WO2010116758A1 - 鋼管杭 - Google Patents

鋼管杭 Download PDF

Info

Publication number
WO2010116758A1
WO2010116758A1 PCT/JP2010/002602 JP2010002602W WO2010116758A1 WO 2010116758 A1 WO2010116758 A1 WO 2010116758A1 JP 2010002602 W JP2010002602 W JP 2010002602W WO 2010116758 A1 WO2010116758 A1 WO 2010116758A1
Authority
WO
WIPO (PCT)
Prior art keywords
pile
steel pipe
pipe pile
ratio
diameter
Prior art date
Application number
PCT/JP2010/002602
Other languages
English (en)
French (fr)
Inventor
石濱吉郎
高木優任
森安俊介
西海健二
菅野良一
平田尚
辻井正人
上田宗一
松谷吉高
村益将友
Original Assignee
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本製鐵株式会社 filed Critical 新日本製鐵株式会社
Priority to CN201080014917.7A priority Critical patent/CN102365409B/zh
Priority to SG2011068368A priority patent/SG174509A1/en
Priority to KR1020117023220A priority patent/KR101331703B1/ko
Priority to JP2010525551A priority patent/JP4635114B2/ja
Priority to AU2010235744A priority patent/AU2010235744B2/en
Publication of WO2010116758A1 publication Critical patent/WO2010116758A1/ja
Priority to HK12103867.0A priority patent/HK1163198A1/xx

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/24Prefabricated piles
    • E02D5/28Prefabricated piles made of steel or other metals
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D5/00Bulkheads, piles, or other structural elements specially adapted to foundation engineering
    • E02D5/22Piles
    • E02D5/48Piles varying in construction along their length, i.e. along the body between head and shoe, e.g. made of different materials along their length

Definitions

  • the present invention relates to a steel pipe pile used in the field of civil engineering and construction such as harbor structures, bridge foundations and building foundations.
  • a friction pile having a tapered outer peripheral surface at one end of the pile and a friction pile having a tapered outer peripheral surface over the entire length of the pile are known (for example, (See Patent Documents 1 and 2).
  • a technique for preventing the liquefaction of the ground by driving a tapered pile having a tapered outer peripheral surface into a lattice shape in order to compact the ground surface layer portion is also known (for example, see Patent Document 3).
  • the technique which penetrates a taper-shaped pile into the ground is also known (for example, refer patent document 4).
  • the conventional tapered pile is intended to increase the frictional force of the circumferential surface of the pile.
  • the conventional tapered pile does not aim at obtaining the pile tip supporting force and reducing the tip blockage that becomes a resistance during pile construction.
  • the purpose is to increase the frictional force of the pile peripheral surface to increase the vertical load supporting force of the pile and to reduce excavation residual soil. .
  • it is not aimed at obtaining the tip support force of the pile and reducing the tip blockage that becomes a resistance during pile construction.
  • Steel pipe piles are classified into a closed-end pile whose tip is closed and an open-end pile whose tip is open, depending on the shape of the tip of the steel pipe pile.
  • the steel pipe pile of the present invention is classified as an open end pile.
  • Steel pipe piles are classified into friction piles and support piles. The friction pile does not drive up to the support layer and generates a support force mainly by the peripheral friction force.
  • the support pile is driven into the support layer to mainly exert the support force of the tip end portion of the pile.
  • the steel pipe pile of the present invention is classified as a support pile.
  • the ground resistance generally increases with an increase in the depth of steel pipe piles.
  • the soil (or soil containing stones and rocks) 11 taken into the steel pipe pile is accumulated in the steel pipe pile and is restrained by the steel pipe pile. . Therefore, it is known that the frictional force between the steel pipe pile inner peripheral surface 12 and the soil 11 taken into the steel pipe pile is increased, and the pipe inner peripheral surface resistance is increased even in the ground resistance.
  • a tapered pile having a tapered outer peripheral surface over the entire length of the pile and a tapered inner peripheral surface over the entire length of the pile is known as a steel pipe pile for increasing the pile supporting force used in the rotary press-fitting method. Since the pile (friction pile) using the peripheral surface frictional force of the pile is penetrated into the soft ground, it can be extremely tapered. However, in a pile (support pile) that penetrates the support layer and uses the support force of the pile tip portion, it is necessary to penetrate the pile tip portion into the support layer by a vibration method or the like.
  • a steel pipe pile (straight steel pipe pile) 10 having a constant outer diameter over its entire length and having an open end is used as a steel pipe pile used for the vibration method and the like.
  • tip part of the steel pipe pile into the taper shape has opened for the reason mentioned above is not used.
  • the pile tip is tapered, that is, when the pile tip has a tapered outer peripheral surface and a tapered inner peripheral surface, the following (1) and (2)
  • the advantages are considered. These advantages will be described with reference to FIG. 6B.
  • the present inventors have found that a steel pipe pile having a tapered pile tip can be used in each method such as a vibration method, a hammering method, a press-fitting method, and a rotary press-fitting method. Furthermore, the present inventors have found that even when a steel pipe pile having a tapered pile tip portion is driven on the ground, the ground resistance is reduced and the workability is improved, and the present invention has been completed. In addition to the above findings, the present inventors have found that the ratio of diameter reduction of the pile tip (diameter reduction ratio), the length of the tapered pile tip (tapered portion) in the pile longitudinal direction, and the maximum outside of the pile tip We focused on the ratio to the diameter (diameter length ratio).
  • the present inventors conducted the construction experiment which lays a pile, and the bearing capacity experiment which applies a vertical load to the laid pile.
  • the steel pipe pile tip is determined by two parameters, the ratio of the diameter of the pile tip described above, and the ratio of the length of the tapered pile tip in the longitudinal direction of the pile and the maximum outer diameter of the pile tip.
  • the knowledge that the ground resistance to receive changes is obtained.
  • the present inventors use an open end pile of a straight steel pipe having a constant outer diameter over the entire length.
  • This invention aims at providing the steel pipe pile which can obtain pile tip supporting force, can reduce the resistance at the time of pile construction, and can be used for various construction methods, such as a vibration construction method.
  • a steel pipe pile according to the present invention includes a straight portion having a cylindrical shape; and a tapered portion that is continuous with one end of the straight portion and has an outer diameter and an inner diameter that taper in a direction away from the one end.
  • a steel pipe pile having a length-to-length ratio H1 / D1 obtained by dividing the length dimension H1 between the large end and the small end of the tapered portion by the outer diameter dimension D1 at the large end is 0.1 or more and 2.5. It is as follows.
  • the diameter reduction ratio D2 / D1 obtained by dividing the outer diameter dimension D2 of the small end by D1 at the large end is 0.70 or more and 0.95 or less. May be.
  • the steel pipe pile described in the above (1) or (2) may be an intrusion portion in which the entire tapered portion penetrates into the support layer of the ground.
  • the total length L that is the sum of the taper length H1 and the length H2 of the straight portion is set to the length of the taper portion.
  • the ratio divided by the dimension H1 may be 0.01 or more and 0.1 or less.
  • the said outer diameter dimension D1 in the said big end may be 600 mm or more and 3000 mm or less.
  • the ratio of the length H1 in the longitudinal direction of the tapered portion having the tapered outer peripheral surface and the tapered inner peripheral surface to the outer diameter D1 at the large end of the tapered portion is 0.
  • the range is from 1 to 2.5. Therefore, when the steel pipe pile described in the above (1) is placed on the ground, the workability can be improved as compared with the straight steel pipe pile. Furthermore, when the steel pipe pile as described in said (1) is penetrated to a support layer etc., a pile tip support force can be improved compared with a straight steel pipe pile.
  • the steel pipe pile described in the above (2) has a diameter reduction ratio D2 / D1, which is a ratio of the outer diameter D2 at the tip (small end) of the taper portion and the outer diameter D1 at the large end of the taper portion, being 0.00. It is in the range of 70 to 0.95. Therefore, the steel pipe pile as described in said (2) can reduce the construction resistance at the time of pile construction compared with a straight steel pipe pile, and can raise a pile tip support force markedly. Since the steel pipe pile described in the above (3) is an intrusion part in which the entire taper part penetrates into the support layer, the steel pipe pile foundation is compared with a straight steel pipe pile in which the outer diameter of the pile and the thickness t of the steel pipe pile are the same.
  • the ratio H1 / L between the length of the tapered portion in the pile longitudinal direction and the total length of the steel pipe pile is 0.01 or more and 0.1 or less. Compared with straight steel pipe piles with the same plate thickness t of steel pipe piles, it is possible to reduce pile construction resistance at the time of ground penetration and to increase the pile tip support force at the time of support layer penetration.
  • the steel pipe pile described in (5) above has an outer diameter D1 at the large end of the tapered portion of at least 600 mm.
  • FIG. 1B shows the steel pipe pile which has a taper part which concerns on one Embodiment of this invention.
  • arrow line view of the bb cross section of FIG. 1B shows the steel pipe pile which has a taper part which concerns on one Embodiment of this invention.
  • FIG. 1A to 1D show a steel pipe pile 1 having a tapered portion according to an embodiment of the present invention.
  • the steel pipe pile 1 having a tapered portion of the present invention is placed by an appropriate method such as a vibration method.
  • the steel pipe pile 1 includes a hollow straight portion 8 and a hollow tapered portion 4.
  • the straight part 8 has a fixed pile outer diameter and a cylindrical shape.
  • the tapered portion 4 has a large end (large diameter side end) 5 continuous with the end face of the straight portion 8 and a small end (small diameter side end) 6 that opens. Further, both the inner diameter and the outer diameter of the tapered portion 4 gradually decrease from the large end 5 toward the small end 6.
  • the taper portion 4 (tip portion) has a taper that gradually decreases in the longitudinal direction of the pile from the boundary (large end 5) between the taper portion 4 and the straight portion 8 toward the tip end (small end 6) of the taper portion 4.
  • An outer peripheral surface 2 and a tapered inner peripheral surface 3 are provided.
  • the steel pipe pile 1 may connect a steel pipe having a diameter larger than the outer diameter of the straight portion 8 to the head of the steel pipe pile 1 in order to resist a greater horizontal force and moment.
  • the pile outer diameter of the straight part 8 is equal to the outer diameter of the big end 5 of the taper part 4 is demonstrated.
  • the cross-sectional shape in the pile longitudinal direction of the tapered outer peripheral surface 2 and the tapered inner peripheral surface 3 may be linear (planar) as shown in FIG. There may be.
  • the cross-sectional shape of the tapered outer peripheral surface 2 and the tapered inner peripheral surface 3 in the pile longitudinal direction is convex outward in the radial direction from the pile central axis (concave inward in the radial direction). It may be convex toward the inside in the radial direction from the pile central axis (concave toward the outside in the radial direction).
  • the tapered outer peripheral surface 2 and the tapered inner peripheral surface 3 are desirably linear or curved.
  • the length of the tapered outer peripheral surface 2 of the tapered portion 4 in the pile longitudinal direction (taper length, distance between the large end 5 and the small end 6) H1 and the straight portion
  • the ratio (H1 / D1, the length H1 of the taper portion 4 in the longitudinal direction of the pile divided by the pile outer diameter D1) with the pile outer diameter D1 (the outer diameter D1 at the large end) 8 of the steady portion having a constant outer diameter) 8 (Length ratio) is 0.1 or more and 2.5 or less.
  • the ratio (diameter / length ratio) H1 / D1 between the length H1 of the tapered inner peripheral surface 3 of the tapered portion 4 in the pile longitudinal direction and the pile outer diameter D1 is 0.1 or more and 2.5 or less.
  • Reduced diameter ratio (D2 / D1 the outer diameter D2 of the small end is straight, which is the ratio of the outer diameter (tip outer diameter) D2 of the tip (small end) 6 of the taper portion 4 and the pile outer diameter D1 of the straight portion 8
  • the diameter reduction ratio divided by the pile outer diameter D1) is preferably 0.70 or more and 0.95 or less. This diameter reduction ratio D2 / D1 is the diameter reduction ratio of the steel pipe pile tip.
  • the range of the taper angle ⁇ when the range of the diameter length ratio H1 / D1 is changed from 0.1 to 2.5 and the range of the diameter reduction ratio D2 / D1 is changed from 0.70 to 0.95 is 0. Corresponding to .57 ° to 56.31 °.
  • the ratio (diameter length ratio) H1 / D1 between the length (taper length) H1 in the pile longitudinal direction of the tapered outer peripheral surface 2 and the tapered inner peripheral surface 3 to the pile outer diameter D1 is set to 0.1. It was set in the range of 1 to 2.5. Moreover, 0.70 or more and 0.95 as a preferable range for the diameter reduction ratio D2 / D1, which is the ratio of the outer diameter D2 of the tip (small end) 6 of the tapered portion 4 and the pile outer diameter D1 of the straight portion 8, The following range was set. The reason for determining these ranges will be described with reference to FIGS.
  • FIG. 2 is a graph showing the relationship between the ratio (diameter / length ratio) H1 / D1 between the taper length H1 of the tapered portion 4 and the pile outer diameter D1 of the straight portion 8 and the construction resistance ratio for the straight steel pipe pile.
  • FIG. 3 is a graph which shows the relationship between the diameter reduction ratio D2 / D1 of the taper part 4, and the construction resistance ratio with respect to a straight steel pipe pile. 2 and 3, in order to obtain the construction resistance ratio, the steel pipe pile 1 having the tapered portion according to the above embodiment of the present invention and the straight steel pipe pile 10 shown in FIGS. 7A to 7C as comparative examples were tested.
  • the construction resistance ratio is a ratio of the construction resistance of the steel pipe pile 1 having a tapered portion with respect to the construction resistance of the straight steel pipe pile 10.
  • the diameter reduction ratio D2 / D1 in FIG. 2 is 0.9
  • the diameter / length ratio (taper diameter ratio) H1 / D1 in FIG. 3 is 0.8.
  • the correlation between the diameter length ratio H1 / D1 and the construction resistance ratio is the correlation shown in FIG. It is the same.
  • FIG. 2 when construction resistance is measured using the steel pipe pile 1 of diameter length ratio H1 / D1 different from FIG. 3, the correlation between the diameter reduction ratio D2 / D1 and the construction resistance ratio is the correlation shown in FIG. It is the same.
  • FIGS. 2 and 3 will be described in order.
  • FIG. 2 shows the ratio (diameter-to-length ratio) between the length H1 of the tapered portion 4 in the pile longitudinal direction and the pile outer diameter D1 of the straight portion 8 for the steel pipe pile 1 having the tapered portion according to the embodiment of the present invention.
  • H1 / D1 is changed as the horizontal axis
  • the construction resistance ratio which is the ratio between the construction resistance of the steel pipe pile 1 having a tapered portion and the construction resistance of the straight steel pipe pile 10 of the comparative example, is shown as the vertical axis. From FIG. 2, it can be seen that the construction resistance ratio of the steel pipe pile 1 having the tapered portion draws a downwardly convex curve along with the change in the length of the tapered portion 4.
  • the construction resistance ratio of the steel pipe pile 1 which has a taper part is the construction resistance ratio (namely, construction resistance ratio is 1) of the straight steel pipe pile 10 of a comparative example.
  • the construction resistance ratio of the steel pipe pile 1 which has a taper part approaches the construction resistance ratio of the straight steel pipe pile 10 of a comparative example.
  • the construction resistance of a pile is a load (ground resistance) applied to the pile until it reaches the support layer when the pile is constructed (intrusion construction) on the ground (stratum).
  • construction resistance ratio is construction resistance of the steel pipe pile 1 which has a taper part when the construction resistance of the straight pile 10 of a comparative example is set to 1.0. That is, the construction resistance ratio is defined as the ratio between the construction resistance of the steel pipe pile 1 having a tapered portion and the construction resistance of the straight pile 10 of the comparative example.
  • This construction resistance ratio has a negative correlation with the construction speed. That is, when performing construction with a predetermined output (machine output), the construction speed is increased by lowering the construction resistance ratio.
  • the construction period can be shortened and the construction cost can be reduced.
  • construction period when construction is performed for a predetermined period (construction period), by reducing the construction resistance ratio, the output required for construction decreases, so the machine used for construction has a lower capacity (output).
  • the construction cost can be reduced by changing to a machine. Therefore, by reducing the construction resistance ratio, it is possible to flexibly select the construction period and the construction machine according to the construction requirements.
  • cost (or energy) which manufactures the steel pipe pile 1 which has a taper part it is necessary to reduce construction resistance at least 10% or more.
  • the construction resistance ratio is 0.9.
  • the construction resistance ratio is When the diameter length ratio H1 / D1 is 2.5, the construction resistance ratio is 0.9. Therefore, when the diameter length ratio H1 / D1 is in the range of 0.1 to 2.5, the construction resistance of the steel pipe pile 1 having the tapered portion is reduced by 10% compared to the construction resistance of the straight steel pipe pile 10 of the comparative example.
  • the diameter length ratio H1 / D1 is in the range of 0.4 to 1.7, the construction resistance of the steel pipe pile 1 having the tapered portion is reduced by 20% compared to the construction resistance of the straight steel pipe pile 10 of the comparative example. Therefore, in order to reduce the construction resistance by 10% or more, it is necessary to set the diameter length ratio H1 / D1 within the range of 0.1 to 2.5. In this case, the length of the taper portion 4 in the pile longitudinal direction (pile axis direction) is 0.1 to 2.5 times the length of the pile outer diameter D1. In order to reduce the work resistance by 20% or more, the diameter length ratio H1 / D1 is preferably set in the range of 0.4 to 1.7.
  • the length of the taper portion 4 in the pile longitudinal direction is 0.4 to 1.7 times the length of the pile outer diameter D1. If the steel pipe pile 1 having the taper portion with the diameter length ratio H1 / D1 in the above-described range is driven on the ground, the ground resistance is reduced and the workability is improved.
  • the diameter reduction which is a ratio of the outer diameter D2 of the front-end
  • the ratio D2 / D1 is varied as the horizontal axis
  • the construction resistance ratio which is the ratio between the construction resistance of the steel pipe pile 1 having a tapered portion and the construction resistance of the straight steel pipe pile 10 of the comparative example, is shown as the vertical axis.
  • the construction resistance ratio is 0.9
  • the diameter reduction ratio D2 / D1 is 0.95
  • the construction resistance ratio is 0.9.
  • the diameter reduction ratio D2 / D1 is in the range of 0.70 to 0.95
  • the construction resistance ratio is 0.9 or less.
  • the construction resistance ratio is 0.8 or less.
  • the construction resistance of the steel pipe pile 1 having the tapered portion is about 80% compared to the construction resistance of the straight steel pipe pile 10 of the comparative example.
  • the diameter reduction ratio D2 / D1 is preferably in the range of 0.70 to 0.95. In order to reduce the construction resistance by about 20%, it is more preferable to set the diameter reduction ratio D2 / D1 in the range of 0.80 to 0.94.
  • the machine (machine rank) used for construction is selected according to the construction space and the output (or pushing force) required for normal construction.
  • Table 1 as an example, the output of the vibro hammer used in the general vibration method and the output of the vibro hammer required when the construction resistance ratio (construction load) of the steel pipe pile is reduced by 20% and 25%. It shows. From Table 1, if the construction resistance ratio of the steel pipe pile is reduced by 20%, the output of the vibro hammer can be surely lowered by one rank. Moreover, if the construction resistance ratio is reduced by 25%, the output of the vibro hammer can be surely lowered by one rank or more.
  • a more preferable range of the diameter length ratio H1 / D1 is 0.4 or more and 1.7 or less. Further, a more preferable range of the diameter reduction ratio D2 / D1 is 0.80 or more and 0.94 or less.
  • the most preferable range of the diameter length ratio H1 / D1 is 0.5 or more and 1.4 or less.
  • the most preferable range of the diameter reduction ratio D2 / D1 is 0.85 or more and 0.93 or less.
  • the general construction machine shown in Table 1 and Table 2 was illustrated, the machine which constructs the steel pipe pile 1 is not restrict
  • the ratio of the pile tip portion (tapered portion) 4 to reduce the diameter that is, the diameter reduction rate D2 / D1 and the length of the tapered portion 4 in the longitudinal direction.
  • the construction resistance (ground resistance) received by the steel pipe pile tip varies greatly depending on the two parameters of the length / length ratio H1 / D1, which is the ratio of the height H1 and the pile outer diameter D1 of the straight portion 8. Further, if the diameter reduction ratio D2 / D1 and the diameter length ratio H1 / D1 are within a predetermined range, the total construction resistance (ground resistance) is reduced compared to the straight steel pipe pile 10 that is an open-ended pile, and the workability is reduced. Will improve.
  • FIG. 4 is a graph showing the relationship between the diameter reduction ratio D2 / D1 (horizontal axis) of the tapered portion 4 and the tip bearing force ratio (vertical axis) with respect to the straight steel pipe pile.
  • FIG. 5 is a graph showing the relationship between the ratio H1 / D1 (horizontal axis) between the taper length H1 of the tapered portion 4 and the pile outer diameter D1 of the straight portion and the tip support force ratio (vertical axis) with respect to the straight steel pipe pile. It is.
  • the tip support force ratio is the tip support force of the steel pipe pile 1 having a tapered portion when the tip support force of the straight steel pipe pile 10 of the comparative example is 1.0.
  • the tip support force ratio is a ratio between the tip support force of the steel pipe pile 1 having a tapered portion and the tip support force of the straight steel pipe pile 10 of the comparative example.
  • both the steel pipe pile 1 having a tapered portion and the straight steel pipe pile 10 of the comparative example are at least a length of at least one times the pile outer diameter D1 in the layer used as the support layer. It must be intrusive.
  • the layer used as the support layer generally has an N value obtained from a standard penetration test (for example, a test method stipulated in JIS A1219) of 30 or more in the ground including sand, gravel layer and rock, It is more than 10 ground in the viscous ground.
  • the diameter length ratio H1 / D1 in FIG. 4 is 1.0
  • the diameter reduction ratio D2 / D1 in FIG. 5 is 0.9.
  • the correlation between the diameter reduction ratio D2 / D1 and the construction resistance ratio is the correlation shown in FIG. It is the same.
  • the correlation between diameter length ratio H1 / D1 and construction resistance ratio is the correlation shown in FIG. It is the same.
  • the cost required to manufacture the steel pipe pile 1 having the tapered portion is about 10% higher than the cost of manufacturing the straight steel pipe pile 10. That is, the processing cost of the tapered portion 4 is about 10% of the manufacturing cost of the straight steel pipe pile.
  • the tip support force ratio resistance performance against vertical load
  • the number of steel pipe piles required to support a predetermined load can be reduced by 10%.
  • the material cost of the steel pipe pile can be reduced by 10%. Therefore, it is preferable to ensure the tip support force ratio of at least 10% or more. By further improving the tip support force ratio, the number of piles used can be reduced.
  • the tip support force ratio is 1.3 or more, and the diameter reduction ratio D2 / D1. Is 0.95, the tip support force ratio is 1.1 or more. Therefore, when the diameter reduction ratio D2 / D1 is in the range of 0.70 to 0.95, the tip support force ratio is increased to 1 or more (particularly 10% or more). Further, in the steel pipe pile 1 having a tapered portion, the tip supporting force is 1.40 or more when the diameter reduction ratio D2 / D1 is in the range of 0.80 to 0.90.
  • the steel pipe pile 1 having a tapered portion has a tip support force improved by 40% or more compared to the straight steel pipe pile 10 of the comparative example.
  • the diameter reduction ratio D2 / D1 is 0.70 or more and 0. .95 or less is preferable.
  • a more preferable range of the diameter reduction ratio D2 / D1 is 0.80 to 0.90. Further, as shown in FIG.
  • the tip support force ratio is about 1.2, and when the diameter / length ratio H1 / D1 is 2.5, the tip support force ratio. Is 1.1, and when the diameter length ratio H1 / D1 is 1.0, the tip support force ratio is 1.4. Therefore, in order to increase the pile tip supporting force of the steel pipe pile 1 having the tapered portion by 10% or more than the pile tip supporting force of the straight steel pipe pile 10, the diameter length ratio H1 / D1 is 0.3 or more and 2.5 or less. It is preferable that
  • the diameter length ratio H1 / D1 is reduced and the diameter reduction ratio D2 / D1 is increased, the cost required for processing the taper portion 4 (particularly plastic processing) can be suppressed. Therefore, it is preferable to set the upper limit of the diameter length ratio H1 / D1 and to set the lower limit of the diameter reduction ratio D2 / D1.
  • the upper limit of the diameter length ratio H1 / D1 is at least 2.5 and 1.7. 1.4 is most preferable.
  • the lower limit of the diameter length ratio H1 / D1 is at least 0.1, preferably 0.3, more preferably 0.4, and most preferably 0.5.
  • the lower limit of the diameter reduction ratio D2 / D1 is preferably 0.70, more preferably 0.80, and most preferably 0.85.
  • the upper limit of the diameter reduction ratio D2 / D1 is preferably 0.95, more preferably 0.94, still more preferably 0.93, and most preferably 0.90. . Therefore, considering the reduction of the construction resistance ratio and the improvement of the pile tip bearing force ratio, the most preferable range of the diameter length ratio H1 / D1 is 0.5 to 1.4, and the most preferable diameter reduction ratio D2 The range of / D1 is 0.85 to 0.90.
  • the dimensions of the steel pipe pile 1 having the tapered portion used in the test in creating the graphs of FIGS. 2 to 5 described above will be described.
  • the plate thickness t of the steel pipe pile 1 is 4.2 mm.
  • board thickness t of the steel pipe pile 1 is 2.8 mm.
  • Ratio) H1 / D1 is set to 0.1 to 2.5.
  • the pile outer diameter D1 is 100 mm and the plate
  • the entire tapered portion 4 including the tapered inner peripheral surface 3 or the tapered outer peripheral surface 2 is penetrated into the support layer.
  • the construction resistance can be reduced and the construction can be efficiently performed as compared with the case where the straight steel pipe pile 10 is driven on the ground.
  • the pile tip supporting force of the pile 1 is improved. Therefore, it becomes possible to reduce the construction period of piles and the number of piles, and an economical steel pipe pile foundation can be constructed.
  • the steel pipe pile 1 having the taper portion includes a length (taper length) H1 of the taper portion 4 in the pile longitudinal direction, and an overall length of the steel pipe pile (the length H2 of the straight portion 8 and the taper length H1 of the taper portion 4). It is preferable that the ratio H1 / L with respect to (L) is in the range of 0.01 to 0.1. If the length H1 of the taper portion 4 in the pile longitudinal direction is longer than one tenth (0.1 times) the entire length L of the steel pipe pile, the processing range of the taper portion 4 per pile becomes long. The processing cost is large and uneconomical.
  • the ratio of the length H1 of the taper part 4 of the taper part 4 with respect to the full length L of the steel pipe pile is 0.01 or more and 0.1 or less about the steel pipe pile 1 which has a taper part.
  • the ratio (diameter-to-length ratio) H1 / D1 between the length H1 of the taper portion 4 in the pile longitudinal direction and the pile outer diameter D1 of the straight portion 8 is in the range of 0.1 to 2.5
  • the taper The shape of the tapered portion 4 is determined so that the ratio (reduction ratio) D2 / D1 between the outer diameter D2 of the portion 4 and the pile outer diameter D1 of the straight portion 8 is in the range of 0.70 to 0.95. It is preferable.
  • the pile outer diameter D1 of the straight part (straight part) 8 is good in it being at least 600 mm.
  • the pile outer diameter D1 of the steel pipe pile 1 which has a taper part is 600 mm or more.
  • the pile outer diameter D1 may be 3000 mm or less.
  • the thickness (wall thickness) t of the straight portion 8 of the steel pipe pile 1 having the tapered portion is 6 mm or more and 30 mm or less. Is preferred.
  • the plate thickness t ′ of the tapered portion 4 and the plate thickness t of the straight portion 8 may be the same in consideration of workability or economy at the time of manufacture.
  • the tapered outer peripheral surface 2 is connected to the pile outer peripheral surface 9 of the straight portion 8 having a constant pile outer diameter D1 without a step.
  • the tapered inner peripheral surface 3 is connected to the pile inner peripheral surface 7 of the straight portion 8 without a step.
  • the plate load t ′ of the tapered portion 4 may be larger than the plate thickness t of the straight portion because it receives a larger load at the time of construction and after the construction than the straight portion 8.
  • the plate thickness t ′ of the tapered portion 4 is preferably 6 mm or more and 40 mm or less.
  • the tapered outer peripheral surface 2 and the pile outer peripheral surface 9 of the straight portion 8 do not necessarily match.
  • the taper-shaped inner peripheral surface 3 and the pile inner peripheral surface 7 of the straight portion 8 do not necessarily match.
  • the steel pipe pile 1 When constructing the steel pipe pile 1 having the tapered portion described above, it can be appropriately constructed by a known construction method.
  • the steel pipe pile 1 may be placed on the ground by a vibration method, a hammering method, a press-fitting method, a rotary press-fitting method, or other appropriate pile construction method.
  • the following method can be used as a method for manufacturing a steel pipe pile having a tapered portion at the tip. That is, the steel pipe pile may be manufactured by cold bending molding or cold press molding so that the tip of one steel pipe forms a tapered portion. Further, a steel pipe pile having a tapered portion may be manufactured by welding the large end face of the tapered short pipe to the end face of the straight steel pipe.
  • a tape-shaped short pipe can be manufactured by processing a fan-shaped strip steel plate into a taper shape by cold bending and joining both side edges of the tape-shaped strip steel plate by welding. In this case, the fan-shaped strip steel plate is processed so that the outer diameter of the large end of the tapered short pipe is substantially the same as the outer diameter of the straight steel pipe.

Landscapes

  • Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Piles And Underground Anchors (AREA)

Abstract

 この鋼管杭は、円筒形状を有するストレート部と;このストレート部の一端に対して連なるとともに前記一端から離れる方向に向かって外径及び内径が先細りになるテーパー部と;を備えた鋼管杭であって、前記テーパー部の大端及び小端間の長さ寸法H1を、前記大端における外径寸法D1で除した径長比H1/D1が0.1以上かつ2.5以下である。

Description

鋼管杭
 本発明は、港湾構造物、橋梁基礎や建物の基礎等の土木建築分野において使用される鋼管杭に関する。
 本願は、2009年04月10日に、日本に出願された特願2009-095734号に基づき優先権を主張し、その内容をここに援用する。
 従来、杭の外周面の摩擦力を高めるために、杭の一端部にテーパー状の外周面を有する摩擦杭、及び杭全長にわたるテーパー状の外周面を有する摩擦杭が知られている(例えば、特許文献1、2参照)。
 また、地盤表層部を締め固めるために、テーパー状の外周面を有するテーパー状杭を格子状に打ち込んで地盤の液状化を防止する技術も知られている(例えば、特許文献3参照)。また、負の周面摩擦力を除去するために、テーパー状杭を地盤に貫入させる技術も知られている(例えば、特許文献4参照)。
 また、テーパー状の外周面と閉塞した先端とを有するコーンを杭の先端部に設けた閉端杭も知られている(例えば、特許文献5参照)。
 上述したように、従来のテーパー状杭では、杭周面の摩擦力を高めることを目的としている。しかしながら、従来のテーパー状杭では、杭先端支持力の獲得及び杭施工時に抵抗となる先端閉塞の低減を目的としていない。
 なお、場所打ち鉄筋コンクリート杭または既成コンクリート杭を埋設するために、先端部にテーパー状外周面とテーパー状内周面とを有するケーシングを用いる技術も知られている(例えば、特許文献6、7参照)。
 上述した従来のテーパー状外周面とテーパー状内周面とを有するケーシングでは、杭周面の摩擦力を高めて杭の垂直荷重支持力を増大させるとともに、掘削残土を低減させることを目的としている。しかしながら、杭先端支持力の獲得及び杭施工時に抵抗となる先端閉塞の低減を目的としていない。
 鋼管杭は、鋼管杭の先端の形状によって、先端が閉塞している閉端杭と、先端が開口している開端杭とに分類される。本発明の鋼管杭は、開端杭に分類される。
 また、鋼管杭は、摩擦杭と支持杭とに分類される。摩擦杭は、支持層まで打ち込まないで主に周面摩擦力によって支持力を生じさせる。また、支持杭は、支持層に打ち込んで杭先端部の支持力を主に発揮させる。本発明の鋼管杭は、支持杭に分類される。
特開2003-3465号公報 特開2007-327280号公報 特開2008-190116号公報 特開昭57-81526号公報 特開平8-284160号公報 特開2008-297752号公報 特開2005-248439号公報
 鋼管杭を地盤に打設または貫入させる場合に、例えば、鋼管杭に直接荷重をかけて打設すると、地盤抵抗を上回る貫入力を鋼管杭に負荷する必要がある。
 地盤抵抗は、一般的に鋼管杭の打設深度の増加に伴い大きくなる。開端杭を地盤に貫入させる場合、図6Aに示すように、鋼管杭内に取り込まれた土(または石や岩を含んだ土)11は、鋼管杭内に堆積し、鋼管杭によって拘束される。そのため、鋼管杭内周面12と鋼管杭内に取り込まれた土11との摩擦力が高まり、地盤抵抗のなかでも、管内周面抵抗が増加することが知られている。
 これまで、杭打ち機の能力の増強や、管内周面抵抗の軽減を目的とする鋼管杭内側に設置された配管からの水噴射または圧搾空気の噴射や、アースオーガー及びハンマグラブによる管内の排土といった各種の打設補助策が提案されてきた。
 これらの打設補助策では、鋼管杭の打設を補助する一方で、鋼管杭の製作コストが増大し、杭施工工期が長くなる。そのため、鋼管杭に打設補助策を付与する場合でも、鋼管杭の製作コストおよび鋼管杭の施工コストを低減し、総コストを低く抑えることが可能な鋼管杭が望まれる。
 また、従来、回転圧入工法に用いる杭支持力を高めるための鋼管杭として、杭全長にわたるテーパー状外周面と杭全長にわたるテーパー状内周面とを備えたテーパー状杭が知られている。杭の周面摩擦力を利用する杭(摩擦杭)は、軟弱地盤に貫入されるため、極端に先細なテーパー状にすることができる。しかしながら、支持層に貫入させて杭先端部の支持力を利用する杭(支持杭)では、振動工法等により支持層に杭先端部を貫入させる必要がある。そのため、地盤に打設する鋼管杭を従来のような極端なテーパー状にすると、杭打ち込み抵抗が格段に大きくなり、杭打ち機の性能を一段と高める必要がある。また、杭全長にわたって杭をテーパー状に加工する場合には、そのための加工設備が大型化し、加工コストが格段に高くなるため、経済的に鋼管杭を製造することができない。
 そのため、従来、振動工法等に用いる鋼管杭として、図7A~7Cに示すような、全長に渡って外径が一定でかつ先端が開口している鋼管杭(ストレート鋼管杭)10が用いられる。しかし、上述した理由から、鋼管杭の先端部をテーパー状とした杭先端が開口している鋼管杭は、用いられていない。
 杭先端が開口されている開端杭において、杭先端部がテーパー状である、すなわち、杭先端部がテーパー状外周面およびテーパー状内周面を有する場合には、下記(1)及び(2)の利点が考えられる。なお、図6Bを用いて、これらの利点を説明する。
 (1)鋼管杭1の先端部がテーパー状であると、管内に取り込まれる土11の量を低減できるため、土の密度上昇が抑制される。そのため、鋼管杭1の打設抵抗の主な要因であり、管内に取り込まれた土11と鋼管杭の内周面7との間で発揮される管内周面抵抗を軽減できる。
 (2)鋼管杭1の先端部4がテーパー状であると、支持層に支持される鋼材部の鉛直方向の投影断面積が大きくなる。そのため、図6Bに示すように、鋼管杭先端部の周りの土(または石や岩を含んだ土)14からの反力(および拘束力)を効率よく受けることにより安定する。したがって、獲得できる杭先端支持力を大きくすることができる。ここで、鋼管杭先端部の周りの土15は、鋼管外側の土(または石や岩を含んだ土)13が好適な方向に圧縮されている。また、鋼管杭の先端部の周りの土(または石や岩を含んだ土)14からの反力を図6B中の矢印を用いて示している。
 本発明者らは、振動工法、打撃工法、圧入工法、回転圧入工法等の各工法において、テーパー状の杭先端部を有する鋼管杭が利用可能であることを見出した。さらに、本発明者らは、テーパー状の杭先端部を有する鋼管杭を地盤に打設しても、地盤抵抗が軽減され施工性が向上することを見出し、本発明を完成させた。
 上記知見に加えて、本発明者らは、杭先端部が縮径する比率(縮径率)と、テーパー状の杭先端部(テーパー部)の杭長手方向の長さと杭先端部の最大外径との比率(径長比)とに着目した。そこで、本発明者らは、杭先端部が受ける地盤抵抗について調査するために、杭を打設する施工実験および打設した杭に鉛直荷重をかける支持力実験を実施した。その結果、上述した杭先端部が縮径する比率と、テーパー状の杭先端部の杭長手方向の長さと杭先端部の最大外径との比率との、2つのパラメータによって鋼管杭先端部が受ける地盤抵抗が変化するという知見を得た。本発明者らは、これらのパラメータを所定の範囲に制限した杭先端部(テーパー部)を有する鋼管杭を使用することによって、全長に渡って外径が一定のストレートな鋼管の開端杭を使用した場合と比べて、トータルの地盤抵抗が軽減されて施工性が向上することを見出した。さらに、本発明者らは、硬い支持層において上述したテーパー部が地盤抵抗を受け持つため支持力が向上することを見出し、本発明を完成させた。
 本発明は、杭先端支持力を得ることができ、杭施工時の抵抗を低減でき、振動工法等の各種工法に用いることが可能な鋼管杭を提供することを目的とする。
 本発明は、上述した課題を解決するために、以下の手段を採用した。
 (1)本発明の鋼管杭は、円筒形状を有するストレート部と;このストレート部の一端に対して連なるとともに前記一端から離れる方向に向かって外径及び内径が先細りになるテーパー部と;を備えた鋼管杭であって、前記テーパー部の大端及び小端間の長さ寸法H1を、前記大端における外径寸法D1で除した径長比H1/D1が0.1以上かつ2.5以下である。
 (2)上記(1)に記載の鋼管杭は、前記小端の外径寸法D2を前記大端におけるD1で除した縮径率D2/D1が、0.70以上かつ0.95以下であってもよい。
 (3)上記(1)または(2)に記載の鋼管杭は、前記テーパー部の全体が、地盤の支持層に貫入される貫入部であってもよい。
 (4)上記(1)または(2)に記載の鋼管杭は、前記テーパー長さH1と前記ストレート部の長さ寸法H2との和である合計長さ寸法Lを前記テーパー部の前記長さ寸法H1で除した比が0.01以上かつ0.1以下であってもよい。
 (5)上記(1)または(2)に記載の鋼管杭は、前記大端における前記外径寸法D1が、600mm以上かつ3000mm以下であってもよい。
 上記(1)に記載の鋼管杭は、テーパー状外周面およびテーパー状内周面を有するテーパー部の杭長手方向の長さH1と、テーパー部の大端における外径寸法D1との比率が0.1~2.5の範囲である。そのため、上記(1)に記載の鋼管杭を地盤に打設した場合には、ストレート鋼管杭に比べて施工性を向上させることができる。さらに、上記(1)に記載の鋼管杭を支持層等に貫入させた場合には、ストレート鋼管杭に比べて杭先端支持力を向上させることができる。
 上記(2)に記載の鋼管杭は、テーパー部の先端(小端)の外径D2と、テーパー部の大端における外径寸法D1との比率である縮径率D2/D1が、0.70~0.95の範囲である。そのため、上記(2)に記載の鋼管杭は、ストレート鋼管杭に比べて杭施工時における施工抵抗を軽減させ、杭先端支持力を格段に高めることができる。
 上記(3)に記載の鋼管杭は、テーパー部の全体が支持層に貫入させる貫入部であるので、杭外径および鋼管杭の板厚tが同じストレート鋼管杭に比べて、鋼管杭基礎としての杭先端支持力が向上する。
 上記(4)に記載の鋼管杭は、テーパー部の杭長手方向の長さと、鋼管杭全長との比率H1/Lが、0.01以上0.1以下であるので、実用上、杭外径および鋼管杭の板厚tが同じストレート鋼管杭に比べて、地盤貫入時の杭施工抵抗を軽減させ、支持層貫入時の杭先端支持力を高めることができる。
 上記(5)に記載の鋼管杭は、テーパー部の大端における外径寸法D1が、少なくとも600mmであるので、テーパー部を支持層に貫入させた場合に、テーパー部の外周面の面積と、支持層に支持される鋼管杭の鉛直方向の投影断面積とが大きくなり、獲得できる杭先端支持力を高めることができる。
本発明の一実施形態に係るテーパー部を有する鋼管杭を示す正面図である。 本発明の一実施形態に係るテーパー部を有する鋼管杭を示す縦断面図である。 本発明の一実施形態に係るテーパー部を有する鋼管杭を示す図1Bのa-a断面の矢視図である。 本発明の一実施形態に係るテーパー部を有する鋼管杭を示す図1Bのb-b断面の矢視図である。 テーパー長さH1とストレート部の杭外径D1との比率H1/D1と、ストレート鋼管杭に対する施工抵抗比との関係を示すグラフである。 縮径率D2/D1と、ストレート鋼管杭に対する施工抵抗比との関係を示すグラフである。 縮径率D2/D1と、ストレート鋼管杭に対する先端支持力比との関係を示すグラフである。 テーパー長さH1とストレート部の杭外径D1との比率H1/D1と、ストレート鋼管杭に対する先端支持力比との関係を示すグラフである。 ストレート鋼管杭を地盤に貫入させた場合に生じる地盤抵抗の説明図である。 テーパー部を有する鋼管杭を地盤に貫入させた場合に生じる地盤抵抗の説明図である。 比較例としてのストレート鋼管杭を示す正面図である。 比較例としてのストレート鋼管杭を示す縦断面図である。 比較例としてのストレート鋼管杭を示す横断面図である。
 以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。
 図1A~1Dには、本発明の一実施形態に係るテーパー部を有する鋼管杭1が示されている。
 本発明のテーパー部を有する鋼管杭1は、振動工法等の適宜の工法により打設される。この鋼管杭1は、中空のストレート部8と中空のテーパー部4とにより構成される。ストレート部8は、一定の杭外径と筒形状とを有する。テーパー部4は、ストレート部8の端面に連続する大端(大径側端部)5と開口する小端(小径側端部)6とを有する。また、テーパー部4の内径と外径とは、いずれも大端5から小端6に向けて漸次減少する。すなわち、テーパー部4(先端部)には、テーパー部4とストレート部8との境界(大端5)からテーパー部4の先端(小端6)に向かって杭長手方向に漸次縮径するテーパー状外周面2およびテーパー状内周面3が設けられている。なお、鋼管杭1は、より大きな水平力及びモーメントに抵抗するために、鋼管杭1の頭部に、ストレート部8の杭外径よりも大きな径の鋼管を接続してもよい。また、本実施形態では、ストレート部8の杭外径が、テーパー部4の大端5の外径と等しい場合について説明を行っている。
 テーパー状外周面2およびテーパー状内周面3の杭長手方向の断面形状は、図1Bに示すように直線状(平面)であってもよく、図示を省略するが、曲線状(曲面)であってもよい。また、テーパー状外周面2およびテーパー状内周面3の杭長手方向の断面形状は、杭中心軸から半径方向で外側に向かって凸(半径方向で内側に向かって凹)であっても、杭中心軸から半径方向で内側に向かって凸(半径方向で外側に向かって凹)であってもよい。また、テーパー状外周面2およびテーパー状内周面3は、杭長手方向に漸次段状に縮径してもよい。しかしながら、鋼管杭1を安価に製作し、杭長手方向に連続した断面を形成するため、テーパー状外周面2およびテーパー状内周面3は、直線状または曲線状であることが望ましい。
 図1A~1Dの一実施形態では、テーパー部4のテーパー状外周面2の杭長手方向の長さ(テーパー長さ、大端5と小端6との間の距離)H1と、ストレート部(外径が一定の定常部)8の杭外径D1(大端の外径D1)との比率(H1/D1、テーパー部4の杭長手方向の長さH1を杭外径D1で割った径長比)は、0.1以上2.5以下である。同様に、テーパー部4のテーパー状内周面3の杭長手方向の長さH1と、杭外径D1との比率(径長比)H1/D1は、0.1以上2.5以下である。テーパー部4の先端(小端)6の外径(先端外径)D2とストレート部8の杭外径D1との比率である縮径率(D2/D1、小端の先端外径D2をストレート部の杭外径D1で割った縮径率)は、0.70以上0.95以下であることが好ましい。この縮径率D2/D1は、鋼管杭先端の縮径率である。なお、本実施形態では、テーパー部4の杭長手方向(杭軸方向)の長さH1と、テーパー部4の先端(小端)6の外径D2と、ストレート部8の杭外径D1と、テーパー角θとの間には、下記(1)式の関係がある。
tanθ=(D1-D2)/2H1・・・(1)
 なお、径長比H1/D1の範囲を0.1~2.5に、縮径率D2/D1の範囲を0.70~0.95に変化させた際のテーパー角θの範囲は、0.57°~56.31°に相当する。
 上述したように、テーパー状外周面2およびテーパー状内周面3の杭長手方向の長さ(テーパー長さ)H1と、杭外径D1との比率(径長比)H1/D1を0.1以上2.5以下の範囲に設定した。また、テーパー部4の先端(小端)6の外径D2と、ストレート部8の杭外径D1との比率である縮径率D2/D1を、好ましい範囲として、0.70以上0.95以下の範囲に設定した。これらの範囲を決定した理由について、図2から図5を参照して説明する。
 図2は、テーパー部4のテーパー長さH1とストレート部8の杭外径D1との比率(径長比)H1/D1と、ストレート鋼管杭に対する施工抵抗比との関係を示すグラフである。また、図3は、テーパー部4の縮径率D2/D1と、ストレート鋼管杭に対する施工抵抗比との関係を示すグラフである。図2及び図3中において、施工抵抗比を求めるために、本発明の上記実施形態であるテーパー部を有する鋼管杭1と、比較例である図7A~7Cに示すストレート鋼管杭10とについて試験地盤(土槽)を用いた打設試験(比較試験)を行い、これらの鋼管杭が支持層に達するまでの施工抵抗を求めた。施工抵抗比は、ストレート鋼管杭10の施工抵抗に対するテーパー部を有する鋼管杭1の施工抵抗の比率である。なお、図2における縮径率D2/D1は、0.9であり、図3における径長比(テーパー部径長比)H1/D1は、0.8である。ここで、図2と異なる縮径率D2/D1の鋼管杭1を用いて施工抵抗を測定した場合、径長比H1/D1と施工抵抗比との相関関係は、図2に示される相関関係と同様である。また、図3と異なる径長比H1/D1の鋼管杭1を用いて施工抵抗を測定した場合、縮径率D2/D1と施工抵抗比との相関関係は、図3に示される相関関係と同様である。以下、図2及び図3について、順に説明する。
 図2には、本発明の上記実施形態であるテーパー部を有する鋼管杭1について、テーパー部4の杭長手方向の長さH1と、ストレート部8の杭外径D1との比率(径長比)H1/D1を横軸として変化させ、テーパー部を有する鋼管杭1の施工抵抗と、比較例のストレート鋼管杭10の施工抵抗との比率である施工抵抗比を縦軸として示している。図2から、テーパー部を有する鋼管杭1の施工抵抗比は、テーパー部4の長さの変化とともに、下に凸の曲線を描くことがわかる。また、径長比H1/D1が極端に小さい場合には、テーパー部を有する鋼管杭1の施工抵抗比は、比較例のストレート鋼管杭10の施工抵抗比(すなわち、施工抵抗比が1である)に近づくことがわかる。同様に、径長比H1/D1が極端に大きい場合には、テーパー部を有する鋼管杭1の施工抵抗比は、比較例のストレート鋼管杭10の施工抵抗比に近づくことがわかる。
 なお、本発明において、杭の施工抵抗は、杭を地盤(地層)に施工(貫入施工)する際に、杭が支持層に達するまでの施工にかかる負荷(地盤抵抗)である。また、施工抵抗比は、比較例のストレート杭10の施工抵抗を1.0とした場合のテーパー部を有する鋼管杭1の施工抵抗である。すなわち、施工抵抗比は、テーパー部を有する鋼管杭1の施工抵抗と、比較例のストレート杭10の施工抵抗との比率と定義される。この施工抵抗比は、施工速度と負の相関関係を有する。すなわち、所定の出力(機械出力)で施工する場合には、施工抵抗比を低下させることにより、施工速度が増加する。そのため、工期を短縮し、施工コストを低減させることができる。また、所定の期間(工期)で施工する場合には、施工抵抗比を低下させることにより、施工に必要とされる出力が低下するため、施工に使用される機械をより低い能力(出力)の機械に変えて、施工コストを低減させることができる。したがって、施工抵抗比を低下させることにより、施工の要求に応じて、工期と施工機械とを柔軟に選択できる。なお、テーパー部を有する鋼管杭1を製造するコスト(または、エネルギー)を考慮すると、施工抵抗を少なくとも10%以上低下させる必要がある。
 図2からわかるように、径長比H1/D1が0.1の時に、施工抵抗比は、0.9であり、同様に、径長比H1/D1が1の時に、施工抵抗比は、0.7であり、径長比H1/D1が2.5の時に、施工抵抗比は、0.9である。したがって、径長比H1/D1が0.1~2.5の範囲において、テーパー部を有する鋼管杭1の施工抵抗は、比較例のストレート鋼管杭10の施工抵抗に比べて10%低減する。また、径長比H1/D1が0.4~1.7の範囲において、テーパー部を有する鋼管杭1の施工抵抗は、比較例のストレート鋼管杭10の施工抵抗に比べて20%低減する。
 したがって、施工抵抗を10%以上低下させるためには、径長比H1/D1を0.1~2.5の範囲に設定する必要がある。この場合、テーパー部4の杭長手方向(杭軸方向)長さは、杭外径D1の長さの0.1倍~2.5倍である。また、施工抵抗を20%以上低下させるために、径長比H1/D1を0.4~1.7の範囲に設定することが好ましい。この場合、テーパー部4の杭長手方向(杭軸方向)長さは、杭外径D1の長さの0.4倍~1.7倍である。上述した範囲の径長比H1/D1のテーパー部を有する鋼管杭1を地盤に打設すれば、地盤抵抗が軽減されて施工性が向上する。
 また、図3には、本実施形態のテーパー部を有する鋼管杭1について、テーパー部4の先端(小端)6の外径D2とストレート部8の杭外径D1との比率である縮径率D2/D1を横軸として変化させ、テーパー部を有する鋼管杭1の施工抵抗と、比較例のストレート鋼管杭10の施工抵抗との比率である施工抵抗比を縦軸として示している。
 図3から、本実施形態のテーパー部を有する鋼管杭1では、縮径率D2/D1が0.7では、施工抵抗比が0.9であり、縮径率D2/D1が0.95では、施工抵抗比が0.9である。また、縮径率D2/D1が0.70~0.95の範囲において、施工抵抗比が0.9以下である。さらに、縮径率D2/D1が0.80~0.94の範囲において、施工抵抗比が0.8以下である。すなわち、この縮径率D2/D1が0.80~0.94の範囲において、テーパー部を有する鋼管杭1の施工抵抗は、比較例のストレート鋼管杭10の施工抵抗に比べて、80%程度以下まで低減する。以上のことから、施工抵抗を10%以上低下させるためには、縮径率D2/D1は、0.70~0.95の範囲であることが好ましい。また、施工抵抗を約20%低下させるために、縮径率D2/D1を0.80~0.94の範囲に設定することがより好ましい。
 また、施工に使用される機械(機械のランク)は、施工スペース及び通常施工に必要とされる出力(または、押込み力)に応じて選択される。表1中に、一例として、一般的な振動工法で用いられるバイブロハンマーの出力と、鋼管杭の施工抵抗比(施工荷重)を20%および25%削減した場合に必要とされるバイブロハンマーの出力とを示す。表1から、鋼管杭の施工抵抗比を20%削減すれば、バイブロハンマーの出力を確実に1ランク下げることができる。また、施工抵抗比を25%削減すれば、バイブロハンマーの出力を確実に1ランク以上下げることができる。
Figure JPOXMLDOC01-appb-T000001
 したがって、鋼管杭の施工抵抗比を20%以上低減することがより好ましい。すなわち、径長比H1/D1のより好ましい範囲は、0.4以上1.7以下である。また、縮径率D2/D1のより好ましい範囲は、0.80以上0.94以下である。
 また、表2中に、一例として、一般的な回転圧入工法で用いられる機械の押込み力と、鋼管杭の施工抵抗比(施工荷重)を25%削減した場合に必要とされる機械の押込み力とを示す。表2から、鋼管杭の施工抵抗比を25%削減すれば、機械の押込み力を確実に1ランク下げることができる。
Figure JPOXMLDOC01-appb-T000002
 したがって、鋼管杭の施工抵抗比を25%以上低減することが最も好ましい。すなわち、径長比H1/D1の最も好ましい範囲は、0.5以上1.4以下である。また、縮径率D2/D1の最も好ましい範囲は、0.85以上0.93以下である。なお、表1および表2に示す一般的な施工機を例示したが、鋼管杭1を施工する機械は、表1および表2の施工機のみに制限されない。
 上述したように、本実施形態のテーパー部を有する鋼管杭1では、杭先端部(テーパー部)4の縮径する割合、すなわち、縮径率D2/D1と、テーパー部4の長手方向の長さH1とストレート部8の杭外径D1との比率である径長比H1/D1との、2つのパラメータによって、鋼管杭先端部の受ける施工抵抗(地盤抵抗)が大きく変化する。また、縮径率D2/D1と径長比H1/D1とが所定の範囲であれば、開端杭であるストレート鋼管杭10と比べて、トータルの施工抵抗(地盤抵抗)が軽減されて施工性が向上する。
 また、図4は、テーパー部4の縮径率D2/D1(横軸)と、ストレート鋼管杭に対する先端支持力比(縦軸)との関係を示すグラフである。図5は、テーパー部4のテーパー長さH1とストレート部の杭外径D1との比率H1/D1(横軸)と、ストレート鋼管杭に対する先端支持力比(縦軸)との関係を示すグラフである。先端支持力比は、比較例のストレート鋼管杭10の先端支持力を1.0とした場合のテーパー部を有する鋼管杭1の先端支持力である。すなわち、先端支持力比は、テーパー部を有する鋼管杭1の先端支持力と、比較例のストレート鋼管杭10の先端支持力との比率である。鋼管杭の先端支持力を確保するためには、テーパー部を有する鋼管杭1も比較例のストレート鋼管杭10も、支持層として用いられる層に、少なくとも杭外径D1の1倍以上の長さまで貫入していることが必要である。ここで、支持層として用いられる層は、一般的に、標準貫入試験(例えば、JIS A1219に規定される試験方法)から求められるN値が、砂、砂れき層及び岩を含む地盤では30以上、粘性土地盤では10以上の地盤である。なお、図4における径長比H1/D1は、1.0であり、図5における縮径率D2/D1は、0.9である。ここで、図4と異なる径長比H1/D1の鋼管杭1を用いて施工抵抗を測定した場合、縮径率D2/D1と施工抵抗比との相関関係は、図4に示される相関関係と同様である。また、図5と異なる縮径率D2/D1の鋼管杭1を用いて施工抵抗を測定した場合、径長比H1/D1と施工抵抗比との相関関係は、図5に示される相関関係と同様である。
 ここで、テーパー部を有する鋼管杭1を製造するために必要とされるコストは、ストレート鋼管杭10を製造するコストよりも約10%高い。すなわち、テーパー部4の加工コストがストレート鋼管杭の製造コストの約10%である。また、先端支持力比(鉛直荷重に対する抵抗性能)を10%向上すれば、所定の荷重を支持するために必要とされる鋼管杭の本数を10%低減することができる。この場合には、鋼管杭の材料コストを10%削減することができる。そのため、先端支持力比を少なくとも10%以上確保することが好ましい。先端支持力比をさらに向上させることにより、杭の使用本数を減らすことができる。
 図4に示すように、本実施形態のテーパー部を有する鋼管杭1では、縮径率D2/D1が0.70では、先端支持力比が1.3以上であり、縮径率D2/D1が0.95では、先端支持力比が1.1以上である。したがって、縮径率D2/D1が0.70~0.95の範囲において、先端支持力比が1以上(特に、10%以上)に上昇している。また、テーパー部を有する鋼管杭1では、縮径率D2/D1が0.80~0.90の範囲において、先端支持力が1.40以上である。このように、縮径率D2/D1が0.80~0.90の範囲において、テーパー部を有する鋼管杭1は、比較例のストレート鋼管杭10に比べて、先端支持力が40%以上向上する。以上のことから、テーパー部を有する鋼管杭1の杭先端支持力をストレート鋼管杭10の杭先端支持力よりも10%以上増加させるためには、縮径率D2/D1が0.70以上0.95以下であることが好ましい。より好ましい縮径率D2/D1の範囲は、0.80~0.90である。
 また、図5に示すように、径長比H1/D1が0.3では、先端支持力比は、約1.2であり、径長比H1/D1が2.5では、先端支持力比は、1.1であり、径長比H1/D1が1.0では、先端支持力比は、1.4である。したがって、テーパー部を有する鋼管杭1の杭先端支持力をストレート鋼管杭10の杭先端支持力よりも10%以上増加させるために、径長比H1/D1は、0.3以上2.5以下であることが好ましい。
 なお、径長比H1/D1を減らし、縮径率D2/D1を大きくすれば、テーパー部4の加工(特に、塑性加工)に必要とされるコストを抑えることができる。そのため、径長比H1/D1の上限を設定し、縮径率D2/D1の下限を設定することが好ましい。
 テーパー部を有する鋼管杭1において、施工抵抗比および杭先端支持力比の両方を検討した場合、径長比H1/D1の上限は、少なくとも、2.5であり、1.7であることが好ましく、1.4であることが最も好ましい。また、径長比H1/D1の下限は、少なくとも、0.1であり、0.3であることが好ましく、0.4であることがより好ましく、0.5であることが最も好ましい。同様に、縮径率D2/D1の下限は、0.70であることが好ましく、0.80であることがより好ましく、0.85であることが最も好ましい。さらに、縮径率D2/D1の上限は、0.95であることが好ましく、0.94であることがより好ましく、0.93であることがさらに好ましく、0.90であることが最も好ましい。
 したがって、施工抵抗比の低減および杭先端支持力比の向上を総合的に考慮すると、最も好ましい径長比H1/D1の範囲は、0.5~1.4であり、最も好ましい縮径率D2/D1の範囲は、0.85~0.90である。
 ここで、上述した図2~5の各グラフを作成する上で、試験に用いたテーパー部を有する鋼管杭1の寸法について説明する。鋼管杭1の基端側にあるストレート部8の杭外径D1を100mmに設定する場合には、鋼管杭1の板厚tは、4.2mmである。また、鋼管杭1の基端側にあるストレート部8の杭外径D1を76mmに設定する場合には、鋼管杭1の板厚tは、2.8mmである。また、図1Aまたは図1B中では、テーパー状外周面2およびテーパー状内周面3の杭長手方向の長さH1と、杭外径D1(ストレート部8の外径)との比率(径長比)H1/D1を0.1~2.5に設定している。
 また、試験に用いた比較例のストレート鋼管杭10の寸法については、杭外径D1が100mmで鋼管杭の板厚tが4.2mmである。
 テーパー部を有する鋼管杭1は、テーパー状内周面3あるいはテーパー状外周面2を含むテーパー部4の全体が支持層に貫入されることが好ましい。テーパー部を有する鋼管杭1を地盤に打設した場合には、ストレート鋼管杭10を地盤に打設した場合に比べて、施工抵抗を低減して効率よく施工することができる。さらに、上述したようにテーパー部4の全体を支持層に貫入させることにより、杭外径D1および鋼管杭の板厚が同じストレート鋼管杭10の杭先端支持力に比べて、テーパー部を有する鋼管杭1の杭先端支持力が向上する。そのため、杭の施工期間および杭の打設本数を低減することも可能になり、経済的な鋼管杭基礎を構築できる。
 テーパー部を有する鋼管杭1は、テーパー部4の杭長手方向の長さ(テーパー長さ)H1と、鋼管杭の全長(ストレート部8の長さH2とテーパー部4のテーパー長さH1との合計)Lとの比率H1/Lが、0.01以上0.1以下の範囲となるように製作されることが好ましい。テーパー部4の杭長手方向の長さH1が、鋼管杭の全長Lの10分の1(0.1倍)より長いと、杭1本当りのテーパー部4の加工範囲が長くなるため、杭の加工コストが大きく不経済である。また、テーパー部4の杭長手方向の長さH1が、鋼管杭の全長Lの100分の1(0.01倍)より短いと、地盤から杭の周面が受ける摩擦抵抗力の絶対値が大きくなるため、上述した施工抵抗の低減効果が小さくなる。そのため、テーパー部を有する鋼管杭1を、鋼管杭の全長Lに対するテーパー部4の杭長手方向の長さH1の比率が、0.01以上0.1以下であることが好ましい。加えて、テーパー部4の杭長手方向の長さH1と、ストレート部8の杭外径D1との比率(径長比)H1/D1が0.1~2.5の範囲で、かつ、テーパー部4の外径D2と、ストレート部8の杭外径D1との比率(縮径率)D2/D1が、0.70~0.95の範囲となるようにテーパー部4の形状を決定することが好ましい。
 また、テーパー部を有する鋼管杭1では、ストレート部(直線状部)8の杭外径D1が、少なくとも600mmであるとよい。テーパー部4を支持層に貫入させた場合に、杭径が大きいほど、テーパー部4の外周面の面積が大きくなり、支持層に支承される面積および支持層からの反力(および拘束力)が大きくなる。そのため、テーパー部を有する鋼管杭1の杭外径D1は、600mm以上であることが好ましい。さらに、杭としての用途及び経済性を考慮すると、杭外径D1は、3000mm以下であってもよい。加えて、鋼管杭の強度を確保して材料コストおよび施工コストを削減するために、テーパー部を有する鋼管杭1のストレート部8の板厚(肉厚)tは、6mm以上30mm以下であることが好ましい。同様に、製造時における加工性または経済性を考慮して、テーパー部4の板厚t’とストレート部8の板厚tとが、同じであってもよい。この場合には、テーパー状外周面2は、一定の杭外径D1を有するストレート部8の杭外周面9に段差無く接続している。同様に、テーパー状内周面3は、ストレート部8の杭内周面7に段差無く接続している。また、ストレート部8に比べて施工時及び施工後に大きな負荷を受けるため、テーパー部4の板厚t’は、ストレート部の板厚tより大きくてもよい。具体的には、テーパー部4の板厚t’は、6mm以上40mm以下であることが好ましい。この場合には、テーパー状外周面2と、ストレート部8の杭外周面9とは、必ずしも一致しない。また、テーパー状内周面3と、ストレート部8の杭内周面7とは、必ずしも一致しない。
 上述したテーパー部を有する鋼管杭1を施工する場合には、適宜公知の施工方法により施工することができる。例えば、振動工法、打撃工法、圧入工法、回転圧入工法あるいはその他の適宜の杭施工工法によって地盤に鋼管杭1を打設施工してもよい。
 上述した先端部にテーパー部を有する鋼管杭の製作方法としては、以下の方法を用いることができる。すなわち、1本の鋼管の先端部がテーパー部を形成するように、冷間曲げ成形あるいは冷間プレス成型によって鋼管杭を製作してもよい。また、テーパー状の短管の大端面をストレート鋼管の端面に溶接して、テーパー部を有する鋼管杭を製作してもよい。ここで、扇状の帯鋼板を冷間曲げ成形によりテーパー状に加工し、テーパー加工された帯鋼板の両側縁部を溶接により接合することにより、テーパー状の短管を製作することができる。この場合、テーパー状の短管の大端部の外径がストレート鋼管の外径と略同じになるように扇状の帯鋼板を加工する。また、鋼管の先端部を塑性加工してテーパー部を有する鋼管杭を製作してもよい。
 杭先端支持力を獲得でき、杭施工時の抵抗を低減でき、杭施工時において抵抗となる杭先端の閉塞を低減することが可能な鋼管杭を提供することができる。
 1  鋼管杭(テーパー部を有する鋼管杭)
 2  テーパー状外周面
 3  テーパー状内周面
 4  テーパー部(先端部)
 5  大端(大径側端部)
 6  小端(先端、小径側端部)
 7  杭内周面
 8  ストレート部(外径が一定の定常部)
 9  杭外周面
 10  ストレート鋼管杭
 11  鋼管杭内に取り込まれた土(または石や岩を含んだ土)
 12  杭内周面
 13  鋼管外側の土(または石や岩を含んだ土)
 15  鋼管杭先端部の周りの土(または石や岩を含んだ土)

Claims (5)

  1.  円筒形状を有するストレート部と;
     このストレート部の一端に対して連なるとともに前記一端から離れる方向に向かって外径及び内径が先細りになるテーパー部と;
    を備えた鋼管杭であって、
     前記テーパー部の大端及び小端間の長さ寸法H1を、前記大端における外径寸法D1で除した径長比H1/D1が0.1以上かつ2.5以下である
    ことを特徴とする鋼管杭。
  2.  前記小端の外径寸法D2を前記大端におけるD1で除した縮径率D2/D1が、0.70以上かつ0.95以下であることを特徴とする請求項1に記載の鋼管杭。
  3.  前記テーパー部の全体が、地盤の支持層に貫入される貫入部であることを特徴とする請求項1または2に記載の鋼管杭。
  4.  前記テーパー長さH1と前記ストレート部の長さ寸法H2との和である合計長さ寸法Lを前記テーパー部の前記長さ寸法H1で除した比が0.01以上かつ0.1以下であることを特徴とする請求項1または2に記載の鋼管杭。
  5.  前記大端における前記外径寸法D1が、600mm以上かつ3000mm以下であることを特徴とする請求項1または2に記載の鋼管杭。
PCT/JP2010/002602 2009-04-10 2010-04-09 鋼管杭 WO2010116758A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201080014917.7A CN102365409B (zh) 2009-04-10 2010-04-09 钢管桩
SG2011068368A SG174509A1 (en) 2009-04-10 2010-04-09 Steel pipe pile
KR1020117023220A KR101331703B1 (ko) 2009-04-10 2010-04-09 강관 말뚝
JP2010525551A JP4635114B2 (ja) 2009-04-10 2010-04-09 鋼管杭
AU2010235744A AU2010235744B2 (en) 2009-04-10 2010-04-09 Steel pipe pile
HK12103867.0A HK1163198A1 (en) 2009-04-10 2012-04-19 Steel pipe pile

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-095734 2009-04-10
JP2009095734 2009-04-10

Publications (1)

Publication Number Publication Date
WO2010116758A1 true WO2010116758A1 (ja) 2010-10-14

Family

ID=42936049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/002602 WO2010116758A1 (ja) 2009-04-10 2010-04-09 鋼管杭

Country Status (9)

Country Link
JP (1) JP4635114B2 (ja)
KR (1) KR101331703B1 (ja)
CN (1) CN102365409B (ja)
AU (1) AU2010235744B2 (ja)
HK (1) HK1163198A1 (ja)
MY (1) MY154167A (ja)
SG (1) SG174509A1 (ja)
TW (1) TWI384107B (ja)
WO (1) WO2010116758A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012005197A1 (ja) * 2010-07-05 2012-01-12 新日本製鐵株式会社 鋼管杭及びその施工方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI576488B (zh) * 2014-12-23 2017-04-01 新日鐵住金股份有限公司 鋼管樁之制止旋轉構造

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5781526A (en) * 1980-11-07 1982-05-21 Masatoshi Sawaguchi Tapered steel tubular pile
JPS63236815A (ja) * 1987-03-23 1988-10-03 Kawasaki Steel Corp ドリル鋼管杭
JP2003003465A (ja) * 2001-06-20 2003-01-08 Norio Moriya テーパー基礎杭
JP2007327280A (ja) * 2006-06-08 2007-12-20 Sumitomo Forestry Co Ltd 鋼管杭の施工方法
JP2008190116A (ja) * 2007-01-31 2008-08-21 Sumitomo Forestry Co Ltd 建物の基礎地盤の液状化対策構造

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE207168T1 (de) * 1995-07-31 2001-11-15 Helmut Hemmerlein Gmbh & Co Ba Verfahren zur einbringung von sich verjüngenden pfählen, zugehörige pfähle, und daraus hergestellte gründungen und fundamentbildungen
US6309143B1 (en) * 1998-05-27 2001-10-30 Stanley Merjan Composite pile with tapering lower portion and method for driving pile into granular soil
JP4191451B2 (ja) * 2002-09-30 2008-12-03 大和ハウス工業株式会社 回転圧入式鋼杭用の先端部品及び鋼杭
JP2004218235A (ja) * 2003-01-14 2004-08-05 Nakajima Steel Pipe Co Ltd 鋼管杭および鋼管杭の製造方法
CN100453741C (zh) * 2003-04-04 2009-01-21 株式会社奥特-塞特 组装式钢管桩
CN100507159C (zh) * 2003-04-29 2009-07-01 立基工程有限公司 可加强水平抗弯强度和刚度的组合桩段及其施工方法
CN2729151Y (zh) * 2004-09-16 2005-09-28 颜小荣 高强度空心增效桩尖
JP5335200B2 (ja) * 2007-04-09 2013-11-06 常郎 後藤 スパイラル鋼管杭
KR20090050562A (ko) * 2007-11-16 2009-05-20 백규호 테이퍼형 강관을 이용한 긴 말뚝 시공법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5781526A (en) * 1980-11-07 1982-05-21 Masatoshi Sawaguchi Tapered steel tubular pile
JPS63236815A (ja) * 1987-03-23 1988-10-03 Kawasaki Steel Corp ドリル鋼管杭
JP2003003465A (ja) * 2001-06-20 2003-01-08 Norio Moriya テーパー基礎杭
JP2007327280A (ja) * 2006-06-08 2007-12-20 Sumitomo Forestry Co Ltd 鋼管杭の施工方法
JP2008190116A (ja) * 2007-01-31 2008-08-21 Sumitomo Forestry Co Ltd 建物の基礎地盤の液状化対策構造

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012005197A1 (ja) * 2010-07-05 2012-01-12 新日本製鐵株式会社 鋼管杭及びその施工方法
JP4988068B2 (ja) * 2010-07-05 2012-08-01 新日本製鐵株式会社 鋼管杭及びその施工方法

Also Published As

Publication number Publication date
SG174509A1 (en) 2011-10-28
TWI384107B (zh) 2013-02-01
JP4635114B2 (ja) 2011-02-16
AU2010235744A1 (en) 2011-10-13
KR20110132436A (ko) 2011-12-07
KR101331703B1 (ko) 2013-11-20
CN102365409B (zh) 2014-05-28
JPWO2010116758A1 (ja) 2012-10-18
TW201116672A (en) 2011-05-16
HK1163198A1 (en) 2012-09-07
AU2010235744B2 (en) 2014-12-18
CN102365409A (zh) 2012-02-29
MY154167A (en) 2015-05-15

Similar Documents

Publication Publication Date Title
US10513831B2 (en) Open-end extensible shells and related methods for constructing a support pier
EP2141286B1 (en) Spiral steel pipe pile
US9091036B2 (en) Extensible shells and related methods for constructing a support pier
JP2011006946A (ja) 地盤改良工法
JP4635114B2 (ja) 鋼管杭
JP2010059603A (ja) テーパー杭の施工方法及びテーパー杭
JP5177066B2 (ja) 鋼管杭及びその施工方法
US20210087769A1 (en) Extensible shells and related methods for constructing a ductile support pier
JP6836284B2 (ja) 基礎杭と基礎杭を打ち込む方法
JP5040699B2 (ja) 合成摩擦杭
JP5975231B2 (ja) 開端鋼管杭及びその施工方法
JP5177064B2 (ja) 基礎杭及びその施工方法
WO2012005197A1 (ja) 鋼管杭及びその施工方法
KR0144777B1 (ko) 나선홈내기용 오거드릴과, 이 오거드릴로 지중 홀의 주벽에 나선홈을 시공하는 방법 및 나선홈에 의해 지지력이 보강된 지중말뚝
JP5177065B2 (ja) 鋼管杭及びその施工方法
JP5145995B2 (ja) 合成摩擦杭
JP4596930B2 (ja) 中掘り根固め工法用の杭体
JP7290105B2 (ja) 連続壁構築方法
JP2002356847A (ja) 基礎杭の支持構造および基礎杭の施工方法
RU38179U1 (ru) Конструкция буронабивной сваи
Wolosick Ultimate micropile bond stresses observed during load testing in clays and sands
JP2004218341A (ja) 鋼管杭
Muslih Purwana et al. Axial pile capacity prediction obtained from environmental friendly jack-in piling test on clayey soil
KR20020043484A (ko) 콘크리트주입박관말뚝
JP2001303562A (ja) ソイルセメント合成h形鋼杭の造成方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080014917.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010525551

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10761461

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010235744

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 20117023220

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2010235744

Country of ref document: AU

Date of ref document: 20100409

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10761461

Country of ref document: EP

Kind code of ref document: A1