WO2010122643A1 - 内燃機関の制御装置 - Google Patents

内燃機関の制御装置 Download PDF

Info

Publication number
WO2010122643A1
WO2010122643A1 PCT/JP2009/058002 JP2009058002W WO2010122643A1 WO 2010122643 A1 WO2010122643 A1 WO 2010122643A1 JP 2009058002 W JP2009058002 W JP 2009058002W WO 2010122643 A1 WO2010122643 A1 WO 2010122643A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion
fuel injection
fuel
period
injection
Prior art date
Application number
PCT/JP2009/058002
Other languages
English (en)
French (fr)
Inventor
灘 光博
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to EP09843643A priority Critical patent/EP2423494A4/en
Priority to US13/258,706 priority patent/US8904995B2/en
Priority to PCT/JP2009/058002 priority patent/WO2010122643A1/ja
Priority to JP2011510118A priority patent/JP5115651B2/ja
Priority to CN200980158930.7A priority patent/CN102414426B/zh
Publication of WO2010122643A1 publication Critical patent/WO2010122643A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3017Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
    • F02D41/3035Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the premixed charge compression-ignition mode
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/3011Controlling fuel injection according to or using specific or several modes of combustion
    • F02D41/3064Controlling fuel injection according to or using specific or several modes of combustion with special control during transition between modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • F02D41/36Controlling fuel injection of the low pressure type with means for controlling distribution
    • F02D41/365Controlling fuel injection of the low pressure type with means for controlling distribution with means for controlling timing and distribution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/12Engines characterised by fuel-air mixture compression with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/14Direct injection into combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0645Details related to the fuel injector or the fuel spray
    • F02B23/0654Thermal treatments, e.g. with heating elements or local cooling
    • F02B23/0657Thermal treatments, e.g. with heating elements or local cooling the spray interacting with one or more glow plugs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B23/00Other engines characterised by special shape or construction of combustion chambers to improve operation
    • F02B23/02Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition
    • F02B23/06Other engines characterised by special shape or construction of combustion chambers to improve operation with compression ignition the combustion space being arranged in working piston
    • F02B23/0672Omega-piston bowl, i.e. the combustion space having a central projection pointing towards the cylinder head and the surrounding wall being inclined towards the cylinder center axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/36Control for minimising NOx emissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0025Controlling engines characterised by use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D41/0047Controlling exhaust gas recirculation [EGR]
    • F02D41/005Controlling exhaust gas recirculation [EGR] according to engine operating conditions
    • F02D41/0057Specific combustion modes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/403Multiple injections with pilot injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/09Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine
    • F02M26/10Constructional details, e.g. structural combinations of EGR systems and supercharger systems; Arrangement of the EGR and supercharger systems with respect to the engine having means to increase the pressure difference between the exhaust and intake system, e.g. venturis, variable geometry turbines, check valves using pressure pulsations or throttles in the air intake or exhaust system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present invention relates to a control device for a compression ignition type internal combustion engine represented by a diesel engine.
  • the present invention relates to a measure for optimizing the combustion mode in the combustion chamber.
  • NOx nitrogen oxide
  • the EGR device includes an EGR passage that allows an exhaust passage and an intake passage of the engine to communicate with each other, and an EGR valve provided in the EGR passage. Then, by adjusting the opening of the EGR valve, the amount of exhaust gas recirculated from the exhaust passage to the intake passage via the EGR passage (EGR amount) is adjusted, and the EGR rate during intake is set to a preset target The EGR rate is set.
  • EGR amount the amount of exhaust gas recirculated from the exhaust passage to the intake passage via the EGR passage
  • the EGR rate is set.
  • main injection which is fuel injection for obtaining engine torque
  • the exhaust gas recirculation amount to the intake passage by the EGR device is set relatively large to reliably suppress the amount of NOx generated (for example, when the EGR rate is set to 30%), the oxygen amount in the intake air Will drop significantly. For this reason, if it is attempted to execute main injection that avoids incomplete combustion and does not generate smoke, the injection amount per main injection may have to be extremely reduced. As a result, a sufficient fuel injection amount for obtaining the engine torque required by the driver (hereinafter referred to as the required torque) cannot be ensured, resulting in insufficient engine torque and deterioration of drivability. There is sex.
  • Patent Document 1 discloses an EGR rate (specifically, an EGR rate of 55%) that allows both the amount of NOx generated and the amount of smoke generated to be substantially “0”.
  • EGR rate specifically, an EGR rate of 55%) that allows both the amount of NOx generated and the amount of smoke generated to be substantially “0”.
  • EGR rate 55%) due to variations in control
  • a large amount of smoke is generated, and conversely, when the EGR rate is slightly increased from the above value.
  • This is a technology that is extremely unreliable due to engine stall and cannot be put into practical use.
  • Patent Document 2 during the NOx catalyst regeneration operation, if the combustion chamber is premixed combustion, the excess air ratio is set low, and if diffusion combustion is set, the excess air ratio is set high, so that the smoke is reduced. It is disclosed to improve the NOx purification rate while suppressing the generation amount. However, the technique disclosed in Patent Document 2 improves the NOx purification rate during the regeneration operation of the NOx catalyst, and cannot suppress the amount of NOx generated due to combustion in the combustion chamber. That is, also in this patent document 2, it is difficult to combine the suppression of the NOx generation amount, the suppression of the smoke generation amount, and the securing of the required torque.
  • Patent Document 3 discloses that NOx reduction effect is obtained by performing premixed combustion by pilot injection and then performing diffusion combustion by main injection.
  • the in-cylinder temperature has sufficiently increased at the start of the main injection (the fuel It is considered that it is impossible to obtain a sufficient NOx reduction effect because the heat generation rate in the cylinder rapidly increases during diffusion combustion by main injection. It is done.
  • the NOx reduction effect is limited, and it is difficult to combine the significant suppression of the NOx generation amount, the suppression of the smoke generation amount, and the securing of the required torque. It is.
  • Patent Document 4 discloses reducing the amount of smoke generated by increasing the intake air amount due to supercharging and improving the combustibility by sub-injection in the compression stroke
  • Patent Document 3 discloses the case of Patent Document 3 above.
  • the temperature in the cylinder is sufficiently increased by premixed combustion in sub injection, the heat generation rate will rapidly increase, and a sufficient NOx reduction effect is obtained. It is impossible. That is, even in this Patent Document 4, it is difficult to simultaneously achieve a great suppression of the NOx generation amount, a suppression of the smoke generation amount, and securing of the required torque.
  • Patent Document 5 discloses that low-temperature premixed combustion using a large amount of EGR and high swirl reduces the combustion temperature, thereby making it possible to reduce both NOx generation and smoke generation.
  • MK Modulated Kinetic
  • each individual combustion process in each cylinder is performed by low-temperature premixed combustion, and control of the ignition timing of the air-fuel mixture after air and fuel are premixed, that is, in the cylinder It is difficult to control the combustion start timing, and it is difficult to control the timing at which the heat generation rate accompanying the combustion reaches a peak (maximum). As a result, there is a possibility that the combustion start timing and the peak timing of the heat generation rate will be greatly shifted to the retarded side. In this case, the engine torque may be greatly reduced, making it impossible to secure the required torque. There is.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a control device for an internal combustion engine that can simultaneously suppress the amount of NOx generated, the amount of smoke generated, and the required torque. It is to provide.
  • the solution principle of the present invention devised to achieve the above object is such that three types of combustion modes are performed stepwise or partially in parallel as combustion modes in the combustion chamber.
  • the temperature in the cylinder is increased while suppressing the generation of NOx by performing initial combustion at a low temperature.
  • premixed combustion is performed without causing diffusion combustion as combustion in the cylinder thereafter.
  • This premixed combustion suppresses the generation of smoke.
  • the diffusion combustion is performed by the fuel injection into the cylinder whose temperature is increased by the premixed combustion.
  • a combustion mode capable of effectively generating the torque of the internal combustion engine is realized. That is, the timing at which the heat generation rate becomes maximum in this series of combustion can be managed by the fuel injection timing for this diffusion combustion.
  • the endothermic reaction at the start of fuel injection for diffusion combustion suppresses an excessive increase in the heat generation rate in the premixed combustion, and suppresses generation of NOx and increase in combustion noise in the premixed combustion. It is done.
  • the present invention includes an exhaust gas recirculation device that recirculates a part of the exhaust gas discharged to the exhaust system to the intake system, and generates torque from the fuel injection valve during the combustion process of the internal combustion engine.
  • Fuel injection control for setting the "initial fuel injection period", the "diffusion combustion fuel injection period", and the “joint combustion fuel injection period" as the main injection period for the control device for the internal combustion engine Means are provided.
  • the above “initial combustion fuel injection period” is for initial low temperature combustion in which fuel is sequentially burned in the cylinder while performing a drought reduction operation to reduce the droop rate between oxygen and fuel spray in the cylinder. This is the fuel injection period.
  • “Diffusion combustion fuel injection period” is a region where the combustion temperature suppression effect by the exhaust gas recirculated by the exhaust gas recirculation device can be utilized when the temperature in the cylinder is equal to or higher than a predetermined diffusion combustion start temperature leading to diffusion combustion. This is a fuel injection period for performing diffusion combustion by performing fuel injection toward
  • the “joint combustion fuel injection period” is a period set between the “initial combustion fuel injection period” and the “diffusion combustion fuel injection period”.
  • the initial low temperature combustion is accompanied by spray cooling of the fuel injected when the temperature of the fuel is lower than the diffusion combustion start temperature by the endothermic reaction of the fuel injected in the subsequent "fuel injection period for diffusion combustion"
  • This is a fuel injection period for performing linked combustion by premixed combustion that continuously connects between the gas and the diffusion combustion.
  • the fuel injection control means is injected in the “diffusion combustion fuel injection period” as compared with the penetration force of the fuel injected in the “initial combustion fuel injection period” and the “joint combustion fuel injection period”. High fuel penetration is also set.
  • the “proportion between oxygen in the cylinder and fuel spray” is a so-called “meeting (performing chemical reaction)” probability (frequency) of oxygen molecules and fuel particles in the cylinder.
  • the higher the rate the more the chemical reaction in the cylinder progresses, and the in-cylinder temperature rises as the heat generation rate increases.
  • the degree of progress of the chemical reaction is low, and combustion can be sequentially performed in the cylinder at a low temperature (for example, about 800 K).
  • the initial low-temperature combustion can be realized by suppressing the number of collisions between oxygen molecules and fuel particles per unit volume in the cylinder or suppressing the momentum of the oxygen molecules.
  • the initial low-temperature combustion which is the combustion of the fuel injected in the “initial fuel injection period” is performed in a state where the ratio of oxygen and fuel spray in the cylinder is reduced.
  • the heat generation rate which is the amount of heat generated per unit time, is relatively small, and combustion is performed with a reduced amount of NOx generated. That is, in this initial low temperature combustion, the temperature in the cylinder is increased while suppressing the amount of NOx generated (the temperature is increased in a range lower than the diffusion combustion start temperature).
  • the injection region of the fuel injected in this “initial combustion fuel injection period” does not reach the smoke generation temperature. It does not reach and the occurrence of smoke is suppressed.
  • the initial low temperature combustion may be either diffusion combustion or premixed combustion.
  • combustion of the fuel injected in the above-mentioned “fuel injection period for continuous combustion” the amount of heat in the cylinder whose temperature has been increased by the initial low-temperature combustion.
  • Premixed combustion is performed using this. That is, combustion is started from a region where the excess air ratio at which combustion is possible with respect to the current in-cylinder temperature is obtained (for example, the excess air ratio becomes “1”). In other words, combustion starts when the air-fuel ratio of the air-fuel mixture reaches an air-fuel ratio that can be ignited at the temperature of the region where the air-fuel mixture exists. In this case, there is no shortage of oxygen in the combustion field, so the occurrence of smoke is suppressed.
  • the fuel injection amount is set to be larger (for example, the fuel injection amount is set to be larger than the fuel injection amount in the “initial combustion fuel injection period” or “joint combustion fuel injection period”). Since the penetration force (penetration) is high, the diffusion combustion by the injected fuel is performed in a relatively wide region in the combustion chamber (region on the outer peripheral side in the combustion chamber), This is performed in a region where the effect of the exhaust gas recirculated by the exhaust gas recirculation device can be fully utilized. For this reason, the combustion temperature in this diffusion combustion is kept relatively low, and the amount of NOx generated in this diffusion combustion is reduced.
  • initial low temperature combustion combustion by injecting fuel in a relatively low temperature environment
  • diffusion combustion that could not exist in the combustion process of a conventional compression ignition type internal combustion engine
  • Control of the start timing of this diffusion combustion and the timing at which the heat generation rate becomes maximum (combustion center of gravity) in a series of combustion are controlled by controlling the "fuel injection period for diffusion combustion". It becomes possible. For this reason, it is possible to prevent the timing at which the heat generation rate is maximized from being greatly shifted to the retard side, and to secure the required torque of the internal combustion engine.
  • the start timing of the “diffusion combustion fuel injection period” is substantially synchronized with the combustion start timing of the fuel injected in the “connected combustion fuel injection period” and the end of the “diffusion combustion fuel injection period”.
  • the fuel injection control means is configured so that the timing is substantially synchronized with the timing at which the heat generation rate in the combustion of the fuel injected in the “connected combustion fuel injection period” becomes maximum.
  • Specific examples of the fuel injection mode in each fuel injection period by the fuel injection control means include the following two types. First, as the first type, as the fuel injection in the “initial combustion fuel injection period”, “joint combustion fuel injection period”, and “diffusion combustion fuel injection period”, “initial combustion fuel injection period” After the fuel injection is completed, the fuel injection is temporarily stopped and then the fuel injection is started in the “connected fuel injection period”. After the fuel injection is completed in the “connected fuel injection period”, the fuel injection is temporarily stopped. After that, fuel injection in the “diffusion combustion fuel injection period” is started.
  • the “initial combustion fuel injection period” Fuel injection in the “continuous combustion fuel injection period” without stopping, and after the fuel injection in the “continuous combustion fuel injection period” is completed, the fuel injection is temporarily performed. After stopping, fuel injection in the “diffusion combustion fuel injection period” is started.
  • the fuel injection amount and fuel injection timing for each of the initial low-temperature combustion, tethered combustion, and diffusion combustion can be individually set. For this reason, the fuel injection form for appropriately controlling the heat generation rate and the increase in the in-cylinder temperature in each combustion can be easily defined, and the temperature management in the cylinder in each combustion can be accurately performed.
  • the fuel injection valve since the interval of the opening / closing operation of the fuel injection valve can be set relatively long, the fuel injection valve has a relatively low opening / closing speed (low responsiveness). Also, the three types of combustion modes described above can be realized, and the cost of the fuel injection system can be reduced. Further, since the number of injections of the fuel injection valve can be reduced, the fuel injection amount flowing in the same region (for example, the region near the injection port of the fuel injection valve) can be reduced, and the fuel in the “initial combustion fuel injection period” can be reduced. Even if the injection amount is relatively large, it is possible to suppress the occurrence of smoke in the same region accompanying the subsequent fuel injection.
  • the ratio reduction operation includes an exhaust gas recirculation operation by the exhaust gas recirculation device, an intake throttle operation in the intake system, an operation to retard the fuel injection timing from the fuel injection valve, and an operation to lower the in-cylinder temperature. At least one of them is executed.
  • the soot rate is effectively reduced by reducing the oxygen concentration in the intake air, reducing the intake air amount, or reducing the kinetic energy of oxygen molecules and fuel particles in the cylinder.
  • the initial low temperature combustion can be easily realized.
  • each fuel injection period includes the following. First, when the in-cylinder temperature is in the range of 750 K or more and less than 900 K, the “initial combustion fuel injection period” is set. Further, after the start of the initial low-temperature combustion, the time when the in-cylinder temperature is in the range of 800 K or more and less than 900 K is set as the “joint combustion fuel injection period”. Further, after the start of the connected combustion, the time after the cylinder temperature reaches 900K is set as the “diffusion combustion fuel injection period”.
  • the in-cylinder temperature is set in a range of less than 900K as the “initial combustion fuel injection period” for the initial low temperature combustion and the “joint combustion fuel injection period” for the continuous combustion.
  • the cylinder internal temperature is less than 750 K, the air-fuel mixture is not likely to self-ignite even if the excess air ratio in the cylinder becomes “1”. Therefore, as the “initial combustion fuel injection period” for the initial low temperature combustion
  • the cylinder temperature is set to a range of 750K or higher. Thereby, the setting method of each fuel injection period can be embodied.
  • the upper limit value of the in-cylinder temperature in the “initial combustion fuel injection period” is a value that can be appropriately set according to the spray state in the cylinder.
  • the fuel injection in the above-mentioned “initial combustion fuel injection period”, “tethered combustion fuel injection period”, and “diffusion combustion fuel injection period” is performed at the time of low load operation and medium load operation of the internal combustion engine.
  • the ratio of the fuel injection amount in the “interconnected combustion fuel injection period” to the total injection amount that is the sum of the fuel injection amounts injected in each injection period is the load in the range from the low load operation to the medium load operation. The higher the value, the larger the setting.
  • the peak value of the heat generation rate in the medium load region where the total injection amount of the fuel injection amount is relatively large can be kept low, leading to an increase in the generation amount of NOx and an increase in combustion noise accompanying the diffusion combustion. None will happen.
  • the fuel injection in the above-mentioned “initial combustion fuel injection period”, “tethered combustion fuel injection period”, and “diffusion combustion fuel injection period” is performed at the time of low load operation and medium load operation of the internal combustion engine.
  • the internal combustion engine is operated at a high load, the average value of the heat generation rate during a predetermined period at the beginning of combustion in the cylinder substantially matches the average value of the heat generation rate during the period when the initial low-temperature combustion is performed.
  • Initial diffusion combustion is performed.
  • the combustion speed is increased by diffusing combustion throughout the combustion process, and at the initial diffusion combustion (for example, within the range of 10 ° CA in crank angle from the start of combustion) in the initial stage of this diffusion combustion.
  • the average value of the heat generation rate during that period substantially matches the average value of the heat generation rate during the period when the initial low-temperature combustion is performed, so that the amount of NOx generated can be suppressed. That is, in this initial diffusion combustion, the amount of NOx generated is suppressed by performing pseudo low temperature combustion. As a result, the required torque can be obtained while improving exhaust emission during high-load operation.
  • the initial low-temperature combustion is performed by interposing the pre-mixed combustion between the initial low-temperature combustion and the diffusion combustion, which could not exist in the same combustion process of the conventional compression auto-ignition internal combustion engine.
  • Combustion and diffusion combustion can coexist.
  • it is possible to combine the suppression of the NOx generation amount, the suppression of the smoke generation amount, and the securing of the required torque, and the exhaust emission and the drivability can be improved.
  • FIG. 1 is a schematic configuration diagram of an engine and its control system according to the embodiment.
  • FIG. 2 is a cross-sectional view showing a combustion chamber of a diesel engine and its peripheral portion.
  • FIG. 3 is a block diagram showing a configuration of a control system such as an ECU.
  • FIG. 4 is a diagram showing a change in the heat generation rate in the cylinder and a fuel injection pattern during low load operation of the engine.
  • FIG. 5 is a diagram showing a change in the heat generation rate in the cylinder and a fuel injection pattern during medium load operation of the engine.
  • FIG. 6 is a diagram showing a change in the heat generation rate in the cylinder and a fuel injection pattern during high-load operation of the engine.
  • FIG. 4 is a diagram showing a change in the heat generation rate in the cylinder and a fuel injection pattern during low load operation of the engine.
  • FIG. 5 is a diagram showing a change in the heat generation rate in the cylinder and a fuel injection pattern during medium load operation of the engine
  • FIG. 7 is a diagram showing a ⁇ T map representing changes in the gas temperature of the combustion field and the equivalence ratio when each divided main injection is performed.
  • FIG. 8 is a cross-sectional view of the upper part of the piston showing the combustion field in the combustion chamber in each combustion.
  • FIG. 9 is a diagram showing a change in the heat generation rate in the cylinder and a fuel injection pattern during low load operation of the engine in the modification.
  • FIG. 10 is a diagram showing a change in the heat generation rate in the cylinder and a fuel injection pattern during medium load operation of the engine in the modified example.
  • FIG. 1 is a schematic configuration diagram of an engine 1 and its control system according to the present embodiment.
  • FIG. 2 is a cross-sectional view showing the combustion chamber 3 of the diesel engine and its periphery.
  • the engine 1 is configured as a diesel engine system having a fuel supply system 2, a combustion chamber 3, an intake system 6, an exhaust system 7 and the like as main parts.
  • the fuel supply system 2 includes a supply pump 21, a common rail 22, an injector (fuel injection valve) 23, a shutoff valve 24, a fuel addition valve 26, an engine fuel passage 27, an addition fuel passage 28, and the like.
  • the supply pump 21 pumps fuel from the fuel tank, makes the pumped fuel high pressure, and supplies it to the common rail 22 via the engine fuel passage 27.
  • the common rail 22 has a function as a pressure accumulation chamber that holds (accumulates) the high-pressure fuel supplied from the supply pump 21 at a predetermined pressure, and distributes the accumulated fuel to the injectors 23.
  • the injector 23 includes a piezoelectric element (piezo element) therein, and is configured by a piezo injector that is appropriately opened to supply fuel into the combustion chamber 3. Details of the fuel injection control from the injector 23 will be described later.
  • the supply pump 21 supplies a part of the fuel pumped up from the fuel tank to the fuel addition valve 26 via the addition fuel passage 28.
  • the added fuel passage 28 is provided with the shutoff valve 24 for shutting off the added fuel passage 28 and stopping fuel addition in an emergency.
  • the fuel addition valve 26 is configured so that the fuel addition amount to the exhaust system 7 becomes a target addition amount (addition amount that makes the exhaust A / F become the target A / F) by an addition control operation by the ECU 100 described later.
  • it is constituted by an electronically controlled on-off valve whose valve opening timing is controlled so that the fuel addition timing becomes a predetermined timing. That is, a desired fuel is injected and supplied from the fuel addition valve 26 to the exhaust system 7 (from the exhaust port 71 to the exhaust manifold 72) at an appropriate timing.
  • the intake system 6 includes an intake manifold 63 connected to an intake port 15a formed in the cylinder head 15 (see FIG. 2), and an intake pipe 64 constituting an intake passage is connected to the intake manifold 63. Further, an air cleaner 65, an air flow meter 43, and a throttle valve (intake throttle valve) 62 are arranged in this intake passage in order from the upstream side.
  • the air flow meter 43 outputs an electrical signal corresponding to the amount of air flowing into the intake passage via the air cleaner 65.
  • the exhaust system 7 includes an exhaust manifold 72 connected to an exhaust port 71 formed in the cylinder head 15, and exhaust pipes 73 and 74 constituting an exhaust passage are connected to the exhaust manifold 72.
  • a maniverter (exhaust gas purification device) 77 including a NOx storage catalyst (NSR catalyst: NOx Storage Reduction catalyst) 75 and a DPNR catalyst (Diesel Particle-NOx Reduction catalyst) 76 is disposed in the exhaust passage.
  • NSR catalyst NOx Storage Reduction catalyst
  • DPNR catalyst Diesel Particle-NOx Reduction catalyst
  • the NSR catalyst 75 is an NOx storage reduction catalyst.
  • alumina Al 2 O 3
  • Alkali metal such as barium (Ba), alkaline earth such as calcium (Ca), rare earth such as lanthanum (La) and yttrium (Y), and noble metal such as platinum (Pt) were supported. It has a configuration.
  • the NSR catalyst 75 occludes NOx in a state where a large amount of oxygen is present in the exhaust gas, has a low oxygen concentration in the exhaust gas, and a large amount of reducing component (for example, an unburned component (HC) of the fuel).
  • reducing component for example, an unburned component (HC) of the fuel.
  • NOx is reduced to NO 2 or NO and released.
  • NO NOx released as NO 2 or NO the N 2 is further reduced due to quickly reacting with HC or CO in the exhaust.
  • HC and CO are oxidized to H 2 O and CO 2 by reducing NO 2 and NO. That is, by appropriately adjusting the oxygen concentration and HC component in the exhaust gas introduced into the NSR catalyst 75, HC, CO, and NOx in the exhaust gas can be purified.
  • the oxygen concentration and HC component in the exhaust gas can be adjusted by the fuel addition operation from the fuel addition valve 26.
  • the DPNR catalyst 76 is, for example, a NOx occlusion reduction catalyst supported on a porous ceramic structure, and PM in the exhaust gas is collected when passing through the porous wall. Further, when the air-fuel ratio of the exhaust gas is lean, NOx in the exhaust gas is stored in the NOx storage reduction catalyst, and when the air-fuel ratio becomes rich, the stored NOx is reduced and released. Further, the DPNR catalyst 76 carries a catalyst that oxidizes and burns the collected PM (for example, an oxidation catalyst mainly composed of a noble metal such as platinum).
  • a cylinder block 11 constituting a part of the engine body is formed with a cylindrical cylinder bore 12 for each cylinder (four cylinders), and a piston 13 is formed inside each cylinder bore 12. Is accommodated so as to be slidable in the vertical direction.
  • the combustion chamber 3 is formed above the top surface 13 a of the piston 13. That is, the combustion chamber 3 is defined by the lower surface of the cylinder head 15 attached to the upper part of the cylinder block 11 via the gasket 14, the inner wall surface of the cylinder bore 12, and the top surface 13 a of the piston 13.
  • a cavity (concave portion) 13 b is formed in a substantially central portion of the top surface 13 a of the piston 13, and this cavity 13 b also constitutes a part of the combustion chamber 3.
  • the concave dimension is small in the central portion (on the cylinder center line P), and the concave dimension is increased toward the outer peripheral side. That is, as shown in FIG. 2, when the piston 13 is in the vicinity of the compression top dead center, the combustion chamber 3 formed by the cavity 13b is a narrow space having a relatively small volume at the center portion, and is directed toward the outer peripheral side. Thus, the space is gradually enlarged (expanded space).
  • the piston 13 has a small end portion 18a of a connecting rod 18 connected by a piston pin 13c, and a large end portion of the connecting rod 18 is connected to a crankshaft which is an engine output shaft.
  • a glow plug 19 is disposed toward the combustion chamber 3.
  • the glow plug 19 functions as a start-up assisting device that is heated red when an electric current is applied immediately before the engine 1 is started and a part of the fuel spray is blown onto the glow plug 19 to promote ignition and combustion.
  • the cylinder head 15 is formed with an intake port 15a for introducing air into the combustion chamber 3 and an exhaust port 71 for discharging exhaust gas from the combustion chamber 3, and an intake valve for opening and closing the intake port 15a. 16 and an exhaust valve 17 for opening and closing the exhaust port 71 are provided.
  • the intake valve 16 and the exhaust valve 17 are disposed to face each other with the cylinder center line P interposed therebetween. That is, the engine 1 is configured as a cross flow type.
  • the cylinder head 15 is provided with the injector 23 that directly injects fuel into the combustion chamber 3.
  • the injector 23 is disposed at a substantially upper center of the combustion chamber 3 in a standing posture along the cylinder center line P, and injects fuel introduced from the common rail 22 toward the combustion chamber 3 at a predetermined timing. It has become.
  • the engine 1 is provided with a supercharger (turbocharger) 5.
  • the turbocharger 5 includes a turbine wheel 52 and a compressor wheel 53 that are connected via a turbine shaft 51.
  • the compressor wheel 53 is disposed facing the intake pipe 64, and the turbine wheel 52 is disposed facing the exhaust pipe 73.
  • the turbocharger 5 performs a so-called supercharging operation in which the compressor wheel 53 is rotated using the exhaust flow (exhaust pressure) received by the turbine wheel 52 to increase the intake pressure.
  • the turbocharger 5 in the present embodiment is a variable nozzle type turbocharger, and a variable nozzle vane mechanism (not shown) is provided on the turbine wheel 52 side. By adjusting the opening of the variable nozzle vane mechanism, the engine 1 supercharging pressure can be adjusted.
  • the intake pipe 64 of the intake system 6 is provided with an intercooler 61 for forcibly cooling the intake air whose temperature has been raised by supercharging in the turbocharger 5.
  • the throttle valve 62 provided further downstream than the intercooler 61 is an electronically controlled on-off valve whose opening degree can be adjusted steplessly. It has a function of narrowing down the area and adjusting (reducing) the supply amount of the intake air.
  • the engine 1 is provided with an exhaust gas recirculation passage (EGR passage) 8 that connects the intake system 6 and the exhaust system 7.
  • the EGR passage 8 is configured to reduce the combustion temperature by recirculating a part of the exhaust gas to the intake system 6 and supplying it again to the combustion chamber 3, thereby reducing the amount of NOx generated.
  • the EGR passage 8 is opened and closed steplessly by electronic control, and the exhaust gas passing through the EGR passage 8 (recirculating) is cooled by an EGR valve 81 that can freely adjust the exhaust flow rate flowing through the passage.
  • An EGR cooler 82 is provided.
  • the EGR passage 8, the EGR valve 81, the EGR cooler 82, and the like constitute an EGR device (exhaust gas recirculation device).
  • the air flow meter 43 outputs a detection signal corresponding to the flow rate (intake air amount) of the intake air upstream of the throttle valve 62 in the intake system 6.
  • the intake air temperature sensor 49 is disposed in the intake manifold 63 and outputs a detection signal corresponding to the temperature of the intake air.
  • the intake pressure sensor 48 is disposed in the intake manifold 63 and outputs a detection signal corresponding to the intake air pressure.
  • the A / F (air-fuel ratio) sensor 44 outputs a detection signal that continuously changes in accordance with the oxygen concentration in the exhaust gas downstream of the manipulator 77 of the exhaust system 7.
  • the exhaust temperature sensor 45 outputs a detection signal corresponding to the temperature of the exhaust gas (exhaust temperature) downstream of the manipulator 77 of the exhaust system 7.
  • the rail pressure sensor 41 outputs a detection signal corresponding to the fuel pressure stored in the common rail 22.
  • the throttle opening sensor 42 detects the opening of the throttle valve 62.
  • the ECU 100 includes a CPU 101, a ROM 102, a RAM 103, a backup RAM 104, and the like.
  • the ROM 102 stores various control programs, maps that are referred to when the various control programs are executed, and the like.
  • the CPU 101 executes various arithmetic processes based on various control programs and maps stored in the ROM 102.
  • the RAM 103 is a memory that temporarily stores calculation results in the CPU 101, data input from each sensor, and the like.
  • the backup RAM 104 is a non-volatile memory that stores data to be saved when the engine 1 is stopped, for example.
  • the CPU 101, the ROM 102, the RAM 103, and the backup RAM 104 are connected to each other via the bus 107 and to the input interface 105 and the output interface 106.
  • the input interface 105 is connected to the rail pressure sensor 41, the throttle opening sensor 42, the air flow meter 43, the A / F sensor 44, the exhaust temperature sensor 45, the intake pressure sensor 48, and the intake temperature sensor 49. Further, the input interface 105 includes a water temperature sensor 46 that outputs a detection signal corresponding to the cooling water temperature of the engine 1, an accelerator opening sensor 47 that outputs a detection signal corresponding to the depression amount of the accelerator pedal, and the engine 1. A crank position sensor 40 that outputs a detection signal (pulse) each time the output shaft (crankshaft) rotates by a certain angle is connected. On the other hand, the injector 23, the fuel addition valve 26, the throttle valve 62, the EGR valve 81, and the like are connected to the output interface 106.
  • the ECU 100 executes various controls of the engine 1 based on the outputs of the various sensors described above.
  • the ECU 100 controls the opening degree of the EGR valve 81 according to the operating state of the engine 1 and adjusts the exhaust gas recirculation amount (EGR amount) toward the intake manifold 63.
  • the EGR amount is set according to an EGR map stored in advance in the ROM 102.
  • this EGR map is a map for determining the EGR amount (EGR rate) using the engine speed and the engine load as parameters, and is for setting the EGR amount that can reduce the NOx emission amount to the exhaust system. belongs to.
  • This EGR map is created in advance by experiments, simulations, or the like.
  • the engine speed calculated based on the detection value of the crank position sensor 40 and the opening of the throttle valve 62 (corresponding to the engine load) detected by the throttle opening sensor 42 are applied to the EGR map.
  • An EGR amount (opening degree of the EGR valve 81) is obtained.
  • the ECU 100 executes fuel injection control for the injector 23.
  • fuel injection control of the injector 23 in this embodiment, sub-injection such as pilot injection, pre-injection, after-injection, and post-injection that is executed in a conventional general diesel engine is not executed, and engine torque is obtained. Therefore, only the main injection is performed.
  • the total fuel injection amount in the main injection is a fuel injection amount necessary for obtaining a required torque that is determined according to an operating state such as engine speed, accelerator operation amount, cooling water temperature, intake air temperature, and environmental conditions. Is set. For example, the higher the engine speed (the engine speed calculated based on the detection value of the crank position sensor 40), the larger the accelerator operation amount (the accelerator pedal depression amount detected by the accelerator opening sensor 47). The higher the required accelerator torque of the engine 1, the higher the accelerator opening.
  • the fuel injection pressure for executing the main fuel injection is determined by the internal pressure of the common rail 22.
  • the common rail internal pressure generally, the target value of the fuel pressure supplied from the common rail 22 to the injector 23, that is, the target rail pressure, increases as the engine load (engine load) increases and the engine speed (engine speed) increases. It will be expensive. That is, when the engine load is high, the amount of air sucked into the combustion chamber 3 is large. Therefore, a large amount of fuel must be injected from the injector 23 into the combustion chamber 3, and therefore the injection from the injector 23 is performed. The pressure needs to be high.
  • the target rail pressure is generally set based on the engine load and the engine speed.
  • the target rail pressure is set according to a fuel pressure setting map stored in the ROM 102, for example. That is, by determining the fuel pressure according to this fuel pressure setting map, the valve opening period (injection rate waveform) of the injector 23 is controlled, and the fuel injection amount during the valve opening period can be defined.
  • the optimum value varies depending on the temperature conditions of the engine 1 and the intake air.
  • the ECU 100 adjusts the fuel discharge amount of the supply pump 21 so that the common rail pressure becomes equal to the target rail pressure set based on the engine operating state, that is, the fuel injection pressure matches the target injection pressure. To measure. Further, the ECU 100 determines the fuel injection amount and the fuel injection form based on the engine operating state. Specifically, the ECU 100 calculates the engine rotation speed based on the detection value of the crank position sensor 40 and obtains the depression amount (accelerator opening) to the accelerator pedal based on the detection value of the accelerator opening sensor 47. The total main injection amount (injection amount in main injection) is determined based on the engine speed and the accelerator opening.
  • the total main injection amount (total fuel injection amount for obtaining the required torque) required for the main injection is ensured.
  • the combustion forms in the combustion chamber 3 of the fuels injected by the divided main injections are made different from each other.
  • each divided main injection is set by setting the injection timing (timing for starting fuel injection) and the injection period (the injection amount per one divided main injection) in each divided main injection.
  • the combustion modes of the fuel (spray) injected in the above are made different from each other. This will be specifically described below.
  • the outline of the combustion mode during the combustion process in the combustion chamber 3 in the present embodiment is as follows.
  • initial low-temperature combustion and diffusion combustion are performed during the same combustion process, and further, joint combustion for connecting these initial low-temperature combustion and diffusion combustion by premixed combustion is performed. That is, these different combustion modes are continuously performed during the same combustion process in the same combustion chamber.
  • interstage combustion which is the second-stage combustion
  • the diffusion combustion which is the third-stage combustion
  • the initial low-temperature combustion which is the first stage combustion
  • fuel is injected while performing a drought reduction operation for reducing the droop rate between oxygen in the cylinder and fuel spray (referred to in the present invention).
  • the fuel is sequentially burned in the cylinder by the combustion of the fuel.
  • a predetermined period when the in-cylinder temperature is in the range of 750 K or more and less than 900 K is set as the initial combustion fuel injection period and the low temperature combustion main injection is performed to perform the initial low temperature combustion.
  • the upper limit value of the in-cylinder temperature in the “initial combustion fuel injection period” is a value that can be appropriately set according to the spray state in the cylinder, and is increased by a large amount of EGR. Therefore, this value is not limited to 900K and may be 950K, 1000K, or the like (hereinafter, the case of 900K will be described as a representative).
  • the temperature in the cylinder is lower than a predetermined diffusion combustion start temperature (for example, 900 K) leading to diffusion combustion.
  • a predetermined diffusion combustion start temperature for example, 900 K
  • fuel injection fuel injection in the fuel injection period for connecting combustion in the present invention.
  • a predetermined period when the combustion field temperature of the initial low-temperature combustion is in a range of 800 K or more and less than 900 K is set as the connecting combustion fuel injection period, and the connecting combustion main injection is performed to perform the connecting combustion. Let it burn.
  • the diffusion combustion which is the third stage combustion, after the start of the premixed combustion, fuel injection is performed when the temperature in the cylinder is equal to or higher than the diffusion combustion start temperature by the premixed combustion (the present invention).
  • the diffusion combustion is performed by performing the diffusion combustion main injection immediately after the combustion field temperature of the joint combustion reaches 900K.
  • the amount of fuel injection for realizing each combustion mode is the same as that for fuel injection for performing initial low-temperature combustion, which is the first stage combustion (hereinafter referred to as main injection for low-temperature combustion).
  • a large amount of fuel injection is set in fuel injection (hereinafter referred to as “main injection for continuous combustion”) for performing continuous combustion, which is two-stage combustion.
  • main injection for continuous combustion fuel injection for performing diffusion combustion
  • main injection for diffusion combustion fuel in fuel injection for performing joint combustion, which is combustion in the second stage.
  • a large injection amount is set (fuel injection control operation by the fuel injection control means).
  • the penetration force of the fuel injected by the main combustion injection is set higher than the penetration force of the fuel injected by the low temperature combustion main injection, and the penetration of the fuel injected by the main combustion injection is made higher.
  • the penetration force of the fuel injected by the main injection for diffusion combustion is set higher than the force. Details of the penetration force will be described later.
  • combustion modes three different and consecutive combustion modes are executed during low load operation and medium load operation of the engine 1, and will be described later when the engine 1 is operated under high load.
  • diffusion combustion is performed by fuel injection twice.
  • FIG. 4 shows a change in the heat generation rate in the cylinder and the fuel injection pattern during the low-load operation of the engine 1 and during the main injection execution period.
  • FIG. 5 shows the change in the heat generation rate in the cylinder and the fuel injection pattern during the middle load operation of the engine 1 and during the execution period of the main injection.
  • FIG. 6 shows the change in the heat generation rate in the cylinder and the fuel injection pattern during the high-load operation of the engine 1 and during the execution period of the main injection, respectively.
  • the horizontal axis indicates the crank angle and the vertical axis indicates the heat generation rate. Further, in the waveform of the fuel injection pattern in each figure, the horizontal axis represents the crank angle, and the vertical axis represents the injection rate (corresponding to the backward movement amount of the needle provided in the injector 23). TDC in the figure indicates the crank angle position corresponding to the compression top dead center of the piston 13.
  • FIG. 7 shows a combustion field (for example, in the case of an injector 23 having 10 injection holes) in which the fuel is injected in each fuel injection period in the combustion chamber 3 during low load operation of the engine 1.
  • It is a map (generally called a ⁇ T map) showing changes in gas temperature in the chamber 3 (more specifically, in each of the 10 combustion fields in the cavity 13b) and the equivalent ratio in the combustion field. That is, when the main injection (each divided main injection) is executed with the fuel injection pattern shown in FIG. 4, the fuel injected by the low-temperature combustion main injection for performing the initial low-temperature combustion, which is the first-stage combustion, is performed.
  • Combustion field combustion field of fuel injected by main combustion for joint combustion for performing joint combustion as second-stage combustion
  • main injection for diffusion combustion for performing diffusion combustion as third-stage combustion
  • the change of the combustion field environment (gas temperature and equivalent ratio of the combustion field) in each of the combustion fields of the fuel injected at is indicated by arrows.
  • the smoke generation region is a region where the combustion field gas temperature is relatively high and the combustion field equivalent ratio is rich. Further, when the combustion field environment reaches the NOx generation region, NOx is generated in the exhaust gas. This NOx generation region is a region where the combustion field gas temperature is relatively high and the combustion field equivalent ratio is on the lean side. Further, the X region shown in FIG. 7 is a region where HC is likely to be generated in the exhaust gas, and the Y region is a region where CO is likely to be generated in the exhaust gas.
  • the low-temperature combustion main injection is the most advanced main injection among the divided main injections.
  • the main combustion injection is a retarded main injection than the low-temperature combustion main injection, and is set larger than the injection amount in the low-temperature combustion main injection.
  • the diffusion combustion main injection is a main injection on the retard side more than the joint combustion main injection, and is set to be larger than the injection amount in the joint combustion main injection. The injection amount of these divided main injections will be described later.
  • a predetermined interval is provided between the low-temperature combustion main injection and the connection combustion main injection, and between the connection combustion main injection and the diffusion combustion main injection. That is, after the low temperature combustion main injection is executed, the fuel injection is temporarily stopped (the injector 23 is shut off), and after a predetermined interval, the connection main combustion injection is started. In addition, after performing the continuous combustion main injection, the fuel injection is temporarily stopped (the injector 23 is shut off), and after a predetermined interval, the diffusion combustion main injection is started.
  • This interval is set, for example, as the shortest valve closing period (determined by the performance of the injector 23, and the shortest period from when the injector 23 is closed to when the valve starts to open: 200 ⁇ s, for example) as an interval capable of spray cooling. .
  • the interval is set so that the start timing of the diffusion combustion main injection is substantially synchronized with the start timing of the connected combustion.
  • the interval of this divided main injection is not limited to the above value, and is appropriately set so that the function in each combustion is exhibited, as will be described later.
  • the total main injection amount during low load operation is set to 30 mm 3 , for example, the total main injection amount during medium load operation is set to 40 mm 3, and the total main injection amount during high load operation is, for example, Set to 60 mm 3 . These values are not limited to this.
  • the low-temperature combustion main injection during the low-load operation starts injection on the advance side (for example, BTDC 15 °) from the compression top dead center (TDC) of the piston 13, and The injection is terminated on the advance side from the compression top dead center.
  • TDC compression top dead center
  • the fuel injection amount (corresponding to the valve opening period of the injector 23) in the low temperature combustion main injection during the low load operation is set to 2 mm 3 , for example.
  • the initial low temperature combustion is performed in the central portion in the combustion chamber.
  • the initial low-temperature combustion is performed in a relatively narrow region indicated by a region ⁇ in FIG. 8 (a cross-sectional view showing the right half of the upper portion of the piston).
  • a rate reduction operation is performed to reduce the rate of oxygen and fuel spray in the cylinder.
  • the ratio reduction operation includes at least one of the exhaust gas recirculation operation by the EGR device, the intake throttle operation in the intake system, the operation of retarding the fuel injection timing from the injector 23, and the operation of reducing the in-cylinder temperature.
  • the intake throttle operation in the intake system includes an intake throttle operation by the throttle valve 62 provided in the intake system, a supercharging reduction operation by the turbocharger 5, and an SCV (swirl not shown) provided in the intake system. Control valve) intake throttle operation and the like.
  • Examples of the operation for decreasing the in-cylinder temperature include an operation for increasing the cooling capacity of the intercooler 61 and the EGR cooler 82, and an operation for decreasing the compression ratio in the cylinder.
  • the opening degree of the EGR valve 81 is controlled by setting the target EGR rate to 30%, for example.
  • the opening of the throttle valve 62 is reduced to, for example, 75%.
  • the fuel injection timing is executed within the ATDC range after the piston 13 reaches the compression top dead center (TDC).
  • TDC compression top dead center
  • the combustion of the fuel injected by the low-temperature combustion main injection is performed at a relatively low temperature in the cylinder (for example, about 800K). ), And combustion occurs in a state where the heat generation rate has been low. For this reason, the temperature in the cylinder is gradually increased (for example, increased to about 850 K) without causing an increase in the amount of NOx generated or a combustion noise due to a rapid increase in the heat generation rate. Further, even if the air-fuel ratio in the injection region (the region ⁇ ) of the fuel injected in the low-temperature combustion main injection is rich, since the low-temperature combustion is performed as described above, the injection region has a smoke generation temperature. Is not reached, and the occurrence of smoke is also suppressed (see initial low temperature combustion in FIG. 7).
  • the injection amount (corresponding to the valve opening period of the injector 23) in the main injection for low-temperature combustion is set by, for example, experiments or simulations.
  • the main combustion injection is in the vicinity of the timing when the heat generated by the low temperature combustion reaches the maximum value (peak value) after the fuel injected by the low temperature combustion main injection starts combustion (initial low temperature combustion).
  • fuel injection is started before the heat generation rate reaches the maximum value. For example, the injection is started around BTDC 8 °.
  • the peak value of the heat generation rate due to the initial low temperature combustion is also relatively low, and when this heat generation rate exceeds the peak value, heat generation is gradually
  • the injection is started before the heat generation rate by the initial low temperature combustion exceeds the peak value, and the amount of heat in the cylinder obtained by the initial low temperature combustion is reduced. It is used for combustion.
  • the fuel injection amount in the main combustion injection is set to 6 mm 3 , for example. This value is not limited to this.
  • combustion of the fuel injected by the low temperature main injection is performed. It passes through the field (combustion field of initial low temperature combustion), and at this time, the temperature rises due to the heat of this combustion field.
  • the temperature in the cylinder is still relatively low (about 850 K)
  • the fuel injected by the main combustion injection does not reach diffusion combustion, but becomes premixed combustion (heat generation rate waveform in FIG. 4). (See the shaded area in).
  • the fuel injected in the main combustion injection and the air in the cylinder are agitated, and combustion starts from the region where the excess air ratio becomes approximately “1”.
  • the premixed combustion is performed in a region indicated by a region ⁇ in FIG.
  • the injection amount in the main combustion injection is also set by, for example, experiments or simulations.
  • fuel injection is started at the timing when the temperature in the cylinder exceeds the temperature (900K) at which diffusion combustion is possible after the fuel injected by the connection combustion main injection burns (connection combustion).
  • the fuel injection amount in this diffusion combustion main injection is set to 12 mm 3 , for example. This value is not limited to this. In this way, the fuel injected by the diffusion combustion main injection has a higher penetration than the fuel injected by the continuous combustion main injection, so that the combustion of the fuel injected by the low temperature combustion main injection is performed. 8 (region indicated by ⁇ in FIG. 8) and the combustion field (region indicated by ⁇ in FIG. 8) of the fuel injected by the joint combustion main injection. While rising, it reaches a relatively wide space in the combustion chamber 3 (space on the outer periphery side in the cavity 13b: a region indicated by ⁇ in FIG. 8), and in this portion, the exhaust gas recirculated by the EGR device is used.
  • the combustion temperature reduction effect is fully exhibited. For this reason, diffusion combustion is performed without causing an increase in the amount of NOx generated and an increase in combustion noise.
  • the region ⁇ in FIG. 8 is a region where the fuel injected by the diffusion combustion main injection is burned while being returned to the center side in the cylinder by the airflow generated along the inner wall surface of the cavity 13b. .
  • the initial low-temperature combustion field is defined as region ⁇ in FIG. 8
  • the connected combustion field is defined as region ⁇ in FIG. 8
  • the diffusion combustion field is defined as region ⁇ in FIG.
  • the start timing of the diffusion combustion main injection is substantially synchronized with the start timing of the joint combustion, and the end timing of the diffusion combustion main injection is In other words, it is possible to substantially synchronize with the timing at which the heat generation rate in the connected combustion becomes maximum.
  • the peak timing of the heat generation rate in the combustion can be controlled by controlling the fuel injection timing. This will be specifically described below.
  • fuel ignition delays in diesel engines include physical delays and chemical delays.
  • the physical delay is the time required for evaporation / mixing of the fuel droplets and depends on the gas temperature of the combustion field.
  • the chemical delay is the time required for chemical bonding / decomposition of fuel vapor and oxidation heat generation. As described above, in the situation where the cylinder is sufficiently preheated, the physical delay can be minimized, and as a result, the ignition delay can be minimized.
  • controlling the fuel injection timing of the diffusion combustion main injection is substantially equivalent to controlling the combustion timing of the diffusion combustion and the peak timing of the heat generation rate, thereby greatly improving the controllability of combustion.
  • the controllability of combustion can be greatly improved by controlling the heat release rate waveform by diffusion combustion. For example, by starting the main injection for diffusion combustion near TDC as described above, the peak timing of the heat generation rate can be reached at ATDC 10 °.
  • injection amount in the main injection for diffusion combustion is also set by, for example, experiments or simulations.
  • the penetration force of the fuel injected in each main injection will be specifically described.
  • the injector 23 when fuel injection is started in response to the injection command signal, the opening area of the injection hole is gradually increased as the needle closing the injection hole is retracted from the injection hole. When the needle moves to the last retracted position, the opening area of the injection hole becomes maximum. However, if the injection command signal is canceled before the needle reaches the last retracted position (when the valve closing command is received), the needle moves forward in the valve closing direction while moving backward. That is, in this case, the fuel injection is terminated without maximizing the opening area of the injection hole. For this reason, the longer the injection period is set, the larger the opening area of the injection hole is obtained.
  • the opening area of the injection hole is correlated with the flight distance of fuel (spray) injected from the injection hole.
  • the size of the droplet of fuel injected from the injection hole is also large, so that the kinetic energy is also large (the penetration force is large). Yes. For this reason, the flight distance of this fuel droplet becomes long.
  • the size of the droplet of fuel injected from the injection hole is also small, so the kinetic energy is small (penetration force is small). ing. For this reason, the flight distance of this fuel droplet is also short.
  • valve opening period of the injector 23 when the valve opening period of the injector 23 is set to be relatively long (in other words, when the injection amount per main injection is set to be relatively large), the needle reaches the last retracted position. Since the opening area of the injection hole becomes maximum due to the movement, the flight distance of the fuel droplet in this case becomes long. That is, most of the fuel injected from the injector 23 can fly up to the vicinity of the outer peripheral end of the cavity 13b.
  • the needle may move to the last retracted position. Since the opening area of the injection hole is small, the flight distance of the fuel droplet in this case is shortened. That is, most of the fuel injected from the injector 23 can fly only to the vicinity of the center of the cavity 13b.
  • the injection period in the main combustion combustion injection is made longer than the injection period in the low temperature combustion main injection, and the diffusion combustion main injection is longer than the injection period in the main combustion combustion injection.
  • the injection period for injection is set longer. For this reason, compared to the fuel injection amount in the low-temperature combustion main injection, the fuel injection amount in the continuous combustion main injection is increased, and the penetration force is also increased. Further, the fuel injection amount in the diffusion combustion main injection is increased and the penetration force is increased as compared with the fuel injection amount in the main combustion injection.
  • the combustion field of the fuel injected by the low-temperature combustion main injection is formed in a relatively narrow area in the inner peripheral portion of the cavity 13b (region ⁇ in FIG. 8). Further, the combustion field of the fuel injected by the main combustion injection is formed on the outer peripheral side of the combustion field of the fuel injected by the main injection for low temperature combustion (region ⁇ in FIG. 8). Further, the combustion field of the fuel injected by the diffusion combustion main injection is formed in a relatively enlarged area of the outer peripheral portion of the cavity 13b (region ⁇ in FIG. 8).
  • the fuel injected by the main combustion combustion injection passes through the combustion field of the fuel injected by the low temperature combustion main injection, that is, the combustion field where the initial low temperature combustion is performed, At that time, the premixed combustion is reached by receiving heat from the combustion field.
  • the fuel injected by the diffusion combustion main injection is not only the combustion field of the fuel injected by the low temperature combustion main injection, but also the combustion field of the fuel injected by the splicing main injection, that is, the premixed combustion. Passes through the combustion field where the combustion is carried out, and at that time, it receives the amount of heat from the combustion field and reaches the diffusion combustion.
  • FIG. 7 is a map showing changes in the gas temperature of the combustion field and the equivalence ratio of the combustion field.
  • the total main injection amount is larger than that during the low load operation described above, but in each main injection (low temperature combustion main injection, tethered combustion main injection, diffusion combustion main injection). If the fuel injection amount is increased at the same ratio, the combustion speed in the diffusion combustion is rapidly increased, the peak value of the heat generation rate is excessively increased, the amount of NOx generated is increased, and the combustion noise is increased. May increase.
  • the fuel injection amount in the low temperature combustion main injection and the continuous combustion main injection is increased, while the fuel injection amount in the diffusion combustion main injection is decreased,
  • the main injection amount can be secured (see the waveform of the fuel injection pattern in FIG. 5). Thereby, it is possible to avoid an increase in the amount of NOx generated and an increase in combustion noise due to diffusion combustion.
  • the upper limit of the fuel injection amount in the main injection for low-temperature combustion is set in order to maintain the low-temperature combustion described above.
  • the upper limit value of the fuel injection amount varies depending on the in-cylinder temperature at the injection start timing of the low temperature combustion main injection. That is, the higher the in-cylinder temperature, the lower the upper limit value is set.
  • the initial low temperature combustion, the connection combustion, and the diffusion combustion are sequentially performed as in the case of the low load operation described above. Since the functions of these combustions are the same as those in the low-load operation described above, description thereof is omitted here.
  • the combustion speed is increased by diffusing combustion throughout the same combustion process, and initial diffusion combustion (the initial stage shown in FIG. 6), which is the initial stage of this diffusion combustion, is performed.
  • initial diffusion combustion the initial stage shown in FIG. 6
  • the average value of the heat generation rate during that period is substantially matched with the average value of the heat generation rate during the period when the initial low-temperature combustion is performed, so that the amount of NOx generated can be suppressed.
  • the fuel injection amount of the preceding split main injection (pseudo low temperature combustion main injection) is set to be relatively small. Set the combustion period short. Thereafter, a relatively large amount of fuel injection (diffusion combustion main injection) is performed so as to ensure a total main injection amount that provides engine torque according to the load. Since the combustion during this high load operation is diffusion combustion and the combustion speed is high, the injection timing of the main injection for pseudo low temperature combustion is the main temperature for low temperature combustion during the low load operation and the middle load operation described above. It is set on the retard side (near TDC) with respect to the injection timing of injection.
  • the heat generation rate temporarily increases and then the heat generation rate decreases.
  • the average value of the heat generation rate during this combustion period is the heat during the period when the initial low-temperature combustion performed during the low-load operation and the medium-load operation is performed.
  • the generation amount of NOx is suppressed so as to substantially coincide with the average value of the generation rate.
  • the heat generation rate waveform indicated by a broken line in FIG. 6 is obtained during the low load operation, and the heat generation rate indicated by a solid line is obtained during the high load operation.
  • a region where the heat generation rate waveform during high load operation exceeds the heat generation rate waveform during low load operation (region H1 in FIG. 6), and heat during low load operation.
  • the heat generation rate during the high load operation during the initial diffusion combustion period Is approximately equal to the average value of the heat generation rate during the period when the initial low-temperature combustion, which was performed during the low-load operation, is performed. Thereby, the effect equivalent to the initial low temperature combustion mentioned above is acquired.
  • initial low temperature combustion combustion in a relatively low temperature environment
  • diffusion combustion combustion in a relatively high temperature environment
  • Control of the start timing of this diffusion combustion and the timing at which the heat generation rate becomes maximum (combustion center of gravity) in a series of combustion are controlled by controlling the "fuel injection period for diffusion combustion". It becomes possible. For example, by setting this combustion center of gravity in the vicinity of ATDC 10 °, it is possible to realize a combustion mode with the highest combustion efficiency. For this reason, it is possible to prevent the timing at which the heat generation rate is maximized from being greatly shifted to the retard side, and to secure the required torque of the internal combustion engine. As a result, it is possible to simultaneously suppress the NOx generation amount, the smoke generation amount, and the required torque.
  • the NOx generation amount can be greatly reduced, so that the NSR catalyst 75 and the DPNR catalyst 76 can be downsized, and the NOx generation amount can be made substantially “0”. Therefore, it is possible to eliminate the NSR catalyst 75 and the DPNR catalyst 76 and replace the three-way catalyst in the exhaust system 6 instead. According to this, it is possible to realize an exhaust system having a relatively simple configuration similar to that of a gasoline engine in a diesel engine.
  • the fuel injection period corresponding to each of the initial low-temperature combustion, continuous combustion, and diffusion combustion is individually set. That is, three types of combustion modes corresponding to each of them are realized by sequentially performing three fuel injections.
  • the initial low-temperature combustion, continuous combustion, and diffusion combustion are performed by two fuel injections.
  • FIG. 9 shows the change in the heat generation rate in the cylinder and the fuel injection pattern during the low-load operation of the engine 1 in the present modification and during the execution period of the main injection.
  • FIG. 10 shows a change in the heat generation rate in the cylinder and the fuel injection pattern during the middle load operation of the engine 1 of the present modification and during the execution period of the main injection.
  • the change of the heat release rate and the fuel injection pattern at the time of high load operation of the engine 1 in this modification are the same as those of the above-described embodiment, the description thereof is omitted here.
  • the preceding stage fuel injection in this modification combines both the low temperature combustion main injection and the joint combustion main injection in the above-described embodiment.
  • it is called a main injection for low-temperature combustion and joint combustion. That is, the fuel injected in the first half during the injection period of the low-temperature combustion / joint combustion main injection becomes the fuel for the initial low-temperature combustion, and the fuel injected in the second half becomes the fuel for the joint combustion.
  • the latter-stage fuel injection corresponds to the diffusion combustion main injection in the above-described embodiment.
  • the interval of the opening / closing operation of the injector 23 can be set relatively long. Even the injector 23 having a low general opening / closing speed (low responsiveness) can realize the above-described three types of combustion modes, and the cost of the fuel injection system can be reduced. Further, since the number of injections of the injector 23 can be reduced, the fuel injection amount flowing in the same region (region near the injection port of the injector 23: region ⁇ in FIG. 8) can be reduced, and the fuel in the low-temperature combustion main injection can be reduced. Even if the injection amount is relatively large, it is possible to suppress the occurrence of smoke in the above-described region due to the subsequent fuel injection.
  • the NSR catalyst 75 and the DPNR catalyst 76 are provided as the manipulator 77.
  • the NSR catalyst 75 and a DPF Diesel Particle Filter may be provided.
  • the exhaust gas in the exhaust manifold 72 is returned to the intake system 6 as the EGR device.
  • the present invention is not limited to this, and an LPL (Low Pressure Loop) EGR device that recirculates exhaust gas downstream of the turbine wheel 52 in the turbocharger 5 to the intake system 6 may be employed.
  • LPL Low Pressure Loop
  • the start timing of the initial low-temperature combustion performed during the low load operation and the medium load operation is set to BTDC (advanced side from the compression top dead center of the piston 13).
  • the present invention is not limited to this, and the start timing of the initial low temperature combustion is set to TDC (compression top dead center of the piston 13). In some cases, the start timing of the initial low temperature combustion is set to ATDC (compression top dead center of the piston 13). It is also possible to set it to the retard side).
  • the present invention can be applied to fuel injection control in a common rail in-cylinder direct injection multi-cylinder diesel engine mounted on an automobile.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

 エンジンの低負荷運転時及び中負荷運転時に、初期低温燃焼、予混合燃焼、拡散燃焼で成る一連の燃焼形態を実施する。初期低温燃焼は、気筒内での酸素と燃料噴霧との邂逅率を低下させる動作を行いながら微小噴射を行うことにより実施する。これにより熱発生率を低く維持してNOx発生量を抑える。予混合燃焼は、初期低温燃焼の熱量を受けることで実施され、スモークの発生量が抑えられる。拡散燃焼は、上記予混合燃焼の燃焼場を燃料が通過することで行われ、且つその燃料噴射タイミングを制御することで、上記一連の燃焼において熱発生率が最大になるタイミングが適切に調整可能となる。これにより、NOx発生量の抑制と、スモーク発生量の抑制と、要求トルクの確保とが連立可能になる。

Description

内燃機関の制御装置
 本発明は、ディーゼルエンジンに代表される圧縮自着火式の内燃機関の制御装置に係る。特に、本発明は、燃焼室内における燃焼形態の適正化を図るための対策に関する。
 ディーゼルエンジン等のように希薄燃焼を行うエンジンでは、高い空燃比(リーン雰囲気)の混合気を燃焼させる運転領域が全運転領域の大部分を占めているため、窒素酸化物(以下、NOxという)が比較的多く排出されることが懸念される。その対策として、エンジンの排気通路には、排気ガス中に含まれるNOxを吸蔵(吸収)するためのNOx吸蔵触媒が配置されている。このNOx吸蔵触媒によってNOxを吸蔵して排気ガスを浄化するようにしている。
 燃焼室内での燃焼に伴うNOxの発生量を抑制するための構成として、排気ガスの一部を吸気通路に還流させる排気還流(EGR:Exhaust Gas Recirculation)装置を備えさせることが知られている(例えば下記の特許文献1及び特許文献2を参照)。
 上記EGR装置は、エンジンの排気通路及び吸気通路を互いに連通させるEGR通路と、このEGR通路に設けられたEGRバルブとを備えている。そして、EGRバルブの開度を調整することにより、排気通路からEGR通路を経て吸気通路へ還流される排気ガスの量(EGR量)を調整し、吸気中のEGR率を、予め設定された目標EGR率に設定するようにしている。このようにしてEGR装置によって排気ガスの一部が吸気通路に還流されると、燃焼室内での燃焼温度が低下してNOxの生成が抑制され、排気エミッションが改善されることになる。
 一方、上記ディーゼルエンジンの膨張(燃焼)行程において、燃焼室内で混合気の不完全燃焼が生じた場合、排気ガス中にスモークが発生し、排気エミッションの悪化を招いてしまう。このスモークの発生量を低減する対策として、エンジントルクを得るための燃料噴射であるメイン噴射を複数回の分割メイン噴射に分割して噴射することが提案されている。この場合、メイン噴射1回当たりの噴射量を低減させることで燃焼場での酸素不足の解消を図り、スモークの発生が抑制される。
特開2004-3415号公報 特開2002-188487号公報 特開2001-221092号公報 特開2001-193526号公報 特開2001-164968号公報
 しかしながら、上記NOxの発生量を確実に抑制するべくEGR装置による吸気通路への排気ガス還流量を比較的多く設定した場合(例えばEGR率を30%に設定した場合など)、吸気中の酸素量が大幅に低下することになる。このため、不完全燃焼を回避してスモークを発生させないようなメイン噴射を実行しようとすると、メイン噴射1回当たりの噴射量を極端に少なくせねばならなくなる可能性がある。その結果、ドライバの要求するエンジントルク(以下、要求トルクと呼ぶ)を得るための十分な燃料噴射量を確保することができず、エンジンのトルク不足を招いてしまい、ドライバビリティの悪化を招く可能性がある。
 また、上記メイン噴射の噴射タイミングを遅角させることによりNOxの発生量を削減することも知られているが、この場合にも、上記メイン噴射の噴射タイミングを遅角させたことに伴って燃焼効率が低下し、エンジントルクが一時的に低下するトルク空白期間が発生することになってドライバビリティの悪化を招いてしまうことになる。
 このように、これまでの燃焼室内での燃焼形態にあっては、NOx発生量の抑制と、スモーク発生量の抑制と、要求トルクの確保とを連立させることは困難であった。
 尚、特許文献1には、NOxの発生量及びスモークの発生量を共に略「0」にすることが可能なEGR率(具体的にはEGR率55%)について開示されている。しかしながら、このような制御手法では、EGR率の過上昇により失火を招く可能性が非常に高く、上記要求トルクを得ることは困難であると考えられる。例えば、制御にバラツキが生じてEGR率が上記値(EGR率55%)から僅かでも低下した場合には大量のスモークが発生し、逆に、EGR率が上記値から僅かでも上昇した場合にはエンジンストールに至ってしまうため極めて信頼性に乏しく実用化することはできない技術である。
 また、特許文献2には、NOx触媒の再生運転時において、燃焼室内が予混合燃焼であれば空気過剰率を低く設定し、拡散燃焼であれば空気過剰率を高く設定することで、スモークの発生量を抑制しつつNOx浄化率の向上を図ることが開示されている。しかしながら、この特許文献2に開示されている技術は、NOx触媒の再生運転時におけるNOx浄化率を向上させるものであり、燃焼室内での燃焼に伴うNOxの発生量を抑制できるものではない。つまり、この特許文献2においても、NOx発生量の抑制と、スモーク発生量の抑制と、要求トルクの確保とを連立することは困難である。
 また、特許文献3には、パイロット噴射により予混合燃焼を行わせた後にメイン噴射により拡散燃焼を行わせて、NOx低減効果を得ることが開示されている。しかしながら、「パイロット噴射の増量により、メイン噴射の燃料の燃焼までに生じる既燃ガスの量が増加する」との記載からすると、メイン噴射の開始時には筒内温度が十分に上昇しており(燃料の自着火温度以上に上昇しており)、メイン噴射による拡散燃焼時には、気筒内での熱発生率が急激に上昇することになるためNOx低減効果を十分に得ることは不可能であると考えられる。つまり、この特許文献3にあっては、NOx低減効果は限定的であって、しかも、NOx発生量の大幅な抑制と、スモーク発生量の抑制と、要求トルクの確保とを連立することは困難である。
 更に、特許文献4には、過給による吸気量の増量と圧縮行程での副噴射による燃焼性向上とによってスモークの発生量を低減することについては開示されているものの、上記特許文献3の場合と同様に、メイン噴射による拡散燃焼時には、副噴射での予混合燃焼によって気筒内温度が十分に上昇しているため、熱発生率が急激に上昇することになり、NOx低減効果を十分に得ることは不可能である。つまり、この特許文献4にあっても、NOx発生量の大幅な抑制と、スモーク発生量の抑制と、要求トルクの確保とを連立することは困難である。
 また、特許文献5には、大量EGRと高スワールとを利用した低温予混合燃焼を行うことで燃焼温度を低下させ、これによってNOx発生量の抑制とスモーク発生量の抑制との両立を可能にしたMK(Modulated Kinetic)燃焼が開示されている。しかし、このMK燃焼では、各気筒における個別の燃焼過程それぞれが低温予混合燃焼で行われるものであり、空気と燃料が予混合された後の混合気の着火タイミングの制御、つまり、気筒内での燃焼開始タイミングの制御が困難であり、また、その燃焼に伴う熱発生率がピーク(最大)となるタイミングの制御が困難である。その結果、燃焼開始タイミングや熱発生率のピークタイミングが大幅に遅角側にずれてしまう可能性があり、この場合、エンジントルクが大幅に低下してしまって、要求トルクを確保できなくなる可能性がある。
 本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、NOx発生量の抑制と、スモーク発生量の抑制と、要求トルクの確保とを連立できる内燃機関の制御装置を提供することにある。
 -課題の解決原理-
 上記の目的を達成するために講じられた本発明の解決原理は、燃焼室内での燃焼形態として3種類の燃焼形態が段階的に行われ、または、一部同時並行されるようにしている。先ず、低温度での初期燃焼を行ってNOx発生を抑制しながら気筒内を温度上昇させる。そして、この初期燃焼(低温燃焼)を行ったことで、その後の気筒内での燃焼としては拡散燃焼には至らせず予混合燃焼を行わせる。この予混合燃焼によりスモークの発生を抑制する。上記予混合燃焼のための燃料噴射を行った後に、この予混合燃焼によって温度上昇した気筒内への燃料噴射によって拡散燃焼を行わせるようにしている。この拡散燃焼を行うための燃料の噴射タイミングを適切に管理することにより、内燃機関のトルクが効果的に発生できる燃焼形態を実現する。つまり、この一連の燃焼において熱発生率が最大になるタイミングを、この拡散燃焼のための燃料の噴射タイミングによって管理することができるようにしている。尚、この拡散燃焼のための燃料の噴射開始時における吸熱反応により、上記予混合燃焼での熱発生率の過上昇は抑えられ、この予混合燃焼でのNOxの発生や燃焼音の増大は抑えられる。
 -解決手段-
 具体的に、本発明は、排気系に排出された排気ガスの一部を吸気系に還流させる排気還流装置を備えていると共に、内燃機関の燃焼過程中に、燃料噴射弁から、トルク発生のための燃料噴射である主噴射が実行される圧縮自着火式の内燃機関の制御装置を前提とする。この内燃機関の制御装置に対し、上記主噴射の噴射期間として、「初期燃焼用燃料噴射期間」と「拡散燃焼用燃料噴射期間」と「繋ぎ燃焼用燃料噴射期間」とを設定する燃料噴射制御手段を備えさせている。上記「初期燃焼用燃料噴射期間」は、気筒内の酸素と燃料噴霧との邂逅率を低下させる邂逅率低下動作を行いながら、その気筒内で燃料を順次燃焼させていく初期低温燃焼のための燃料噴射期間である。「拡散燃焼用燃料噴射期間」は、気筒内の温度が拡散燃焼に至る所定の拡散燃焼開始温度以上であるときに、上記排気還流装置によって還流された排気ガスによる燃焼温度抑制効果を活用できる領域に向けて燃料噴射が行われることによって拡散燃焼を行わせるための燃料噴射期間である。「繋ぎ燃焼用燃料噴射期間」は、上記「初期燃焼用燃料噴射期間」と「拡散燃焼用燃料噴射期間」との間に設定された期間であって、上記初期低温燃焼の開始後、気筒内の温度が上記拡散燃焼開始温度未満であるときに噴射された燃料が、その後の上記「拡散燃焼用燃料噴射期間」において噴射された燃料の吸熱反応によって噴霧冷却されることに伴い上記初期低温燃焼と上記拡散燃焼との間を連続的に繋ぐ予混合燃焼により成る繋ぎ燃焼を行わせるための燃料噴射期間である。
 また、上記燃料噴射制御手段は、上記「初期燃焼用燃料噴射期間」及び「繋ぎ燃焼用燃料噴射期間」で噴射される燃料の貫徹力に比べて上記「拡散燃焼用燃料噴射期間」で噴射される燃料の貫徹力を高く設定するようにもなっている。
 ここで、上記「気筒内の酸素と燃料噴霧との邂逅率」とは、気筒内において酸素分子と燃料粒子とが所謂「出会う(化学反応を行う)」確率(頻度)であって、この邂逅率が高いほど、気筒内での化学反応が進み、熱発生率の増大に伴って気筒内温度も上昇していくことになる。つまり、上述の如く邂逅率を低下させる動作を行えば、たとえ、気筒内の一部の領域(例えば燃焼室内中央部の狭小領域)における酸素分子の量が少ない場合や燃料粒子の量が多い場合であっても、上記化学反応の進行度は低く、気筒内を低温度(例えば800K程度)で燃焼を順次行わせることが可能になる。例えば気筒内の単位容積当たりにおける酸素分子と燃料粒子との衝突回数を抑制したり、酸素分子の運動量を抑制することで上記初期低温燃焼が実現できる。
 上記特定事項により、先ず、「初期燃焼用燃料噴射期間」で噴射された燃料の燃焼である初期低温燃焼は、上記気筒内の酸素と燃料噴霧との邂逅率が低下した状態で行われるので、単位時間当たりの熱発生量である熱発生率は比較的小さく、NOxの発生量が抑制された燃焼となっている。つまり、この初期低温燃焼では、NOxの発生量を抑えながら気筒内温度を上昇させていく(上記拡散燃焼開始温度未満の範囲で温度上昇させていく)燃焼となっている。また、仮に、この「初期燃焼用燃料噴射期間」で噴射された燃料の噴射領域の空燃比がリッチとなっていても、上述した如く低温燃焼であるため、その噴射領域はスモーク発生温度には到達せず、スモークの発生も抑えられている。尚、この初期低温燃焼としては、拡散燃焼及び予混合燃焼の何れであってもよい。
 その後、上記初期低温燃焼と拡散燃焼との間を繋ぐための繋ぎ燃焼(上記「繋ぎ燃焼用燃料噴射期間」で噴射された燃料の燃焼)では、上記初期低温燃焼で温度上昇した気筒内の熱量を利用した予混合燃焼が実施される。つまり、現在の気筒内温度に対して燃焼が可能となった空気過剰率が得られた(例えは空気過剰率が「1」となった)領域から燃焼が開始されることになる。言い換えると、混合気の空燃比が、その混合気が存在している領域の温度で着火可能な空燃比に達した時点で燃焼が開始されることになる。この場合、燃焼場での酸素不足は生じていないので、スモークの発生は抑制されることになる。
 そして、上記繋ぎ燃焼によって気筒内温度が上記拡散燃焼開始温度以上であるときに「拡散燃焼用燃料噴射期間」での燃料噴射が開始され、この噴射された燃料の燃焼形態としては、噴射後に直ちに燃焼を開始する拡散燃焼となる。この「拡散燃焼用燃料噴射期間」での燃料噴射により、上記繋ぎ燃焼での熱発生率の過上昇は抑えられることになる。つまり、「拡散燃焼用燃料噴射期間」での燃料噴射に伴う気筒内での吸熱反応によって気筒内温度が低下するため、上記繋ぎ燃焼での熱発生率の変化が緩和されることになり、この繋ぎ燃焼での燃焼音の増大やNOxの発生はない。
 また、「拡散燃焼用燃料噴射期間」では燃料噴射量が多く設定されるなどして(上記「初期燃焼用燃料噴射期間」や「繋ぎ燃焼用燃料噴射期間」での燃料噴射量よりも多く設定されるなどして)、その貫徹力(ペネトレーション)が高くなっているため、この噴射された燃料による拡散燃焼は、燃焼室内の比較的広い領域(燃焼室内の外周側の領域)で行われ、上記排気還流装置によって還流された排気ガスの効果を十分に活用できる領域で行われる。このため、この拡散燃焼での燃焼温度は比較的低く抑えられることになり、この拡散燃焼でのNOx発生量は低減される。
 このように、本解決手段によれば、従来の圧縮自着火式の内燃機関の燃焼過程では存在し得なかった初期低温燃焼(比較的低温環境下に燃料を噴射することによる燃焼)と拡散燃焼(比較的高温環境下に燃料を噴射することによる燃焼)との間を上記繋ぎ燃焼によって繋ぐことで、これら初期低温燃焼と拡散燃焼とを、この両者間にトルク空白期間を生じさせることなしに同一燃焼過程中に共存させることを可能にしている。これにより、上述の如くNOx発生量の抑制とスモーク発生量の抑制とが図れ、また、繋ぎ燃焼で温度上昇された気筒内への燃料噴射によって上記拡散燃焼を実施可能としていることで、上記「拡散燃焼用燃料噴射期間」の制御によって、この拡散燃焼の開始タイミングの制御や一連の燃焼(初期低温燃焼から拡散燃焼に亘る燃焼)において熱発生率が最大になるタイミング(燃焼重心)を制御することが可能になる。このため、熱発生率が最大になるタイミングが大きく遅角側に移行してしまうことを阻止できて、内燃機関の要求トルクを確保することが可能になる。
 また、上記「拡散燃焼用燃料噴射期間」において噴射された燃料の吸熱反応によって「繋ぎ燃焼用燃料噴射期間」で噴射された燃料に対する噴霧冷却を行うための手法としては以下のものが挙げられる。つまり、上記「拡散燃焼用燃料噴射期間」の開始タイミングを、上記「繋ぎ燃焼用燃料噴射期間」で噴射された燃料の燃焼開始タイミングに略同期させ、上記「拡散燃焼用燃料噴射期間」の終了タイミングを、上記「繋ぎ燃焼用燃料噴射期間」で噴射された燃料の燃焼における熱発生率が最大となるタイミングに略同期させるよう上記燃料噴射制御手段を構成したものである。
 上記燃料噴射制御手段による各燃料噴射期間における燃料噴射形態として具体的には以下の2タイプが挙げられる。先ず、第1のタイプとして、上記「初期燃焼用燃料噴射期間」、「繋ぎ燃焼用燃料噴射期間」及び「拡散燃焼用燃料噴射期間」での燃料噴射として、「初期燃焼用燃料噴射期間」での燃料噴射終了後、燃料噴射を一旦停止した後に「繋ぎ燃焼用燃料噴射期間」での燃料噴射を開始し、この「繋ぎ燃焼用燃料噴射期間」での燃料噴射終了後、燃料噴射を一旦停止した後に「拡散燃焼用燃料噴射期間」での燃料噴射を開始するものである。
 また、第2のタイプとして、上記「初期燃焼用燃料噴射期間」、「繋ぎ燃焼用燃料噴射期間」及び「拡散燃焼用燃料噴射期間」での燃料噴射として、「初期燃焼用燃料噴射期間」での燃料噴射と「繋ぎ燃焼用燃料噴射期間」での燃料噴射とを停止させることなく連続した燃料噴射により実施する一方、「繋ぎ燃焼用燃料噴射期間」での燃料噴射終了後、燃料噴射を一旦停止した後に「拡散燃焼用燃料噴射期間」での燃料噴射を開始するものである。
 前者の燃料噴射形態によれば、初期低温燃焼、繋ぎ燃焼、拡散燃焼それぞれのための燃料噴射量や燃料噴射タイミングが個別に設定できる。このため、各燃焼での熱発生率や筒内温度の上昇量を適切に制御するための燃料噴射形態を容易に規定でき、各燃焼における気筒内の温度管理を正確に行うことができる。
 一方、後者の燃料噴射形態によれば、燃料噴射弁の開閉動作のインターバルを比較的長く設定することが可能であるので、比較的開閉速度の低い(応答性の低い)燃料噴射弁であっても上述した3種類の燃焼形態を実現することが可能になり、燃料噴射システムのコストの低廉化を図ることができる。また、燃料噴射弁の噴射回数を削減できることで、同一領域(例えば燃料噴射弁の噴射口近傍領域)を流れる燃料噴射量を減少させることができ、上記「初期燃焼用燃料噴射期間」での燃料噴射量が比較的多くても、その後の燃料噴射に伴う上記同一領域でのスモークの発生を抑制することができる。
 上記邂逅率低下動作として具体的には、上記排気還流装置による排気還流動作、吸気系における吸気絞り動作、燃料噴射弁からの燃料噴射時期を遅角させる動作、気筒内温度を低下させる動作のうち少なくとも何れか一つが実行されるようにしている。
 これら動作により、吸気中の酸素濃度を低下させたり、吸気量を低下させたり、気筒内での酸素分子や燃料粒子の運動エネルギを低下させたりすることで、上記邂逅率が効果的に低下し、上記初期低温燃焼を容易に実現することが可能になる。
 また、各燃料噴射期間として具体的には以下のものが挙げられる。先ず、気筒内温度が750K以上で900K未満の範囲にあるときを「初期燃焼用燃料噴射期間」として設定する。また、上記初期低温燃焼の開始後、気筒内温度が800K以上で900K未満の範囲にあるときを「繋ぎ燃焼用燃料噴射期間」として設定する。更に、上記繋ぎ燃焼の開始後、気筒内温度が900Kに達した後を「拡散燃焼用燃料噴射期間」として設定する。
 一般に、気筒内温度が900Kを超えてしまうと、空気過剰率が比較的小さい領域であっても自着火することになるので、燃料噴射が行われた直後に燃焼が開始する拡散燃焼となる。このため、上記初期低温燃焼のための「初期燃焼用燃料噴射期間」や、繋ぎ燃焼のための「繋ぎ燃焼用燃料噴射期間」としては、気筒内温度が900K未満の範囲に設定される。また、気筒内温度が750K未満では気筒内の空気過剰率が「1」となっても混合気が自着火しない可能性が高いため、初期低温燃焼のための「初期燃焼用燃料噴射期間」としては、気筒内温度が750K以上の範囲に設定される。これにより、各燃料噴射期間の設定手法を具体化できる。
 尚、燃料噴射弁から噴射される噴霧の改善ができれば、空気過剰率を更に低減することが可能である。このため、スモークの発生を抑制しながらも上記「初期燃焼用燃料噴射期間」における気筒内温度の上限値としては高い値(例えば950Kや1000Kなど)に設定することが可能となる。つまり、上記「初期燃焼用燃料噴射期間」における気筒内温度の上限値は、気筒内での噴霧状態に応じて適宜設定することが可能な値となっている。
 また、上述した「初期燃焼用燃料噴射期間」、「繋ぎ燃焼用燃料噴射期間」及び「拡散燃焼用燃料噴射期間」での燃料噴射は、内燃機関の低負荷運転時及び中負荷運転時で実行され、上記各噴射期間で噴射される燃料噴射量の和である噴射総量に対する「繋ぎ燃焼用燃料噴射期間」での燃料噴射量の比率は、上記低負荷運転から中負荷運転の範囲において負荷が高いほど大きく設定している。
 これにより、燃料噴射量の噴射総量が比較的多くなる中負荷域での熱発生率のピーク値を低く抑えることができ、上記拡散燃焼に伴うNOxの発生量の増大や燃焼音の増大を招くことがなくなる。
 また、上述した「初期燃焼用燃料噴射期間」、「繋ぎ燃焼用燃料噴射期間」及び「拡散燃焼用燃料噴射期間」での燃料噴射は、内燃機関の低負荷運転時及び中負荷運転時で実行され、内燃機関の高負荷運転時には、気筒内での燃焼開始初期時の所定期間の熱発生率の平均値が、上記初期低温燃焼が行われる期間での熱発生率の平均値に略一致する初期拡散燃焼が行われるようにしている。
 上述した低負荷運転時や中負荷運転時で行われる初期低温燃焼を行った後の拡散燃焼では、内燃機関の高負荷運転時に応じたトルクが十分に得られない可能性がある。このため、高負荷運転時には、燃焼過程中の全域を拡散燃焼として燃焼速度を高めると共に、この拡散燃焼の初期段階である初期拡散燃焼(例えば燃焼開始からクランク角度で10°CAの範囲内)では、その期間の熱発生率の平均値が、上記初期低温燃焼が行われる期間での熱発生率の平均値に略一致するようにしてNOxの発生量を抑制できるようにしている。つまり、この初期拡散燃焼では、擬似的な低温燃焼を行うことでNOxの発生量を抑制している。これにより、高負荷運転時における排気エミッションの改善を図りながらも必要トルクを得ることができる。
 本発明では、従来の圧縮自着火式の内燃機関の同一燃焼過程中では存在し得なかった初期低温燃焼と拡散燃焼との間に予混合燃焼で成る繋ぎ燃焼を介在させることで、これら初期低温燃焼と拡散燃焼との共存を可能にしている。これにより、NOx発生量の抑制と、スモーク発生量の抑制と、要求トルクの確保とを連立することが可能になり、排気エミッションの改善及びドライバビリティの改善を図ることができる。
図1は、実施形態に係るエンジンおよびその制御系統の概略構成図である。 図2は、ディーゼルエンジンの燃焼室およびその周辺部を示す断面図である。 図3は、ECU等の制御系の構成を示すブロック図である。 図4は、エンジンの低負荷運転時における気筒内での熱発生率の変化および燃料噴射パターンをそれぞれ示す図である。 図5は、エンジンの中負荷運転時における気筒内での熱発生率の変化および燃料噴射パターンをそれぞれ示す図である。 図6は、エンジンの高負荷運転時における気筒内での熱発生率の変化および燃料噴射パターンをそれぞれ示す図である。 図7は、各分割メイン噴射が実施された際の燃焼場のガス温度と当量比との変化を表すφTマップを示す図である。 図8は、各燃焼における燃焼室内での燃焼場を示すピストン上部の断面図である。 図9は、変形例におけるエンジンの低負荷運転時における気筒内での熱発生率の変化および燃料噴射パターンをそれぞれ示す図である。 図10は、変形例におけるエンジンの中負荷運転時における気筒内での熱発生率の変化および燃料噴射パターンをそれぞれ示す図である。
 以下、本発明の実施の形態を図面に基づいて説明する。本実施形態は、自動車に搭載されたコモンレール式筒内直噴型多気筒(例えば直列4気筒)ディーゼルエンジン(圧縮自着火式内燃機関)に本発明を適用した場合について説明する。
 -エンジンの構成-
 先ず、本実施形態に係るディーゼルエンジン(以下、単にエンジンという)の概略構成について説明する。図1は本実施形態に係るエンジン1およびその制御系統の概略構成図である。また、図2は、ディーゼルエンジンの燃焼室3およびその周辺部を示す断面図である。
 図1に示すように、本実施形態に係るエンジン1は、燃料供給系2、燃焼室3、吸気系6、排気系7等を主要部とするディーゼルエンジンシステムとして構成されている。
 燃料供給系2は、サプライポンプ21、コモンレール22、インジェクタ(燃料噴射弁)23、遮断弁24、燃料添加弁26、機関燃料通路27、添加燃料通路28等を備えて構成されている。
 上記サプライポンプ21は、燃料タンクから燃料を汲み上げ、この汲み上げた燃料を高圧にした後、機関燃料通路27を介してコモンレール22に供給する。コモンレール22は、サプライポンプ21から供給された高圧燃料を所定圧力に保持(蓄圧)する蓄圧室としての機能を有し、この蓄圧した燃料を各インジェクタ23に分配する。インジェクタ23は、その内部に圧電素子(ピエゾ素子)を備え、適宜開弁して燃焼室3内に燃料を噴射供給するピエゾインジェクタにより構成されている。このインジェクタ23からの燃料噴射制御の詳細については後述する。
 また、上記サプライポンプ21は、燃料タンクから汲み上げた燃料の一部を、添加燃料通路28を介して燃料添加弁26に供給する。添加燃料通路28には、緊急時において添加燃料通路28を遮断して燃料添加を停止するための上記遮断弁24が備えられている。
 また、上記燃料添加弁26は、後述するECU100による添加制御動作によって排気系7への燃料添加量が目標添加量(排気A/Fが目標A/Fとなるような添加量)となるように、また、燃料添加タイミングが所定タイミングとなるように開弁時期が制御される電子制御式の開閉弁により構成されている。つまり、この燃料添加弁26から所望の燃料が適宜のタイミングで排気系7(排気ポート71から排気マニホールド72)に噴射供給される構成となっている。
 吸気系6は、シリンダヘッド15(図2参照)に形成された吸気ポート15aに接続される吸気マニホールド63を備え、この吸気マニホールド63に、吸気通路を構成する吸気管64が接続されている。また、この吸気通路には、上流側から順にエアクリーナ65、エアフローメータ43、スロットルバルブ(吸気絞り弁)62が配設されている。上記エアフローメータ43は、エアクリーナ65を介して吸気通路に流入される空気量に応じた電気信号を出力するようになっている。
 排気系7は、シリンダヘッド15に形成された排気ポート71に接続される排気マニホールド72を備え、この排気マニホールド72に対して、排気通路を構成する排気管73,74が接続されている。また、この排気通路には、NOx吸蔵触媒(NSR触媒:NOx Storage Reduction触媒)75およびDPNR触媒(Diesel Paticulate-NOx Reduction触媒)76を備えたマニバータ(排気浄化装置)77が配設されている。以下、これらNSR触媒75およびDPNR触媒76について説明する。
 NSR触媒75は、吸蔵還元型NOx触媒であって、例えばアルミナ(Al23)を担体とし、この担体上に例えばカリウム(K)、ナトリウム(Na)、リチウム(Li)、セシウム(Cs)のようなアルカリ金属、バリウム(Ba)、カルシウム(Ca)のようなアルカリ土類、ランタン(La)、イットリウム(Y)のような希土類と、白金(Pt)のような貴金属とが担持された構成となっている。
 このNSR触媒75は、排気中に多量の酸素が存在している状態においてはNOxを吸蔵し、排気中の酸素濃度が低く、かつ還元成分(例えば燃料の未燃成分(HC))が多量に存在している状態においてはNOxをNO2若しくはNOに還元して放出する。NO2やNOとして放出されたNOxは、排気中のHCやCOと速やかに反応することによってさらに還元されてN2となる。また、HCやCOは、NO2やNOを還元することで、自身は酸化されてH2OやCO2となる。即ち、NSR触媒75に導入される排気中の酸素濃度やHC成分を適宜調整することにより、排気中のHC、CO、NOxを浄化することができるようになっている。本実施形態のものでは、この排気中の酸素濃度やHC成分の調整を上記燃料添加弁26からの燃料添加動作によって行うことが可能となっている。
 一方、DPNR触媒76は、例えば多孔質セラミック構造体にNOx吸蔵還元型触媒を担持させたものであり、排気ガス中のPMは多孔質の壁を通過する際に捕集される。また、排気ガスの空燃比がリーンの場合、排気ガス中のNOxはNOx吸蔵還元型触媒に吸蔵され、空燃比がリッチになると、吸蔵したNOxは還元・放出される。さらに、DPNR触媒76には、捕集したPMを酸化・燃焼する触媒(例えば白金等の貴金属を主成分とする酸化触媒)が担持されている。
 ここで、ディーゼルエンジンの燃焼室3およびその周辺部の構成について、図2を用いて説明する。この図2に示すように、エンジン本体の一部を構成するシリンダブロック11には、各気筒(4気筒)毎に円筒状のシリンダボア12が形成されており、各シリンダボア12の内部にはピストン13が上下方向に摺動可能に収容されている。
 ピストン13の頂面13aの上側には上記燃焼室3が形成されている。つまり、この燃焼室3は、シリンダブロック11の上部にガスケット14を介して取り付けられたシリンダヘッド15の下面と、シリンダボア12の内壁面と、ピストン13の頂面13aとにより区画形成されている。そして、ピストン13の頂面13aの略中央部には、キャビティ(凹陥部)13bが凹設されており、このキャビティ13bも燃焼室3の一部を構成している。
 尚、このキャビティ13bの形状としては、その中央部分(シリンダ中心線P上)では凹陥寸法が小さく、外周側に向かうに従って凹陥寸法が大きくなっている。つまり、図2に示すようにピストン13が圧縮上死点付近にある際、このキャビティ13bによって形成される燃焼室3としては、中央部分では比較的容積の小さい狭小空間とされ、外周側に向かって次第に空間が拡大される(拡大空間とされる)構成となっている。
 上記ピストン13は、コネクティングロッド18の小端部18aがピストンピン13cにより連結されており、このコネクティングロッド18の大端部はエンジン出力軸であるクランクシャフトに連結されている。これにより、シリンダボア12内でのピストン13の往復移動がコネクティングロッド18を介してクランクシャフトに伝達され、このクランクシャフトが回転することでエンジン出力が得られるようになっている。また、燃焼室3に向けてグロープラグ19が配設されている。このグロープラグ19は、エンジン1の始動直前に電流が流されることにより赤熱し、これに燃料噴霧の一部が吹きつけられることで着火・燃焼が促進される始動補助装置として機能する。
 上記シリンダヘッド15には、燃焼室3へ空気を導入する吸気ポート15aと、燃焼室3から排気ガスを排出する上記排気ポート71とがそれぞれ形成されていると共に、吸気ポート15aを開閉する吸気バルブ16および排気ポート71を開閉する排気バルブ17が配設されている。これら吸気バルブ16および排気バルブ17はシリンダ中心線Pを挟んで対向配置されている。つまり、本エンジン1はクロスフロータイプとして構成されている。また、シリンダヘッド15には、燃焼室3の内部へ直接的に燃料を噴射する上記インジェクタ23が取り付けられている。このインジェクタ23は、シリンダ中心線Pに沿う起立姿勢で燃焼室3の略中央上部に配設されており、上記コモンレール22から導入される燃料を燃焼室3に向けて所定のタイミングで噴射するようになっている。
 更に、図1に示す如く、このエンジン1には、過給機(ターボチャージャ)5が設けられている。このターボチャージャ5は、タービンシャフト51を介して連結されたタービンホイール52およびコンプレッサホイール53を備えている。コンプレッサホイール53は吸気管64内部に臨んで配置され、タービンホイール52は排気管73内部に臨んで配置されている。このためターボチャージャ5は、タービンホイール52が受ける排気流(排気圧)を利用してコンプレッサホイール53を回転させ、吸気圧を高めるといった所謂過給動作を行うようになっている。本実施形態におけるターボチャージャ5は、可変ノズル式ターボチャージャであって、タービンホイール52側に可変ノズルベーン機構(図示省略)が設けられており、この可変ノズルベーン機構の開度を調整することにより、エンジン1の過給圧を調整することができる。
 吸気系6の吸気管64には、ターボチャージャ5での過給によって昇温した吸入空気を強制冷却するためのインタークーラ61が設けられている。このインタークーラ61よりも更に下流側に設けられた上記スロットルバルブ62は、その開度を無段階に調整することができる電子制御式の開閉弁であり、所定の条件下において吸入空気の流路面積を絞り、この吸入空気の供給量を調整(低減)する機能を有している。
 また、エンジン1には、吸気系6と排気系7とを接続する排気還流通路(EGR通路)8が設けられている。このEGR通路8は、排気の一部を適宜吸気系6に還流させて燃焼室3へ再度供給することにより燃焼温度を低下させ、これによってNOx発生量を低減させるものである。また、このEGR通路8には、電子制御によって無段階に開閉され、同通路を流れる排気流量を自在に調整することができるEGRバルブ81と、EGR通路8を通過(還流)する排気を冷却するためのEGRクーラ82とが設けられている。これらEGR通路8、EGRバルブ81、EGRクーラ82等によってEGR装置(排気還流装置)が構成されている。
 -センサ類-
 エンジン1の各部位には、各種センサが取り付けられており、それぞれの部位の環境条件や、エンジン1の運転状態に関する信号を出力する。
 例えば、上記エアフローメータ43は、吸気系6内のスロットルバルブ62上流において吸入空気の流量(吸入空気量)に応じた検出信号を出力する。吸気温センサ49は、吸気マニホールド63に配置され、吸入空気の温度に応じた検出信号を出力する。吸気圧センサ48は、吸気マニホールド63に配置され、吸入空気圧力に応じた検出信号を出力する。A/F(空燃比)センサ44は、排気系7のマニバータ77の下流において排気中の酸素濃度に応じて連続的に変化する検出信号を出力する。排気温センサ45は、同じく排気系7のマニバータ77の下流において排気ガスの温度(排気温度)に応じた検出信号を出力する。レール圧センサ41はコモンレール22内に蓄えられている燃料の圧力に応じた検出信号を出力する。スロットル開度センサ42はスロットルバルブ62の開度を検出する。
 -ECU-
 ECU100は、図3に示すように、CPU101、ROM102、RAM103およびバックアップRAM104などを備えている。ROM102は、各種制御プログラムや、それら各種制御プログラムを実行する際に参照されるマップ等が記憶されている。CPU101は、ROM102に記憶された各種制御プログラムやマップに基づいて各種の演算処理を実行する。RAM103は、CPU101での演算結果や各センサから入力されたデータ等を一時的に記憶するメモリである。バックアップRAM104は、例えばエンジン1の停止時にその保存すべきデータ等を記憶する不揮発性のメモリである。
 以上のCPU101、ROM102、RAM103およびバックアップRAM104は、バス107を介して互いに接続されるとともに、入力インターフェース105および出力インターフェース106と接続されている。
 入力インターフェース105には、上記レール圧センサ41、スロットル開度センサ42、エアフローメータ43、A/Fセンサ44、排気温センサ45、吸気圧センサ48、吸気温センサ49が接続されている。さらに、この入力インターフェース105には、エンジン1の冷却水温に応じた検出信号を出力する水温センサ46、アクセルペダルの踏み込み量に応じた検出信号を出力するアクセル開度センサ47、および、エンジン1の出力軸(クランクシャフト)が一定角度回転する毎に検出信号(パルス)を出力するクランクポジションセンサ40などが接続されている。一方、出力インターフェース106には、上記インジェクタ23、燃料添加弁26、スロットルバルブ62、および、EGRバルブ81などが接続されている。
 そして、ECU100は、上記した各種センサの出力に基づいて、エンジン1の各種制御を実行する。例えば、ECU100は、エンジン1の運転状態に応じてEGRバルブ81の開度を制御し、吸気マニホールド63に向けての排気還流量(EGR量)を調整する。このEGR量は、上記ROM102に予め記憶されたEGRマップに従って設定される。具体的に、このEGRマップは、エンジン回転数及びエンジン負荷をパラメータとしてEGR量(EGR率)を決定するためのマップであって、排気系へのNOx排出量を低減できるEGR量を設定するためのものである。尚、このEGRマップは、予め実験やシミュレーション等によって作成されたものとなっている。つまり、上記クランクポジションセンサ40の検出値に基づいて算出されたエンジン回転数及びスロットル開度センサ42によって検出されたスロットルバルブ62の開度(エンジン負荷に相当)とをEGRマップに当て嵌めることでEGR量(EGRバルブ81の開度)が得られるようになっている。
 さらに、ECU100は、インジェクタ23の燃料噴射制御を実行する。このインジェクタ23の燃料噴射制御として、本実施形態では、従来の一般的なディーゼルエンジンにおいて実行される、パイロット噴射、プレ噴射、アフタ噴射、ポスト噴射等の副噴射は実行せず、エンジントルクを得るためのメイン噴射のみが実行されるようになっている。
 このメイン噴射での総燃料噴射量は、エンジン回転数、アクセル操作量、冷却水温度、吸気温度等の運転状態や環境条件に応じて決定される要求トルクを得るために必要な燃料噴射量として設定される。例えば、エンジン回転数(クランクポジションセンサ40の検出値に基づいて算出されるエンジン回転数)が高いほど、また、アクセル操作量(アクセル開度センサ47により検出されるアクセルペダルの踏み込み量)が大きいほど(アクセル開度が大きいほど)エンジン1のトルク要求値としては高く得られる。
 -燃料噴射圧-
 上記メイン燃料噴射を実行する際の燃料噴射圧は、コモンレール22の内圧により決定される。このコモンレール内圧として、一般に、コモンレール22からインジェクタ23へ供給される燃料圧力の目標値、即ち目標レール圧は、エンジン負荷(機関負荷)が高くなるほど、および、エンジン回転数(機関回転数)が高くなるほど高いものとされる。即ち、エンジン負荷が高い場合には燃焼室3内に吸入される空気量が多いため、インジェクタ23から燃焼室3内に向けて多量の燃料を噴射しなければならず、よってインジェクタ23からの噴射圧力を高いものとする必要がある。また、エンジン回転数が高い場合には噴射可能な期間が短いため、単位時間当たりに噴射される燃料量を多くしなければならず、よってインジェクタ23からの噴射圧力を高いものとする必要がある。このように、目標レール圧は一般にエンジン負荷およびエンジン回転数に基づいて設定される。尚、この目標レール圧は例えば上記ROM102に記憶された燃圧設定マップに従って設定される。つまり、この燃圧設定マップに従って燃料圧力を決定することで、インジェクタ23の開弁期間(噴射率波形)が制御され、その開弁期間中における燃料噴射量を規定することが可能になる。
 上記メイン噴射における燃料噴射パラメータについて、その最適値はエンジン1や吸入空気等の温度条件によって異なるものとなる。
 例えば、上記ECU100は、コモンレール圧がエンジン運転状態に基づいて設定される目標レール圧と等しくなるように、即ち燃料噴射圧が目標噴射圧と一致するように、サプライポンプ21の燃料吐出量を調量する。また、ECU100はエンジン運転状態に基づいて燃料噴射量および燃料噴射形態を決定する。具体的には、ECU100は、クランクポジションセンサ40の検出値に基づいてエンジン回転速度を算出するとともに、アクセル開度センサ47の検出値に基づいてアクセルペダルへの踏み込み量(アクセル開度)を求め、このエンジン回転速度およびアクセル開度に基づいて総メイン噴射量(メイン噴射での噴射量)を決定する。
 -分割メイン噴射-
 ディーゼルエンジン1においては、NOx発生量及びスモーク発生量を削減することによる排気エミッションの改善、燃焼行程時の燃焼音の低減、エンジントルクの十分な確保といった各要求を連立することが重要である。本発明の発明者は、これら要求を連立するための手法として、燃焼行程時における気筒内での燃焼形態を適切にコントロールすることが有効であることに着目し、この燃焼形態をコントロールするための手法として以下に述べるような分割メイン噴射による燃料噴射手法を見出した。以下、具体的に説明する。
 本実施形態では、上記メイン噴射の噴射形態として3回の分割メイン噴射を実行することで、このメイン噴射で必要とされる総メイン噴射量(要求トルクを得るための総燃料噴射量)を確保しながらも、各分割メイン噴射によって噴射されるそれぞれの燃料の燃焼室3内での燃焼形態を互いに異ならせるようにしている。
 具体的には、各分割メイン噴射それぞれにおける噴射タイミング(燃料噴射を開始するタイミング)とその噴射期間(分割メイン噴射1回当たりの噴射量に相関がある)を設定することで、各分割メイン噴射で噴射された燃料(噴霧)の燃焼形態を互いに異ならせるようにしている。以下、具体的に説明する。
 本実施形態における燃焼室3内での燃焼過程中における燃焼形態の概略は以下のとおりである。この燃焼形態では、同一燃焼過程中に、初期低温燃焼及び拡散燃焼が行われ、更には、これら初期低温燃焼と拡散燃焼との間を予混合燃焼により繋ぐための繋ぎ燃焼が行われる。つまり、これら互いに異なる燃焼形態が、同一燃焼室内の同一燃焼過程中に連続して行われるようにしている。言い換えると、第1段階の燃焼である初期低温燃焼と第3段階の燃焼である拡散燃焼との間に、第2段階の燃焼である繋ぎ燃焼を介在させることで、これら互いに異なる燃焼形態の連続性を実現している。
 より具体的に、上記第1段階の燃焼である初期低温燃焼は、気筒内の酸素と燃料噴霧との邂逅率を低下させる邂逅率低下動作を行いながら燃料が噴射されること(本発明でいう初期燃焼用燃料噴射期間での燃料噴射)によって実施され、この燃料の燃焼によって気筒内で燃料が順次燃焼していく。具体的には、気筒内温度が750K以上で900K未満の範囲にあるときの所定期間を上記初期燃焼用燃料噴射期間として設定して上記低温燃焼用メイン噴射を行って上記初期低温燃焼を行わせる。尚、上述した如く「初期燃焼用燃料噴射期間」における気筒内温度の上限値は、気筒内での噴霧状態に応じて適宜設定することが可能な値であり、また、大量EGRによって高くなる場合もあるため、この値は900Kには限定されず、950Kや1000K等となる場合もある(以下では900Kの場合を代表して説明する)。
 また、第2段階の燃焼である繋ぎ燃焼(予混合燃焼)は、上記初期低温燃焼の開始後、気筒内の温度が、拡散燃焼に至る所定の拡散燃焼開始温度(例えば900K)未満であるときに燃料噴射が行われること(本発明でいう繋ぎ燃焼用燃料噴射期間での燃料噴射)による燃焼である。具体的には、上記初期低温燃焼の燃焼場温度が800K以上で900K未満の範囲にあるときの所定期間を上記繋ぎ燃焼用燃料噴射期間として設定して上記繋ぎ燃焼用メイン噴射を行って上記繋ぎ燃焼を行わせる。
 更に、第3段階の燃焼である拡散燃焼は、上記予混合燃焼の開始後、この予混合燃焼によって気筒内の温度が上記拡散燃焼開始温度以上であるときに燃料噴射が行われること(本発明でいう拡散燃焼用燃料噴射期間での燃料噴射)による燃焼である。具体的には、上記繋ぎ燃焼の燃焼場温度が900Kに達した直後に上記拡散燃焼用メイン噴射を行って上記拡散燃焼を行わせる。
 更に、各燃焼形態を実現するためのそれぞれの燃料噴射量としては、第1段階の燃焼である初期低温燃焼を行うための燃料噴射(以下、低温燃焼用メイン噴射と呼ぶ)に比べて、第2段階の燃焼である繋ぎ燃焼を行うための燃料噴射(以下、繋ぎ燃焼用メイン噴射と呼ぶ)での燃料噴射量を多く設定している。また、第2段階の燃焼である繋ぎ燃焼を行うための燃料噴射に比べて、第3段階の燃焼である拡散燃焼を行うための燃料噴射(以下、拡散燃焼用メイン噴射と呼ぶ)での燃料噴射量を多く設定している(燃料噴射制御手段による燃料噴射制御動作)。これにより、低温燃焼用メイン噴射で噴射される燃料の貫徹力に比べて繋ぎ燃焼用メイン噴射で噴射される燃料の貫徹力を高く設定し、且つ繋ぎ燃焼用メイン噴射で噴射される燃料の貫徹力に比べて拡散燃焼用メイン噴射で噴射される燃料の貫徹力を高く設定している。この貫徹力の詳細については後述する。
 尚、本実施形態では、上述した燃焼形態(互いに異なり且つ連続する3種類の燃焼形態)をエンジン1の低負荷運転時及び中負荷運転時において実行し、エンジン1の高負荷運転時には、後述するように2回の燃料噴射による拡散燃焼を行うようにしている。
 以下、各負荷状態における燃料噴射量形態及びそれに伴う燃焼室3内での燃焼形態について個別に説明する。
 図4は、エンジン1の低負荷運転時であってメイン噴射の実行期間中における気筒内での熱発生率の変化および燃料噴射パターンをそれぞれ示している。また、図5は、エンジン1の中負荷運転時であってメイン噴射の実行期間中における気筒内での熱発生率の変化および燃料噴射パターンをそれぞれ示している。更に、図6は、エンジン1の高負荷運転時であってメイン噴射の実行期間中における気筒内での熱発生率の変化および燃料噴射パターンをそれぞれ示している。
 これら各図における熱発生率の変化を示す波形では横軸をクランク角度とし縦軸を熱発生率としている。また、各図における燃料噴射パターンの波形では横軸をクランク角度とし縦軸を噴射率(インジェクタ23に備えられたニードルの後退移動量に相当)としている。図中のTDCはピストン13の圧縮上死点に対応したクランク角度位置を示している。
 また、図7は、エンジン1の低負荷運転時に、燃焼室3内において各燃料噴射期間において燃料が噴射された領域である燃焼場(例えば10個の噴射孔を有するインジェクタ23の場合には燃焼室3内(より具体的にはキャビティ13b内)における10箇所の燃焼場それぞれ)でのガス温度と、その燃焼場における当量比との変化を示すマップ(一般にφTマップと呼ばれる)である。つまり、図4に示す燃料噴射パターンでメイン噴射(各分割メイン噴射)が実行された場合における上記第1段階の燃焼である初期低温燃焼を行うための低温燃焼用メイン噴射で噴射された燃料の燃焼場、第2段階の燃焼である繋ぎ燃焼を行うための繋ぎ燃焼用メイン噴射で噴射された燃料の燃焼場、および、第3段階の燃焼である拡散燃焼を行うための拡散燃焼用メイン噴射で噴射された燃料の燃焼場それぞれにおける燃焼場環境(燃焼場のガス温度および当量比)の変化を矢印で示している。
 この図7において、燃焼場環境がスモーク発生領域に達した場合には排気中にスモークが発生することになる。このスモーク発生領域は、燃焼場ガス温度が比較的高く且つ燃焼場の当量比がリッチ側の領域である。また、燃焼場環境がNOx発生領域に達した場合には排気中にNOxが発生することになる。このNOx発生領域は、燃焼場ガス温度が比較的高く且つ燃焼場の当量比がリーン側の領域である。また、図7に示すX領域は排気ガス中にHCが発生しやすい領域であり、Y領域は排気ガス中にCOが発生しやすい領域である。
 図4及び図5に示すように、低温燃焼用メイン噴射は、各分割メイン噴射のうち最も進角側のメイン噴射である。繋ぎ燃焼用メイン噴射は、上記低温燃焼用メイン噴射よりも遅角側のメイン噴射であって、この低温燃焼用メイン噴射での噴射量よりも多く設定されている。拡散燃焼用メイン噴射は、上記繋ぎ燃焼用メイン噴射よりも更に遅角側のメイン噴射であって、この繋ぎ燃焼用メイン噴射での噴射量よりも更に多く設定されている。これら分割メイン噴射の噴射量については後述する。
 これら低温燃焼用メイン噴射と繋ぎ燃焼用メイン噴射との間、繋ぎ燃焼用メイン噴射と拡散燃焼用メイン噴射との間にはそれぞれ所定のインターバルが設けられる。つまり、低温燃焼用メイン噴射を実行した後、燃料噴射を一旦停止(インジェクタ23を遮断)し、所定のインターバルを経た後に繋ぎ燃焼用メイン噴射が開始される。また、繋ぎ燃焼用メイン噴射を実行した後、燃料噴射を一旦停止(インジェクタ23を遮断)し、所定のインターバルを経た後に拡散燃焼用メイン噴射が開始される。このインターバルとしては、噴霧冷却可能なインターバルとして例えば最短閉弁期間(インジェクタ23の性能によって決定され、インジェクタ23が閉弁してから開弁を開始するまでの最短期間:例えば200μs)として設定される。より具体的には、上記拡散燃焼用メイン噴射の開始タイミングが、上記繋ぎ燃焼の開始タイミングに略同期するように上記インターバルは設定されている。この分割メイン噴射のインターバルは上記値に限定されるものではなく、後述するように、各燃焼での機能が発揮されるように適宜設定される。
 以下、各分割メイン噴射の噴射形態を、低負荷運転時、中負荷運転時、高負荷運転時それぞれについて説明する。尚、低負荷運転時における総メイン噴射量としては例えば30mm3に設定され、中負荷運転時における総メイン噴射量としては例えば40mm3に設定され、高負荷運転時における総メイン噴射量としては例えば60mm3に設定される。これら値はこれに限定されるものではない。
 (低負荷運転時)
 <低温燃焼用メイン噴射>
 図4に示すように、上記低負荷運転時の低温燃焼用メイン噴射は、ピストン13の圧縮上死点(TDC)よりも進角側(例えばBTDC15°)で噴射を開始すると共に、ピストン13の圧縮上死点よりも進角側で噴射を終了させる。このタイミングで低温燃焼用メイン噴射を開始することにより、上述したように、ピストン13が圧縮上死点(TDC)に達する前段階から低温燃焼用メイン噴射で噴射された燃料の燃焼(初期低温燃焼)が開始される。この低負荷運転時の低温燃焼用メイン噴射における燃料噴射量(インジェクタ23の開弁期間に相当)は例えば2mm3に設定されている。この値はこれに限定されるものではない。このように、低温燃焼用メイン噴射では、燃料噴射量が少ないため、その燃料の貫徹力は比較的低く、燃焼室内の中央部分で上記初期低温燃焼が行われることになる。例えば図8(ピストン上部の右側半分を示す断面図)における領域αで示す比較的狭小な領域で上記初期低温燃焼が行われることになる。
 また、この低温燃焼用メイン噴射の噴射期間では、気筒内の酸素と燃料噴霧との邂逅率を低下させるための邂逅率低下動作が行われる。この邂逅率低下動作としては、上記EGR装置による排気還流動作、吸気系における吸気絞り動作、インジェクタ23からの燃料噴射時期を遅角させる動作、気筒内温度を低下させる動作のうち少なくとも何れか一つが実行される。特に、上記吸気系における吸気絞り動作としては、上記吸気系に配設された上記スロットルバルブ62による吸気絞り動作、ターボチャージャ5による過給低減動作、吸気系に配設された図示しないSCV(スワールコントロールバルブ)の吸気絞り動作等が挙げられる。また、上記気筒内温度を低下させる動作としては、インタークーラ61やEGRクーラ82の冷却能力を高める動作、気筒内の圧縮比を低下させる動作等が挙げられる。
 例えばEGR装置による排気還流動作が単独で行われる場合には例えば目標EGR率を30%に設定してEGRバルブ81の開度が制御される。また、吸気絞り動作が単独で行われる場合にはスロットルバルブ62の開度が例えば75%まで絞られる。更に、インジェクタ23からの燃料噴射時期を遅角させる動作が単独で行われる場合には、その燃料噴射時期を、ピストン13が圧縮上死点(TDC)に達した以降のATDCの範囲で実行される。この場合、図4に示す各波形は遅角側に移行し、上記初期燃焼用燃料噴射期間、繋ぎ燃焼用燃料噴射期間、拡散燃焼用燃料噴射期間も遅角側に移行することになる。また、上述した上記EGRクーラ82の冷却能力やインタークーラ61の冷却能力を高めるといった気筒内温度を低下させる動作を行った場合、気筒内の酸素分子や燃料粒子の運動エネルギが低下することになり、上記邂逅率が効果的に低下する。尚、上述した各値はこれに限定されるものではない。
 このような邂逅率低下動作が行われながら低温燃焼用メイン噴射が実行されるため、この低温燃焼用メイン噴射で噴射された燃料の燃焼としては、気筒内温度が比較的低い温度(例えば800K程度)で行われ、熱発生率が低く推移した状態での燃焼となる。このため、熱発生率の急上昇に伴うNOx発生量の増大や燃焼音の増大を招くことなしに、気筒内の温度を徐々に上昇(例えば850K程度まで上昇)させていくことになる。また、仮に、この低温燃焼用メイン噴射で噴射された燃料の噴射領域(上記領域α)の空燃比がリッチとなっていても、上述した如く低温燃焼であるため、その噴射領域はスモーク発生温度には到達せず、スモークの発生も抑えられている(図7の初期低温燃焼を参照)。
 尚、低温燃焼用メイン噴射での噴射量(インジェクタ23の開弁期間に相当)については、例えば実験やシミュレーションによって設定される。
 <繋ぎ燃焼用メイン噴射>
 上記繋ぎ燃焼用メイン噴射は、上記低温燃焼用メイン噴射によって噴射された燃料が燃焼(初期低温燃焼)を開始した後、その低温燃焼による熱発生率が最大値(ピーク値)に達したタイミング付近、または、この熱発生率が最大値に達する手前で燃料噴射が開始される。例えばBTDC8°付近で噴射が開始される。つまり、上記低温燃焼用メイン噴射での燃料噴射量は比較的少ないため、その初期低温燃焼による熱発生率のピーク値も比較的低く、この熱発生率がピーク値を超えると、徐々に熱発生率が低下することになるが、繋ぎ燃焼用メイン噴射は、この初期低温燃焼による熱発生率がピーク値を超える前に噴射が開始され、この初期低温燃焼によって得られている気筒内の熱量を利用して燃焼を行うようにしている。
 この繋ぎ燃焼用メイン噴射における燃料噴射量は例えば6mm3に設定されている。この値はこれに限定されるものではない。このように、繋ぎ燃焼用メイン噴射で噴射された燃料は、低温燃焼用メイン噴射で噴射された燃料よりも貫徹力が高くなっているため、この低温燃焼用メイン噴射で噴射された燃料の燃焼場(初期低温燃焼の燃焼場)を通過し、この際、この燃焼場の熱を受けて温度上昇することになる。ところが、気筒内温度は、未だ比較的低い(850K程度である)ため、繋ぎ燃焼用メイン噴射で噴射された燃料は拡散燃焼には至らず、予混合燃焼となる(図4の熱発生率波形において斜線を付した部分を参照)。つまり、この繋ぎ燃焼用メイン噴射で噴射された燃料と気筒内の空気とが攪拌され、その空気過剰率が略「1」となった領域から燃焼が開始されていくことになる。例えば図8における領域βで示す領域で上記予混合燃焼が行われることになる。
 このような予混合燃焼が行われるため、この繋ぎ燃焼用メイン噴射で噴射された燃料の燃焼(繋ぎ燃焼)では、十分な酸素量が確保された領域での燃焼となるため、スモークの発生量は大幅に削減される。
 尚、繋ぎ燃焼用メイン噴射での噴射量についても、例えば実験やシミュレーションによって設定される。
 <拡散燃焼用メイン噴射>
 上記拡散燃焼用メイン噴射は、上記繋ぎ燃焼用メイン噴射によって噴射された燃料が燃焼(繋ぎ燃焼)した後、気筒内温度が拡散燃焼可能な温度(900K)を超えたタイミングで燃料噴射が開始される。例えばTDC付近で噴射が開始される。つまり、この拡散燃焼用メイン噴射で噴射された燃料は、その噴射の直後に順次燃焼していくといった拡散燃焼となる。
 この拡散燃焼用メイン噴射における燃料噴射量は例えば12mm3に設定されている。この値はこれに限定されるものではない。このように、拡散燃焼用メイン噴射で噴射された燃料は、繋ぎ燃焼用メイン噴射で噴射された燃料よりも貫徹力が高くなっているため、上記低温燃焼用メイン噴射で噴射された燃料の燃焼場(図8にαで示す領域)及び上記繋ぎ燃焼用メイン噴射で噴射された燃料の燃焼場(図8にβで示す領域)を通過し、この際、これら燃焼場の熱を受けて温度上昇しながら、燃焼室3内の比較的広い空間(上記キャビティ13b内の外周側空間:図8においてγで示す領域)に達しており、この部分では、上記EGR装置によって還流された排気ガスによる燃焼温度低減効果が十分に発揮される。このため、NOx発生量の増大や燃焼音の増大を招くことなしに、拡散燃焼が行われることになる。尚、図8における領域δは、拡散燃焼用メイン噴射で噴射された燃料が、キャビティ13bの内壁面に沿うように発生している気流によって気筒内中央側へ戻されながら燃焼を行う領域である。
 尚、上記説明では、初期低温燃焼の燃焼場を図8の領域αとし、繋ぎ燃焼の燃焼場を図8の領域βとし、拡散燃焼の燃焼場を図8の領域γとして、それぞれの領域が互いに独立している場合について説明したが、これら領域同士の一部分が重なり合う場合もある。
 また、この拡散燃焼用メイン噴射での燃料噴射量は比較的多いため、その噴射開始初期時には、その噴射された燃料の吸熱反応により上記予混合燃焼の燃焼場が冷却されることになって、この予混合燃焼での熱発生率の急峻さが緩和されることになる。つまり、この予混合燃焼での燃焼音の増大やNOx発生を抑制することができている。この効果を得るための好ましい拡散燃焼用メイン噴射の噴射タイミングとしては、この拡散燃焼用メイン噴射の開始タイミングを、上記繋ぎ燃焼の開始タイミングに略同期させ、この拡散燃焼用メイン噴射の終了タイミングを、上記繋ぎ燃焼における熱発生率が最大となるタイミングに略同期させることが挙げられる。
 また、この拡散燃焼用メイン噴射での燃焼は、拡散燃焼であるため、その燃料噴射タイミングを制御すれば、その燃焼における熱発生率のピークタイミングを制御することが可能である。以下、具体的に説明する。
 上記繋ぎ燃焼によって気筒内の予熱が十分に行われているため、この状態で拡散燃焼用メイン噴射が開始された場合、この拡散燃焼用メイン噴射で噴射された燃料は、直ちに自着火温度以上の温度環境下に晒されて熱分解が進み、噴射後は直ちに燃焼が開始されることになる。
 具体的に、ディーゼルエンジンにおける燃料の着火遅れとしては、物理的遅れと化学的遅れとがある。物理的遅れは、燃料液滴の蒸発・混合に要する時間であり、燃焼場のガス温度に左右される。一方、化学的遅れは、燃料蒸気の化学的結合・分解かつ酸化発熱に要する時間である。そして、上述した如く気筒内の予熱が十分になされている状況では上記物理的遅れを最小限に抑えることができ、その結果、着火遅れも最小限に抑えられることになる。
 従って、上記拡散燃焼用メイン噴射によって噴射された燃料の燃焼形態としては、大部分が拡散燃焼となる。その結果、この拡散燃焼用メイン噴射の燃料噴射タイミングを制御することがそのまま拡散燃焼の燃焼タイミングや熱発生率のピークタイミングを制御することに略等しくなり、燃焼の制御性を大幅に改善することができる。つまり、この拡散燃焼による熱発生率波形の制御によって燃焼の制御性を大幅に改善することが可能になる。例えば、上述した如くTDC付近で拡散燃焼用メイン噴射を開始させることで、ATDC10°で熱発生率のピークタイミングを迎えることが可能になる。
 尚、拡散燃焼用メイン噴射での噴射量についても、例えば実験やシミュレーションによって設定される。
 <貫徹力について>
 次に、上記各メイン噴射において噴射される燃料の貫徹力について具体的に説明する。上記インジェクタ23では、噴射指令信号を受けて燃料噴射が開始されると、噴射孔を閉塞しているニードルが噴射孔から後退していくことで噴射孔の開口面積を次第に増大させていく。そして、ニードルが最後退位置まで移動すると噴射孔の開口面積は最大となる。ところが、このニードルが最後退位置に達するまでに噴射指令信号が解除されると(閉弁指令を受けると)、後退移動している途中でニードルは閉弁方向に向かって前進することになる。つまり、この場合、噴射孔の開口面積は最大となることなく燃料噴射を終了することになる。このため、噴射期間が長く設定されるほど噴射孔の開口面積としては大きく得られることになる。
 そして、上記噴射孔の開口面積は、その噴射孔から噴射される燃料(噴霧)の飛行距離に相関がある。つまり、噴射孔の開口面積が大きい状態で燃料が噴射された場合には、噴射孔から噴射される燃料の液滴の寸法も大きいため運動エネルギも大きく(貫徹力(ペネトレーション)が大きく)なっている。このため、この燃料の液滴の飛行距離は長くなる。一方、噴射孔の開口面積が小さい状態で燃料が噴射された場合には、この噴射孔から噴射される燃料の液滴の寸法も小さいため運動エネルギも小さく(貫徹力(ペネトレーション)が小さく)なっている。このため、この燃料の液滴の飛行距離も短い。
 そして、上述した如く、インジェクタ23の開弁期間が比較的長く設定された場合(言い換えると、メイン噴射1回当たりの噴射量が比較的多く設定された場合)には、ニードルが最後退位置まで移動することになって噴射孔の開口面積は最大となるので、この場合の燃料の液滴の飛行距離は長くなる。つまり、インジェクタ23から噴射された燃料の大部分は上記キャビティ13bの外周端付近まで飛行可能な状態となる。
 一方、インジェクタ23の開弁期間が比較的短く設定された場合(言い換えると、メイン噴射1回当たりの噴射量が比較的少なく設定された場合)には、ニードルが最後退位置まで移動することがなく噴射孔の開口面積は小さいため、この場合の燃料の液滴の飛行距離は短くなる。つまり、インジェクタ23から噴射された燃料の大部分は上記キャビティ13bの中央部付近までしか飛行できない状態となる。
 このように、インジェクタ23の開弁期間によって決まる噴射孔の開口面積と、その噴射孔から噴射される燃料(噴霧)の飛行距離とには相関がある。このため、インジェクタ23の開弁期間を調整することによって燃料の飛行距離を調整することが可能である。言い換えると、メイン噴射1回当たりの噴射量によって決まる噴射孔の開口面積と、その噴射孔から噴射される燃料(噴霧)の飛行距離とには相関がある。このため、メイン噴射1回当たりの噴射量を規定することによって燃料の飛行距離を規定することが可能である。
 そこで、本実施形態では、低温燃焼用メイン噴射での噴射期間に比べて繋ぎ燃焼用メイン噴射での噴射期間を長くし、また、繋ぎ燃焼用メイン噴射での噴射期間に比べて拡散燃焼用メイン噴射での噴射期間を長く設定している。このため、低温燃焼用メイン噴射での燃料噴射量に比べて繋ぎ燃焼用メイン噴射での燃料噴射量が多くなり、且つ貫徹力も高くなる。また、繋ぎ燃焼用メイン噴射での燃料噴射量に比べて拡散燃焼用メイン噴射での燃料噴射量が多くなり、且つ貫徹力も高くなる。
 このため、上述した如く、低温燃焼用メイン噴射で噴射された燃料の燃焼場は、キャビティ13bの内周部分の比較的狭小エリアで形成されることになる(図8における領域α)。また、繋ぎ燃焼用メイン噴射で噴射された燃料の燃焼場は、上記低温燃焼用メイン噴射で噴射された燃料の燃焼場の外周側に形成されることになる(図8における領域β)。更に、拡散燃焼用メイン噴射で噴射された燃料の燃焼場は、キャビティ13bの外周部分の比較的拡大されたエリアで形成されることになる(図8における領域γ)。
 このため、上述した如く、繋ぎ燃焼用メイン噴射で噴射された燃料は、低温燃焼用メイン噴射で噴射された燃料の燃焼場、つまり、上記初期低温燃焼が行われている燃焼場を通過し、その際、この燃焼場から熱量を受けて上記予混合燃焼に至ることになる。また、拡散燃焼用メイン噴射で噴射された燃料は、低温燃焼用メイン噴射で噴射された燃料の燃焼場だけでなく繋ぎ燃焼用メイン噴射で噴射された燃料の燃焼場、つまり、上記予混合燃焼が行われている燃焼場を通過し、その際、この燃焼場から熱量を受けて上記拡散燃焼に至ることになる。
 以上のようなメイン噴射実行時における燃焼場環境の変化について図7を用いて説明する。上述した如く図7は、燃焼場のガス温度と燃焼場の当量比との変化を示すマップである。
 この図7に示すように、低温燃焼用メイン噴射が開始(図7における点A)された場合、燃料噴射量が比較的少ないため燃焼場の当量比は殆ど変化せず、その燃料の燃焼(初期低温燃焼)によって燃焼場ガス温度が僅かに上昇していく。この初期低温燃焼では、上述した如く、燃焼場環境がスモーク発生領域やNOx発生領域に達することはない。
 その後、繋ぎ燃焼用メイン噴射が開始されると(図7における点B:初期低温燃焼の燃焼場の熱を受けることで、ガス温度としては点Bまで上昇した状態から予混合燃焼を開始する)、上記予混合燃焼に伴って燃焼場の当量比がリッチ側に移行すると共にその燃料の燃焼によって燃焼場ガス温度が上昇していく。この際、燃焼場の温度は上記拡散燃焼可能温度(900K)程度まで上昇することになる。この予混合燃焼においても、燃焼場環境がスモーク発生領域やNOx発生領域に達することはない。
 そして、拡散燃焼用メイン噴射が開始されると(図7における点C:繋ぎ燃焼の燃焼場の熱を受けることで、ガス温度としては点Cまで上昇した状態から拡散燃焼を開始する)、気筒内では拡散燃焼が開始され、燃焼場の当量比がリッチ側に移行すると共にその燃料の燃焼によって燃焼場ガス温度が上昇する。この場合の拡散燃焼も、燃焼場環境がスモーク発生領域やNOx発生領域に達することはない。
 そして、この拡散燃焼の後半は、当量比が上昇することになるが、図7に示す如く燃焼場環境はY領域(CO領域)となっており、NOxやスモークの発生は抑えられる。
 (中負荷運転時)
 一方、エンジン1の中負荷運転時には、上述した低負荷運転時に比べて総メイン噴射量が多くなるが、各メイン噴射(低温燃焼用メイン噴射、繋ぎ燃焼用メイン噴射、拡散燃焼用メイン噴射)での燃料噴射量を互いに同じ比率で増量してしまうと、上記拡散燃焼での燃焼速度が急速に高くなって、熱発生率のピーク値が過上昇し、NOxの発生量が増大したり燃焼音が増大したりする可能性がある。
 このため、この中負荷運転時には、低温燃焼用メイン噴射及び繋ぎ燃焼用メイン噴射での燃料噴射量を増量するのに対し、拡散燃焼用メイン噴射での燃料噴射量を減量しながらも、上記総メイン噴射量が確保できるようにしている(図5における燃料噴射パターンの波形を参照)。これにより、拡散燃焼に伴うNOx発生量の増大や燃焼音の増大を回避できるようにしている。
 例えば、上述した如く、低負荷運転時における低温燃焼用メイン噴射、繋ぎ燃焼用メイン噴射、拡散燃焼用メイン噴射での各燃料噴射量を、それぞれ2mm3、6mm3、22mm3とした場合に、中負荷運転時における低温燃焼用メイン噴射、繋ぎ燃焼用メイン噴射、拡散燃焼用メイン噴射での各燃料噴射量を、それぞれ7mm3、13mm3、20mm3に設定するものである。これら値はこれに限定されるものではなく、例えば実験やシミュレーションによって設定される。
 特に、低温燃焼用メイン噴射での燃料噴射量は、上述した低温燃焼を維持するために上限値が設定されている。この燃料噴射量の上限値は、低温燃焼用メイン噴射の噴射開始タイミングにおける気筒内温度によって異なる。つまり、この気筒内温度が高いほど上限値としては低く設定されることになる。
 この中負荷運転時においても上述した低負荷運転時の場合と同様に、初期低温燃焼、繋ぎ燃焼、拡散燃焼が順次行われる。これら燃焼それぞれの機能については上述した低負荷運転時の場合と同様であるので、ここでの説明は省略する。
 (高負荷運転時)
 次に、エンジン1の高負荷運転時における燃焼形態について説明する。
 上述した低負荷運転時や中負荷運転時の如く、初期低温燃焼を行った後の拡散燃焼では、エンジン1の高負荷運転時に応じたトルクが十分に得られない可能性がある。このため、本実施形態では、高負荷運転時にあっては、同一燃焼過程中の全域を拡散燃焼として燃焼速度を高めると共に、この拡散燃焼の初期段階である初期拡散燃焼(図6に示した初期拡散燃焼期間)では、その期間の熱発生率の平均値が、上記初期低温燃焼が行われる期間での熱発生率の平均値に略一致するようにしてNOxの発生量を抑制できるようにしている。
 具体的には、図6に示すように2回の分割メイン噴射を実施し、前段の分割メイン噴射(疑似低温燃焼用メイン噴射)の燃料噴射量を比較的少なく設定することで、この燃料の燃焼期間を短く設定する。その後、負荷に応じたエンジントルクが得られる総メイン噴射量が確保できるように比較的大量の燃料噴射(拡散燃焼用メイン噴射)を実施する。尚、この高負荷運転時の燃焼は拡散燃焼であって燃焼速度が高いため、疑似低温燃焼用メイン噴射の噴射タイミングとしては、上述した低負荷運転時や中負荷運転時での低温燃焼用メイン噴射の噴射タイミングよりも遅角側(TDC付近)に設定している。
 これにより、疑似低温燃焼用メイン噴射において噴射された燃料の燃焼では、熱発生率が一時的に高まった後、この熱発生率が低下していくことになる。そして、本実施形態では、この燃焼期間(初期拡散燃焼期間)における熱発生率の平均値が、上記低負荷運転時や中負荷運転時において実施されていた初期低温燃焼が行われる期間での熱発生率の平均値に略一致するようにしてNOxの発生量を抑制している。
 より具体的に説明すると、図6に破線で示す熱発生率波形は上記低負荷運転時のものであり、実線で示す熱発生率は高負荷運転時のものである。そして、上記初期拡散燃焼期間において、低負荷運転時の熱発生率波形に対して高負荷運転時の熱発生率波形が上回っている領域(図6における領域H1)と、低負荷運転時の熱発生率波形に対して高負荷運転時の熱発生率波形が下回っている領域(図6における領域H1)との面積を略一致させることによって、初期拡散燃焼期間における高負荷運転時の熱発生率の平均値が、上記低負荷運転時において実施されていた初期低温燃焼が行われる期間での熱発生率の平均値に略一致するようにしている。これにより、上述した初期低温燃焼と同等の効果が得られる。
 このような擬似的な低温燃焼を行うことでNOxの発生量を抑制することができ、高負荷運転時における排気エミッションの改善を図りながらも必要トルクを得ることができる。
 以上説明したように、本実施形態に係る燃焼場での燃焼形態によれば、従来のディーゼルエンジンの同一燃焼過程中では存在し得なかった初期低温燃焼(比較的低温環境下での燃焼)と拡散燃焼(比較的高温環境下での燃焼)との間を上記繋ぎ燃焼によって繋ぐことで、これら初期低温燃焼と拡散燃焼とを、この両者間にトルク空白期間を生じさせることなしに同一燃焼過程中に共存させることが可能である。これにより、上述の如くNOx発生量の抑制とスモーク発生量の抑制とが図れ、また、繋ぎ燃焼で温度上昇された気筒内への燃料噴射によって上記拡散燃焼を実施可能としていることで、上記「拡散燃焼用燃料噴射期間」の制御によって、この拡散燃焼の開始タイミングの制御や一連の燃焼(初期低温燃焼から拡散燃焼に亘る燃焼)において熱発生率が最大になるタイミング(燃焼重心)を制御することが可能になる。例えば、この燃焼重心をATDC10°付近に設定することで最も燃焼効率の良い燃焼形態を実現することができる。このため、熱発生率が最大になるタイミングが大きく遅角側に移行してしまうことを阻止できて、内燃機関の要求トルクを確保することが可能になる。その結果、NOx発生量の抑制と、スモーク発生量の抑制と、要求トルクの確保とを連立させることが可能になる。
 また、本実施形態では、NOx発生量を大幅に削減することができるので、上記NSR触媒75やDPNR触媒76の小型化を図ることができ、また、NOx発生量を略「0」にすることも可能であるので、上記NSR触媒75やDPNR触媒76を廃止し、それに代えて三元触媒のみを排気系6に設ける構成とすることも可能である。これによれば、ガソリンエンジンと同様の比較的構成の簡素な排気系をディーゼルエンジンにおいて実現することが可能である。
 -変形例-
 上述した実施形態では、上記初期低温燃焼、繋ぎ燃焼、拡散燃焼それぞれに対応する燃料噴射期間を個別に設定していた。つまり、3回の燃料噴射を順に行うことによって、それぞれに対応した3種類の燃焼形態を実現していた。
 本発明は、2回の燃料噴射によって、上記初期低温燃焼、繋ぎ燃焼、拡散燃焼を行わせるものである。
 図9は、本変形例におけるエンジン1の低負荷運転時であってメイン噴射の実行期間中における気筒内での熱発生率の変化および燃料噴射パターンをそれぞれ示している。また、図10は、本変形例のエンジン1の中負荷運転時であってメイン噴射の実行期間中における気筒内での熱発生率の変化および燃料噴射パターンをそれぞれ示している。尚、本変形例におけるエンジン1の高負荷運転時における熱発生率の変化および燃料噴射パターンは上述した実施形態のものと同一であるので、ここでは説明を省略する。
 本変形例における前段の燃料噴射は、上述した実施形態における低温燃焼用メイン噴射と繋ぎ燃焼用メイン噴射とを兼ね備えたものである。ここでは低温燃焼兼繋ぎ燃焼用メイン噴射と呼ぶ。つまり、この低温燃焼兼繋ぎ燃焼用メイン噴射の噴射期間において前半で噴射された燃料が上記初期低温燃焼のための燃料となり、後半で噴射された燃料が上記繋ぎ燃焼のための燃料となる。一方、後段の燃料噴射は、上述した実施形態における拡散燃焼用メイン噴射に相当する。
 これら図9及び図10に示すような燃料噴射においても、上述した実施形態と同様に、初期低温燃焼と拡散燃焼との間を繋ぎ燃焼によって繋ぐことが可能であって、これら初期低温燃焼と拡散燃焼とを、この両者間にトルク空白期間を生じさせることなしに同一燃焼過程中に共存させることが可能になる。これにより、NOx発生量の抑制と、スモーク発生量の抑制と、要求トルクの確保とを連立させることが可能になる。
 本変形例のように、2回の燃料噴射によって、上記初期低温燃焼、繋ぎ燃焼、拡散燃焼を行わせる場合、インジェクタ23の開閉動作のインターバルを比較的長く設定することが可能であるので、比較的開閉速度の低い(応答性の低い)インジェクタ23であっても上述した3種類の燃焼形態を実現することが可能になり、燃料噴射システムのコストの低廉化を図ることができる。また、インジェクタ23の噴射回数を削減できることで、同一領域(インジェクタ23の噴射口近傍領域:図8における領域α)を流れる燃料噴射量を減少させることができ、上記低温燃焼用メイン噴射での燃料噴射量が比較的多くても、その後の燃料噴射に伴う上記領域でのスモークの発生を抑制することが可能になる。
 -他の実施形態-
 以上説明した実施形態及び変形例では、自動車に搭載される直列4気筒ディーゼルエンジンに本発明を適用した場合について説明した。本発明は、自動車用に限らず、その他の用途に使用されるエンジンにも適用可能である。また、気筒数やエンジン形式(直列型エンジン、V型エンジン、水平対向型エンジン等の別)についても特に限定されるものではない。
 また、上記実施形態及び変形例では、マニバータ77として、NSR触媒75およびDPNR触媒76を備えたものとしたが、NSR触媒75およびDPF(Diesel Paticulate Filter)を備えたものとしてもよい。
 尚、上記実施形態及び変形例では、EGR装置として、排気マニホールド72内の排気ガスを吸気系6に還流させる構成とした。本発明はこれに限らず、ターボチャージャ5におけるタービンホイール52の下流側の排気ガスを吸気系6に還流させるLPL(Low Pressure Loop)EGR装置を採用するようにしてもよい。この場合、EGRガスによる気筒内の温度上昇が抑えられることになるので、上記初期低温燃焼や繋ぎ燃焼を効果的に実施することが可能である。
 尚、上記実施形態及び変形例では、低負荷運転時及び中負荷運転時に行われる初期低温燃焼の開始タイミングとしてはBTDC(ピストン13の圧縮上死点よりも進角側)に設定していた。本発明はこれに限らず、初期低温燃焼の開始タイミングをTDC(ピストン13の圧縮上死点)に設定したり、場合によっては、初期低温燃焼の開始タイミングをATDC(ピストン13の圧縮上死点よりも遅角側)に設定するようにしてもよい。
 本発明は、自動車に搭載されるコモンレール式筒内直噴型多気筒ディーゼルエンジンにおける燃料噴射制御に適用することが可能である。
1    エンジン(内燃機関)
3    燃焼室
23   インジェクタ(燃料噴射弁)
6    吸気系
62   スロットルバルブ(吸気絞り弁)
7    排気系
8    EGR通路
81   EGRバルブ
82   EGRクーラ

Claims (9)

  1.  排気系に排出された排気ガスの一部を吸気系に還流させる排気還流装置を備えていると共に、内燃機関の燃焼過程中に、燃料噴射弁から、トルク発生のための燃料噴射である主噴射が実行される圧縮自着火式の内燃機関の制御装置において、
     上記主噴射の噴射期間として、
     気筒内の酸素と燃料噴霧との邂逅率を低下させる邂逅率低下動作を行いながら、その気筒内で燃料を順次燃焼させていく初期低温燃焼のための「初期燃焼用燃料噴射期間」と、
     気筒内の温度が拡散燃焼に至る所定の拡散燃焼開始温度以上であるときに、上記排気還流装置によって還流された排気ガスによる燃焼温度抑制効果を活用できる領域に向けて燃料噴射が行われることによって拡散燃焼を行わせるための「拡散燃焼用燃料噴射期間」と、
     上記「初期燃焼用燃料噴射期間」と「拡散燃焼用燃料噴射期間」との間に設定された期間であって、上記初期低温燃焼の開始後、気筒内の温度が上記拡散燃焼開始温度未満であるときに噴射された燃料が、その後の上記「拡散燃焼用燃料噴射期間」において噴射された燃料の吸熱反応によって噴霧冷却されることに伴い上記初期低温燃焼と上記拡散燃焼との間を連続的に繋ぐ予混合燃焼により成る繋ぎ燃焼を行わせるための「繋ぎ燃焼用燃料噴射期間」とを設定する燃料噴射制御手段を備えていることを特徴とする内燃機関の制御装置。
  2.  上記請求項1記載の内燃機関の制御装置において、
     上記燃料噴射制御手段は、「初期燃焼用燃料噴射期間」及び「繋ぎ燃焼用燃料噴射期間」で噴射される燃料の貫徹力に比べて上記「拡散燃焼用燃料噴射期間」で噴射される燃料の貫徹力を高く設定するよう構成されていることを特徴とする内燃機関の制御装置。
  3.  上記請求項1または2記載の内燃機関の制御装置において、
     上記燃料噴射制御手段は、上記「拡散燃焼用燃料噴射期間」の開始タイミングを、上記「繋ぎ燃焼用燃料噴射期間」で噴射された燃料の燃焼開始タイミングに略同期させ、上記「拡散燃焼用燃料噴射期間」の終了タイミングを、上記「繋ぎ燃焼用燃料噴射期間」で噴射された燃料の燃焼における熱発生率が最大となるタイミングに略同期させるよう構成されていることを特徴とする内燃機関の制御装置。
  4.  上記請求項1、2または3記載の内燃機関の制御装置において、
     上記燃料噴射制御手段は、上記「初期燃焼用燃料噴射期間」、「繋ぎ燃焼用燃料噴射期間」及び「拡散燃焼用燃料噴射期間」での燃料噴射として、「初期燃焼用燃料噴射期間」での燃料噴射終了後、燃料噴射を一旦停止した後に「繋ぎ燃焼用燃料噴射期間」での燃料噴射を開始し、この「繋ぎ燃焼用燃料噴射期間」での燃料噴射終了後、燃料噴射を一旦停止した後に「拡散燃焼用燃料噴射期間」での燃料噴射を開始するよう構成されていることを特徴とする内燃機関の制御装置。
  5.  上記請求項1、2または3記載の内燃機関の制御装置において、
     上記燃料噴射制御手段は、上記「初期燃焼用燃料噴射期間」、「繋ぎ燃焼用燃料噴射期間」及び「拡散燃焼用燃料噴射期間」での燃料噴射として、「初期燃焼用燃料噴射期間」での燃料噴射と「繋ぎ燃焼用燃料噴射期間」での燃料噴射とを停止させることなく連続した燃料噴射により実施する一方、「繋ぎ燃焼用燃料噴射期間」での燃料噴射終了後、燃料噴射を一旦停止した後に「拡散燃焼用燃料噴射期間」での燃料噴射を開始するよう構成されていることを特徴とする内燃機関の制御装置。
  6.  上記請求項1~5のうち何れか一つに記載の内燃機関の制御装置において、
     上記邂逅率低下動作としては、上記排気還流装置による排気還流動作、吸気系における吸気絞り動作、燃料噴射弁からの燃料噴射時期を遅角させる動作、気筒内温度を低下させる動作のうち少なくとも何れか一つが実行されることを特徴とする内燃機関の制御装置。
  7.  上記請求項1~6のうち何れか一つに記載の内燃機関の制御装置において、
     上記燃料噴射制御手段は、気筒内温度が750K以上で900K未満の範囲にあるときを「初期燃焼用燃料噴射期間」とし、上記初期低温燃焼の開始後、気筒内温度が800K以上で900K未満の範囲にあるときを「繋ぎ燃焼用燃料噴射期間」とし、上記繋ぎ燃焼の開始後、気筒内温度が900Kに達した後を「拡散燃焼用燃料噴射期間」としてそれぞれ設定するよう構成されていることを特徴とする内燃機関の制御装置。
  8.  上記請求項1~7のうち何れか一つに記載の内燃機関の制御装置において、
     上記「初期燃焼用燃料噴射期間」、「繋ぎ燃焼用燃料噴射期間」及び「拡散燃焼用燃料噴射期間」での燃料噴射は、内燃機関の低負荷運転時及び中負荷運転時で実行され、上記各噴射期間で噴射される燃料噴射量の和である噴射総量に対する「繋ぎ燃焼用燃料噴射期間」での燃料噴射量の比率は、上記低負荷運転から中負荷運転の範囲において負荷が高いほど大きく設定されていることを特徴とする内燃機関の制御装置。
  9.  上記請求項1~7のうち何れか一つに記載の内燃機関の制御装置において、
     上記「初期燃焼用燃料噴射期間」、「繋ぎ燃焼用燃料噴射期間」及び「拡散燃焼用燃料噴射期間」での燃料噴射は、内燃機関の低負荷運転時及び中負荷運転時で実行され、
     内燃機関の高負荷運転時には、気筒内での燃焼開始初期時の所定期間の熱発生率の平均値が、上記初期低温燃焼が行われる期間での熱発生率の平均値に略一致する初期拡散燃焼が行われる構成とされていることを特徴とする内燃機関の制御装置。
PCT/JP2009/058002 2009-04-22 2009-04-22 内燃機関の制御装置 WO2010122643A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP09843643A EP2423494A4 (en) 2009-04-22 2009-04-22 INTERNAL COMBUSTION ENGINE CONTROL DEVICE
US13/258,706 US8904995B2 (en) 2009-04-22 2009-04-22 Control apparatus of internal combustion engine
PCT/JP2009/058002 WO2010122643A1 (ja) 2009-04-22 2009-04-22 内燃機関の制御装置
JP2011510118A JP5115651B2 (ja) 2009-04-22 2009-04-22 内燃機関の制御装置
CN200980158930.7A CN102414426B (zh) 2009-04-22 2009-04-22 内燃机的控制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/058002 WO2010122643A1 (ja) 2009-04-22 2009-04-22 内燃機関の制御装置

Publications (1)

Publication Number Publication Date
WO2010122643A1 true WO2010122643A1 (ja) 2010-10-28

Family

ID=43010781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/058002 WO2010122643A1 (ja) 2009-04-22 2009-04-22 内燃機関の制御装置

Country Status (5)

Country Link
US (1) US8904995B2 (ja)
EP (1) EP2423494A4 (ja)
JP (1) JP5115651B2 (ja)
CN (1) CN102414426B (ja)
WO (1) WO2010122643A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012131949A1 (ja) * 2011-03-30 2012-10-04 トヨタ自動車株式会社 内燃機関の燃料噴射制御装置
CN103415691A (zh) * 2011-03-11 2013-11-27 株式会社丰田自动织机 燃料喷射装置
JP2015140772A (ja) * 2014-01-30 2015-08-03 マツダ株式会社 直噴ガソリンエンジンの制御装置
JP2017115633A (ja) * 2015-12-22 2017-06-29 三菱自動車工業株式会社 内燃機関の燃料噴射制御装置
JPWO2018211630A1 (ja) * 2017-05-17 2020-03-19 マツダ株式会社 ディーゼルエンジンの燃料噴射制御方法及び燃料噴射制御装置
JPWO2018211632A1 (ja) * 2017-05-17 2020-03-19 マツダ株式会社 ディーゼルエンジンの燃料噴射制御方法及び燃料噴射制御装置

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010035341A1 (ja) * 2008-09-29 2010-04-01 トヨタ自動車株式会社 内燃機関の燃料噴射制御装置
WO2011048676A1 (ja) * 2009-10-21 2011-04-28 トヨタ自動車株式会社 内燃機関の燃焼制御装置
JP5392293B2 (ja) * 2010-06-29 2014-01-22 マツダ株式会社 自動車搭載用ディーゼルエンジン及びディーゼルエンジンの制御方法
WO2012120598A1 (ja) * 2011-03-04 2012-09-13 トヨタ自動車株式会社 多種燃料内燃機関の燃料供給制御システム
WO2012148396A1 (en) * 2011-04-28 2012-11-01 International Engine Intellectual Property Company, Llc System and method of controlling combustion in an engine having an in-cylinder pressure sensor
JP5396430B2 (ja) * 2011-05-23 2014-01-22 日立オートモティブシステムズ株式会社 筒内噴射式内燃機関の制御装置
US10066564B2 (en) 2012-06-07 2018-09-04 GM Global Technology Operations LLC Humidity determination and compensation systems and methods using an intake oxygen sensor
DE102012011149A1 (de) * 2012-06-05 2013-12-05 Abb Turbo Systems Ag Einspritzsystem für kompressionsgezündete Dieselmotoren
US9341133B2 (en) * 2013-03-06 2016-05-17 GM Global Technology Operations LLC Exhaust gas recirculation control systems and methods
JP6070346B2 (ja) * 2013-03-27 2017-02-01 トヨタ自動車株式会社 内燃機関の熱発生率波形作成装置および燃焼状態診断装置
CN103277200B (zh) * 2013-06-28 2015-07-22 贵阳学院 一种乙醇-柴油双直喷发动机的燃烧方法
JP6083360B2 (ja) * 2013-09-02 2017-02-22 トヨタ自動車株式会社 内燃機関の制御装置
JP5892144B2 (ja) * 2013-11-13 2016-03-23 トヨタ自動車株式会社 内燃機関の制御装置
JP6248579B2 (ja) * 2013-11-27 2017-12-20 マツダ株式会社 直噴ガソリンエンジン
JP6467149B2 (ja) * 2014-03-26 2019-02-06 日本特殊陶業株式会社 ディーゼルエンジンの制御装置の設計方法
JP6302715B2 (ja) * 2014-03-26 2018-03-28 日本特殊陶業株式会社 ディーゼルエンジンの制御装置およびその方法
JP6320209B2 (ja) 2014-07-15 2018-05-09 日本特殊陶業株式会社 ディーゼルエンジンの制御装置およびその制御方法
JP6098613B2 (ja) * 2014-10-30 2017-03-22 トヨタ自動車株式会社 内燃機関
JP6269442B2 (ja) * 2014-10-30 2018-01-31 トヨタ自動車株式会社 内燃機関
KR20160057717A (ko) * 2014-11-14 2016-05-24 현대자동차주식회사 스월제어방식 예혼합 연소강도 제어방법 및 엔진제어시스템
JP6172189B2 (ja) * 2015-03-23 2017-08-02 マツダ株式会社 直噴エンジンの燃料噴射制御装置
JP6639343B2 (ja) * 2016-07-14 2020-02-05 ヤンマー株式会社 内燃機関の制御装置および内燃機関の制御方法
JP6622251B2 (ja) * 2017-06-02 2019-12-18 トヨタ自動車株式会社 内燃機関の制御装置
JP6927084B2 (ja) * 2018-03-02 2021-08-25 トヨタ自動車株式会社 内燃機関
JP7068021B2 (ja) * 2018-04-27 2022-05-16 トヨタ自動車株式会社 内燃機関の制御装置
JP7067316B2 (ja) * 2018-06-28 2022-05-16 マツダ株式会社 ディーゼルエンジンの燃料噴射制御装置
JP7155946B2 (ja) * 2018-11-28 2022-10-19 マツダ株式会社 エンジンの制御装置
JP7124732B2 (ja) * 2019-01-29 2022-08-24 マツダ株式会社 圧縮着火エンジンの制御装置
JP7124733B2 (ja) 2019-01-29 2022-08-24 マツダ株式会社 圧縮着火エンジンの制御装置
JP7124734B2 (ja) 2019-01-29 2022-08-24 マツダ株式会社 圧縮着火エンジンの制御装置
CN113047974B (zh) * 2021-04-07 2023-01-03 天津轩云科技有限公司 一种高燃油效率低排放内燃机及控制方法
JP7505470B2 (ja) * 2021-10-14 2024-06-25 トヨタ自動車株式会社 内燃機関

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001164968A (ja) 1999-12-06 2001-06-19 Nissan Motor Co Ltd ディーゼルエンジンの排気浄化装置
JP2001193526A (ja) 2000-01-12 2001-07-17 Mazda Motor Corp ターボ過給機付エンジンの制御装置
JP2001221092A (ja) 2000-02-07 2001-08-17 Mazda Motor Corp ターボ過給機付ディーゼルエンジンの燃料制御装置
JP2002188487A (ja) 2000-12-19 2002-07-05 Nissan Motor Co Ltd ディーゼルエンジンの排気浄化装置
WO2002066813A1 (fr) * 2001-02-20 2002-08-29 Isuzu Motors Limited Procede de commande d'injection de carburant pour moteur diesel et procede de commande de regeneration de gaz d'echappement apres un dispositif de traitement
JP2004003415A (ja) 2002-03-28 2004-01-08 Mazda Motor Corp ディーゼルエンジンの燃焼制御装置
JP2008267276A (ja) * 2007-04-20 2008-11-06 Toyota Motor Corp 内燃機関の燃料噴射量制御装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0844380B1 (en) * 1996-11-22 2003-03-05 Denso Corporation Exhaust emission control system and method of internal combustion engine
US5983630A (en) * 1997-07-01 1999-11-16 Toyota Jidosha Kabushiki Kaisha Fuel injecting device for an engine
IT1308412B1 (it) * 1999-03-05 2001-12-17 Fiat Ricerche Metodo di controllo della combustione di un motore diesel ad iniezionediretta tramite l'attuazione di iniezioni multiple mediante un sistema
JP2000320386A (ja) * 1999-03-10 2000-11-21 Mazda Motor Corp ディーゼルエンジンの燃料噴射装置
JP4329206B2 (ja) 2000-02-21 2009-09-09 マツダ株式会社 ディーゼルエンジンの燃料制御装置
WO2001086125A2 (en) * 2000-05-08 2001-11-15 Cummins, Inc. Premixed charge compression ignition engine with variable speed soc control and method of operation
CN100414085C (zh) * 2002-09-09 2008-08-27 丰田自动车株式会社 内燃机的控制装置
JP4161690B2 (ja) * 2002-11-20 2008-10-08 株式会社デンソー 蓄圧式燃料噴射装置
CA2444163C (en) * 2003-10-01 2007-01-09 Westport Research Inc. Method and apparatus for controlling combustion quality of a gaseous-fuelled internal combustion engine
US8463529B2 (en) * 2004-09-17 2013-06-11 Eaton Corporation System and method of operating internal combustion engines at fuel rich low-temperature- combustion mode as an on-board reformer for solid oxide fuel cell-powered vehicles
US7239954B2 (en) * 2004-09-17 2007-07-03 Southwest Research Institute Method for rapid, stable torque transition between lean rich combustion modes
JP3931900B2 (ja) * 2004-10-06 2007-06-20 いすゞ自動車株式会社 ディーゼルエンジンの制御装置
JP4462018B2 (ja) * 2004-11-18 2010-05-12 株式会社デンソー エンジン制御システム
US7277790B1 (en) * 2006-04-25 2007-10-02 Ut-Battelle, Llc Combustion diagnostic for active engine feedback control
US7475671B1 (en) * 2007-12-21 2009-01-13 Delphi Technologies, Inc. Method for compensating injection timing during transient response of pre-mixed combustion
DE102009028307A1 (de) * 2009-08-06 2011-02-10 Ford Global Technologies, LLC, Dearborn Verfahren zum Steuern eines Verbrennungsmotors
JP5392293B2 (ja) * 2010-06-29 2014-01-22 マツダ株式会社 自動車搭載用ディーゼルエンジン及びディーゼルエンジンの制御方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001164968A (ja) 1999-12-06 2001-06-19 Nissan Motor Co Ltd ディーゼルエンジンの排気浄化装置
JP2001193526A (ja) 2000-01-12 2001-07-17 Mazda Motor Corp ターボ過給機付エンジンの制御装置
JP2001221092A (ja) 2000-02-07 2001-08-17 Mazda Motor Corp ターボ過給機付ディーゼルエンジンの燃料制御装置
JP2002188487A (ja) 2000-12-19 2002-07-05 Nissan Motor Co Ltd ディーゼルエンジンの排気浄化装置
WO2002066813A1 (fr) * 2001-02-20 2002-08-29 Isuzu Motors Limited Procede de commande d'injection de carburant pour moteur diesel et procede de commande de regeneration de gaz d'echappement apres un dispositif de traitement
JP2004003415A (ja) 2002-03-28 2004-01-08 Mazda Motor Corp ディーゼルエンジンの燃焼制御装置
JP2008267276A (ja) * 2007-04-20 2008-11-06 Toyota Motor Corp 内燃機関の燃料噴射量制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2423494A4

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9376980B2 (en) 2011-03-11 2016-06-28 Kabushiki Kaisha Toyota Jidoshokki Fuel injection device
CN103415691A (zh) * 2011-03-11 2013-11-27 株式会社丰田自动织机 燃料喷射装置
EP2685075A4 (en) * 2011-03-11 2015-11-04 Toyota Jidoshokki Kk FUEL INJECTION EQUIPMENT
JP5136721B2 (ja) * 2011-03-30 2013-02-06 トヨタ自動車株式会社 内燃機関の燃料噴射制御装置
CN102985672A (zh) * 2011-03-30 2013-03-20 丰田自动车株式会社 内燃机的燃料喷射控制装置
JPWO2012131949A1 (ja) * 2011-03-30 2014-07-24 トヨタ自動車株式会社 内燃機関の燃料噴射制御装置
US8936007B2 (en) 2011-03-30 2015-01-20 Toyota Jidosha Kabushiki Kaisha Fuel injection control apparatus of internal combustion engine
CN102985672B (zh) * 2011-03-30 2016-05-11 丰田自动车株式会社 内燃机的燃料喷射控制装置
WO2012131949A1 (ja) * 2011-03-30 2012-10-04 トヨタ自動車株式会社 内燃機関の燃料噴射制御装置
JP2015140772A (ja) * 2014-01-30 2015-08-03 マツダ株式会社 直噴ガソリンエンジンの制御装置
JP2017115633A (ja) * 2015-12-22 2017-06-29 三菱自動車工業株式会社 内燃機関の燃料噴射制御装置
JPWO2018211630A1 (ja) * 2017-05-17 2020-03-19 マツダ株式会社 ディーゼルエンジンの燃料噴射制御方法及び燃料噴射制御装置
JPWO2018211632A1 (ja) * 2017-05-17 2020-03-19 マツダ株式会社 ディーゼルエンジンの燃料噴射制御方法及び燃料噴射制御装置

Also Published As

Publication number Publication date
EP2423494A4 (en) 2012-09-12
CN102414426A (zh) 2012-04-11
US8904995B2 (en) 2014-12-09
JP5115651B2 (ja) 2013-01-09
JPWO2010122643A1 (ja) 2012-10-22
CN102414426B (zh) 2014-04-02
US20120016571A1 (en) 2012-01-19
EP2423494A1 (en) 2012-02-29

Similar Documents

Publication Publication Date Title
JP5115651B2 (ja) 内燃機関の制御装置
JP5158266B2 (ja) 内燃機関の燃焼制御装置
JP5086887B2 (ja) 内燃機関の燃料噴射制御装置
JP4404154B2 (ja) 内燃機関の燃料噴射制御装置
WO2010035341A1 (ja) 内燃機関の燃料噴射制御装置
JP5278596B2 (ja) 内燃機関の燃焼制御装置
JP2009167821A (ja) 内燃機関の燃料噴射制御装置
JP5120506B2 (ja) 内燃機関の燃焼制御装置
WO2010041308A1 (ja) 内燃機関の燃料噴射制御装置
JP4873098B2 (ja) 内燃機関の制御装置
JP2009293383A (ja) 内燃機関の燃料噴射制御装置および内燃機関の自動適合装置
JP2009299490A (ja) 内燃機関の燃料噴射制御装置
JP4930637B2 (ja) 内燃機関の燃料噴射制御装置
JP5218461B2 (ja) 内燃機関の燃焼制御装置
JP5229185B2 (ja) 内燃機関の燃焼制御装置
JP5177326B2 (ja) 内燃機関の燃料噴射制御装置
JP5126421B2 (ja) 内燃機関の燃焼制御装置
JP5267746B2 (ja) 内燃機関の燃焼制御装置
JP5093407B2 (ja) 内燃機関の燃焼制御装置
JP4924759B2 (ja) 内燃機関の燃料噴射制御装置
JP2009293596A (ja) 内燃機関の燃料噴射制御装置
JP4973602B2 (ja) 内燃機関の燃料噴射制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980158930.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09843643

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011510118

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13258706

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2009843643

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE