described above.
  • Ar 12 is a condensed ring group
  • Ar 11 is an unsubstituted phenyl group.
  • a phenanthryl group, a fluorenyl group, a dibenzofuranyl group, and a benzoanthryl group are particularly preferable.
  • Ar 11 and Ar 12 in formula (2A) are each independently a substituted or unsubstituted monocyclic group having 5 to 50 ring atoms.
  • both Ar 11 and Ar 12 are substituted or unsubstituted phenyl groups.
  • a Ar 11 is an unsubstituted phenyl group, and when Ar 12 is a phenyl group having a single ring group, a condensed ring group as a substituent, Ar 11, Ar 12 are each independently a single ring groups In some cases, it may be a phenyl group having a condensed ring group as a substituent.
  • a monocyclic group as a substituent is a phenyl group, a biphenyl group, and a condensed ring group is a naphthyl group, a phenanthryl group, a fluorenyl group, a dibenzofuranyl group, or a benzoanthryl group.
  • a substituted or unsubstituted aralkyl group having 7 to 50 carbon atoms in the formula (2A) (the aryl moiety has 6 to 49 carbon atoms (preferably 6 to 30, more preferably 6 to 20, particularly preferably 6 to 12))
  • the alkyl moiety has 1 to 44 carbon atoms (preferably 1 to 30, more preferably 1 to 20, more preferably 1 to 10, particularly preferably 1 to 6)) as benzyl group, phenylethyl group, 4- Examples include (2-phenylpropan-2-yl) phenyl group.
  • the aryloxy group having 6 to 50 ring carbon atoms in the formula (2A) is represented by —OY, and Y is selected from a monocyclic group or a condensed ring group in the formula (2A).
  • the aryloxy group is, for example, a phenoxy group.
  • halogen atom in the formula (2A) examples include fluorine, chlorine, bromine and iodine, and fluorine is preferred.
  • anthracene derivative represented by the formula (2A) include the following.
  • organic EL elements having a plurality of organic thin film layers are (anode / hole injection layer / light emitting layer / cathode), (anode / light emitting layer / electron injection layer / cathode), (anode / hole).
  • examples thereof include those laminated in a configuration of injection layer / light emitting layer / electron injection layer / cathode), (anode / hole injection layer / hole transport layer / light emitting layer / electron injection layer / cathode), and the like.
  • the organic EL element can prevent luminance and lifetime from being reduced due to quenching by forming the organic thin film layer into a multi-layer structure.
  • a light emitting material, a doping material, a hole injection material, and an electron injection material can be used in combination.
  • the hole injection layer, the light emitting layer, and the electron injection layer may each be formed of two or more layers. In that case, in the case of a hole injection layer, the layer that injects holes from the electrode is a hole injection layer, and the layer that receives holes from the hole injection layer and transports holes to the light emitting layer is a hole transport layer. Call.
  • an electron injection layer a layer that injects electrons from an electrode is referred to as an electron injection layer, and a layer that receives electrons from the electron injection layer and transports electrons to a light emitting layer is referred to as an electron transport layer.
  • an electron injection layer a layer that injects electrons from an electrode
  • an electron transport layer a layer that receives electrons from the electron injection layer and transports electrons to a light emitting layer.
  • Each of these layers is selected and used depending on factors such as the energy level of the material, heat resistance, and adhesion to the organic layer or metal electrode.
  • Examples of the host material or doping material other than the above formula (2A) that can be used in the light emitting layer together with the aromatic amine derivative of the present invention include naphthalene, phenanthrene, rubrene, anthracene, tetracene, pyrene, perylene, chrysene, decacyclene, coronene, Condensed polycyclic aromatic compounds such as tetraphenylcyclopentadiene, pentaphenylcyclopentadiene, fluorene, spirofluorene and their derivatives, organometallic complexes such as tris (8-quinolinolato) aluminum, triarylamine derivatives, styrylamine derivatives, stilbene Derivatives, coumarin derivatives, pyran derivatives, oxazone derivatives, benzothiazole derivatives, benzoxazole derivatives, benzimidazole derivatives, pyrazine derivatives, cinna
  • a hole injection material a compound having the ability to transport holes, the hole injection effect from the anode, the hole injection effect excellent for the light emitting layer or the light emitting material, and the thin film forming ability Is preferred.
  • phthalocyanine derivatives naphthalocyanine derivatives, porphyrin derivatives, benzidine-type triphenylamine, diamine-type triphenylamine, hexacyanohexaazatriphenylene, and derivatives thereof, and polyvinylcarbazole, polysilane, conductive polymers, etc. Examples include, but are not limited to, polymer materials.
  • a more effective hole injection material is a phthalocyanine derivative.
  • phthalocyanine (Pc) derivatives examples include H2Pc, CuPc, CoPc, NiPc, ZnPc, PdPc, FePc, MnPc, ClAlPc, ClGaPc, ClInPc, ClSnPc, Cl2SiPc, (HO) AlPc, (HO) GaPc, VOPc, and OPP Examples include, but are not limited to, phthalocyanine derivatives and naphthalocyanine derivatives such as MoOPc and GaPc-O-GaPc.
  • carriers can be sensitized by adding an electron acceptor such as a TCNQ derivative to the hole injection material.
  • a preferred hole transport material that can be used in the organic EL device of the present invention is an aromatic tertiary amine derivative.
  • the aromatic tertiary amine derivative include N, N′-diphenyl-N, N′-dinaphthyl-1,1′-biphenyl-4,4′-diamine, N, N, N ′, N′-tetra Biphenyl-1,1′-biphenyl-4,4′-diamine or the like, or an oligomer or polymer having an aromatic tertiary amine skeleton is not limited thereto.
  • the electron injecting material a compound having an ability to transport electrons, an electron injecting effect from the cathode, an excellent electron injecting effect for the light emitting layer or the light emitting material, and an excellent thin film forming ability is preferable.
  • more effective electron injection materials are metal complex compounds and nitrogen-containing heterocyclic derivatives.
  • the metal complex compound include 8-hydroxyquinolinate lithium, bis (8-hydroxyquinolinato) zinc, tris (8-hydroxyquinolinato) aluminum, tris (8-hydroxyquinolinato) gallium, and bis.
  • (10-Hydroxybenzo [h] quinolinato) beryllium, bis (10-hydroxybenzo [h] quinolinato) zinc, and the like are exemplified, but not limited thereto.
  • these electron injection materials further contain a dopant, and more preferably, a dopant typified by an alkali metal is doped in the vicinity of the cathode interface of the second organic layer in order to facilitate the reception of electrons from the cathode.
  • the dopant include a donor metal, a donor metal compound, and a donor metal complex. These reducing dopants may be used singly or in combination of two or more.
  • the organic EL device of the present invention in the light emitting layer, in addition to at least one selected from the aromatic amine derivatives represented by the formula (1), a light emitting material, a doping material, a hole injecting material, a hole transporting material In addition, at least one of the electron injection materials may be contained in the same layer.
  • a protective layer is provided on the surface of the device, or the entire device is protected by silicon oil, resin, etc. Is also possible.
  • a material having a work function larger than 4 eV is suitable, and carbon, aluminum, vanadium, iron, cobalt, nickel, tungsten, silver, gold, platinum Palladium, etc. and their alloys, metal oxides such as tin oxide and indium oxide used for ITO substrates and NESA substrates, and organic conductive resins such as polythiophene and polypyrrole are used.
  • Suitable conductive materials for the cathode are those having a work function smaller than 4 eV, such as magnesium, calcium, tin, lead, titanium, yttrium, lithium, ruthenium, manganese, aluminum, lithium fluoride, and the like.
  • alloys include magnesium / silver, magnesium / indium, lithium / aluminum, and the like, but are not limited thereto.
  • the ratio of the alloy is controlled by the temperature of the vapor deposition source, the atmosphere, the degree of vacuum, etc., and is selected to an appropriate ratio. If necessary, the anode and the cathode may be formed of two or more layers.
  • the organic EL device of the present invention in order to emit light efficiently, it is desirable that at least one surface be sufficiently transparent in the light emission wavelength region of the device.
  • the substrate is also preferably transparent.
  • the transparent electrode is set using the above-described conductive material so that predetermined translucency is ensured by a method such as vapor deposition or sputtering.
  • the electrode on the light emitting surface preferably has a light transmittance of 10% or more.
  • the substrate is not limited as long as it has mechanical and thermal strength and has transparency, and includes a glass substrate and a transparent resin film.
  • Each layer of the organic EL device of the present invention can be formed by applying any one of dry deposition methods such as vacuum deposition, sputtering, plasma and ion plating, and wet deposition methods such as spin coating, dipping and flow coating. Can do.
  • the film thickness is not particularly limited, but must be set to an appropriate film thickness. If the film thickness is too thick, a large applied voltage is required to obtain a constant light output, resulting in poor efficiency. If the film thickness is too thin, pinholes and the like are generated, and sufficient light emission luminance cannot be obtained even when an electric field is applied.
  • the normal film thickness is suitably in the range of 5 nm to 10 ⁇ m, but more preferably in the range of 10 nm to 0.2 ⁇ m.
  • the material for forming each layer is dissolved or dispersed in an appropriate solvent such as ethanol, chloroform, tetrahydrofuran, dioxane or the like to form a thin film, and any solvent may be used.
  • an organic EL material-containing solution containing the aromatic amine derivative of the present invention and a solvent can be used as the organic EL material.
  • the organic EL material includes a host material and a dopant material, the dopant material is the aromatic amine derivative of the present invention, and the host material is at least one selected from compounds represented by the formula (2A) Is preferable.
  • an appropriate resin or additive may be used for improving the film formability and preventing pinholes in the film.
  • the organic EL device of the present invention can be used for a flat light emitter such as a flat panel display of a wall-mounted television, a copying machine, a printer, a light source such as a backlight of a liquid crystal display or instruments, a display board, a marker lamp, and the like.
  • the compound of this invention can be used not only in an organic EL element but in fields, such as an electrophotographic photoreceptor, a photoelectric conversion element, a solar cell, an image sensor.
  • Synthesis example 1 Compound D-1 was synthesized according to the following steps.
  • the obtained yellowish white solid was identified as Compound D-1 by FD-MS analysis.
  • the ultraviolet absorption maximum wavelength ⁇ max and the fluorescence emission maximum wavelength in a toluene solution of compound D-1 are shown below.
  • Synthesis example 2 Compound D-2 was synthesized according to the following steps.
  • Example 1 A transparent electrode made of indium tin oxide having a thickness of 120 nm was provided on a glass substrate having a size of 25 mm ⁇ 75 mm ⁇ 1.1 mm. This transparent electrode serves as an anode. Subsequently, the glass substrate was cleaned by irradiating ultraviolet rays and ozone, and then the substrate was placed in a vacuum deposition apparatus. First, N ′, N ′′ -bis [4- (diphenylamino) phenyl] -N ′, N ′′ -diphenylbiphenyl-4,4′-diamine was deposited to a thickness of 60 nm as a hole injection layer.
  • N, N, N ′, N′-tetrakis (4-biphenyl) -4,4′-benzidine was vapor deposited to a thickness of 20 nm thereon as a hole transport layer.
  • an anthracene derivative (EM2) as a host material and an aromatic amine derivative (D-1) as a doping material were co-evaporated at a mass ratio of 40: 2, thereby forming a light-emitting layer having a thickness of 40 nm.
  • tris (8-hydroxyquinolinato) aluminum was deposited to a thickness of 20 nm as an electron injection layer.
  • lithium fluoride was deposited to a thickness of 1 nm, and then aluminum was deposited to a thickness of 150 nm to produce an organic EL device.
  • the aluminum / lithium fluoride serves as a cathode.
  • the organic EL devices fabricated was measured half life at a current density of 10 mA / cm 2 element during driving in the performance (luminous efficiency and chromaticity), and the initial luminance 500 cd / cm 2. The results are shown in Table 1.
  • Example 11 A 25 mm ⁇ 75 mm ⁇ 1.1 mm thick glass substrate with ITO transparent electrode (anode) (manufactured by Geomatic) was ultrasonically cleaned in isopropyl alcohol for 5 minutes, and then UV ozone cleaning was performed for 30 minutes.
  • a glass substrate with a transparent electrode line after washing is mounted on a substrate holder of a vacuum deposition apparatus, and first, a compound A-1 having a film thickness of 50 nm is formed so as to cover the transparent electrode on the surface on which the transparent electrode line is formed. Was deposited. Subsequent to the formation of the A-1 film, A-2 having a film thickness of 45 nm was formed on the A-1 film.
  • the compound EM13 and the compound D-28 of the present invention were formed in a film thickness ratio of 20: 1 with a film thickness of 25 nm to form a blue light emitting layer.
  • ET-1 having a thickness of 25 nm as an electron transporting layer was formed by vapor deposition.
  • LiF was formed to a thickness of 1 nm.
  • metal Al was deposited to a thickness of 150 nm to form a metal cathode to form an organic EL light emitting device.
  • the organic EL device thus obtained was measured for device performance (external quantum yield and chromaticity) during driving at a current density of 10 mA / cm 2 and half life at an initial luminance of 250 cd / cm 2 .
  • the results are shown in Table 4.
  • the organic EL device using the aromatic amine derivative of the present invention can obtain a practically sufficient light emission luminance at a low applied voltage, has a high light emission efficiency, is not easily deteriorated even after long use, and has a long life. For this reason, it is useful as a light source such as a flat light emitter of a wall-mounted television and a backlight of a display.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Furan Compounds (AREA)

Abstract

 下記式(1)で表される芳香族アミン誘導体。(式中、Aは、アルキル基、置換若しくは無置換の芳香族基、置換若しくは無置換の複素環基又は下記式(2)で表される有機基である。X、X及びXは、それぞれ置換若しくは無置換の芳香族基、又は置換若しくは無置換の複素環基であり、X及びXは、互いに異なる連結基である。B、B及びBは、それぞれ置換若しくは無置換の芳香族基、又は置換若しくは無置換の複素環基である。)

Description

芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
 本発明は、芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子に関する。さらに詳しくは、高青純度且つ高発光効率で、長寿命である有機エレクトロルミネッセンスが実現可能な芳香族アミン誘導体、及び高青純度且つ高発光効率で、長寿命である有機エレクトロルミネッセンスに関する。
 有機物質を使用した有機エレクトロルミネッセンス(EL)素子は、固体発光型の安価な大面積フルカラー表示素子としての用途が有望視され、多くの開発が行われている。一般にEL素子は、発光層及び該層をはさんだ一対の対向電極から構成されている。発光は、両電極間に電界が印加されると、陰極側から電子が注入され、陽極側から正孔が注入される。さらに、この電子が発光層において正孔と再結合し、励起状態を生成し、励起状態が基底状態に戻る際にエネルギーを光として放出する現象である。
 従来の有機EL素子は、無機発光ダイオードに比べて駆動電圧が高く、発光輝度や発光効率も低かった。また、特性劣化も著しく実用化には至っていなかった。最近の有機EL素子は徐々に改良されているものの、さらなる高発光効率及び長寿命が要求されていた。
 高発光効率及び長寿命を達成するため、いくつかの有機EL素子及び有機EL素子用材料が提案されているが(特許文献1~4)、さらなる改良が求められていた。
特開平4-184892号公報 国際公開第07/065549号パンフレット 国際公開第07/065547号パンフレット 国際公開第06/000389号パンフレット
 本発明の目的は、有機EL素子の青純度、発光効率及び寿命を向上できる芳香族アミン誘導体を提供することである。
 本発明の目的は、高青純度且つ高発光効率で、長寿命である有機EL素子を提供することである。
 本発明によれば、以下の芳香族アミン誘導体等が提供される。
1.下記式(1)で表される芳香族アミン誘導体。
Figure JPOXMLDOC01-appb-C000001
(式中、Aは、置換若しくは無置換のアルキル基、置換若しくは無置換の芳香族基、置換若しくは無置換の複素環基又は下記式(2)で表される有機基である。
Figure JPOXMLDOC01-appb-C000002
 X、X及びXは、それぞれ置換若しくは無置換の芳香族基、又は置換若しくは無置換の複素環基であり、
 X及びXは、互いに異なる連結基である。
 B、B及びBは、それぞれ置換若しくは無置換の芳香族基、又は置換若しくは無置換の複素環基である。)
2.下記式(3)で表される1に記載の芳香族アミン誘導体。
Figure JPOXMLDOC01-appb-C000003
(式中、X、X、X、B、B及びBは、式(1)と同様である。)
3.X及びXの一方が、置換若しくは無置換の環形成炭素数10~30の縮合芳香族環基、又は環形成原子数10~30の縮合複素環基であり、
 他方が、置換若しくは無置換の環形成炭素数6~30非縮合芳香族環基、又は環形成原子数6~30の非縮合複素環基である1又は2に記載の芳香族アミン誘導体。
4.下記式(4)で表される1~3のいずれかに記載の芳香族アミン誘導体。
Figure JPOXMLDOC01-appb-C000004
(式中、X、X、B、B及びBは、式(1)と同様である。
 R及びRは、それぞれアルキル基、芳香族基、フッ素原子、アルコキシ基又は置換若しくは無置換のシリル基であり、
 R及びRは、互いに結合して飽和又は不飽和の環状構造を形成していてもよい。)
5.下記式(5)で表される1~3のいずれかに記載の芳香族アミン誘導体。
Figure JPOXMLDOC01-appb-C000005
(式中、X、X、B、B及びBは、式(1)と同様である。)
6.X及びXが、共にフェニレン基である1~5のいずれかに記載の芳香族アミン誘導体。
7.Xが、フルオレニレン基である1~5のいずれかに記載の芳香族アミン誘導体。
8.B、B及びBの芳香族基又は複素環基のいずれかが置換基として置換若しくは無置換のシリル基を有する1~7のいずれかに記載の芳香族アミン誘導体。
9.Aが、置換若しくは無置換の芳香族基又は置換若しくは無置換の複素環基である1に記載の芳香族アミン誘導体。
10.1~9のいずれかに記載の芳香族アミン誘導体を用いた有機エレクトロルミネッセンス素子。
11.前記芳香族アミン誘導体を発光材料又は正孔輸送材料として用いた10に記載の有機エレクトロルミネッセンス素子。
12.陰極と陽極の間に少なくとも発光層を含む1以上の有機薄膜層が挟持されている有機エレクトロルミネッセンス素子において、該有機薄膜層の少なくとも一層が、1~9のいずれか記載の芳香族アミン誘導体を含有する有機エレクトロルミネッセンス素子。
13.前記発光層が、前記芳香族アミン誘導体を含有する12記載の有機エレクトロルミネッセンス素子。
14.前記発光層が、前記芳香族アミン誘導体を少なくとも1種と、下記式(2A)で表されるアントラセン誘導体の少なくとも1種とを含有する13記載の有機エレクトロルミネッセンス素子。
Figure JPOXMLDOC01-appb-C000006
(式(2A)中、Ar11及びAr12は、それぞれ独立に、置換若しくは無置換の環形成原子数5~50の単環基、又は置換若しくは無置換の環形成原子数8~50の縮合環基であり、
 R~Rは、それぞれ独立に、水素原子、置換若しくは無置換の環形成原子数5~50の単環基、置換若しくは無置換の環形成原子数8~50の縮合環基、置換若しくは無置換の炭素数1~50のアルキル基、置換若しくは無置換の環形成炭素数3~50のシクロアルキル基、置換若しくは無置換の炭素数1~50のアルコキシ基、置換若しくは無置換の炭素数7~50のアラルキル基、置換若しくは無置換の環形成炭素数6~50のアリールオキシ基、置換若しくは無置換のシリル基、ハロゲン原子、シアノ基から選ばれる基である。)
 本発明によれば、有機EL素子の青純度、発光効率及び寿命を向上できる芳香族アミン誘導体が提供できる。
 本発明によれば、高青純度且つ高発光効率で、長寿命である有機EL素子が提供できる。
 本発明の芳香族アミン誘導体は、下記式(1)で表される化合物である。
Figure JPOXMLDOC01-appb-C000007
 
 式中、Aは、置換若しくは無置換のアルキル基、置換若しくは無置換の芳香族基、置換若しくは無置換の複素環基又は下記式(2)で表される有機基である。好ましくは、Aは置換若しくは無置換の芳香族基又は置換若しくは無置換の複素環基である。
Figure JPOXMLDOC01-appb-C000008
 
 X、X及びXは、それぞれ置換若しくは無置換の芳香族基、又は置換若しくは無置換の複素環基である。
 X及びXは、互いに異なる連結基である。
 B、B及びBは、それぞれ置換若しくは無置換の芳香族基、又は置換若しくは無置換の複素環基である。
 式(1)において、X及びXは、互いに異なる連結基である。
 本発明の芳香族アミン誘導体は、窒素原子から2重結合部位2つまでの骨格が主に発光に関与すると推測される。その発光中心の構造を非対称化することにより、分子間のスタッキングを防止する効果が得られ、特に発光中心構造周辺のスタッキング防止効果は大きいと推測される。当該効果により、本発明の芳香族アミン誘導体は、有機EL素子の青純度、発光効率及び寿命を向上させることができる。
 Aの置換若しくは無置換のアルキル基としては、炭素数1~10(好ましくは炭素数1~8、より好ましくは炭素数1~6)の置換若しくは無置換のアルキル基であり、具体例として、置換若しくは無置換のメチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、s-ブチル基、イソブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、フルオロエチル基、トリフルオロメチルメチル基、アミノメチル基、シアノメチル基、シアノエチル基、ニトロメチル基、ニトロエチル基等が挙げられる。
 A及びB~Bの置換若しくは無置換の芳香族基としては、環形成炭素数6~30(好ましくは環形成炭素数6~20、より好ましくは環形成炭素数6~12)の置換若しくは無置換の芳香族基であり、具体例として、置換若しくは無置換のフェニル基、ナフチル基、アントリル基、フェナントリル基、ナフタセニル基、アントラセニル基、クリセニル基、フルオレニル基、トリフェニレニル基、ピレニル基、ビフェニル基、p-ターフェニル基、m-ターフェニル基、o-トリル基、m-トリル基、p-トリル基、p-t-ブチルフェニル基、p-(フェニルプロピル)フェニル基、メチルナフチル基、メチルアントリル基、メチルビフェニル基、t-ブチル-p-ターフェニル、ジメチルフルオレニル基、m-ビフェニル基、o-ビフェニル基、4-(2-フェニルプロパン-2-イル)フェニル基、フルオランテニル基、9,9’-ジメチルフルオレニル基、ベンゾ-9,9’-ジメチルフルオレニル基、ジベンゾ-9,9’-ジメチルフルオレニル基等が挙げられる。また、フェニル基、フェニレン基、ナフチル基、ナフタレン基を組み合わせた芳香族基(例えば、フェニルナフチル基、ナフチルフェニル基、ナフチルナフチル基、ナフチルナフチルナフチル基、フェニルフェニルナフチル基、ナフチルナフチルフェニル基、ナフチルフェニルナフチル基、ナフチルフェニルフェニル基、フェニルナフチルナフチル基、フェニルナフチルフェニル基等)でもよい。
 好ましくはA及びB~Bとして、置換若しくは無置換のフェニル基、ビフェニル基、ターフェニル基、ナフチル基、フェナントリル基、アントラセニル基、クリセニル基、フルオレニル基等の芳香族基が挙げられる。
 特に好ましくは、Aが置換若しくは無置換のフェニル基、ビフェニル基、ナフチル基、フルオレニル基である。
 A及びB~Bの置換若しくは無置換の複素環基としては、環形成原子数5~30(好ましくは環形成原子数5~20、より好ましくは環形成原子数5~12)の置換若しくは無置換の複素環基であり、具体例として、置換若しくは無置換のピロリル基、ピラジニル基、ピリジニル基、インドリル基、イソインドリル基、フリル基、ベンゾフラニル基、ジベンゾフラニル基、イソベンゾフラニル基、キノリル基、イソキノリル基、キノキサリニル基、カルバゾリル基、フェナントリジニル基、アクリジニル基、フェナントロリニル基、フェナジニル基、フェノチアジニル基、フェノキサジニル基、オキサゾリル基、オキサジアゾリル基、フラザニル基、チエニル基、メチルピロリル基、t-ブチルピロリル、(フェニルプロピル)ピロリル、メチルインドリル基、t-ブチルインドリル基、ジベンゾチオフェニル基、ピリミジニル基、ピリダジニル基等が挙げられる。
 好ましくは、置換若しくは無置換のジベンゾフラニル基、ピリジニル基及びカルバゾリル基が挙げられる。
 特に好ましくは、Aが置換若しくは無置換のジベンソフラニル基である。
 X~Xの置換若しくは無置換の芳香族基としては、A及びB~Bの置換若しくは無置換の芳香族基の2価の基が挙げられる。
 好ましくは、置換若しくは無置換のフェニレン基、ビフェニレン基、ターフェニレン基、ナフチレン基、フェナントレニレン基、アントラセニレン基、クリセニレン基、フルオレニレン基、トリフェニレニレン基等の芳香族基である。
 X~Xの置換若しくは無置換の複素環基としては、A及びB~Bの置換若しくは無置換の複素環基の2価の基が挙げられる。
 好ましくは、置換若しくは無置換のジベンゾフラニレン基、ピリジニレン基及びカルバゾリレン基である。
 A、X~X及びB~Bの置換又は無置換の芳香族基、並びにX~X及びB~Bの置換若しくは無置換の複素環基が有する置換基(以下、単に芳香族基又は複素環基が有する置換基と言う場合がある)は、当業者であれば適宜選択することが可能であるが、例えは、アルキル基、芳香族基、フッ素原子、アルコキシ基、置換若しくは無置換のシリル基、シアノ基及びシクロアルキル基が挙げられる。
 芳香族基又は複素環基が有する置換基のアルキル基及び芳香族基は、Aのアルキル基及び芳香族基と同様である。
 芳香族基又は複素環基が有する置換基のアルコキシ基は、例えば-OYで表される基であり、Yは、Aのアルキル基から選択される。アルコキシ基は、例えばメトキシ基、エトキシ基である。
 芳香族基又は複素環基が有する置換基の置換若しくは無置換のシリル基としては、例えばトリメチルシリル基、トリエチルシリル基、t-ブチルジメチルシリル基、ビニルジメチルシリル基、プロピルジメチルシリル基、トリフェニルシリル基、トリイソプロピルシリル基等が挙げられる。
 芳香族基又は複素環基が有する置換基のシクロアルキル基としては、環形成炭素数3~10(好ましくは環形成炭素数3~8、より好ましくは環形成炭素数3~6)のシクロアルキル基であり、例えばシクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等が挙げられる。
 芳香族基又は複素環基が有する置換基は、好ましくはアルキル基、芳香族基又は置換若しくは無置換のシリル基であり、特に好ましくは置換若しくは無置換のシリル基(例えばアルキルシリル基)である。
 本発明の芳香族アミン誘導体は、好ましくは下記式(3)で表される芳香族アミン誘導体である。
Figure JPOXMLDOC01-appb-C000009
 
(式中、X、X、X、B、B及びBは、式(1)と同様である。)
 上記式(1)及び(3)で表される本発明の芳香族アミン誘導体において、好ましくはX及びXの一方が、置換若しくは無置換の環形成炭素数10~30の縮合芳香族環基、又は環形成原子数10~30の縮合複素環基であり、他方が、置換若しくは無置換の環形成炭素数6~30非縮合芳香族環基、又は環形成原子数6~30の非縮合複素環基である。
 上記置換若しくは無置換の環形成炭素数10~30の縮合芳香族環基、又は環形成原子数10~30の縮合複素環基は、好ましくは置換若しくは無置換の環形成炭素数10~20の縮合芳香族環基、又は環形成原子数10~20の縮合複素環基であり、より好ましくは置換若しくは無置換の環形成炭素数10~16の縮合芳香族環基、又は環形成原子数10~16 の縮合複素環基であり、特に好ましくは、置換若しくは無置換のナフチレン基、アントラセニレン基、フェナントリレン基、クリセニレン基、フルオレニレン基又はジベンゾフラニレン基である。
 上記置換若しくは無置換の環形成炭素数6~30非縮合芳香族環基、又は環形成原子数6~30の非縮合複素環基は、好ましくは置換若しくは無置換の環形成炭素数6~20非縮合芳香族環基、又は環形成原子数6~20の非縮合複素環基であり、より好ましくは置換若しくは無置換の環形成炭素数6~12の非縮合芳香族環基、又は環形成原子数6~12の非縮合複素環基であり、具体的には、置換若しくは無置換のフェニレン基、ビフェニレン基、ターフェニレン基、ピリジレン基等があり、特に好ましくは置換若しくは無置換のフェニレン基又はビフェニレン基である。
 上記式(1)及び(3)で表される本発明の芳香族アミン誘導体は、好ましくは後述する式(4)又は(5)で表される芳香族アミン誘導体である。
 式(4)で表される芳香族アミン誘導体は、Xが置換フルオレニレン基である式(3)で表される芳香族アミン誘導体である。
Figure JPOXMLDOC01-appb-C000010
 
(式中、X、X、B、B及びBは、式(1)と同様である。
 R及びRは、それぞれアルキル基、芳香族基、フッ素原子、アルコキシ基又は置換若しくは無置換のシリル基であり、
 R及びRは、互いに結合して飽和又は不飽和の環状構造を形成していてもよい。)
 式(4)のR及びRのアルキル基、芳香族基、アルコキシ基及び置換若しくは無置換のシリル基は、上述の芳香族基又は複素環基が有する置換基と同様である。
 式(5)で表される芳香族アミン誘導体は、Xが無置換ナフチレン基である式(3)で表される芳香族アミン誘導体である。
Figure JPOXMLDOC01-appb-C000011
 
(式中、X、X、B、B及びBは、式(1)と同様である。)
 式(1)及び(3)~(5)で表される芳香族アミン誘導体において、好ましくはX及びXが、共にフェニレン基である。
 式(1)及び(3)~(5)で表される芳香族アミン誘導体において、好ましくはXが、フルオレニレン基である。
 式(1)及び(3)~(5)で表される芳香族アミン誘導体において、好ましくはB、B及びBの芳香族基又は複素環基のいずれかが置換基として置換若しくは無置換のシリル基を有する。
 以下、本発明の芳香族アミン誘導体の具体例を示す。
Figure JPOXMLDOC01-appb-C000012
 
Figure JPOXMLDOC01-appb-C000013
 
Figure JPOXMLDOC01-appb-C000014
 
Figure JPOXMLDOC01-appb-C000015
 
Figure JPOXMLDOC01-appb-C000016
 
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
 本発明の芳香族アミン誘導体の製造方法は、特に限定されず公知の方法で製造すればよく、例えば、アミン誘導体と芳香族ハロゲン化化合物に対し、テトラへドロン 40(1984)1435~1456に記載される銅触媒、又はジャーナル オブ アメリカン ケミカル ソサイアティ 123(2001)7727~7729に記載されるパラジウム触媒を用いたカップリング反応で製造する。
 本発明の芳香族アミン誘導体は、有機EL素子用材料として用いると好ましく、有機EL素子用発光材料又は正孔輸送材料として用いるとより好ましく、ドーピング材料として用いると特に好ましい。
 本発明の有機EL素子は、例えば一対の電極に少なくとも発光層を含む1層又は複数層からなる有機化合物層が挟持されている有機エレクトロルミネッセンス素子において、有機化合物層の少なくとも1層が、本発明の芳香族アミン誘導体を少なくとも1種含む。
 本発明の有機EL素子においては、発光層が本発明の芳香族アミン誘導体を少なくとも1種含むと好ましく、発光層中に本発明の芳香族アミン誘導体が0.01~20重量%含有されていると好ましく、0.5~20重量%含有されているとさらに好ましく、0.5~15重量%含有されていると特に好ましく、0.5~10重量%含有されていると最も好ましい。
 本発明の有機EL素子においては、正孔輸送層が本発明の芳香族アミン誘導体を少なくとも1種含むと好ましく、正孔輸送層中に本発明の芳香族アミン誘導体が50~100重量%含有されていると好ましく、80~100重量%含有されているとさらに好ましい。
 本発明の芳香族アミン誘導体を有機EL素子の発光材料として用いる場合、発光層が芳香族アミン誘導体を少なくとも1種と下記式(2A)で表されるアントラセン誘導体の少なくとも1種とを含むと、発光効率が高く、長時間使用しても劣化しづらく寿命が長い有機EL素子が提供できるという点で好ましい。
 以下、式(2A)で表されるアントラセン誘導体について説明する。
(アントラセン誘導体)
 式(2A)で表されるアントラセン誘導体は、下記化合物である。
Figure JPOXMLDOC01-appb-C000019
(式(2A)中、Ar11及びAr12は、それぞれ独立に、置換若しくは無置換の環形成原子数5~50の単環基、又は置換若しくは無置換の環形成原子数8~50の縮合環基であり、
 R~Rは、それぞれ独立に、水素原子、置換若しくは無置換の環形成原子数5~50の単環基、置換若しくは無置換の環形成原子数8~50の縮合環基、単環基と縮合環基との組合せから構成される基、置換若しくは無置換の炭素数1~50のアルキル基、置換若しくは無置換の環形成炭素数3~50のシクロアルキル基、置換若しくは無置換の炭素数1~50のアルコキシ基、置換若しくは無置換の炭素数7~50のアラルキル基、置換若しくは無置換の環形成炭素数6~50のアリールオキシ基、置換若しくは無置換のシリル基、ハロゲン原子、シアノ基から選ばれる基である。)
  式(2A)における、単環基とは、縮合構造を持たない環構造のみで構成される基である。
 環形成原子数5~50の単環基(好ましくは環形成原子数5~30、より好ましくは環形成原子数5~20)として具体的には、フェニル基、ビフェニル基、ターフェニル基、クォーターフェニル基等の芳香族基と、ピリジル基、ピラジル基、ピリミジル基、トリアジニル基、フリル基、チエニル基等の複素環基が好ましい。
 中でも、フェニル基、ビフェニル基、ターフェニル基が好ましい。
 式(2A)における、縮合環基とは、2環以上の環構造が縮環した基である。
 前記環形成原子数8~50の縮合環基(好ましくは環形成原子数8~30、より好ましくは環形成原子数8~20)として具体的には、ナフチル基、フェナントリル基、アントリル基、クリセニル基、ベンゾアントリル基、ベンゾフェナントリル基、トリフェニレニル基、ベンゾクリセニル基、インデニル基、フルオレニル基、ベンゾフルオレニル基、ジベンゾフルオレニル基、フルオランテニル基、ベンゾフルオランテニル基等の縮合芳香族環基や、ベンゾフラニル基、ベンゾチオフェニル基、インドリル基、ジベンゾフラニル基、ジベンゾチオフェニル基、カルバゾリル基、キノリル基、フェナントロリニル基等の縮合複素環基が好ましい。
 中でも、ナフチル基、フェナントリル基、アントリル基、フルオレニル基、フルオランテニル基、ベンゾアントリル基、ジベンゾチオフェニル基、ジベンゾフラニル基、カルバゾリル基が好ましい。
 式(2A)における、アルキル基の具体例は、上述のAのアルキル基の具体例と同様である。
 式(2A)における、シクロアルキル基、アルコキシ基、シリル基の具体例は、上述のAの芳香族基又は複素環基が有する置換基の具体例と同様である。
 式(2A)における、アラルキル基、アリールオキシ基、ハロゲン原子の各基の具体例は、後述する。
 Ar11、Ar12、R~R、の「置換若しくは無置換」の好ましい置換基として、単環基、縮合環基、アルキル基、シクロアルキル基、シリル基、アルコキシ基、シアノ基、フッ素が好ましく、特に好ましくは、単環基、縮合環基であり、好ましい具体的な置換基は上述の式(2A)の各基及びAの芳香族基又は複素環基が有する置換基と同様である。
 式(2A)で表されるアントラセン誘導体は、下記アントラセン誘導体(A)、(B)、及び(C)のいずれかであることが好ましく、適用する有機EL素子の構成や求める特性により選択される。
(アントラセン誘導体(A))
 当該アントラセン誘導体は、式(2A)におけるAr11及びAr12が、それぞれ独立に、置換若しくは無置換の環形成原子数8~50の縮合環基となっている。当該アントラセン誘導体としては、Ar11及びAr12が同一の置換若しくは無置換の縮合環基である場合、及び異なる置換若しくは無置換の縮合環基である場合に分けることができる。
式(2A)におけるAr11及びAr12が異なる(置換位置の違いを含む)置換若しくは無置換の縮合環基であるアントラセン誘導体が特に好ましく、縮合環の好ましい具体例は上述した通りである。中でもナフチル基、フェナントリル基、ベンズアントリル基、フルオレニル基、ジベンゾフラニル基が好ましい。
(アントラセン誘導体(B))
 当該アントラセン誘導体は、式(2A)におけるAr11及びAr12の一方が置換若しくは無置換の環形成原子数5~50の単環基であり、他方が置換若しくは無置換の環形成原子数8~50の縮合環基となっている。
 好ましい形態として、Ar12がナフチル基、フェナントリル基、ベンゾアントリル基、フルオレニル基、ジベンゾフラニル基であり、Ar11が無置換又は、単環基又は縮合環基が置換されたフェニル基である。
 好ましい単環基、縮合環基の具体的な基は上述した通りである。
 別の好ましい形態として、Ar12が縮合環基であり、Ar11が無置換のフェニル基である。この場合、縮合環基として、フェナントリル基、フルオレニル基、ジベンゾフラニル基、ベンゾアントリル基が特に好ましい。
(アントラセン誘導体(C))
 当該アントラセン誘導体は、式(2A)におけるAr11及びAr12が、それぞれ独立に、置換若しくは無置換の環形成原子数5~50の単環基となっている。
 好ましい形態として、Ar11、Ar12ともに置換若しくは無置換のフェニル基である。
 さらに好ましい形態として、Ar11が無置換のフェニル基であり、Ar12が単環基、縮合環基を置換基として持つフェニル基である場合と、Ar11、Ar12がそれぞれ独立に単環基、縮合環基を置換基として持つフェニル基である場合がある。
 前記置換基としての好ましい単環基、縮合環基の具体例は上述した通りである。さらに好ましくは、置換基としての単環基としてフェニル基、ビフェニル基、縮合環基として、ナフチル基、フェナントリル基、フルオレニル基、ジベンゾフラニル基、ベンゾアントリル基である。
 式(2A)における置換基の置換若しくは無置換の炭素数7~50アラルキル基(アリール部分は炭素数6~49(好ましくは6~30、より好ましくは6~20、特に好ましくは6~12)、アルキル部分は炭素数1~44(好ましくは1~30、より好ましくは1~20、さらに好ましくは1~10、特に好ましくは1~6))としては、ベンジル基、フェニルエチル基、4-(2-フェニルプロパン-2-イル)フェニル基等が挙げられる。
 式(2A)における環形成炭素数6~50のアリールオキシ基は、-OYと表され、Yは、前記式(2A)における単環基又は縮合環基から選ばれる。アリールオキシ基は、例えばフェノキシ基である。
 式(2A)におけるハロゲン原子としては、フッ素、塩素、臭素、ヨウ素等が挙げられ、フッ素が好ましい。
 式(2A)で表されるアントラセン誘導体の具体例としては、以下が挙げられる。
Figure JPOXMLDOC01-appb-C000020
 
Figure JPOXMLDOC01-appb-C000021
 
Figure JPOXMLDOC01-appb-C000022
 
Figure JPOXMLDOC01-appb-C000023
 
Figure JPOXMLDOC01-appb-C000024
 
Figure JPOXMLDOC01-appb-C000025
 
Figure JPOXMLDOC01-appb-C000026
 
Figure JPOXMLDOC01-appb-C000027
 
Figure JPOXMLDOC01-appb-C000028
 
Figure JPOXMLDOC01-appb-C000029
 
Figure JPOXMLDOC01-appb-C000030
 
Figure JPOXMLDOC01-appb-C000031
 
Figure JPOXMLDOC01-appb-C000032
 
Figure JPOXMLDOC01-appb-C000033
 
Figure JPOXMLDOC01-appb-C000034
 
Figure JPOXMLDOC01-appb-C000035
Figure JPOXMLDOC01-appb-C000036
Figure JPOXMLDOC01-appb-C000037
Figure JPOXMLDOC01-appb-C000038
Figure JPOXMLDOC01-appb-C000039
Figure JPOXMLDOC01-appb-C000040
Figure JPOXMLDOC01-appb-C000041
Figure JPOXMLDOC01-appb-C000042
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
 本発明において、有機薄膜層が複数層型の有機EL素子としては、(陽極/正孔注入層/発光層/陰極)、(陽極/発光層/電子注入層/陰極)、(陽極/正孔注入層/発光層/電子注入層/陰極)、(陽極/正孔注入層/正孔輸送層/発光層/電子注入層/陰極)等の構成で積層したものが挙げられる。
 有機EL素子は、前記有機薄膜層を複数層構造にすることにより、クエンチングによる輝度や寿命の低下を防ぐことができる。必要があれば、発光材料、ドーピング材料、正孔注入材料や電子注入材料を組み合わせて使用することができる。また、ドーピング材料により、発光輝度や発光効率が向上する場合がある。また、正孔注入層、発光層、電子注入層は、それぞれ二層以上の層構成により形成されてもよい。その際には、正孔注入層の場合、電極から正孔を注入する層を正孔注入層、正孔注入層から正孔を受け取り発光層まで正孔を輸送する層を正孔輸送層と呼ぶ。同様に、電子注入層の場合、電極から電子を注入する層を電子注入層、電子注入層から電子を受け取り発光層まで電子を輸送する層を電子輸送層と呼ぶ。これらの各層は、材料のエネルギー準位、耐熱性、有機層又は金属電極との密着性等の各要因により選択されて使用される。
 本発明の芳香族アミン誘導体と共に発光層に使用できる上記式(2A)以外のホスト材料又はドーピング材料としては、例えば、ナフタレン、フェナントレン、ルブレン、アントラセン、テトラセン、ピレン、ペリレン、クリセン、デカシクレン、コロネン、テトラフェニルシクロペンタジエン、ペンタフェニルシクロペンタジエン、フルオレン、スピロフルオレン等の縮合多環芳香族化合物及びそれらの誘導体、トリス(8-キノリノラート)アルミニウム等の有機金属錯体、トリアリールアミン誘導体、スチリルアミン誘導体、スチルベン誘導体、クマリン誘導体、ピラン誘導体、オキサゾン誘導体、ベンゾチアゾール誘導体、ベンゾオキサゾール誘導体、ベンゾイミダゾール誘導体、ピラジン誘導体、ケイ皮酸エステル誘導体、ジケトピロロピロール誘導体、アクリドン誘導体、キナクリドン誘導体等が挙げられるが、これらに限定されるものではない。
 正孔注入材料としては、正孔を輸送する能力を持ち、陽極からの正孔注入効果、発光層又は発光材料に対して優れた正孔注入効果を有し、かつ薄膜形成能力の優れた化合物が好ましい。具体的には、フタロシアニン誘導体、ナフタロシアニン誘導体、ポルフィリン誘導体、ベンジジン型トリフェニルアミン、ジアミン型トリフェニルアミン、ヘキサシアノヘキサアザトリフェニレン等と、それらの誘導体、及びポリビニルカルバゾール、ポリシラン、導電性高分子等の高分子材料が挙げられるが、これらに限定されるものではない。
 本発明の有機EL素子において使用できる正孔注入材料の中で、さらに効果的な正孔注入材料は、フタロシアニン誘導体である。
 フタロシアニン(Pc)誘導体としては、例えば、H2Pc、CuPc、CoPc、NiPc、ZnPc、PdPc、FePc、MnPc、ClAlPc、ClGaPc、ClInPc、ClSnPc、Cl2SiPc、(HO)AlPc、(HO)GaPc、VOPc、TiOPc、MoOPc、GaPc-O-GaPc等のフタロシアニン誘導体及びナフタロシアニン誘導体があるが、これらに限定されるものではない。
 また、正孔注入材料にTCNQ誘導体等の電子受容物質を添加することによりキャリアを増感させることもできる。
 本発明の有機EL素子において使用できる好ましい正孔輸送材料は、芳香族三級アミン誘導体である。
 芳香族三級アミン誘導体としては、例えば、N,N’-ジフェニル-N,N’-ジナフチル-1,1’-ビフェニル-4,4’-ジアミン、N,N,N’,N’-テトラビフェニル-1,1’-ビフェニル-4,4’-ジアミン等、又はこれらの芳香族三級アミン骨格を有したオリゴマー若しくはポリマーであるが、これらに限定されるものではない。
 電子注入材料としては、電子を輸送する能力を持ち、陰極からの電子注入効果、発光層又は発光材料に対して優れた電子注入効果を有し、かつ薄膜形成能力の優れた化合物が好ましい。
 本発明の有機EL素子において、さらに効果的な電子注入材料は、金属錯体化合物及び含窒素複素環誘導体である。
 前記金属錯体化合物としては、例えば、8-ヒドロキシキノリナートリチウム、ビス(8-ヒドロキシキノリナート)亜鉛、トリス(8-ヒドロキシキノリナート)アルミニウム、トリス(8-ヒドロキシキノリナート)ガリウム、ビス(10-ヒドロキシベンゾ[h]キノリナート)ベリリウム、ビス(10-ヒドロキシベンゾ[h]キノリナート)亜鉛等が挙げられるが、これらに限定されるものではない。
 前記含窒素複素環誘導体としては、例えば、オキサゾール、チアゾール、オキサジアゾール、チアジアゾール、トリアゾール、ピリジン、ピリミジン、トリアジン、フェナントロリン、ベンズイミダゾール、イミダゾピリジン等が好ましく、中でもベンズイミダゾール誘導体、フェナントロリン誘導体、イミダゾピリジン誘導体が好ましい。
 好ましい形態として、これらの電子注入材料にさらにドーパントを含有し、陰極からの電子の受け取りを容易にするため、より好ましくは第2有機層の陰極界面近傍にアルカリ金属で代表されるドーパントをドープする。
 ドーパントとしては、ドナー性金属、ドナー性金属化合物及びドナー性金属錯体が挙げられ、これら還元性ドーパントは1種単独で使用してもよいし、2種以上を組み合わせて使用してもよい。
 本発明の有機EL素子においては、発光層中に、式(1)で表される芳香族アミン誘導体から選ばれる少なくとも一種の他に、発光材料、ドーピング材料、正孔注入材料、正孔輸送材料及び電子注入材料の少なくとも一種が同一層に含有されてもよい。また、本発明により得られた有機EL素子の、温度、湿度、雰囲気等に対する安定性の向上のために、素子の表面に保護層を設けたり、シリコンオイル、樹脂等により素子全体を保護することも可能である。
 本発明の有機EL素子の陽極に使用される導電性材料としては、4eVより大きな仕事関数を持つものが適しており、炭素、アルミニウム、バナジウム、鉄、コバルト、ニッケル、タングステン、銀、金、白金、パラジウム等及びそれらの合金、ITO基板、NESA基板に使用される酸化スズ、酸化インジウム等の酸化金属、さらにはポリチオフェンやポリピロール等の有機導電性樹脂が用いられる。陰極に使用される導電性物質としては、4eVより小さな仕事関数を持つものが適しており、マグネシウム、カルシウム、錫、鉛、チタニウム、イットリウム、リチウム、ルテニウム、マンガン、アルミニウム、フッ化リチウム等及びそれらの合金が用いられるが、これらに限定されるものではない。合金としては、マグネシウム/銀、マグネシウム/インジウム、リチウム/アルミニウム等が代表例として挙げられるが、これらに限定されるものではない。合金の比率は、蒸着源の温度、雰囲気、真空度等により制御され、適切な比率に選択される。陽極及び陰極は、必要があれば二層以上の層構成により形成されていてもよい。
 本発明の有機EL素子では、効率良く発光させるために、少なくとも一方の面は素子の発光波長領域において充分透明にすることが望ましい。また、基板も透明であることが望ましい。透明電極は、上記の導電性材料を使用して、蒸着やスパッタリング等の方法で所定の透光性が確保されるように設定する。発光面の電極は、光透過率を10%以上にすることが望ましい。基板は、機械的、熱的強度を有し、透明性を有するものであれば限定されるものではないが、ガラス基板及び透明性樹脂フィルムがある。
 本発明の有機EL素子の各層の形成は、真空蒸着、スパッタリング、プラズマ、イオンプレーティング等の乾式成膜法やスピンコーティング、ディッピング、フローコーティング等の湿式成膜法のいずれの方法を適用することができる。膜厚は特に限定されるものではないが、適切な膜厚に設定する必要がある。膜厚が厚すぎると、一定の光出力を得るために大きな印加電圧が必要になり効率が悪くなる。膜厚が薄すぎるとピンホール等が発生して、電界を印加しても充分な発光輝度が得られない。通常の膜厚は5nm~10μmの範囲が適しているが、10nm~0.2μmの範囲がさらに好ましい。
 湿式成膜法の場合、各層を形成する材料を、エタノール、クロロホルム、テトラヒドロフラン、ジオキサン等の適切な溶媒に溶解又は分散させて薄膜を形成するが、その溶媒はいずれであってもよい。
 このような湿式成膜法に適した溶液として、有機EL材料として本発明の芳香族アミン誘導体と溶媒とを含有する有機EL材料含有溶液を用いることができる。
 前記有機EL材料が、ホスト材料とドーパント材料とを含み、前記ドーパント材料が、本発明の芳香族アミン誘導体であり、前記ホスト材料が、式(2A)で表される化合物から選ばれる少なくとも1種であると好ましい。
 いずれの有機薄膜層においても、成膜性向上、膜のピンホール防止等のため適切な樹脂や添加剤を使用してもよい。
 本発明の有機EL素子は、壁掛けテレビのフラットパネルディスプレイ等の平面発光体、複写機、プリンター、液晶ディスプレイのバックライト又は計器類等の光源、表示板、標識灯等に利用できる。また、本発明の化合物は、有機EL素子だけでなく、電子写真感光体、光電変換素子、太陽電池、イメージセンサー等の分野においても使用できる。
 以下、実施例により本発明を具体的に説明する。
 実施例及び比較例で使用したホスト材料及びドーピング材料を以下に示す。
Figure JPOXMLDOC01-appb-C000045
Figure JPOXMLDOC01-appb-C000046
Figure JPOXMLDOC01-appb-C000047
合成例1
 以下の工程に従って化合物D-1を合成した。
Figure JPOXMLDOC01-appb-C000048
[合成A:中間体i-1の合成]
 アルゴン気流下、1000mLのナスフラスコに、2,7-ジブロモ-9,9-ジメチルフルオレン30.0g、及び脱水THF340mLを入れ、-65℃に冷却した後、n-ブチルリチウムヘキサン溶液(1.65M)57mLを入れ、1時間反応させた。この反応液に、脱水N,N-ジメチルホルムアミドを18mL滴下した後、徐々に昇温して室温下3時間さらに反応させた。
 得られた反応液に、3N塩酸及び酢酸エチルを加えて分液及び抽出をした後、上水、飽和食塩水で有機層を洗浄、硫酸ナトリウムで乾燥し、濃縮して得られた粗生成物をシリカゲルクロマトグラフィー(n-ヘキサン/塩化メチレン=2/1)で精製して、得られた固体を減圧乾燥したところ、17.2gの白色固体を得た。
 得られた白色固体は、FD-MS(フィールドディソープションマススペクトル)分析により、中間体i-1であると同定した。
[合成B:中間体i-2の合成]
 アルゴン気流下、1000mLのナスフラスコに、ベンジルホスホン酸ジエチル15.7g及びTHF100mLを入れ、-65℃に冷却した後、カリウムtert-ブトキシド9.1gを入れ、90分反応させた。続いて、この反応液に中間体i-1が17.2g溶解したTHF180mL溶液を滴下し、2時間反応させた後、撹拌しながら1時間かけて室温まで昇温し、室温にてさらに2時間反応させた。
 得られた反応液に、上水、トルエンを加えて分液して水層と有機層にした。この水層をトルエンで抽出した後、このトルエンと有機層を合わせて、上水、飽和食塩水で洗浄し、硫酸ナトリウムで乾燥し、濃縮して得られた固体をトルエンで再結晶し、得られた固体を減圧乾燥したところ、19.7gの黄白色固体を得た。
 得られた黄白色固体は、FD-MS分析により、中間体i-2であると同定した。
[合成C:中間体i-3の合成]
 アルゴン気流下、500mLナスフラスコに4-ブロモスチルベン10.0g、4-アミノスチルベン22.6g、トリス(ジベンジリデンアセトン)ジパラジウム(0)〔Pd(dba)〕0.50g、2,2’-ビス(ジフェニルホスフィノ)-1,1’-ビナフチル(BINAP)0.7g、ナトリウムtert-ブトキシド7.4g、及び脱水トルエン200mLを入れ、100℃にて6時間反応させた。
 冷却後、反応溶液をろ過し、得られた固体をトルエン、メタノール及び上水で洗浄し、減圧乾燥したところ、14.0gの固体を得た。
 得られた固体は、FD-MS分析により、中間体i-3であると同定した。
[合成D:化合物D-1の合成]
 アルゴン気流下、300mLのナスフラスコに、中間体i-2を5.4g、中間体i-3を5.3g、ナトリウムtert-ブトキシド2.8g、酢酸パラジウム(II)〔Pd(OAc)〕100mg、トリ-tert-ブチルホスフィン91mg、及び脱水トルエン70mLを入れ、90℃にて8時間反応させた。
 冷却後、反応溶液をセライトろ過し、ろ液を濃縮した。得られた租生成物をシリカゲルクロマトグラフィー(トルエン/ヘキサン=3/7)で精製し、得られた固体をトルエンで再結晶し、得られた固体を減圧乾燥したところ、5.8gの黄白色固体を得た。
 得られた黄白色固体は、FD-MS分析により、化合物D-1であると同定した。
 化合物D-1のトルエン溶液中の紫外線吸収極大波長λmax、及び蛍光発光極大波長を以下に示す。
 FDMS, calcd for C51H41N=667, found m/z=667 (M+)
 UV(PhMe);λmax=397nm、FL(PhMe、λex=370nm);λmax=441nm
合成例2
 以下の工程に従って化合物D-2を合成した。
Figure JPOXMLDOC01-appb-C000049
[中間体i-4の合成]
 4-ブロモスチルベンの代わりに中間体i-2を用いた他は合成例1の合成Cを同様にして行い、中間体i-4を合成した。
 中間体i-4の構造は、FD-MS分析により同定した。
[化合物D-2の合成]
 中間体i-3の代わりに中間体i-4を用いた他は合成例1の合成Dを同様にして行い、化合物D-2を合成した。
 化合物D-2の構造は、FD-MS分析により同定した。
 化合物D-2のトルエン溶液中の紫外線吸収極大波長λmax、及び蛍光発光極大波長を以下に示す。
 FDMS, calcd for C60H49N=783, found m/z=783 (M+)
 UV(PhMe);λmax=404nm、FL(PhMe、λex=370nm);λmax=445nm
合成例3
 以下の工程に従って化合物D-3を合成した。
Figure JPOXMLDOC01-appb-C000050
[中間体i-5の合成]
 2,7-ジブロモ-9,9-ジメチルフルオレンの代わりに2,6-ジブロモナフタレンを用いた他は合成例1の合成Aを同様にして行い、中間体i-5を合成した。
 中間体i-5の構造は、FD-MS分析により同定した。
[中間体i-6の合成]
 中間体i-1の代わりに中間体i-5を用いた他は合成例1の合成Bを同様にして行い、中間体i-6を合成した。
 中間体i-6の構造は、FD-MS分析により同定した。
[化合物D-3の合成]
 中間体i-2の代わりに中間体i-6を用いた他は合成例1の合成Dを同様にして行い、化合物D-3を合成した。
 化合物D-3の構造は、FD-MS分析により同定した。
 化合物D-3のトルエン溶液中の紫外線吸収極大波長λmax、及び蛍光発光極大波長を以下に示す。
 FDMS, calcd for C46H35N=601, found m/z=601 (M+)
 UV(PhMe);λmax=395nm、FL(PhMe、λex=370nm);λmax=442nm
合成例4
 以下の工程に従って化合物D-4を合成した。
Figure JPOXMLDOC01-appb-C000051
[合成E:中間体i-7の合成]
 アルゴン気流下、500mLのナスフラスコに、ジベンゾフラン15.0g、脱水THF180mLを入れ、-65℃に冷却した後、n-ブチルリチウムヘキサン溶液(1.65M)60mLを入れ、徐々に昇温し、室温下3時間反応させた。-65℃に再び冷却した後、1,2-ジブロモエタン11.5mLを滴下して、徐々に昇温し、室温下3時間反応させた。2N塩酸、酢酸エチルを加えて分液、抽出した後、上水、飽和食塩水で有機層を洗浄、硫酸ナトリウムで乾燥し、濃縮して得られた粗生成物をシリカゲルクロマトグラフィー(塩化メチレン)で精製し、得られた固体を減圧乾燥したところ、20.1gの白色固体を得た。
 得られた白色固体は、FD-MS分析により、中間体i-7であると同定した。
[合成F:中間体i-8の合成]
 アルゴン気流下、500mLのナスフラスコに、中間体i-7を8.0g、trans-2-(4-クロロフェニル)ビニルボロン酸7.7g、テトラキス(トリフェニルホスフィン)パラジウム(0)〔Pd(PPh〕0.75g、炭酸ナトリウム10.3g(上水49mL)、及び脱水トルエン60mL、脱水THF60mLを入れ、アルゴン気流下、90℃にて8時間反応した。上水、トルエンを加えて分液、水層をトルエンで抽出した後、合わせた有機層を上水、飽和食塩水で洗浄し、硫酸ナトリウムで乾燥し、濃縮して得られた租生成物をシリカゲルクロマトグラフィー(トルエン/ヘキサン=1/19)で精製し、得られた固体を減圧乾燥したところ、8.4gの白色固体を得た。
 得られた白色固体は、FD-MS分析により、中間体i-8であると同定した。
[化合物D-4の合成]
 中間体i-2の代わりに中間体i-8、中間体i-3の代わりに中間体i-4を用いた他は合成例1の合成Dを同様にして行い、化合物D-4を合成した。
 化合物D-4の構造は、FD-MS分析により同定した。
 化合物D-4のトルエン溶液中の紫外線吸収極大波長λmax、及び蛍光発光極大波長を示す。
 FDMS, calcd for C57H43NO=757, found m/z=757 (M+)
 UV(PhMe);λmax=402nm、FL(PhMe、λex=370nm);λmax=449nm
合成例5
 以下の工程に従って化合物D-5を合成した。
Figure JPOXMLDOC01-appb-C000052
[中間体i-9の合成]
 中間体i-7の代わりに2-ブロモ-9,9-ジメチルフルオレンを用いた他は合成例4の合成Fを同様にして行い、中間体i-9を合成した。
 中間体i-9の構造は、FD-MS分析により同定した。
[化合物D-5の合成]
 中間体i-2の代わりに中間体i-9、中間体i-3の代わりに中間体i-4を用いた他は合成例1の合成Dを行い、化合物D-5を合成した。
 化合物D-5の構造は、FD-MS分析により同定した。
 化合物D-5のトルエン溶液中の紫外線吸収極大波長λmax、及び蛍光発光極大波長を以下に示す。
 FDMS, calcd for C60H49N=783, found m/z=783 (M+)
 UV(PhMe);λmax=404nm、FL(PhMe、λex=370nm);λmax=452nm
合成例6
 以下の工程に従って化合物D-24を合成した。
Figure JPOXMLDOC01-appb-C000053
[合成例G:中間体i-10の合成]
 アルゴン気流下、2000mLのナスフラスコに、フルオレン35.0g、脱水THF1000mLを入れ、-65℃に冷却した後、n-ブチルリチウムヘキサン溶液(1.65M)140mLを入れ、1時間反応した。続いて、トリメチルシリルクロリドを35mL滴下した後、徐々に昇温し、室温下4時間反応した。
 上水、トルエンを加えて分液、抽出した後、炭酸ナトリウム水溶液、飽和食塩水で有機層を洗浄、硫酸ナトリウムで乾燥し、濃縮して得られた固体を減圧乾燥し、上記条件で再度反応・精製した。得られた租生成物をシリカゲルクロマトグラフィー(n-ヘキサン)で精製し、得られた固体を減圧乾燥したところ、61.7gの白色固体を得た。FD-MS分析により、中間体i-10と同定した。
[合成例H:中間体i-11の合成]
 アルゴン気流下、3000mLのナスフラスコに、中間体i-10 60.0g、N-ブロモスクシンイミド79.2g、無水酢酸1350mLを入れ、臭化水素(40%)15mLを滴下して、室温下7時間反応した。
 上水を加えてろ過した後に得られた固体を、アセトンで2回再結晶し、得られた固体を減圧乾燥したところ、30.0gの白色固体を得た。FD-MS分析により、中間体i-11と同定した。
[中間体i-12の合成]
 中間体i-7の代わり中間体i-11、trans-2-(4-クロロフェニル)ビニルボロン酸の代わりにtrans-2-フェニルビニルボロン酸を用いた他は合成例4の合成Fを同様にして行い、中間体i-12を合成した。FD-MS分析により、中間体i-12と同定した。
[化合物D-24の合成]
 中間体i-2の代わりに中間体i-12を用いた他は合成例1の合成Dを同様にして行い、化合物D-24を合成した。FD-MS分析により、化合物D-24と同定した。得られた化合物のFD-MS分析結果、トルエン溶液中の紫外線吸収極大波長λmax及び蛍光発光極大波長を以下に示す。
 FDMS, calcd for C55H53NSi2=783, found m/z=783 (M+)
 UV(PhMe);λmax=395nm、FL(PhMe、λex=380nm);λmax=458nm
合成例7
 以下の工程に従って化合物D-25を合成した。
Figure JPOXMLDOC01-appb-C000054
[合成例I:中間体i-13の合成]
 アルゴン気流下、2000mLのナスフラスコに、中間体i-1 39.4g、トルエン130mLを入れ、0℃に冷却し、水素化ビス(2-メトキシエトキシ)アルミニウムナトリウム(70%トルエン(3.6M))43.7mLのトルエン(260mL)溶液を滴下し、室温まで昇温し、室温下3時間反応した。
 反応溶液を0℃に冷却し、3N塩酸を滴下し、反応溶液が酸性になったら酢酸エチルで分液、抽出した後、飽和食塩水で有機層を洗浄、硫酸ナトリウムで乾燥し、濃縮して得られた固体をシリカゲルクロマトグラフィー(n-ヘキサン/酢酸エチル(4/1))で精製し、得られた固体を減圧乾燥したところ、37.9gの白色固体を得た。FD-MS分析により、中間体i-13と同定した。
[合成例J:中間体i-14の合成]
 1000mLのナスフラスコに、中間体i-13 17.0g、トルエン180mLを入れ、12N塩酸160mLを加えて室温下72時間反応した。
 上水、トルエンを加え、分液、抽出した後、有機層を上水、炭酸水素ナトリウム水溶液、飽和食塩水で洗浄、硫酸ナトリウムで乾燥し、濃縮して得られた固体をシリカゲルクロマトグラフィー(n-ヘキサン/酢酸エチル(10/1))で精製し、得られた固体を減圧乾燥したところ、14.9gの白色固体を得た。FD-MS分析により、中間体i-14と同定した。
[合成例K:中間体i-15の合成]
 アルゴン気流下、500mLのナスフラスコに、中間体i-14 14.2g、亜リン酸トリエチル13.8mLを入れ、150℃にて4時間反応した。
 減圧蒸留にて未反応の亜リン酸トリエチルを除き、17.0gの無色の液体を得た。FD-MS分析により、中間体i-15と同定した。
[合成例L:中間体i-16の合成]
 アルゴン気流下、1000mLのナスフラスコに、中間体i-15 15.0g、脱水エーテル370mLを入れ、-65℃に冷却した後、sec-ブチルリチウムヘキサン溶液(1.07M)120mLを入れ、30分かけて室温下にして1時間反応した。続いて、-65℃に冷却し、脱水N,N-ジメチルホルムアミドを8.5mL滴下した後、徐々に昇温し、室温下2時間反応した。
 3N塩酸、酢酸エチルを加え、分液、抽出した後、有機層を飽和食塩水で洗浄、硫酸ナトリウムで乾燥し、濃縮して得られた固体をシリカゲルクロマトグラフィー(n-ヘキサン/酢酸エチル(20/1))で精製し、得られた固体を減圧乾燥したところ、13.4gの白色固体を得た。FD-MS分析により、中間体i-16と同定した。
[中間体i-17の合成]
 中間体i-1の代わりに中間体i-16、ベンジルホスホン酸ジエチルの代わりに中間体i-15を用いた他は合成例1の合成Bを同様にして行い、中間体i-17を合成した。FD-MS分析により、中間体i-17と同定した。
[化合物D-25の合成]
 中間体i-2の代わりに中間体i-17を用いた他は合成例1の合成Dを同様にして行い、化合物D-25を合成した。FD-MS分析により、化合物D-25と同定した。得られた化合物のFD-MS分析結果、トルエン溶液中の紫外線吸収極大波長λmax及び蛍光発光極大波長を以下に示す。
 FDMS, calcd for C57H43NO=757, found m/z=757 (M+)
 UV(PhMe);λmax=401nm、FL(PhMe、λex=370nm);λmax=448nm
合成例8
 以下の工程に従って化合物D-27を合成した。
Figure JPOXMLDOC01-appb-C000055
[中間体i-18の合成]
 2,7-ジブロモ-9,9-ジメチルフルオレンの代わりに4,4’-ジブロモビフェニルを用いた他は合成例1の合成Aを同様にして行い、中間体i-18を合成した。FD-MS分析により、中間体i-18と同定した。
[中間体i-19の合成]
 中間体i-1の代わりに中間体i-18を用いた他は合成例1の合成Bを同様にして行い、中間体i-19を合成した。FD-MS分析により、中間体i-19と同定した。
[化合物D-27の合成]
 中間体i-2の代わりに中間体i-19を用いた他は合成例1の合成Dを同様にして行い、化合物D-27を合成した。FD-MS分析により、化合物D-27と同定した。得られた化合物のFD-MS分析結果、トルエン溶液中の紫外線吸収極大波長λmax及び蛍光発光極大波長を以下に示す。
 FDMS, calcd for C48H37N=627, found m/z=627 (M+)
 UV(PhMe);λmax=387nm、FL(PhMe、λex=360nm);λmax=436nm
合成例9
 以下の工程に従って化合物D-28を合成した。
Figure JPOXMLDOC01-appb-C000056
[化合物D-28の合成]
 中間体i-2の代わりに中間体i-19、中間体i-3の代わりに中間体i-4を用いた他は合成例1の合成Dを同様にして行い、化合物D-28を合成した。FD-MS分析により、化合物D-28と同定した。得られた化合物のFD-MS分析結果、トルエン溶液中の紫外線吸収極大波長λmax及び蛍光発光極大波長を以下に示す。
 FDMS, calcd for C57H45N=743, found m/z=743 (M+)
 UV(PhMe);λmax=392nm、FL(PhMe、λex=360nm);λmax=439nm
合成例10
 以下の工程に従って化合物D-29を合成した。
Figure JPOXMLDOC01-appb-C000057
[化合物D-29の合成]
 中間体i-2の代わりに4-ブロモビフェニル、中間体i-3の代わりに中間体i-4を用いた他は合成例1の合成Dを同様にして行い、化合物D-29を合成した。FD-MS分析により、化合物D-29と同定した。得られた化合物のFD-MS分析結果、トルエン溶液中の紫外線吸収極大波長λmax及び蛍光発光極大波長を以下に示す。
 FDMS, calcd for C49H39N=641, found m/z=641 (M+)
 UV(PhMe);λmax=385nm、FL(PhMe、λex=370nm);λmax=436nm
実施例1
 25mm×75mm×1.1mmサイズのガラス基板上に、膜厚120nmのインジウムスズ酸化物からなる透明電極を設けた。この透明電極は、陽極として働く。続いて、このガラス基板に紫外線及びオゾンを照射して洗浄したのち、真空蒸着装置にこの基板を設置した。
 まず、正孔注入層として、N’,N’’-ビス[4-(ジフェニルアミノ)フェニル]-N’,N’’-ジフェニルビフェニル-4,4’-ジアミンを60nmの厚さに蒸着したのち、その上に正孔輸送層として、N,N,N’,N’-テトラキス(4-ビフェニル)-4,4’-ベンジジンを20nmの厚さに蒸着した。次いで、ホスト材料であるアントラセン誘導体(EM2)と、ドーピング材料である芳香族アミン誘導体(D-1)とを、質量比40:2で同時蒸着し、厚さ40nmの発光層を形成した。
 この発光層上に、電子注入層として、トリス(8-ヒドロキシキノリナト)アルミニウムを20nmの厚さに蒸着した。
 次に、弗化リチウムを1nmの厚さに蒸着し、次いでアルミニウムを150nmの厚さに蒸着し、有機EL素子を作製した。尚、このアルミニウム/弗化リチウムは陰極として働く。
 作製した有機EL素子について、電流密度10mA/cmにおける駆動時の素子性能(発光効率及び色度)、及び初期輝度500cd/cmでの半減寿命を測定した。結果を表1に示す。
実施例2~10,比較例1~3
 表1~2に示すホスト材料、ドーピング材料を用いた他は、実施例1と同様に有機EL素子を作製し評価した。結果を表1~2に示す。
実施例11
 25mm×75mm×1.1mm厚のITO透明電極(陽極)付きガラス基板(ジオマティック社製)をイソプロピルアルコール中で超音波洗浄を5分間行なった後、UVオゾン洗浄を30分間行なった。洗浄後の透明電極ライン付きガラス基板を真空蒸着装置の基板ホルダーに装着し、まず透明電極ラインが形成されている側の面上に前記透明電極を覆うようにして膜厚50nmの化合物A-1を成膜した。A-1膜の成膜に続けて、このA-1膜上に膜厚45nmのA-2を成膜した。
 さらに、このA-2膜上に膜厚25nmで化合物EM13と本発明の化合物D-28を20:1の膜厚比で成膜し青色系発光層とした。
 この膜上に電子輸送層として膜厚25nmで下記構造のET-1を蒸着により成膜した。この後、LiFを膜厚1nmで成膜した。このLiF膜上に金属Alを150nm蒸着させ金属陰極を形成し有機EL発光素子を形成した。
 こうして得られた有機EL素子について、電流密度10mA/cmにおける駆動時の素子性能(外部量子収率及び色度)、及び初期輝度250cd/cmでの半減寿命を測定した。結果を表4に示す。
実施例12~16、比較例4
 表4に示すホスト材料、ドーピング材料を用いた他は、実施例11と同様に有機EL素子を作製し評価した。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表1~4より、本発明の芳香族アミン誘導体を用いると、有機EL素子の青色純度、発光効率及び寿命を向上させることができた。これは芳香族アミン誘導体を、発光中心の構造を非対称化したことによるものと考えられる。
 本発明の芳香族アミン誘導体を用いた有機EL素子は、低い印加電圧で実用上十分な発光輝度が得られ、発光効率が高く、長時間使用しても劣化しづらく寿命が長い。このため、壁掛テレビの平面発光体やディスプレイのバックライト等の光源として有用である。
 上記に本発明の実施形態及び/又は実施例を幾つか詳細に説明したが、当業者は、本発明の新規な教示及び効果から実質的に離れることなく、これら例示である実施形態及び/又は実施例に多くの変更を加えることが容易である。従って、これらの多くの変更は本発明の範囲に含まれる。
 この明細書に記載の文献の内容を全てここに援用する。

Claims (14)

  1.  下記式(1)で表される芳香族アミン誘導体。
    Figure JPOXMLDOC01-appb-C000058
    (式中、Aは、置換若しくは無置換のアルキル基、置換若しくは無置換の芳香族基、置換若しくは無置換の複素環基又は下記式(2)で表される有機基である。
    Figure JPOXMLDOC01-appb-C000059
     X、X及びXは、それぞれ置換若しくは無置換の芳香族基、又は置換若しくは無置換の複素環基であり、
     X及びXは、互いに異なる連結基である。
     B、B及びBは、それぞれ置換若しくは無置換の芳香族基、又は置換若しくは無置換の複素環基である。)
  2.  下記式(3)で表される請求項1に記載の芳香族アミン誘導体。
    Figure JPOXMLDOC01-appb-C000060
    (式中、X、X、X、B、B及びBは、式(1)と同様である。)
  3.  X及びXの一方が、置換若しくは無置換の環形成炭素数10~30の縮合芳香族環基、又は環形成原子数10~30の縮合複素環基であり、
     他方が、置換若しくは無置換の環形成炭素数6~30非縮合芳香族環基、又は環形成原子数6~30の非縮合複素環基である請求項1又は2に記載の芳香族アミン誘導体。
  4.  下記式(4)で表される請求項1~3のいずれかに記載の芳香族アミン誘導体。
    Figure JPOXMLDOC01-appb-C000061
    (式中、X、X、B、B及びBは、式(1)と同様である。
     R及びRは、それぞれアルキル基、芳香族基、フッ素原子、アルコキシ基又は置換若しくは無置換のシリル基であり、
     R及びRは、互いに結合して飽和又は不飽和の環状構造を形成していてもよい。)
  5.  下記式(5)で表される請求項1~3のいずれかに記載の芳香族アミン誘導体。
    Figure JPOXMLDOC01-appb-C000062
    (式中、X、X、B、B及びBは、式(1)と同様である。)
  6.  X及びXが、共にフェニレン基である請求項1~5のいずれかに記載の芳香族アミン誘導体。
  7.  Xが、フルオレニレン基である請求項1~5のいずれかに記載の芳香族アミン誘導体。
  8.  B、B及びBの芳香族基又は複素環基のいずれかが置換基として置換若しくは無置換のシリル基を有する請求項1~7のいずれかに記載の芳香族アミン誘導体。
  9.  Aが、置換若しくは無置換の芳香族基又は置換若しくは無置換の複素環基である請求項1に記載の芳香族アミン誘導体。
  10.  請求項1~9のいずれかに記載の芳香族アミン誘導体を用いた有機エレクトロルミネッセンス素子。
  11.  前記芳香族アミン誘導体を発光材料又は正孔輸送材料として用いた請求項10に記載の有機エレクトロルミネッセンス素子。
  12.  陰極と陽極の間に少なくとも発光層を含む1以上の有機薄膜層が挟持されている有機エレクトロルミネッセンス素子において、該有機薄膜層の少なくとも一層が、請求項1~9のいずれか記載の芳香族アミン誘導体を含有する有機エレクトロルミネッセンス素子。
  13.  前記発光層が、前記芳香族アミン誘導体を含有する請求項12記載の有機エレクトロルミネッセンス素子。
  14.  前記発光層が、前記芳香族アミン誘導体を少なくとも1種と、下記式(2A)で表されるアントラセン誘導体の少なくとも1種とを含有する請求項13記載の有機エレクトロルミネッセンス素子。
    Figure JPOXMLDOC01-appb-C000063
    (式(2A)中、Ar11及びAr12は、それぞれ独立に、置換若しくは無置換の環形成原子数5~50の単環基又は置換若しくは無置換の環形成原子数8~50の縮合環基であり、
     R~Rは、それぞれ独立に、水素原子、置換若しくは無置換の環形成原子数5~50の単環基、置換若しくは無置換の環形成原子数8~50の縮合環基、置換若しくは無置換の炭素数1~50のアルキル基、置換若しくは無置換の環形成炭素数3~50のシクロアルキル基、置換若しくは無置換の炭素数1~50のアルコキシ基、置換若しくは無置換の炭素数7~50のアラルキル基、置換若しくは無置換の環形成炭素数6~50のアリールオキシ基、置換若しくは無置換のシリル基、ハロゲン原子、シアノ基から選ばれる基である。)
PCT/JP2010/002918 2009-04-24 2010-04-22 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子 WO2010122799A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011510227A JPWO2010122799A1 (ja) 2009-04-24 2010-04-22 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
CN201080017704XA CN102414164A (zh) 2009-04-24 2010-04-22 芳香族胺衍生物及使用了它的有机电致发光元件
EP10766860A EP2423179A4 (en) 2009-04-24 2010-04-22 AROMATIC AMINE DERIVATIVE AND ORGANIC ELECTROLUMINESCENT ELEMENT CONTAINING THE SAME
US13/266,000 US8932735B2 (en) 2009-04-24 2010-04-22 Aromatic amine derivative and organic electroluminescent element comprising the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009106001 2009-04-24
JP2009-106001 2009-04-24

Publications (1)

Publication Number Publication Date
WO2010122799A1 true WO2010122799A1 (ja) 2010-10-28

Family

ID=43010924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/002918 WO2010122799A1 (ja) 2009-04-24 2010-04-22 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子

Country Status (7)

Country Link
US (1) US8932735B2 (ja)
EP (1) EP2423179A4 (ja)
JP (1) JPWO2010122799A1 (ja)
KR (1) KR20120022802A (ja)
CN (1) CN102414164A (ja)
TW (1) TW201041829A (ja)
WO (1) WO2010122799A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120082841A (ko) * 2011-01-14 2012-07-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 스틸벤 화합물, 발광 소자, 발광 장치, 전자 기기 및 조명 장치
WO2015041352A1 (ja) * 2013-09-20 2015-03-26 出光興産株式会社 アミン化合物及び有機エレクトロルミネッセンス素子

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5709752B2 (ja) 2009-08-19 2015-04-30 出光興産株式会社 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
US10014477B2 (en) 2012-08-31 2018-07-03 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, and organic electroluminescent element using same
WO2015129896A1 (ja) 2014-02-28 2015-09-03 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
CN106716666B (zh) * 2014-07-25 2019-01-08 保土谷化学工业株式会社 有机电致发光器件
US10892420B2 (en) 2014-11-18 2021-01-12 Hodogaya Chemical Co., Ltd. Organic electroluminescent device
US9711730B2 (en) 2015-01-25 2017-07-18 Universal Display Corporation Organic electroluminescent materials and devices
CN110785867B (zh) 2017-04-26 2023-05-02 Oti照明公司 用于图案化表面上覆层的方法和包括图案化覆层的装置
US11751415B2 (en) 2018-02-02 2023-09-05 Oti Lumionics Inc. Materials for forming a nucleation-inhibiting coating and devices incorporating same
CN109096196A (zh) * 2018-09-27 2018-12-28 苏州华健瑞达医药技术有限公司 2-氨基-3,5-二溴苄基类中间体化合物的制备方法及其应用
CN109734605A (zh) * 2019-03-07 2019-05-10 黑龙江省科学院石油化学研究院 一种三芳胺类化合物的超声波辅助纯化方法
CN116456753A (zh) 2019-03-07 2023-07-18 Oti照明公司 一种光电子器件
KR20220009961A (ko) 2019-04-18 2022-01-25 오티아이 루미오닉스 인크. 핵 생성 억제 코팅 형성용 물질 및 이를 포함하는 디바이스
KR20220017918A (ko) 2019-05-08 2022-02-14 오티아이 루미오닉스 인크. 핵 생성 억제 코팅 형성용 물질 및 이를 포함하는 디바이스
CN111646961A (zh) * 2020-07-29 2020-09-11 上海埃逸科技有限公司 一种灵芝呋喃a的制备方法
WO2022123431A1 (en) 2020-12-07 2022-06-16 Oti Lumionics Inc. Patterning a conductive deposited layer using a nucleation inhibiting coating and an underlying metallic coating

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02210357A (ja) * 1989-02-09 1990-08-21 Canon Inc 電子写真感光体
JPH04184892A (ja) 1990-11-20 1992-07-01 Ricoh Co Ltd 電界発光素子
JPH08305053A (ja) * 1995-05-12 1996-11-22 Nec Corp 電子写真感光体
JP2004026732A (ja) * 2002-06-26 2004-01-29 Mitsubishi Chemicals Corp 非対称1,4−フェニレンジアミン誘導体、及びこれを用いた有機電界発光素子
JP2004262761A (ja) * 2003-01-16 2004-09-24 Idemitsu Kosan Co Ltd 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2006000389A1 (de) 2004-06-26 2006-01-05 Merck Patent Gmbh Verbindungen für organische elektronische vorrichtungen
WO2006073059A1 (ja) * 2005-01-05 2006-07-13 Idemitsu Kosan Co., Ltd. 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JP2007121558A (ja) * 2005-10-26 2007-05-17 Kyocera Mita Corp スチルベン誘導体を用いた電子写真感光体
WO2007065547A1 (de) 2005-12-08 2007-06-14 Merck Patent Gmbh Organische elektrolumineszenzvorrichtungen
WO2007065549A1 (de) 2005-12-08 2007-06-14 Merck Patent Gmbh Organische elektrolumineszenzvorrichtungen
JP2007233305A (ja) * 2006-03-03 2007-09-13 Sharp Corp 電子写真感光体および画像形成装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01106070A (ja) * 1987-10-20 1989-04-24 Konica Corp 電子写真感光体
US5443922A (en) * 1991-11-07 1995-08-22 Konica Corporation Organic thin film electroluminescence element
JP3503403B2 (ja) * 1997-03-17 2004-03-08 東洋インキ製造株式会社 有機エレクトロルミネッセンス素子用発光材料およびそれを使用した有機エレクトロルミネッセンス素子
US6242115B1 (en) * 1997-09-08 2001-06-05 The University Of Southern California OLEDs containing thermally stable asymmetric charge carrier materials
JP2008504382A (ja) 2004-06-26 2008-02-14 メルク パテント ゲーエムベーハー 有機電子デバイスのための化合物
DE102004031000A1 (de) 2004-06-26 2006-01-12 Covion Organic Semiconductors Gmbh Organische Elektrolumineszenzvorrichtungen
US20100187511A1 (en) * 2007-06-18 2010-07-29 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent device using the same

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02210357A (ja) * 1989-02-09 1990-08-21 Canon Inc 電子写真感光体
JPH04184892A (ja) 1990-11-20 1992-07-01 Ricoh Co Ltd 電界発光素子
JPH08305053A (ja) * 1995-05-12 1996-11-22 Nec Corp 電子写真感光体
JP2004026732A (ja) * 2002-06-26 2004-01-29 Mitsubishi Chemicals Corp 非対称1,4−フェニレンジアミン誘導体、及びこれを用いた有機電界発光素子
JP2004262761A (ja) * 2003-01-16 2004-09-24 Idemitsu Kosan Co Ltd 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2006000389A1 (de) 2004-06-26 2006-01-05 Merck Patent Gmbh Verbindungen für organische elektronische vorrichtungen
JP2008504247A (ja) * 2004-06-26 2008-02-14 メルク パテント ゲーエムベーハー 有機電子デバイスのための化合物
WO2006073059A1 (ja) * 2005-01-05 2006-07-13 Idemitsu Kosan Co., Ltd. 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JP2007121558A (ja) * 2005-10-26 2007-05-17 Kyocera Mita Corp スチルベン誘導体を用いた電子写真感光体
WO2007065547A1 (de) 2005-12-08 2007-06-14 Merck Patent Gmbh Organische elektrolumineszenzvorrichtungen
WO2007065549A1 (de) 2005-12-08 2007-06-14 Merck Patent Gmbh Organische elektrolumineszenzvorrichtungen
JP2007233305A (ja) * 2006-03-03 2007-09-13 Sharp Corp 電子写真感光体および画像形成装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
EIJI FUKUZAKI ET AL.: "Room- Temperature High-Spin Organic Single Molecule: Nanometer-Sized and Hyperbranched Poly[1,2,(4)- phenylenevinyleneanisylaminium]", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 128, 2005, pages 996 - 1001, XP055034048 *
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 123, 2001, pages 7727 - 7729
See also references of EP2423179A4
TETRAHEDRON, vol. 40, 1984, pages 1435 - 1456

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120082841A (ko) * 2011-01-14 2012-07-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 스틸벤 화합물, 발광 소자, 발광 장치, 전자 기기 및 조명 장치
JP2012158587A (ja) * 2011-01-14 2012-08-23 Semiconductor Energy Lab Co Ltd スチルベン化合物、発光素子、発光装置、電子機器、および照明装置
KR101940976B1 (ko) * 2011-01-14 2019-01-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 스틸벤 화합물, 발광 소자, 발광 장치, 전자 기기 및 조명 장치
WO2015041352A1 (ja) * 2013-09-20 2015-03-26 出光興産株式会社 アミン化合物及び有機エレクトロルミネッセンス素子
JPWO2015041352A1 (ja) * 2013-09-20 2017-03-02 出光興産株式会社 アミン化合物及び有機エレクトロルミネッセンス素子
US9991455B2 (en) 2013-09-20 2018-06-05 Idemitsu Kosan Co., Ltd. Amine compound and organic electroluminescent element

Also Published As

Publication number Publication date
EP2423179A1 (en) 2012-02-29
US8932735B2 (en) 2015-01-13
EP2423179A4 (en) 2012-10-24
US20120043533A1 (en) 2012-02-23
JPWO2010122799A1 (ja) 2012-10-25
CN102414164A (zh) 2012-04-11
TW201041829A (en) 2010-12-01
KR20120022802A (ko) 2012-03-12

Similar Documents

Publication Publication Date Title
US11024806B2 (en) Aromatic amine derivative, and organic electroluminescent element comprising the same
US8932735B2 (en) Aromatic amine derivative and organic electroluminescent element comprising the same
JP5608682B2 (ja) ピレン誘導体を用いた有機エレクトロルミネッセンス素子
JP5587302B2 (ja) 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JP5989000B2 (ja) 芳香族アミン誘導体、有機エレクトロルミネッセンス素子用材料および有機エレクトロルミネッセンス素子
JP5690283B2 (ja) ピレン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
KR20140031213A (ko) 피렌 유도체, 유기 발광 매체, 및 이들을 포함하는 유기 전계 발광 소자
JP5903271B2 (ja) 芳香族アミン誘導体、及びそれを用いた有機エレクトロルミネッセンス素子。
WO2013077385A1 (ja) 芳香族アミン誘導体およびそれを用いた有機エレクトロルミネッセンス素子

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080017704.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10766860

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011510227

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010766860

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20117024854

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13266000

Country of ref document: US