WO2021116632A1 - Dispositif électrotechnique pour un aéronef - Google Patents

Dispositif électrotechnique pour un aéronef Download PDF

Info

Publication number
WO2021116632A1
WO2021116632A1 PCT/FR2020/052403 FR2020052403W WO2021116632A1 WO 2021116632 A1 WO2021116632 A1 WO 2021116632A1 FR 2020052403 W FR2020052403 W FR 2020052403W WO 2021116632 A1 WO2021116632 A1 WO 2021116632A1
Authority
WO
WIPO (PCT)
Prior art keywords
cylinder head
components
coils
housing
yoke
Prior art date
Application number
PCT/FR2020/052403
Other languages
English (en)
Inventor
Nicolas Bernard
Sonia DHOKKAR
Original Assignee
Safran Electrical & Power
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Safran Electrical & Power filed Critical Safran Electrical & Power
Priority to US17/783,985 priority Critical patent/US20230033439A1/en
Publication of WO2021116632A1 publication Critical patent/WO2021116632A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/26Fastening parts of the core together; Fastening or mounting the core on casing or support
    • H01F27/266Fastening or mounting the core on casing or support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/02Casings
    • H01F27/025Constructional details relating to cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/245Magnetic cores made from sheets, e.g. grain-oriented

Definitions

  • the invention relates to an electrotechnical device for an aircraft comprising low-frequency wound components, such as inductors or power transformers, which are integrated in a yoke fixed to a housing by a thermal interface.
  • low-frequency wound components such as inductors or power transformers
  • the state of the art includes in particular the documents US-A1-2015 / 365015, US-A1-2018/261371, US-A1-2016 / 261174 and EP-A1-3467 853.
  • electrotechnical equipment is used in the field of aeronautics.
  • a current problem with this equipment relates to their integration and the optimization of their mass and volume.
  • This electrotechnical equipment can include wound components, such as inductors or power transformers, which are integrated within a system such as, for example, with power and control electronics boards, an actuator, etc. It is then necessary to adapt the shape and minimize the volume of these wound components for their integration into the system. In addition, the integration of these wound components must be reliable and must make it possible to achieve the desired performance, but also must respect severe environmental constraints, such as thermal constraints, electromagnetic compatibility (EMC), or vibrations.
  • EMC electromagnetic compatibility
  • Conventional solutions for producing inductor type components are generally based on magnetic circuits based on ferrite or composite type materials. These components are produced in the form of bars assembled with one or more coiled supports, or in the form of one or more toroids which are then coiled directly onto the magnetic circuit (s).
  • this type of material generally has low mechanical strength and low conductivity. It is therefore necessary to reduce the losses by the Joule effect, or to set up a dedicated system to ensure heat dissipation and to maintain the wound components efficiently with regard to the vibration constraints encountered.
  • the manufacturing process for these components is generally complex.
  • the tolerances of the magnetic properties of these components are generally variable, of the order of 20% to 30%, which directly influences the uncertainty of the parameters of the components obtained during the validation tests in production and on the margins at take into account when designing electrotechnical equipment.
  • the conventional solutions for the production of power transformer type components are generally based on magnetic circuits produced either by blocks of sheets formed from several parts which are assembled by gluing, or by alternating stacking of plates, or by winding of tape. thin sheet.
  • these components are generally of parallelepiped shape and fit with difficulty into a casing or a casing of circular shape. Indeed, these components require specific parts, such as strapping of cut circuits, to ensure their maintenance and / or to achieve their fixing in their environment.
  • the object of the invention is to propose a solution making it possible to remedy at least some of these drawbacks.
  • the invention proposes to reduce the mass and the volume, and therefore the bulk, of these components, in order to facilitate their integration.
  • the invention relates to an electrotechnical device for an aircraft comprising: a housing having a surface, a magnetic circuit formed by a stack of laminated sheets and composed of a cylinder head, said cylinder head being fixed to the surface of said housing by a thermal interface, said yoke having a surface, at least one low frequency wound component, said wound component being fixed on at least part of the surface of said yoke by fixing means.
  • the terms “low frequency” correspond to a frequency less than or equal to 500 kHz depending on the materials used.
  • the device according to the invention makes it possible to ensure simple mechanical integration of the coiled components, which makes it possible to limit the parts for fixing and maintaining the components and the device.
  • the device according to the invention makes it possible to pool a plurality of components wound on the same structure, here the cylinder head.
  • the modularity of the device according to the invention allows said device to adapt to integration and environmental constraints (EMC, thermal or vibratory constraints).
  • EMC integration and environmental constraints
  • the method of manufacturing the magnetic circuit of the device according to the invention is simple, the steps of cutting (laser, water, wire, etc.) and of assembling the rolled sheets being controlled. This makes it possible to ensure a variation in the electrical parameters of the components within a reduced range, of the order of 5%.
  • the wound components are confined to the cylinder head, and therefore to the housing, with its environment (for example an electronic power and control part, actuator, generator, etc.) compactly arranged so as to minimize the volume of the coil. device and the length of the electrical connections between the wound components connected in series or in parallel, or with any other type of wiring in the case of power transformers (for example star, delta, zig zag ).
  • the cylinder head serves as a structure for the wound components, and allows them to be attached to the housing.
  • the cylinder head advantageously has a function of heat dissipation by conduction.
  • the contact between the cylinder head and the housing facilitates the heat dissipation of the iron losses and by the Joule effect of the device.
  • the magnetic circuit and the yoke are formed in one piece. This makes it possible to reduce the manufacturing costs and the mass of the device and to ensure optimum heat dissipation of losses to the outside.
  • the thermal interface between the magnetic circuit and the housing is a thermal paste, and the cylinder head is fixed to the housing.
  • the thermal interface comprises a phase change material.
  • the component can be glued directly to the case.
  • the glue performs the function of mechanical support and thermal conduction to the housing.
  • fixing brackets it is possible not to use fixing brackets, if the environment in question allows it.
  • the fixing means are configured to ensure maintenance of the components wound on the cylinder head along each axis.
  • the cylinder head being fixed to the housing by a thermal interface, the fastening means are adjusted to exert sufficient pressure to guarantee a predetermined thermal resistance.
  • the surface of the housing and / or the surface of the cylinder head is flat.
  • the surface of the housing and / or the surface of the cylinder head is concave.
  • the surface of the housing and / or the surface of the cylinder head is convex.
  • the magnetic circuit can be formed by a stack of rolled sheets based on Iron-Silicon, Iron-Nickel, or Iron-Cobalt.
  • the or each wound component can be a power transformer and / or an inductor.
  • the device can comprise a plurality of wound components, the wound components being only power transformers, or only inductors, or else both power transformers and inductors.
  • a coiled component may be produced by enamelled round wire of copper, aluminum or a composite alloy, optionally twisted.
  • a coiled component can be produced by a flat copper / aluminum, or by an insulated copper or aluminum strip.
  • the winding and / or the magnetic circuit of the wound component can be impregnated and / or encapsulated.
  • the cylinder head may include at least one protuberance extending radially, in particular perpendicularly, from the surface of said cylinder head, said protuberance comprises at least a first tooth, at least one coil being integrated on said protuberance around said first tooth.
  • a coiled component is formed by one or a plurality of coils integrated into their magnetic circuit.
  • the protuberance may include a plurality of first teeth, at least one coil being integrated around each first tooth.
  • the protuberance may include two second teeth surrounding the first tooth, at least one coil being integrated on the protuberance between said second teeth.
  • the protuberance may have a plurality of second teeth, two second teeth surrounding a first tooth, at least one coil being integrated between second teeth, around each first tooth.
  • the magnetic circuit can include at least one air gap.
  • An air gap advantageously makes it possible to control the magnetic flux in the wound components.
  • an air gap makes it possible to avoid depending on variations in the electrical properties of the material constituting the magnetic circuit.
  • the air gap (s) can make it possible to simplify the winding part, in the case, for example, of an objective of reducing manufacturing costs.
  • the magnetic circuit may include at least one radial air gap, that is to say extending in a radial direction on the surface of the cylinder head.
  • the magnetic circuit may include at least one longitudinal air gap, that is to say extending along the longitudinal axis of the surface of the cylinder head.
  • the wound components can be aligned on at least a part of the surface of the cylinder head so as to form a line of wound components, and each end of the line of wound components can be secured to the surface of the cylinder head by the fastening means.
  • the fixing means can be arranged only at the ends of the line of coiled components.
  • Each wound component can be fixed on at least part of the surface of the cylinder head by the fixing means, and the fixing means can be arranged between each wound component.
  • the cylinder head may not include a protuberance.
  • the wound components can be single-phase components making it possible to perform power electronics functions, such as filtering, smoothing, parallelization or energy transfer.
  • the device comprises two low-frequency wound components, said wound components being coils connected in series, and each coil being wound around a first tooth.
  • the coils can have an identical direction of flow. As a variant, the coils can be in opposition to flow.
  • the protuberance can be provided with an air gap, in order to minimize the volume / mass ratio of the magnetic circuit and reduce the sensitivity to variations in the magnetic properties of the material of the magnetic circuit.
  • inductors When the wound components include inductors, these inductors can be coupled or not coupled, and / or interlaced. Inductors can be connected in series or in parallel.
  • the device comprises a plurality of low frequency wound components, said wound components being multi-phase coupled coils, each coil being wound around a first tooth, and said coils being integrated over the entire surface of the coil. the cylinder head.
  • the wound component is a multi-phase power transformer or autotransformer formed by a plurality of single-phase coils, each coil being wound around a first tooth.
  • a coil of the distributed type can also be implemented.
  • the protuberance can be provided with a radial air gap, in order to increase the magnetic leaks and the specific inductances.
  • the protuberance can be provided with longitudinal air gaps, in order to limit the magnetic flux and to increase the magnetizing inductances.
  • the number of coils per phase depends on the integration constraints, and can vary so as to reduce the thickness of the device.
  • the or each wound component can be isolated from the yoke and its magnetic circuit by an electrically insulating material, for example a material of the Kapton® type or epoxy resin.
  • the housing and / or the cylinder head may be provided with cooling means.
  • the cooling means may comprise at least one of the following means: fins extending radially or axially from an external surface of the housing and / or of the cylinder head. fluid circulation channels, in which circulates a pressurized fluid, and / or means for spraying a fluid, and / or heat pipes (i.e. heat conductor elements).
  • the radial or axial fins make it possible to increase the exchange coefficients, in the case of cooling by forced air or by a fluid, or in the case of natural convection and bubbling in a fluid such as oil .
  • the fins can be treated with a specific treatment to increase the radiation, and therefore the exchange coefficient (radiation).
  • the pressurized fluid circulating in the fluid circulation channels can be oil or glycol water.
  • the means for spraying a fluid may be configured to spray oil or water under pressure.
  • the cooling means may also comprise orifices in the cylinder head and ventilation means arranged so as to circulate air through said orifices in the cylinder head.
  • ventilation means arranged so as to circulate air through said orifices in the cylinder head.
  • a similar system based on oil cooling can also be implemented using channels made in the housing and / or in the cylinder head.
  • the device can be cooled by natural convection (for low density), or by forced convection with air circulating inside and / or outside the device, or by forced convection with a circulating fluid. in the housing and / or in the cylinder head.
  • the invention also relates to an aircraft comprising at least one electrotechnical device according to the invention.
  • FIG. 1 is a very schematic view of the device according to the invention, comprising a coiled component, for example of the power transformer type
  • FIG. 2 is a very schematic view of the device according to the invention, comprising wound components, for example of the coil type,
  • FIG. 3 is a schematic perspective view of the yoke and coil-type wound components of the device according to one embodiment of the invention, and in Box A, an enlarged sectional view of a portion of said device,
  • FIG. 4 is a schematic view of a configuration comprising the device according to the invention
  • FIGS. 5A and 5B are sectional views of wound components integrated in a cylinder head according to one embodiment of the invention, respectively without and with an external radial air gap
  • FIGS. 6A to 6D are sectional views of wound components integrated into a cylinder head according to an embodiment of the invention, respectively without air gap, with an internal longitudinal air gap, with external longitudinal air gaps and with air gaps. external radials,
  • FIGS. 7A to 7E are sectional views of wound components integrated into a cylinder head according to an embodiment of the invention, respectively without air gap, with an external radial air gap, with an internal longitudinal air gap, with air gaps external radials and with external longitudinal air gaps,
  • FIGS. 8A to 8C are sectional views of wound components integrated into a cylinder head according to an embodiment of the invention, respectively without air gap, with external radial air gaps and with external longitudinal air gaps,
  • FIGS. 9A to 9C are sectional views of wound components integrated into a cylinder head according to an embodiment of the invention, respectively without air gap, with external radial air gaps and with external longitudinal air gaps, and
  • Figure 10 is a sectional view of wound components integrated into a cylinder head according to one embodiment of the invention.
  • FIGS. 1 to 3 represent electrotechnical devices for aircraft according to the invention.
  • a device 10 comprises a housing 12 having a surface S12 and comprising cooling means.
  • the cooling means have the form of fins 14 which extend radially from an outer surface S14 of the housing 12.
  • the housing 12 may be a housing.
  • the surface S12 of the housing 12 can be flat, as shown in Figures 1 and 2, or concave, or even convex.
  • the device also comprises a magnetic circuit formed by a stack of rolled sheets.
  • the laminated sheets forming the magnetic circuit can be insulated magnetic sheets, by a varnish or by a specific treatment depending on the material used, so as to produce the laminated magnetic circuit in a single piece.
  • the magnetic circuit is therefore cut from sheets rolled in a single part. There is therefore no assembly of several parts to form the magnetic circuit. This makes it possible to avoid assembly problems and to guarantee the electrical parameters of the component.
  • the magnetic circuit can be formed by a stack of rolled sheets based on Iron-Silicon, Iron-Nickel, or Iron-Cobalt.
  • the thickness of the rolled sheets is chosen according to the eddy current losses envisaged contributing to the efficiency of the component. Note that the modification of the thickness of the magnetic circuit is a factor which makes it possible to adapt the characteristics of the component (inductors, voltages, etc.) without changing its definition (sheets, conductor section, etc.).
  • the magnetic circuit is composed of a yoke 16 which has a surface S16.
  • the magnetic circuit and the yoke are therefore formed in one piece.
  • the yoke 16 is fixed to the surface S12 of the housing 12.
  • the surface S16 of the yoke 16 may be flat, as shown in Figures 1 to 3, or concave, as shown in Figures 5A to 10, or even convex.
  • a thermal interface 15 is positioned between the cylinder head 16 and the housing 12, then the component is secured via flanges positioned on the cylinder head 16.
  • the thermal interface 15 can be thermal paste.
  • the yoke 16 can be glued to the housing 12, and more precisely to the surface S12 of the housing 12.
  • the thermal interface 15 can comprise a phase change material. This advantageously allows good thermal contact between the cylinder head and the housing, and therefore good heat exchange between the cylinder head and the housing, and therefore better cooling of the device. This also makes it possible to avoid the use of additional parts for fixing the cylinder head to the housing.
  • the yoke 16 has a function of mechanical strength and heat dissipation by conduction towards the housing 12. The contact between the yoke 16 and the housing 12 makes it possible to facilitate the thermal dissipation of the losses by Joule effect of the device 10.
  • the cooling means may comprise orifices made in the cylinder head 16 and fluidic or ventilation means arranged so as to circulate a fluid or an air flow through these orifices.
  • the device can be cooled by natural convection, or by forced convection with air circulating inside and / or outside the device 10, or else by forced convection with a fluid circulating in the housing 12 or in the cylinder head 16.
  • the device 10 also comprises one or more coiled components 18 low frequency.
  • the wound components 18 may be of the power transformer type, as shown in Figure 1, and / or of the coil type, as shown in Figures 2 and 3.
  • the device 10 may include only power transformers, or only coils. , or both power transformers and coils.
  • the coiled component 18 is fixed over the entire surface S16 of the cylinder head 16, while in FIG. 2, the three coiled components 18 are attached to only a part of the surface S16 of the cylinder head 16.
  • the device 10 may have a different number of coiled components 18, which may be arranged differently on the surface S16 of the cylinder head 16.
  • the wound components are fixed to at least part of the surface S16 of the cylinder head 16 by fixing means 17.
  • the fixing means 17 are configured to ensure that the wound components 18 are held on the cylinder head 16 along each axis, c ' that is, in the direction of the axes defining the surface S16 of the cylinder head 16 and in the radial direction to the surface S16 of the cylinder head 16.
  • the wound components 18 can be aligned with the surface S16 of the yoke 16 so as to form a line of wound components 18.
  • Each end of the line of wound components 18 can be attached to the surface S16 of the cylinder head 16 by fixing means 17a.
  • each coiled component 18 can also be fixed on the surface S16 of the cylinder head 16 by fixing means 17b arranged between each coiled component 18.
  • the fixing flanges 17a, 17b have the form of retaining plates screwed onto the housing 12.
  • the cylinder head 16 being linked to the housing 12 by a thermal interface 15, the fixing means 17 are specified to exert sufficient pressure to guarantee the desired thermal resistance.
  • the yoke 16 serves as a structure for the wound components, and allows the maintenance and support of the attachment of the latter to the housing 12.
  • the yoke advantageously makes it possible to adapt the type and the number of wound components according to the need. of the device and the integration of the device into its environment.
  • the winding of a coiled component 18 can be produced by round enamelled copper, aluminum or composite alloy wire, optionally twisted, or else by a flat copper or aluminum, or even by a copper strip or d insulated aluminum.
  • the winding can be produced by a copper strip, following a copper annealing process, so as to allow good cohesion of the wound component.
  • the coil and / or the magnetic circuit can be impregnated and / or encapsulated.
  • the magnetic circuit makes it possible to channel the magnetic flux of the wound components 18.
  • the cylinder head 16 may include protuberances 20 extending radially from the surface S16.
  • a protuberance 20 may include at least one central tooth 21a surrounded by two outer teeth 21b.
  • a protuberance 20 may comprise only one or a plurality of central teeth 21a, or only two outer teeth 21b.
  • a coil 18 is integrated on a protuberance 20.
  • One or more coils integrated into their magnetic circuit form a coiled component.
  • This coil 18 is wound around the central tooth 21a, and is surrounded by the two outer teeth 21b.
  • the central tooth 21a can be connected at its radial end to the outer teeth 21b by a connecting portion 23 which extends longitudinally to the surface S16 of the cylinder head 16.
  • a coil 18 can be isolated from the yoke 16, and therefore from its magnetic circuit, by an electrically insulating material 22, for example a material of the Kapton ® type or epoxy resin. .
  • the protuberance 20 can be provided with radial air gaps 24. These gaps 24 extend in the radial direction on the surface S16 of the cylinder head 16. These radial gaps 24 are arranged on the connecting portion 23 connecting the central tooth 21a and the outer teeth 21b.
  • FIG. 4 represents an example of configuration which comprises a device according to the invention.
  • the device has six uncoupled Lcll, Lcl2, Lcl3, Lc21, Lc22 and Lc23 coils which are configured to parallelize two inverters 30, 32 to drive an electric actuator 34.
  • the Lcll-Lc23 coils are connected to the actuator 34 via a connector. 48 and power cables 50a, 50b, 50c.
  • Lcll-Lc23 coils are interphase coils. These coils are configured to limit the fault current between each same phase of the inverters 30, 32 and to limit the overvoltages at the terminals of the electric actuator 34.
  • the coils Lcll-Lc23 in box B of figure 4 correspond to the coils 18 of FIG. 3.
  • the inverters 30, 32 can be direct-to-alternating power converters (DC-AC, acronym of the English expression “Direct Current - Alternative Current”).
  • the inverters 30, 32 form an electronic power part 46, which is connected to an electronic control card 36, which forms an electronic control part.
  • the electronic control board 36 is connected, via a connector 38, to a communication bus 40.
  • the inverters 30, 32 are connected, via a connector 42, to a direct current bus 44.
  • the set of coils Lcll-Lc23 , the power electronics 46 and the control electronics 36 form the equipment 52 which is arranged in the cylinder head 16, and therefore in the housing 12, which can for example be easily integrated into a distribution cabinet.
  • the device may include two coils 54a, 54b connected in series and having an identical direction of flow. These coils are single-phase components which make it possible to perform filtering, smoothing, parallelization or energy transfer functions.
  • the coils 54a, 54b are integrated on a protuberance 20 of the cylinder head 16.
  • the protuberance 20 comprises only two outer teeth 21b, which are interconnected by a connecting portion 23 at their radial end.
  • Each coil 54a, 54b is wound around an outer tooth 21b.
  • These coils 54a, 54b are not entirely surrounded by the protuberance 20. These coils can be produced on one or more protuberances 20 of the yoke 16 in order to minimize their height.
  • a radial air gap 24 can be added, as shown in FIG. 5B.
  • the protuberance 20 is provided with an air gap 24 which extends in a radial direction to the surface S16 of the cylinder head 16.
  • the radial air gap 24 is arranged on the connecting portion 23 of the outer teeth 21b of the cylinder head. growth 20.
  • the device may include an uncoupled coil 56.
  • This coil 56 is integrated into a protuberance 20 of the cylinder head, and more precisely wound around the central tooth 21a of the protuberance 20.
  • This coil 56 is surrounded by the two outer teeth 21b of the protuberance 20.
  • These outer teeth form return branches on the coil 56. This makes it possible to reduce the EMC problems, and in particular the radiated emissions which are induced by the leakage flows from the coils, and which can disturb the electronic boards, sensors and other wound components located at the coil. proximity.
  • These outer teeth make it possible to channel part of this magnetic flux.
  • the magnetic circuit of FIG. 6A does not include an air gap, while the magnetic circuits of FIGS. 6B to 6D include one or more air gaps 24.
  • the longitudinal air gap 24 can be positioned on the central tooth 21a. This makes it possible to reduce the disturbances between the wound components. As shown in Figure 6C, the longitudinal air gaps 24 can be positioned on the outer teeth 21b. As shown in FIG. 6D, the radial air gaps 24 can be positioned on the outer teeth 21b, and more precisely on the connecting portion 23 between the outer teeth 21b. The position of the air gaps on the outer teeth advantageously makes it possible to facilitate the winding operation.
  • the device can comprise two coils 58a, 58b wound in order to be in opposition to the flow.
  • Coils 58a, 58b are interlaced or coupled.
  • the components are coupled interphase or common mode inductors which can make it possible to manage the differential mode in the case of the topologies presented in FIGS. 7C-7E.
  • the coils 58a, 58b are integrated in a protuberance 20 of the cylinder head 16.
  • the protuberance 20 comprises only two outer teeth 21b, which are interconnected by a connecting portion 23 at their radial end.
  • Each coil 58a, 58b is wound around an outer tooth 21b.
  • These coils 58a, 58b are not entirely surrounded by the protuberance 20.
  • a radial air gap 24 can be positioned on the connecting portion 23 between the outer teeth 21b.
  • the protuberance 20 comprises two outer teeth 21b, which are interconnected by a connecting portion 23 at their radial end.
  • each coil 58a, 58b is wound around an outer tooth 21b.
  • These coils 58a, 58b are therefore not entirely surrounded by the protuberance 20.
  • An additional tooth, here a central tooth 21a, is added with respect to FIGS. 7A and 7B in order to channel this resulting flow and to control the leakage inductance of the component.
  • the coils 58a, 58b are separated by the central tooth 21a.
  • the coils 58a, 58b are separated by the central tooth 21a.
  • the protuberance 20 comprises two central teeth 21a, which are interconnected by a connecting portion 23 at their radial end.
  • Each coil 58a, 58b is wound around a central tooth 21a. Additional teeth, here two outer teeth 21b, are added with respect to FIGS. 7A and 7B in order to channel this resulting flow and to control the leakage inductance of the component.
  • Each coil 58a, 58b is surrounded by an outer tooth 21b and by the other coil 58b, 58a. Thus, these coils 58a, 58b are completely surrounded.
  • a longitudinal air gap 24 can be positioned on the central tooth 21a. This makes it possible to channel the magnetic flux in the central tooth 21a, which has a high equivalent reluctance with respect to the main reluctance, so that the mutual inductance is as high as possible (management of the differential mode).
  • the radial air gaps 24 can be positioned on the outer teeth 21b, and more precisely on the connecting portion 23 between the outer teeth 21b.
  • the longitudinal air gaps 24 can be positioned on the outer teeth 21b. This advantageously makes it possible to have an armored version, by channeling the resulting magnetic flux into the outer teeth 21b.
  • a free-flow multi-phase power transformer, or autotransformer can be formed by a plurality of coils.
  • the coils can be connected according to the configuration adopted (star, delta, zig zag, etc.) and arranged in series or in parallel according to the needs linked in particular by the integration part. The number of coils depends on the desired function.
  • FIGS. 8A to 8C represent an exemplary embodiment of a device comprising a multi-phase power transformer formed by three-phase coils 62a, 62b, 63a, 63b, 64a, 64b of the armored type, the coils being integrated locally on a part only from the surface S16 of the cylinder head 16.
  • the coils 62a, 63a, 64a are primary coils and the coils 62b, 63b, 64b are secondary coils.
  • the transformer has galvanic isolation. In other words, there is no electrical connection between the primary part and the secondary part.
  • the protuberance 20 comprises three central teeth 21a-1, 21a-2, 21a-3 and two outer teeth 21b, which are interconnected by a connecting portion 23 at their radial end.
  • the coils 62a-62b are wound around a first tooth 21a-1, while the coils 63a-63b are wound around a second tooth 21a-2 and the coils 64a-64b around a third tooth 21a-3 . More precisely, the coils 62a-62b are concentric, the coil 62b being wound around the coil 62a, the latter itself being wound around the first tooth 21a-1.
  • the coils 63a-63b are concentric, the coil 63b being wound around the coil 63a, the latter itself being wound around the second first tooth 21a-2.
  • the coils 64a-64b are concentric, the coil 64b being wound around the coil 64a, the latter itself being wound around the third tooth 21a-3
  • the coil 62b is surrounded by an outer tooth 21b-1 and by the second central tooth 21a-2.
  • the coil 64b is surrounded by an outer tooth 21b-2 and by the second central tooth 21a-2.
  • the coils 62a-64b are completely surrounded. In these figures, there are thus two coils integrated around each tooth 21a-1, 21a-2 and 21a-3, one for the primary part, and one for the secondary part.
  • the magnetic circuit of FIG. 8A does not have an air gap, while the magnetic circuits of FIGS. 8B and 8C include air gaps 24.
  • the radial air gaps 24 can be positioned on the outer teeth 21b, and more precisely on the connecting portion 23 between the outer teeth 21b. This advantageously makes it possible to increase the magnetic leaks and the inherent inductances.
  • the longitudinal air gaps 24 can be positioned on the central teeth 21a-1, 21a-2, 21a-3. This advantageously makes it possible to limit the magnetic flux.
  • the air gaps are positioned on the outer teeth, this makes it possible to increase the magnetizing inductances.
  • the air gaps make it possible to adjust the parameters of the power transformer as well as possible, and to reduce the impact of the material composing the magnetic circuit.
  • the number of teeth or coils per phase can be increased.
  • the pattern developed on the entire yoke can be modified, by connecting each coil of the same phase in series or in parallel to reduce the thickness of the device.
  • Figures 9A to 9C respectively show Figures 8A to 8C, with a repeat of the transformer on the surface S16 of the yoke 16.
  • the primary coils 62a, 63a, 64a and the secondary coils 62b, 63b, 64b are integrated on the entire circumference of the surface S16 of the cylinder head 16. This configuration advantageously makes it possible to maximize the central space of the cylinder head 16.
  • a transformer, or a forced flux multi-phase autotransformer can be implemented locally on only part of the surface S16 of the yoke 16, as shown in figure 10.
  • the transformer has six wound components 66a, 66b, 68a, 68b, 70a and 70b.
  • the protuberance 20 comprises a central tooth 21a and two outer teeth 21b.
  • the coils 66a-66b are wound around a first outer tooth 21b, while the coils 68a-68b are wound around the central tooth 21a, and the coils 70a-70b are wound around a second outer tooth 21b. More precisely, the coils 66a-66b are concentric, the coil 66b being wound around the coil 66a. Likewise, the coils 68a-68b are concentric, the coil 68b being wound around the coil 68a; and the coils 70a-70b are concentric, the coil 70b being wound around the coil 70a. Coils 66b and 70b are not completely surrounded.
  • the magnetic circuit of FIG. 10 does not include an air gap.
  • this magnetic circuit can include an air gap on the protuberance 20, as described above for FIGS. 8B, 8C, 9B and 9C.
  • the number of teeth or coils per phase can be increased or the pattern developed over the whole of The yoke can be modified by connecting each coil of the same phase in series or in parallel so as to reduce the thickness of the device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Coils Of Transformers For General Uses (AREA)
  • Laminated Bodies (AREA)

Abstract

L'invention concerne un dispositif (10) électrotechnique pour un aéronef comprenant - un boîtier (12) présentant une surface (S12), - un circuit magnétique formé par un empilement de tôles laminées et composé d'une culasse (16), ladite culasse étant fixée sur la surface dudit boîtier par une interface thermique (15), ladite culasse présentant une surface (S16), - au moins un composant bobiné (18) basse fréquence, ledit composant bobiné étant fixé sur au moins une partie de la surface de ladite culasse par des moyens de fixation (17).

Description

DESCRIPTION
TITRE DE L'INVENTION : DISPOSITIF ÉLECTROTECHNIQUE POUR UN AÉRONEF
DOMAINE TECHNIQUE
L'invention concerne un dispositif électrotechnique pour un aéronef comportant des composants bobinés basse fréquence, tels que des inductances ou des transformateurs de puissance, qui sont intégrés dans une culasse fixée sur un boîtier par une interface thermique.
TECHNIQUE ANTÉRIEURE
L'état de la technique comprend notamment les documents US-A1-2015/365015, US- Al-2018/261371, US-A1-2016/261174 et EP-A1-3467 853.
De façon connue, des équipements électrotechniques sont utilisés dans le domaine de l'aéronautique.
Une problématique actuelle de ces équipements concerne leur intégration et l'optimisation de leur masse et de leur volume.
Ces équipements électrotechniques peuvent comporter des composants bobinés, tels que des inductances ou des transformateurs de puissance, qui sont intégrés au sein d'un système comme par exemple, avec des cartes d'électronique de puissance et de contrôle, un actionneur... Il est alors nécessaire d'adapter la forme et de minimiser le volume de ces composants bobinés pour leur intégration dans le système. En outre, l'intégration de ces composants bobinés doit être fiable et doit permettre d'atteindre les performances souhaitées, mais aussi doit respecter les contraintes environnementales sévères, telles que des contraintes thermiques, de compatibilité électromagnétique (CEM), ou de vibrations. Les solutions conventionnelles pour la réalisation de composants de type inductances sont généralement basées sur des circuits magnétiques à base de matériaux de type ferrite ou composite. Ces composants sont réalisés sous la forme de barres assemblées avec un ou des supports bobinés, ou sous la forme d'un ou plusieurs tores qui sont ensuite bobinés directement sur le ou les circuits magnétiques.
Toutefois, ces composants ne sont pas compacts, et ont donc une masse et un volume importants, et de ce fait, leur intégration dans un système est complexe.
De plus, ce type de matériau a généralement une résistance mécanique faible et une faible conductivité. Il est donc nécessaire de réduire les pertes par effet Joule, ou de mettre en place un système dédié pour assurer la dissipation thermique et le maintien des composants bobinés efficace au regard des contraintes de vibrations rencontrées. En outre, le procédé de fabrication de ces composants est généralement complexe. Ainsi, les tolérances des propriétés magnétiques de ces composants sont généralement variables, de l'ordre de 20 % à 30 %, ce qui influe directement sur l'incertitude des paramètres des composants obtenus lors des essais de validation en production et sur les marges à prendre en considération lors de la conception de l'équipement électrotechnique.
Les solutions conventionnelles pour la réalisation de composants de type transformateurs de puissance sont généralement basées sur des circuits magnétiques réalisés soit par des blocs de tôles formés de plusieurs parties qui sont assemblées par collage, soit par empilage alterné de plaques, ou par enroulement de ruban de tôle mince.
Toutefois, il existe généralement des entrefers résiduels, intrinsèques au mode de fabrication (notamment lors du collage de plusieurs parties formant les blocs de tôles), qui sont difficiles à maîtriser lors de la fabrication, et qui influent directement sur les caractéristiques du composant.
D'une manière générale, ces composants sont généralement de forme parallélépipédique et s'intégrent difficilement dans un boîtier ou un carter de forme circulaire. En effet, ces composants nécessitent des pièces spécifiques, tels que des cerclages de circuits coupés, pour assurer leur maintien et/ou pour réaliser leur fixation dans leur environnement.
L'invention a pour objectif de proposer une solution permettant de remédier à au moins certains de ces inconvénients.
En particulier, l'invention propose de réduire la masse et le volume, et donc l'encombrement, de ces composants, afin de faciliter leur intégration.
RÉSUMÉ DE L'INVENTION
À cet effet, l'invention a pour objet un dispositif électrotechnique pour un aéronef comprenant : un boîtier présentant une surface, un circuit magnétique formé par un empilement de tôles laminées et composé d'une culasse, ladite culasse étant fixée sur la surface dudit boîtier par une interface thermique, ladite culasse présentant une surface, au moins un composant bobiné basse fréquence, ledit composant bobiné étant fixé sur au moins une partie de la surface de ladite culasse par des moyens de fixation.
Selon l'invention, les termes « basse fréquence » correspondent à une fréquence inférieure ou égale à 500kHz suivant les matériaux utilisés.
Le dispositif selon l'invention permet d'assurer une intégration mécanique simple des composants bobinés, ce qui permet de limiter les pièces de fixation et de maintien des composants et du dispositif. En outre, le dispositif selon l'invention permet de mutualiser une pluralité de composants bobinés sur une même structure, ici la culasse. La modularité du dispositif selon l'invention permet audit dispositif de s'adapter aux contraintes d'intégration et environnementales (contraintes de CEM, thermiques ou vibratoires). De plus, le procédé de fabrication du circuit magnétique du dispositif selon l'invention est simple, les étapes de découpe (laser, eau, fil...) et d'assemblage des tôles laminées étant maîtrisées. Ceci permet d'assurer une variation des paramètres électriques des composants dans une plage réduite, de l'ordre de 5 %.
Les composants bobinés sont confinés sur la culasse, et donc sur le boîtier, avec son environnement (par exemple une partie électronique de puissance et de commande, actionneur, une génératrice...) disposée de manière compacte, de sorte à minimiser le volume du dispositif et la longueur des connexions électriques entre les composants bobinés connectés en série ou en parallèle, ou avec tout autre type de câblage dans le cas des transformateurs de puissance (par exemple en étoile, en triangle, en zig zag...). La culasse sert de structure aux composants bobinés, et permet la fixation de ceux-ci au boîtier.
La culasse a avantageusement une fonction de dissipation thermique par conduction. Le contact entre la culasse et le boîtier permet de faciliter la dissipation thermique des pertes fer et par effet Joule du dispositif.
Selon l'invention, le circuit magnétique et la culasse sont formés en une pièce. Ceci permet de réduire les coûts de fabrication, la masse du dispositif et d'assurer une dissipation thermique optimum des pertes vers l'extérieur.
Selon un mode de réalisation, l'interface thermique entre le circuit magnétique et le boîtier est une pâte thermique, et la culasse est fixée au boîtier.
Selon un autre mode de réalisation, l'interface thermique comporte un matériau à changement de phase.
Selon un autre mode de réalisation, le composant peut être collé directement sur le boîtier. La colle réalise la fonction de maintien mécanique et de conduction thermique vers le boîtier. Dans ce cas, il est possible ne pas utiliser des brides de fixation, si l'environnement considéré le permet. Avantageusement, les moyens de fixation sont configurés pour assurer un maintien des composants bobinés sur la culasse suivant chaque axe.
La culasse étant fixée au boîtier par une interface thermique, les moyens de fixation sont ajustés pour exercer une pression suffisante pour garantir une résistance thermique prédéterminée.
Selon un mode de réalisation, la surface du boîtier et/ou la surface de la culasse est plane.
Selon un autre mode de réalisation, la surface du boîtier et/ou la surface de la culasse est concave.
Selon un autre mode de réalisation, la surface du boîtier et/ou la surface de la culasse est convexe.
Le circuit magnétique peut être formé par un empilement de tôles laminées à base de Fer-Silicium, de Fer-Nickel, ou de Fer-Cobalt.
Le ou chaque composant bobiné peut être un transformateur de puissance et/ou une inductance. Le dispositif peut comprendre une pluralité de composants bobinés, les composants bobinés étant uniquement des transformateurs de puissance, ou uniquement des inductances, ou encore à la fois des transformateurs de puissance et des inductances.
Selon un mode de réalisation, un composant bobiné peut être réalisé par du fil rond émaillé en cuivre, en aluminium ou en alliage composite, éventuellement torsadé.
Selon un autre mode de réalisation, un composant bobiné peut être réalisé par un méplat de cuivre/aluminium, ou par un feuillard de cuivre ou d'aluminium isolé.
Afin de garantir une homogénéisation thermique, le bobinage et/ou le circuit magnétique du composant bobiné peuvent être imprégnés et/ou encapsulés.
La culasse peut comporter au moins une excroissance s'étendant radialement, notamment perpendiculairement, depuis la surface de ladite culasse, ladite excroissance comporte au moins une première dent, au moins une bobine étant intégrée sur ladite excroissance autour de ladite première dent. Selon l'invention, un composant bobiné est formé par une ou une pluralité de bobines intégrées à leur circuit magnétique.
L'excroissance peut comporter une pluralité de premières dents, au moins une bobine étant intégrée autour de chaque première dent.
L'excroissance peut comporter deux secondes dents entourant la première dent, au moins une bobine étant intégrée sur l'excroissance entre lesdites secondes dents. L'excroissance peut comporter une pluralité de secondes dents, deux secondes dents entourant une première dent, au moins une bobine étant intégrée entre des secondes dents, autour de chaque première dent.
Le circuit magnétique peut comporter au moins un entrefer. Un entrefer permet avantageusement de maîtriser le flux magnétique dans les composants bobinés. En effet, un entrefer permet d'éviter de dépendre des variations des propriétés électriques du matériau constituant le circuit magnétique. De plus, suivant son positionnement, le ou les entrefers peuvent permettre de simplifier la partie bobinage, dans le cas, par exemple, d'un objectif de réduction des coûts de fabrication.
Le circuit magnétique peut comporter au moins un entrefer radial, c'est-à-dire s'étendant dans une direction radiale à la surface de la culasse.
En variante, le circuit magnétique peut comporter au moins un entrefer longitudinal, c'est-à-dire s'étendant selon l'axe longitudinal de la surface de la culasse.
Les composants bobinés peuvent être alignés sur au moins une partie de la surface de la culasse de sorte à former une ligne de composants bobinés, et chaque extrémité de la ligne de composants bobinés peut être fixée sur la surface de la culasse par les moyens de fixation. Autrement dit, les moyens de fixation peuvent être agencés seulement aux extrémités de la ligne de composants bobinés. Chaque composant bobiné peut être fixé sur au moins une partie de la surface de la culasse par les moyens de fixation, et les moyens de fixation peuvent être agencés entre chaque composant bobiné. Dans ce cas, la culasse peut ne pas comprendre d'excroissance.
Les composants bobinés peuvent être des composants monophasés permettant d'assurer des fonctions d'électronique de puissance, telles que du filtrage, du lissage, de la parallélisation ou du transfert d'énergie.
Selon un mode de réalisation, le dispositif comprend deux composants bobinés basse fréquence, lesdits composants bobinés étant des bobines connectées en série, et chaque bobine étant enroulée autour d'une première dent.
Les bobines peuvent avoir une direction de flux identique. En variante, les bobines peuvent être en opposition de flux.
L'excroissance peut être pourvue d'un entrefer, afin de minimiser le ratio volume/masse du circuit magnétique et réduire la sensibilité aux variations des propriétés magnétiques du matériau du circuit magnétique.
Lorsque les composants bobinés comportent des inductances, ces inductances peuvent être couplées ou non couplées, et/ou entrelacées. Les inductances peuvent être connectées en série ou en parallèle.
Selon un autre mode de réalisation, le dispositif comprend une pluralité de composants bobinés basse fréquence, lesdits composants bobinés étant des bobines couplées multi- phases, chaque bobine étant enroulée autour d'une première dent, et lesdites bobines étant intégrées sur toute la surface de la culasse.
Selon un autre mode de réalisation, le composant bobiné est un transformateur ou un autotransformateur multi-phases de puissance formé par une pluralité de bobines monophasées, chaque bobine étant enroulée autour d'une première dent. Suivant le mode de fabrication adopté, un bobinage de type distribué peut être également mis en œuvre.
L'excroissance peut être pourvue d'un entrefer radial, afin d'augmenter les fuites magnétiques et les inductances propres.
L'excroissance peut être pourvue d'entrefers longitudinaux, afin de limiter le flux magnétique et d'augmenter les inductances magnétisantes.
Le nombre de bobine par phase dépend des contraintes d'intégration, et peut varier de sorte à réduire l'épaisseur du dispositif.
Le ou chaque composant bobiné peut être isolé de la culasse et de son circuit magnétique par un matériau isolant électriquement, par exemple un matériau du type Kapton ® ou de la résine époxy.
Le boîtier et/ou la culasse peuvent être munis de moyens de refroidissement.
Les moyens de refroidissement peuvent comprendre au moins l'un des moyens suivants : des ailettes s'étendant radialement ou axialement depuis une surface externe du boîtier et/ou de la culasse. des canaux de circulation de fluide, dans lesquels circule un fluide sous pression, et/ou des moyens de pulvérisation d'un fluide, et/ou des caloducs (i.e. des éléments de conducteurs de chaleur).
Les ailettes radiales ou axiales permettent d'augmenter les coefficients d'échange, dans le cas d'un refroidissement par air forcé ou par un fluide, ou dans le cas de la convection naturelle et du barbotage dans un fluide tel que de l'huile. Les ailettes peuvent être traitées par un traitement spécifique pour augmenter le rayonnement, et donc le coefficient d'échange (radiation).
Le fluide sous pression circulant dans les canaux de circulation de fluide peut être de l'huile ou de l'eau glycolée. Les moyens de pulvérisation d'un fluide peuvent être configurés pour pulvériser de l'huile ou de l'eau sous pression.
Les moyens de refroidissement peuvent également comprendre des orifices dans la culasse et des moyens de ventilation agencés de sorte à faire circuler de l'air à travers lesdits orifices de la culasse. Un système analogue basé sur un refroidissement à huile peut être également mis en œuvre à l'aide de canaux réalisés dans le boîtier et/ou dans la culasse.
Ainsi, le dispositif peut être refroidit par convection naturelle (pour de faibles densité), ou par convection forcée avec de l'air circulant à l'intérieur et/ou à l'extérieur du dispositif, ou encore par convection forcée avec un fluide circulant dans le boîtier et/ou dans la culasse.
L'invention concerne également un aéronef comportant au moins un dispositif électrotechnique selon l'invention.
BRÈVE DESCRIPTION DES DESSINS
La présente invention sera mieux comprise et d'autres détails, caractéristiques et avantages de la présente invention apparaîtront plus clairement à la lecture de la description d'un exemple non limitatif qui suit, en référence aux dessins annexés sur lesquels :
[Fig. 1] la figure 1 est une vue très schématique du dispositif selon l'invention, comprenant un composant bobiné, par exemple du type transformateur de puissance, [Fig. 2] la figure 2 est une vue très schématique du dispositif selon l'invention, comprenant des composants bobinés, par exemple du type bobines,
[Fig. 3] la figure 3 est une vue schématique en perspective de la culasse et des composants bobinés du type bobines du dispositif selon un mode de réalisation de l'invention, et dans l'encadré A, une vue agrandie en coupe, d'une partie dudit dispositif, [Fig. 4] la figure 4 est une vue schématique d'une configuration comportant le dispositif selon l'invention, [Fig. 5A-5B] les figures 5A et 5B sont des vues en coupe de composants bobinés intégrés dans une culasse selon un mode de réalisation l'invention, respectivement sans et avec un entrefer radial externe,
[Fig. 6A-6D] les figures 6A à 6D sont des vues en coupe de composants bobinés intégrés dans une culasse selon un mode de réalisation de l'invention, respectivement sans entrefer, avec un entrefer longitudinal interne, avec des entrefers longitudinaux externes et avec des entrefers radiaux externes,
[Fig. 7A-7E] les figures 7A à 7E sont des vues en coupe de composants bobinés intégrés dans une culasse selon un mode de réalisation de l'invention, respectivement sans entrefer, avec un entrefer radial externe, avec un entrefer longitudinal interne, avec des entrefers radiaux externes et avec des entrefers longitudinaux externes,
[Fig. 8A-8C] les figures 8A à 8C sont des vues en coupe de composants bobinés intégrés dans une culasse selon un mode de réalisation de l'invention, respectivement sans entrefer, avec des entrefers radiaux externes et avec des entrefers longitudinaux externes,
[Fig. 9A-9C] les figures 9A à 9C sont des vues en coupe de composants bobinés intégrés dans une culasse selon un mode de réalisation de l'invention, respectivement sans entrefer, avec des entrefers radiaux externes et avec des entrefers longitudinaux externes, et
[Fig. 10] la figure 10 est une vue en coupe de composants bobinés intégrés dans une culasse selon un mode de réalisation de l'invention.
Les éléments ayant les mêmes fonctions dans les différentes mises en œuvre ont les mêmes références dans les figures.
DESCRIPTION DES MODES DE RÉALISATION
Les figures 1 à 3 représentent des dispositifs électrotechniques pour aéronef selon l'invention.
Un dispositif 10 comporte un boîtier 12 présentant une surface S12 et comprenant des moyens de refroidissement. Sur les figures 1 et 2, les moyens de refroidissement ont la forme d'ailettes 14 qui s'étendent radialement depuis une surface S14 externe du boîtier 12. Le boîtier 12 peut être un carter. La surface S12 du boîtier 12 peut être plane, comme représentée sur les figures 1 et 2, ou concave, ou encore convexe.
Le dispositif comporte également un circuit magnétique formé par un empilement de tôles laminées. Les tôles laminées formant le circuit magnétique peuvent être des tôles magnétiques isolées, par un vernis ou par un traitement spécifique selon le matériau utilisé, de manière à réaliser le circuit magnétique feuilleté d'une seule pièce. Le circuit magnétique est donc découpé dans des tôles laminées en une seule partie. Il n'y a donc pas d'assemblage de plusieurs parties pour former le circuit magnétique. Ceci permet d'éviter des problèmes d'assemblage et de garantir les paramètres électriques du composant. Le circuit magnétique peut être formé par un empilement de tôles laminées à base de Fer-Silicium, de Fer-Nickel, ou de Fer-Cobalt. L'épaisseur des tôles laminées est choisie suivant les pertes par courant de Foucault envisagées contribuant au rendement du composant. A noter que la modification de l'épaisseur du circuit magnétique est un facteur qui permet d'adapter les caractéristiques du composant (inductances, tensions..) sans changer sa définition (tôles, section conducteurs...).
Le circuit magnétique est composé d'une culasse 16 qui présente une surface S16. Le circuit magnétique et la culasse sont donc formés en une pièce. La culasse 16 est fixée sur la surface S12 du boîtier 12. La surface S16 de la culasse 16 peut être plane, comme représentée sur les figures 1 à 3, ou concave, comme représentée sur les figures 5A à 10, ou encore convexe.
Une interface thermique 15 est positionnée entre la culasse 16 et le boîtier 12, puis le composant est fixé via des brides positionnées sur la culasse 16. L'interface thermique 15 peut être une pâte thermique. Ainsi, la culasse 16 peut être collée au boîtier 12, et plus précisément sur la surface S12 du boîtier 12. En variante, l'interface thermique 15 peut comporter un matériau à changement de phase. Ceci permet avantageusement un bon contact thermique entre la culasse et le boîtier, et donc un bon échange thermique entre la culasse et le boîtier, et de ce fait un meilleur refroidissement du dispositif. Ceci permet également d'éviter l'utilisation de pièces supplémentaires pour la fixation de la culasse au boîtier. La culasse 16 a une fonction de tenue mécanique et de dissipation thermique par conduction vers le boîtier 12. Le contact entre la culasse 16 et le boîtier 12 permet de faciliter la dissipation thermique des pertes par effet Joule du dispositif 10.
Bien que non représenté, les moyens de refroidissement peuvent comprendre des orifices réalisés dans la culasse 16 et des moyens fluidique ou de ventilation agencés de sorte à faire circuler un fluide ou un flux d'air à travers ces orifices.
Ainsi, le dispositif peut être refroidit par convection naturelle, ou par convection forcée avec de l'air circulant à l'intérieur et/ou à l'extérieur du dispositif 10, ou encore par convection forcée avec un fluide circulant dans le boîtier 12 ou dans la culasse 16.
Le dispositif 10 comporte également un ou des composants bobinés 18 basse fréquence. Les composants bobinés 18 peuvent être du type transformateur de puissance, comme représenté sur la figure 1, et/ou du type bobine, comme représenté sur les figures 2 et 3. Le dispositif 10 peut comporter uniquement des transformateurs de puissance, ou uniquement des bobines, ou encore à la fois des transformateurs de puissance et des bobines. Sur la figure 1, le composant bobiné 18 est fixé sur toute la surface S16 de la culasse 16, tandis que sur la figure 2, les trois composants bobinés 18 sont fixés sur une partie seulement de la surface S16 de la culasse 16. Bien entendu, le dispositif 10 peut comporter un nombre différent de composants bobinés 18, qui peuvent être agencés différemment sur la surface S16 de la culasse 16.
Les composants bobinés sont fixés sur au moins une partie de la surface S16 de la culasse 16 par des moyens de fixation 17. Les moyens de fixation 17 sont configurés pour assurer un maintien des composants bobinés 18 sur la culasse 16 suivant chaque axe, c'est-à- dire dans la direction des axes définissant la surface S16 de la culasse 16 et dans la direction radiale à la surface S16 de la culasse 16.
Comme représenté sur la figure 2, les composants bobinés 18 peuvent être alignés sur la surface S16 de la culasse 16 de sorte à former une ligne de composants bobinés 18. Chaque extrémité de la ligne de composants bobinés 18 peut être fixée sur la surface S16 de la culasse 16 par des moyens de fixation 17a. Comme représenté sur la figure 2, chaque composant bobiné 18 peut également être fixé sur la surface S16 de la culasse 16 par des moyens de fixation 17b agencés entre chaque composant bobiné 18.
Sur la figure 3, les brides de fixation 17a, 17b ont la forme de plaques de maintien vissées sur le boîtier 12.
La culasse 16 étant liée au boîtier 12 par une interface thermique 15, les moyens de fixation 17 sont spécifiés pour exercer une pression suffisante pour garantir la résistance thermique souhaitée.
En particulier, la culasse 16 sert de structure aux composants bobinés, et permet le maintien et le support de la fixation de ceux-ci au boîtier 12. La culasse permet avantageusement de pouvoir adapter le type et le nombre de composants bobinés en fonction du besoin du dispositif et de l'intégration du dispositif à son environnement.
Le bobinage d'un composant bobiné 18 peut être réalisé par du fil rond émaillé en cuivre, en aluminium ou en alliage composite, éventuellement torsadé, ou bien par un méplat de cuivre ou d'aluminium, ou encore par un feuillard de cuivre ou d'aluminium isolé. Le bobinage peut être réalisé par un feuillard de cuivre, suivant un processus de recuit du cuivre, de sorte à permettre une bonne cohésion du composant bobiné. Le bobinage et/ou le circuit magnétique peuvent être imprégnés et/ou encapsulés.
Le circuit magnétique permet de canaliser le flux magnétique des composants bobinés 18.
La culasse 16 peut comporter des excroissances 20 s'étendant radialement depuis la surface S16. Une excroissance 20 peut comporter au moins une dent centrale 21a entourée de deux dents extérieures 21b. En alternative, une excroissance 20 peut comporter uniquement une ou une pluralité de dents centrales 21a, ou uniquement deux dents extérieures 21b. Comme représenté dans l'encadré A de la figure 3, une bobine 18 est intégrée sur une excroissance 20. Une ou des bobines intégrées à leur circuit magnétique forment un composant bobiné. Cette bobine 18 est enroulée autour de la dent centrale 21a, et est entourée des deux dents extérieures 21b. La dent centrale 21a peut être reliée à son extrémité radiale aux dents extérieures 21b par une portion de liaison 23 qui s'étend longitudinalement à la surface S16 de la culasse 16. Comme représenté dans l'encadré A de la figure 3, une bobine 18 peut être isolée de la culasse 16, et donc de son circuit magnétique, par un matériau isolant électriquement 22, par exemple un matériau du type Kapton ® ou de la résine époxy.
Comme représenté dans l'encadré A de la figure 3, l'excroissance 20 peut être pourvue d'entrefers 24 radiaux. Ces entrefers 24 s'étendent dans la direction radiale à la surface S16 de la culasse 16. Ces entrefers 24 radiaux sont agencés sur la portion de liaison 23 reliant la dent centrale 21a et les dents extérieures 21b.
La figure 4 représente un exemple de configuration qui comporte un dispositif selon l'invention. Le dispositif comporte six bobines Lcll, Lcl2, Lcl3, Lc21, Lc22 et Lc23 non couplées qui sont configurées pour paralléliser deux onduleurs 30, 32 pour commander un actionneur électrique 34. Les bobines Lcll-Lc23 sont connectées à l'actionneur 34 via un connecteur 48 et des câbles de puissance 50a, 50b, 50c. Les bobines Lcll-Lc23 sont des bobines interphases. Ces bobines sont configurées pour limiter le courant de défaut entre chaque même phase des onduleurs 30, 32 et pour limiter les surtensions aux bornes de l'actionneur électrique 34. Les bobines Lcll-Lc23 de l'encadré B de la figure 4 correspondent aux bobines 18 de la figure 3. Les onduleurs 30, 32 peuvent être des convertisseurs de puissance continu-alternatif (DC-AC, acronyme de l'expression anglais « Direct Current - Alternative Current »). Les onduleurs 30, 32 forment une partie électronique de puissance 46, qui est connectée à une carte électronique de contrôle 36, qui forme une partie électronique de commande. La carte électronique de contrôle 36 est connectée, via un connecteur 38, à un bus de communication 40. Les onduleurs 30, 32 sont connectés, via un connecteur 42, à un bus à courant continu 44. L'ensemble des bobines Lcll-Lc23, de l'électronique de puissance 46 et de l'électronique de commande 36 forment l'équipement 52 qui est agencé dans la culasse 16, et donc dans le boîtier 12, pouvant par exemple, être intégré aisément dans une armoire de distribution.
Comme représenté sur les figures 5A et 5B, le dispositif peut comprendre deux bobines 54a, 54b connectées en série et ayant une direction de flux identique. Ces bobines sont des composants monophasés qui permettant d'assurer des fonctions de filtrage, lissage, parallélisation ou de transfert d'énergie. Les bobines 54a, 54b sont intégrées sur une excroissance 20 de la culasse 16. Sur ces figures, l'excroissance 20 comporte uniquement deux dents extérieures 21b, qui sont reliées entre elles par une portion de liaison 23 à leur extrémité radiale. Chaque bobine 54a, 54b est enroulée autour d'une dent extérieure 21b. Ces bobines 54a, 54b ne sont pas entièrement entourées par l'excroissance 20. Ces bobines peuvent être réalisées sur une ou plusieurs excroissances 20 de la culasse 16 afin de minimiser leur hauteur.
Afin de minimiser le ratio volume/masse du circuit magnétique et de réduire la dépendance aux variations de propriétés magnétiques du matériau utilisé pour la réalisation du circuit magnétique, un entrefer 24 radial peut être ajouté, comme présenté sur la figure 5B. Ainsi, l'excroissance 20 est munie d'un entrefer 24 qui s'étend dans une direction radiale à la surface S16 de la culasse 16. L'entrefer 24 radial est agencé sur la portion de liaison 23 des dents extérieures 21b de l'excroissance 20.
Comme représenté sur les figures 6A à 6D, le dispositif peut comprendre une bobine 56 non couplée. Cette bobine 56 est intégrée dans une excroissance 20 de la culasse, et plus précisément enroulée autour de la dent centrale 21a de l'excroissance 20. Cette bobine 56 est entourée des deux dents extérieures 21b de l'excroissance 20. Ces dents extérieures forment des branches de retour sur la bobine 56. Ceci permet de réduire les problèmes de CEM, et en particulier les émissions rayonnées qui sont induites par les flux de fuites des bobines, et qui peuvent venir perturber les cartes électroniques, capteurs et autres composants bobinés situés à proximité. Ces dents extérieures permettent de canaliser une partie de ce flux magnétique.
Le circuit magnétique de la figure 6A ne comporte pas d'entrefer, tandis que les circuits magnétiques des figures 6B à 6D comportent un ou des entrefers 24.
Comme représenté sur la figure 6B, l'entrefer 24 longitudinal peut être positionné sur la dent centrale 21a. Ceci permet de réduire les perturbations entre les composants bobinés. Comme représenté sur la figure 6C, les entrefers 24 longitudinaux peuvent être positionnés sur les dents extérieures 21b. Comme représenté sur la figure 6D, les entrefers 24 radiaux peuvent être positionnés sur les dents extérieures 21b, et plus précisément sur la portion de liaison 23 entre les dents extérieures 21b. La position des entrefers sur les dents extérieures permet avantageusement de faciliter l'opération de bobinage.
Comme représenté sur les figures 7A à 7E, le dispositif peut comprendre deux bobines 58a, 58b bobinées afin d'être en opposition de flux. Les bobines 58a, 58b sont entrelacées ou couplées. En particulier, les composants sont des inductances interphases couplées ou de mode commun et pouvant permettre de gérer le mode différentiel dans le cas des topologies présentées en figures 7C-7E. Les bobines 58a, 58b sont intégrées dans une excroissance 20 de la culasse 16.
Sur les figures 7A et 7B, l'excroissance 20 comporte uniquement deux dents extérieures 21b, qui sont reliées entre elles par une portion de liaison 23 à leur extrémité radiale. Chaque bobine 58a, 58b est enroulée autour d'une dent extérieure 21b. Ces bobines 58a, 58b ne sont pas entièrement entourées par l'excroissance 20. Comme représenté sur la figure 7B, un entrefer 24 radial peut être positionné sur la portion de liaison 23 entre les dents extérieures 21b.
Cependant, avec cette disposition topologie, le flux magnétique résultant se referme dans l'air, ce qui peut provoquer des courants induits dans les éléments métalliques environnant et venir perturber des cartes électroniques ou des composants bobinés à proximité.
Sur la figure 7C, l'excroissance 20 comporte deux dents extérieures 21b, qui sont reliées entre elles par une portion de liaison 23 à leur extrémité radiale. Comme précédemment, chaque bobine 58a, 58b est enroulée autour d'une dent extérieure 21b. Ces bobines 58a, 58b ne sont donc pas entièrement entourées par l'excroissance 20. Une dent supplémentaire, ici une dent centrale 21a, est ajoutée par rapport aux figures 7A et 7B afin de canaliser ce flux résultant et maîtriser l'inductance de fuite du composant. Les bobines 58a, 58b sont séparées par la dent centrale 21a. Les bobines 58a, 58b sont séparées par la dent centrale 21a.
Sur les figures 7D et 7E, l'excroissance 20 comporte deux dents centrales 21a, qui sont reliées entre elles par une portion de liaison 23 à leur extrémité radiale. Chaque bobine 58a, 58b est enroulée autour d'une dent centrale 21a. Des dents supplémentaires, ici deux dents extérieures 21b, sont ajoutées par rapport aux figures 7A et 7B afin de canaliser ce flux résultant et maîtriser l'inductance de fuite du composant. Chaque bobine 58a, 58b est entourée par une dent extérieure 21b et par l'autre bobine 58b, 58a. Ainsi, ces bobines 58a, 58b sont entièrement entourées.
Comme représenté sur la figure 7C, un entrefer 24 longitudinal peut être positionné sur la dent centrale 21a. Ceci permet de canaliser le flux magnétique dans la dent centrale 21a, qui a une réluctance équivalente élevée par rapport à la réluctance principale, de sorte que l'inductance mutuelle est la plus élevée possible (gestion du mode différentiel).
Comme représenté sur la figure 7D, les entrefers 24 radiaux peuvent être positionnés sur les dents extérieures 21b, et plus précisément sur la portion de liaison 23 entre les dents extérieures 21b. Comme représenté sur la figure 7E, les entrefers 24 longitudinaux peuvent être positionnés sur les dents extérieures 21b. Ceci permet avantageusement d'avoir une version cuirassée, en canalisant le flux magnétique résultant dans les dents extérieures 21b.
Un transformateur, ou un autotransformateur, de puissance multi-phases à flux libre peut être formé par une pluralité de bobines. Les bobines peuvent être connectées suivant la configuration adoptée (en étoile, en triangle, en zig zag...) et agencées en série ou en parallèle suivant les besoins liés notamment par la partie intégration. Le nombre de bobines dépend de la fonction souhaitée. Les figures 8A à 8C représentent un exemple de réalisation d'un dispositif comprenant un transformateur de puissance multi-phases formé par des bobines 62a, 62b, 63a, 63b, 64a, 64b triphasées de type cuirassée, les bobines étant intégrées localement sur une partie seulement de la surface S16 de la culasse 16. Les bobines 62a, 63a, 64a sont des bobines primaires et les bobines 62b, 63b, 64b sont des bobines secondaires. Dans cet exemple, le transformateur présente une isolation galvanique. Autrement dit, il n'y a pas de connexion électrique entre la partie primaire et la partie secondaire.
Sur les figures 8A à 8C, l'excroissance 20 comporte trois dents centrales 21a-l, 21a-2, 21a-3 et deux dents extérieures 21b, qui sont reliées entre elles par une portion de liaison 23 à leur extrémité radiale. Les bobines 62a-62b sont enroulées autour d'une première dent 21a-l, tandis que les bobines 63a-63b sont enroulées autour d'une deuxième dent 21a-2 et les bobines 64a-64b autour d'une troisième dent 21a-3. Plus précisément, les bobines 62a-62b sont concentriques, la bobine 62b étant enroulée autour de la bobine 62a, celle-ci étant elle-même enroulée autour de la première dent 21a-l. De même, les bobines 63a-63b sont concentriques, la bobine 63b étant enroulée autour de la bobine 63a , celle-ci étant elle-même enroulée autour de la seconde première dent 21a-2. De même, les bobines 64a-64b sont concentriques, la bobine 64b étant enroulée autour de la bobine 64a, celle-ci étant elle-même enroulée autour de la troisième dent 21a-3 La bobine 62b est entourée par une dent extérieure 21b-l et par la deuxième dent centrale 21a-2. La bobine 64b est entourée par une dent extérieure 21b-2 et par la deuxième dent centrale 21a-2. Ainsi, les bobines 62a-64b sont entièrement entourées. Sur ces figures, il y a ainsi deux bobines intégrées autour de chaque dent 21a-l, 21a-2 et 21a-3, une pour la partie primaire, et une pour la partie secondaire.
Le circuit magnétique de la figure 8A ne comporte pas d'entrefer, tandis que les circuits magnétiques des figures 8B et 8C comportent des entrefers 24.
Comme représenté sur la figure 8B, les entrefers 24 radiaux peuvent être positionnés sur les dents extérieures 21b, et plus précisément sur la portion de liaison 23 entre les dents extérieures 21b. Ceci permet avantageusement d'augmenter les fuites magnétiques et les inductances propres.
Comme représenté sur la figure 8C, les entrefers 24 longitudinaux peuvent être positionnés sur les dents centrales 21a-l, 21a-2, 21a-3. Ceci permet avantageusement de limiter le flux magnétique. Lorsque les entrefers sont positionnées sur les dents extérieures, ceci permet d'augmenter les inductances magnétisantes. Les entrefers permettent d'ajuster au mieux les paramètres du transformateur de puissance, et de réduire l'impact du matériau composant le circuit magnétique.
Selon les contraintes d'intégration, le nombre de dents ou de bobines par phase peut être augmenté. De même, le motif développé sur l'ensemble de la culasse peut être modifié, en connectant chaque bobine de même phase en série ou en parallèle pour réduire l'épaisseur du dispositif.
Par exemple, les figures 9A à 9C représentent respectivement les figures 8A à 8C, avec une répétition du transformateur sur la surface S16 de la culasse 16. Les bobines primaires 62a, 63a, 64a et les bobines secondaires 62b, 63b, 64b sont intégrées sur toute la circonférence de la surface S16 de la culasse 16. Cette configuration permet avantageusement de maximiser l'espace central de la culasse 16.
Un transformateur, ou un autotransformateur multi-phases à flux forcé peut être implémenté localement sur une partie seulement de la surface S16 de la culasse 16, comme présenté en figure 10. Le transformateur comporte six composants bobinés 66a, 66b, 68a, 68b, 70a et 70b.
Sur la figure 10, l'excroissance 20 comporte une dent centrale 21a et deux dents extérieures 21b. Les bobines 66a-66b sont enroulées autour d'une première dent extérieure 21b, tandis que les bobines 68a-68b sont enroulées autour de la dent centrale 21a, et que les bobines 70a-70b sont enroulées autour d'une seconde dent extérieure 21b. Plus précisément, les bobines 66a-66b sont concentriques, la bobine 66b étant enroulée autour de la bobine 66a. De même, les bobines 68a-68b sont concentriques, la bobine 68b étant enroulée autour de la bobine 68a ; et les bobines 70a-70b sont concentriques, la bobine 70b étant enroulée autour de la bobine 70a. Les bobines 66b et 70b ne sont pas entièrement entourées.
Le circuit magnétique de la figure 10 ne comporte pas d'entrefer. Bien entendu, ce circuit magnétique peut comporter un entrefer sur l'excroissance 20, comme décrit précédemment pour les figures 8B, 8C, 9B et 9C.
De même que précédemment, pour des contraintes d'intégration, le nombre de dents ou de bobines par phase peut être augmenté ou le motif développé sur l'ensemble de la culasse peut être modifié en connectant chaque bobine de même phase en série ou en parallèle de sorte à réduire l'épaisseur du dispositif.

Claims

REVENDICATIONS
1. Dispositif (10) électrotechnique pour un aéronef comprenant : un boîtier (12) présentant une surface (S12), un circuit magnétique formé par un empilement de tôles laminées et composé d'une culasse (16), ladite culasse étant fixée sur la surface dudit boîtier par une interface thermique (15), ladite culasse présentant une surface (S16), au moins un composant bobiné (18) basse fréquence, ledit composant bobiné étant fixé sur au moins une partie de la surface de ladite culasse par des moyens de fixation (17).
2. Dispositif (10) électrotechnique selon la revendication 1, dans lequel l'interface thermique (15) est une pâte thermique, et dans lequel la culasse (16) est collée sur la surface (S12) du boîtier (12).
3. Dispositif (10) électrotechnique selon la revendication 1, dans lequel l'interface thermique (15) comporte un matériau à changement de phase.
4. Dispositif (10) électrotechnique selon l'une des revendications 1 à 3, dans lequel la surface (S12) du boîtier (12) et/ou la surface (S16) de la culasse (16) est plane.
5. Dispositif (10) électrotechnique selon l'une des revendications 1 à 3, dans lequel la surface (S12) du boîtier (12) et/ou la surface (S16) de la culasse (16) est concave ou convexe.
6. Dispositif (10) électrotechnique selon l'une des revendications 1 à 5, comprenant une pluralité de composants bobinés (18) basse fréquence, lesdits composants bobinés étant alignés sur au moins une partie de la surface (S16) de la culasse (16) de sorte à former une ligne de composants bobinés, et dans lequel chaque extrémité de la ligne de composants bobinés est fixée sur la surface (S16) de la culasse (16) par les moyens de fixation (17a).
7. Dispositif (10) électrotechnique selon l'une des revendications 1 à 6, comprenant une pluralité de composants bobinés (18) basse fréquence, et dans lequel chaque composant bobiné est fixé sur au moins une partie de la surface (S16) de la culasse (16) par les moyens de fixation, les moyens de fixation (17b) étant agencés entre chaque composant bobiné.
8. Dispositif (10) électrotechnique selon l'une des revendications 1 à 7, dans lequel le ou chaque composant bobiné (18) est isolé de la culasse (16) et de son circuit magnétique par un matériau isolant électriquement (22).
9. Dispositif (10) électrotechnique selon l'une des revendications 1 à 8, dans lequel le boîtier (12) et/ou la culasse (16) est muni de moyens de refroidissement (14).
10. Aéronef comportant au moins un dispositif (10) électrotechnique selon l'une des revendications 1 à 9.
PCT/FR2020/052403 2019-12-13 2020-12-11 Dispositif électrotechnique pour un aéronef WO2021116632A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/783,985 US20230033439A1 (en) 2019-12-13 2020-12-11 Electrotechnical device for an aircraft

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1914414A FR3104801B1 (fr) 2019-12-13 2019-12-13 Dispositif électrotechnique pour un aéronef
FRFR1914414 2019-12-13

Publications (1)

Publication Number Publication Date
WO2021116632A1 true WO2021116632A1 (fr) 2021-06-17

Family

ID=70008718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2020/052403 WO2021116632A1 (fr) 2019-12-13 2020-12-11 Dispositif électrotechnique pour un aéronef

Country Status (3)

Country Link
US (1) US20230033439A1 (fr)
FR (1) FR3104801B1 (fr)
WO (1) WO2021116632A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150365015A1 (en) 2012-12-28 2015-12-17 Autonetworks Technologies, Ltd. Reactor, Converter and Power Conversion Device
US20160261174A1 (en) 2015-03-06 2016-09-08 Fanuc Corporation Stator and motor provided with outer cylinder
US20180261371A1 (en) 2017-03-13 2018-09-13 Fanuc Corporation Reactor
EP3467853A1 (fr) 2016-05-24 2019-04-10 Amogreentech Co., Ltd. Composant de bobine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150365015A1 (en) 2012-12-28 2015-12-17 Autonetworks Technologies, Ltd. Reactor, Converter and Power Conversion Device
US20160261174A1 (en) 2015-03-06 2016-09-08 Fanuc Corporation Stator and motor provided with outer cylinder
EP3467853A1 (fr) 2016-05-24 2019-04-10 Amogreentech Co., Ltd. Composant de bobine
US20180261371A1 (en) 2017-03-13 2018-09-13 Fanuc Corporation Reactor

Also Published As

Publication number Publication date
FR3104801B1 (fr) 2022-01-21
US20230033439A1 (en) 2023-02-02
FR3104801A1 (fr) 2021-06-18

Similar Documents

Publication Publication Date Title
US7471181B1 (en) Methods and apparatus for electromagnetic components
KR101320170B1 (ko) 리액터
FR2473804A1 (fr) Stator pour alternateur
EP0267822A1 (fr) Transformateur haute fréquence avec enroulement en circuit imprimé, en particulier pour alimentation à très haute tension
FR3033930A1 (fr) Transformateur triphase pour redresseur dodecaphase
WO2021116632A1 (fr) Dispositif électrotechnique pour un aéronef
WO2021116599A1 (fr) Dispositif électrotechnique pour un aéronef comprenant des composants bobinés basse fréquence
JP2022549240A (ja) 中周波変圧器のための一体構造の一部分としての巻線構成
EP0439389B1 (fr) Procédé pour la réalisation de bobinages électromagnétiques
WO2011004067A1 (fr) Composant inductif équipé d’un refroidissement par liquide et procédé de fabrication dudit composant
FI120067B (fi) Menetelmä induktiivisen komponentin valmistamiseksi ja induktiivinen komponentti
EP3198617B1 (fr) Noyau magnetique de transformateur tournant
FR2550026A1 (fr) Stator pour machine electrique a haute tension
EP4042453A1 (fr) Dispositif d'induction electromagnetique
US11387030B2 (en) Fluid cooled magnetic element
FR3050069A1 (fr) Composant magnetique, circuit electrique resonant, convertisseur electrique et systeme electrique
FR3103625A1 (fr) Bobinage, procédé de réalisation correspondant et aéronef comportant un tel bobinage
WO2016128520A1 (fr) Dispositif d'induction electromagnetique a configuration de circuit magnetique multiple
SK98999A3 (en) A transformer/reactor and a method for manufacturing a transformer/reactor
WO2023232437A1 (fr) Ensemble et transformateur électrique planaire
FR3081254A1 (fr) Bobine planaire et procede de fabrication d’une bobine planaire
WO2022022896A1 (fr) Composant magnetique à flux de fuite controlé
US20220069734A1 (en) Power conversion system
EP4268355A1 (fr) Machine électrique polyphasée intégrée
EP4091181A1 (fr) Dispositif électromagnétique de conversion d'énergie

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20845187

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20845187

Country of ref document: EP

Kind code of ref document: A1