WO2021116599A1 - Dispositif électrotechnique pour un aéronef comprenant des composants bobinés basse fréquence - Google Patents

Dispositif électrotechnique pour un aéronef comprenant des composants bobinés basse fréquence Download PDF

Info

Publication number
WO2021116599A1
WO2021116599A1 PCT/FR2020/052347 FR2020052347W WO2021116599A1 WO 2021116599 A1 WO2021116599 A1 WO 2021116599A1 FR 2020052347 W FR2020052347 W FR 2020052347W WO 2021116599 A1 WO2021116599 A1 WO 2021116599A1
Authority
WO
WIPO (PCT)
Prior art keywords
coils
protuberance
electrotechnical
coil
yoke
Prior art date
Application number
PCT/FR2020/052347
Other languages
English (en)
Inventor
Sonia DHOKKAR
Nicolas Bernard
Original Assignee
Safran Electrical & Power
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Electrical & Power filed Critical Safran Electrical & Power
Priority to US17/757,047 priority Critical patent/US20230008213A1/en
Publication of WO2021116599A1 publication Critical patent/WO2021116599A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/26Fastening parts of the core together; Fastening or mounting the core on casing or support
    • H01F27/266Fastening or mounting the core on casing or support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/10Liquid cooling
    • H01F27/18Liquid cooling by evaporating liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D47/00Equipment not otherwise provided for
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/245Magnetic cores made from sheets, e.g. grain-oriented
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2895Windings disposed upon ring cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/30Fastening or clamping coils, windings, or parts thereof together; Fastening or mounting coils or windings on core, casing, or other support
    • H01F27/306Fastening or mounting coils or windings on core, casing or other support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2876Cooling

Definitions

  • the invention relates to an electrotechnical device for an aircraft comprising low-frequency wound components, such as inductors or power transformers.
  • the state of the art comprises in particular the documents EP-A1-3 330 983, EP-A1- 3 483 905 and US-A1-2017 / 345554.
  • electrotechnical equipment is used in the field of aeronautics.
  • a current problem with this equipment relates to their integration and the optimization of their mass and volume.
  • This electrotechnical equipment can include wound components, such as inductors or power transformers, which are integrated within a system such as, for example, power and / or control electronics, an actuator, etc. then necessary to adapt the shape and minimize the volume of these wound components for their integration into the system.
  • wound components such as inductors or power transformers
  • the integration of these wound components must be reliable and must make it possible to achieve the desired performance, but also must respect severe environmental constraints, such as thermal constraints, electromagnetic compatibility (EMC), or vibrations.
  • EMC electromagnetic compatibility
  • Conventional solutions for producing inductor type components are generally based on magnetic circuits based on ferrite or composite type materials. These components are produced in the form of bars assembled with one or more coiled supports, or in the form of one or more toroids which are then coiled directly onto the magnetic circuit (s).
  • this type of material generally has low mechanical strength and low conductivity. It is therefore necessary to reduce the losses by the Joule effect, or to set up a dedicated system to ensure heat dissipation and to maintain the wound components efficiently with regard to the vibration constraints encountered.
  • the manufacturing process for these components is generally complex.
  • the tolerances of the magnetic properties of these components are generally variable, of the order of 20% to 30%, which directly influences the uncertainty of the parameters of the components obtained during the validation tests in production and on the margins at take into account when designing electrotechnical equipment.
  • the conventional solutions for the production of power transformer type components are generally based on magnetic circuits produced either by blocks of sheets formed from several parts which are assembled by gluing, or by alternating stacking of plates, or by winding of tape. thin sheet.
  • these components are generally of parallelepiped shape and fit with difficulty into a casing or a casing of circular shape. Indeed, these components require specific parts, such as strapping of cut circuits, to ensure their maintenance and / or to achieve their fixing in their environment.
  • the object of the invention is to propose a solution making it possible to remedy at least some of these drawbacks.
  • the invention proposes to reduce the mass and the volume, and therefore the bulk, of these components, in order to facilitate their integration into a circular-shaped casing, but also to pool the coiled components of a system.
  • an electrotechnical device for an aircraft comprising: an annular housing having a radially internal surface, a magnetic circuit formed by a stack of laminated sheets and composed of an annular yoke, said yoke being arranged on the radially inner surface of said housing, at least part of a radially outer surface of said annular yoke being in contact with the radially inner surface of the housing and said yoke having a radially inner surface, at least one low frequency wound component, said component coiled being integrated on at least a part of the radially internal surface of said cylinder head.
  • the terms “low frequency” correspond to a frequency less than or equal to 500 kHz depending on the materials used.
  • the device according to the invention makes it possible to ensure simple mechanical integration of the coiled components, which makes it possible to limit the parts for fixing and maintaining the components and the device.
  • the device according to the invention makes it possible to pool a plurality of components wound on the same structure, here the cylinder head.
  • the modularity of the device according to the invention allows said device to adapt to integration and environmental constraints (EMC, thermal or vibratory constraints).
  • the method of manufacturing the magnetic circuit of the device according to the invention is simple, the steps of cutting (laser, water, wire, etc.) and of assembling the rolled sheets being controlled. This makes it possible to ensure a variation in the electrical parameters of the components within a reduced range, of the order of 5%.
  • the wound components are confined in the annular yoke, and therefore in the annular housing, with its environment (for example a power and / or control electronic part, an actuator, a generator, etc.) arranged in a compact manner, in a manner to minimize the volume of the device and the length of the electrical connections between the wound components connected in series or in parallel.
  • environment for example a power and / or control electronic part, an actuator, a generator, etc.
  • the cylinder head serves as a structure for the wound components, and allows them to be attached to the housing.
  • the cylinder head advantageously has a function of heat dissipation by conduction towards the outside, that is to say in a radially external direction.
  • the contact between the cylinder head and the housing facilitates the heat dissipation of the iron losses and by the Joule effect of the device.
  • the magnetic circuit and the yoke are formed in one piece. This makes it possible to reduce the manufacturing costs and the mass of the device and to ensure optimum heat dissipation of losses to the outside.
  • the cylinder head is glued to the housing.
  • the cylinder head is hot-fitted on the housing.
  • the magnetic circuit can be formed by a stack of rolled sheets based on Iron-Silicon, Iron-Nickel, or Iron-Cobalt.
  • the or each wound component can be a power transformer and / or an inductor.
  • the device can comprise a plurality of wound components, the wound components being only power transformers, or only inductors, or else both power transformers and inductors.
  • a coiled component may be produced by enamelled round wire of copper, aluminum or a composite alloy, optionally twisted.
  • a coiled component can be produced by a flat copper or aluminum, or by an insulated copper or aluminum strip.
  • the magnetic circuit and / or the coil of the coiled component can be impregnated and / or encapsulated.
  • the yoke may comprise at least one protuberance extending radially from the radially internal surface of said yoke, said protuberance comprising at least one first tooth, at least one coil being integrated on said protuberance around said first tooth.
  • a coiled component is formed by one or a plurality of coils integrated into their magnetic circuit.
  • the protuberance may include a plurality of first teeth, with at least one coil being integrated around each first tooth.
  • the protuberance may include two second teeth surrounding the first tooth, at least one coil being integrated on the protuberance between said second teeth.
  • the protuberance may have a plurality of second teeth, two second teeth surrounding a first tooth, at least one coil being integrated between second teeth, around each first tooth.
  • the magnetic circuit can include at least one air gap.
  • An air gap advantageously makes it possible to control the magnetic flux in the wound components.
  • an air gap makes it possible to avoid depending on variations in the electrical properties of the material constituting the magnetic circuit.
  • the or the air gaps can make it possible to simplify the winding part, in the case, for example, of an objective of reducing manufacturing costs.
  • the magnetic circuit may include at least one radial air gap, that is to say extending in the radially internal direction.
  • the magnetic circuit may include at least one circumferential air gap, that is to say extending circumferentially to the axis of the cylinder head.
  • the wound components can be single-phase components making it possible to perform power electronics functions, such as filtering, smoothing, parallelization or energy transfer.
  • the device comprises two low-frequency wound components, said wound components being coils connected in series, and each coil being wound around a first tooth.
  • the coils can have an identical direction of flow. As a variant, the coils can be in opposition to flow.
  • the protuberance can be provided with an air gap, in order to minimize the volume / mass ratio of the magnetic circuit and reduce the sensitivity to variations in the magnetic properties of the material of the magnetic circuit.
  • these coils can be coupled or uncoupled, and / or interlaced.
  • the coils can be connected in series or in parallel.
  • the device comprises a plurality of low frequency wound components, said wound components being multi-phase coupled coils, each coil being wound around a first tooth, and said coils being integrated over the entire surface radially. internal cylinder head.
  • the coiled component is a multi-phase power transformer or autotransformer formed by a plurality of coils, each coil being wound around a first tooth.
  • a distributed type winding can also be implemented.
  • the protuberance can be provided with a radial air gap, in order to increase the magnetic leaks and the specific inductances.
  • the protuberance can be provided with circumferential air gaps, in order to limit the magnetic flux and to increase the magnetizing inductances or to manage leakage inductance values if necessary.
  • the number of coils per phase depends on the integration constraints, and can vary so as to reduce the thickness of the device and to improve the cooling of the latter.
  • the or each wound component can be isolated from its magnetic circuit by an electrically insulating material, for example a material of the Kapton® type or epoxy resin.
  • the housing and / or the cylinder head may be provided with cooling means.
  • the cooling means may comprise at least one of the following means: fins extending radially or axially from a radially outer surface of the housing and / or of the cylinder head, and / or fluid circulation channels, in which circulates a pressurized fluid, and / or means for spraying a fluid, and / or heat pipes (ie heat conductor elements).
  • the radial or axial fins make it possible to increase the exchange coefficients, in the case of cooling by forced air or by a fluid, or in the case of natural convection and bubbling in a fluid such as oil .
  • the fins can be treated with a specific treatment to increase the radiation, and therefore the exchange coefficient (radiation).
  • the pressurized fluid circulating in the fluid circulation channels can be oil or glycol water.
  • the means for spraying a fluid may be configured to spray oil or water under pressure.
  • the cooling means may also comprise orifices in the cylinder head and ventilation means arranged so as to circulate air through said orifices in the cylinder head.
  • the device can be cooled by natural convection (for low current density), or by forced convection with air circulating inside and / or outside the device, or by forced convection with a fluid circulating in the housing and / or in the cylinder head.
  • the cylinder head may include ribs for fixing said cylinder head to said housing, said ribs extending longitudinally along said cylinder head. This makes it possible to facilitate the integration of the device, and to optimize the cooling of the device.
  • the invention also relates to an aircraft comprising at least one electrotechnical device according to the invention.
  • FIG. 1 is a very schematic view of the device according to the invention, comprising a coiled component, for example of the power transformer type
  • FIG. 2 is a very schematic view of the device according to the invention, comprising wound components, for example of the coil type,
  • FIG. 3 is a schematic perspective view of the yoke and coil-type wound components of the device according to one embodiment of the invention, and in Box A, an enlarged sectional view of a portion of said device,
  • FIG. 4 is a schematic perspective view of the cylinder head and of the coiled components of the coil type of the device according to another embodiment of the invention,
  • FIG. 5 is a schematic view of a configuration comprising the device according to the invention.
  • FIGS. 6A and 6B are sectional views of wound components integrated into a cylinder head according to one embodiment of the invention, respectively without and with an external radial air gap,
  • FIGS. 7A to 7D are sectional views of wound components integrated in a cylinder head according to an embodiment of the invention, respectively without air gap, with an internal circumferential air gap, with external circumferential air gaps and with air gaps. external radials,
  • FIGS. 8A to 8E are sectional views of wound components integrated into a cylinder head according to an embodiment of the invention, respectively without air gap, with an external radial air gap, with an internal circumferential air gap, with air gaps external radials and with external circumferential air gaps,
  • FIG. 9 is a sectional view of wound components integrated into a cylinder head according to one embodiment of the invention.
  • FIGS. 10A to 10C are sectional views of wound components integrated in a cylinder head according to an embodiment of the invention, respectively without air gap, with external radial air gaps and with external circumferential air gaps,
  • FIGS. 11A to 11C are sectional views of wound components integrated in a cylinder head according to an embodiment of the invention, respectively without air gap, with external radial air gaps and with external circumferential air gaps, and
  • FIG. 12 is a sectional view of wound components integrated into a cylinder head according to one embodiment of the invention.
  • FIGS. 1 to 4 represent electrotechnical devices for aircraft according to the invention.
  • a device 10 comprises an annular housing 12 extending around an axis denoted X in FIGS. 1 to 4, having a radially internal surface S12 and comprising cooling means.
  • the housing 12 can be a housing.
  • the cooling means are in the form of fins 14 which extend radially from a radially outer surface S14 of the housing 12.
  • the device also comprises a magnetic circuit formed by a stack of rolled sheets.
  • the laminated sheets forming the magnetic circuit can be insulated magnetic sheets, by a varnish or by a specific treatment depending on the material used, so as to produce the laminated magnetic circuit in a single piece.
  • the magnetic circuit is therefore cut from sheets rolled in a single part. There is therefore no assembly of several parts to form the magnetic circuit. This makes it possible to avoid assembly problems and to guarantee the electrical parameters of the component.
  • the magnetic circuit can be formed by a stack of rolled sheets based on Iron-Silicon, Iron-Nickel, or Iron-Cobalt.
  • the thickness of the rolled sheets is chosen according to the eddy current losses envisaged contributing to the efficiency of the component. Note that the modification of the thickness of the magnetic circuit is a factor which makes it possible to adapt the characteristics of the component (inductors, voltages, etc.) without changing its definition (sheets, conductor cross-section, etc.).
  • the magnetic circuit is composed of an annular yoke 16 extending around the X axis and which has a radially internal surface S16.
  • the magnetic circuit and the yoke are therefore formed in one piece.
  • the cylinder head 16 is arranged on the surface S12 of the housing 12.
  • the cylinder head 16 can be bonded, by means of a thermal paste or an adhesive, to the housing 12, and more precisely to the surface S12 of the housing 12.
  • the cylinder head 16 is fixed by thermal expansion, that is to say, hot-fitting on the housing 12. Housing 12 is heated, while cylinder head 16 is cooled. Then, the cylinder head 16 is inserted into the housing 12 and comes to tighten against the surface S12 of the housing 12 by thermal expansion.
  • the yoke 16 has a function of heat dissipation by conduction towards the housing 12. The contact between the yoke 16 and the housing 12 makes it possible to facilitate the thermal dissipation of the losses of the device 10.
  • the cooling means may comprise orifices made in the cylinder head 16 and ventilation means arranged so as to circulate an air flow or a fluid through these orifices.
  • the device can be cooled by natural convection, or by forced convection with air circulating inside and / or outside the device 10, or else by forced convection with a fluid circulating in the housing 12 or in the cylinder head 16.
  • the device 10 also comprises one or more coiled components 18 low frequency.
  • the wound components 18 may be of the power transformer type, as shown in Figure 1, and / or of the inductance type, as shown in Figures 2 to 4.
  • the device 10 may include only power transformers, or only inductors. , or both power transformers and inductors.
  • the coiled component 18 is integrated over the entire surface S16 of the cylinder head 16, while in FIG. 2, the six coiled components 18 are integrated over only a part of the surface S16 of the cylinder head 16.
  • the device 10 may have a different number of coiled components 18, which may be arranged differently on the surface S16 of the cylinder head 16.
  • the yoke 16 serves as a structure for the coiled components, and allows them to be attached to the housing 12.
  • the coiled components 18 are thus confined in the radially internal part of the yoke 16, and therefore in the housing 12.
  • yoke advantageously makes it possible to adapt the number of wound components according to the need for the device and the integration of the device into its environment.
  • the winding of a coiled component 18 can be produced by round enamelled copper, aluminum or composite alloy wire, optionally twisted, or else by a flat copper or aluminum, or even by a copper strip or d insulated aluminum. This coil, as well as the magnetic circuit, can be impregnated and / or encapsulated.
  • the magnetic circuit makes it possible to channel the magnetic flux of the wound components 18.
  • the cylinder head 16 may include protuberances 20 extending radially from the surface S16.
  • a protuberance 20 may include at least one central tooth 21a surrounded by two outer teeth 21b.
  • a protuberance 20 may comprise only one or a plurality of central teeth 21a, or only two outer teeth 21b.
  • a coil 8 is integrated on a protuberance 20.
  • One or more coils integrated into its magnetic circuit form a coiled component. This coil is wound around the central tooth 21a, and is surrounded by the two outer teeth 21b.
  • the central tooth 21a can be connected circumferentially at its radial end to the outer teeth 21b by a connecting portion 23.
  • a coil 18 can be isolated from the yoke 16, and therefore from its magnetic circuit, by an electrically insulating material 22, for example a material of the Kapton ® type or epoxy resin. .
  • the protuberance 20 can be provided with radial air gaps 24. These gaps 24 extend in the radially internal direction, that is to say from the protuberance 20 and in the direction of the axis X. These radial gaps 24 are arranged on the connecting portion 23 connecting the central tooth 21a. and the outer teeth 21b.
  • the cylinder head 16 may include ribs 26 for fixing to the housing 12, as shown in FIG. 4. These ribs 26, or radial recesses, of the cylinder head 16 extend longitudinally, that is to say along the X axis. , along the cylinder head 16. These ribs 26 make it possible to facilitate integration and improve the cooling of the cylinder head. device 10. In fact, thanks to this positioning of the ribs 26, the fixing of the cylinder head 16 to the housing 12 does not disturb the flow of cooling air.
  • FIG. 5 represents an example of configuration which comprises a device according to the invention.
  • the device has six uncoupled Lcll, Lcl2, Lcl3, Lc21, Lc22 and Lc23 coils which are configured to parallelize two inverters 30, 32 to drive an electric actuator 34.
  • the Lcll-Lc23 coils are connected to the actuator 34 via a connector. 48 and power cables 50a, 50b, 50c.
  • Lcll-Lc23 coils are interphase coils. These coils are configured to limit the fault current between each same phase of the inverters 30, 32 and to limit the overvoltages at the terminals of the electric actuator 34.
  • the coils Lcll-Lc23 in box B of figure 5 correspond to coils 18 of FIG. 3.
  • the inverters 30, 32 can be direct-to-alternating power converters (DC-AC, acronym of the English expression “Direct Current - Alternative Current”).
  • the inverters 30, 32 form an electronic power part 46, which is connected to an electronic control card 36, which forms an electronic control part.
  • the electronic control board 36 is connected, via a connector 38, to a communication bus 40.
  • the inverters 30, 32 are connected, via a connector 42, to a direct current bus 44.
  • the set of coils Lcll-Lc23 , the power electronics 46 and the control electronics 36 form the equipment 52 which is arranged in the cylinder head 16, and therefore in the housing 12.
  • the device may include two coils 54a, 54b connected in series and having an identical direction of flow. These coils are single-phase components which make it possible to perform filtering, smoothing or parallelization functions.
  • the coils 54a, 54b are integrated on a protuberance 20 of the cylinder head 16.
  • the protuberance 20 comprises only two outer teeth 21b, which are interconnected by a connecting portion 23 at their radial end.
  • Each coil 54a, 54b is wound around an outer tooth 21b.
  • These coils 54a, 54b are not entirely surrounded by the protuberance 20. These coils can be produced on one or more protuberances 20 of the cylinder head 16 in order to minimize their height.
  • a radial air gap 24 can be added, as shown in FIG. 7B.
  • the protuberance 20 is provided with an air gap 24 which extends in a radially internal direction.
  • the radial air gap 24 is arranged on the connecting portion 23 of the outer teeth 21b of the protuberance 20.
  • the device may include an uncoupled coil 56.
  • This coil 56 is integrated into a protuberance 20 of the cylinder head, and more precisely wound around the central tooth 21a of the protuberance 20.
  • This coil 56 is surrounded by the two outer teeth 21b of the protuberance 20.
  • These outer teeth form return branches on the coil 56. This makes it possible to reduce the EMC problems, and in particular the radiated emissions which are induced by the leakage flows from the coils, and which can disturb the electronic boards, sensors and other wound components located at the coil. proximity.
  • These outer teeth make it possible to channel part of this magnetic flux.
  • the magnetic circuit of FIG. 7A does not include an air gap, while the magnetic circuits of FIGS. 7B to 7D include one or more air gaps 24.
  • the circumferential air gap 24 can be positioned on the central tooth 21a. This makes it possible to reduce the disturbances between the wound components.
  • the circumferential air gaps 24 can be positioned on the outer teeth 21b.
  • the radial air gaps 24 can be positioned on the outer teeth 21b, and more precisely on the connecting portion 23 between the outer teeth 21b.
  • the position of the air gaps on the outer teeth advantageously makes it possible to facilitate the winding operation.
  • the device can comprise two coils 58a, 58b wound in order to be in opposition to the flow. Coils 58a, 58b are interlaced or coupled. In particular, the components are coupled interphase or common mode inductors.
  • the coils 58a, 58b are integrated in a protuberance 20 of the cylinder head 16.
  • the protuberance 20 comprises only two outer teeth 21b, which are interconnected by a connecting portion 23 at their radial end.
  • Each coil 58a, 58b is wound around an outer tooth 21b.
  • These coils 58a, 58b are not entirely surrounded by the protuberance 20.
  • a radial air gap 24 can be positioned on the connecting portion 23 between the outer teeth 21b.
  • the protuberance 20 comprises two outer teeth 21b, which are interconnected by a connecting portion 23 at their radial end.
  • each coil 58a, 58b is wound around an outer tooth 21b.
  • These coils 58a, 58b are therefore not entirely surrounded by the protuberance 20.
  • An additional tooth, here a central tooth 21a, is added with respect to FIGS. 8A and 8B in order to channel this resulting flow and to control the leakage inductance of the fluid. component.
  • the coils 58a, 58b are separated by the central tooth 21a.
  • the protuberance 20 comprises two central teeth 21a, which are interconnected by a connecting portion 23 at their radial end.
  • Each coil 58a, 58b is wound around a central tooth 21a. Additional teeth, here two outer teeth 21b, are added with respect to FIGS. 8A and 8B in order to channel this resulting flow and to control the leakage inductance of the component.
  • Each coil 58a, 58b is surrounded by an outer tooth 21b and by the other coil 58b, 58a. Thus, these coils 58a, 58b are completely surrounded.
  • a circumferential air gap 24 can be positioned on the central tooth 21a. This makes it possible to channel the magnetic flux in the central tooth 21a, which has a high equivalent reluctance with respect to the main reluctance, so that the mutual inductance is as high as possible (management of the differential mode).
  • the radial air gaps 24 can be positioned on the outer teeth 21b, and more precisely on the connecting portion 23 between the outer teeth 21b.
  • the circumferential air gaps 24 can be positioned on the outer teeth 21b. This advantageously makes it possible to have an armored version, by channeling the resulting magnetic flux into the outer teeth 21b.
  • FIG. 9 shows an exemplary embodiment of a device comprising three-phase coupled coils produced by concentric winding.
  • a set of coils 60 is integrated over the entire surface S16 of the yoke 16. These coils 60 can be connected in parallel or in series.
  • the coils 60 are arranged around teeth 21 of the protuberance 20 of the cylinder head 16.
  • a free-flow multi-phase power transformer, or autotransformer can be formed by a plurality of coils.
  • the coils can be connected in series or in parallel respectively depending on the functionality of the component (star, delta, zigzag connection, etc.). The number of coils depends on the desired function.
  • FIGS. 10A to 10C represent an exemplary embodiment of a device comprising a multi-phase power transformer formed by three-phase coils 62a, 62b, 63a, 63b, 64a, 64b of the armored type, the coils being integrated locally on a part only from the surface S16 of the yoke 16.
  • the coils 62a, 63a, 64a are primary coils and the coils 62b, 63b, 64b are coils secondary.
  • Coils 62a-64b can have galvanic isolation (ie there is no connection between the coils of each phase).
  • the protuberance 20 comprises three central teeth 21a-1, 21a-2, 21a-3 and two outer teeth 21b, which are interconnected by a connecting portion 23 at their radial end.
  • the coils 62a-62b are wound around a first tooth 21a-1, while the coils 63a-63b are wound around a second tooth 21a-2 and the coils 64a-64b around a third tooth 21a-3 . More precisely, the coils 62a-62b are concentric, the coil 62b being wound around the coil 62a. Likewise, the coils 63a-63b are concentric, the coil 63b being wound around the coil 63a.
  • the coils 64a-64b are concentric, the coil 64b being wound around the coil 64a.
  • the coil 62b is surrounded by an outer tooth 21b-1 and by the second central tooth 21a-2.
  • the coil 64b is surrounded by an outer tooth 21b-2 and by the second central tooth 21a-2.
  • the coils 62a-64b are completely surrounded.
  • the magnetic circuit of FIG. 10A does not have an air gap, while the magnetic circuits of FIGS. 10B and 10C include air gaps 24.
  • the radial air gaps 24 can be positioned on the outer teeth 21b, and more precisely on the connecting portion 23 between the outer teeth 21b. This advantageously makes it possible to increase the magnetic leaks and the inherent inductances.
  • the circumferential air gaps 24 can be positioned on the central teeth 21a-1, 21a-2, 21a-3. This advantageously makes it possible to limit the magnetic flux. When the air gaps are positioned on the outer teeth, this makes it possible to increase the magnetizing inductances.
  • the air gaps make it possible to best adjust the parameters of the power transformer, and to reduce the impact of the material composing the magnetic circuit.
  • the number of teeth or coils per phase can be increased.
  • the pattern developed on the entire cylinder head can be modified, by connecting each coil of the same phase in series or in parallel to reduce the thickness of the device and improve cooling.
  • Figures 11A to 11C respectively show Figures 10A to 10C, with a repetition of the transformer over the entire surface S16 of the yoke 16.
  • the primary coils 62a, 63a, 64a and the secondary coils 62b, 63b, 64b are integrated. over the entire circumference of the surface S16 of the cylinder head 16. This configuration advantageously makes it possible to maximize the central space of the cylinder head 16.
  • a transformer, or a forced flux multi-phase autotransformer can be implemented locally on only part of the surface S16 of the yoke 16, as shown in figure 12.
  • the transformer has six wound components 66a, 66b, 68a, 68b, 70a and 70b.
  • the protuberance 20 comprises a central tooth 21a and two outer teeth 21b.
  • the coils 66a-66b are wound around a first outer tooth 21b, while the coils 68a-68b are wound around the central tooth 21a, and the coils 70a-70b are wound around a second outer tooth 21b. More precisely, the coils 66a-66b are concentric, the coil 66b being wound around the coil 66a. Likewise, the coils 68a-68b are concentric, the coil 68b being wound around the coil 68a; and the coils 70a-70b are concentric, the coil 70b being wound around the coil 70a. Coils 66b and 70b are not completely surrounded.
  • the magnetic circuit of FIG. 12 does not include an air gap.
  • this magnetic circuit can include an air gap on the protuberance 20, as described above for FIGS. 10B, 10C, 11B and 11C.
  • the number of teeth or coils per phase can be increased or the pattern developed on the entire yoke can be modified by connecting each coil of the same phase in series or in parallel. so as to reduce the thickness of the device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Tires In General (AREA)
  • Coils Or Transformers For Communication (AREA)
  • General Induction Heating (AREA)

Abstract

L'invention concerne un dispositif (10) électrotechnique pour un aéronef comprenant : - un boîtier (12) annulaire présentant une surface radialement interne (S12), - un circuit magnétique formé par un empilement de tôles laminées et composé d'une culasse (16) annulaire, ladite culasse étant agencée sur la surface radialement interne dudit boîtier, ladite culasse présentant une surface radialement interne (S16), - au moins un composant bobiné (18) basse fréquence, ledit composant bobiné étant intégré sur au moins une partie de la surface radialement interne de ladite culasse.

Description

DESCRIPTION
TITRE DE L'INVENTION : DISPOSITIF ÉLECTROTECHNIQUE POUR UN AÉRONEF COMPRENANT DES COMPOSANTS BOBINÉS BASSE FRÉQUENCE
DOMAINE TECHNIQUE
L'invention concerne un dispositif électrotechnique pour un aéronef comportant des composants bobinés basse fréquence, tels que des inductances ou des transformateurs de puissance.
TECHNIQUE ANTÉRIEURE
L'état de la technique comprend notamment les documents EP-A1-3 330 983, EP-A1- 3 483 905 et US-A1-2017/345554.
De façon connue, des équipements électrotechniques sont utilisés dans le domaine de l'aéronautique.
Une problématique actuelle de ces équipements concerne leur intégration et l'optimisation de leur masse et de leur volume.
Ces équipements électrotechniques peuvent comporter des composants bobinés, tels que des inductances ou des transformateurs de puissance, qui sont intégrés au sein d'un système comme par exemple de l'électronique de puissance et/ou de contrôle, un actionneur... Il est alors nécessaire d'adapter la forme et de minimiser le volume de ces composants bobinés pour leur intégration dans le système. En outre, l'intégration de ces composants bobinés doit être fiable et doit permettre d'atteindre les performances souhaitées, mais aussi doit respecter les contraintes environnementales sévères, telles que des contraintes thermiques, de compatibilité électromagnétique (CEM), ou de vibrations. Les solutions conventionnelles pour la réalisation de composants de type inductances sont généralement basées sur des circuits magnétiques à base de matériaux de type ferrite ou composite. Ces composants sont réalisés sous la forme de barres assemblées avec un ou des supports bobinés, ou sous la forme d'un ou plusieurs tores qui sont ensuite bobinés directement sur le ou les circuits magnétiques.
Toutefois, ces composants ne sont pas compacts, et ont donc une masse et un volume importants, et de ce fait, leur intégration dans un système est complexe.
De plus, ce type de matériau a généralement une résistance mécanique faible et une faible conductivité. Il est donc nécessaire de réduire les pertes par effet Joule, ou de mettre en place un système dédié pour assurer la dissipation thermique et le maintien des composants bobinés efficace au regard des contraintes de vibrations rencontrées. En outre, le procédé de fabrication de ces composants est généralement complexe. Ainsi, les tolérances des propriétés magnétiques de ces composants sont généralement variables, de l'ordre de 20 % à 30 %, ce qui influe directement sur l'incertitude des paramètres des composants obtenus lors des essais de validation en production et sur les marges à prendre en considération lors de la conception de l'équipement électrotechnique.
Les solutions conventionnelles pour la réalisation de composants de type transformateurs de puissance sont généralement basées sur des circuits magnétiques réalisés soit par des blocs de tôles formés de plusieurs parties qui sont assemblées par collage, soit par empilage alterné de plaques, ou par enroulement de ruban de tôle mince.
Toutefois, il existe généralement des entrefers résiduels, intrinsèques au mode de fabrication (notamment lors du collage de plusieurs parties formant les blocs de tôles), qui sont difficiles à maîtriser lors de la fabrication, et qui influent directement sur les caractéristiques du composant.
D'une manière générale, ces composants sont généralement de forme parallélépipédique et s'intégrent difficilement dans un boîtier ou un carter de forme circulaire. En effet, ces composants nécessitent des pièces spécifiques, tels que des cerclages de circuits coupés, pour assurer leur maintien et/ou pour réaliser leur fixation dans leur environnement.
L'invention a pour objectif de proposer une solution permettant de remédier à au moins certains de ces inconvénients.
En particulier, l'invention propose de réduire la masse et le volume, et donc l'encombrement, de ces composants, afin de faciliter leur intégration dans un boîtier de forme circulaire, mais aussi de mutualiser les composants bobinés d'un système.
RÉSUMÉ DE L'INVENTION
À cet effet, l'invention a pour objet un dispositif électrotechnique pour un aéronef comprenant : un boîtier annulaire présentant une surface radialement interne, un circuit magnétique formé par un empilement de tôles laminées et composé d'une culasse annulaire, ladite culasse étant agencée sur la surface radialement interne dudit boîtier, au moins une partie d'une surface radialement externe de ladite culasse annulaire étant en contact avec la surface radialement interne du boîtier et ladite culasse présentant une surface radialement interne, au moins un composant bobiné basse fréquence, ledit composant bobiné étant intégré sur au moins une partie de la surface radialement interne de ladite culasse.
Selon l'invention, les termes « basse fréquence » correspondent à une fréquence inférieure ou égale à 500kHz suivant les matériaux utilisés.
Le dispositif selon l'invention permet d'assurer une intégration mécanique simple des composants bobinés, ce qui permet de limiter les pièces de fixation et de maintien des composants et du dispositif. En outre, le dispositif selon l'invention permet de mutualiser une pluralité de composants bobinés sur une même structure, ici la culasse. La modularité du dispositif selon l'invention permet audit dispositif de s'adapter aux contraintes d'intégration et environnementales (contraintes de CEM, thermiques ou vibratoires).
De plus, le procédé de fabrication du circuit magnétique du dispositif selon l'invention est simple, les étapes de découpe (laser, eau, fil..) et d'assemblage des tôles laminées étant maîtrisées. Ceci permet d'assurer une variation des paramètres électriques des composants dans une plage réduite, de l'ordre de 5 %.
Les composants bobinés sont confinés dans la culasse annulaire, et donc dans le boîtier annulaire, avec son environnement (par exemple une partie électronique de puissance et/ou de commande, un actionneur, une génératrice...) disposée de manière compacte, de manière à minimiser le volume du dispositif et la longueur des connexions électriques entre les composants bobinés connectés en série ou en parallèle.
La culasse sert de structure aux composants bobinés, et permet la fixation de ceux-ci au boîtier.
La culasse a avantageusement une fonction de dissipation thermique par conduction vers l'extérieur, c'est-à-dire dans une direction radialement externe. Le contact entre la culasse et le boîtier permet de faciliter la dissipation thermique des pertes fer et par effet Joule du dispositif.
Selon l'invention, le circuit magnétique et la culasse sont formés en une pièce. Ceci permet de réduire les coûts de fabrication, la masse du dispositif et d'assurer une dissipation thermique optimum des pertes vers l'extérieur.
Selon un mode de réalisation, la culasse est collée au boîtier.
Selon un autre mode de réalisation, la culasse est emmanchée à chaud sur le boîtier.
Le circuit magnétique peut être formé par un empilement de tôles laminées à base de Fer-Silicium, de Fer-Nickel, ou de Fer-Cobalt. Le ou chaque composant bobiné peut être un transformateur de puissance et/ou une inductance. Le dispositif peut comprendre une pluralité de composants bobinés, les composants bobinés étant uniquement des transformateurs de puissance, ou uniquement des inductances, ou encore à la fois des transformateurs de puissance et des inductances.
Selon un mode de réalisation, un composant bobiné peut être réalisé par du fil rond émaillé en cuivre, en aluminium ou en alliage composite, éventuellement torsadé.
Selon un autre mode de réalisation, un composant bobiné peut être réalisé par un méplat de cuivre ou aluminium, ou par un feuillard de cuivre ou d'aluminium isolé.
Afin de garantir une homogénéisation thermique, le circuit magnétique et/ou le bobinage du composant bobiné peuvent être imprégnés et/ou encapsulés.
La culasse peut comporter au moins une excroissance s'étendant radialement depuis la surface radialement interne de ladite culasse, ladite excroissance comporte au moins une première dent, au moins une bobine étant intégrée sur ladite excroissance autour de ladite première dent. Selon l'invention, un composant bobiné est formé par une ou une pluralité de bobines intégrées à leur circuit magnétique.
L'excroissance peut comporter une pluralité de première dents, au moins une bobine étant intégrée autour de chaque première dent.
L'excroissance peut comporter deux secondes dents entourant la première dent, au moins une bobine étant intégrée sur l'excroissance entre lesdites secondes dents. L'excroissance peut comporter une pluralité de secondes dents, deux secondes dents entourant une première dent, au moins une bobine étant intégrée entre des secondes dents, autour de chaque première dent.
Le circuit magnétique peut comporter au moins un entrefer. Un entrefer permet avantageusement de maîtriser le flux magnétique dans les composants bobinés. En effet, un entrefer permet d'éviter de dépendre des variations des propriétés électriques du matériau constituant le circuit magnétique. De plus, suivant son positionnement, le ou les entrefers peuvent permettre de simplifier la partie bobinage, dans le cas, par exemple, d'un objectif de réduction des coûts de fabrication.
Le circuit magnétique peut comporter au moins un entrefer radial, c'est-à-dire s'étendant dans la direction radialement interne.
En variante, le circuit magnétique peut comporter au moins un entrefer circonférentiel, c'est-à-dire s'étendant circonférentiellement à l'axe de la culasse.
Les composants bobinés peuvent être des composants monophasés permettant d'assurer des fonctions d'électronique de puissance, telles que du filtrage, du lissage, de la parallélisation ou du transfert d'énergie.
Selon un mode de réalisation, le dispositif comprend deux composants bobinés basse fréquence, lesdits composants bobinés étant des bobines connectées en série, et chaque bobine étant enroulée autour d'une première dent.
Les bobines peuvent avoir une direction de flux identique. En variante, les bobines peuvent être en opposition de flux.
L'excroissance peut être pourvue d'un entrefer, afin de minimiser le ratio volume/masse du circuit magnétique et réduire la sensibilité aux variations des propriétés magnétiques du matériau du circuit magnétique.
Lorsque les composants bobinés comportent des bobines, ces bobines peuvent être couplées ou non couplées, et/ou entrelacées. Les bobines peuvent être connectées en série ou en parallèle.
Selon un autre mode de réalisation, le dispositif comprend une pluralité de composants bobinés basse fréquence, lesdits composants bobinés étant des bobines couplées multi- phases, chaque bobine étant enroulée autour d'une première dent, et lesdites bobines étant intégrées sur toute la surface radialement interne de la culasse.
Selon un autre mode de réalisation, le composant bobiné est un transformateur ou un autotransformateur de puissance multi-phases formé par une pluralité de bobines, chaque bobine étant enroulée autour d'une première dent. Suivant le mode de fabrication adopté, un bobinage de type distribué peut être également mis en œuvre. L'excroissance peut être pourvue d'un entrefer radial, afin d'augmenter les fuites magnétiques et les inductances propres.
L'excroissance peut être pourvue d'entrefers circonférentiel, afin de limiter le flux magnétique et d'augmenter les inductances magnétisantes ou de gérer des valeurs d'inductances de fuite si nécessaire.
Le nombre de bobine par phase dépend des contraintes d'intégration, et peut varier de sorte à réduire l'épaisseur du dispositif et à améliorer le refroidissement de ce dernier.
Le ou chaque composant bobiné peut être isolé de son circuit magnétique par un matériau isolant électriquement, par exemple un matériau du type Kapton ® ou de la résine époxy.
Le boîtier et/ou la culasse peuvent être munis de moyens de refroidissement.
Les moyens de refroidissement peuvent comprendre au moins l'un des moyens suivants : des ailettes s'étendant radialement ou axialement depuis une surface radialement externe du boîtier et/ou de la culasse, et/ou des canaux de circulation de fluide, dans lesquels circule un fluide sous pression, et/ou des moyens de pulvérisation d'un fluide, et/ou des caloducs (i.e. des éléments de conducteurs de chaleur).
Les ailettes radiales ou axiales permettent d'augmenter les coefficients d'échange, dans le cas d'un refroidissement par air forcé ou par un fluide, ou dans le cas de la convection naturelle et du barbotage dans un fluide tel que de l'huile. Les ailettes peuvent être traitées par un traitement spécifique pour augmenter le rayonnement, et donc le coefficient d'échange (radiation).
Le fluide sous pression circulant dans les canaux de circulation de fluide peut être de l'huile ou de l'eau glycolée. Les moyens de pulvérisation d'un fluide peuvent être configurés pour pulvériser de l'huile ou de l'eau sous pression.
Les moyens de refroidissement peuvent également comprendre des orifices dans la culasse et des moyens de ventilation agencés de sorte à faire circuler de l'air à travers lesdits orifices de la culasse.
Ainsi, le dispositif peut être refroidit par convection naturelle (pour de faibles densité de courant), ou par convection forcée avec de l'air circulant à l'intérieur et/ou à l'extérieur du dispositif, ou encore par convection forcée avec un fluide circulant dans le boîtier et/ou dans la culasse.
La culasse peut comporter des nervures de fixation de ladite culasse audit boîtier, lesdites nervures s'étendent longitudinalement le long de ladite culasse. Ceci permet de faciliter l'intégration du dispositif, et d'optimiser le refroidissement du dispositif.
L'invention concerne également un aéronef comportant au moins un dispositif électrotechnique selon l'invention.
BRÈVE DESCRIPTION DES DESSINS
La présente invention sera mieux comprise et d'autres détails, caractéristiques et avantages de la présente invention apparaîtront plus clairement à la lecture de la description d'un exemple non limitatif qui suit, en référence aux dessins annexés sur lesquels :
[Fig. 1] la figure 1 est une vue très schématique du dispositif selon l'invention, comprenant un composant bobiné, par exemple du type transformateur de puissance, [Fig. 2] la figure 2 est une vue très schématique du dispositif selon l'invention, comprenant des composants bobinés, par exemple du type bobines,
[Fig. 3] la figure 3 est une vue schématique en perspective de la culasse et des composants bobinés du type bobines du dispositif selon un mode de réalisation de l'invention, et dans l'encadré A, une vue agrandie en coupe, d'une partie dudit dispositif, [Fig. 4] la figure 4 est une vue schématique en perspective de la culasse et des composants bobinés du type bobines du dispositif selon un autre mode de réalisation de l'invention,
[Fig. 5] la figure 5 est une vue schématique d'une configuration comportant le dispositif selon l'invention,
[Fig. 6A-6B] les figures 6A et 6B sont des vues en coupe de composants bobinés intégrés dans une culasse selon un mode de réalisation l'invention, respectivement sans et avec un entrefer radial externe,
[Fig. 7A-7D] les figures 7A à 7D sont des vues en coupe de composants bobinés intégrés dans une culasse selon un mode de réalisation de l'invention, respectivement sans entrefer, avec un entrefer circonférentiel interne, avec des entrefers circonférentiels externes et avec des entrefers radiaux externes,
[Fig. 8A-8E] les figures 8A à 8E sont des vues en coupe de composants bobinés intégrés dans une culasse selon un mode de réalisation de l'invention, respectivement sans entrefer, avec un entrefer radial externe, avec un entrefer circonférentiel interne, avec des entrefers radiaux externes et avec des entrefers circonférentiels externes,
[Fig. 9] la figure 9 est une vue en coupe de composants bobinés intégrés dans une culasse selon un mode de réalisation de l'invention,
[Fig. 10A-10C] les figures 10A à 10C sont des vues en coupe de composants bobinés intégrés dans une culasse selon un mode de réalisation de l'invention, respectivement sans entrefer, avec des entrefers radiaux externes et avec des entrefers circonférentiels externes,
[Fig. 11A-11C] les figures 11A à 11C sont des vues en coupe de composants bobinés intégrés dans une culasse selon un mode de réalisation de l'invention, respectivement sans entrefer, avec des entrefers radiaux externes et avec des entrefers circonférentiels externes, et
[Fig. 12] la figure 12 est une vue en coupe de composants bobinés intégrés dans une culasse selon un mode de réalisation de l'invention.
Les éléments ayant les mêmes fonctions dans les différentes mises en œuvre ont les mêmes références dans les figures. DESCRIPTION DES MODES DE RÉALISATION
Les figures 1 à 4 représentent des dispositifs électrotechniques pour aéronef selon l'invention.
Un dispositif 10 comporte un boîtier 12 annulaire s'étendant autour d'un axe noté X sur les figures 1 à 4, présentant une surface S12 radialement interne et comprenant des moyens de refroidissement. Le boîtier 12 peut être un carter. Sur les figures 1 et 2, les moyens de refroidissement ont la forme d'ailettes 14 qui s'étendent radialement depuis une surface S14 radialement externe du boîtier 12.
Le dispositif comporte également un circuit magnétique formé par un empilement de tôles laminées. Les tôles laminées formant le circuit magnétique peuvent être des tôles magnétiques isolées, par un vernis ou par un traitement spécifique selon le matériau utilisé, de manière à réaliser le circuit magnétique feuilleté d'une seule pièce. Le circuit magnétique est donc découpé dans des tôles laminées en une seule partie. Il n'y a donc pas d'assemblage de plusieurs parties pour former le circuit magnétique. Ceci permet d'éviter des problèmes d'assemblage et de garantir les paramètres électriques du composant. Le circuit magnétique peut être formé par un empilement de tôles laminées à base de Fer-Silicium, de Fer-Nickel, ou de Fer-Cobalt. L'épaisseur des tôles laminées est choisie suivant les pertes par courant de Foucault envisagées contribuant au rendement du composant. À noter que la modification de l'épaisseur du circuit magnétique est un facteur qui permet d'adapter les caractéristiques du composant (inductances, tensions..) sans changer sa définition (tôles, section conducteurs...).
Le circuit magnétique est composé d'une culasse 16 annulaire s'étendant autour de l'axe X et qui présente une surface S16 radialement interne. Le circuit magnétique et la culasse sont donc formés en une pièce. La culasse 16 est agencée sur la surface S12 du boîtier 12.
La culasse 16 peut être collée, au moyen d'une pâte thermique ou d'une colle, au boîtier 12, et plus précisément sur la surface S12 du boîtier 12. En variante et de préférence, la culasse 16 est fixée par dilatation thermique, c'est-à-dire emmanchée à chaud sur le boîtier 12. Le boîtier 12 est chauffé, tandis que la culasse 16 est refroidie. Ensuite, la culasse 16 est insérée dans le boîtier 12 et vient se serrer contre la surface S12 du boîtier 12 par dilatation thermique. Ceci permet avantageusement un bon contact thermique entre la culasse et le boîtier, et donc un bon échange thermique entre la culasse et le boîtier, et de ce fait un meilleur refroidissement du dispositif. Ceci permet également d'éviter l'utilisation de pièces supplémentaires pour la fixation de la culasse au boîtier. La culasse 16 a une fonction de dissipation thermique par conduction vers le boîtier 12. Le contact entre la culasse 16 et le boîtier 12 permet de faciliter la dissipation thermique des pertes du dispositif 10.
Bien que non représenté, les moyens de refroidissement peuvent comprendre des orifices réalisés dans la culasse 16 et des moyens de ventilation agencés de sorte à faire circuler un flux d'air ou un fluide à travers ces orifices.
Ainsi, le dispositif peut être refroidit par convection naturelle, ou par convection forcée avec de l'air circulant à l'intérieur et/ou à l'extérieur du dispositif 10, ou encore par convection forcée avec un fluide circulant dans le boîtier 12 ou dans la culasse 16.
Le dispositif 10 comporte également un ou des composants bobinés 18 basse fréquence. Les composants bobinés 18 peuvent être du type transformateur de puissance, comme représenté sur la figure 1, et/ou du type inductance, comme représenté sur les figures 2 à 4. Le dispositif 10 peut comporter uniquement des transformateurs de puissance, ou uniquement des inductances, ou encore à la fois des transformateurs de puissance et des inductances. Sur la figure 1, le composant bobiné 18 est intégré sur toute la surface S16 de la culasse 16, tandis que sur la figure 2, les six composants bobinés 18 sont intégrés sur une partie seulement de la surface S16 de la culasse 16. Bien entendu, le dispositif 10 peut comporter un nombre différent de composants bobinés 18, qui peuvent être agencés différemment sur la surface S16 de la culasse 16.
En particulier, la culasse 16 sert de structure aux composants bobinés, et permet la fixation de ceux-ci au boîtier 12. Les composants bobinés 18 sont ainsi confinés dans la partie radialement interne de la culasse 16, et donc dans le boîtier 12. La culasse permet avantageusement de pouvoir adapter le nombre de composants bobinés en fonction du besoin du dispositif et de l'intégration du dispositif à son environnement. Le bobinage d'un composant bobiné 18 peut être réalisé par du fil rond émaillé en cuivre, en aluminium ou en alliage composite, éventuellement torsadé, ou bien par un méplat de cuivre ou d'aluminium, ou encore par un feuillard de cuivre ou d'aluminium isolé. Ce bobinage, ainsi que le circuit magnétique, peuvent être imprégnés et/ou encapsulés.
Le circuit magnétique permet de canaliser le flux magnétique des composants bobinés 18.
La culasse 16 peut comporter des excroissances 20 s'étendant radialement depuis la surface S16. Une excroissance 20 peut comporter au moins une dent centrale 21a entourée de deux dents extérieures 21b. En alternative, une excroissance 20 peut comporter uniquement une ou une pluralité de dents centrales 21a, ou uniquement deux dents extérieures 21b. Comme représenté dans l'encadré A de la figure 3, une bobinel8 est intégrée sur une excroissance 20. Une ou des bobines intégrées à son circuit magnétique forment un composant bobiné. Cette bobine est enroulée autour de la dent centrale 21a, et est entourée des deux dents extérieures 21b. La dent centrale 21a peut être reliée circonférentiellement à son extrémité radiale aux dents extérieures 21b par une portion de liaison 23.
Comme représenté dans l'encadré A de la figure 3, une bobine 18 peut être isolée de la culasse 16, et donc de son circuit magnétique, par un matériau isolant électriquement 22, par exemple un matériau du type Kapton ® ou de la résine époxy.
Comme représenté dans l'encadré A de la figure 3, l'excroissance 20 peut être pourvue d'entrefers 24 radiaux. Ces entrefers 24 s'étendent dans la direction radialement interne, c'est-à-dire depuis l'excroissance 20 et en direction de l'axe X. Ces entrefers 24 radiaux sont agencés sur la portion de liaison 23 reliant la dent centrale 21a et les dents extérieures 21b.
La culasse 16 peut comporter des nervures 26 de fixation au boîtier 12, comme représenté sur la figure 4. Ces nervures 26, ou décrochements radiaux, de la culasse 16 s'étendent longitudinalement, c'est-à-dire selon l'axe X, le long de la culasse 16. Ces nervures 26 permettent de faciliter l'intégration et d'améliorer le refroidissement du dispositif 10. En effet, grâce à ce positionnement des nervures 26, la fixation de la culasse 16 au boîtier 12 ne perturbe pas le flux d'air de refroidissement.
La figure 5 représente un exemple de configuration qui comporte un dispositif selon l'invention. Le dispositif comporte six bobines Lcll, Lcl2, Lcl3, Lc21, Lc22 et Lc23 non couplées qui sont configurées pour paralléliser deux onduleurs 30, 32 pour commander un actionneur électrique 34. Les bobines Lcll-Lc23 sont connectées à l'actionneur 34 via un connecteur 48 et des câbles de puissance 50a, 50b, 50c. Les bobines Lcll-Lc23 sont des bobines interphases. Ces bobines sont configurées pour limiter le courant de défaut entre chaque même phase des onduleurs 30, 32 et pour limiter les surtensions aux bornes de l'actionneur électrique 34. Les bobines Lcll-Lc23de l'encadré B de la figure 5 correspondent aux bobines 18 de la figure 3. Les onduleurs 30, 32 peuvent être des convertisseurs de puissance continu-alternatif (DC-AC, acronyme de l'expression anglais « Direct Current - Alternative Current »). Les onduleurs 30, 32 forment une partie électronique de puissance 46, qui est connectée à une carte électronique de contrôle 36, qui forme une partie électronique de commande. La carte électronique de contrôle 36 est connectée, via un connecteur 38, à un bus de communication 40. Les onduleurs 30, 32 sont connectés, via un connecteur 42, à un bus à courant continu 44. L'ensemble des bobines Lcll-Lc23, de l'électronique de puissance 46 et de l'électronique de commande 36 forment l'équipement 52 qui est agencé dans la culasse 16, et donc dans le boîtier 12.
Comme représenté sur les figures 6A et 6B, le dispositif peut comprendre deux bobines 54a, 54b connectées en série et ayant une direction de flux identique. Ces bobines sont des composants monophasés qui permettant d'assurer des fonctions de filtrage, lissage ou de parallélisation. Les bobines 54a, 54b sont intégrées sur une excroissance 20 de la culasse 16. Sur ces figures, l'excroissance 20 comporte uniquement deux dents extérieures 21b, qui sont reliées entre elles par une portion de liaison 23 à leur extrémité radiale. Chaque bobine 54a, 54b est enroulée autour d'une dent extérieure 21b. Ces bobines 54a, 54b ne sont pas entièrement entourées par l'excroissance 20. Ces bobines peuvent être réalisées sur une ou plusieurs excroissances 20 de la culasse 16 afin de minimiser leur hauteur.
Afin de minimiser le ratio volume/masse du circuit magnétique et de réduire la dépendance aux variations de propriétés magnétiques du matériau utilisé pour la réalisation du circuit magnétique, un entrefer 24 radial peut être ajouté, comme présenté sur la figure 7B. Ainsi, l'excroissance 20 est munie d'un entrefer 24 qui s'étend dans une direction radialement interne. L'entrefer 24 radial est agencé sur la portion de liaison 23 des dents extérieures 21b de l'excroissance 20.
Comme représenté sur les figures 7A à 7D, le dispositif peut comprendre une bobine 56 non couplée. Cette bobine 56 est intégrée dans une excroissance 20 de la culasse, et plus précisément enroulée autour de la dent centrale 21a de l'excroissance 20. Cette bobine 56 est entourée des deux dents extérieures 21b de l'excroissance 20. Ces dents extérieures forment des branches de retour sur la bobine 56. Ceci permet de réduire les problèmes de CEM, et en particulier les émissions rayonnées qui sont induites par les flux de fuites des bobines, et qui peuvent venir perturber les cartes électroniques, capteurs et autres composants bobinés situés à proximité. Ces dents extérieures permettent de canaliser une partie de ce flux magnétique.
Le circuit magnétique de la figure 7A ne comporte pas d'entrefer, tandis que les circuits magnétiques des figures 7B à 7D comportent un ou des entrefers 24.
Comme représenté sur la figure 7B, l'entrefer 24 circonférentiel peut être positionné sur la dent centrale 21a. Ceci permet de réduire les perturbations entre les composants bobinés.
Comme représenté sur la figure 7C, les entrefers 24 circonférentiels peuvent être positionnés sur les dents extérieures 21b. Comme représenté sur la figure 7D, les entrefers 24 radiaux peuvent être positionnés sur les dents extérieures 21b, et plus précisément sur la portion de liaison 23 entre les dents extérieures 21b. La position des entrefers sur les dents extérieures permet avantageusement de faciliter l'opération de bobinage. Comme représenté sur les figures 8A à 8E, le dispositif peut comprendre deux bobines 58a, 58b bobinées afin d'être en opposition de flux. Les bobines 58a, 58b sont entrelacées ou couplées. En particulier, les composants sont des inductances interphases couplées ou de mode commun. Les bobines 58a, 58b sont intégrées dans une excroissance 20 de la culasse 16.
Sur les figures 8A et 8B, l'excroissance 20 comporte uniquement deux dents extérieures 21b, qui sont reliées entre elles par une portion de liaison 23 à leur extrémité radiale. Chaque bobine 58a, 58b est enroulée autour d'une dent extérieure 21b. Ces bobines 58a, 58b ne sont pas entièrement entourées par l'excroissance 20. Comme représenté sur la figure 8B, un entrefer 24 radial peut être positionné sur la portion de liaison 23 entre les dents extérieures 21b.
Cependant, avec cette disposition topologie, le flux magnétique résultant se referme dans l'air, ce qui peut provoquer des courants induits dans les éléments métalliques environnant et venir perturber des cartes électroniques ou des composants bobinés à proximité.
Sur la figure 8C, l'excroissance 20 comporte deux dents extérieures 21b, qui sont reliées entre elles par une portion de liaison 23 à leur extrémité radiale. Comme précédemment, chaque bobine 58a, 58b est enroulée autour d'une dent extérieure 21b. Ces bobines 58a, 58b ne sont donc pas entièrement entourées par l'excroissance 20. Une dent supplémentaire, ici une dent centrale 21a, est ajoutée par rapport aux figures 8A et 8B afin de canaliser ce flux résultant et maîtriser l'inductance de fuite du composant. Les bobines 58a, 58b sont séparées par la dent centrale 21a.
Sur les figures 8D et 8E, l'excroissance 20 comporte deux dents centrales 21a, qui sont reliées entre elles par une portion de liaison 23 à leur extrémité radiale. Chaque bobine 58a, 58b est enroulée autour d'une dent centrale 21a. Des dents supplémentaires, ici deux dents extérieures 21b, sont ajoutées par rapport aux figures 8A et 8B afin de canaliser ce flux résultant et maîtriser l'inductance de fuite du composant. Chaque bobine 58a, 58b est entourée par une dent extérieure 21b et par l'autre bobine 58b, 58a. Ainsi, ces bobines 58a, 58b sont entièrement entourées. Comme représenté sur la figure 8C, un entrefer 24 circonférentiel peut être positionné sur la dent centrale 21a. Ceci permet de canaliser le flux magnétique dans la dent centrale 21a, qui a une réluctance équivalente élevée par rapport à la réluctance principale, de sorte que l'inductance mutuelle est la plus élevée possible (gestion du mode différentiel).
Comme représenté sur la figure 8D, les entrefers 24 radiaux peuvent être positionnés sur les dents extérieures 21b, et plus précisément sur la portion de liaison 23 entre les dents extérieures 21b. Comme représenté sur la figure 8E, les entrefers 24 circonférentiels peuvent être positionnés sur les dents extérieures 21b. Ceci permet avantageusement d'avoir une version cuirassée, en canalisant le flux magnétique résultant dans les dents extérieures 21b.
Afin de réaliser un filtrage en mode commun et différentiel dans un système multi- phase, les composants bobinés peuvent être des bobines multi-phases couplées. La figure 9 présente un exemple de réalisation d'un dispositif comprenant des bobines couplées triphasées réalisées par bobinage concentrique. Sur cette figure, un ensemble de bobines 60 est intégré sur toute la surface S16 de la culasse 16. Ces bobines 60 peuvent être connectées en parallèle ou en série. Les bobines 60 sont agencées autour de dents 21 de l'excroissance 20 de la culasse 16.
Un transformateur, ou un autotransformateur, de puissance multi-phases à flux libre peut être formé par une pluralité de bobines. Les bobines peuvent être connectées en série ou en parallèle respectivement suivant la fonctionnalité du composant (connexion en étoile, en triangle, en zigzag..). Le nombre de bobines dépend de la fonction souhaitée. Les figures 10A à 10C représentent un exemple de réalisation d'un dispositif comprenant un transformateur de puissance multi-phases formé par des bobines 62a, 62b, 63a, 63b, 64a, 64b triphasées de type cuirassée, les bobines étant intégrées localement sur une partie seulement de la surface S16 de la culasse 16. Les bobines 62a, 63a, 64a sont des bobines primaires et les bobines 62b, 63b, 64b sont des bobines secondaires. Les bobines 62a-64b peuvent avoir une isolation galvanique (i.e. il n'y a pas de connexion entre les bobines de chaque phase).
Sur les figures 10A à 10B, l'excroissance 20 comporte trois dents centrales 21a-l, 21a-2, 21a-3 et deux dents extérieures 21b, qui sont reliées entre elles par une portion de liaison 23 à leur extrémité radiale. Les bobines 62a-62b sont enroulées autour d'une première dent 21a-l, tandis que les bobines 63a-63b sont enroulées autour d'une deuxième dent 21a-2 et les bobines 64a-64b autour d'une troisième dent 21a-3. Plus précisément, les bobines 62a-62b sont concentriques, la bobine 62b étant enroulée autour de la bobine 62a. De même, les bobines 63a-63b sont concentriques, la bobine 63b étant enroulée autour de la bobine 63a. De même, les bobines 64a-64b sont concentriques, la bobine 64b étant enroulée autour de la bobine 64a. La bobine 62b est entourée par une dent extérieure 21b-l et par la deuxième dent centrale 21a-2. La bobine 64b est entourée par une dent extérieure 21b-2 et par la deuxième dent centrale 21a-2. Ainsi, les bobines 62a-64b sont entièrement entourées. Sur ces figures, il y a ainsi deux bobines intégrées autour de chaque dent 21a-l, 21a-2 et 21a-3, une pour la partie primaire, et une pour la partie secondaire.
Le circuit magnétique de la figure 10A ne comporte pas d'entrefer, tandis que les circuits magnétiques des figures 10B et 10C comportent des entrefers 24.
Comme représenté sur la figure 10B, les entrefers 24 radiaux peuvent être positionnés sur les dents extérieures 21b, et plus précisément sur la portion de liaison 23 entre les dents extérieures 21b. Ceci permet avantageusement d'augmenter les fuites magnétiques et les inductances propres.
Comme représenté sur la figure 10C, les entrefers 24 circonférentiels peuvent être positionnés sur les dents centrales 21a-l, 21a-2, 21a-3. Ceci permet avantageusement de limiter le flux magnétique. Lorsque les entrefers sont positionnés sur les dents extérieures, ceci permet d'augmenter les inductances magnétisantes.
Les entrefers permettent d'ajuster au mieux les paramètres du transformateur de puissance, et de réduire l'impact du matériau composant le circuit magnétique.
Selon les contraintes d'intégration, le nombre de dents ou de bobines par phase peut être augmenté. De même, le motif développé sur l'ensemble de la culasse peut être modifié, en connectant chaque bobine de même phase en série ou en parallèle pour réduire l'épaisseur du dispositif et améliorer le refroidissement.
Par exemple, les figures 11A à 11C représentent respectivement les figures 10A à 10C, avec une répétition du transformateur sur toute la surface S16 de la culasse 16. Les bobines primaires 62a, 63a, 64a et les bobines secondaires 62b, 63b, 64b sont intégrées sur toute la circonférence de la surface S16 de la culasse 16. Cette configuration permet avantageusement de maximiser l'espace central de la culasse 16.
Un transformateur, ou un autotransformateur multi-phases à flux forcé peut être implémenté localement sur une partie seulement de la surface S16 de la culasse 16, comme présenté en figure 12. Le transformateur comporte six composants bobinés 66a, 66b, 68a, 68b, 70a et 70b.
Sur la figure 12, l'excroissance 20 comporte une dent centrale 21a et deux dents extérieures 21b. Les bobines 66a-66b sont enroulées autour d'une première dent extérieure 21b, tandis que les bobines 68a-68b sont enroulées autour de la dent centrale 21a, et que les bobines 70a-70b sont enroulées autour d'une seconde dent extérieure 21b. Plus précisément, les bobines 66a-66b sont concentriques, la bobine 66b étant enroulée autour de la bobine 66a. De même, les bobines 68a-68b sont concentriques, la bobine 68b étant enroulée autour de la bobine 68a ; et les bobines 70a-70b sont concentriques, la bobine 70b étant enroulée autour de la bobine 70a. Les bobines 66b et 70b ne sont pas entièrement entourées.
Le circuit magnétique de la figure 12 ne comporte pas d'entrefer. Bien entendu, ce circuit magnétique peut comporter un entrefer sur l'excroissance 20, comme décrit précédemment pour les figures 10B, 10C, 11B et 11C.
De même que précédemment, pour des contraintes d'intégration, le nombre de dents ou de bobines par phase peut être augmenté ou le motif développé sur l'ensemble de la culasse peut être modifié en connectant chaque bobine de même phase en série ou en parallèle de sorte à réduire l'épaisseur du dispositif.

Claims

REVENDICATIONS
1. Dispositif (10) électrotechnique pour un aéronef comprenant : un boîtier (12) annulaire présentant une surface radialement interne (S12), un circuit magnétique formé par un empilement de tôles laminées et composé d'une culasse (16) annulaire, ladite culasse étant agencée sur la surface radialement interne dudit boîtier, au moins une partie d'une surface radialement externe de ladite culasse annulaire étant en contact avec la surface radialement interne du boîtier et ladite culasse présentant une surface radialement interne (S16), au moins un composant bobiné (18) basse fréquence, ledit composant bobiné étant intégré sur au moins une partie de la surface radialement interne de ladite culasse.
2. Dispositif (10) électrotechnique selon la revendication 1, dans lequel la culasse (16) comporte au moins une excroissance (20) s'étendant radialement depuis la surface radialement interne (S16) de ladite culasse, ladite excroissance comporte au moins une première dent (21a), au moins une bobine (18) étant intégrée sur ladite excroissance autour de ladite première dent.
3. Dispositif (10) électrotechnique selon la revendication 2, dans lequel ladite excroissance (20) comporte deux secondes dents (21b) entourant ladite première dent (21a), la au moins une bobine (18) étant intégrée sur l'excroissance entre lesdites secondes dents.
4. Dispositif (10) électrotechnique selon l'une des revendications 2 ou 3, comprenant au moins deux composants bobinés (18) basse fréquence, ladite excroissance (20) comportant deux premières dents, lesdits composants bobinés étant des bobines (54a, 54b ; 58a, 58b) connectées en série, chaque bobine étant enroulée autour d'une première dent.
5. Dispositif (10) électrotechnique selon l'une des revendications 2 ou 3, comprenant une pluralité de composants bobinés (18) basse fréquence, ladite excroissance (20) comportant une pluralité de premières dents, lesdits composants bobinés étant des bobines (60) couplées multi-phases, chaque bobine étant enroulée autour d'une première dent, et lesdites bobines étant intégrées sur toute la surface radialement interne (S16) de la culasse (16).
6. Dispositif (10) électrotechnique selon l'une des revendications 2 ou 3, dans lequel le composant bobiné (18) est un transformateur ou un autotransformateur de puissance multi-phases formé par une pluralité de bobines (62a, 62b, 62c, 64a, 64b, 64c), ladite excroissance (20) comportant une pluralité de premières dents (21a), chaque bobine étant enroulée autour d'une première dent.
7. Dispositif (10) électrotechnique selon l'une des revendications 1 à 6, dans lequel le circuit magnétique comporte au moins un entrefer (24).
8. Dispositif (10) électrotechnique selon l'une des revendications 1 à 7, dans lequel le ou chaque composant bobiné (18) est isolé de son circuit magnétique par un matériau isolant électriquement (22).
9. Dispositif (10) électrotechnique selon l'une des revendications 1 à 8, dans lequel le boîtier (12) et/ou la culasse (16) est muni de moyens de refroidissement (14).
10. Dispositif (10) électrotechnique selon la revendication 9, dans lequel les moyens de refroidissement comprennent au moins l'un des moyens suivants : des ailettes (14) s'étendant radialement ou axialement depuis une surface radialement externe du boîtier (12) et/ou de la culasse (16), et/ou des canaux de circulation de fluide, dans lesquels circule un fluide sous pression, et/ou des moyens de pulvérisation d'un fluide, et/ou des caloducs.
11. Aéronef comportant au moins un dispositif (10) électrotechnique selon l'une des revendications 1 à 10.
PCT/FR2020/052347 2019-12-11 2020-12-08 Dispositif électrotechnique pour un aéronef comprenant des composants bobinés basse fréquence WO2021116599A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/757,047 US20230008213A1 (en) 2019-12-11 2020-12-08 Electrotechnical device for an aircraft, comprising low-frequency coil components

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1914137A FR3104802B1 (fr) 2019-12-11 2019-12-11 Dispositif électrotechnique pour un aéronef comprenant des composants bobinés basse fréquence
FRFR1914137 2019-12-11

Publications (1)

Publication Number Publication Date
WO2021116599A1 true WO2021116599A1 (fr) 2021-06-17

Family

ID=69903403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2020/052347 WO2021116599A1 (fr) 2019-12-11 2020-12-08 Dispositif électrotechnique pour un aéronef comprenant des composants bobinés basse fréquence

Country Status (3)

Country Link
US (1) US20230008213A1 (fr)
FR (1) FR3104802B1 (fr)
WO (1) WO2021116599A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3036875A1 (fr) * 2015-05-27 2016-12-02 Valeo Equip Electr Moteur Machine electrique tournante munie d'un stator a culasse d'epaisseur optimisee
US20170345554A1 (en) 2014-11-25 2017-11-30 Aperam Basic module for magnetic core of an electrical transformer, magnetic core comprising said basic module, method for manufacturing said magnetic core, and transformer comprising said magnetic core
EP3330983A1 (fr) 2016-11-30 2018-06-06 Visedo Oy Dispositif inductif
EP3483905A1 (fr) 2017-11-10 2019-05-15 ABB Schweiz AG Bobine d'arrêt

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170345554A1 (en) 2014-11-25 2017-11-30 Aperam Basic module for magnetic core of an electrical transformer, magnetic core comprising said basic module, method for manufacturing said magnetic core, and transformer comprising said magnetic core
FR3036875A1 (fr) * 2015-05-27 2016-12-02 Valeo Equip Electr Moteur Machine electrique tournante munie d'un stator a culasse d'epaisseur optimisee
EP3330983A1 (fr) 2016-11-30 2018-06-06 Visedo Oy Dispositif inductif
EP3483905A1 (fr) 2017-11-10 2019-05-15 ABB Schweiz AG Bobine d'arrêt

Also Published As

Publication number Publication date
FR3104802A1 (fr) 2021-06-18
US20230008213A1 (en) 2023-01-12
FR3104802B1 (fr) 2022-09-09

Similar Documents

Publication Publication Date Title
US7471181B1 (en) Methods and apparatus for electromagnetic components
US8614617B2 (en) Reactor
FR2473804A1 (fr) Stator pour alternateur
FR2854990A1 (fr) Machine electrique rotative
WO2013005385A1 (fr) Elément d'enroulement de minimisation de bruit, boîtier d'onduleur et dispositif d'onduleur
FR3033930A1 (fr) Transformateur triphase pour redresseur dodecaphase
EP1841616A1 (fr) Transformateur pour vehicule moteur multicourant
JP2004153874A (ja) モータの固定子
WO2021116599A1 (fr) Dispositif électrotechnique pour un aéronef comprenant des composants bobinés basse fréquence
WO2021116632A1 (fr) Dispositif électrotechnique pour un aéronef
WO2021105593A1 (fr) Stator de machine électrique tournante avec bobinage asymétrique
KR20170113612A (ko) 절연층을 도포하기 위한 방법 및 전기 부품
WO2016193558A2 (fr) Armature électromagnétique pour machine électrique tournante et son procédé de fabrication
EP2452346A1 (fr) Composant inductif équipé d un refroidissement par liquide et procédé de fabrication dudit composant
WO2021099724A1 (fr) Dispositif d'induction electromagnetique
EP3198617B1 (fr) Noyau magnetique de transformateur tournant
US11387030B2 (en) Fluid cooled magnetic element
WO2016128520A1 (fr) Dispositif d'induction electromagnetique a configuration de circuit magnetique multiple
WO2023232437A1 (fr) Ensemble et transformateur électrique planaire
FR3081254A1 (fr) Bobine planaire et procede de fabrication d’une bobine planaire
SK98999A3 (en) A transformer/reactor and a method for manufacturing a transformer/reactor
WO2022136804A1 (fr) Machine électrique polyphasée intégrée
WO2021144541A1 (fr) Dispositif électromagnétique de conversion d'énergie
WO2022022896A1 (fr) Composant magnetique à flux de fuite controlé
JP3535308B2 (ja) パルス発生回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20842016

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20842016

Country of ref document: EP

Kind code of ref document: A1