WO2010122505A1 - Dispositif de chauffage par inducteur de puissance, inducteur de puissance, et four ainsi équipé - Google Patents

Dispositif de chauffage par inducteur de puissance, inducteur de puissance, et four ainsi équipé Download PDF

Info

Publication number
WO2010122505A1
WO2010122505A1 PCT/IB2010/051744 IB2010051744W WO2010122505A1 WO 2010122505 A1 WO2010122505 A1 WO 2010122505A1 IB 2010051744 W IB2010051744 W IB 2010051744W WO 2010122505 A1 WO2010122505 A1 WO 2010122505A1
Authority
WO
WIPO (PCT)
Prior art keywords
cable
inductor
strands
fan
turns
Prior art date
Application number
PCT/IB2010/051744
Other languages
English (en)
Inventor
Gilles Gable
Original Assignee
Fives Celes
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fives Celes filed Critical Fives Celes
Priority to EP10719098.5A priority Critical patent/EP2422580B1/fr
Priority to CN201080017559.5A priority patent/CN102415209B/zh
Publication of WO2010122505A1 publication Critical patent/WO2010122505A1/fr

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/36Coil arrangements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating

Definitions

  • the invention relates to an induction heating device of the kind comprising:
  • high frequency is meant a frequency equal to or greater than 5 kilohertz (kHz) and which can reach 1 megahertz (1 MHz) or more.
  • power inductor is meant an inductor crossed by a current whose intensity is at least 100 amperes.
  • the invention relates in particular, but not exclusively, to induction heating of any electrically conductive product on the run for various applications such as:
  • the inductor in the following description, is of the longitudinal flow type, but it can also be of the transverse flow type, in particular for heating non-magnetic parts or of particular geometry.
  • EP 0 577 468 proposes an electromagnetic induction heating coil comprising a particular cooling device for the conductors of the coil. This solution is interesting for frequencies below 10 kHz, but the efficiency decreases significantly at higher frequencies.
  • WO 2007/141 422 discloses an induction heating device having a high frequency power supply which allows a high power to be transferred by the inductor while reducing the construction difficulties created by the electrical voltages, in particular at the level of the electrical connections. the inductor and capacitors. For such a heating device, it is also desirable to improve the energy efficiency.
  • JP 10-50217 A relates to a field different from that of the invention since it is a method of manufacturing a deflector armature to deflect an electron beam in a cathode ray tube.
  • Litz wires are provided in two rows to facilitate welding. There is no question of induction heating.
  • the object of the invention is, above all, to provide a high frequency induction power heating device in which the losses due to heating of the inductor are reduced.
  • EP 1 604 551 proposes a setting in series and parallel of monospires which can be advantageously be used for the connection of turns (mono or multispires) made from cables of Litz.
  • an induction heating device comprising:
  • the inductor comprises at least one multi-strand cable isolated between them, commonly called Litz cable, and the strands of the cable, at their connecting end. are fan-shaped to be connected in parallel to a metal bar forming a power supply terminal, the diameter of a cable strand being chosen such that it makes it possible to overcome the high frequency eddy current losses generated.
  • the neighboring conductors the number of strands or wires in parallel in a cable being sufficiently high to allow the passage of the intensity corresponding to the high power of heating.
  • the intensity of the current, for the heating power can reach several hundred to several thousands of amperes.
  • the diameter of a strand of the cable may be 0.1 mm for a frequency of 50 kHz.
  • the strands of the cable may be surrounded, or not, by an electrically insulating envelope.
  • connection of the ends of the strands or cable can be assured by welding on the bar, or other mode of connection such as crimping, or superimposed ends.
  • the length of the metal bar is at least five times the diameter of the cable, preferably greater than ten times the diameter of the cable.
  • the fan may concern subgroups of strands.
  • several parallel fan plies can be provided.
  • the plies of fan blades are connected flat against the bar.
  • the thickness of the plies or subgroups of strands is less than the penetration depth of the high frequency current in the supply terminal bar.
  • Each fan ply of cable strands for the connection preferably has a mean plane passing through or near the geometric axis of the end of the cable.
  • the fan is deployed on either side of the extension of the axis of the end of the cable.
  • the angle formed between the strands constituting the extreme edges of the fan and the geometric axis of the end of the cable can reach or even exceed 60 °.
  • the power supply terminal of a range of strands is connected, on the side opposite the fan, to at least one capacitor frame.
  • the average plane of the connection range may be orthogonal to the running direction of the element to be heated; alternatively, this plane can be inclined in this direction.
  • the average plane of the fan would be vertical for a band to be heated moving horizontally.
  • connection fan In the case of an inductor whose cable is helically wound in several turns (multi-turn inductor), the connection fan can be placed in a plane passing through the axis of the flux.
  • the heating device comprises an inductor whose cable is helically wound in several turns (multispire inductor), the number of turns free from any orientation constraints of the fan.
  • the inductor comprises one or more turns.
  • the turns can be electrically connected in series or in parallel.
  • the winding (s) surround the element to be heated, thus taking the form of a profile of the element to be heated, in particular the shape of a frame when the element to be heated is of flat shape or the shape of a circle when the element to be heated is cylindrical, or any shape adapted to the profile of the element to be heated.
  • the inductor may be formed of a single cable, or may comprise at least two cables or groups of multi-strand cables insulated from each other, connected to capacitor plates at their ends, forming a parallel oscillating circuit.
  • the power supply to maintain the oscillation of the circuit will be placed in parallel with the capacitor or capacitors, or one of the capacitors.
  • the power supply can be connected in series, being interposed between the inductor and one of the capacitors directly or through a transformer, the inductor then being mounted in a series oscillating circuit.
  • the accompanying drawings only describe the case of the parallel oscillating circuit, but the duality of the series circuit can be envisaged.
  • the inductor may comprise four groups of cables forming a quadrilateral surrounding the element to be heated and connected at their ends, forming the vertices of the quadrilateral, to four armatures or groups of capacitor plates.
  • the inductor may comprise several turns orthogonal to the geometric axis of the inductor, and juxtaposed according to a stack.
  • means for compensating the inductance of the end turns are provided to prevent overheating of these turns.
  • These compensation means may comprise additional turns close to the end turn, of increasing diameter, located in a plane orthogonal to the field of the inductor, or whose centers of the sections are arranged in a curve away from the the inductor.
  • the compensation means comprise at least one current transformer, or mediating or compensating inductor or current balancing, connected between the end turn and at least one other internal turn, especially the fore-end. adjacent turn or any other internal turn, to balance the intensity of the currents between the end turn and the other internal turn, the intensity through (a turn end being reduced while that of the other turn internal is It is possible to add a larger number of transformers in order to balance the current in several turns near the ends of the inductor The number of current transformers can reach the number of turns.
  • a multi-strand cable insulated from one another may comprise at least one cooling device, in particular constituted by a flexible conduit, made of a non-electrically conductive material, in particular a plastic material, for the passage of a cooling fluid, the strands being wrapped or braided around the flexible conduit.
  • a cooling device in particular constituted by a flexible conduit, made of a non-electrically conductive material, in particular a plastic material, for the passage of a cooling fluid, the strands being wrapped or braided around the flexible conduit.
  • the cooling device may further comprise a sheath surrounding the cable, in which a cooling fluid passes, in particular air or water or any coolant.
  • the heating device may comprise a capacitor, or a capacitor bank, connected between the terminals of the power supply, and N distinct elementary inductive parts, connected together in series by N-I capacitors or connecting capacitor banks.
  • the range of strands or subgroups of strands can be curved.
  • the power supply terminal can be curved.
  • the heating device may comprise monospires or multispires which are connected singly or in groups in series, or in parallel.
  • the invention also relates to a power inductor, for heating an induced element, having the characteristics set out above.
  • the invention also relates to a heating furnace for electrically conductive element characterized in that it comprises an induction heating device as defined above.
  • the invention consists, apart from the arrangements set out above, in a certain number of other arrangements which will be more explicitly discussed below with regard to embodiments described with reference to the accompanying drawings, but which are not in no way limiting.
  • FIG. 1 is a vertical cross section, schematic of a heating device according to the invention.
  • Fig. 2 is an electrical diagram of the device of FIG. 1
  • Fig. 3 is a partial view in vertical elevation, on a larger scale, of the right connecting end of the device of FIG. 1.
  • Fig. 4 is a top view, on a larger scale, of the right end of the device of FIG. 1.
  • Fig. 5 is a perspective diagram of a multi-coil inductor with a range of strands in a plane passing through the axis of the magnetic flux.
  • Fig. Fig. 6 shows, in Fig. 5, a multispire inductor with a fan of the strands in a plane perpendicular to the axis of the magnetic flux.
  • Fig. 7 is a partial view on a larger scale according to the arrow VII of Fig.6 of the connection bars of the fans strands.
  • Fig. 8 is a vertical sectional diagram of an external cooling device of conductors of the inductor
  • Fig. 9 is a transverse vertical section illustrating, on a larger scale than in FIG. 8, ie cooling device with grouping of four cables in a sheath.
  • Fig. 10 is a schematic axial vertical section of the end of an inductor with additional deviating turns.
  • Fig. It shows, in Fig. 10, an alternative embodiment of the deviating additional turns.
  • Fig. 12 is a circuit diagram of a means for compensating the lower inductance of the end turns, with a current transformer.
  • Frg. 13 is an electrical diagram, in vertical elevation, of an inductor with concentric turns.
  • Fig. 14 is a schematic section along the line XIV-XIV of FIG. 13.
  • Fig. 15 is a diagrammatic view in vertical elevation of a conductor with turns permuted by four.
  • FIG. 16 is a schematic view along line XVI-XV! of Fig. 15.
  • FIG. 17 is a diagrammatic view in vertical elevation of an inductor consisting of four elementary inductive elements, forming a quadrilateral, interconnected at their vertices by capacitor banks, and
  • Fig. 18 is an equivalent circuit diagram of the inductor of FIG. 17.
  • an induction heating device 1 having a high frequency power supply with frequency converter 2.
  • the frequency is greater than 5 kHz and can exceed 400 kHz.
  • the device 1 comprises a power inductor 3 adapted to heat an induced element 4.
  • the inductor 3 comprises turns surrounding the induced element 4 which scrolls horizontally inside the coils of the inductor 3 in a direction orthogonal to the plane of Fig. 1.
  • the inductor 3 may be formed by a juxtaposition or stack of m ⁇ nospires each located in a vertical plane orthogonal to the direction of movement of the element 4, The turns are connected in parallel.
  • the inductor 3 provides longitudinal flow heating.
  • the induced element 4 is constituted in particular by a metal strip, in particular a steel strip.
  • the heating device could be of the transverse flux type, in which case the mean plane of the turns of the inductor would be substantially parallel to the plane of the induced element so that the electromagnetic field created is substantially orthogonal to the plane of the induced element.
  • the turns of the power inductor are traversed by a current whose intensity is generally at least 100 A.
  • the power of the inductor 3 normally leads to consider its realization with at least one conductor of large cross section.
  • the inductor 3 is made with cables Litz 5a, 5b strands 6 multiple insulated between them, usually by a varnish.
  • the individual diameter of the strands 6 is sufficiently small so that it makes it possible to overcome the skin effect due to the high frequency of the current.
  • the diameter of a conductive strand is in particular of the order 0.1 mm (1/10 th of a millimeter) for a frequency of 50 kHz.
  • the number of strands 6 is a function of the total current which passes through the turns of the inductor 3.
  • the strands or fits 6 are fed in parallel. They are grouped generally in the form of a twisted or braided cable.
  • the strands may be surrounded by an envelope sheath 7 of insulating material, but such an envelope is not essential. Due to the high intensity required by a power inductor, the number of fives or strands 6 of a cable can be many thousands or tens of thousands.
  • the cables 5a, 5b form a substantially rectangular frame surrounding the armature element 4.
  • this frame could be formed with a single cable bent to the desired contour.
  • Each cable has a substantially horizontal central portion held by supports 8 of insulating material.
  • the ends of the conductors 5a, 5b are curved towards the horizontal plane containing the band 4 and their end is curved substantially in the plane of this band.
  • the ends of the cable 5a have been designated 5a1 and 5a2.
  • the cable 5b is preferably offset in a direction orthogonal to the plane of the strip.
  • the conductive wires 6 are disengaged from the possible sheath 7 over a length sufficient to allow the multitude of wires 6 to expand into a fan for connection to a metal bar elongate.
  • the fans 9.1, 9.2 at each of its ends constitute plies whose average plane is vertical, orthogonal to the direction of movement of the strip 4.
  • several parallel fan plies can be formed. .
  • the opening of the fan 9.1. 9.2 is such that sufficient space exists between the wires released from their envelope 7 to reduce the effects of parasitic inductance.
  • the fan 9.1, 9.2 preferably extends on either side of the geometric axis X-X (FIG 3) of the extremity of the cable concerned.
  • the opening of the fan is advantageously such that the strands or son 6 at the limit of the fan form with the axis X-X an angle ⁇ that can reach or exceed 60 °.
  • the ends of the strands 6 are released from their insulating varnish and are connected in parallel to the metal bar 10.1 or 10.2 by welding, in particular solder to hold, it is essential to ensure the development of the conductors back and forth in order to to ensure a minimum inductance and a good distribution of the current in the strands, it is what makes it possible to preserve a sections of passage of the current approximately constant, a density of approximately constant current.
  • the bars 10.1, 10.2 form with a metal bar 11 a single piece or possibly two associated parts.
  • the assembly is held by bars 12 of insulating material, which are not shown in FIG. 4.
  • the cable 5b comprises at each end at least one fan ply 9.1b formed of strands connected in parallel, by welding, to a metal bar 10.1b (Fig.4) for the fan 9.1b, while the bar and fan on the other end are not visible in the drawings.
  • the bars 10.1, 10.1b are electrically connected to the armatures 13.1, 13.1b of the capacitor C1, these armatures being separated by a dielectric insulation layer 14, in particular a layer of air.
  • Each cable 5a, 5b comprises a cooling device comprising at least one duct 15a, 15b of insulating material, in particular of plastic, traversed by a cooling fluid, in particular water or air.
  • the strands 6 are helically wound or braided around or duct 15a or 15b which extends along the geometric axis of the cable considered.
  • the flexible cooling duct 15a is disengaged from the fan and connected by a connector 16 to a fluid circuit that can be provided in the bar 11. Another end of the bar is provided with a connection 17 for the supply or the evacuation of the cooling fluid.
  • a plurality of plate-like capacitors may be connected in parallel to the corresponding metal bar 10.1.
  • Four armatures 13.11, 13.12, 13.13 and 13.14 are provided according to the variant of FIG. 3, to which correspond four other armatures vis-à-vis, connected to the cable 5b.
  • the cooling device comprises a pipe 15c, 15d, brazed on a bar 10.1, 10.1b or on the bar 11.
  • the cooling device comprises at least one duct drilled into the metal of the bar 11.
  • the cooling pipes 15a, 15b of the cable are of flexible material insulating electricity.
  • the pipes 15c, 15d of the bars 10.1, 10.1b are made of copper or brass or any other good heat conducting metal.
  • the fixing of the capacitor plates 13.1, 13.1b on the bars 10.1, 10.1b can be carried out using horizontal screws 18.1, 18, 1b passing through the plates 13.1, 13, 1b up to the bars 10.1, 10.1b where they are screwed. Other conventional fasteners may be used.
  • Fig. 5 shows an inductor formed by an isolated multi-strand cable, helically wound in a plurality of turns to form a multispire having a certain extent along the Y-Y axis of the magnetic flux. It is then possible to place the fan 6 in a plane passing through the Y-Y axis, or parallel to this axis, without creating a congestion problem. Indeed, the range 6 is included, or substantially included, between the two end planes of the multispire orthogonal to the Y-axis.
  • the length H (FIG. 7) of the metal rod 10.1, 10.1b, forming a connection terminal is equal to at least five times the diameter of the cable 5, 5a, 5b and preferably greater than ten times the diameter of the cable.
  • the height H may be of the order of 400 mm, while the cable diameter is of the order of 30 mm.
  • several parallel fan plies can be provided.
  • the strands of strands or subgroups of fan-shaped strands are soldered flat against bar 10.1, 10.1b.
  • the thickness Ep of the superposed layers is less than, or of the same order as, the penetration depth P of the high frequency current in the power supply terminal bar.
  • the penetration depth P may be of the order of 0.1 mm to 0.5 mm, depending on the frequency and the metal used,
  • the solution of the invention makes it possible to obtain a low current density up to the capacitors by the arrangement of the fan-shaped strands, and this independently of the type of cooling of the cable.
  • the fan-shaped connection of the wires 6 to the bars or terminals 10.1, 10.1b makes it possible to greatly limit the connection losses at the capacitors C1 ... C1.3, and in the current path in the capacitors.
  • the cable 5a at its left end 5a2 is connected in the same way as on the right end by a fan 9.2 son to a bar 10.2. It is the same for the cable ⁇ b with another bar not visible.
  • capacitor plates 13.31, 13.32, 13.33 are connected to the bar 10.2.
  • the flexible cooling ducts 15a, 15b are connected to the circuit located in the bar 11, itself connected to collectors G of cooling fluid.
  • the scheme of FIG. 2 shows the electric circuit made with the inductor 3 of Fig. 1. The same references have been used to designate the symbolic representations of inductances and capacitors.
  • the generator 2 is connected to the terminals of the capacitor C1 and that from one terminal of this capacitor to the other are connected in series the inductance formed by the conductor 5a, the capacitor C2 situated at the opposite end of the conductors 5a and 5b and the inductance formed by the conductor 5b.
  • Fig. 8 illustrates another device for cooling the cables 5a, 5b which are surrounded by an electrically insulating sheath 19a, 19b, for example of silicone tube, defining an annular passage around the cables 5a, 5b.
  • An inlet 20a, 20b for the cooling fluid is provided, substantially mid-length of the ducts, which open towards the bent end of the driver, before reaching the fan 9.1 or 9.2. Cooling gas including air is blown through the inlets 20a, 20b and is distributed on both sides to cool the outside cables 5a, 5b.
  • Fig. 9 shows, in cross-section, two sheaths of electrically insulating tube 19a1, 19b1 in which four cables are grouped together ⁇ a, 5b. Each sheath has its inlet 20a1, 20b1 for the cooling fluid.
  • the cooling fluid could consist of a liquid, in particular water, in which case a collector would be provided to collect the cooling water in the vicinity of each end close to the 9.1, 9.2.
  • FIG. 9 The arrangement of FIG. 9, combining several cables in the same sheath can reduce the number of forced ventilation ducts. It is possible to group the cables by four especially if you work with a double pitch at the capacitors.
  • FIG. 10 Several individual or single-spiral turns (FIG. 10), each formed by cables 5a and 5b, may be provided coaxial, orthogonal to the axis of the inductor, juxtaposed parallel to the direction of movement of the element to be heated.
  • a turn such as 21 (FIG 10) located in the stack thus formed is between two other turns which contribute to increase the inductance, or self, of the turn 21.
  • An end turn such as 22, located at the right end according to FIG. 10, has a turn adjacent to one side, so that the inductance of the turn 22 will be lower than that of the inner turns. This end turn 22 will then be traversed by a current of greater intensity, generating overheating, when the turns are connected in parallel.
  • FIG. 10 shows an alternative embodiment of the compensation means to prevent overheating of the end turn 22.
  • Additional turns 26, 26, 27, 28 of larger diameter, following the end turn 22, are arranged. such that the centers of their sections are on an outwardly convex curve arc 29 connecting to the center alignment line of the inner coil sections.
  • the diameter of the turns 25-28 increases gradually
  • Fig. 12 illustrates another embodiment of the compensation means to prevent overheating of the end turn 22.
  • the inductor turns shown schematically in FIG. 12, are monospires connected in parallel between two supply lines E1, E2 under the voltage U.
  • the inner turns such as 21 have a self L.
  • the compensating inductor can be connected to any of the poles of the coil, the important is that the ampere-turns generated by one of the turns neutralizes those of the other turn.
  • the two windings of the transformer 31 are subjected to opposite voltages + U and -U.
  • the intensity transformer 31 ensures a decrease in the intensity in the end turn 22 and an increase in the intensity in the inner turn 32, so as to balance the currents in the two turns 22 and 32, and to bring back the intensity passing through these turns to a value close to the intensity passing through the internal turns such as 21.
  • FIGS. 13 and 14 schematically illustrate a double-layer inductor with concentric turns.
  • the diagrams of FIGS. 13 and 14 show internal turns formed by cables 3.11 ... 3, n1 and 3.12 ... 3.n2 located in the same vertical plane orthogonal to the direction of movement of the element 4 to be heated.
  • the conductors of each turn are connected, at their ends, respectively to the plates of the capacitors C1, C2 in a manner similar to the diagrams of FIGS. 1 and 2.
  • the generator 2 is connected across the terminals of the capacitor C1.
  • Concentric outer turns are made with conductors 103.11 ... 103.n1 on one side of the plane of the element 4 and 103.12 ... 103.n2 on the other side of the plane of the element 4, these turns being connected in parallel with the plates of the capacitors C1 and C2 as illustrated in FIG. 13.
  • the inner turns, formed by the conductors such as 3.11 - 3.12, have an inductance L1 lower than the inductance L2 of the outer turns formed by conductors such as 103.11-103.12.
  • the intensity M of the current flowing through the inner turns is therefore greater than that of the current flowing through the outer turns.
  • Fig. 15 and 16 show a variant in which the turns are exchanged in pairs or multiples, here advantageously four to balance the inductance values of the different turns as well as the currents.
  • Strands of four cables are formed (Fig. 16) and twisted, for example 180 °, from a capacitor C1 to capacitor C2 so that the two cables 3.11- 3.21 which are in the inner layer at the connection to the capacitor C1 are in the outer layer at the connection to the capacitor C2, and vice versa for the cables 103, 11 and 103.12 of the group of four cables.
  • the inductances of each turn formed of four cables are then equal, as are the currents.
  • the cables grouped by four also make it possible to obtain a lateral permutation in the end turns and to promote the balancing of the currents in these end turns.
  • Fig. 17 shows an embodiment according to which the inductor comprises four cables or groups of cables 5a, 5b, 5c, 5d forming a quadrilateral, substantially in the shape of a rectangle, surrounding the element to be heated 4.
  • the wires released at each end of the conductors are deployed and fan-connected to a metal bar connected on the other side to one or more capacitor plates C1-C4.
  • the ends of the cable ⁇ a are connected by bundles of fan wires 9.a1, 9.a2 bars 10ad and 10ac.
  • the latter is connected to a supply terminal of the source 2.
  • Another bar (not visible in Fig. 17) is located behind the bar 10ac and is connected to the range of wires 9c1 of the conductor 5c. In opposition to the fans, the bars are connected to the plates of the capacitor C1. It is the same for the other summits of the quadrilateral.
  • the connecting bars 10ac, 10ad, 10bd, 10cb are inclined with respect to the mean plane of the element to be heated 4, and are substantially orthogonal to the bisector of the angles at the vertices of the quadrilateral, which makes it possible to minimize the radii of curvature of the cables.
  • the inclination of the connecting bars may be different, the bars may even be vertical or horizontal.
  • the ends of the cables 5a- ⁇ d are curved concavely outwards.
  • the outer curvature of the cables, designated 33 for the left end of the cable 5a, is provided to reduce the number of bends, as well as the space to be magnetized.
  • FIG. 17 The assembly illustrated in FIG. 17 is shown schematically in FIG. 18. This is a "quadrupleur" montage. Such an arrangement makes it possible to mount at high voltages, at high frequencies.
  • the high-frequency power inductors, according to the invention in multi-strand cables insulated from each other, make it possible to obtain a high efficiency.
  • the connection of the wires at their ends is designed to limit as much as possible the connection losses at level of the capacitors, as well as the current path in the capacitors.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Induction Heating (AREA)

Abstract

Dispositif de chauffage par induction comportant : une alimentation électrique à haute fréquence; un inducteur de puissance (3) pour chauffer un élément induit, et un montage capacitif dans le circuit de l'inducteur, dans lequel l'inducteur (3) comprend au moins un câble (5a, 5b) à brins multiples isolés entre eux et entourés par une enveloppe isolante, et les brins, à leur extrémité de raccordement, sont déployés en éventail (9.1, 9.2) pour être raccordés en parallèle à une barre métallique (10.1, 10.2) formant borne d'alimentation électrique.

Description

DISPOSITIF DE CHAUFFAGE PAR INDUCTEUR DE PUISSANCE, INDUCTEUR DE PUISSANCE, ET FOUR AINSI EQUIPE.
L'invention est relative à un dispositif de chauffage par induction du genre de ceux qui comportent :
- une alimentation électrique à haute fréquence,
- un inducteur de puissance pour chauffer un élément,
- et un montage capacitif dans le circuit de l'inducteur.
Par l'expression « haute fréquence » on désigne une fréquence égale ou supérieure à 5 kilohertz (kHz) et qui peut atteindre 1 mégahertz (1 MHz) ou plus. Par l'expression « inducteur de puissance » on désigne un inducteur traversé par un courant dont l'intensité est d'au moins 100 ampères.
L'invention concerne en particulier, mais non exclusivement, !e chauffage par induction de tout produit conducteur d'électricité au défilé pour des applications diverses telles que :
- séchage de produits de revêtement divers (peinture, revêtement organique notamment antifinger, etc.) ;
- traitement thermique
- chauffage avant traitement; (recuit,...) - amélioration de la productivité de four conventionnel.
Le chauffage par induction à haute fréquence est efficace, mais le rendement énergétique global est affecté par le rendement énergétique de l'inducteur car une puissance électrique est dissipée en chaleur dans l'inducteur. L'inducteur, dans la description qui va suivre, est du type à flux longitudinal, mais il peut être aussi du type à flux transverse notamment pour chauffer des pièces amagnétiques ou de géométrie particulière.
EP 0 577 468 propose une bobine de chauffage par induction électromagnétique comportant un dispositif de refroidissement particulier pour les conducteurs de la bobine. Cette solution est intéressante pour les fréquences inférieures à 10 kHz, mais le rendement diminue de façon conséquente aux fréquences supérieures.
WO 2007/141 422 divulgue un dispositif de chauffage par induction comportant une alimentation électrique à haute fréquence qui permet de transférer une puissance élevée par l'inducteur tout en réduisant les difficultés de construction créées par les tensions électriques, en particulier au niveau des connexions de l'inducteur et des condensateurs. Pour un tel dispositif de chauffage, il est souhaitable également d'améliorer le rendement énergétique.
JP 10-50217 A concerne un domaine différent de celui de l'invention puisqu'il s'agit d'un procédé de fabrication d'une armature déflectrice pour dévier un faisceau d'électrons dans un tube cathodique. Des fils de Litz sont prévus en deux rangées pour faciliter la soudure. Il n'est pas question d'un chauffage de puissance par induction. L'invention a pour but, surtout, de fournir un dispositif de chauffage de puissance par induction à haute fréquence dans lequel tes pertes par échauffement de l'inducteur sont réduites.
EP 1 604 551 propose une mise en série et parallèle de monospires qui pourra être avantageusement être utilisé pour la connexion des spires {mono ou multispires) faite à partir de câbles de Litz.
L'invention vise en particulier à limiter les pertes énergétiques, notamment les pertes dues au parcours du courant dans l'inducteur, ainsi que les pertes de raccordement au niveau des condensateurs et celles dues au parcours du courant dans les condensateurs. Selon l'invention, un dispositif de chauffage par induction comportant :
- une alimentation électrique à haute fréquence,
- un inducteur de puissance pour chauffer un élément induit,
- et un montage capacitif dans ie circuit de l'inducteur, est caractérisé en ce que l'inducteur comprend au moins un câble à brins multiples isolés entre eux, appelé communément câble de Litz, et les brins du câble, à leur extrémité de raccordement sont déployés en éventail pour être raccordés en parallèle à une barre métallique formant borne d'alimentation électrique, Ie diamètre d'un brin de câble étant choisi de telle sorte qu'il permet de s'affranchir des pertes par courants de Foucault haute fréquence générés par les conducteurs voisins, Ie nombre de brins ou fils en parallèle dans un câble étant suffisamment élevé pour permettre le passage de l'intensité correspondant à la puissance élevée de chauffage. l'intensité du courant, pour la puissance de chauffage, peut atteindre plusieurs centaines à plusieurs milliers d'ampères. Pour donner un ordre de grandeur, non limitatif, le diamètre d'un brin du câble peut être de 0.1 mm pour- une fréquence de 50 kHz.
Avantageusement, l'épanouissement des conducteurs aller et retour est assuré en vis-à-vis.
Les brins du câble peuvent être entourés, ou non, par une enveloppe électriquement isolante.
Le raccordement des extrémités des brins ou câble peut être assuré par soudure sur la barre, ou autre mode de connexion tel que le sertissage, ou des extrémités surfusionnées.
Avantageusement la longueur de la barre métallique est égale à au moins cinq fois le diamètre du câble, de préférence supérieure à dix fois le diamètre du câble.
Selon le nombre de brins du câble, l'éventail peut concerner des sous-groupes de brins. De plus, plusieurs nappes parallèles en éventail peuvent être prévues. Les nappes de brins en éventail sont raccordées à plat contre la barre. Avantageusement, l'épaisseur des nappes ou des sous- groupes de brins est inférieure à la profondeur de pénétration du courant haute fréquence dans la barre formant borne d'alimentation.
Chaque nappe en éventail de brins du câble pour le raccordement admet, de préférence, un plan moyen passant par, ou au voisinage de, l'axe géométrique de l'extrémité du câble. L'éventail est déployé de part et d'autre du prolongement de l'axe de l'extrémité du câble.
L'angle formé entre les brins constituant les bords extrêmes de i'éventail et l'axe géométrique de l'extrémité du câble peut atteindre, ou même dépasser, 60°.
De préférence, la borne d'alimentation électrique d'un éventail de brins est reliée, du côté opposé à l'éventail, à au moins une armature de condensateur.
Dans le cas d'un chauffage au défilé avec flux longitudinal, le plan moyen de i'éventail de raccordement peut être orthogonal à ia direction de défilement de l'élément à chauffer; en variante, ce plan peut être incliné sur cette direction.
Le plan moyen de l'éventail serait vertical pour une bande à chauffer se déplaçant horizontalement.
Dans le cas d'un inducteur dont le câble est enroulé en hélice selon plusieurs spires (inducteur mυltispire), l'éventail de raccordement peut être placé dans un plan passant par l'axe du flux.
Plus généralement, lorsque le dispositif de chauffage comporte un inducteur dont le câble est enroulé en hélice selon plusieurs spires (inducteur multispire), le nombre de spires affranchit de toute contrainte d'orientation de l'éventail. Pour un chauffage à flux longitudinal, l'inducteur comprend une ou plusieurs spires. Les spires peuvent être connectées électriquement en série ou en parallèle. La ou les spires entourent l'élément à chauffer, prenant ainsi la forme de profil de l'élément à chauffer, en particulier la forme d'un cadre lorsque l'élément à chauffer est de forme plane ou la forme d'un cercle lorsque l'élément à chauffer est cylindrique, ou toute forme adaptée au profil de l'élément à chauffer.
L'inducteur peut être formé d'un seul câble, ou peut comprendre au moins deux câbles, ou groupes de câbles à brins multiples isolés entre eux, reliés à des armatures de condensateur à leurs extrémités, formant un circuit oscillant parallèle. L'alimentation permettant d'entretenir l'oscillation du circuit sera placée en parallèle avec le ou les condensateurs, ou l'un des condensateurs. En variante, l'alimentation peut être raccordée en série, en étant intercalée entre l'inducteur et l'un des condensateurs directement ou au travers d'un transformateur, l'inducteur se trouvant alors monté dans un circuit oscillant série. Les dessins annexés ne décrivent que Ie cas du circuit oscillant parallèle mais la dualité du circuit série peut être envisagée .
IJ sera parfois nécessaire de réaliser le condensateur par la mise en série de condensateurs élémentaires. Il sera aiors avantageux de répartir les condensateurs tout du long de la spire, comme montré par WO 2007/141 422 .
Selon une variante, Pînducteur peut comprendre quatre groupes de câbles formant un quadrilatère entourant l'élément à chauffer et reliés à leurs extrémités, formant les sommets du quadrilatère, à quatre armatures ou groupes d'armatures de condensateurs.
L'inducteur peut comporter plusieurs spires orthogonales à l'axe géométrique de l'inducteur, et juxtaposées selon un empilement. Avantageusement, des moyens de compensation de l'inductance des spires d'extrémité sont prévus pour éviter une surchauffe de ces spires. Ces moyens de compensation peuvent comprendre des spires supplémentaires voisines de la spire d'extrémité, de diamètre croissant, situées dans un plan orthogonal à Taxe de l'inducteur, ou dont les centres des sections sont disposés selon une courbe s'éloignant de Taxe de l'inducteur.
Selon une autre possibilité, les moyens de compensation comprennent au moins un transformateur de courant, ou inductance médiatrice ou compensatrice ou d'équilibrage en courant, branché entre la spire d'extrémité et au moins une autre spire interne, notamment l'avant-demière spire voisine ou toute autre spire interne, pour équilibrer l'intensité des courants entre la spire d'extrémité et l'autre spire interne, l'intensité traversant (a spire d'extrémité étant réduite tandis que celle de l'autre spire interne est augmentée. Il est possible d'ajouter un nombre plus important de transformateurs afin d'équilibrer le courant dans plusieurs spires proches des extrémités de Pinducteur. Le nombre de transformateurs de courant peut atteindre le nombre de spires.
Un câble à brins multiples isolés entre eux peut comporter au moins un dispositif de refroidissement notamment constitué par un conduit souple, en une matière non conductrice de l'électricité, notamment en matière plastique, pour le passage d'un fluide de refroidissement, les brins étant enroulés ou tressés autour du conduit souple.
Le dispositif de refroidissement peut comprendre, en outre, une gaine entourant le câble, dans laquelle passe un fluide de refroidissement, notamment de l'air ou de l'eau ou tout fluide caloporteur. Le dispositif de chauffage peut comporter un condensateur, ou une batterie de condensateurs, branché entre les bornes de l'alimentation électrique, et N parties inductives élémentaires distinctes, reliées entre elles en série par N-I condensateurs ou batteries de condensateurs de liaison.
L'éventail des brins ou sous-groupes de brins peut être courbé. La borne d'alimentation électrique peut être courbe.
Le dispositif de chauffage peut comporter des monospires ou multispires qui sont connectées unitairement ou par groupe en série , ou en parallèle.
L'invention est également relative à un inducteur de puissance, pour chauffer un élément induit, comportant les caractéristiques énoncées précédemment
L'invention est également relative à un four de chauffage pour élément conducteur d'électricité caractérisé en ce qu'il comporte un dispositif de chauffage à induction tel que défini précédemment. L'invention consiste, mises à part les dispositions exposées ci- dessus, en un certain nombre d'autres dispositions dont il sera plus explicitement question ci-après à propos d'exemples de réalisation décrits avec référence aux dessins annexés, mais qui ne sont nullement limitatifs. Sur ces dessins : Fig. 1 est une coupe verticale, transversale, schématique d'un dispositif de chauffage selon l'invention.
Fig. 2 est un schéma électrique du dispositif de Fig. 1 Fig. 3 est une vue partielle en élévation verticale, à plus grande échelle, de l'extrémité droite de raccordement du dispositif de Fig. 1. Fig. 4 est une vue de dessus, à plus grande échelle, de l'extrémité droite du dispositif de Fig. 1.
Fig. 5 est un schéma en perspective d'un inducteur multispire avec éventail des brins dans un pian passant par l'axe du flux magnétique. Fig. 6 montre, sembiablement à Fig.5, un inducteur muitispire avec éventail des brins dans un plan perpendîcuiaire à l'axe du flux magnétique.
Fig. 7 est une vue partielle à plus grande échelle selon la flèche VII de Fig.6 des barres de raccordement des brins des éventails. Fig. 8 est un schéma en coupe verticale d'un dispositif de refroidissement extérieur de conducteurs de l'inducteur,
Fig. 9 est une coupe verticale transversale illustrant, à plus grande échelle que sur Fig. 8, ie dispositif de refroidissement avec regroupement de quatre câbles dans une gaine. Fig. 10 est une coupe schématique verticale axiale de l'extrémité d'un inducteur avec spires supplémentaires déviatrices.
Fig. 11 montre, sembiablement à Fig. 10, une variante de réalisation des spires supplémentaires déviatrices.
Fig. 12 est un schéma électrique d'un moyen de compensation de l'inductance plus faible des spires d'extrémité, avec un transformateur de courant.
Frg. 13 est un schéma électrique, en élévation verticale, d'un inducteur à spires concentriques.
Fig. 14 est une coupe schématique suivant la ligne XIV-XIV de Fig. 13.
Fig. 15 est une vue schématique en élévation verticale d'un conducteur avec spires permutées par quatre.
Fig. 16 est une vue schématique suivant la ligne XVI-XV! de Fig. 15. Fig. 17 est une vue schématique en élévation verticale d'un inducteur constitué de quatre parties inductives élémentaires, formant un quadrilatère, reliées entre elles à leurs sommets par des batteries de condensateurs, et
Fig. 18 est un schéma électrique équivalent de l'inducteur de Fig. 17.
En se reportant aux dessins, notamment aux Fig. 1, 3 et 4, on peut voir un dispositif 1 de chauffage par induction comportant une alimentation électrique à haute fréquence avec convertisseur de fréquence 2. La fréquence est supérieure à 5 kHz et peut dépasser 400 kHz.
Le dispositif 1 comprend un inducteur de puissance 3 propre à chauffer un élément induit 4. Dans l'exemple représenté, l'inducteur 3 comporte des spires entourant l'élément induit 4 qui défile horizontalement à l'intérieur des bobines de l'inducteur 3, selon une direction orthogonale au plan de Fig,1. L'inducteur 3 peut être formé par une juxtaposition ou empilement de mαnospires situées chacune dans un plan vertical orthogonal à la direction de déplacement de l'élément 4, Les spires sont reliées en parallèle. L'inducteur 3 assure un chauffage à flux longitudinal. L'élément induit 4 est constitué en particulier par une bande métallique, notamment une bande d'acier.
Cet exemple n'est pas limitatif. Le dispositif de chauffage pourrait être du type à flux transverse, auquel cas ie plan moyen des spires de l'inducteur serait sensiblement parallèle au plan de l'élément induit pour que le champ électromagnétique créé soit sensiblement orthogonal au plan de l'élément induit.
Les spires de l'inducteur de puissance sont traversées par un courant dont l'intensité est généralement d'au moins 100 A .La puissance de l'inducteur 3 conduit normalement à envisager sa réalisation avec au moins un conducteur de section transversale importante.
Au contraire, selon l'invention, malgré une telle puissance mise en jeu, l'inducteur 3 est réalisé avec des câbles 5a, 5b de Litz à brins 6 multiples isolés entre eux, généralement par un vernis. Le diamètre individuel des brins 6 est suffisamment faible pour qu'il permette de s'affranchir de l'effet de peau dû à la fréquence élevée du courant. Le diamètre d'un brin conducteur est en particulier de Tordre 0.1 mm (1/10ème de millimètre) pour une fréquence de 50kHz.
Le nombre de brins 6 est fonction du courant total qui traverse les spires de l'inducteur 3. Les brins ou fits 6 sont alimentés en parallèle. Ils sont regroupés généralement sous forme d'un câble torsadé ou tressé. Les brins peuvent être entourés par une gaine enveloppe 7 en matière isolante, mais une telle enveloppe n'est pas indispensable. En raison de l'intensité élevée exigée par un inducteur de puissance, le nombre de fifs ou brins 6 d'un câble peut être de plusieurs milliers ou dizaines de milliers.
Selon l'exemple de Rg. 1 où l'élément à chauffer est plat à section rectangulaire, les câbles 5a, 5b forment un cadre sensiblement rectangulaire entourant l'élément induit 4. En variante, ce cadre pourrait être formé avec un seul câble recourbé selon le contour souhaité. Chaque câble présente une partie centrale sensiblement horizontale maintenue par des supports 8 en matière isolante. Les extrémités des conducteurs 5a, 5b sont incurvées vers le plan horizontal contenant la bande 4 et leur extrémité est recourbée sensiblement dans le plan de cette bande. Les extrémités du câble 5a ont été désignées par 5a1 et 5a2. Le câble 5b est de préférence décalé suivant une direction orthogonale au plan de la bande.
Aux extrémités des câbles, les fils conducteurs 6 sont dégagés de la gaine éventuelle 7 sur une longueur suffisante pour permettre d'épanouir la multitude de fils 6 en un éventail pour le raccordement à une barre métallique allongée.
Pour le câble 5a, les éventails 9.1, 9.2 à chacune de ses extrémités constituent des nappes dont le plan moyen est vertical, orthogonal à la direction de déplacement de la bande 4. Selon le nombre de câbles groupés plusieurs nappes en éventail parallèles peuvent être formées.
L'ouverture de l'éventail 9.1. 9.2 est telle qu'un espace suffisant existe entre les fils libérés de leur enveloppe 7 pour réduire les effets d'inductance parasite. L'éventail 9.1 , 9.2 s'étale, de préférence, de part et d'autre de l'axe géométrique X-X (Fig. 3) de i'extrérnité du câbie concerné. L'ouverture de l'éventail est avantageusement telle que les brins ou fils 6 en limite de l'éventail forment avec l'axe X-X un angle α pouvant atteindre, ou dépasser, 60°. Les extrémités des brins 6 sont libérées de leur vernis isolant et sont reliées en parallèle à la barre métallique 10.1 ou 10.2 par soudure, notamment soudure à rétain, il est essentiel d'assurer l'épanouissement des conducteurs aller et retour en vis à vis afin d'assurer une inductance minimale et une bonne répartition du courant dans les brins, c'est ce qui permet de conserver une sections de passage du courant à peu près constante, une densité de courant à peu près constante.
Les barres 10.1 , 10.2 forment avec un barreau métallique 11 une seule pièce ou éventuellement deux pièces associées. L'ensemble est maintenu par des barreaux 12 en matière isolante, qui ne sont pas représentés sur Fig. 4.
De même que le câbie 5a, le câble 5b comporte à chaque extrémité au moins une nappe en éventail 9.1b formée de brins reliés en parallèle, par soudure, à une barre métallique 10.1b (Fig.4) pour l'éventail 9.1b, tandis que la barre et l'éventail de l'autre extrémité ne sont pas visibles sur les dessins.
Du côté opposé aux câbles 5a, 5b, les barres 10.1 , 10.1b (voir Fig. 4) sont raccordées électriquement à des armatures 13.1, 13.1b de condensateur C1 , ces armatures étant séparées par une couche d'isolant diélectrique 14, notamment une couche d'air.
Selon l'exemple de Fig. 4, quatre spires sont juxtaposées et reliées à quatre condensateurs ou batteries de condensateurs C1 , C1.1 , C1.2, C1.3.
Chaque câble 5a, 5b comporte un dispositif de refroidissement comprenant au moins un conduit 15a, 15b en matière isolante, en particulier en matière plastique, parcouru par un fluide de refroidissement, notamment de l'eau ou de l'air. De préférence, îes brins 6 sont enroulés en hélice ou tressés autour ou conduit 15a ou 15b qui s'étend suivant l'axe géométrique du câble considéré. Au niveau de f 'éventai I des fils dégagés de leur éventuelle enveloppe
7, comme visible sur Rg. 3, le conduit souple de refroidissement 15a est dégagé de l'éventail et relié par un raccord 16 à un circuit de fluide qui peut être prévu dans Ie barreau 11. Une autre extrémité du barreau est munie d'un raccord 17 pour l'alimentation ou l'évacuation du fluide de refroidissement.
Comme visible sur Fig. 3, plusieurs armatures de condensateur , en forme de plaques, peuvent être reliées en parallèle à !a barre métallique correspondante 10.1. Quatre armatures 13.11, 13.12, 13.13 et 13.14 sont prévues selon la variante de Fig. 3, auxquelles correspondent quatre autres armatures en vis-à-vis, reliées au câble 5b.
Sur Fig. 4 il apparaît que le dispositif de refroidissement comprend un tuyau 15c, 15d, brasé sur une barre 10.1, 10.1b ou sur le barreau 11. En variante, à la place des tuyaux 15c, 15d, le dispositif de refroidissement comporte au moins un conduit foré dans le métal du barreau 11. Les tuyaux de refroidissement 15a, 15b du câble sont en matière souple isolante de l'électricité. Les tuyaux 15c, 15d des barres 10.1, 10.1b sont en cuivre ou en laiton ou tout autre métal bon conducteur de la chaleur. La fixation des armatures de condensateur 13.1, 13.1b sur les barres 10.1 , 10.1b peut être réalisée à l'aide de vis 18.1 , 18,1b horizontales traversant les plaques 13.1, 13,1b jusqu'aux barres 10.1 , 10.1b où elles sont vissées. D'autres moyens de fixation classiques peuvent être utilisés.
Fig.5 montre un inducteur formé par un câble 5 à brins multiples isolés, enroulé en hélice selon plusieurs spires pour former une multispire ayant une certaine étendue suivant Taxe Y-Y du flux magnétique. Il est alors possible de placer l'éventaii 6 dans un plan passant par l'axe Y-Y, ou parallèle à cet axe, sans créer un problème d'encombrement. En effet, l'éventail 6 est compris, ou sensiblement compris, entre les deux plans d'extrémité de la multispire orthogonaux à l'axe Y-Y.
Toutefois, comme illustré sur Fig.6, il est également possible de placer l'éventail 6 d'une multispire dans un plan perpendiculaire à l'axe Y-Y, ou incliné sur cet axe.
La longueur H (Fig.7) de la barre métallique 10.1 , 10.1b, formant borne de raccordement, est égale à au moins cinq fois le diamètre du câble 5, 5a, 5b et de préférence supérieure à dix fois Ie diamètre du câble. A titre d'exemple non limitatif, la hauteur H peut être de l'ordre de 400 mm, tandis que le diamètre au câble est de l'ordre de 30 mm. Selon le nombre de brins ou câble, plusieurs nappes parallèles en éventail peuvent être prévues. Les nappes de brins ou de sous-groupes de brins en éventail sont soudées à plat contre ia barre 10.1, 10.1b. Avantageusement, l'épaisseur Ep des nappes superposées est inférieure à, ou du même ordre que, ia profondeur de pénétration P du courant haute fréquence dans la barre formant borne d'alimentation. A titre d'exemple non limitatif, ia profondeur de pénétration P peut être de l'ordre de 0.1 mm à 0,5 mm, selon la fréquence et le métal utilisé,
La solution de l'invention permet d'obtenir une densité de courant faible jusqu'aux condensateurs par la disposition des brins en éventail et ceci indépendamment du type de refroidissement du câble.
Le raccordement en éventail des fiis 6 aux barres ou bornes 10.1, 10.1b permet de limiter fortement les pertes de raccordement au niveau des condensateurs C1...C1.3, et dans le parcours du courant dans les condensateurs.
Comme visible sur Fig. 1 , le câble 5a à son extrémité gauche 5a2 est raccordé de la même manière que sur l'extrémité droite par un éventail 9.2 de fils à une barre 10.2. Il en est de même pour le câble δb avec une autre barre non visible. Du côté opposé à l'éventail 9.2, des armatures de condensateurs 13.31 ,13.32,13.33 sont reliées à la barre 10.2. Les conduits souples de refroidissement 15a, 15b sont reliés au circuit situé dans le barreau 11 , lui- même relié à des collecteurs G de fluide de refroidissement. Le schéma de Fig. 2 montre le circuit électrique réalisé avec l'inducteur 3 de Fig, 1. Les mêmes références ont été utilisées pour désigner les représentations symboliques des inductances et des capacités. Il apparaît que le générateur 2 est branché aux bornes de la capacité C1 et que d'une borne de cette capacité à l'autre sont montés en série l'inductance formée par le conducteur 5a, le condensateur C2 situé à l'extrémité opposée des conducteurs 5a et 5b et l'inductance formée par le conducteur 5b.
Ce montage conforme à renseignement de WO 2007/141422 permet d'augmenter la tension de fonctionnement de l'inducteur.
Fig. 8 illustre un autre dispositif de refroidissement des câbles 5a, 5b qui sont entourés par une gaine électriquement isolante 19a, 19b, par exemple en tube silicone, définissant un passage annulaire autour des câbles 5a, 5b. Une entrée 20a, 20b pour le fluide de refroidissement est prévue, sensiblement à mi-longueur des gaines, lesquelles débouchent vers l'extrémité coudée du conducteur, avant d'atteindre l'éventail 9.1 ou 9.2. Du gaz de refroidissement notamment de l'air est soufflé par les entrées 20a, 20b et se répartit des deux côtés pour refroidir par l'extérieur les câbles 5a, 5b.
Fig. 9 montre, en coupe transversale deux gaines en tube électriquement isolant 19a1, 19b1 dans lesquelles sont regroupés quatre câbles δa, 5b. Chaque gaine comporte son entrée 20a1, 20b1 pour ie fluide de refroidissement.
Le fluide de refroidissement pourrait être constitué par un liquide, notamment par de l'eau, auquel cas un collecteur serait prévu pour recueiliir l'eau de refroidissement au voisinage de chaque extrémité proche de l'évsntail 9.1 , 9.2.
La disposition de Fig. 9, regroupant plusieurs câbles dans une même gaine permet de réduire ie nombre de gaines de ventilation forcée. Il est possible de regrouper les câbles par quatre surtout si l'on travaille avec un pas double au niveau des condensateurs.
Plusieurs spires individuelles ou monospires (Fig.10), chacune formée par des câbles 5a et 5b, peuvent être prévues coaxiales, orthogonales à l'axe de l'inducteur, juxtaposées parallèlement à la direction de déplacement de l'élément à chauffer. Une spire telle que 21 (Fig. 10) située dans l'empilement ainsi formé est comprise entre deux autres spires qui contribuent à augmenter l'inductance, ou self, de la spire 21. Une spire d'extrémité telle que 22, située à l'extrémité droite selon Fig. 10, comporte une spire voisine d'un seul côté, de sorte que l'inductance de la spire 22 sera plus faible que celle des spires internes. Cette spire d'extrémité 22 sera alors traversée par un courant d'intensité plus forte, engendrant une surchauffe, lorsque les spires sont connectées en parallèles.
Pour éviter cette surchauffe, comme illustré sur Fig. 10, on prévoit un moyen de compensation formé, dans le plan moyen de la spire 22, par au moins une spire 23, de plus grand diamètre, entourant la spire 22. La spire 23 présente une inductance plus forte, et son effet de proximité augmente l'inductance de la spire 22. On peut ajouter une nouvelle spire 24 de plus grand diamètre que la spire 23, et ainsi de suite, jusqu'à ce que l'inductance ou self de la spire d'extrémité 22 soit égale ou sensiblement égale à celle d'une spire interne telle que 21 , Fig. 11 montre une variante de réalisation du moyen de compensation pour éviter une surchauffe de la spire d'extrémité 22. Des spires supplémentaires 26, 26, 27, 28 de plus grand diamètre, faisant suite à Ea spire d'extrémité 22, sont disposées de telle sorte que les centres de leurs sections se trouvent sur un arc de courbe 29 convexe vers l'extérieur se raccordant à la droite 30 d'alignement des centres des sections des spires internes. Le diamètre des spires 25-28 augmente progressivement
Fig. 12 illustre une autre réalisation du moyen de compensation pour éviter la surchauffe de la spire d'extrémité 22. Les spires d'inducteur, représentées schématiquement sur Fig. 12, sont des monospires branchées en parallèle entre deux lignes d'alimentation E1 , E2 sous la tension U. Les spires internes telles que 21 présentent une self L. Pour éviter une surchauffe de la spire d'extrémité 22, on dispose au moins un transformateur d'intensité 31 entre un brin de la spire 22 et au moins d'une spire interne, notamment Ja spire 32 voisine de 22. L'inductance compensatrice peut être branchée sur n'importe lequel des pôles de la spire, l'important est que les ampères-tours générés par une des spires neutralise ceux de l'autre spire. Les deux enroulements du transformateur 31 sont soumis à des tensions opposées +U et -U.
Le transformateur d'intensité 31 assure une diminution de l'intensité dans la spire d'extrémité 22 et une augmentation de l'intensité dans la spire interne 32, de manière à équilibrer les courants dans les deux spires 22 et 32, et à ramener l'intensité traversant ces spires à une valeur voisine de l'intensité traversant les spires internes telles que 21.
Fig. 13 et 14 illustrent schématiquement un inducteur double couche, à spires concentriques. Les schémas des Fig. 13 et 14 montrent des spires internes formées par des câbles 3.11...3,n1 et 3.12...3.n2 situés dans un même plan vertical orthogonal à la direction de déplacement de l'élément 4 à chauffer. Les conducteurs de chaque spire sont reliés, à leurs extrémités, respectivement aux armatures des condensateurs C1, C2 d'une manière semblable aux schémas de Fig.1 et 2. Le générateur 2 est branché aux bornes du condensateur C1. Des spires extérieures concentriques sont réalisées avec des conducteurs 103.11...103.n1 d'un côté du plan de l'élément 4 et 103.12...103.n2 de l'autre côté du plan de l'élément 4, ces spires étant reliées en parallèle aux armatures des condensateurs C1 et C2 comme illustré sur Fig. 13.
Les spires intérieures, formées par les conducteurs tels que 3.11- 3.12, ont une inductance L1 inférieure à l'inductance L2 des spires extérieures formées par des conducteurs tels que 103.11-103.12. L'intensité M du courant qui traverse les spires intérieures est donc supérieure à celle du courant qui traverse les spires extérieures.
Le doublement des couches de conducteur illustrées sur Fig. 14 permet d'augmenter les ampères-tours, donc le champ magnétique.
Fig. 15 et 16 montrent une variante selon laquelle les spires sont permutées par pair ou multiple, ici avantageusement par quatre pour équilibrer les valeurs d'inductances des différentes spires ainsi que les courants. Des torons de quatre câbles sont formés (Fig. 16) et vrillés, par exemple de 180°, d'un condensateur C1 au condensateur C2 de sorte que les deux câbles 3.11- 3,21 qui se trouvent dans la couche intérieure au niveau du raccordement au condensateur C1 se trouvent dans la couche extérieure au niveau du raccordement au condensateur C2, et inversement pour les câbles 103,11 et 103.12 du groupe de quatre câbles. Les inductances de chaque spire formée de quatre câbles sont alors égales, de même que les courants.
Les câbles groupés par quatre permettent aussi d'obtenir une permutation latérale dans les spires d'extrémité et de favoriser l'équilibrage des courants dans ces spires d'extrémité.
Fig. 17 montre une réalisation selon laquelle l'inducteur comprend quatre câbles ou groupes de câbles 5a, 5b, 5c, 5d formant un quadrilatère, sensiblement en forme de rectangle, entourant l'élément à chauffer 4. Les fils dégagés à chaque extrémité des conducteurs sont déployés et raccordés en éventail à une barre métallique reliée de l'autre côté à une ou plusieurs armatures de condensateurs C1-C4. Par exemple, les extrémités du câble δa sont reliées par des faisceaux de fils en éventail 9.a1, 9.a2 à des barres 10ad et 10ac. Cette dernière est reliée à une borne d'alimentation de la source 2. Une autre barre (non visible sur Fig. 17) est située en arrière de la barre 10ac et est reliée à l'éventail de fils 9c1 du conducteur 5c. A t'oppose des éventails, les barres sont reliées aux armatures du condensateur C1. II en est de même pour les autres sommets du quadrilatère.
Les barres de raccordement 10ac, 10ad, 10bd, 10cb sont inclinées par rapport au plan moyen de l'élément à chauffer 4, et sont sensiblement orthogonales à la bissectrice des angles aux sommets du quadrilatère, ce qui permet de minimiser les rayons de courbure des câbles. Cependant, l'inclinaison des barres de raccordement peut être différente, les barres pouvant même êtres verticales ou horizontales.
Les extrémités des câbles 5a-δd sont courbées de manière concave vers l'extérieur. La courbure extérieure des câbles, désignée par 33 pour l'extrémité gauche du câble 5a, est prévue pour permettre de réduire le nombre de cintrages, ainsi que l'espace à magnétiser.
Le montage illustré sur Fig. 17 est schématisé sur Fig. 18. Il s'agit d'un montage "quadrupleur". Une telle disposition permet de monter à des tensions importantes, à des fréquences élevées. Quelle que soit la réalisation adoptée, les inducteurs de puissance haute fréquence, selon l'invention, en câbles à brins multiples isolés entre eux, permettent d'obtenir un rendement élevé. Le raccordement des fils à leurs extrémités est prévu pour limiter au maximum les pertes de raccordement au niveau des condensateurs, ainsi que le parcours du courant dans les condensateurs.

Claims

REVENDICATIONS
1. Dispositif de chauffage par induction comportant :
- une alimentation électrique (2) à haute fréquence, - un inducteur de puissance pour chauffer un élément induit (4),
- et un montage capacitif dans le circuit de l'inducteur, caractérisé en ce que l'inducteur (3) comprend au moins un câble (5a, 5b) à brins multiples isolés entre eux, et les brins (6) du câble, à leur extrémité de raccordement sont déployés en éventail (9.1, 9.2) pour être raccordés en parallèle à une barre métallique (10.1 , 10.1b, 10.2) formant borne d'alimentation électrique, le diamètre d'un brin de câble étant choisi de telle sorte qu'il permet de s'affranchir des pertes par courants de Foucault haute fréquence générés par les conducteurs voisins, le nombre de brins ou fils en parallèle dans un câble étant suffisamment élevé pour permettre le passage de l'Intensité correspondant à la puissance élevée de chauffage.
2. Dispositif selon la revendication 1 , caractérisé en ce que l'épanouissement des conducteurs aller et retour est assuré en vis-à-vis.
3. Dispositif selon la revendication 1 ou 2, caractérisé en ce que le raccordement des extrémités des brins (6) est assuré par soudure sur Ja barre (10,1 , 10.2 ; 10.1b).
4. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que le la longueur (H) de la barre métallique (10.1 , 10.1b, 10.2) est égale à au moins cinq fois le diamètre du câble (5, 5a,5b).
5. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que plusieurs nappes parallèles en éventail (9.1 ) sont prévues raccordées à plat contre la barre (10.1).
6. Dispositif selon la revendication 5, caractérisé en ce que l'épaisseur (Ep) des nappes est inférieure à, ou du même ordre que, la profondeur de pénétration (P) au courant haute fréquence dans la barre (10.1) formant borne d'alimentation.
7. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que chaque nappe en éventail (9.1 , 9.2 ; 9.1b) admet un plan moyen passant par, ou au voisinage de, l'axe géométrique (X-X) de l'extrémité du câble.
8. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que l'angle (α) formé entre les brins (6) constituant les bords extrêmes de l'éventail (9.1 , 9.2 ; 9.1b) et l'axe géométrique (X-X) de l'extrémité du câble atteint, ou dépasse, 60".
9. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que la borne d'alimentation électrique (10.1 , 10.1b, 10.2) d'un éventail de brins (9.1, 9.1b, 9.2) est reliée, du côté opposé à l'éventail, à au moins une armature de condensateur (13.1 , 13.1b).
10. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comporte un inducteur dont le câble (5) est enroulé en hélice selon plusieurs spires (inducteur multispire), le nombre de spires affranchissant de toute contrainte d'orientation de l'éventail (9.1 , 9.1b).
11. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en œ que l'inducteur comprend quatre groupes de câbles (5ar5b,5c,5d) formant un quadrilatère entourant l'élément à chauffer (4) et reliés à leurs extrémités, formant les sommets du quadrilatère, à quatre armatures ou groupes d'armatures de condensateurs (C1 ,C2,C3,C4).
12. Dispositif selon l'une quelconque des revendications précédentes, dans lequel l'inducteur comporte plusieurs spires orthogonales à i'axe géométrique de l'Inducteur, et juxtaposées selon un empilement, caractérisé en œ que des moyens de compensation (23,24 ;25-28 ;31) de l'inductance des spires d'extrémité (22) sont prévus pour éviter une surchauffe de ces spires.
13. Dispositif selon la revendication 12, caractérisé en ce que les moyens de compensation comprennent des spires supplémentaires (23,24 ;25-28) voisines de la spire d'extrémité (22), de diamètre croissant, situées dans un plan orthogonal à l'axe de l'inducteur, ou dont les centres des sections sont disposés selon une courbe (29) s'éioignant de l'axe de l'inducteur.
14. Dispositif selon la revendication 12, caractérisé en ce que les moyens de compensation comprennent un transformateur de courant (31) branché entre la spire d'extrémité (22) et au moins une autre spire interne (32) pour équilibrer l'intensité des courants entre la spire d'extrémité et l'autre spire interne.
15. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce qu'un câble (5a) à brins multiples isolés entre eux comporte au moins un dispositif de refroidissement comprenant un conduit souple (16a), en une matière non conductrice de l'électricité, pour ie passage d'un fluide de refroidissement, les brins étant enroulés en hélice ou tressés autour du conduit soupie (15a).
16. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce qu'un câble (5a, 5b) à brins multiples isolés entre eux comporte au moins un dispositif de refroidissement comprenant une gaine (19a, 19b) entourant le câbie, dans laquelle passe un fluide de refroidissement.
17. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comporte un condensateur (C 1), ou batterie de condensateurs, branché entre les bornes de l'alimentation électrique, et N parties inductives élémentaires distinctes, reliées entre elles en série par N-1 condensateurs ou batteries de condensateurs de liaison.
18. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que Péventail des brins ou sous-groupes de brins est courbé.
19. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce que la borne d'alimentation électrique est courbe
20. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comporte des monospires ou multispires qui sont connectées unitairement ou par groupe en série, ou en parallèle
21. inducteur de puissance, pour chauffer un élément induit, caractérisé en ce qu'il comprend au moins un câble (5a, 5b), à brins multiples isoiés entre eux , et les brins, à leur extrémité de raccordement, sont déployés en éventail
(9,1 ,9.2 ;9.1b) pour être raccordés en parallèle à une barre métallique (10.1 ,
10.2 ; 10.1b) formant borne d'alimentation électrique, le diamètre d'un brin de câble étant choisi de telle sorte qu'il permet de s'affranchir des pertes par courants de Foucault haute fréquence générés par les conducteurs voisins, le nombre de brins ou fils en parallèle dans un câble étant suffisamment élevé pour permettre le passage de l'Intensité correspondant à la puissance élevée de chauffage.
22. Four de chauffage par induction comportant un dispositif de chauffage selon l'une quelconque des revendications 1 à 20.
PCT/IB2010/051744 2009-04-23 2010-04-21 Dispositif de chauffage par inducteur de puissance, inducteur de puissance, et four ainsi équipé WO2010122505A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP10719098.5A EP2422580B1 (fr) 2009-04-23 2010-04-21 Dispositif de chauffage par inducteur de puissance, inducteur de puissance, et four ainsi équipé
CN201080017559.5A CN102415209B (zh) 2009-04-23 2010-04-21 功率感应器加热装置、功率感应器和以此配备的炉子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0901970A FR2944942B1 (fr) 2009-04-23 2009-04-23 Dispositif de chauffage par inducteur de puissance, inducteur de puissance, et four ainsi equipe
FR0901970 2009-04-23

Publications (1)

Publication Number Publication Date
WO2010122505A1 true WO2010122505A1 (fr) 2010-10-28

Family

ID=41172222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2010/051744 WO2010122505A1 (fr) 2009-04-23 2010-04-21 Dispositif de chauffage par inducteur de puissance, inducteur de puissance, et four ainsi équipé

Country Status (4)

Country Link
EP (1) EP2422580B1 (fr)
CN (1) CN102415209B (fr)
FR (1) FR2944942B1 (fr)
WO (1) WO2010122505A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220086962A1 (en) * 2019-01-14 2022-03-17 Primetals Technologies Austria GmbH Device for the inductive heating of a workpiece in a rolling mill

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1465926A1 (de) * 1964-07-31 1969-07-03 Licentia Gmbh Verfahren zur Herstellung einer Kontaktverbindung an einem duennen leitenden Folienband
EP0577468A1 (fr) * 1992-06-24 1994-01-05 Société CELES Perfectionnements apportés aux bobines de système de chauffage par induction
JPH1050217A (ja) * 1996-08-06 1998-02-20 Hitachi Ltd 偏向ヨーク装置の製造方法及び偏向ヨーク装置
JP2004200458A (ja) * 2002-12-19 2004-07-15 Matsushita Electric Ind Co Ltd 溶接トランス
FR2852187A1 (fr) * 2003-03-07 2004-09-10 Celes Dispositif de chauffage par induction d'une bande metallique
FR2890824A1 (fr) * 2005-09-15 2007-03-16 Commissariat Energie Atomique Four de fusion a dispositif inducteur a une seule spire compose d'une pluralite de conducteurs
WO2007141422A1 (fr) * 2006-06-09 2007-12-13 Celes Dispositif de chauffage par induction a haute frequence, et four a induction equipe d'un tel dispositif

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1465926A1 (de) * 1964-07-31 1969-07-03 Licentia Gmbh Verfahren zur Herstellung einer Kontaktverbindung an einem duennen leitenden Folienband
EP0577468A1 (fr) * 1992-06-24 1994-01-05 Société CELES Perfectionnements apportés aux bobines de système de chauffage par induction
JPH1050217A (ja) * 1996-08-06 1998-02-20 Hitachi Ltd 偏向ヨーク装置の製造方法及び偏向ヨーク装置
JP2004200458A (ja) * 2002-12-19 2004-07-15 Matsushita Electric Ind Co Ltd 溶接トランス
FR2852187A1 (fr) * 2003-03-07 2004-09-10 Celes Dispositif de chauffage par induction d'une bande metallique
FR2890824A1 (fr) * 2005-09-15 2007-03-16 Commissariat Energie Atomique Four de fusion a dispositif inducteur a une seule spire compose d'une pluralite de conducteurs
WO2007141422A1 (fr) * 2006-06-09 2007-12-13 Celes Dispositif de chauffage par induction a haute frequence, et four a induction equipe d'un tel dispositif

Also Published As

Publication number Publication date
CN102415209A (zh) 2012-04-11
EP2422580A1 (fr) 2012-02-29
FR2944942A1 (fr) 2010-10-29
EP2422580B1 (fr) 2017-07-19
CN102415209B (zh) 2014-04-30
FR2944942B1 (fr) 2011-07-22

Similar Documents

Publication Publication Date Title
JP6522017B2 (ja) 高周波電流供給電線
KR100706494B1 (ko) 초전도 케이블
EP1604551B1 (fr) Dispositif de chauffage par induction d'une bande metallique.
EP2422580B1 (fr) Dispositif de chauffage par inducteur de puissance, inducteur de puissance, et four ainsi équipé
FR3004024A1 (fr) Dispositif de transmission sans fil d'energie par induction a un recepteur
CN110313113A (zh) 马达
EP2027754B1 (fr) Dispositif de chauffage par induction a haute frequence, et four a induction equipe d'un tel dispositif
EP0221921B1 (fr) Aimant solenoidal sans fer
EP0099274B1 (fr) Transformateur, notamment abaisseur de tension pour machine à souder électrique
US20160247629A1 (en) Transformer for reducing eddy current losses of coil
EP0538124B1 (fr) Inducteur de chauffage par induction de bandes métalliques
EP2580767B1 (fr) Bobine de lissage a air pour fortes puissances
US20130187738A1 (en) Electrical apparatus having a thermally conductive bobbin
FR2740645A1 (fr) Bobinage inducteur multibrin a toronnage de type litz pour foyer de cuisson par induction
EP1993111A1 (fr) Refroidissement du noyau magnétique d'une bobine d'induction.
JP2013149460A (ja) 電線およびコイル
FR2972890A1 (fr) Systeme inductif pouvant servir de creuset froid
WO2021116632A1 (fr) Dispositif électrotechnique pour un aéronef
EP2109344A2 (fr) Corps de chauffe de radiateur électrique comportant un filament métallique à enroulement hélicoïdal à zones de spires différenciées
EP4085476A1 (fr) Dispositif pour connecter une source de puissance a un inducteur
WO2021116599A1 (fr) Dispositif électrotechnique pour un aéronef comprenant des composants bobinés basse fréquence
FR2963174A1 (fr) Stator court
BE479095A (fr)
FR3081254A1 (fr) Bobine planaire et procede de fabrication d’une bobine planaire
FR3069695A1 (fr) Bobine electromagnetique a dissipation thermique amelioree

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080017559.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10719098

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2010719098

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010719098

Country of ref document: EP