WO2010116647A1 - Method for forming resist pattern, and device - Google Patents

Method for forming resist pattern, and device Download PDF

Info

Publication number
WO2010116647A1
WO2010116647A1 PCT/JP2010/002139 JP2010002139W WO2010116647A1 WO 2010116647 A1 WO2010116647 A1 WO 2010116647A1 JP 2010002139 W JP2010002139 W JP 2010002139W WO 2010116647 A1 WO2010116647 A1 WO 2010116647A1
Authority
WO
WIPO (PCT)
Prior art keywords
resist
resist layer
development
atmospheric pressure
substrate
Prior art date
Application number
PCT/JP2010/002139
Other languages
French (fr)
Japanese (ja)
Inventor
上原剛
青山哲平
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to CN2010800127958A priority Critical patent/CN102362224A/en
Publication of WO2010116647A1 publication Critical patent/WO2010116647A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/38Masks having auxiliary features, e.g. special coatings or marks for alignment or testing; Preparation thereof
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/68Preparation processes not covered by groups G03F1/20 - G03F1/50

Definitions

  • the present invention relates to a method of forming a resist pattern and a device manufactured by the method, and more particularly to a method of forming a resist pattern suitable for manufacturing a photomask or a color filter as the device.
  • a photomask is a device used to manufacture electronic elements such as integrated circuits. Since the pattern of the photomask is transferred to the electronic element, the quality of the pattern greatly affects the quality of the electronic element.
  • a photomask manufacturing process An example of a photomask manufacturing process will be described.
  • a light-shielding film made of chromium or the like is coated on the entire surface of the sufficiently cleaned glass substrate (light-shielding film forming step).
  • a photosensitive resist is applied on the light-shielding film by spin coating or slit coating (resist coating process).
  • the resist can be classified into a positive type and a negative type.
  • the applied resist is pre-baked (initial baking) and then exposed along a desired pattern (exposure process).
  • exposure process In a positive type resist, the exposed portion is decomposed and becomes soluble.
  • a negative resist the exposed portion is polymerized and becomes insoluble. After exposure, it may be baked again if necessary.
  • a developing solution is made to contact a resist and a pattern is developed (development process).
  • a developer that dissolves the exposed portion is used in the case of a positive resist.
  • a developer that dissolves the resist other than the exposed portion is used in the case of a negative resist.
  • the exposed portion of the positive resist is removed, and the exposed portion of the negative resist remains.
  • the substrate is washed with a rinsing solution to sufficiently remove moisture, and then post-baking (final baking) is performed.
  • the process so far is called a photolithography method.
  • the light shielding film in the portion not covered with the resist is etched (etching step).
  • the resist covering the remaining light shielding film is removed by dissolving it in an organic solvent (resist removing step).
  • the photolithography method described above is also applied to the production of color filters for liquid crystal displays.
  • the exposure process employs a method in which a resist is directly drawn by irradiating an electron beam on the resist, or a method in which a pattern mask is arranged on the upper side of the resist and ultraviolet rays are irradiated from above the pattern mask. Yes.
  • the development process is generally performed by any one of the three development methods of dip, shower, and paddle.
  • Dip development is a development method in which a substrate to be developed is immersed in a developer and rocked. It is often applied to manual development work in the early stage of mass production. In general, a large number of substrates to be developed are collectively attached to a dedicated suspension device.
  • shower development is a developing method in which a developing substrate is placed on a roller conveyor and moved across the shower of the developing solution while the developing solution is constantly blown out from a jet nozzle. It is the most common method in devices that perform automated flow operations. One after another, new developer is accelerated and comes into contact with the resist on the surface of the substrate to be developed. For this reason, the developing speed is the fastest among the three developing methods. Further, the amount of developer used per substrate to be developed can be reduced by collecting the developer after spraying and recycling it through a filtration device.
  • Paddle development is a method in which a developer film is formed on the surface of a substrate to be developed and developed.
  • the film of the developer is formed by dropping the developer on the surface of the substrate to be developed from a slit-shaped opening or spraying it in a mist with a sprayer.
  • Paddle development is the best among the three development methods in terms of development uniformity, and is effective in dealing with development unevenness in shower development.
  • Patent Document 1 describes that a gas containing oxygen is turned into plasma under the vicinity of atmospheric pressure to ash the photoresist.
  • Patent Document 2 describes that a gas containing fluoride is discharged at atmospheric pressure to ash the resist.
  • the above three development methods in the development process have the following problems.
  • the substrate to be developed is swung in the developer in order to promote the progress of the development, but the flow of the phenomenon liquid on the surface of the substrate to be developed is worse than that in the shower development.
  • the developer stays at the same position on the surface of the substrate to be developed during the development period. Therefore, the contact between the resist and the developer is static, and the development is performed with almost only chemical reaction force. For this reason, the developing speed is slower than other developing methods. Further, since the developer is stationary on the substrate to be developed, the used developer is deteriorated and the developing power is reduced. There is also a large amount of impurities. Accordingly, it is difficult to circulate and reuse the developer, and it is always necessary to use a new developer. For this reason, the consumption amount of the developer per one substrate to be developed is larger than in other development methods. In particular, when the surface of the resist is uneven, it is necessary to increase the film thickness of the developer, and the consumption of the developer increases more and more.
  • a resist pattern forming method includes a resist coating process in which a photosensitive resist is applied to a substrate of a device to form a resist layer, and light is partially applied to the resist layer.
  • An atmospheric pressure remote plasma lyophilic process in which a processing gas for lyophilicity is blown through a discharge space near atmospheric pressure and is brought into contact with the resist layer;
  • a development step of bringing a developer into contact with the resist layer; are sequentially executed.
  • the developer in the subsequent development process, the developer can be uniformly coated on the surface of the resist layer, and development can be performed uniformly. Since the wettability is good, the uniformity of development can be sufficiently ensured even in shower development. In dip development, even if the flow of the phenomenon liquid on the surface of the substrate to be developed is somewhat bad, the uniformity of development can be sufficiently secured. Therefore, a good resist pattern can be formed, and a product with good quality can be manufactured. Further, since the wettability is good, the consumption of the developer can be reduced. In particular, in paddle development, even if the surface of the resist layer is uneven, it is not necessary to increase the film thickness of the developer, and the consumption of the developer can be reliably reduced.
  • the lyophilic processing gas is preferably nitrogen gas or a mixed gas of nitrogen and oxygen.
  • the oxygen content of the lyophilic processing gas is preferably 0 to 20% by volume, more preferably 0 to 5% by volume, and still more preferably 0.01 to 1% by volume.
  • the atmospheric pressure remote plasma lyophilic process is performed near atmospheric pressure including atmospheric pressure.
  • the vicinity of atmospheric pressure means a range of 1.013 ⁇ 10 4 Pa to 50.663 ⁇ 10 4 Pa, and considering the ease of pressure adjustment and the simplification of the apparatus configuration, 1.333 ⁇ 10 4 Pa to 10 .664 ⁇ 10 4 Pa is preferable, and 9.331 ⁇ 10 4 Pa to 10.9797 ⁇ 10 4 Pa are more preferable.
  • a lyophilic (surface wettability imparting, surface energy improvement) treatment method ultraviolet irradiation treatment or corona treatment in an oxygen (air) atmosphere is well known.
  • ultraviolet irradiation treatment cannot be applied.
  • corona treatment if a metal film is coated on the substrate to be processed, local arc discharge may fall on the metal film, and the substrate to be processed may be damaged. It is conceivable that wettability is imparted by exposure to oxygen plasma under vacuum, but placing the substrate to be processed in a vacuum device, removing it after plasma processing, and proceeding to the next process will increase the process and increase equipment costs. In addition, the processing time is increased.
  • the substrate to be processed is arranged away from the discharge space near the atmospheric pressure, and the processing gas converted into plasma in the discharge space is blown out toward the substrate to be processed. Therefore, by adjusting the positional relationship between the discharge space and the process gas blowout port, or by providing a light shielding member between the discharge space and the blowout port or between the blowout port and the substrate to be processed, It is possible to easily avoid the generated plasma light from hitting the substrate to be processed, and to prevent the resist from being altered by the plasma light.
  • the distance between the electrode and the substrate to be processed is adjusted, or an electric field shielding member made of an electrically grounded conductor is provided between the electrode and the substrate to be processed. By interposing it in the substrate, it is possible to easily prevent the substrate to be processed from being damaged.
  • an atmospheric pressure remote plasma ashing process is performed in which an ashing process gas is blown out through another discharge space in the vicinity of atmospheric pressure to contact the resist layer.
  • an ashing process gas is blown out through another discharge space in the vicinity of atmospheric pressure to contact the resist layer.
  • the surface layer portion of the resist layer is lightly ashed (light ashed) in the vicinity of atmospheric pressure including atmospheric pressure.
  • the layer portion below the surface layer of the resist layer is left by adjusting the ashing time and the processing gas conditions.
  • remote plasma ashing the swelled portion of the object to be processed is more likely to come into contact with the active ashing gas and the ashing speed is higher than that of the recessed portion.
  • the thickness of the resist layer can be made uniform, and the surface of the resist layer can be flattened. Therefore, in the subsequent exposure step, the resist portion to be exposed can be uniformly exposed and uniformly altered, and the altered resist portion and the unaltered resist portion can be clearly distinguished. Therefore, in the development process, the resist portion removed by the developer and the remaining resist portion can be clearly distinguished. As a result, a better resist pattern can be formed. Furthermore, it is possible to further reduce the consumption of the developing solution per one substrate to be processed. Particularly in paddle development, the thickness of the developer film stretched on the resist layer can be further reduced, and the consumption of the developer can be reliably reduced.
  • the ashing processing gas is preferably nitrogen gas or a mixed gas of nitrogen and oxygen.
  • the oxygen content of the ashing processing gas is preferably 0 to 20% by volume, more preferably 0 to 10% by volume, and still more preferably 0.01 to 5% by volume.
  • the ultraviolet asher is a photoexcited ashing apparatus that strips a resist using a chemical reaction between the gas and a resist under irradiation of ultraviolet rays in an ashing chamber into which a gas such as ozone is introduced.
  • the substrate to be processed is arranged away from the discharge space near the atmospheric pressure, and the processing gas converted into plasma in the discharge space is blown out toward the substrate to be processed. Therefore, by adjusting the positional relationship between the discharge space and the process gas blowout port, or by providing a light shielding member between the discharge space and the blowout port or between the blowout port and the substrate to be processed, It is possible to easily avoid the generated plasma light from hitting the substrate to be processed, and to prevent the resist from being altered by the plasma light.
  • the distance between the electrode and the substrate to be processed is adjusted, or an electric field shielding member made of an electrically grounded conductor is provided between the electrode and the substrate to be processed. By interposing it in the substrate, it is possible to easily prevent the substrate to be processed from being damaged.
  • a device according to the present invention is manufactured by the above-described resist pattern forming method.
  • the device include a photoresist and a color filter.
  • a photoresist having a good transfer pattern can be obtained.
  • this photoresist it is possible to manufacture an electronic device product of excellent quality.
  • a color filter having a good matrix pattern and thus a good RGB pattern can be obtained.
  • the surface of the resist layer can be made lyophilic and wettability can be improved.
  • the developer By performing development on that, the developer can be uniformly coated on the surface of the resist layer, and development can be performed uniformly. Thereby, a good quality resist pattern can be formed. Further, the consumption of the developer can be reduced.
  • FIG. 1 is a cross-sectional view of a photomask blank showing a photomask (device) manufacturing process according to an embodiment of the present invention, after a resist coating process or a pre-bake process, and before an atmospheric pressure remote plasma ashing process.
  • the device to be manufactured in this embodiment is a photomask 9.
  • the photomask 9 has a glass substrate 91.
  • a light shielding film 92 is coated on the surface of the glass substrate 91.
  • a predetermined pattern 92 a is formed on the light shielding film 92.
  • a light shielding film 92 is coated on the entire surface of the glass substrate 91 to form a photomask blank 90.
  • a component of the light shielding film 92 is, for example, a metal such as chromium.
  • As the coating method for example, sputtering is applied.
  • a resist made of a liquid photosensitive resin is applied on the light shielding film 92 to form a resist layer 93.
  • a positive resist is used, but a negative resist may be used.
  • the thickness of the resist layer 93 is about several ⁇ m to 100 ⁇ m.
  • a spin coater or a slit coater may be used.
  • the resist thickness on the outer peripheral portion of the photomask blank 90 tends to be larger than the resist thickness on the inner side of the photomask blank 90.
  • the resist thickness at the beginning of coating tends to be larger than at other portions. Therefore, as exaggeratedly shown in FIG. 1, the surface (upper surface) of the resist layer 93 tends to be uneven.
  • the atmospheric pressure remote plasma ashing apparatus 1 has a processing head 10.
  • a pair of electrodes 11 is provided in the processing head 10 so as to face each other.
  • a solid dielectric layer (not shown) is formed on the opposing surface of each electrode 11.
  • One electrode 11 is connected to a power source 12.
  • the other electrode 11 is electrically grounded.
  • the waveform of the supply voltage of the power supply 12 may be a pulse wave or a continuous wave.
  • the ashing processing gas supply source 14 is connected to the upstream end of the discharge space 13.
  • a pure nitrogen gas or a mixed gas of nitrogen and oxygen is used as the processing gas for ashing of the supply source 14.
  • the oxygen concentration in the processing gas is preferably 0 to 20% by volume, more preferably 0 to 10% by volume, and still more preferably 0.01 to 5% by volume.
  • This ashing processing gas (N 2 + O 2 ) is introduced into the discharge space 13 to be turned into plasma.
  • the plasma-ized processing gas is blown out from the blowout port 15 at the bottom of the processing head 10.
  • a photomask blank 90 is disposed below the processing head 10.
  • the photomask blank 90 is sprayed with the ashing processing gas that has been converted into plasma.
  • the surface layer portion 93e of the resist layer 93 is lightly ashed as indicated by the phantom line in FIG.
  • the resist layer 93 below the surface layer portion 93e is left.
  • the raised portion of the object to be processed is closer to the processing head 10 than the recessed portion of the object to be processed, and comes into contact with a higher activity ashing gas, resulting in a higher ashing speed. large. Therefore, the convex portion on the surface of the resist layer 93 is removed by ashing prior to the concave portion on the surface of the resist layer 93. Thereby, the thickness of the resist layer 93 can be made uniform, and the surface of the resist layer 93 can be flattened. Therefore, in the resist coating process, it is not necessary to require the uniformity of coating severely.
  • the photomask blank 90 is reciprocated left and right by the moving mechanism 17.
  • the photomask blank 90 may be fixed and the processing head 10 may be reciprocated.
  • the speed and number of reciprocating movements are appropriately set according to the type of resist and the film thickness to be ashed, and preferably set to such an extent that the resist is lightly ashed.
  • the moving speed is preferably 0.2 to 10 m / min, and more preferably 0.5 to 2 m / min.
  • the number of movements is preferably about 5 to 50 times, with one way in the forward or backward direction as one time.
  • the photomask blank 90 may be heated to an appropriate temperature by the heating unit 18.
  • the photomask blank 90 is disposed outside the discharge space 13, it is possible to easily prevent the light shielding film 92 from being damaged by being exposed to plasma. Further, the arrangement relationship between the discharge space 13 and the outlet 15 is adjusted, or a light shielding member (not shown) is provided between the discharge space 13 and the outlet 15 or between the outlet 15 and the photomask blank 90. By doing so, it is possible to easily avoid the plasma light generated in the discharge space 13 from hitting the photomask blank 90. As a result, the resist layer 93 can be prevented from being altered by the plasma light.
  • An electric field shielding member 16 is preferably provided at the bottom of the processing head 10. The electric field shielding member 16 is made of metal and is electrically grounded.
  • the electric field shielding member 16 shields the electric field from the electrode 11 connected to the power source 12, and thus prevents arc discharge from dropping from the electrode 11 to the light shielding film 92. Thereby, it can prevent that the photomask blank 90 receives an electric field damage.
  • the photomask blank 90 is irradiated with the electron beam 3a by the electron beam irradiation apparatus 3, and the photomask blank 90 is drawn so as to draw a desired pattern at the irradiation point of the electron beam 3a. Move relative to. Thereby, the resist layer 93 can be partially exposed. Since the surface of the resist layer 93 is sufficiently flattened, the resist portion 93a to be exposed in the resist layer 93 can be uniformly exposed to be uniformly altered. Therefore, it is possible to clearly distinguish the resist portion 93a that has been altered by the exposure from the resist portion 93b that has not been exposed and has not been altered.
  • a pattern mask may be disposed on the upper side of the photomask blank 90, and ultraviolet rays may be partially irradiated to the resist layer 93 through the pattern holes of the pattern mask 3.
  • ultraviolet rays mainly 436 nm g-line or 365 nm i-line is used. Any ultraviolet ray may be selected according to the type of resist. The exposure time of ultraviolet rays is usually about several seconds to 30 seconds.
  • PEB Post Exposure Bake
  • the atmospheric pressure remote plasma lyophilic apparatus 2 has a processing head 20.
  • a pair of electrodes 21, 21 are provided in the processing head 20 so as to face each other.
  • a solid dielectric layer (not shown) is formed on the opposing surface of each electrode 21.
  • One electrode 21 is connected to a power source 22.
  • the other electrode 21 is electrically grounded.
  • the waveform of the supply voltage of the power supply 22 may be a pulse wave or a continuous wave.
  • a lyophilic processing gas supply source 24 is connected to the upstream end of the discharge space 23.
  • a pure nitrogen gas or a mixed gas of nitrogen and oxygen is used as the lyophilic processing gas of the supply source 24.
  • the oxygen concentration in the processing gas is preferably 0 to 20% by volume, more preferably 0 to 5% by volume, and still more preferably 0.01 to 1% by volume.
  • This processing gas (N 2 + O 2 ) is introduced into the discharge space 23 and turned into plasma.
  • the plasma-ized processing gas is blown out from the blowout port 25 at the bottom of the processing head 20.
  • a photomask blank 90 is placed below the processing head 20.
  • the plasma-processed processing gas is sprayed onto the photomask blank 90. Thereby, the surface energy of the resist layer 93 is increased, and the surface of the resist layer 93 can be made lyophilic to improve the wettability with respect to the developer.
  • the photomask blank 90 is moved in the left-right direction by the moving mechanism 27.
  • the photomask blank 90 may be fixed and the processing head 20 may be moved. Although the speed and number of movements can be set as appropriate, one movement in one direction is usually sufficient.
  • the photomask blank 90 is disposed outside the discharge space 23, the light shielding film 92 can be easily prevented from being damaged by being exposed to plasma. Further, the arrangement relationship between the discharge space 23 and the outlet 25 is adjusted, or a light shielding member (not shown) is provided between the discharge space 23 and the outlet 25 or between the outlet 25 and the photomask blank 90. By doing so, it is possible to easily avoid the plasma light generated in the discharge space 23 from hitting the photomask blank 90. As a result, the resist layer 93 can be prevented from being altered by the plasma light.
  • An electric field shielding member 26 is preferably provided at the bottom of the processing head 20. The electric field shielding member 26 is made of metal and is electrically grounded.
  • the electric field shielding member 26 shields the electric field from the electrode 21 connected to the power source 22, and thus prevents arc discharge from dropping from the electrode 21 to the light shielding film 92. Thereby, it can prevent that the photomask blank 90 receives an electric field damage.
  • the developer 5 is brought into contact with the photomask blank 90. Since the surface of the resist layer 93 is hydrophilized by the atmospheric pressure remote plasma treatment in the previous step, the developer 5 can be brought into contact with the surface of the resist layer 93 quickly and uniformly. As a result, the altered portion 93a of the positive resist layer 93 that has been irradiated with light is dissolved and removed in the developer 5, and only the unmodified portion 93b that has not been irradiated with light remains. In the case where a negative resist is used, the non-altered portion not irradiated with light is removed, and the altered portion irradiated with light remains. Since the altered portion 93a and the unmodified portion 93b are clearly separated, a desired resist pattern can be obtained.
  • the development method may be dip development, shower development, or paddle development. Since the developing solution 5 has good paintability, it is possible to develop sufficiently uniformly by preventing development unevenness in shower development as well as in paddle development. In the dip development, even if the flow of the phenomenon liquid on the surface of the photomask blank 90 is somewhat worse, the development uniformity can be sufficiently secured. Furthermore, since the surface of the resist layer 93 is flattened by the atmospheric pressure remote plasma ashing process before exposure, the developer 5 can be reliably brought into contact with the surface of the resist layer 93, and the development uniformity. Can be further enhanced. Furthermore, the consumption of the developer 5 per photomask blank 90 can be reduced.
  • the film thickness of the developer 5 stretched on the resist layer 93 can be reduced, and the consumption of the developer 5 can be reduced. Even if the surface of the resist layer 93 is uneven, the wettability is good, so that it is not necessary to increase the film thickness of the developer 5 in paddle development, and the consumption of the developer is surely reduced. it can.
  • Rinse process After development, wash with a rinse solution.
  • the rinse liquid may be pure water.
  • the resist layer 93 covering the remaining light-shielding film 92 is removed by dissolving with an organic solvent or the like. Thereby, the light shielding film 92 is exposed. Since a desired resist pattern is obtained in the development process, a desired pattern 92a can be obtained for the light shielding film 92 as well. Thereby, the photomask 9 of good quality can be formed.
  • the present invention is not limited to the above embodiment, and various modes can be adopted within the scope of the gist.
  • one atmospheric pressure remote plasma processing apparatus may be used as the atmospheric pressure remote plasma ashing apparatus 1 and the atmospheric pressure remote plasma lyophilic apparatus 2.
  • the specific procedure of each process may be changed as appropriate, and the washing process, baking process, and the like may be omitted as appropriate.
  • the present invention is not limited to the production of a photomask, but can also be applied to the production of other devices such as color filters by photolithography.
  • a positive resist was applied to the entire surface of the glass substrate 91 by slit coating and further pre-baked.
  • the size of the glass substrate was 510 mm ⁇ 610 mm.
  • the initial average thickness of the resist layer 93 was 500 nm.
  • ZEP520 manufactured by Nippon Zeon Co., Ltd. was used as the resist.
  • the pre-baking temperature was 150 ° C.
  • a mixed gas of nitrogen 600 L / min and oxygen 0.15 L / min was used as the processing gas.
  • the input power from the power source 12 to the electrode 11 was 3 kW.
  • the conveyance speed by the moving mechanism 17 was 1.2 m / min.
  • the treatment temperature was room temperature and no heating was performed. Thereafter, a developing process, a rinsing process, and a post-baking process were sequentially performed.
  • the development method in the development process was dip development. ZED-50N (manufactured by Zeon Corporation) was used as a developer.
  • the immersion time of the developer was 90 sec. Pure water was used as a rinsing liquid in the rinsing process.
  • the post-baking temperature was 150 ° C.
  • the thickness of the resist layer 93 was measured, and the amount of thickness reduction (initial average thickness-measured thickness) was evaluated.
  • the measurement was performed at a total of 99 locations at intervals of 60 mm in the width direction orthogonal to the conveyance direction of the surface of the resist layer 93 and at intervals of 65 mm in the conveyance direction. Further, the water contact angle of the surface of the resist layer 93 after pre-baking (before atmospheric pressure remote plasma treatment) and after atmospheric pressure remote plasma treatment was measured.
  • Example 2 As a comparative example, with respect to a sample subjected to the same treatment process under the same conditions as in Example 1 except that the atmospheric pressure remote plasma treatment is omitted, the resist thickness reduction evaluation and water resistance are the same as in Example 1. The contact angle was measured.
  • the surface of the resist layer can be planarized by performing the atmospheric pressure remote plasma treatment.
  • the hydrophilicity of the resist layer can be greatly improved by performing the atmospheric pressure remote plasma treatment. Therefore, it was confirmed that in the subsequent development process, the developer can be brought into contact with the surface of the resist layer quickly and uniformly, and development can be performed uniformly.
  • the present invention is applicable to, for example, the manufacture of a photomask.

Abstract

Disclosed is a method for forming a resist pattern, wherein the uniformity of development is improved by increasing the wettability of the surface of a resist layer when the resist pattern is formed on a device such as a photoresist. Specifically, a resist layer (93) is formed by applying a photosensitive resist over a substrate (91) (resist application step). Then, the resist layer (93) is partially irradiated with light (light exposure step). After that, a process gas for lyophilization is brought into contact with the resist layer (93) by being expelled through a discharge space (23) at near atmospheric pressure (atmospheric-pressure remote plasma lyophilization step). Then, a developer liquid (5) is brought into contact with the resist layer (93) (development step).

Description

レジストパターンの形成方法及びデバイスMethod and device for forming resist pattern
 この発明は、レジストパターンを形成する方法及び該方法にて製造されたデバイスに関し、特に上記デバイスとしてフォトマスクやカラーフィルタを製造するのに適したレジストパターンの形成方法に関する。 The present invention relates to a method of forming a resist pattern and a device manufactured by the method, and more particularly to a method of forming a resist pattern suitable for manufacturing a photomask or a color filter as the device.
 フォトマスクは、集積回路等の電子素子を製造するのに用いられるデバイスである。フォトマスクのパターンが電子素子に転写されるため、パターンの良否が電子素子の品質に大きく関わる。 A photomask is a device used to manufacture electronic elements such as integrated circuits. Since the pattern of the photomask is transferred to the electronic element, the quality of the pattern greatly affects the quality of the electronic element.
 フォトマスクの製造工程の一例を説明する。
 充分に洗浄したガラス基板の表面全体にクロム等からなる遮光膜を被膜する(遮光膜形成工程)。この遮光膜上に、スピンコートやスリットコートによって感光性のレジストを塗布する(レジスト塗布工程)。レジストは、ポジ型とネガ型に分類できる。塗布したレジストをプリベーク(最初の焼き)した後、所望のパターンに沿って露光する(露光工程)。ポジ型のレジストにおいては、露光部分が分解して可溶性になる。ネガ型のレジストにおいては、露光部分が重合して不溶性になる。露光後、場合によっては再度ベークする。その後、現像液をレジストに接触させ、パターンを現像する(現像工程)。ポジ型のレジストの場合、露光部分を溶かす現像液を用いる。ネガ型のレジストの場合、露光部分以外のレジストを溶かす現像液を用いる。これにより、ポジ型のレジストは露光部分が除去され、ネガ型のレジストは露光部分が残る。現像後、リンス液で洗浄し、水分を充分に除去したうえで、ポストベーク(最終の焼き)を行なう。ここまでの工程は、フォトリソグラフィ法と呼ばれる。その後、レジストが被さっていない部分の遮光膜をエッチングする(エッチング工程)。そして、残った遮光膜を覆っているレジストを有機溶媒に溶かす等して除去する(レジスト除去工程)。
 上記のフォトリソグラフィ法は、液晶ディスプレイのカラーフィルタの製造にも適用されている。
An example of a photomask manufacturing process will be described.
A light-shielding film made of chromium or the like is coated on the entire surface of the sufficiently cleaned glass substrate (light-shielding film forming step). A photosensitive resist is applied on the light-shielding film by spin coating or slit coating (resist coating process). The resist can be classified into a positive type and a negative type. The applied resist is pre-baked (initial baking) and then exposed along a desired pattern (exposure process). In a positive type resist, the exposed portion is decomposed and becomes soluble. In a negative resist, the exposed portion is polymerized and becomes insoluble. After exposure, it may be baked again if necessary. Then, a developing solution is made to contact a resist and a pattern is developed (development process). In the case of a positive resist, a developer that dissolves the exposed portion is used. In the case of a negative resist, a developer that dissolves the resist other than the exposed portion is used. As a result, the exposed portion of the positive resist is removed, and the exposed portion of the negative resist remains. After development, the substrate is washed with a rinsing solution to sufficiently remove moisture, and then post-baking (final baking) is performed. The process so far is called a photolithography method. Thereafter, the light shielding film in the portion not covered with the resist is etched (etching step). Then, the resist covering the remaining light shielding film is removed by dissolving it in an organic solvent (resist removing step).
The photolithography method described above is also applied to the production of color filters for liquid crystal displays.
 品質の優れたフォトマスクやカラーフィルタ等のデバイスを作製するためには、レジストの露光部分と非露光部分を明確にして、設計通りのレジストパターンを形成する必要がある。そのため、露光工程と現像工程が特に重要視されている。 In order to manufacture devices such as photomasks and color filters with excellent quality, it is necessary to clarify the exposed and unexposed portions of the resist and form a resist pattern as designed. Therefore, the exposure process and the development process are particularly emphasized.
 露光工程は、電子ビームをレジストに照射してパターンを直接的に描画する方式や、レジストの上側にパターンマスクを配置し、このパターンマスクの上側から紫外線を照射して露光する方式が採用されている。 The exposure process employs a method in which a resist is directly drawn by irradiating an electron beam on the resist, or a method in which a pattern mask is arranged on the upper side of the resist and ultraviolet rays are irradiated from above the pattern mask. Yes.
 現像工程は、一般に、ディップ(dip)、シャワー(shower)、パドル(paddle)の3つの現像方式の何れかによって行なわれている。
 ディップ現像は、被現像基板を現像液の中に浸漬して揺動させる現像方式である。量産初期の手作業による現像作業に適用されることが多い。多数枚の被現像基板をまとめて専用の懸架器具に取り付けて行うのが一般的である。
The development process is generally performed by any one of the three development methods of dip, shower, and paddle.
Dip development is a development method in which a substrate to be developed is immersed in a developer and rocked. It is often applied to manual development work in the early stage of mass production. In general, a large number of substrates to be developed are collectively attached to a dedicated suspension device.
 シャワー現像は、現像液を噴出口からシャワー状に常時吹出しながら、被現像基板をローラーコンベアに載せて現像液のシャワーを横切るように移動させる現像方式である。自動化された流れ作業を行う装置において最も一般的な方法である。次々と新しい現像液が加速度をつけて被現像基板の表面のレジストと接触する。このため、現像速度が、3つの現像方式のうち最も速い。また、吹き付け後の現像液を回収して濾過装置に通して循環再利用することで、被現像基板1枚当たりの現像液の使用量を少なくできる。 Shower development is a developing method in which a developing substrate is placed on a roller conveyor and moved across the shower of the developing solution while the developing solution is constantly blown out from a jet nozzle. It is the most common method in devices that perform automated flow operations. One after another, new developer is accelerated and comes into contact with the resist on the surface of the substrate to be developed. For this reason, the developing speed is the fastest among the three developing methods. Further, the amount of developer used per substrate to be developed can be reduced by collecting the developer after spraying and recycling it through a filtration device.
 パドル現像は、被現像基板の表面に現像液の膜を形成し、現像する方法である。現像液の膜は、被現像基板の表面に現像液をスリット状の開口部から滴下したり、噴霧器で霧状に吹き付けたりして形成する。パドル現像は、現像の均一性の点では3つの現像方式の中で最も優れており、シャワー現像における現像ムラに対処するには有効である。 Paddle development is a method in which a developer film is formed on the surface of a substrate to be developed and developed. The film of the developer is formed by dropping the developer on the surface of the substrate to be developed from a slit-shaped opening or spraying it in a mist with a sprayer. Paddle development is the best among the three development methods in terms of development uniformity, and is effective in dealing with development unevenness in shower development.
 特許文献1には、大気圧近傍下で酸素を含むガスをプラズマ化し、フォトレジストをアッシングすることが記載されている。
 特許文献2には、フッ化物を含むガスを大気圧放電させ、レジストをアッシングすることが記載されている。
Patent Document 1 describes that a gas containing oxygen is turned into plasma under the vicinity of atmospheric pressure to ash the photoresist.
Patent Document 2 describes that a gas containing fluoride is discharged at atmospheric pressure to ash the resist.
特開2003-163207号公報JP 2003-163207 A 特許第2768760号公報Japanese Patent No. 2768760
 現像工程における上記の3つの現像方式には、それぞれ次のような問題点がある。
 ディップ現像において、被現像基板を現像液中で揺動させるのは、現像の進行を促進させるためであるが、シャワー現像と比べると、被現像基板表面での現象液の流れが悪い。
The above three development methods in the development process have the following problems.
In the dip development, the substrate to be developed is swung in the developer in order to promote the progress of the development, but the flow of the phenomenon liquid on the surface of the substrate to be developed is worse than that in the shower development.
 シャワー現像では、現像液のシャワーが不均一になりやすく、現像ムラが起きやすい。シャワーの噴出口の配置や動き(首振り式等)により被現像基板表面への現像液の当たり具合が偏らないようにする工夫がなされているが、現像ムラはなかなか解消できていない。 In shower development, the developer shower tends to be non-uniform and uneven development tends to occur. Although there has been devised to prevent the developer from hitting the surface of the substrate to be developed by the arrangement and movement of the shower spout (swinging type, etc.), development unevenness has not been easily solved.
 パドル現像では、現像期間中、現像液が被現像基板の表面の同じ位置に留まる。したがって、レジストと現像液との接触は静的であり、ほとんど化学的反応力のみで現像される。このため、現像速度が他の現像方式よりも遅い。また、現像液が被現像基板上に静止しているため、使用済みの現像液は、劣化して現像力が低下している。不純物の混入量も多い。したがって、現像液を循環再利用するのは困難であり、常に新しい現像液を使う必要がある。このため、被現像基板1枚当たりの現像液の消費量が他の現像方式よりも多い。特にレジストの表面が凸凹になっていると、現像液の膜厚を大きくする必要があり、現像液の消費量が益々増加する。 In paddle development, the developer stays at the same position on the surface of the substrate to be developed during the development period. Therefore, the contact between the resist and the developer is static, and the development is performed with almost only chemical reaction force. For this reason, the developing speed is slower than other developing methods. Further, since the developer is stationary on the substrate to be developed, the used developer is deteriorated and the developing power is reduced. There is also a large amount of impurities. Accordingly, it is difficult to circulate and reuse the developer, and it is always necessary to use a new developer. For this reason, the consumption amount of the developer per one substrate to be developed is larger than in other development methods. In particular, when the surface of the resist is uneven, it is necessary to increase the film thickness of the developer, and the consumption of the developer increases more and more.
 上記課題を解決するために、本発明に係るレジストパターンの形成方法は、デバイスの基板に感光性のレジストを塗布してレジスト層を形成するレジスト塗布工程と、 前記レジスト層に部分的に光を照射する露光工程と、
 親液化用処理ガスを、大気圧近傍の放電空間に通して吹出し、前記レジスト層に接触させる大気圧リモートプラズマ親液化工程と、
 前記レジスト層に現像液を接触させる現像工程と、
 を順次実行することを特徴とする。
 大気圧リモートプラズマ親液化工程によって、レジスト層の表面を親液化でき、濡れ性を向上できる。したがって、その後の現像工程において、現像液をレジスト層の表面に均一に被膜でき、現像を均一に行なうことができる。濡れ性が良いため、シャワー現像においても現像の均一性を十分に確保できる。ディップ現像において被現像基板表面での現象液の流れが多少悪くても現像の均一性を十分に確保できる。よって、良好なレジストパターンを形成でき、良好な品質の製品を作製できる。また、濡れ性が良いため、現像液の消費量を低減できる。特に、パドル現像において、レジスト層の表面が凸凹になっていても、現像液の膜厚をあまり大きくする必要がなく、現像液の消費量を確実に低減できる。
In order to solve the above-mentioned problems, a resist pattern forming method according to the present invention includes a resist coating process in which a photosensitive resist is applied to a substrate of a device to form a resist layer, and light is partially applied to the resist layer. An exposure process to irradiate;
An atmospheric pressure remote plasma lyophilic process in which a processing gas for lyophilicity is blown through a discharge space near atmospheric pressure and is brought into contact with the resist layer;
A development step of bringing a developer into contact with the resist layer;
Are sequentially executed.
By the atmospheric pressure remote plasma lyophilic step, the surface of the resist layer can be made lyophilic and wettability can be improved. Therefore, in the subsequent development process, the developer can be uniformly coated on the surface of the resist layer, and development can be performed uniformly. Since the wettability is good, the uniformity of development can be sufficiently ensured even in shower development. In dip development, even if the flow of the phenomenon liquid on the surface of the substrate to be developed is somewhat bad, the uniformity of development can be sufficiently secured. Therefore, a good resist pattern can be formed, and a product with good quality can be manufactured. Further, since the wettability is good, the consumption of the developer can be reduced. In particular, in paddle development, even if the surface of the resist layer is uneven, it is not necessary to increase the film thickness of the developer, and the consumption of the developer can be reliably reduced.
 前記親液化用処理ガスは、窒素ガス、又は窒素と酸素の混合ガスであることが好ましい。親液化用処理ガスの酸素含有量は、好ましくは0~20体積%であり、より好ましくは0~5体積%であり、一層好ましくは0.01~1体積%である。 The lyophilic processing gas is preferably nitrogen gas or a mixed gas of nitrogen and oxygen. The oxygen content of the lyophilic processing gas is preferably 0 to 20% by volume, more preferably 0 to 5% by volume, and still more preferably 0.01 to 1% by volume.
大気圧リモートプラズマ親液化工程は、大気圧を含む大気圧近傍下で行なう。大気圧近傍とは、1.013×10Pa~50.663×10Paの範囲を言い、圧力調整の容易化や装置構成の簡便化を考慮すると、1.333×10Pa~10.664×10Paが好ましく、9.331×10Pa~10.397×10Paがより好ましい。 The atmospheric pressure remote plasma lyophilic process is performed near atmospheric pressure including atmospheric pressure. The vicinity of atmospheric pressure means a range of 1.013 × 10 4 Pa to 50.663 × 10 4 Pa, and considering the ease of pressure adjustment and the simplification of the apparatus configuration, 1.333 × 10 4 Pa to 10 .664 × 10 4 Pa is preferable, and 9.331 × 10 4 Pa to 10.9797 × 10 4 Pa are more preferable.
 なお、親液化(表面濡れ性付与、表面エネルギーの向上)処理方法として、酸素(空気)雰囲気での紫外線照射処理やコロナ処理がよく知られている。しかし、レジストが感光性であるため紫外線照射処理を適用することはできない。また、コロナ処理においては、被処理基板に金属膜が被膜されていると、金属膜に局所的なアーク放電が落ち、被処理基板を損傷するおそれがある。
 真空下で酸素プラズマに曝すことで濡れ性を付与することも考えられるが、被処理基板を真空装置に入れ、プラズマ処理後、取り出して次工程に進めるのは、工程が増え、設備コストの増大及び処理時間の増大を招く。
As a lyophilic (surface wettability imparting, surface energy improvement) treatment method, ultraviolet irradiation treatment or corona treatment in an oxygen (air) atmosphere is well known. However, since the resist is photosensitive, ultraviolet irradiation treatment cannot be applied. Further, in the corona treatment, if a metal film is coated on the substrate to be processed, local arc discharge may fall on the metal film, and the substrate to be processed may be damaged.
It is conceivable that wettability is imparted by exposure to oxygen plasma under vacuum, but placing the substrate to be processed in a vacuum device, removing it after plasma processing, and proceeding to the next process will increase the process and increase equipment costs. In addition, the processing time is increased.
 大気圧プラズマ親液化処理であっても、被処理基板を大気圧近傍の放電空間の内部に配置して、プラズマを被処理基板にダイレクトに照射する大気圧ダイレクトプラズマ親液化処理の場合、プラズマ光が感光性レジストに照射されるため、採用困難である。また、被処理基板に金属膜が被膜されていると、該金属膜に放電が落ち、被処理基板がダメージを受けるおそれがある。 Even in the case of atmospheric pressure plasma lyophilic processing, in the case of atmospheric pressure direct plasma lyophilic processing in which the substrate to be processed is placed inside a discharge space near atmospheric pressure and the substrate is directly irradiated with plasma, Is difficult to adopt because it is irradiated onto the photosensitive resist. In addition, if a metal film is coated on the substrate to be processed, the metal film may be discharged, and the substrate to be processed may be damaged.
 これに対して、大気圧リモートプラズマ親液化処理は、被処理基板を大気圧近傍の放電空間から離して配置し、放電空間でプラズマ化した処理ガスを被処理基板へ向けて吹き出すものである。そのため、放電空間と処理ガスの吹出し口との位置関係を調節したり、放電空間と吹出し口との間又は吹出し口と被処理基板との間に遮光部材を設けたりすることで、放電空間で発生するプラズマ光が被処理基板に当たるのを容易に回避でき、プラズマ光によるレジストの変質を防止できる。また、被処理基板に金属膜が被膜されていても、電極と被処理基板との距離を調節したり、電気的に接地された導電体からなる電界遮蔽部材を電極と被処理基板との間に介在させたりすることで、被処理基板がダメージを受けるのを容易に防止できる。 In contrast, in the atmospheric pressure remote plasma lyophilic process, the substrate to be processed is arranged away from the discharge space near the atmospheric pressure, and the processing gas converted into plasma in the discharge space is blown out toward the substrate to be processed. Therefore, by adjusting the positional relationship between the discharge space and the process gas blowout port, or by providing a light shielding member between the discharge space and the blowout port or between the blowout port and the substrate to be processed, It is possible to easily avoid the generated plasma light from hitting the substrate to be processed, and to prevent the resist from being altered by the plasma light. Even if a metal film is coated on the substrate to be processed, the distance between the electrode and the substrate to be processed is adjusted, or an electric field shielding member made of an electrically grounded conductor is provided between the electrode and the substrate to be processed. By interposing it in the substrate, it is possible to easily prevent the substrate to be processed from being damaged.
 前記レジスト塗布工程の後、かつ前記露光工程の前に、アッシング用処理ガスを、大気圧近傍の他の放電空間に通して吹出し、前記レジスト層に接触させる大気圧リモートプラズマアッシング工程を行なうことが好ましい。
 大気圧リモートプラズマアッシング工程は、大気圧を含む大気圧近傍下で、レジスト層の表層部分を軽くアッシング(ライトアッシング)する。アッシングの時間や処理ガス条件などを調節することで、レジスト層の表層より下側の層部分は残置されるようにする。リモートプラズマアッシングにおいては、被処理体の盛り上がっている部分のほうが凹んでいる部分よりも、より活性のアッシングガスと接触しやすく、アッシング速度が大きい。これによって、レジスト層の厚さを均一化でき、レジスト層の表面を平坦化できる。したがって、その後の露光工程において、露光すべきレジスト部分を均一に露光して均一に変質させることができ、該変質されたレジスト部分と変質されていないレジスト部分とを明瞭に区分けできる。よって、現像工程において、現像液によって除去されるレジスト部分と残るレジスト部分とを明瞭に区分けできる。この結果、一層良好なレジストパターンを形成できる。さらに、被処理基板1枚あたりの現像液の消費量を一層低減できる。特にパドル現像において、レジスト層上に張る現像液の膜の厚さをより小さくでき、現像液の消費量を確実に低減できる。
After the resist coating process and before the exposure process, an atmospheric pressure remote plasma ashing process is performed in which an ashing process gas is blown out through another discharge space in the vicinity of atmospheric pressure to contact the resist layer. preferable.
In the atmospheric pressure remote plasma ashing process, the surface layer portion of the resist layer is lightly ashed (light ashed) in the vicinity of atmospheric pressure including atmospheric pressure. The layer portion below the surface layer of the resist layer is left by adjusting the ashing time and the processing gas conditions. In remote plasma ashing, the swelled portion of the object to be processed is more likely to come into contact with the active ashing gas and the ashing speed is higher than that of the recessed portion. Thereby, the thickness of the resist layer can be made uniform, and the surface of the resist layer can be flattened. Therefore, in the subsequent exposure step, the resist portion to be exposed can be uniformly exposed and uniformly altered, and the altered resist portion and the unaltered resist portion can be clearly distinguished. Therefore, in the development process, the resist portion removed by the developer and the remaining resist portion can be clearly distinguished. As a result, a better resist pattern can be formed. Furthermore, it is possible to further reduce the consumption of the developing solution per one substrate to be processed. Particularly in paddle development, the thickness of the developer film stretched on the resist layer can be further reduced, and the consumption of the developer can be reliably reduced.
 前記アッシング用処理ガスは、窒素ガス、又は窒素と酸素の混合ガスであることが好ましい。アッシング用処理ガスの酸素含有量は、好ましくは0~20体積%であり、より好ましくは0~10体積%であり、一層好ましくは0.01~5体積%である。 The ashing processing gas is preferably nitrogen gas or a mixed gas of nitrogen and oxygen. The oxygen content of the ashing processing gas is preferably 0 to 20% by volume, more preferably 0 to 10% by volume, and still more preferably 0.01 to 5% by volume.
 なお、真空プラズマによってレジストをライトアッシングすることは困難である。プリベーク状態のレジストを真空装置に入れ、真空引きすると、レジスト中の溶剤が揮発し、レジストの組成が変質してしまうからである。
 レジストが感光性であるため、紫外線アッシャーにてライトアッシングすることもできない。紫外線アッシャーとは、オゾン等のガスを導入したアッシング室内で、紫外線の照射下でガスとレジストの化学反応を使ってレジストを剥離する光励起アッシング装置である。
Note that it is difficult to light ash the resist with vacuum plasma. This is because if the pre-baked resist is put in a vacuum apparatus and evacuated, the solvent in the resist is volatilized and the composition of the resist is altered.
Since the resist is photosensitive, it cannot be light ashed with an ultraviolet asher. The ultraviolet asher is a photoexcited ashing apparatus that strips a resist using a chemical reaction between the gas and a resist under irradiation of ultraviolet rays in an ashing chamber into which a gas such as ozone is introduced.
 大気圧プラズマアッシングであっても、被処理基板を大気圧近傍の放電空間の内部に配置して、プラズマを被処理基板にダイレクトに照射する大気圧ダイレクトプラズマアッシングの場合、プラズマ光が感光性レジストに照射されるため、採用困難である。また、被処理基板に金属膜が被膜されていると、該金属膜に放電が落ち、被処理基板がダメージを受けるおそれがある。 Even in the case of atmospheric pressure plasma ashing, in the case of atmospheric pressure direct plasma ashing in which a substrate to be processed is placed inside a discharge space near atmospheric pressure and the substrate is directly irradiated with plasma, the plasma light is exposed to a photosensitive resist. Is difficult to adopt. In addition, if a metal film is coated on the substrate to be processed, the metal film may be discharged, and the substrate to be processed may be damaged.
 これに対して、大気圧リモートプラズマアッシングは、被処理基板を大気圧近傍の放電空間から離して配置し、放電空間でプラズマ化した処理ガスを被処理基板へ向けて吹き出すものである。そのため、放電空間と処理ガスの吹出し口との位置関係を調節したり、放電空間と吹出し口との間又は吹出し口と被処理基板との間に遮光部材を設けたりすることで、放電空間で発生するプラズマ光が被処理基板に当たるのを容易に回避でき、プラズマ光によるレジストの変質を防止できる。また、被処理基板に金属膜が被膜されていても、電極と被処理基板との距離を調節したり、電気的に接地された導電体からなる電界遮蔽部材を電極と被処理基板との間に介在させたりすることで、被処理基板がダメージを受けるのを容易に防止できる。 In contrast, in the atmospheric pressure remote plasma ashing, the substrate to be processed is arranged away from the discharge space near the atmospheric pressure, and the processing gas converted into plasma in the discharge space is blown out toward the substrate to be processed. Therefore, by adjusting the positional relationship between the discharge space and the process gas blowout port, or by providing a light shielding member between the discharge space and the blowout port or between the blowout port and the substrate to be processed, It is possible to easily avoid the generated plasma light from hitting the substrate to be processed, and to prevent the resist from being altered by the plasma light. Even if a metal film is coated on the substrate to be processed, the distance between the electrode and the substrate to be processed is adjusted, or an electric field shielding member made of an electrically grounded conductor is provided between the electrode and the substrate to be processed. By interposing it in the substrate, it is possible to easily prevent the substrate to be processed from being damaged.
 本発明に係るデバイスは、上記のレジストパターンの形成方法により製造したことを特徴とする。デバイスとして、例えばフォトレジストや、カラーフィルタが挙げられる。本発明に係るレジストパターンの形成方法をフォトレジストの製造に適用することで、良好な転写パターンを有するフォトレジストを得ることができる。このフォトレジストを用いることで、優れた品質の電子素子製品を製造できる。発明に係るレジストパターンの形成方法をカラーフィルタの製造に適用することで、良好なマトリックスパターンを有し、ひいては良好なRGBパターンを有するカラーフィルタを得ることができる。 A device according to the present invention is manufactured by the above-described resist pattern forming method. Examples of the device include a photoresist and a color filter. By applying the method for forming a resist pattern according to the present invention to the production of a photoresist, a photoresist having a good transfer pattern can be obtained. By using this photoresist, it is possible to manufacture an electronic device product of excellent quality. By applying the resist pattern forming method according to the present invention to the manufacture of a color filter, a color filter having a good matrix pattern and thus a good RGB pattern can be obtained.
 本発明によれば、レジスト層の表面を親液化でき、濡れ性を向上できる。そのうえで現像を行なうことで、現像液をレジスト層の表面に均一に被膜でき、現像を均一に行なうことができる。これによって、良品質のレジストパターンを形成できる。また、現像液の消費量を低減できる。 According to the present invention, the surface of the resist layer can be made lyophilic and wettability can be improved. By performing development on that, the developer can be uniformly coated on the surface of the resist layer, and development can be performed uniformly. Thereby, a good quality resist pattern can be formed. Further, the consumption of the developer can be reduced.
本発明の一実施形態に係るフォトマスク(デバイス)の製造工程を示し、レジスト塗布工程ないしはプリベーク工程後、大気圧リモートプラズマアッシング工程前のフォトマスクブランクの断面図である。1 is a cross-sectional view of a photomask blank showing a photomask (device) manufacturing process according to an embodiment of the present invention, after a resist coating process or a pre-bake process, and before an atmospheric pressure remote plasma ashing process. 上記フォトマスクの製造工程における、大気圧リモートプラズマアッシング工程を解説的に示す正面断面図である。It is front sectional drawing which shows explanatoryally the atmospheric pressure remote plasma ashing process in the manufacturing process of the said photomask. 上記フォトマスクの製造工程における、露光工程を解説的に示す正面断面図である。It is front sectional drawing which shows explanatoryally the exposure process in the manufacturing process of the said photomask. 上記フォトマスクの製造工程における、大気圧リモートプラズマ親液化工程を解説的に示す正面断面図である。It is front sectional drawing which shows explanatoryly the atmospheric pressure remote plasma lyophilic process in the manufacturing process of the said photomask. 上記フォトマスクの製造工程における、現像工程を解説的に示す正面断面図である。It is front sectional drawing which shows the image development process in the manufacturing process of the said photomask explanatory. 上記フォトマスクの製造工程における、遮光膜エッチング工程を解説的に示す正面断面図である。It is front sectional drawing which shows explanatoryally the light shielding film etching process in the manufacturing process of the said photomask. 上記フォトマスクの断面図である。It is sectional drawing of the said photomask.
 以下、本発明の一実施形態を説明する。
 図7に示すように、この実施形態において製造対象とするデバイスは、フォトマスク9である。フォトマスク9は、ガラス基板91を有している。ガラス基板91の表面に遮光膜92が被膜されている。遮光膜92に所定のパターン92aが形成されている。
Hereinafter, an embodiment of the present invention will be described.
As shown in FIG. 7, the device to be manufactured in this embodiment is a photomask 9. The photomask 9 has a glass substrate 91. A light shielding film 92 is coated on the surface of the glass substrate 91. A predetermined pattern 92 a is formed on the light shielding film 92.
 フォトマスク9の製造方法を説明する。
[洗浄工程]
 まず、ガラス基板91の表面を洗浄し、基板91の表面の有機物や脂質を落す。これにより、遮光膜92やレジスト93の付着性を確保できる。
A method for manufacturing the photomask 9 will be described.
[Washing process]
First, the surface of the glass substrate 91 is washed, and organic substances and lipids on the surface of the substrate 91 are removed. Thereby, the adhesion of the light shielding film 92 and the resist 93 can be secured.
[遮光膜形成工程]
 次に、図1に示すように、ガラス基板91の全面に遮光膜92を被膜し、フォトマスクブランク90を形成する。遮光膜92の成分は、例えばクロム等の金属である。被膜方法としては、例えばスパッタリングを適用する。
[Shading film forming step]
Next, as shown in FIG. 1, a light shielding film 92 is coated on the entire surface of the glass substrate 91 to form a photomask blank 90. A component of the light shielding film 92 is, for example, a metal such as chromium. As the coating method, for example, sputtering is applied.
[レジスト塗布工程]
 次に、遮光膜92上に液状の感光性樹脂からなるレジストを塗布し、レジスト層93を形成する。この実施形態では、ポジ型のレジストを用いているが、ネガ型のレジストを用いてもよい。レジスト層93の厚さは、数μm~100μm程度である。塗布機として、スピンコータを用いてもよく、スリットコータを用いてもよい。レジストをスピンコートにて塗布すると、フォトマスクブランク90の外周部のレジストの厚さがフォトマスクブランク90の内側部のレジストの厚さに比べて大きくなりやすい。スリットコートにて塗布すると、塗り始めの部分のレジストの厚さが他の部分に比べて大きくなりやすい。したがって、図1において誇張して示すように、レジスト層93の表面(上面)が凸凹になりやすい。
[Resist application process]
Next, a resist made of a liquid photosensitive resin is applied on the light shielding film 92 to form a resist layer 93. In this embodiment, a positive resist is used, but a negative resist may be used. The thickness of the resist layer 93 is about several μm to 100 μm. As the coating machine, a spin coater or a slit coater may be used. When the resist is applied by spin coating, the resist thickness on the outer peripheral portion of the photomask blank 90 tends to be larger than the resist thickness on the inner side of the photomask blank 90. When applied by slit coating, the resist thickness at the beginning of coating tends to be larger than at other portions. Therefore, as exaggeratedly shown in FIG. 1, the surface (upper surface) of the resist layer 93 tends to be uneven.
[プリベーク工程]
 次に、フォトマスクブランク90を焼き、レジスト層93を硬化させる。
[Pre-baking process]
Next, the photomask blank 90 is baked and the resist layer 93 is cured.
[大気圧リモートプラズマアッシング工程]
 次に、図2に示すように、フォトマスクブランク90を大気圧リモートプラズマアッシング装置1に導入する。大気圧リモートプラズマアッシング装置1は、処理ヘッド10を有している。処理ヘッド10内に一対の電極11,11が互いに対向して設けられている。各電極11の対向面には固体誘電体層(図示省略)が形成されている。一方の電極11が電源12に接続されている。他方の電極11が電気的に接地されている。電源12からの電圧供給によって、電極11,11間の空間が大気圧近傍の放電空間13になる。電源12の供給電圧の波形は、パルス波でもよく連続波でもよい。
[Atmospheric pressure remote plasma ashing process]
Next, as shown in FIG. 2, the photomask blank 90 is introduced into the atmospheric pressure remote plasma ashing apparatus 1. The atmospheric pressure remote plasma ashing apparatus 1 has a processing head 10. A pair of electrodes 11 is provided in the processing head 10 so as to face each other. A solid dielectric layer (not shown) is formed on the opposing surface of each electrode 11. One electrode 11 is connected to a power source 12. The other electrode 11 is electrically grounded. By supplying voltage from the power supply 12, the space between the electrodes 11, 11 becomes a discharge space 13 near atmospheric pressure. The waveform of the supply voltage of the power supply 12 may be a pulse wave or a continuous wave.
 アッシング用処理ガス供給源14が放電空間13の上流端に連なっている。供給源14のアッシング用処理ガスとして、窒素の純ガス、又は窒素及び酸素の混合ガスが用いられている。処理ガス中の酸素濃度は、好ましくは0~20体積%であり、より好ましくは0~10体積%であり、一層好ましくは0.01~5体積%である。 The ashing processing gas supply source 14 is connected to the upstream end of the discharge space 13. As the processing gas for ashing of the supply source 14, a pure nitrogen gas or a mixed gas of nitrogen and oxygen is used. The oxygen concentration in the processing gas is preferably 0 to 20% by volume, more preferably 0 to 10% by volume, and still more preferably 0.01 to 5% by volume.
 このアッシング用処理ガス(N+O)を、放電空間13に導入してプラズマ化する。プラズマ化された処理ガスを、処理ヘッド10の底部の吹出し口15から吹き出す。処理ヘッド10の下方に離してフォトマスクブランク90を配置する。このフォトマスクブランク90に、上記プラズマ化されたアッシング用処理ガスを吹き付ける。これにより、図2の仮想線で示すように、レジスト層93の表層部分93eを軽くアッシングする。アッシングの時間や処理ガス条件などを調節することで、表層部分93eより下側のレジスト層93は残置されるようにする。通常、リモートプラズマ照射では、被処理体の盛り上がっている部分が、該被処理体の凹んでいる部分と比べて、処理ヘッド10により近く、より高活性のアッシングガスと接触し、アッシング速度がより大きい。したがって、レジスト層93の表面の凸の部分が、該レジスト層93の表面の凹の部分より先にアッシングされて除去される。これより、レジスト層93の厚さを均一にでき、レジスト層93の表面を平坦化できる。したがって、上記レジスト塗布工程では、塗布の均一性をシビアに要求する必要が無い。 This ashing processing gas (N 2 + O 2 ) is introduced into the discharge space 13 to be turned into plasma. The plasma-ized processing gas is blown out from the blowout port 15 at the bottom of the processing head 10. A photomask blank 90 is disposed below the processing head 10. The photomask blank 90 is sprayed with the ashing processing gas that has been converted into plasma. As a result, the surface layer portion 93e of the resist layer 93 is lightly ashed as indicated by the phantom line in FIG. By adjusting the ashing time and the processing gas conditions, the resist layer 93 below the surface layer portion 93e is left. Usually, in the remote plasma irradiation, the raised portion of the object to be processed is closer to the processing head 10 than the recessed portion of the object to be processed, and comes into contact with a higher activity ashing gas, resulting in a higher ashing speed. large. Therefore, the convex portion on the surface of the resist layer 93 is removed by ashing prior to the concave portion on the surface of the resist layer 93. Thereby, the thickness of the resist layer 93 can be made uniform, and the surface of the resist layer 93 can be flattened. Therefore, in the resist coating process, it is not necessary to require the uniformity of coating severely.
 アッシング用処理ガスの吹き付けと併行して、移動機構17によってフォトマスクブランク90を左右に往復移動させる。フォトマスクブランク90を固定し、処理ヘッド10を往復移動させてもよい。往復移動の速度及び回数は、レジストの種類及びアッシングしたい膜厚に応じて適宜設定し、望ましくはレジストを軽くアッシングする程度に設定する。具体的には、移動速度は、好ましくは0.2~10m/minであり、より好ましくは0.5~2m/minである。移動回数は、往方向又は復方向の片道分を1回として、好ましくは5~50回程度である。 In parallel with the blowing of the ashing process gas, the photomask blank 90 is reciprocated left and right by the moving mechanism 17. The photomask blank 90 may be fixed and the processing head 10 may be reciprocated. The speed and number of reciprocating movements are appropriately set according to the type of resist and the film thickness to be ashed, and preferably set to such an extent that the resist is lightly ashed. Specifically, the moving speed is preferably 0.2 to 10 m / min, and more preferably 0.5 to 2 m / min. The number of movements is preferably about 5 to 50 times, with one way in the forward or backward direction as one time.
 更に、加熱部18によってフォトマスクブランク90を適度な温度に加熱することにしてもよい。 Furthermore, the photomask blank 90 may be heated to an appropriate temperature by the heating unit 18.
 フォトマスクブランク90が放電空間13の外部に配置されているため、遮光膜92がプラズマに晒されてダメージを受けるのを容易に防止できる。また、放電空間13と吹出し口15の配置関係を調節したり、放電空間13と吹出し口15との間又は吹出し口15とフォトマスクブランク90との間に遮光部材(図示せず)を設けたりすることで、放電空間13で発生するプラズマ光がフォトマスクブランク90に当たるのを容易に回避できる。これにより、レジスト層93がプラズマ光によって変質するのを防止できる。
 処理ヘッド10の底部には電界遮蔽部材16を設けることが好ましい。電界遮蔽部材16は、金属で構成され、電気的に接地されている。電界遮蔽部材16は、電源12に接続された電極11からの電界を遮蔽し、ひいては、電極11から遮光膜92にアーク放電が落ちるのを防止する。これにより、フォトマスクブランク90が電界ダメージを受けるのを防止できる。
 処理ヘッド10とフォトマスクブランク90との間の距離WDは、小さいほど有効であるが、フォトマスクブランク90の反りなどがあった場合でも処理ヘッド10が接触しない程度の大きさにする。通常、距離WDは、WD=0.3~10mmとするのが好ましく、0.5~3mmとするのがより好ましい。
Since the photomask blank 90 is disposed outside the discharge space 13, it is possible to easily prevent the light shielding film 92 from being damaged by being exposed to plasma. Further, the arrangement relationship between the discharge space 13 and the outlet 15 is adjusted, or a light shielding member (not shown) is provided between the discharge space 13 and the outlet 15 or between the outlet 15 and the photomask blank 90. By doing so, it is possible to easily avoid the plasma light generated in the discharge space 13 from hitting the photomask blank 90. As a result, the resist layer 93 can be prevented from being altered by the plasma light.
An electric field shielding member 16 is preferably provided at the bottom of the processing head 10. The electric field shielding member 16 is made of metal and is electrically grounded. The electric field shielding member 16 shields the electric field from the electrode 11 connected to the power source 12, and thus prevents arc discharge from dropping from the electrode 11 to the light shielding film 92. Thereby, it can prevent that the photomask blank 90 receives an electric field damage.
The smaller the distance WD between the processing head 10 and the photomask blank 90, the more effective. However, even when the photomask blank 90 is warped, the distance is set such that the processing head 10 does not contact. Usually, the distance WD is preferably WD = 0.3 to 10 mm, and more preferably 0.5 to 3 mm.
[露光工程]
 次に、図4に示すように、電子ビーム照射装置3にてフォトマスクブランク90に電子ビーム3aを照射し、かつ電子ビーム3aの照射点を、所望のパターンを描画するようにフォトマスクブランク90に対し相対移動させる。これにより、レジスト層93を部分的に露光できる。レジスト層93の表面が充分に平坦化されているため、レジスト層93のうち露光すべきレジスト部分93aを均一に露光して均一に変質させることができる。したがって、当該露光により変質されたレジスト部分93aと、露光されず変質していないレジスト部分93bとを明瞭に区分けすることができる。
[Exposure process]
Next, as shown in FIG. 4, the photomask blank 90 is irradiated with the electron beam 3a by the electron beam irradiation apparatus 3, and the photomask blank 90 is drawn so as to draw a desired pattern at the irradiation point of the electron beam 3a. Move relative to. Thereby, the resist layer 93 can be partially exposed. Since the surface of the resist layer 93 is sufficiently flattened, the resist portion 93a to be exposed in the resist layer 93 can be uniformly exposed to be uniformly altered. Therefore, it is possible to clearly distinguish the resist portion 93a that has been altered by the exposure from the resist portion 93b that has not been exposed and has not been altered.
 電子ビーム3aでパターンを直接描画するのに代えて、フォトマスクブランク90の上側にパターンマスクを配置し、紫外線をパターンマスク3のパターン孔を通してレジスト層93に部分的に照射してもよい。紫外線としては、主に、436nmのg線、又は365nmのi線を用いる。レジストの種類に応じて何れの紫外線を選択するとよい。紫外線の露光時間は、通常、数秒~30秒程度である。 Instead of directly drawing a pattern with the electron beam 3a, a pattern mask may be disposed on the upper side of the photomask blank 90, and ultraviolet rays may be partially irradiated to the resist layer 93 through the pattern holes of the pattern mask 3. As ultraviolet rays, mainly 436 nm g-line or 365 nm i-line is used. Any ultraviolet ray may be selected according to the type of resist. The exposure time of ultraviolet rays is usually about several seconds to 30 seconds.
[PEB(Post Exposure Bake)工程]
 露光後のフォトマスクブランク90を焼く。この工程は、省略される場合が多い。
[PEB (Post Exposure Bake) process]
The photomask blank 90 after exposure is baked. This step is often omitted.
[大気圧リモートプラズマ親液化工程]
 次に、図4に示すように、フォトマスクブランク90を大気圧リモートプラズマ親液化装置2に導入する。大気圧リモートプラズマ親液化装置2は、処理ヘッド20を有している。処理ヘッド20内に一対の電極21,21が互いに対向して設けられている。各電極21の対向面には固体誘電体層(図示省略)が形成されている。一方の電極21が電源22に接続されている。他方の電極21が電気的に接地されている。電源22からの電圧供給によって、電極21,21間の空間が大気圧近傍の放電空間23になる。電源22の供給電圧の波形は、パルス波でもよく連続波でもよい。
[Atmospheric pressure remote plasma lyophilic process]
Next, as shown in FIG. 4, the photomask blank 90 is introduced into the atmospheric pressure remote plasma lyophilic apparatus 2. The atmospheric pressure remote plasma lyophilic apparatus 2 has a processing head 20. A pair of electrodes 21, 21 are provided in the processing head 20 so as to face each other. A solid dielectric layer (not shown) is formed on the opposing surface of each electrode 21. One electrode 21 is connected to a power source 22. The other electrode 21 is electrically grounded. By supplying voltage from the power supply 22, the space between the electrodes 21 and 21 becomes a discharge space 23 near atmospheric pressure. The waveform of the supply voltage of the power supply 22 may be a pulse wave or a continuous wave.
 親液化用処理ガス供給源24が放電空間23の上流端に連なっている。供給源24の親液化用処理ガスとして、窒素の純ガス、又は窒素及び酸素の混合ガスが用いられている。処理ガス中の酸素濃度は、好ましくは0~20体積%であり、より好ましくは0~5体積%であり、一層好ましくは0.01~1体積%である。 A lyophilic processing gas supply source 24 is connected to the upstream end of the discharge space 23. As the lyophilic processing gas of the supply source 24, a pure nitrogen gas or a mixed gas of nitrogen and oxygen is used. The oxygen concentration in the processing gas is preferably 0 to 20% by volume, more preferably 0 to 5% by volume, and still more preferably 0.01 to 1% by volume.
 この処理ガス(N+O)を、放電空間23に導入してプラズマ化する。プラズマ化された処理ガスを、処理ヘッド20の底部の吹出し口25から吹き出す。処理ヘッド20の下方に離してフォトマスクブランク90を配置する。このフォトマスクブランク90に、上記プラズマ化された処理ガスを吹き付ける。これにより、レジスト層93の表面エネルギーが高くなり、レジスト層93の表面を親液化して現像液に対する濡れ性を向上できる。 This processing gas (N 2 + O 2 ) is introduced into the discharge space 23 and turned into plasma. The plasma-ized processing gas is blown out from the blowout port 25 at the bottom of the processing head 20. A photomask blank 90 is placed below the processing head 20. The plasma-processed processing gas is sprayed onto the photomask blank 90. Thereby, the surface energy of the resist layer 93 is increased, and the surface of the resist layer 93 can be made lyophilic to improve the wettability with respect to the developer.
 処理ガスの吹き付けと併行して、移動機構27によってフォトマスクブランク90を左右方向に移動させる。フォトマスクブランク90を固定し、処理ヘッド20を移動させてもよい。移動の速度及び回数は適宜設定できるが、通常、片道方向に1回の移動で十分である。 In parallel with the spraying of the processing gas, the photomask blank 90 is moved in the left-right direction by the moving mechanism 27. The photomask blank 90 may be fixed and the processing head 20 may be moved. Although the speed and number of movements can be set as appropriate, one movement in one direction is usually sufficient.
 フォトマスクブランク90が放電空間23の外部に配置されているため、遮光膜92がプラズマに晒されてダメージを受けるのを容易に防止できる。また、放電空間23と吹出し口25の配置関係を調節したり、放電空間23と吹出し口25との間又は吹出し口25とフォトマスクブランク90との間に遮光部材(図示せず)を設けたりすることで、放電空間23で発生するプラズマ光がフォトマスクブランク90に当たるのを容易に回避できる。これにより、レジスト層93がプラズマ光によって変質するのを防止できる。
 処理ヘッド20の底部には電界遮蔽部材26を設けることが好ましい。電界遮蔽部材26は、金属で構成され、電気的に接地されている。電界遮蔽部材26は、電源22に接続された電極21からの電界を遮蔽し、ひいては、電極21から遮光膜92にアーク放電が落ちるのを防止する。これにより、フォトマスクブランク90が電界ダメージを受けるのを防止できる。
Since the photomask blank 90 is disposed outside the discharge space 23, the light shielding film 92 can be easily prevented from being damaged by being exposed to plasma. Further, the arrangement relationship between the discharge space 23 and the outlet 25 is adjusted, or a light shielding member (not shown) is provided between the discharge space 23 and the outlet 25 or between the outlet 25 and the photomask blank 90. By doing so, it is possible to easily avoid the plasma light generated in the discharge space 23 from hitting the photomask blank 90. As a result, the resist layer 93 can be prevented from being altered by the plasma light.
An electric field shielding member 26 is preferably provided at the bottom of the processing head 20. The electric field shielding member 26 is made of metal and is electrically grounded. The electric field shielding member 26 shields the electric field from the electrode 21 connected to the power source 22, and thus prevents arc discharge from dropping from the electrode 21 to the light shielding film 92. Thereby, it can prevent that the photomask blank 90 receives an electric field damage.
[現像工程]
 次に、図5に示すように、現像液5をフォトマスクブランク90に接触させる。前工程の大気圧リモートプラズマ処理によってレジスト層93の表面が親水化されているため、現像液5をレジスト層93の表面に速やかに均一に接触させることができる。これにより、ポジ型レジスト層93の光照射された変質部分93aが現像液5に溶けて除去され、光照射されていない非変質部分93bだけが残る。なお、ネガ型のレジストを用いた場合には、光照射されていない非変質部分が除去され、光照射された変質部分が残る。変質部分93aと非変質部分93bとが明瞭に区分けされているため、所望のレジストパターンを得ることができる。
[Development process]
Next, as shown in FIG. 5, the developer 5 is brought into contact with the photomask blank 90. Since the surface of the resist layer 93 is hydrophilized by the atmospheric pressure remote plasma treatment in the previous step, the developer 5 can be brought into contact with the surface of the resist layer 93 quickly and uniformly. As a result, the altered portion 93a of the positive resist layer 93 that has been irradiated with light is dissolved and removed in the developer 5, and only the unmodified portion 93b that has not been irradiated with light remains. In the case where a negative resist is used, the non-altered portion not irradiated with light is removed, and the altered portion irradiated with light remains. Since the altered portion 93a and the unmodified portion 93b are clearly separated, a desired resist pattern can be obtained.
 現像方式は、ディップ現像でもよく、シャワー現像でもよく、パドル現像でもよい。現像液5の塗れ性が良いため、パドル現像では勿論のこと、シャワー現像においても、現像ムラを防止して、充分に均一に現像できる。ディップ現像においてフォトマスクブランク90の表面での現象液の流れが多少悪くても現像の均一性を充分に確保できる。更には、露光前の大気圧リモートプラズマアッシング工程によりレジスト層93の表面が平坦化されているため、現像液5をレジスト層93の表面に確実に均一に接触させることができ、現像の均一性をより高めることができる。更には、1枚のフォトマスクブランク90あたりの現像液5の消費量を低減できる。特にパドル現像において、レジスト層93上に張る現像液5の膜の厚さを小さくでき、現像液5の消費量を低減できる。なお、レジスト層93の表面がたとえ凸凹になっていたとしても、濡れ性が良いため、パドル現像において、現像液5の膜厚をあまり大きくする必要がなく、現像液の消費量を確実に低減できる。 The development method may be dip development, shower development, or paddle development. Since the developing solution 5 has good paintability, it is possible to develop sufficiently uniformly by preventing development unevenness in shower development as well as in paddle development. In the dip development, even if the flow of the phenomenon liquid on the surface of the photomask blank 90 is somewhat worse, the development uniformity can be sufficiently secured. Furthermore, since the surface of the resist layer 93 is flattened by the atmospheric pressure remote plasma ashing process before exposure, the developer 5 can be reliably brought into contact with the surface of the resist layer 93, and the development uniformity. Can be further enhanced. Furthermore, the consumption of the developer 5 per photomask blank 90 can be reduced. Particularly in paddle development, the film thickness of the developer 5 stretched on the resist layer 93 can be reduced, and the consumption of the developer 5 can be reduced. Even if the surface of the resist layer 93 is uneven, the wettability is good, so that it is not necessary to increase the film thickness of the developer 5 in paddle development, and the consumption of the developer is surely reduced. it can.
[リンス工程]
 現像後、リンス液で洗浄する。リンス液は、純水でもよい。
[Rinse process]
After development, wash with a rinse solution. The rinse liquid may be pure water.
[ポストベーク工程]
 次に、現像工程及びリンス工程で付着した水分を充分に除去したうえで、最終の焼きを行ない、残ったレジストを充分に硬化させる。
 洗浄工程からポストベークまでの工程が、フォトリソグラフィ法と呼ばれている。
[Post-baking process]
Next, after sufficiently removing the water adhering in the development process and the rinsing process, the final baking is performed to sufficiently cure the remaining resist.
The process from the cleaning process to post-baking is called a photolithography method.
[遮光膜エッチング工程]
 次に、図6に示すように、レジスト層93が被さっていない部分の遮光膜92をエッチングする。レジスト層93に覆われている部分の遮光膜92が残される。
[Shading film etching process]
Next, as shown in FIG. 6, the portion of the light shielding film 92 that is not covered with the resist layer 93 is etched. A portion of the light shielding film 92 covered with the resist layer 93 is left.
[レジスト除去工程]
 次に、図7に示すように、残った遮光膜92を覆っているレジスト層93を有機溶剤で溶解する等して除去する。これにより、遮光膜92が露出する。現像工程において所望のレジストパターンが得られているため、遮光膜92についても所望のパターン92aを得ることができる。これにより、良好な品質のフォトマスク9を形成することができる。
[Resist removal process]
Next, as shown in FIG. 7, the resist layer 93 covering the remaining light-shielding film 92 is removed by dissolving with an organic solvent or the like. Thereby, the light shielding film 92 is exposed. Since a desired resist pattern is obtained in the development process, a desired pattern 92a can be obtained for the light shielding film 92 as well. Thereby, the photomask 9 of good quality can be formed.
 本発明は、上記実施形態に限定されず、その要旨の範囲内において種々の態様を採用できる。
 例えば、1つの大気圧リモートプラズマ処理装置を、大気圧リモートプラズマアッシング装置1及び大気圧リモートプラズマ親液化装置2として兼用してもよい。
 各工程の具体的手順は適宜変更してもよく、洗浄工程、ベーク工程等は適宜省略してもよい。
 本発明は、フォトマスクの製造に限られず、カラーフィルタ等の、フォトリソグラフィ法による他のデバイスの製造にも適用できる。
The present invention is not limited to the above embodiment, and various modes can be adopted within the scope of the gist.
For example, one atmospheric pressure remote plasma processing apparatus may be used as the atmospheric pressure remote plasma ashing apparatus 1 and the atmospheric pressure remote plasma lyophilic apparatus 2.
The specific procedure of each process may be changed as appropriate, and the washing process, baking process, and the like may be omitted as appropriate.
The present invention is not limited to the production of a photomask, but can also be applied to the production of other devices such as color filters by photolithography.
 実施例を説明する。本発明が、この実施例に限定されないことは言うまでもない。
 ガラス基板91の全面にポジ型レジストをスリットコートにて塗布し、更にプリベークした。ガラス基板のサイズは、510mm×610mmであった。レジスト層93の初期平均厚さは、500nmであった。レジストとして、日本ゼオン社製のZEP520を用いた。プリベークの温度は、150℃とした。
 図2又は図4に示す大気圧リモートプラズマ処理装置1,2と実質的に同じ構造の装置を用い、上記のサンプルに大気圧リモートプラズマ処理を施した。処理ガスとして、窒素
 600L/minと、酸素 0.15L/minの混合ガスを用いた。電源12から電極11への投入電力は、3kWとした。移動機構17による搬送速度は、1.2m/minとした。移動回数(処理回数)は、片道移動を1回として20回とした、処理ヘッド10とサンプルとの距離は、WD=1mmとした。処理温度は室温とし、加熱は行なわなかった。
 その後、現像工程、リンス工程、ポストベーク工程を順次行なった。現像工程の現像方式は、ディップ現像とした。現像液としてZED-50N(日本ゼオン社製)を用いた。現像液の浸漬時間は90secとした。リンス工程のリンス液として純水を用いた。ポストベークの温度は、150℃とした。
Examples will be described. Needless to say, the present invention is not limited to this embodiment.
A positive resist was applied to the entire surface of the glass substrate 91 by slit coating and further pre-baked. The size of the glass substrate was 510 mm × 610 mm. The initial average thickness of the resist layer 93 was 500 nm. ZEP520 manufactured by Nippon Zeon Co., Ltd. was used as the resist. The pre-baking temperature was 150 ° C.
Using the apparatus having substantially the same structure as the atmospheric pressure remote plasma processing apparatuses 1 and 2 shown in FIG. 2 or FIG. A mixed gas of nitrogen 600 L / min and oxygen 0.15 L / min was used as the processing gas. The input power from the power source 12 to the electrode 11 was 3 kW. The conveyance speed by the moving mechanism 17 was 1.2 m / min. The number of times of movement (number of times of treatment) was set to 20 times for one-way movement, and the distance between the processing head 10 and the sample was WD = 1 mm. The treatment temperature was room temperature and no heating was performed.
Thereafter, a developing process, a rinsing process, and a post-baking process were sequentially performed. The development method in the development process was dip development. ZED-50N (manufactured by Zeon Corporation) was used as a developer. The immersion time of the developer was 90 sec. Pure water was used as a rinsing liquid in the rinsing process. The post-baking temperature was 150 ° C.
 そして、レジスト層93の厚さを測定し、厚さの減少量(初期平均厚さ-測定厚さ)を評価した。測定は、レジスト層93の表面の搬送方向と直交する幅方向に60mm間隔、搬送方向に65mm間隔で、合計99箇所で行った。また、プリベーク後(大気圧リモートプラズマ処理前)及び大気圧リモートプラズマ処理後におけるレジスト層93の表面の対水接触角を測定した。 Then, the thickness of the resist layer 93 was measured, and the amount of thickness reduction (initial average thickness-measured thickness) was evaluated. The measurement was performed at a total of 99 locations at intervals of 60 mm in the width direction orthogonal to the conveyance direction of the surface of the resist layer 93 and at intervals of 65 mm in the conveyance direction. Further, the water contact angle of the surface of the resist layer 93 after pre-baking (before atmospheric pressure remote plasma treatment) and after atmospheric pressure remote plasma treatment was measured.
 比較例として、大気圧リモートプラズマ処理を省略したこと以外、実施例1と同一の条件で同一の処理工程を施したサンプルに対し、実施例1と同様にレジスト厚さの減少量評価及び対水接触角の測定を行なった。 As a comparative example, with respect to a sample subjected to the same treatment process under the same conditions as in Example 1 except that the atmospheric pressure remote plasma treatment is omitted, the resist thickness reduction evaluation and water resistance are the same as in Example 1. The contact angle was measured.
 結果を下記の表1及び表2に示す。
Figure JPOXMLDOC01-appb-T000001
The results are shown in Tables 1 and 2 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1から明らかなように、大気圧リモートプラズマ処理を行なうことによって、レジスト層の表面を平坦化できることが確認された。
 表2から明らかなように、大気圧リモートプラズマ処理を行なうことによって、レジスト層の親水性を大きく向上できた。よって、その後の現像工程において、現像液をレジスト層の表面に速やかに均一に接触させることができ、均一に現像できることが確認された。
As is clear from Table 1, it was confirmed that the surface of the resist layer can be planarized by performing the atmospheric pressure remote plasma treatment.
As is apparent from Table 2, the hydrophilicity of the resist layer can be greatly improved by performing the atmospheric pressure remote plasma treatment. Therefore, it was confirmed that in the subsequent development process, the developer can be brought into contact with the surface of the resist layer quickly and uniformly, and development can be performed uniformly.
 本発明は、例えばフォトマスクの製造に適用可能である。 The present invention is applicable to, for example, the manufacture of a photomask.
1   大気圧リモートプラズマアッシング装置
10  処理ヘッド
11  電極
12  電源
13  他の放電空間
14  アッシング用処理ガス供給源
15  吹出し口
16  電界遮蔽部材
17  移動機構
18  加熱部
2   大気圧リモートプラズマ親液化装置
20  処理ヘッド
21  電極
22  電源
23  放電空間
24  親液化用処理ガス供給源
25  吹出し口
26  電界遮蔽部材
27  移動機構
3   電子ビーム照射機
3a  電子ビーム
5   現像液
9   フォトマスク(デバイス)
90  フォトマスクブランク(被処理物)
91  ガラス基板
92  遮光膜
92a パターン
93  レジスト
93a 変質部分
93b 非変質部分
93e アッシング除去部
DESCRIPTION OF SYMBOLS 1 Atmospheric pressure remote plasma ashing apparatus 10 Processing head 11 Electrode 12 Power supply 13 Other discharge space 14 Processing gas supply source 15 for ashing Outlet 16 Electric field shielding member 17 Moving mechanism 18 Heating part 2 Atmospheric pressure remote plasma lyophilic apparatus 20 Processing head 21 Electrode 22 Power supply 23 Discharge space 24 Treatment gas supply source for lyophilic 25 Blowout port 26 Electric field shielding member 27 Moving mechanism 3 Electron beam irradiation machine 3a Electron beam 5 Developer 9 Photomask (device)
90 Photomask blank (object to be processed)
91 glass substrate 92 light shielding film 92a pattern 93 resist 93a altered portion 93b non-altered portion 93e ashing removal portion

Claims (3)

  1.  デバイスの基板に感光性のレジストを塗布してレジスト層を形成するレジスト塗布工程と、
     前記レジスト層に部分的に光を照射する露光工程と、
     親液化用処理ガスを、大気圧近傍の放電空間に通して吹出し、前記レジスト層に接触させる大気圧リモートプラズマ親液化工程と、
     前記レジスト層に現像液を接触させる現像工程と、
     を順次実行することを特徴とするレジストパターンの形成方法。
    A resist coating process in which a photosensitive resist is applied to the substrate of the device to form a resist layer;
    An exposure step of partially irradiating the resist layer with light;
    An atmospheric pressure remote plasma lyophilic process in which a processing gas for lyophilicity is blown through a discharge space near atmospheric pressure and is brought into contact with the resist layer;
    A development step of bringing a developer into contact with the resist layer;
    The method of forming a resist pattern characterized by sequentially executing.
  2.  前記親液化用処理ガスが、窒素ガス又は窒素と酸素の混合ガスであり、酸素含有量が0~20体積%であることを特徴とする請求項1に記載のレジストパターンの形成方法。 2. The method of forming a resist pattern according to claim 1, wherein the lyophilic processing gas is nitrogen gas or a mixed gas of nitrogen and oxygen, and the oxygen content is 0 to 20% by volume.
  3.  請求項1又は2に記載のレジストパターンの形成方法により製造したことを特徴とするデバイス。
     
    A device manufactured by the method for forming a resist pattern according to claim 1.
PCT/JP2010/002139 2009-04-08 2010-03-25 Method for forming resist pattern, and device WO2010116647A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010800127958A CN102362224A (en) 2009-04-08 2010-03-25 Method for forming resist pattern, and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009094297A JP4681662B2 (en) 2009-04-08 2009-04-08 Method for forming resist pattern
JP2009-094297 2009-04-08

Publications (1)

Publication Number Publication Date
WO2010116647A1 true WO2010116647A1 (en) 2010-10-14

Family

ID=42935948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/002139 WO2010116647A1 (en) 2009-04-08 2010-03-25 Method for forming resist pattern, and device

Country Status (3)

Country Link
JP (1) JP4681662B2 (en)
CN (1) CN102362224A (en)
WO (1) WO2010116647A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6089667B2 (en) * 2012-12-13 2017-03-08 大日本印刷株式会社 Photomask blanks manufacturing method with resist, and photomask manufacturing method
CN104570626A (en) * 2013-10-28 2015-04-29 中芯国际集成电路制造(上海)有限公司 Method for improving uniformity of critical sizes and defect rate of pinholes
CN104199256A (en) * 2014-09-25 2014-12-10 上海和辉光电有限公司 Method, device and preliminary drying device for producing photoresist patterns

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09246166A (en) * 1996-03-13 1997-09-19 Nittetsu Semiconductor Kk Developing method for photoresist
JPH10153867A (en) * 1996-11-25 1998-06-09 Hitachi Ltd Pattern forming method and device, production of semiconductor integrated circuit and production of photomask
JP2768760B2 (en) * 1989-10-19 1998-06-25 株式会社東芝 Resist ashing device
JP2003163207A (en) * 2001-11-29 2003-06-06 Sekisui Chem Co Ltd Removing treatment method for remaining photo-resist
JP2007027187A (en) * 2005-07-12 2007-02-01 Sharp Corp Plasma treatment apparatus and plasma treatment method using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2768760B2 (en) * 1989-10-19 1998-06-25 株式会社東芝 Resist ashing device
JPH09246166A (en) * 1996-03-13 1997-09-19 Nittetsu Semiconductor Kk Developing method for photoresist
JPH10153867A (en) * 1996-11-25 1998-06-09 Hitachi Ltd Pattern forming method and device, production of semiconductor integrated circuit and production of photomask
JP2003163207A (en) * 2001-11-29 2003-06-06 Sekisui Chem Co Ltd Removing treatment method for remaining photo-resist
JP2007027187A (en) * 2005-07-12 2007-02-01 Sharp Corp Plasma treatment apparatus and plasma treatment method using the same

Also Published As

Publication number Publication date
JP2010243918A (en) 2010-10-28
CN102362224A (en) 2012-02-22
JP4681662B2 (en) 2011-05-11

Similar Documents

Publication Publication Date Title
JP4681662B2 (en) Method for forming resist pattern
JP4681661B2 (en) Method for forming resist pattern
KR101216797B1 (en) Method of processing substrate, method of manufacturing euv mask and euv mask
KR20110044536A (en) Manufacturing method of capacity type touch screen panel
JP4674904B2 (en) Substrate processing apparatus and substrate processing method
JP3774413B2 (en) Development method
JP2011060813A (en) Substrate processing method
CN110737171B (en) Nano pattern and preparation method thereof, and preparation method of nano structure
KR20090050157A (en) Apparatus and method for manufacturing a master roll, and method for forming a display device using the same
JP2010181761A (en) Apparatus for drying substrate, method of drying substrate and method of manufacturing display panel substrate
JP2004071966A (en) Resist peeling method
WO2004064129A1 (en) Substrate processing method and substrate processing apparatus
KR101111691B1 (en) Pattern roll making apparatus
JP2010245367A (en) Substrate treating device, substrate treating method, and method of manufacturing display panel substrate
JP2007117993A (en) Apparatus and method of drying substrate, and method of manufacturing substrate
JPS6215242Y2 (en)
JP2008018324A (en) Device/method for treating substrate and substrate manufacturing method
JP2005279376A (en) Method of forming coating film and method of manufacturing color filter for liquid crystal display
JP2004012609A (en) Residue removing device for color filter substrate and method for manufacturing color filter substrate by using the device
JP4025341B2 (en) Cleaning method of developer supply nozzle
JP4453074B2 (en) Method for developing substrate and method for producing member for plasma display using the same
JP2007094311A (en) Exposing/developing/cleaning method and device therefor
JP4579388B2 (en) Ion cartridge cleaning method and ion cartridge cleaning apparatus
JP2008047804A (en) Substrate treating device, substrate treating method, and method of manufacturing substrate
JP2011107572A (en) Proximity exposure apparatus, method for protecting optical component of proximity exposure apparatus, and method for manufacturing display panel substrate

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080012795.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10761355

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10761355

Country of ref document: EP

Kind code of ref document: A1