JP4025341B2 - Cleaning method of developer supply nozzle - Google Patents

Cleaning method of developer supply nozzle Download PDF

Info

Publication number
JP4025341B2
JP4025341B2 JP2005304737A JP2005304737A JP4025341B2 JP 4025341 B2 JP4025341 B2 JP 4025341B2 JP 2005304737 A JP2005304737 A JP 2005304737A JP 2005304737 A JP2005304737 A JP 2005304737A JP 4025341 B2 JP4025341 B2 JP 4025341B2
Authority
JP
Japan
Prior art keywords
developer
development
substrate
pattern
resist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005304737A
Other languages
Japanese (ja)
Other versions
JP2006128671A (en
Inventor
理一郎 高橋
圭 早崎
信一 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2005304737A priority Critical patent/JP4025341B2/en
Publication of JP2006128671A publication Critical patent/JP2006128671A/en
Application granted granted Critical
Publication of JP4025341B2 publication Critical patent/JP4025341B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

本発明は、半導体デバイス、電子回路部品、液晶表示素子等の製造に於ける、リソグラフィ工程に関し、特に感光性レジスト膜を現像するための現像液供給ノズルの洗浄方法に関する。 The present invention relates to a lithography process in the manufacture of semiconductor devices, electronic circuit components, liquid crystal display elements, and the like, and more particularly to a method for cleaning a developer supply nozzle for developing a photosensitive resist film.

半導体素子の寸法の微細化に伴い、従来現像方法ではパターン間に現像液が十分染み込まないためチップ内の局所的なパターン寸法の不均一性が問題となっている。また、基板の大口径化に伴い、従来の現像方法では、基板面内でのパターン寸法の不均一性が生じ、大きな問題となっている。   Along with the miniaturization of the dimensions of semiconductor elements, the conventional developing method does not sufficiently infiltrate the developer between the patterns, which causes a problem of local non-uniformity of pattern dimensions in the chip. Further, with the increase in the diameter of the substrate, the conventional development method causes a non-uniform pattern dimension within the substrate surface, which is a serious problem.

一般に半導体の製造プロセスにおいては感光性レジストの現像液としてテトラメチルアンモニウムヒドロキシド(TMAH)などのアルカリ性の水溶液が用いられている。現像液は水溶液であることから、疎水性である感光性レジスト表面に対して濡れ性が十分でない。そのため、中和反応の結果生じる反応生成物が表面近傍にある場合に、現像液が反応生成物と感光性レジスト表面の間に拡散しにくく、アルカリイオン濃度が局所的に異なり、結果として現像速度が場所により異なることが観測されている。   Generally, in a semiconductor manufacturing process, an alkaline aqueous solution such as tetramethylammonium hydroxide (TMAH) is used as a developer for a photosensitive resist. Since the developer is an aqueous solution, the wettability is not sufficient with respect to the hydrophobic photosensitive resist surface. Therefore, when the reaction product resulting from the neutralization reaction is in the vicinity of the surface, the developer is difficult to diffuse between the reaction product and the photosensitive resist surface, and the alkali ion concentration is locally different, resulting in the development speed. Has been observed to vary from place to place.

例えば、広い溶解領域内に配置されているパターンとほとんど周囲が溶解されない領域に配置されているパターンが存在する場合に、広い溶解領域内に配置されているパターンでは、パターン近傍に存在する反応生成物の量が多く現像液が反応生成物と感光性レジストの間に拡散しにくいため、現像の進行が妨げられ、ほとんど周囲が溶解されない領域に配置されているパターンと比較してライン寸法が太くなってしまうという問題(疎密パターンの寸法差)があった。   For example, if there is a pattern that is located in a wide dissolution area and a pattern that is located in an area where the surroundings are almost undissolved, the reaction that exists in the vicinity of the pattern is generated in the pattern that is located in the wide dissolution area. Since the amount of the product is large and the developer is difficult to diffuse between the reaction product and the photosensitive resist, the progress of the development is hindered, and the line size is thicker than the pattern arranged in the area where the periphery is hardly dissolved. There was a problem that it would become (a dimensional difference in the density pattern).

上述したように、パターンの密度に応じて寸法差が生じてしまい、レジストパターン寸法の面内均一性が悪化するという問題があった。   As described above, there is a problem that a dimensional difference is generated according to the pattern density, and the in-plane uniformity of the resist pattern dimension is deteriorated.

本発明の目的は、レジストパターン寸法の面内均一性の向上を図り得る現像液供給ノズルの洗浄方法を提供することにある。 An object of the present invention is to provide a developer supply nozzle cleaning method capable of improving in-plane uniformity of resist pattern dimensions.

本発明は、上記目的を達成するために以下のように構成されている。   The present invention is configured as follows to achieve the above object.

本発明は、露光された感光性レジスト膜を現像する際に用いる現像液供給ノズルの洗浄方法であって、被処理基板上に現像液を供給する現像液供給ノズルに酸化性液体を供給して洗浄する。 The present invention relates to a method of cleaning a developer supply nozzle used when developing an exposed photosensitive resist film, and supplying an oxidizing liquid to a developer supply nozzle for supplying a developer onto a substrate to be processed. Wash.

本発明によれば、現像液を流動させる工程の開始時間と終了時間の間に、感光性レジスト膜の領域の底面に現像液が達する抜け時間を含ませる、又は現像液を流動させる工程の開始時間を現像液が対象パターンの可溶領域の底面まで進行する時間の後にすることによって、レジストパターン寸法の面内均一性の向上を図ることができる。   According to the present invention, between the start time and end time of the step of causing the developer to flow, the removal time for the developer to reach the bottom surface of the photosensitive resist film region is included, or the start of the step of causing the developer to flow By setting the time after the time for the developing solution to reach the bottom surface of the soluble region of the target pattern, the in-plane uniformity of the resist pattern dimension can be improved.

本発明の実施の形態を以下に図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the drawings.

(第1の実施形態)
図1は、本発明の第1の実施形態に係る現像処理方法の処理手順のフローチャートを示す図である。また、図2から6は本発明の第1の実施形態に係る現像処理方法の処理手順を示す工程図である。
(First embodiment)
FIG. 1 is a flowchart of a processing procedure of a development processing method according to the first embodiment of the present invention. 2 to 6 are process diagrams showing a processing procedure of the development processing method according to the first embodiment of the present invention.

図1から5を用いて本発明の第1の実施形態に係る現像方法を説明する。   A developing method according to the first embodiment of the present invention will be described with reference to FIGS.

(ステップS101)
図2に示すように、半導体基板を含む被処理基板100には、主面上に反射防止膜を介して化学増幅型レジスト(感光性レジスト膜)が塗布形成され、化学増幅型レジスト膜にはKrFエキシマレーザーを用い、露光用レチクルを介し回路パターンが縮小投影露光されている。被処理基板100に対してPEB処理を行った後、搬送ロボットにより、被処理基板100は現像装置の基板保持部101の上部に搬送され、基板保持部101に吸引固定される。リンス時、及び乾燥時等、必要に応じて回転機構102により被処理基板100を回転させる。
(Step S101)
As shown in FIG. 2, a chemically amplified resist (photosensitive resist film) is formed on the main surface of the substrate to be processed 100 including a semiconductor substrate via an antireflection film, and the chemically amplified resist film Using a KrF excimer laser, a circuit pattern is subjected to reduced projection exposure via an exposure reticle. After performing the PEB process on the substrate to be processed 100, the substrate to be processed 100 is transferred to the upper part of the substrate holding unit 101 of the developing device by the transfer robot, and is sucked and fixed to the substrate holding unit 101. The substrate to be processed 100 is rotated by the rotating mechanism 102 as necessary, such as during rinsing and drying.

本実施形態に係る現像装置は、さらにリンスノズル103、及び現像液供給ノズル104、現像液供給ノズル104を基板100の一端から他端へ向かって走査させる走査機構を具備する。リンスノズル103は、被処理基板100のリンス時または、現像停止時に、吐出口から超純水、オゾン水、酸素水等の酸化性を有する液体や弱アルカリ性の液体を吐出する。現像液供給ノズル104は被処理基板100の最長径よりも長い辺を持ち、基板100に現像液を均一に供給する。なお、リンスノズルは、吐出する酸化性液体若しくは弱アルカリ性液体による被処理基板主面の感光性レジストへのダメージを防ぎ、該洗浄液の作用を該基板上で均一にするため、吐出される洗浄液を揺動させる機構と、ノズル吐出口内部に洗浄液の勢いが局所的に強くなるのを妨げる緩和機構を有することが望ましい。   The developing device according to the present embodiment further includes a rinse nozzle 103, a developer supply nozzle 104, and a scanning mechanism that scans the developer supply nozzle 104 from one end to the other end of the substrate 100. The rinse nozzle 103 discharges an oxidative liquid such as ultrapure water, ozone water, oxygen water, or a weak alkaline liquid from the discharge port when the substrate to be processed 100 is rinsed or when development is stopped. The developer supply nozzle 104 has a side longer than the longest diameter of the substrate 100 to be processed, and uniformly supplies the developer to the substrate 100. The rinsing nozzle prevents the cleaning liquid to be discharged in order to prevent damage to the photosensitive resist on the main surface of the substrate to be processed by the discharged oxidizing liquid or weak alkaline liquid and to make the operation of the cleaning liquid uniform on the substrate. It is desirable to have a mechanism for swinging and a mitigation mechanism for preventing the momentum of the cleaning liquid from locally increasing inside the nozzle discharge port.

(ステップS102)
次に、図3(a)に示すように、被処理基板100から所定の高さのところにリンスノズル103を移動させる。回転機構102により被処理基板100を回転させつつ、リンスノズル103から被処理基板100に、前処理液としてオゾン濃度5ppm以下のオゾン水106を2秒程度吐出する。その間、リンスノズル103は基板100主面上を動き、オゾン水106を揺動させ、基板100主面上になるべく均一に供給する。次いで、図3(b)に示すように、被処理基板100を回転させ、基板100表面を乾燥させる。
(Step S102)
Next, as shown in FIG. 3A, the rinse nozzle 103 is moved from the substrate to be processed 100 to a predetermined height. While rotating the substrate 100 to be processed by the rotating mechanism 102, ozone water 106 having an ozone concentration of 5 ppm or less is discharged from the rinse nozzle 103 to the substrate 100 as a pretreatment liquid for about 2 seconds. In the meantime, the rinse nozzle 103 moves on the main surface of the substrate 100 to swing the ozone water 106 and supply it as uniformly as possible on the main surface of the substrate 100. Next, as shown in FIG. 3B, the substrate to be processed 100 is rotated to dry the surface of the substrate 100.

ここでは、被処理基板上に均一に液膜を形成するために、前処理工程を行っているが、この前処理工程は必ずしも必要ではない。また、オゾン水よりも液膜を均一に形成することが可能であれば前処理液として、酸素水、水素水、硝酸、及び過酸化水素、アルカリイオン水等を用いても構わない。   Here, a pretreatment process is performed in order to uniformly form a liquid film on the substrate to be processed, but this pretreatment process is not necessarily required. In addition, oxygen water, hydrogen water, nitric acid, hydrogen peroxide, alkali ion water, or the like may be used as a pretreatment liquid as long as a liquid film can be formed more uniformly than ozone water.

(ステップS103)
次いで、図4(a)、(b)に示すように、第1の現像処理として、被処理基板100上の感光性レジスト膜を加工する現像液の膜を被処理基板100上に形成する。ここでは、直線状現像液吐出ノズル104を被処理基板100の一方の端から他方の端へ走査させ、カーテン状に現像液107を吐出させることで基板100上に現像液膜107を形成する。図4(b)に示すように、現像液供給ノズル104の走査方向に直交する方向の長さは、被処理基板100の直径より長いので、被処理基板100の全面に現像液107の膜を形成することができる。
(Step S103)
Next, as shown in FIGS. 4A and 4B, as a first development process, a film of a developer that processes the photosensitive resist film on the substrate 100 to be processed is formed on the substrate 100 to be processed. Here, the developer film 107 is formed on the substrate 100 by causing the linear developer discharge nozzle 104 to scan from one end of the substrate to be processed 100 to the other end and discharging the developer 107 in a curtain shape. As shown in FIG. 4B, the length of the developer supply nozzle 104 in the direction perpendicular to the scanning direction is longer than the diameter of the substrate to be processed 100, so that the film of the developer 107 is formed on the entire surface of the substrate to be processed 100. Can be formed.

現像液膜形成工程は、ここで示した方法に限定されるものではない。例えば、図5(a),(b)に示すように、直線状の現像液供給ノズル104から現像液を供給しながら、被処理基板100を回転させて被処理基板100の全面に現像液膜107を形成する方法がある。図5は、本願発明の第1の実施形態に係わる現像液膜形成方法の変形例を示す図である。図5(a)は断面図、図5(b)は平面図である。   The developer film forming step is not limited to the method shown here. For example, as shown in FIGS. 5A and 5B, while supplying the developing solution from the linear developing solution supply nozzle 104, the substrate to be processed 100 is rotated and the developing solution film is formed on the entire surface of the processing substrate 100. There is a method of forming 107. FIG. 5 is a view showing a modified example of the developer film forming method according to the first embodiment of the present invention. FIG. 5A is a cross-sectional view, and FIG. 5B is a plan view.

また、図6(a),(b)に示すように、直管状のノズル112から被処理基板100に対して現像液107を供給しながら、被処理基板100を回転させて基板100全面に現像液膜107を形成する方法などがある。ここで示した方法以外にも、さまざまな形態を取りうる。図6は、本願発明の第1の実施形態に係わる現像液膜形成方法の変形例を示す図である。図6(a)は断面図、図6(b)は平面図である。   Further, as shown in FIGS. 6A and 6B, while the developing solution 107 is supplied from the straight tubular nozzle 112 to the substrate to be processed 100, the substrate to be processed 100 is rotated to develop the entire surface of the substrate 100. There is a method of forming the liquid film 107. Other than the method shown here, various forms can be taken. FIG. 6 is a view showing a modified example of the developer film forming method according to the first embodiment of the present invention. 6A is a cross-sectional view, and FIG. 6B is a plan view.

(ステップS104)
第1の洗浄処理として、被処理基板主面に現像液膜を形成してから約5秒で、リンスノズル103から、純水を吐出すると同時に基板を回転させ、被処理基板100上の現像液膜を洗い流す。引き続き、基板100を低速で回転させながら、低濃度オゾン水を吐出した。
(Step S104)
As the first cleaning process, about 5 seconds after the developer film is formed on the main surface of the substrate to be processed, pure water is discharged from the rinse nozzle 103 and simultaneously the substrate is rotated, so that the developer on the substrate 100 to be processed Rinse the membrane. Subsequently, low-concentration ozone water was discharged while rotating the substrate 100 at a low speed.

(ステップS105)
次いで、被処理基板100を高速回転させ、基板100表面を乾燥させた。
(Step S105)
Next, the substrate 100 to be processed was rotated at a high speed to dry the surface of the substrate 100.

リンスノズル103から、低濃度オゾン水を吐出すると同時に基板を回転させ約10秒間、低濃度オゾン水により洗浄を行った後、被処理基板を高速回転させ、基板を乾燥させても良い。   The substrate may be rotated at the same time as the low-concentration ozone water is discharged from the rinse nozzle 103, and after cleaning with the low-concentration ozone water for about 10 seconds, the substrate to be processed may be rotated at a high speed to dry the substrate.

酸化性を有する洗浄液として、本実施形態ではレジストに許容範囲以上のダメージを与えない程度の低濃度オゾン水を用いた。同様の効果があれば、酸化性を有する洗浄液として、純水に酸素を溶解させた酸素水等を用いてもよい。さらに、同様の効果があり、レジストに許容値以上のダメージ与えなければ、弱アルカリ性水溶液を用いてもよい。   In this embodiment, low-concentration ozone water that does not damage the resist beyond an allowable range is used as the cleaning liquid having oxidizing properties. If there is a similar effect, oxygen water or the like in which oxygen is dissolved in pure water may be used as the oxidizing cleaning solution. Further, a weak alkaline aqueous solution may be used as long as the same effect is obtained and the resist is not damaged more than an allowable value.

(ステップS106)
次いで、第2の現像処理として、被処理基板100上のレジスト膜を加工する現像液を被処理基板100上に形成する。ここでは、直線状現像液吐出ノズルを基板の一方の端から他方の端へ走査させ、カーテン状に現像液を吐出させることで基板上の現像液膜を形成した。
(Step S106)
Next, as a second development process, a developing solution for processing the resist film on the target substrate 100 is formed on the target substrate 100. Here, the developer film on the substrate was formed by scanning the linear developer discharge nozzle from one end of the substrate to the other end and discharging the developer in a curtain shape.

必要ならば第2の現像処理の最中に被処理基板主面上で現像液を攪拌してもよい。その場合、例えば、形成された現像液膜の攪拌方法は、被処理基板上に整流板を配置し、該整流板を回転させることで気流を発生させ行う方法や、基板自体を回転させる方法や、外部からの振動子により液体に振動を与える方法等、現像液を基板全面で流動させる作用があるならばどのような方法でもよい。   If necessary, the developer may be stirred on the main surface of the substrate to be processed during the second development process. In that case, for example, a method of stirring the formed developer film may be a method of arranging a rectifying plate on a substrate to be processed and rotating the rectifying plate to generate an air current, a method of rotating the substrate itself, Any method may be used as long as it has an effect of causing the developer to flow over the entire surface of the substrate, such as a method of applying vibration to the liquid by an external vibrator.

(ステップS107)
第2の洗浄処理として、被処理基板100主面に現像液膜を形成してから約25秒で、リンスノズル103から、純水を吐出すると同時に基板100を500rpmで回転させた。なお、第2の現像後の洗浄液として、本実施形態では、純水を用いたが、より高い洗浄効果があるのであれば、洗浄液として還元性液体、酸化性液体(オゾン水、酸素水)、弱アルカリイオン水、弱酸性イオン水、超臨界水、炭酸水、水素水、純水など、どれを用いても構わない。また、洗浄効果が高められるのであれば、これらの液を適宜組み合わせることも可能である。
(Step S107)
As a second cleaning process, about 25 seconds after the developer film was formed on the main surface of the substrate 100 to be processed, pure water was discharged from the rinse nozzle 103 and the substrate 100 was rotated at 500 rpm. In this embodiment, pure water is used as the cleaning liquid after the second development. However, if there is a higher cleaning effect, a reducing liquid, an oxidizing liquid (ozone water, oxygen water), Any of alkaline ionized water, weakly acidic ionized water, supercritical water, carbonated water, hydrogen water, pure water, etc. may be used. In addition, these liquids can be appropriately combined as long as the cleaning effect is enhanced.

(ステップS108,S109)
被処理基板を高速回転させ、基板を乾燥させた後、現像工程を終了し搬送ロボットにより基板を回収する。
(Steps S108 and S109)
After the substrate to be processed is rotated at a high speed and the substrate is dried, the developing process is completed, and the substrate is collected by the transfer robot.

従来の現像方法の問題点及びその原因を説明する。化学増幅型の感光性レジストは、所望パターンの露光と熱処理により、レジスト膜中に微細なアルカリ可溶領域とアルカリ難溶領域とが形成される。これらアルカリ可溶領域及びアルカリ難溶領域がアルカリ現像液に接触すると、通常のKrFレジストの一般的な現像工程に要する時間においては、アルカリ可溶領域はアルカリに溶解し、アルカリ難溶領域は溶解しない。現像中にアルカリ可溶領域から発生した反応生成物は、アルカリ難溶領域であるレジストパターン間に挟まれ、レジスト難溶領域及び、同様に溶解した反応生成物からの分子間の相互作用を受け、その場に留まる。特に加工寸法が微細になると、レジストパターン寸法も微細になり、したがってアルカリ可溶領域のアルカリ難溶領域と寸法も小さくなり、分子間の相互作用は強くなりますます液中雰囲気へ拡散しにくくなる。また、反応生成物は、基板からの静電ポテンシャルにより、溶解後もその場に留まるよう、束縛力が作用する。この結果、アルカリイオンが更に可溶レジスト領域へ拡散するのが妨げられ、レジスト表面付近ではアルカリ濃度が場所により異なるとともに、現像は阻害され現像速度が場所により変化する。   Problems and causes of the conventional developing method will be described. In a chemically amplified photosensitive resist, a fine alkali-soluble region and a hardly alkali-soluble region are formed in a resist film by exposure and heat treatment of a desired pattern. When these alkali-soluble regions and alkali-poorly soluble regions come into contact with an alkali developer, the alkali-soluble region is dissolved in alkali and the alkali-poorly soluble region is dissolved in the time required for a general development process of a normal KrF resist. do not do. The reaction product generated from the alkali-soluble region during development is sandwiched between resist patterns that are hardly alkali-soluble regions, and is subjected to intermolecular interactions from the resist-soluble region and similarly dissolved reaction products. , Stay there. In particular, when the processing dimensions become finer, the resist pattern dimensions also become finer. Therefore, the alkali-soluble area and the dimension of the alkali-soluble area become smaller, and the interaction between molecules becomes stronger. It becomes difficult to diffuse into the atmosphere in the liquid. . In addition, a binding force acts on the reaction product so that the reaction product stays in place after dissolution due to the electrostatic potential from the substrate. As a result, the alkali ions are further prevented from diffusing into the soluble resist region, and the alkali concentration varies from place to place near the resist surface, development is inhibited, and the development speed varies from place to place.

被処理基板上に現像液を盛り静止させ、所定の時間経過後直ちに被処理基板上の現像液を洗浄液(純水)で置換し、現像を停止させていた。この方法では、上記のような反応生成物の局所的な停滞が基板面内で起こり、現像終了までそれを除去しないため、現像が阻害され、面内で現像の速度に差が生じる。特に反応生成物の量の多少に応じて現像速度が変わるため、パターンの疎な領域と密な領域とでは発生する反応生成物の量が異なる。そのためアルカリイオン濃度がパターンの疎な領域と密な領域のレジスト表面近傍では異なるという現象が起こり、つまり、パターンの疎な領域と密な領域のレジスト表面近傍で現像速度が異なるという現象が起こる。この結果、レジストパターンに寸法の疎密差の問題が発生している。   The developer was put on and stopped on the substrate to be processed, and immediately after a predetermined time elapsed, the developer on the substrate to be processed was replaced with a cleaning solution (pure water) to stop development. In this method, the local stagnation of the reaction product as described above occurs in the surface of the substrate and is not removed until the development is completed. Therefore, the development is hindered, and the development speed is different in the surface. In particular, since the developing speed varies depending on the amount of the reaction product, the amount of the reaction product generated differs between the sparse area and the dense area. For this reason, a phenomenon occurs in which the alkali ion concentration is different between the sparse pattern region and the dense region near the resist surface, that is, a development rate is different between the sparse pattern region and the dense resist surface. As a result, a problem of dimensional density difference occurs in the resist pattern.

上記の問題に対し、現像途中で反応生成物を一度除去し再度フレッシュな現像液により現像を行うことを考えた。しかし、現像を2度に分けて行う方法は周知の技術であり、例えば特開平2−46464号公報に公開されている。特開平2−46464号公報では一度現像液で現像を行った後、リンス乾燥し、再度濃度の濃い現像液にて現像を行っている。発明者は、これにより、レジストパターンの底部のレジスト残渣やスカムが除去されるとしている。これら残渣やスカムはレジストの未溶解部であり、一度目の現像後の洗浄で除去する対象である現像により生じる反応生成物ではない。これらレジスト底面の残渣やスカムは現像後には欠陥となる可能性のある、いわば特異点であり、面内の均一性にはほぼ寄与しない。したがって、上記の特開平2−46464号公報では従来現像での問題を解決していない。また、特に記述はないが、この場合のリンス液とは、通常純水を指している。この点が本実施形態に示した方法との大きな相違である。   In order to solve the above problem, it was considered that the reaction product was once removed during development and development was performed again with a fresh developer. However, the method of performing development in two steps is a well-known technique, and is disclosed in, for example, Japanese Patent Application Laid-Open No. 2-46464. In Japanese Patent Application Laid-Open No. 2-46464, development is performed once with a developer, rinsed and dried, and then again developed with a developer having a high concentration. The inventor has said that the resist residue and scum at the bottom of the resist pattern are thereby removed. These residues and scum are undissolved portions of the resist, and are not reaction products generated by development that is to be removed by washing after the first development. Residues and scum on the bottom surface of the resist are singular points that may become defects after development, and do not substantially contribute to in-plane uniformity. Therefore, the above-mentioned Japanese Patent Application Laid-Open No. 2-46464 does not solve the problems in conventional development. Moreover, although there is no description in particular, the rinsing liquid in this case usually indicates pure water. This is a significant difference from the method shown in this embodiment.

一般に、一度目の現像後、第1の洗浄処理に純水により洗浄を行った場合、pHの高い現像液からpH7の純水へ置換され、レジスト表面では急激なpH変化が生じ、アルカリ難溶化層が形成される。このため、反応生成物のきれいに除去されたパターンの二度目の現像では、この難溶化層からアルカリによる溶解が均一に始まり、最終的にこの一度目の現像から洗浄に置換される際に形成された難溶化層の表面形状を反映したまま残る。一方、現像液から洗浄液に置換される際に形成された難溶化層は露光時の露光量バラツキやフォーカスバラツキ、現像初期の現像速度バラツキ等の影響を強く反映しており、一般に均一性は悪い。したがって、現像後に形成されるレジストパターンの基板面内の寸法均一性は通常の一度だけの現像よりも悪化する。したがって、上記特開平2−46464号公報の方法では、従来の現像法による問題を解決しないばかりか、基板面内の寸法均一性は悪化することがわかる。   In general, after the first development, when the first cleaning process is performed with pure water, the developer having a high pH is replaced with pure water having a pH of 7, and a rapid pH change occurs on the resist surface, resulting in poor alkali solubility. A layer is formed. For this reason, in the second development of the pattern in which the reaction product has been removed cleanly, dissolution by alkali starts uniformly from this hardly soluble layer, and finally formed when this first development is replaced with washing. Remains reflecting the surface shape of the slightly soluble layer. On the other hand, the poorly soluble layer formed when the developing solution is replaced with the cleaning solution strongly reflects the influence of exposure amount variation, focus variation, development speed variation at the initial stage of development, and the uniformity is generally poor. . Therefore, the dimensional uniformity in the substrate surface of the resist pattern formed after development is worse than the normal one-time development. Therefore, it can be seen that the method disclosed in Japanese Patent Laid-Open No. 2-46464 not only solves the problems caused by the conventional developing method but also deteriorates the dimensional uniformity in the substrate surface.

本実施形態に示した現像方法では、第1の現像処理と第2の現像処理の間に、オゾン水等の酸化性を有する液体により処理を行うことを特徴としている。初めに純水で洗浄した後引き続いてオゾン水で洗浄した場合には、現像液から純水に触れることで形成された表面難溶化層をオゾン水処理することで、表面を酸化することで改質する。あるいはオゾン濃度を僅かに高め表面を僅かに分解することにより、表面の難溶化をアルカリに対し可溶にする。一方、初めからオゾン水を用いて洗浄した場合、現像液で膨潤しているレジスト表面に容易にオゾン分子が入り込み酸化させるため、pHが低下しても、ほとんどレジスト表面を難溶化させず、アルカリに対し可溶性を保つ。どちらの場合でも、引き続き第2の現像を行うと、一度目の現像に拘わらず、露光時の光学プロファイルに忠実に現像し、レジストパターンを形成する。さらに現像時間を従来現像と同程度の長さで行えば、反応生成物の影響も、表面難溶化層に影響も受けず、十分に現像が進むので、露光時の露光量、フォーカスバラツキ等の影響は緩和され、現像後のレジストパターンの面内の寸法均一性は向上される。また、オゾン水等の酸化性液体で洗浄することにより、未形成のレジストパターン間に存在する反応生成物を分解し、きれいに除去することができる。さらに現像後に欠陥に成りうるパーティクルも除去することが可能である。   The developing method shown in this embodiment is characterized in that processing is performed with an oxidizing liquid such as ozone water between the first developing process and the second developing process. In the case of first cleaning with pure water and then subsequent cleaning with ozone water, the surface insolubilized layer formed by touching the pure water from the developer is treated with ozone water to modify the surface by oxidizing it. Quality. Or by slightly increasing the ozone concentration and slightly decomposing the surface, the surface hardly soluble is made soluble in alkali. On the other hand, when cleaning with ozone water from the beginning, ozone molecules easily enter and oxidize the resist surface swollen with the developer, so even if the pH is lowered, the resist surface is hardly insolubilized. It remains soluble in In either case, when the second development is continued, development is performed faithfully to the optical profile at the time of exposure and a resist pattern is formed regardless of the first development. Furthermore, if the development time is as long as that of the conventional development, the reaction product and the surface hardly-solubilized layer are not affected, and the development proceeds sufficiently, so that the exposure amount during exposure, focus variation, etc. The influence is alleviated and the in-plane dimensional uniformity of the resist pattern after development is improved. Further, by washing with an oxidizing liquid such as ozone water, the reaction product existing between the unformed resist patterns can be decomposed and removed cleanly. Furthermore, particles that can become defects after development can be removed.

また、第1の現像から第1の洗浄液を吐出する時間を本実施形態では約5秒としたが、これは以下の理由による。図7に、KrFポジ型レジスト膜の現像液による溶解の様子を観察した際得られる、時間に対する反射光強度のグラフを模式的に示す。図7グラフ中の第1段階に見られる正弦波は現像が膜厚の深さ方向に進行しているために起こる膜厚による干渉効果である。一般にレジストは現像開始直後のこの第1段階では、図8(a)に示すように、レジスト膜130の露光部131の可溶領域で溶解速度が高く、溶解は深さ方向に進行し、レジストの底面まで抜けるまでDUV露光用ポジ型レジストで5〜10秒程度要する。第2段階では、図8(b)に示すように、現像がレジスト膜厚の深さ方向ではなく、レジストパターン側壁を溶解する方向へ進む。このときの反射強度は緩やかに変化する。この第2段階では、溶解速度は低くなり、レジストパターンの側壁を所望の寸法まで溶解するため、溶解方向は比較的水平方向に進行する。   In addition, the time for discharging the first cleaning liquid from the first development is set to about 5 seconds in this embodiment, and this is due to the following reason. FIG. 7 schematically shows a graph of reflected light intensity with respect to time, which is obtained when the state of dissolution of the KrF positive resist film by the developer is observed. The sine wave seen in the first stage in the graph of FIG. 7 is an interference effect due to the film thickness that occurs because the development proceeds in the depth direction of the film thickness. In general, in this first stage immediately after the start of development, the resist has a high dissolution rate in the soluble region of the exposed portion 131 of the resist film 130, and the dissolution proceeds in the depth direction, as shown in FIG. It takes about 5 to 10 seconds for the positive resist for DUV exposure until it reaches the bottom of the film. In the second stage, as shown in FIG. 8B, the development proceeds not in the depth direction of the resist film thickness but in the direction of dissolving the resist pattern side wall. The reflection intensity at this time changes gently. In this second stage, the dissolution rate is reduced, and the side walls of the resist pattern are dissolved to a desired size, so that the dissolution direction proceeds in a relatively horizontal direction.

このように第1段階でレジストの溶解が深さ方向に進み、第2段階で横方向へ進むのは、投影式の露光に不可避な光の回折による露光強度分布により露光部から非露光部にかけて緩やかに露光強度が変化するためである。この露光強度の分布により、露光量の強い、つまり十分に露光されている、パターンとパターンの中間部は現像時にもっとも速く抜けるため、深さ方向に急激に進む第1段階のような現像となる。一方、露光量の少ない、パターン壁近傍では中間部に比べて現像速度が遅くなるため、穏やかに横方向へ進行する第2段階に示すような現像となる。この第1段階の段階で、通常現像において現像を阻害する溶解性生物のほとんどが発生する。   In this way, the dissolution of the resist proceeds in the depth direction in the first stage, and proceeds in the lateral direction in the second stage because the exposure intensity distribution due to the diffraction of light unavoidable in the projection type exposure extends from the exposed part to the non-exposed part. This is because the exposure intensity changes gradually. Due to the distribution of the exposure intensity, a pattern having a large exposure amount, that is, a well-exposed pattern, and the middle part of the pattern are removed most rapidly during development, so that development is performed as in the first stage that proceeds rapidly in the depth direction. . On the other hand, in the vicinity of the pattern wall where the exposure amount is small, the development speed is slower than that in the intermediate portion, so the development is as shown in the second stage, which proceeds gently in the lateral direction. In this first stage, most of the soluble organisms that inhibit development in normal development are generated.

本実施形態では、第1の現像から第1の洗浄液を吐出する時間を現像開始約5秒後としたが、これはこの第1段階から第2段階へ切り替わるところ、つまり現像が溶解部で逆さ方向へ進行し、レジストの底面まで抜けるところである。このようなタイミングにしたのは以下の理由による。   In the present embodiment, the time for discharging the first cleaning liquid from the first development is about 5 seconds after the start of development, but this is where the first stage is switched to the second stage, that is, the development is reversed at the dissolving portion. This is where it proceeds in the direction to the bottom of the resist. The reason for this timing is as follows.

この第1段階で一度発生した溶解生成物を、第1段階から第2段階へ変わる際に洗い流すことで現像の進行を阻害する溶解生成物によるアルカリ濃度低下を防ぐことができる。これよりも早く一度目の現像を停止させると次の現像の段階で溶解生成物が再び発生しアルカリ濃度を低下させ、現像を阻害する。一度目の現像停止時間をこれよりも遅くすると、発生した溶解生成物による局所的なアルカリ濃度の低下が生じ、第2段階での現像に局所的な現像速度の低下が発生してしまう。この後に新鮮な現像液で再び現像を行っても、始めの形成された空間的な不均一性は解消されない。一度目の現像停止時間が第1段階から第2段階に変わる時間から遅れた分だけ、場所ごとの局所的なアルカリ濃度低下は大きくなり、不均一性も増幅されてしまう。   The dissolution product once generated in the first stage is washed away when changing from the first stage to the second stage, thereby preventing a decrease in alkali concentration due to the dissolution product that inhibits the progress of development. If the first development is stopped earlier than this, a dissolved product is generated again at the next development stage, lowering the alkali concentration and inhibiting the development. If the first development stop time is made shorter than this, the local alkali concentration is lowered by the generated dissolved product, and the local development speed is lowered in the development in the second stage. Even if development is performed again with a fresh developer after this, the initially formed spatial non-uniformity cannot be resolved. As the first development stop time is delayed from the time when the first stage changes from the first stage to the second stage, the local decrease in alkali concentration at each location increases and the non-uniformity is also amplified.

第2段階で溶解される、パターン側壁近傍に残る可溶化領域は現像において溶解速度が遅いため、また、第1段階で一度洗浄した後、現像に関わるアルカリ濃度を時間的・空間的に変動させうる溶解生成物が既に除去されておりほとんど発生しないため、第2の現像において十分にパターン線幅を制御することができる。以上の2つの理由により、一度目の現像停止のタイミングを第1段階と第2段階の転換点とするのが最適である。   The solubilized area remaining in the vicinity of the pattern side wall, which is dissolved in the second stage, has a low dissolution rate during development. After washing once in the first stage, the alkali concentration related to development is varied temporally and spatially. Since the dissolved product which can be dissolved is already removed and hardly generated, the pattern line width can be sufficiently controlled in the second development. For the above two reasons, it is optimal to set the first development stop timing as a turning point between the first stage and the second stage.

本実施形態では、図7の第1段階から第2段階へ切り替わる点が5秒であった。この値は、レジスト材料、現像液、アルカリ濃度、温度等により変化するものであり、本実施形態の値に限らない。   In the present embodiment, the point of switching from the first stage to the second stage in FIG. 7 was 5 seconds. This value varies depending on the resist material, developer, alkali concentration, temperature, and the like, and is not limited to the value of this embodiment.

次に実際の発明者らの行った実験結果をもとに本実施形態の効果を説明する。ウエハ上に反射防止膜、KrFポジレジストを順次塗布し、200nm幅のライン及びスペースよりなるパターン(200nmL/Sパターン;L:S=1:1)と200nm幅のラインと2000nm幅のスペースからなるパターン(200nm孤立ライン;L:S=1:10)が含まれるレチクルを用いてKrFエキシマレーザーにて縮小投影露光を行い、熱処理工程の後、現像処理を行った。現像処理工程では、次に示すように4種類のサンプルを作製した。条件を(表1)に示す。

Figure 0004025341
Next, the effect of this embodiment will be described based on the results of experiments conducted by actual inventors. An antireflection film and a KrF positive resist are sequentially applied on the wafer, and are composed of a 200 nm line and space pattern (200 nm L / S pattern; L: S = 1: 1), a 200 nm line and a 2000 nm width space. Reduced projection exposure was performed with a KrF excimer laser using a reticle including a pattern (200 nm isolated line; L: S = 1: 10), and development processing was performed after the heat treatment step. In the development process, four types of samples were prepared as follows. The conditions are shown in (Table 1).
Figure 0004025341

全ての試料のウエハについて、オゾン水で前処理を行い、現像液供給ノズルからの現像液供給量を1.5L/min、ノズルの走査速度を60mm/secとして液厚1.5mmの現像液膜を形成した(第1の現像処理)。参照用サンプルはそのあとの第1の洗浄処理と第2の現像処理を行わず、現像液膜形成は1回とした。試料Aでは、現像開始5秒後に、水で一度洗浄し(第1の洗浄処理)、再度、現像液供給ノズルからの現像液供給量を1.5L/min、ノズルの走査速度を60mm/secとして液厚1.5mmの液膜を形成した(第2の洗浄処理)。   All sample wafers are pre-treated with ozone water, the developer supply amount from the developer supply nozzle is 1.5 L / min, the nozzle scanning speed is 60 mm / sec, and a developer film having a liquid thickness of 1.5 mm Was formed (first development processing). The reference sample was not subjected to the first cleaning process and the second development process, and the developer film was formed once. Sample A was washed once with water (first washing process) 5 seconds after the start of development, and again the developer supply amount from the developer supply nozzle was 1.5 L / min, and the nozzle scanning speed was 60 mm / sec. As a result, a liquid film having a liquid thickness of 1.5 mm was formed (second cleaning process).

これに対し、試料Bでは第1の洗浄処理をオゾン水で行い、試料Cでは第1の洗浄処理を純水で行った後、引き続きオゾン水で洗浄し、さらに続けて試料Aと同じように2回目の現像液膜を形成した(第2の現像処理)。その後の第2の洗浄処理と乾燥処理は全て同じ条件で処理を行った。   On the other hand, in the sample B, the first cleaning process is performed with ozone water, and in the sample C, the first cleaning process is performed with pure water, followed by the subsequent cleaning with ozone water, and then the same as the sample A. A second developer film was formed (second development process). The subsequent second cleaning process and drying process were all performed under the same conditions.

これらサンプルの寸法評価結果を(表2)に示す。

Figure 0004025341
The dimensional evaluation results of these samples are shown in (Table 2).
Figure 0004025341

表2では、同一基板上の200nmL/Sパターンと200nm孤立ラインパターンのラインの寸法差を疎密差としている。表2における疎密差は、孤立ラインパターン(1:10パターン)からL/Sパターン(1:1パターン)の寸法を引いた値とした。   In Table 2, the dimensional difference between the 200 nm L / S pattern and the 200 nm isolated line pattern on the same substrate is the density difference. The density difference in Table 2 was a value obtained by subtracting the size of the L / S pattern (1: 1 pattern) from the isolated line pattern (1:10 pattern).

参照試料では、パターン寸法の面内均一性は比較的良好となっているが、現像液膜形成後、現像による反応生成物がほとんど動かないため、単位面積あたりの反応領域が大きい孤立ラインパターン(1:10パターン)では、単位面積あたりの反応領域が小さいL/Sパターン(1:1パターン)の寸法より30nmも太くなっている。   In the reference sample, the in-plane uniformity of the pattern dimensions is relatively good, but the reaction product generated by the development hardly moves after forming the developer film, so that the isolated line pattern with a large reaction area per unit area ( 1:10 pattern), the reaction region per unit area is 30 nm thicker than the size of the small L / S pattern (1: 1 pattern).

それに対し、試料Aでは疎密差は若干解消されている。一方、面内の均一性は大きく悪化している。これらの原因としては次のようなことが考えられる。まず、疎密差が小さくなる理由は、以下のように考えられる。通常パターン近傍に存在する反応生成物の量がレジストパターンの疎な部分と密な部分とで局所的に異なっていることにより現像液中のアルカリイオン濃度にも局所的な差が生じる。しかし、一度現像液を純水で置換し再度新鮮な濃度の現像液を供給しているため、この局所的なアルカリ濃度の差は無くなる。したがって、パターンの疎密に拘わらず、新鮮な現像液により現像が促進され、本来の光学プロファイルに忠実に現像されるため、パターンの疎密により生じる寸法差は若干小さくなっている。   On the other hand, in sample A, the density difference is slightly eliminated. On the other hand, the in-plane uniformity is greatly deteriorated. The following can be considered as these causes. First, the reason why the density difference is small is considered as follows. Usually, the amount of reaction products present in the vicinity of the pattern is locally different between a sparse part and a dense part of the resist pattern, so that a local difference also occurs in the alkali ion concentration in the developer. However, since the developer is once replaced with pure water and fresh developer is supplied again, this local difference in alkali concentration is eliminated. Therefore, regardless of the density of the pattern, development is promoted by a fresh developer, and development is performed faithfully to the original optical profile. Therefore, the dimensional difference caused by the density of the pattern is slightly reduced.

面内の寸法均一性の問題は以下の用に考えられる。一般に現像時間が早い段階では、溶解速度が速い。現像時間の早い段階では、例えば露光量や露光フォーカスがウエハ上の場所により異なっていた場合、溶解速度の差がより顕著に現れる。通常、現像は十分長い時間行うので、このような現象が見られることはないのだが、本実施形態の第1のリンスは現像時間の早い段階で吐出され、第1の現像を停止している。したがって、上記の効果が顕著に現れていると考えられる。また、このとき、現像反応の活発に起こっている最中に純水をかけることによって、急激なpH値変化が起こり、レジストと純水との界面でレジスト成分が凝集し、特に本来溶解されるべき部分、例えばパターン側壁などの未溶解部のレジスト表面が難溶化する。その後に再び現像液を盛ることによって、現像が再び行われるが、本来溶解が進む領域のレジストの表面は純水とふれたことで凝集し、溶解性が低下しているため、本来の潜像ではなく、純水と触れたことで形成された難溶化層の形状を反映して溶解が進む。したがって、短時間で洗浄を行ったときの悪い均一性を維持したまま現像が進むことになってしまう。以上のように、現像よる反応生成物起因の現像阻害の影響が無くなることで疎密差は減少するが、露光量やフォーカスのブレなど現像の初期に大きな影響を与える因子はそのままかえって大きな影響を及ぼし、面内の均一性を悪化させている。   The problem of in-plane dimensional uniformity can be considered for: In general, the dissolution rate is fast when the development time is early. In the early stage of the development time, for example, when the exposure amount or the exposure focus differs depending on the location on the wafer, the difference in dissolution rate appears more conspicuously. Usually, the development is performed for a sufficiently long time, and such a phenomenon is not observed. However, the first rinse of the present embodiment is discharged at an early stage of the development time, and the first development is stopped. . Therefore, it is considered that the above effect appears remarkably. At this time, by applying pure water while the development reaction is actively taking place, a sudden pH value change occurs, and the resist components aggregate at the interface between the resist and pure water, and are inherently dissolved. The resist surface of an undissolved part such as a pattern side wall such as a pattern side wall is hardly soluble. After that, development is performed again by adding the developer, but the surface of the resist in the region where dissolution is originally proceeded is agglomerated by contact with pure water, and the solubility is lowered. Instead, the dissolution proceeds reflecting the shape of the poorly soluble layer formed by touching pure water. Therefore, development proceeds while maintaining poor uniformity when cleaning is performed in a short time. As described above, the density difference is reduced by eliminating the influence of development inhibition caused by the reaction product due to development, but factors that have a large influence on the initial stage of development, such as exposure amount and focus blurring, have a large influence instead. , Which deteriorates the in-plane uniformity.

これに対し、試料Bや試料Cでは、ウェハ面内での均一性が参照用サンプルと同等かあるいはそれ以上に向上していることがわかる。これは、一度純水に触れることで、レジストが凝集し、表面に難溶化層が形成されるが、オゾン水を加えることでパターンの側壁のような未溶解部のレジスト表面の難溶化層を酸化し、現像液に対する溶解性を維持した状態となるためである。従って、再度、新鮮な濃度の現像液を加えると、パターン側壁などでのレジストの表面難溶化層により現像が阻害されることもなく、引き続き現像が促進され、面内の寸法均一性が向上する。   On the other hand, it can be seen that in the sample B and the sample C, the uniformity in the wafer surface is equal to or higher than that of the reference sample. This is because once the resist is contacted with pure water, the resist agglomerates and a poorly soluble layer is formed on the surface. This is because it is oxidized to maintain the solubility in the developer. Therefore, when a developer having a fresh concentration is added again, the development is not hindered by the resist surface poorly-solubilized layer on the side wall of the pattern, and the development is continuously promoted and the in-plane dimensional uniformity is improved. .

また、一度リンスを行うことでレジストパターン付近の反応生成物を洗い流す効果は上記試料Aと同じである。新鮮な現像液を2度目に供給した際、反応生成物に起因する局所的な現像液アルカリ濃度低下はなく一様であるため、寸法の疎密差を大きく低減することができる。   The effect of washing away the reaction product near the resist pattern by rinsing is the same as that of the sample A. When fresh developer is supplied for the second time, there is no local decrease in alkali concentration of developer due to the reaction product, and it is uniform, so that the dimensional density difference can be greatly reduced.

ここで、試料Bと試料Cで均一性が若干異なるのは、試料Bでは第1の洗浄処理を全てオゾン水で洗浄しているため、現像液からリンス液に変わるときの急激なpH値変化でのレジスト成分の凝集がオゾン水により緩和され、現像液に対するレジスト表面のなじみ易さを元のままに保つためである。   Here, the sample B and the sample C are slightly different in homogeneity because the first cleaning process in the sample B is all washed with ozone water, so that a sudden pH value change occurs when the developer is changed to the rinse liquid. This is because the agglomeration of the resist component in the film is alleviated by ozone water and the ease of conformation of the resist surface to the developer is kept unchanged.

(第2の実施形態)
図9は、本願発明の第2の実施形態に係わる現像処理手順のフローチャートを示す図である。ステップS201〜S203は、第1の実施形態で説明したステップS101〜S103と同様なので説明を省略する。(ステップS204,S205)ステップS203で被処理基板主面に現像液膜を形成してから約5秒で、リンスノズルから、低濃度オゾン水を吐出した。次いで、被処理基板を回転させ、殆どの洗浄液を除去したが、基板を乾燥させず、僅かに洗浄液を残し、オゾン水膜を形成した。
(Second Embodiment)
FIG. 9 is a flowchart of the development processing procedure according to the second embodiment of the present invention. Steps S201 to S203 are the same as steps S101 to S103 described in the first embodiment, and a description thereof will be omitted. (Steps S204, S205) About 5 seconds after the developer film was formed on the main surface of the substrate to be processed in Step S203, low-concentration ozone water was discharged from the rinse nozzle. Next, the substrate to be treated was rotated to remove most of the cleaning solution, but the substrate was not dried and the cleaning solution was left slightly to form an ozone water film.

(ステップS206)
次いで、被処理基板上のレジスト膜を加工する現像液をオゾン水膜が形成された状態の被処理基板上に形成した。現像液膜の形成方法は、第1の実施形態と同様である。
(Step S206)
Next, a developer for processing the resist film on the substrate to be processed was formed on the substrate to be processed in a state where the ozone water film was formed. The method for forming the developer film is the same as in the first embodiment.

ステップS207〜S209は、第1の実施形態で説明したステップS107〜S109と同様なので説明を省略する。   Steps S207 to S209 are the same as steps S107 to S109 described in the first embodiment, and a description thereof will be omitted.

本実施形態の現像工程は、第1の実施形態とほぼ同様の作用を有する。本実施形態では、酸化性を有する液体もしくは弱アルカリ液を基板主面上に残すことで、第2の現像処理時に被処理基板表面に対する現像液の親和力を高めることで、現像液を供給した際、現像液と基板表面との間に作用する反発力を低減させ、現像液の供給を被処理基板面内で均一に行うことができ、結果として現像後の寸法の面内均一性を向上させる。   The developing process of this embodiment has substantially the same operation as that of the first embodiment. In the present embodiment, when the developer is supplied by increasing the affinity of the developer with respect to the surface of the substrate to be processed during the second development process by leaving the oxidizing liquid or the weak alkaline liquid on the substrate main surface. The repulsive force acting between the developer and the substrate surface can be reduced, and the developer can be supplied uniformly within the surface of the substrate to be processed. As a result, the in-plane uniformity of the dimensions after development is improved. .

現像工程における第1の洗浄処理から第2の現像処理にかけて、第1の洗浄処理後、被処理基板を高速回転させずに、500rpmのまま10秒間回転させ、引き続き第2の現像液を吐出した。以上の点を除き、条件は第1の実施形態の試料Cと同様の実験を行った。結果は、1:1パターン均一性3σで6.1nm、1:10パターン均一性3σで7.5nm疎密差が5nmであった。参照用試料に比較して十分に良い値である。   From the first cleaning process to the second development process in the development process, after the first cleaning process, without rotating the substrate to be processed at high speed, the substrate was rotated at 500 rpm for 10 seconds, and then the second developer was discharged. . Except for the above points, the experiment was performed under the same conditions as those of the sample C of the first embodiment. As a result, the 1: 1 pattern uniformity 3σ was 6.1 nm, the 1:10 pattern uniformity 3σ was 7.5 nm, and the density difference was 5 nm. It is a sufficiently good value compared to the reference sample.

(第3の実施形態)
本実施形態では、現像工程の手順は、第1の実施形態と同様なので詳細な説明を省略する。本実施形態では、第1及び第2の現像処理時に、酸素などの酸化性を有する気体分子、或いは水素などの還元性を有する気体分子を現像液に溶解させる。
(Third embodiment)
In this embodiment, the procedure of the developing process is the same as that of the first embodiment, and thus detailed description thereof is omitted. In the present embodiment, gas molecules having oxidizing properties such as oxygen or gas molecules having reducing properties such as hydrogen are dissolved in the developer during the first and second development processing.

本実施形態で用いる処理装置を図10に示す。図10に示すように、本装置は、アルカリ性水溶液である現像液が貯蔵された現像液タンク201と、現像液タンク201にパイプを介して接続された溶解膜202と、溶解膜202にパイプを介して接続された酸化性ガス発生器203及び還元性ガス発生器204と、溶解膜202にパイプを介して接続された現像液供給ノズル104とを具備する。また、基板100の周囲に、保護カバーが設置されている。なお、図2に示した現像装置と同一な部位には、同一符号を付し説明を省略する。   The processing apparatus used in this embodiment is shown in FIG. As shown in FIG. 10, the apparatus includes a developer tank 201 in which a developer that is an alkaline aqueous solution is stored, a dissolved film 202 connected to the developer tank 201 via a pipe, and a pipe connected to the dissolved film 202. An oxidizing gas generator 203 and a reducing gas generator 204 connected to each other, and a developer supply nozzle 104 connected to the dissolution film 202 via a pipe. A protective cover is installed around the substrate 100. The same parts as those of the developing device shown in FIG.

本装置では、酸化性ガス発生器203又は還元性ガス発生器204で発生したガスを溶解膜202中に溶解させ、この溶解膜202に現像液タンク201から供給された現像液を透過させることによって、現像液中に酸化性ガス又は還元性ガスを溶解させる。この装置は、被処理基板100に現像液を吐出する直前に、酸化性ガス(還元性ガス)を現像液に溶解させることができる。   In this apparatus, the gas generated by the oxidizing gas generator 203 or the reducing gas generator 204 is dissolved in the dissolved film 202, and the developer supplied from the developer tank 201 is allowed to pass through the dissolved film 202. The oxidizing gas or reducing gas is dissolved in the developer. This apparatus can dissolve an oxidizing gas (reducing gas) in the developing solution immediately before the developing solution is discharged onto the substrate 100 to be processed.

本実施形態では、酸化性ガスとして、酸素ガスを現像液に溶解させて第1及び第2の現像処理を行った。その他の処理は、第1の実施形態と同様なので、詳細な説明を省略する。   In the present embodiment, the first and second development processes are performed by dissolving oxygen gas in the developer as the oxidizing gas. Since other processes are the same as those in the first embodiment, a detailed description thereof will be omitted.

なお、第1及び第2の現像処理において、酸素分子を溶解させた現像液を用いたが、還元性気体分子、例えば水素分子などを溶解させた現像液を用いてもよい。また、効果が十分であるならば、第1及び第2の現像処理の両方の処理時に酸化性気体分子を溶解させた現像液を使用する必要はなく、そのどちらか一方の処理時でもよい。   In the first and second development processes, the developer in which oxygen molecules are dissolved is used. However, a developer in which reducing gas molecules such as hydrogen molecules are dissolved may be used. If the effect is sufficient, it is not necessary to use a developer in which oxidizing gas molecules are dissolved during both the first and second development processes, and either one of them may be used.

本実施形態では、第1の実施形態に記載した作用に加え、現像液として、酸化性気体分子を溶解させた液を用いることで、現像開始直後から発生する反応生成物の現像液中の酸素分子による酸化とそれによる反応生成物の分解、現像液中におけるレジスト表面の酸化、現像中に発生する反応生成物の凝集によるサイズ成長の緩和等の作用がある。   In the present embodiment, in addition to the action described in the first embodiment, by using a solution in which oxidizing gas molecules are dissolved as a developer, oxygen in the developer of the reaction product generated immediately after the start of development is used. There are actions such as oxidation by molecules and decomposition of reaction products thereby, oxidation of the resist surface in the developer, and relaxation of size growth due to aggregation of reaction products generated during development.

また、第1及び第2の現像処理時、あるいはその一方の処理時に、還元性気体分子を溶解させた現像液を用いた場合、還元電子によるレジスト表面改質、反応生成物の表面電位変化による反応生成物の現像液中への拡散の促進、レジスト表面電位の変化による反応生成物のレジスト表面への再付着防止等の作用がある。   Further, when a developing solution in which reducing gas molecules are dissolved is used at the time of the first and second developing processes or one of the processes, the resist surface is modified by reducing electrons, and the surface potential of the reaction product is changed. There are effects such as promotion of diffusion of the reaction product into the developer and prevention of redeposition of the reaction product on the resist surface due to a change in the resist surface potential.

第1及び第2の現像処理時に、酸化性気体分子を溶解させた現像液を用い、第1の実施形態と同様の実験を行った。実験結果は、1:1パターン寸法均一性は3σで3.8nm、1:10パターンで6.1nmとなり、期待された効果が確認された。   An experiment similar to that of the first embodiment was performed using a developing solution in which oxidizing gas molecules were dissolved during the first and second developing processes. As a result of the experiment, the 1: 1 pattern dimension uniformity was 3.8 nm for 3σ and 6.1 nm for 1:10 pattern, confirming the expected effect.

(第4の実施形態)
図11は、本発明の第4の実施形態に係わる現像処理のフローチャートを示す図である。本実施形態のパターン処理方法における手順は、第1の実施形態と同様なので、フローチャートの図示、及び詳細な手順の説明を省略する。
(Fourth embodiment)
FIG. 11 is a diagram showing a flowchart of development processing according to the fourth embodiment of the present invention. Since the procedure in the pattern processing method of this embodiment is the same as that of the first embodiment, the illustration of the flowchart and the detailed description of the procedure are omitted.

本実施形態では、第1の現像処理時、現像液膜を形成した後、基板を静止した状態で現像を行う。そして、所定時間経過後、図12に示すように、基板を所定の回転数で回転させて、現像液を流動させる。所定時間基板を回転させて現像液の流動を行った後、また基板を静止させ、静止させた状態で露光を行う。   In the present embodiment, during the first development process, after the developer film is formed, development is performed with the substrate stationary. Then, after a predetermined time has elapsed, as shown in FIG. 12, the substrate is rotated at a predetermined rotational speed to cause the developer to flow. After the substrate is rotated for a predetermined time to cause the developer to flow, the substrate is rested again, and exposure is performed in a stationary state.

本実施形態では、現像液流動を行う時間帯を以下に示すように定める。第1の実施形態で説明したように、現像は、現像が膜厚の深さ方向に進行する第1段階と、第1段階後レジストパターン側壁を溶解する方向に現像が進む第2段階とからなる。   In this embodiment, the time zone during which the developer flows is determined as follows. As described in the first embodiment, development is performed from the first stage in which development proceeds in the depth direction of the film thickness and the second stage in which development proceeds in the direction of dissolving the resist pattern sidewall after the first stage. Become.

現像工程における液流動の目的は現像中に発生する反応生成物を均一化すること、アルカリ濃度を回復させることである。従って、液流動を効果的に行うには、大量に反応生成物が発生する第1段階後から、ほとんど反応生成物が発生しなくなる第2段階に移り変わる時間(以下、この時間を抜け時間と呼ぶ)を含むように行うのがよい。   The purpose of liquid flow in the development process is to homogenize the reaction product generated during development and to recover the alkali concentration. Therefore, in order to perform the liquid flow effectively, the time for changing from the first stage in which a large amount of reaction products are generated to the second stage in which almost no reaction products are generated (hereinafter, this time is referred to as missing time). ) Should be included.

次に、抜け時間の決め方について説明する。第1の方法としては、対象とするパターンに光を入射し、反射して得られる反射光強度の時間変化を測定して、図8のような結果を得て、抜け時間求める方法がある。このとき、図8の反射光強度は単一の波長の反射光であるほうが望ましいので、狭帯域フィルターを用いて入射する光を単一波長とするか、測定した反射光を分光するか、したほうがよい。抜け時間の計測は、実際に現像を行う前に予め計測を行っていても良いし、それぞれの基板に対して現像工程で計測してもよい。   Next, how to determine the missing time will be described. As a first method, there is a method in which a time change of reflected light intensity obtained by making light incident on a target pattern and reflected is measured to obtain a result as shown in FIG. At this time, since the reflected light intensity in FIG. 8 is preferably a reflected light having a single wavelength, the incident light is made to have a single wavelength by using a narrow band filter or the measured reflected light is dispersed. Better. The missing time may be measured in advance before actual development, or may be measured for each substrate in the development process.

第2の方法としては、対象とするパターンを複数の現像時間で現像して、現像後のパターンの断面形状等を観察して、可溶領域のレジストが底面まで現像された時間を求める方法がある。次に2つの実験結果をもとに、抜け時間の測定について説明する。最初の実験の対象パターンは、130nmL/S(1:1)パターン(60nmの膜厚の反射防止膜、300nmの膜厚のレジスト、溶解速度が比較的早いレジスト)とした。まず、図13に示す対象パターンの現像中の反射光強度を取得した。反射強度は、550nmの波長の光を入射した場合の結果である。この結果より、抜け時間は6秒と求められ、この値を基準に液流動の時間を定めた。   As a second method, a target pattern is developed in a plurality of development times, a cross-sectional shape of the pattern after development is observed, and the time required for developing the resist in the soluble region to the bottom surface is obtained. is there. Next, the measurement of the missing time will be described based on two experimental results. The target pattern of the first experiment was a 130 nm L / S (1: 1) pattern (an antireflection film having a thickness of 60 nm, a resist having a thickness of 300 nm, and a resist having a relatively high dissolution rate). First, the reflected light intensity during development of the target pattern shown in FIG. 13 was acquired. The reflection intensity is the result when light having a wavelength of 550 nm is incident. From this result, the removal time was determined to be 6 seconds, and the liquid flow time was determined based on this value.

現像開始、現像液流動、現像終了の流れを時間軸で表した図を図14に示す。現像液供給工程の後、(x−1)秒間静止現像を行う。その後、基板を所定の回転数(250rpm)で2秒間回転させ、現像液を流動させた。現像の停止は現像開始から30秒後に行った。このときのxを液流動のタイミングと定義した。xを2〜12秒で変化させた場合の、130nmL/S(1:1)パターンのばらつき(3σ)を図15に示す。液流動なしの場合のばらつきは10.2nmであり、液流動を行うことで、ばらつきが低減した。特に、6秒の場合に最も良い均一性が得られた。また、4秒、8秒の場合も比較的均一性が良かった。すなわち、対象パターンの反射光強度変化から求めた抜け時間の近傍(抜け時間±2秒、即ち、抜け時間±33%)で液流動を行う場合に良い均一性が得られたことになる。   FIG. 14 shows a time axis representing the flow of development start, developer flow, and development end. After the developer supplying step, static development is performed for (x-1) seconds. Thereafter, the substrate was rotated at a predetermined rotation speed (250 rpm) for 2 seconds to flow the developer. The development was stopped 30 seconds after the start of development. X at this time was defined as the timing of liquid flow. FIG. 15 shows the variation (3σ) of the 130 nm L / S (1: 1) pattern when x is changed in 2 to 12 seconds. The variation in the case of no liquid flow was 10.2 nm, and the variation was reduced by performing the liquid flow. In particular, the best uniformity was obtained at 6 seconds. Also, the uniformity was relatively good in the case of 4 seconds and 8 seconds. That is, good uniformity is obtained when the liquid flow is performed in the vicinity of the omission time obtained from the reflected light intensity change of the target pattern (the omission time ± 2 seconds, that is, the omission time ± 33%).

実験より、液流動のタイミングを抜け時間(可溶領域のレジストが底面まで現像された時間)の近傍とすることで、均一性が向上することが明らかとなったが、現像液供給ノズルの移動等、装置の制約で、液流動開始時間を抜け時間よりも後にしか設定できない場合(例えば本実験で、9秒後以降にしか基板回転できない場合)には、極力早い時間(例えば9秒)に行うのが良い。   Experiments have shown that the uniformity of the liquid flow can be improved by setting the liquid flow timing close to the exit time (the time when the resist in the soluble region is developed to the bottom surface). When the liquid flow start time can only be set after the exit time due to the restrictions of the apparatus (for example, in this experiment, when the substrate can be rotated only after 9 seconds), the time is as early as possible (for example, 9 seconds). Good to do.

第2の実験の対象パターンは、130nmL/S(1:1)パターン(60nmの膜厚の反射防止膜、300nmの膜厚のレジスト、溶解速度が比較的遅いレジスト)とした。まず、図16に示す対象パターンの現像中の反射光強度を取得した。550nmの波長の光を入射した場合の結果である。この結果より、抜け時間は20秒と求められ、この値を基準に液流動の時間を定めた。   The target pattern of the second experiment was a 130 nm L / S (1: 1) pattern (an antireflection film with a thickness of 60 nm, a resist with a thickness of 300 nm, a resist with a relatively low dissolution rate). First, the reflected light intensity during development of the target pattern shown in FIG. 16 was acquired. This is a result when light having a wavelength of 550 nm is incident. From this result, the removal time was determined to be 20 seconds, and the liquid flow time was determined based on this value.

シーケンスを時間軸で表した図は図14に示す。現像液供給工程の後、(x−1)秒間静止現像を行った。その後、基板を所定の回転数(250rpm)で2秒間回転させ、現像液を流動させた。現像の停止は現像開始から60秒後に行った。このときのxを液流動のタイミングと定義した。xを10〜35秒で変化させた場合の、130nmL/S(1:1)パターンのばらつき(3σ)を図17に示す。液流動なしの場合のばらつきは9.8nmであり、液流動を行うことで、ばらつきが低減した。特に、20秒の場合に最も良い均一性が得られた。また、15秒、25秒の場合も比較的均一性が良かった。すなわち、対象パターンの反射光強度変化から求めた抜け時間の近傍(抜け時間±5秒、即ち、抜け時間±25%)で液流動を行う場合に良い均一性が得られたことになる。   A diagram showing the sequence on the time axis is shown in FIG. After the developer supply step, static development was performed for (x-1) seconds. Thereafter, the substrate was rotated at a predetermined rotation speed (250 rpm) for 2 seconds to flow the developer. The development was stopped 60 seconds after the start of development. X at this time was defined as the timing of liquid flow. FIG. 17 shows 130 nm L / S (1: 1) pattern variation (3σ) when x is changed in 10 to 35 seconds. The variation in the case of no liquid flow was 9.8 nm, and the variation was reduced by performing the liquid flow. In particular, the best uniformity was obtained at 20 seconds. Also, the uniformity was relatively good at 15 seconds and 25 seconds. That is, good uniformity is obtained when liquid flow is performed in the vicinity of the omission time obtained from the reflected light intensity change of the target pattern (omission time ± 5 seconds, ie, omission time ± 25%).

本実施形態では、液流動の方法として、基板を回転させる方法を示したが、現像液膜の表面に気流を形成することで、現像液を流動させる方法、流動を生じさせる物体を被処理基板上の現像液に接触させ、物体もしくは基板を移動させることで現像液を流動させる方法、現像液が供給された被処理基板に振動を与えて現像液を流動させる方法、被処理を加熱し、対流により現像液を流動させる方法等、現像液を流動させる方法であればよい。   In the present embodiment, the method of rotating the substrate is shown as the method of liquid flow, but the method of flowing the developer by forming an air flow on the surface of the developer film, and the object that causes the flow to be processed substrate A method of flowing the developer by moving the object or the substrate in contact with the developer above, a method of causing the developer to flow by vibrating the substrate to which the developer is supplied, heating the treatment, Any method of flowing the developer such as a method of flowing the developer by convection may be used.

また、本実施形態では、L/Sパターンを対象パターンとしたが、孤立残しパターン、孤立抜きパターン、ホールパターン、ピラーパターン等、どのようなパターンであってもよい。それぞれ、パターンの抜け時間を求めておいて、液流動のタイミングを決めれば良い。同時に複数のパターン(例えば孤立残しパターンとL/Sパターン)が含まれる場合には、それぞれの抜け時間から、2回液流動を行っても良いし、精度が厳しいパターンのみの抜け時間から液流動のタイミングを決めても良い。   In the present embodiment, the L / S pattern is the target pattern, but any pattern such as an isolated remaining pattern, an isolated pattern, a hole pattern, a pillar pattern, or the like may be used. It is only necessary to determine the liquid flow timing by obtaining the pattern removal time. When a plurality of patterns (for example, an isolated remaining pattern and an L / S pattern) are included at the same time, the liquid flow may be performed twice from the respective removal times, or the liquid flow from the removal time of only the pattern with strict accuracy. You may decide the timing.

現像液を流動させる提案が数多くなされている。例えば、現像液を基板上に供給した後に、現像液膜の表面と接触するように気流を形成することで、現像液膜を基板上に保持しつつ表面の流れを形成し、現像液を流動させる方法(特開2001−228625号公報)、現像液を供給するノズルの先端を被処理基板上の現像液に接触させ、ノズルもしくは基板を移動させることで現像液を流動させる方法(特開2000−195773号公報)、現像液が供給された被処理基板に所定の周波数の振動を与えて現像液を流動させる方法(特開2001−307994号公報)が報告されている。しかし、いずれの提案においても、現像液供給後のどのタイミングで液流動を行うべきかが記載されていない。その結果、適切な時間帯で液流動が行われないために、効果的な液流動ができず、十分な寸法の均一性が得られなかった。   Many proposals have been made to cause the developer to flow. For example, after supplying the developer onto the substrate, an air flow is formed so as to come into contact with the surface of the developer film, thereby forming a surface flow while holding the developer film on the substrate and causing the developer to flow. A method of causing the developer to flow by bringing the tip of a nozzle for supplying the developer into contact with the developer on the substrate to be processed and moving the nozzle or the substrate (JP 20002000). No. 195773), and a method of causing the developing solution to flow by applying vibrations of a predetermined frequency to the substrate to which the developing solution is supplied (Japanese Patent Laid-Open No. 2001-307994) has been reported. However, none of the proposals describes at what timing the liquid flow should be performed after supplying the developer. As a result, since liquid flow was not performed in an appropriate time zone, effective liquid flow was not possible, and sufficient dimensional uniformity could not be obtained.

(第5の実施形態)
半導体製造工程において、レジスト膜が形成された被処理基板上に現像液をパドル形成し、レジスト膜を所望の形状に加工する作業が繰り返し行われる。従来、レジスト膜が形成された基板上に現像液を塗布し、現像工程が行われる。一般に、現像液を供給するために、現像液供給ノズルが用いられる。このように、現像液供給ノズルを用いた現像方法では、現像液が吐出されるノズルの先端部が被処理基板に近接して位置して、液が供給される。そのため、レジストが溶解した現像液とノズルが触れることになる。その結果、現像液供給ノズルにレジストの固形物が付着する。この付着物が被処理基板の欠陥の原因となる場合があった。
(Fifth embodiment)
In the semiconductor manufacturing process, a process of forming a developer paddle on a substrate to be processed on which a resist film is formed and processing the resist film into a desired shape is repeatedly performed. Conventionally, a developing solution is applied on a substrate on which a resist film is formed, and a developing process is performed. In general, a developer supply nozzle is used to supply the developer. As described above, in the developing method using the developing solution supply nozzle, the tip of the nozzle from which the developing solution is discharged is positioned close to the substrate to be processed, and the solution is supplied. Therefore, the developing solution in which the resist is dissolved comes into contact with the nozzle. As a result, the resist solid matter adheres to the developer supply nozzle. In some cases, the deposits may cause defects in the substrate to be processed.

この問題を解決する手段として、現像液によるノズル洗浄や、高濃度現像液(特開2001−319869号公報)によるノズル洗浄が行われている。これらの手法では、現像液を洗浄液として用いるため、現像液に溶ける欠陥しか除去できなかった。また、現像液を用いるため、コストが高くなるという問題点があった。   As means for solving this problem, nozzle cleaning with a developer and nozzle cleaning with a high-concentration developer (Japanese Patent Laid-Open No. 2001-319869) are performed. In these methods, since the developer is used as the cleaning solution, only defects that are soluble in the developer can be removed. Further, since the developer is used, there is a problem that the cost is increased.

図18は、本発明の第5の実施形態に係るパターン方法の処理手順を示すフローチャートである。図19は、本発明の第1の実施形態に係る現像装置の構成の概略図である。また、図18から図19を用いて本発明の第1の実施形態に係る現像処理方法を説明する。   FIG. 18 is a flowchart showing a processing procedure of a pattern method according to the fifth embodiment of the present invention. FIG. 19 is a schematic diagram of the configuration of the developing device according to the first embodiment of the present invention. A development processing method according to the first embodiment of the present invention will be described with reference to FIGS.

(ステップS401)
被処理基板上に反射防止膜、化学増幅型レジストを塗布し、KrFエキシマレーザーを用い、露光用レチクルを介し所望のパターンを縮小投影露光する。該基板を熱処理し、搬送ロボットにより基板保持部の上部に搬送し、基板保持部に吸引固定する。
(Step S401)
An antireflection film and a chemically amplified resist are coated on the substrate to be processed, and a desired pattern is reduced projection exposed through an exposure reticle using a KrF excimer laser. The substrate is heat-treated, transferred to the upper part of the substrate holding unit by a transfer robot, and sucked and fixed to the substrate holding unit.

(ステップS402)
次に、酸化性ガス発生器304で発生したオゾンを溶解膜303に供給すると共に、純水源302から溶解膜303に純水を供給することにより、純水にオゾンを溶解させてオゾンを生成する。そして、生成されたオゾンを現像液供給ノズル104に供給する。現像液供給ノズル104がオゾン水を吐出する事により、現像液供給ノズル104が洗浄される。現像液供給ノズル104から吐出されたオゾン水は液受け305で受け、液受け部305内にオゾン水を溜める。液受け部305内に溜められたオゾン水内に、現像液供給ノズル104を浸漬することで、レジスト膜に対向する現像液供給ノズル104の面の洗浄を行う。
(Step S402)
Next, ozone generated by the oxidizing gas generator 304 is supplied to the dissolving film 303, and pure water is supplied from the pure water source 302 to the dissolving film 303, whereby ozone is dissolved in pure water to generate ozone. . Then, the generated ozone is supplied to the developer supply nozzle 104. When the developer supply nozzle 104 discharges ozone water, the developer supply nozzle 104 is washed. The ozone water discharged from the developer supply nozzle 104 is received by the liquid receiver 305, and the ozone water is stored in the liquid receiver 305. The surface of the developer supply nozzle 104 facing the resist film is cleaned by immersing the developer supply nozzle 104 in the ozone water stored in the liquid receiving portion 305.

現像液供給ノズル104の洗浄後、現像液タンク301から現像液を現像液供給ノズル104に供給し、現像液供給ノズル104から現像液を吐出させることによって、ノズル内のオゾン水を現像液に置換する。   After cleaning the developer supply nozzle 104, the developer is supplied from the developer tank 301 to the developer supply nozzle 104, and the developer is discharged from the developer supply nozzle 104, whereby the ozone water in the nozzle is replaced with the developer. To do.

なお、酸化性気体をライン供給できる場合、酸化性ガス発生器304は不要である。また、酸化性気体としては、オゾンのほかに、酸素、一酸化炭素、過酸化水素を用いても良い。   Note that the oxidizing gas generator 304 is not necessary when the oxidizing gas can be supplied to the line. In addition to ozone, oxygen, carbon monoxide, and hydrogen peroxide may be used as the oxidizing gas.

(ステップS403)
次いで、被処理基板上のレジスト膜を加工する現像液膜を被処理基板上に形成する。ここでは、直線状の現像液供給ノズルを用いて、現像液を供給しながらウエハの一端から他端に走査させることで被処理基板上に現像液膜を形成する。
(Step S403)
Next, a developer film for processing the resist film on the substrate to be processed is formed on the substrate to be processed. Here, a developer film is formed on the substrate to be processed by scanning from one end of the wafer to the other while supplying the developer using a linear developer supply nozzle.

(ステップS404)
所定の時間の後、被処理基板の上方に配置されたリンスノズルからリンス液(例えば純水)を供給し、回転させながら基板を洗浄する。
(Step S404)
After a predetermined time, a rinsing liquid (for example, pure water) is supplied from a rinsing nozzle disposed above the substrate to be processed, and the substrate is cleaned while rotating.

(ステップS405)
さらに、被処理基板を高速回転させることで純水を振り払い、被処理基板を乾燥させる。
(Step S405)
Furthermore, pure water is sprinkled off by rotating the substrate to be processed at a high speed, and the substrate to be processed is dried.

本実施形態では、酸化性液体として、純水にオゾンを溶解させたオゾン水を用いたが、同様の効果があれば溶解させる気体分子はオゾンに限らない。例えば、酸素、一酸化炭素、過酸化水素などの酸化性ガスでもかまわない。また、本実施形態では、現像液の供給の前にノズル洗浄を行ったが、現像液供給後でもよい。また、洗浄は基板一枚毎に行わなくても、所定の枚数毎、所定の時間毎でもよい。また、ノズルの交換等、メンテナンス後に行ってもよい。   In this embodiment, ozone water in which ozone is dissolved in pure water is used as the oxidizing liquid. However, gas molecules to be dissolved are not limited to ozone if there is a similar effect. For example, an oxidizing gas such as oxygen, carbon monoxide, or hydrogen peroxide may be used. In this embodiment, the nozzle cleaning is performed before supplying the developer, but it may be performed after supplying the developer. Further, the cleaning may not be performed for each substrate, but may be performed for every predetermined number of sheets and every predetermined time. Moreover, you may perform after maintenance, such as replacement | exchange of a nozzle.

現像処理を繰り返していくと、現像液供給ノズルが、レジストが溶解した現像液に触れることで、有機パーティクルがノズルに付着する。このパーティクルがその後の基板の現像処理において、レジスト表面に付着し、欠陥として残る可能性がある。   As the development process is repeated, the developer supply nozzle comes into contact with the developer in which the resist is dissolved, so that organic particles adhere to the nozzle. In the subsequent development processing of the substrate, the particles may adhere to the resist surface and remain as defects.

洗浄中に、液中のオゾン分子が、ノズルに付着したパーティクルに衝突し、ある確率でパーティクルを酸化し、分解すると考えられる。分解されたパーティクルは、低分子となり、その質量が十分小さくなることから液中への拡散も容易になる。その結果、パーティクルが除去される。   It is considered that ozone molecules in the liquid collide with particles adhering to the nozzle during cleaning and oxidize and decompose the particles with a certain probability. The decomposed particles become low molecules, and the mass thereof becomes sufficiently small, so that diffusion into the liquid becomes easy. As a result, particles are removed.

実際に発明者らが行った実験の結果について以下に説明する。実験は上記の、図18のフローチャートに示した手順に従って行った。効果を確認するため、ステップS402において、溶液中のオゾン濃度が10ppmのオゾン水で5秒間ノズルを洗浄した場合、現像液で5秒間洗浄した場合、洗浄しない場合とで有機物付着欠陥数を計測した。それぞれ、欠陥数が、5,10,50個となり、オゾン水で洗浄することで欠陥数が低減された。これらの結果から、オゾン水による現像液供給ノズル104の洗浄が、非常に有効であることが確かめられた。   The results of experiments actually conducted by the inventors will be described below. The experiment was performed according to the procedure shown in the flowchart of FIG. In order to confirm the effect, in step S402, when the nozzle was washed with ozone water having an ozone concentration of 10 ppm in the solution for 5 seconds, washed with the developer for 5 seconds, and the number of organic matter adhesion defects was measured when not washed. . The number of defects was 5, 10, 50, respectively, and the number of defects was reduced by cleaning with ozone water. From these results, it was confirmed that cleaning of the developer supply nozzle 104 with ozone water is very effective.

なお、本発明は、上記実施形態に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。更に、上記実施形態には種々の段階の発明が含まれており、開示される複数の構成要件における適宜な組み合わせにより種々の発明が抽出され得る。例えば、実施形態に示される全構成要件から幾つかの構成要件が削除されても、発明が解決しようとする課題の欄で述べた課題が解決でき、発明の効果の欄で述べられている効果が得られる場合には、この構成要件が削除された構成が発明として抽出され得る。   In addition, this invention is not limited to the said embodiment, In the implementation stage, it can change variously in the range which does not deviate from the summary. Further, the above embodiments include inventions at various stages, and various inventions can be extracted by appropriately combining a plurality of disclosed constituent elements. For example, even if some constituent requirements are deleted from all the constituent requirements shown in the embodiment, the problem described in the column of the problem to be solved by the invention can be solved, and the effect described in the column of the effect of the invention Can be obtained as an invention.

第1の実施形態に係る現像処理方法の処理手順のフローチャートを示す図。FIG. 5 is a flowchart illustrating a processing procedure of the development processing method according to the first embodiment. 第1の実施形態に係わる現像処理方法を示す工程図。FIG. 3 is a process diagram illustrating a development processing method according to the first embodiment. 第1の実施形態に係わる現像処理方法を示す工程図。FIG. 3 is a process diagram illustrating a development processing method according to the first embodiment. 第1の実施形態に係わる現像処理方法を示す工程図。FIG. 3 is a process diagram illustrating a development processing method according to the first embodiment. 第1の実施形態に係わる現像処理方法を示す工程図。FIG. 3 is a process diagram illustrating a development processing method according to the first embodiment. 第1の実施形態に係わる現像処理方法を示す工程図。FIG. 3 is a process diagram illustrating a development processing method according to the first embodiment. KrFポジ型レジストの現像液による溶解の様子を観察した際得られる、一般的な基板からの反射光強度のグラフを模式的に示す図。The figure which shows typically the graph of the reflected light intensity from the general board | substrate obtained when the mode of melt | dissolution with the developing solution of a KrF positive type resist is observed. 現像中のレジスト膜を模式的に示す断面図。Sectional drawing which shows typically the resist film under development. 第2の実施形態に係わる現像処理手順のフローチャートを示す図。The figure which shows the flowchart of the image development processing procedure concerning 2nd Embodiment. 第3の実施形態に係わる現像処理装置の概略構成を示す図。FIG. 10 is a diagram illustrating a schematic configuration of a development processing apparatus according to a third embodiment. 第4の実施形態に係わる現像処理のフローチャートを示す図。The figure which shows the flowchart of the developing process concerning 4th Embodiment. 第4の実施形態に係わる現像処理を示す工程図。FIG. 10 is a process diagram illustrating development processing according to a fourth embodiment. 現像中のレジスト膜からの反射光強度変化を表す図。The figure showing the reflected light intensity change from the resist film in image development. 現像開始、現像液流動、現像終了の流れを時間軸で表した図。The figure which expressed the flow of the start of development, the flow of a developing solution, and the end of development on a time axis. 液流動のタイミングとばらつきの関係を示す図。The figure which shows the relationship between the timing of liquid flow, and dispersion | variation. 現像中のレジスト膜からの反射光強度変化を表す図。The figure showing the reflected light intensity change from the resist film in image development. 液流動のタイミングとばらつきの関係を示す図。The figure which shows the relationship between the timing of liquid flow, and dispersion | variation. 第5の実施形態に係わる現像処理のフローチャートを示す図。FIG. 10 is a flowchart illustrating development processing according to a fifth embodiment. 第5の実施形態に係わる現像処理装置の概略構成を示す図。FIG. 10 is a diagram illustrating a schematic configuration of a development processing apparatus according to a fifth embodiment.

符号の説明Explanation of symbols

100…被処理基板
101…基板保持部
102…回転機構
103…リンスノズル
104…現像液供給ノズル
106…オゾン水
107…現像液
107…現像液膜
112…ノズル
130…レジスト膜
131…露光部
DESCRIPTION OF SYMBOLS 100 ... Substrate 101 ... Substrate holding part 102 ... Rotating mechanism 103 ... Rinse nozzle 104 ... Developer supply nozzle 106 ... Ozone water 107 ... Developer 107: Developer film 112 ... Nozzle 130 ... Resist film 131 ... Exposure part

Claims (3)

露光された感光性レジスト膜を現像する際に用いられ、該レジスト膜上に現像液を供給する現像液供給ノズルの洗浄方法であって、
前記現像液供給ノズルに酸化性液体を供給して洗浄することを特徴とする現像液供給ノズルの洗浄方法。
A method for cleaning a developer supply nozzle that is used when developing an exposed photosensitive resist film and supplies a developer onto the resist film ,
A cleaning method for a developing solution supply nozzle, wherein an oxidizing liquid is supplied to the developing solution supply nozzle for cleaning.
前記酸化性液体として、オゾン、酸素、一酸化炭素、及び過酸化水素の少なくとも一つを含む水溶液を前記現像液供給ノズルに供給することを特徴とする請求項記載の現像液供給ノズルの洗浄方法。 As the oxidizing liquid, ozone, oxygen, cleaning of the developer supply nozzle according to claim 1, wherein the carbon monoxide, and an aqueous solution containing at least one of hydrogen peroxide and supplying to the developing solution supply nozzle Method. 前記ノズル内に供給する現像液を酸化性液体に切り換えて該ノズルの内部を洗浄した後に、前記ノズルを前記酸化性液体が溜められた液受け部に浸漬して該ノズルの前記レジスト膜に対向する面を洗浄することを特徴とする請求項1又は2記載の現像液供給ノズルの洗浄方法。After the developer supplied into the nozzle is switched to the oxidizing liquid and the inside of the nozzle is washed, the nozzle is immersed in a liquid receiving portion in which the oxidizing liquid is stored to face the resist film of the nozzle. 3. The method for cleaning a developer supply nozzle according to claim 1, wherein the surface to be cleaned is cleaned.
JP2005304737A 2005-10-19 2005-10-19 Cleaning method of developer supply nozzle Expired - Fee Related JP4025341B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005304737A JP4025341B2 (en) 2005-10-19 2005-10-19 Cleaning method of developer supply nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005304737A JP4025341B2 (en) 2005-10-19 2005-10-19 Cleaning method of developer supply nozzle

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002057764A Division JP3774413B2 (en) 2002-01-28 2002-03-04 Development method

Publications (2)

Publication Number Publication Date
JP2006128671A JP2006128671A (en) 2006-05-18
JP4025341B2 true JP4025341B2 (en) 2007-12-19

Family

ID=36722964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005304737A Expired - Fee Related JP4025341B2 (en) 2005-10-19 2005-10-19 Cleaning method of developer supply nozzle

Country Status (1)

Country Link
JP (1) JP4025341B2 (en)

Also Published As

Publication number Publication date
JP2006128671A (en) 2006-05-18

Similar Documents

Publication Publication Date Title
KR100518997B1 (en) Development method, semiconductor device fabricating method, and cleaning method of developer feed nozzle
JP4015823B2 (en) Alkali developer manufacturing method, alkali developer, pattern forming method, resist film peeling method, and chemical solution coating apparatus
JP2007220956A (en) Substrate processing method and substrate processing apparatus
JP2000330262A (en) Method for washing photomask, apparatus therefor and photomask washing solution
JP4564186B2 (en) Pattern formation method
JP2010211153A (en) Resist pattern forming method
JP3774413B2 (en) Development method
KR101216797B1 (en) Method of processing substrate, method of manufacturing euv mask and euv mask
TWI438562B (en) Photomask manufacturing method, pattern transfer method, processing apparatus for a photomask substrate, and thin film patterning method
JP3805690B2 (en) Substrate processing method and substrate processing apparatus
JP4025341B2 (en) Cleaning method of developer supply nozzle
JP4477019B2 (en) Substrate processing method
US7413848B2 (en) Method of removing photoresist and photoresist rework method
JPH1022191A (en) Device and method for treating wafer with chemical
JP2003203851A (en) Developing method and apparatus for substrate
JP2004063490A (en) Method of forming pattern and substrate treating device
TW202230042A (en) Developing method and substrate treatment system
JP2011077120A (en) Method of developing resist film
JP2006120681A (en) Cleaning processor and cleaning processing method of workpiece
JPH03148110A (en) Semiconductor manufacturing apparatus
JPH1012511A (en) Board surface treating apparatus and method for treating board surface using the same
JP2008153328A (en) Method for forming thin-film pattern and method for manufacturing semiconductor device
JP2011060923A (en) Method and apparatus for manufacturing semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20070702

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20070710

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071002

A61 First payment of annual fees (during grant procedure)

Effective date: 20071004

Free format text: JAPANESE INTERMEDIATE CODE: A61

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees