WO2010114050A1 - 燃料電池セル集合体及び燃料電池 - Google Patents
燃料電池セル集合体及び燃料電池 Download PDFInfo
- Publication number
- WO2010114050A1 WO2010114050A1 PCT/JP2010/055917 JP2010055917W WO2010114050A1 WO 2010114050 A1 WO2010114050 A1 WO 2010114050A1 JP 2010055917 W JP2010055917 W JP 2010055917W WO 2010114050 A1 WO2010114050 A1 WO 2010114050A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fuel cell
- current collector
- electrode
- fuel
- current
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/241—Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
- H01M8/2425—High-temperature cells with solid electrolytes
- H01M8/2428—Grouping by arranging unit cells on a surface of any form, e.g. planar or tubular
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/002—Shape, form of a fuel cell
- H01M8/004—Cylindrical, tubular or wound
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0247—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0247—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
- H01M8/025—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form semicylindrical
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0247—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form
- H01M8/0252—Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the form tubular
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0271—Sealing or supporting means around electrodes, matrices or membranes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M8/1231—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte with both reactants being gaseous or vaporised
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/241—Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/241—Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
- H01M8/2425—High-temperature cells with solid electrolytes
- H01M8/243—Grouping of unit cells of tubular or cylindrical configuration
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2465—Details of groupings of fuel cells
- H01M8/2484—Details of groupings of fuel cells characterised by external manifolds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M2008/1293—Fuel cells with solid oxide electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0606—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
- H01M8/0612—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
- H01M8/0625—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material in a modular combined reactor/fuel cell structure
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- the present invention relates to a fuel cell assembly and a fuel cell.
- Solid Oxide Fuel Cell (hereinafter also referred to as “SOFC”) uses an oxide ion conductive solid electrolyte as an electrolyte, has electrodes on both sides, supplies fuel gas on one side, and supplies the other This is a fuel cell that generates electricity by supplying air to the side and generating a power generation reaction at a relatively high temperature.
- an air electrode (+ electrode) is formed on the inner peripheral surface of a solid electrolyte formed in a cylindrical shape, and a fuel electrode ( ⁇ electrode) is formed on the outer peripheral surface.
- a fuel battery cell (single cell) which extends in a cylindrical shape from a solid electrolyte in the part.
- a plurality of fuel cells are arranged in parallel in the housing, and the opened portion of the housing is made of gas so that fuel gas supplied into the housing does not leak to the outside. Sealed confidentially.
- a current collector is attached to the outer peripheral surface of each single cell, and an end of the current collector extends secretly from the glass on one air electrode side and is adjacent to each other via a current collecting member for connection. Connected to the air electrode.
- a plurality of single cells are connected in series and stacked to form a solid oxide fuel cell.
- a fuel electrode (-electrode) is formed on the inner peripheral surface of a solid electrolyte formed in a cylindrical shape, an air electrode (+ electrode) is formed on the outer peripheral surface, and one end is connected to the fuel electrode.
- a fuel cell single cell is disclosed in which an inner electrode (-electrode) and an outer electrode (+ electrode) connected to an air electrode are formed at the other end.
- all 20 single cells of 5 ⁇ 4 rows are arranged so as to be connected in series.
- a plurality of single cells are alternately arranged in opposite directions, and both end portions of the plurality of single cells are positioned by the support plate, and on each support plate side, an inner electrode (-pole) and an outer electrode (+ Poles) are connected in series.
- Patent Document 3 also discloses a fuel cell substantially similar to Patent Document 2.
- the present invention has been made to solve the above-described problems of the prior art, and an object thereof is to provide a fuel cell assembly and a fuel cell that can improve power generation efficiency.
- the present invention provides a first fuel cell, a second fuel cell disposed adjacent to the first fuel cell, and the first fuel cell.
- a current collector that electrically connects the cell and the second fuel cell, and each of the first fuel cell and the second fuel cell has a first gas flowing therein.
- a power generation unit that generates power by one electrode, a second electrode through which a second gas flows to the outside and a polarity different from that of the first electrode, and an electrolyte disposed between the first electrode and the second electrode;
- the current collector distributes the current generated in the power generation unit of the first fuel cell to the second electrode of the second fuel cell from two different locations of the first electrode of the first fuel cell. It is characterized by being configured to flow.
- a current collector that electrically connects the first fuel cell and the second fuel cell adjacent to the first fuel cell is generated in the power generation section of the first fuel cell.
- Current is distributed from two different locations of the first electrode of the first fuel cell to the second electrode of the second fuel cell, so that the value of the current flowing through the current collector is It becomes smaller, thereby reducing the electrical resistance.
- the current moves to a closer location of the two locations in the first electrode of the first fuel cell, the current travel path in the first electrode is shortened, thereby reducing the electrical resistance.
- the power generation efficiency of the fuel cell assembly can be improved.
- each of the first fuel cell and the second fuel cell includes a second electrode at both ends, and the current collector is generated in a power generation unit of the first fuel cell.
- a first current collector that distributes and flows the generated current from the first location of the first electrode of the first fuel cell to the second electrode at one end of the second fuel cell, and the first fuel cell
- a second current collector that distributes and flows from the second location of the first electrode to the second electrode at the other end of the second fuel cell, and the first current collector and the second current collector are electrically Independent.
- the first fuel cell and the second fuel cell each have the second electrode at both ends, and the electric current generated in the power generation unit of the first fuel cell is electrically Since the first current collector and the second current collector that are independent of each other distribute and flow to both ends of the second fuel cell, there is a problem with one current path (one current collector). Even if the current does not flow, the current flows in the other current path (the other current collector), so that the current path can be easily secured.
- the first current collector and the second current collector are spaced apart from each other outside the first fuel cell, and the first fuel cell and the second current cell are disposed. It is a mechanical current collector having a predetermined rigidity necessary for supporting the fuel cell.
- the mechanical current collector has a predetermined rigidity necessary for supporting the first fuel cell and the second fuel cell, and the first fuel cell and the second fuel cell are provided at a plurality of locations. Therefore, the support rigidity and stability of the first fuel battery cell and the second fuel battery cell are improved, whereby the rigidity of the fuel cell assembly is increased and stable. It becomes a structure.
- the first current collector and the second current collector are spaced apart from each other along the direction in which the first gas and the second gas flow outside the first fuel cell.
- the first current collector and the second current collector are arranged apart from each other in the direction in which the fuel gas flows outside the first fuel battery cell. The traveling distance of the large current generated upstream of the fuel gas of either one gas or the second gas in the first electrode outside the first fuel cell can be shortened, and thereby the electric resistance Can be reduced.
- the first current collector and the second current collector are disposed so as to be separated from the longitudinal center outside the first fuel cell.
- the first current collector and the second current collector are disposed so as to be separated from the center in the longitudinal direction outside the first fuel battery cell.
- Current generated in a region away from the longitudinal center in the first electrode outside the first fuel cell flows to the current collector, so that the current in the first electrode outside the first fuel cell The moving distance in can be shortened, and thereby the electrical resistance can be reduced.
- the first current collector and the second current collector are respectively disposed at both end portions farthest from the center in the longitudinal direction outside the first fuel cell.
- the first current collector and the second current collector are respectively disposed at both end portions farthest from the center in the longitudinal direction outside the first fuel cell. The distance between the connection portion of the first current collector and the second current collector to the first electrode of the first fuel cell and the connection portion of the second electrode at both ends of the second fuel cell is shortened. Thus, the current transfer path in the current collector is shortened, thereby reducing the electrical resistance in the first current collector and the second current collector.
- each of the first current collector and the second current collector is inclined from both end portions outside the first fuel cell toward the second electrodes at both ends of the second fuel cell.
- An inclined portion is provided.
- the first current collector and the second current collector are respectively connected to the second electrodes at both ends of the second fuel battery cell from both ends outside the first fuel battery cell. Therefore, the first fuel cell and the second fuel cell can be connected at a short distance, and the electrical resistance can be reduced.
- the inclined portions of the first current collector and the second current collector each include a step portion that is easily elastically deformed.
- the inclined portions of the first current collector and the second current collector are each provided with a step portion that is easily elastically deformed. The variation in the length direction and the lateral direction of the first and second fuel cells can be absorbed.
- the inclined portions of the first current collector and the second current collector each include an R-shaped portion having a convex shape toward the center in the longitudinal direction of the first fuel cell.
- the inclined portions of the first current collector and the second current collector each have a convex R-shaped portion toward the center in the longitudinal direction of the first fuel cell.
- the inclined portions of the first current collector and the second current collector each connect the center of the first fuel cell and the center of the second fuel cell in a top view. It is comprised so that it may connect with the shortest distance along.
- the inclined portions of the first current collector and the second current collector have the center of the first fuel cell and the center of the second fuel cell as viewed from above. Since the connection is made at the shortest distance along the connecting line, the electrical resistance is reduced.
- the first current collector and the second current collector each include a cap portion that contacts at least a part of the second electrode at the end of the second fuel cell.
- each of the first current collector and the second current collector includes a cap portion that contacts at least a part of the second electrode at the end of the second fuel cell. Therefore, the first current collector and the second current collector can be stably attached to the second electrode at the end of the second fuel cell.
- each of the first current collector and the second current collector includes a sandwiching surface portion that sandwiches the second electrode at the end portion of the second fuel battery cell from above and below.
- each of the first current collector and the second current collector includes a sandwiching surface portion that sandwiches the second electrode at the end of the second fuel battery cell from above and below. Therefore, the assembly stability of the fuel cell assembly can be achieved, and the first current collector and the second current collector are in surface contact with the second electrode at the end of the second fuel cell, thereby Since the contact area increases, the contact resistance of the first current collector and the second current collector with the second electrode of the second fuel cell can be reduced.
- the sandwiching surface portions of the first current collector and the second current collector each include a variation absorbing portion.
- the variation in the length direction of the fuel cell can be absorbed by the variation absorbing portion.
- the second fuel battery cell includes a cylindrical portion at both ends, and the sandwiching surface portion of the first current collector and the second current collector opens a part of the cylindrical portion.
- locking part which has the long hole which accommodates is provided.
- each of the first current collector and the second current collector includes a relaxation portion that relaxes stress concentration in a vicinity of a portion that contacts the first electrode of the first fuel cell. Yes.
- the first current collector and the second current collector since the relaxation portion is provided, the first current collector and the second current collector The stress concentration generated in the vicinity of the portion in contact with the first electrode of the first fuel cell is alleviated.
- the 1st electrical power collector and the 2nd electrical power collector are electrically connected in the center outer peripheral part along the longitudinal direction of a 1st fuel cell.
- the first fuel cell is electrically connected at the central portion along the longitudinal direction, the center outer peripheral portion of the first fuel cell and the first fuel are connected. Since current flows between both ends of the second fuel battery cell adjacent to the battery cell, the distance through which the current flows is shortened, and the electrical resistance is reduced. Further, since the current passes through the current collector having a relatively small electric resistance at the center outer peripheral portion of the first fuel cell, the current collection loss due to the electric resistance is reduced.
- the present invention preferably further includes a porous conductive current collecting film provided outside the first electrode of the first fuel cell, and the first current collector and the current collecting film are provided on the current collecting film.
- the second current collector is electrically connected.
- it has a porous current collection film
- the area for taking in the second gas from one electrode is increased, and furthermore, since the second gas flows along the current collecting film, the disturbance of the second gas can be reduced, whereby the second gas taken in by the first fuel cell. Can be prevented.
- a notch is formed so as not to contact with each other and to be separated from the other current collector by a predetermined distance.
- the first current collector and the second current collector are attached to the first fuel cell and the second fuel cell in a direction orthogonal to the longitudinal direction of the fuel cell.
- a first gripping portion extending to the first gripping portion and a second gripping portion facing the first gripping portion, wherein the first gripping portion has two protruding portions forming a notch, and the second gripping portion has a first gripping portion
- One protrusion is formed at a position corresponding to the longitudinal position of the fuel cell of the notch.
- each of the first current collector and the second current collector is provided with a first holding portion in which two protrusions are formed and a first protrusion in which two protrusions are formed.
- Two projecting portions of the second gripping portion are formed at a position corresponding to the longitudinal phrase position of the fuel cell in the cutout portion of the first gripping portion.
- the first current collector and the second current collector can be stably attached to the fuel cell together with preventing contact and discharge.
- the present invention is a fuel cell including the fuel cell assembly described above.
- 1 is an overall configuration diagram showing a solid oxide fuel cell (SOFC) according to a first embodiment of the present invention.
- 1 is a front cross-sectional view showing a fuel cell module of a solid oxide fuel cell (SOFC) according to a first embodiment of the present invention.
- FIG. 3 is a sectional view taken along line III-III in FIG. 2.
- 1 is a partial cross-sectional view showing a fuel cell unit of a solid oxide fuel cell (SOFC) according to a first embodiment of the present invention.
- 1 is a perspective view showing a fuel cell stack of a solid oxide fuel cell (SOFC) according to a first embodiment of the present invention.
- 1 is a perspective view showing a fuel cell assembly of a solid oxide fuel cell (SOFC) according to a first embodiment of the present invention.
- FIG. 8 is a front view of the current collector shown in FIG. 7. It is a top view of the electrical power collector shown in FIG. It is a perspective view which shows the state which attached the electrical power collector shown in FIG. 7 to the fuel cell unit. It is a perspective view showing an assembly process of a fuel cell stack of a solid oxide fuel cell (SOFC) according to a first embodiment of the present invention. It is a perspective view which shows the electrical power collector used for the fuel cell stack of the solid oxide fuel cell (SOFC) by 2nd Embodiment of this invention. It is a front view of the electrical power collector shown in FIG.
- SOFC solid oxide fuel cell
- FIG. 12 It is a top view of the electrical power collector shown in FIG. It is a perspective view which shows the state which attached the electrical power collector shown in FIG. 12 to the fuel cell unit. It is a perspective view which shows the assembly process of the fuel cell stack of the solid oxide fuel cell (SOFC) by 2nd Embodiment of this invention. It is a perspective view which shows the upper half of the electrical power collector used for the fuel cell stack of the solid oxide fuel cell (SOFC) by 3rd Embodiment of this invention. It is the schematic which shows a part of lower half of the fuel cell stack containing the electrical power collector by the 1st example of 4th Embodiment of this invention.
- SOFC solid oxide fuel cell
- FIG. 26 is a front view of the current collector shown in FIG. 25. It is a top view of the electrical power collector shown in FIG. It is a front view which shows the adjacent arrangement
- FIG. 1 is an overall configuration diagram showing a solid oxide fuel cell (SOFC) according to a first embodiment of the present invention.
- a solid oxide fuel cell (SOFC) 1 according to a first embodiment of the present invention includes a fuel cell module 2 and an auxiliary unit 4.
- the fuel cell module 2 includes a housing 6, and a sealed space 8 is formed inside the housing 6 via a heat insulating material (not shown). In addition, you may make it not provide a heat insulating material.
- a fuel cell assembly 12 that performs a power generation reaction with fuel gas and an oxidant (air) is disposed in a power generation chamber 10 that is a lower portion of the sealed space 8.
- the fuel cell assembly 12 includes ten fuel cell stacks 14 (see FIG. 5), and the fuel cell stack 14 includes 16 fuel cell unit 16 (see FIG. 4). Yes.
- the fuel cell assembly 12 has 160 fuel cell units 16, and all of these fuel cell units 16 are connected in series.
- a combustion chamber 18 is formed above the above-described power generation chamber 10 in the sealed space 8 of the fuel cell module 2.
- this combustion chamber 18 the remaining fuel gas that has not been used for the power generation reaction and the remaining oxidant (air) ) And combusted to generate exhaust gas.
- a reformer 20 for reforming the fuel gas is disposed above the combustion chamber 18, and the reformer 20 is heated to a temperature at which a reforming reaction can be performed by the combustion heat of the remaining fuel gas. is doing.
- an air heat exchanger 22 for receiving combustion heat and heating power generation air is disposed above the reformer 20.
- the auxiliary unit 4 stores a pure water tank 26 that stores water from a water supply source 24 such as tap water and uses the filter to obtain pure water, and a water flow rate that adjusts the flow rate of the water supplied from the water storage tank.
- An adjustment unit 28 (such as a “water pump” driven by a motor) is provided.
- the auxiliary unit 4 also includes a gas shut-off valve 32 that shuts off the fuel gas supplied from a fuel supply source 30 such as city gas, a desulfurizer 36 for removing sulfur from the fuel gas, and a flow rate of the fuel gas.
- a fuel flow rate adjusting unit 38 (such as a “fuel pump” driven by a motor) is provided.
- the auxiliary unit 4 includes an electromagnetic valve 42 that shuts off air that is an oxidant supplied from an air supply source 40, and a reforming air flow rate adjustment unit 44 that adjusts the flow rate of air (driven by a motor " An air blower “and the like, a power generation air flow rate adjustment unit 45 (such as an" air blower "driven by a motor), a first heater 46 for heating the reforming air supplied to the reformer 20, and a power generation chamber And a second heater 48 for heating the second power generation air supplied to the power generator.
- the first heater 46 and the second heater 48 are provided in order to efficiently raise the temperature at startup, but may be omitted.
- a hot water production apparatus 50 to which exhaust gas is supplied is connected to the fuel cell module 2.
- the hot water production apparatus 50 is supplied with tap water from the water supply source 24, and the tap water is heated by the heat of the exhaust gas and supplied to a hot water storage tank of an external hot water heater (not shown).
- the fuel cell module 2 is provided with a control box 52 for controlling the amount of fuel gas supplied and the like. Furthermore, the fuel cell module 2 is connected to an inverter 54 that is a power extraction unit (power conversion unit) for supplying the power generated by the fuel cell module to the outside.
- FIG. 2 is a side sectional view showing a solid oxide fuel cell (SOFC) fuel cell module according to the first embodiment of the present invention
- FIG. 3 is a sectional view taken along line III-III in FIG. .
- the fuel cell assembly 12, the reformer 20, and the air heat exchange are sequentially performed from below.
- a vessel 22 is arranged.
- the reformer 20 is provided with a pure water introduction pipe 60 for introducing pure water and a reformed gas introduction pipe 62 for introducing reformed fuel gas and reforming air to the upstream end side thereof.
- a pure water introduction pipe 60 for introducing pure water
- a reformed gas introduction pipe 62 for introducing reformed fuel gas and reforming air to the upstream end side thereof.
- an evaporation unit 20a and a reforming unit 20b are formed in order from the upstream side, and the reforming unit 20b is filled with a reforming catalyst.
- the fuel gas and air mixed with the steam (pure water) introduced into the reformer 20 are reformed by the reforming catalyst filled in the reformer 20.
- the reforming catalyst a catalyst obtained by imparting nickel to the alumina sphere surface or a catalyst obtained by imparting ruthenium to the alumina sphere surface is appropriately used.
- a fuel gas supply pipe 64 is connected to the downstream end side of the reformer 20, and the fuel gas supply pipe 64 extends downward and further in an manifold 66 formed below the fuel cell assembly 12. It extends horizontally.
- a plurality of fuel supply holes 64 b are formed in the lower surface of the horizontal portion 64 a of the fuel gas supply pipe 64, and the reformed fuel gas is supplied into the manifold 66 from the fuel supply holes 64 b.
- a lower support plate 68 having a through hole for supporting the fuel cell stack 14 described above is attached above the manifold 66, and the fuel gas in the manifold 66 flows into the fuel cell unit 16. Supplied.
- the air heat exchanger 22 includes an air aggregation chamber 70 on the upstream side and two air distribution chambers 72 on the downstream side.
- the air aggregation chamber 70 and the air distribution chamber 72 include six air flow path tubes 74. Connected by.
- three air flow path pipes 74 form a set (74a, 74b, 74c, 74d, 74e, 74f), and the air in the air collecting chamber 70 is in each set. It flows into each air distribution chamber 72 from the air flow path pipe 74.
- the air flowing through the six air flow path pipes 74 of the air heat exchanger 22 is preheated by exhaust gas that burns and rises in the combustion chamber 18.
- An air introduction pipe 76 is connected to each of the air distribution chambers 72, the air introduction pipe 76 extends downward, and the lower end side communicates with the lower space of the power generation chamber 10, and the air that has been preheated in the power generation chamber 10. Is introduced.
- an exhaust gas chamber 78 is formed below the manifold 66. Further, as shown in FIG. 3, an exhaust gas passage 80 extending in the vertical direction is formed inside the front surface 6 a and the rear surface 6 b which are surfaces along the longitudinal direction of the housing 6, and the upper end of the exhaust gas chamber passage 80 is formed. The side communicates with the space in which the air heat exchanger 22 is disposed, and the lower end side communicates with the exhaust gas chamber 78. Further, an exhaust gas discharge pipe 82 is connected to substantially the center of the lower surface of the exhaust gas chamber 78, and the downstream end of the exhaust gas discharge pipe 82 is connected to the above-described hot water producing apparatus 50 shown in FIG. As shown in FIG. 3, an ignition device 83 for starting combustion of fuel gas and air is provided in the combustion chamber 18.
- FIG. 4 is a partial sectional view showing a fuel cell unit of a solid oxide fuel cell (SOFC) according to the first embodiment of the present invention.
- the fuel cell unit 16 includes a fuel cell 84 and inner electrode terminals 86 respectively connected to the vertical ends of the fuel cell 84.
- the fuel cell 84 is a tubular structure that extends in the vertical direction, and includes a cylindrical inner electrode layer 90 that forms a fuel gas flow path 88 therein, a cylindrical outer electrode layer 92, an inner electrode layer 90, and an outer side.
- An electrolyte layer 94 is provided between the electrode layer 92 and the electrode layer 92.
- the inner electrode layer 90 is a fuel electrode through which fuel gas passes and becomes a ( ⁇ ) electrode, while the outer electrode layer 92 is an air electrode in contact with air and becomes a (+) electrode.
- the upper portion 90 a of the inner electrode layer 90 includes an outer peripheral surface 90 b and an upper end surface 90 c exposed to the electrolyte layer 94 and the outer electrode layer 92.
- the inner electrode terminal 86 is connected to the outer peripheral surface 90b of the inner electrode layer 90 through a conductive sealing material 96, and is further in direct contact with the upper end surface 90c of the inner electrode layer 90, thereby Electrically connected.
- the inner electrode terminal 86 includes a protruding cylindrical portion 86a and a flat surface 86b, and a fuel gas channel 98 communicating with the fuel gas channel 88 of the inner electrode layer 90 is formed inside the cylindrical portion 86a. Has been.
- the inner electrode layer 90 includes, for example, a mixture of Ni and zirconia doped with at least one selected from rare earth elements such as Ca, Y, and Sc, and Ni and ceria doped with at least one selected from rare earth elements. It is formed from at least one of a mixture, a mixture of Ni, and a lanthanum gallate doped with at least one selected from Sr, Mg, Co, Fe, and Cu.
- the electrolyte layer 94 is, for example, zirconia doped with at least one selected from rare earth elements such as Y and Sc, ceria doped with at least one selected from rare earth elements, lanthanum gallate doped with at least one selected from Sr and Mg, Formed from at least one of the following.
- the outer electrode layer 92 includes, for example, lanthanum manganite doped with at least one selected from Sr and Ca, lanthanum ferrite doped with at least one selected from Sr, Co, Ni and Cu, Sr, Fe, Ni and Cu. It is formed from at least one of lanthanum cobaltite doped with at least one selected from the group consisting of silver and silver.
- FIG. 5 is a perspective view showing a solid oxide fuel cell (SOFC) fuel cell stack according to the first embodiment of the present invention
- FIG. 6 is a solid oxide fuel cell (SOFC) according to the first embodiment of the present invention. It is a perspective view which shows the fuel cell assembly of (SOFC).
- SOFC solid oxide fuel cell
- the fuel cell stack 14 includes 16 fuel cell units 16, and the lower end side and the upper end side of these fuel cell units 16 are a ceramic lower support plate 68 and an upper side, respectively. It is supported by the support plate 100.
- the lower support plate 68 and the upper support plate 100 are formed with through holes 68a and 100a through which the inner electrode terminal 86 can pass.
- a metal current collector 102 and an external terminal 104 are attached to the fuel cell unit 16. Although details will be described later, the current collector 102 is for electrically connecting the inner electrode terminal 86 and the outer electrode layer 92 at both ends of the fuel cell unit 16.
- the inner electrode terminals at the upper end and the lower end of the two fuel cell units 16 located at the ends of the fuel cell stack 14 are connected to the respective 86. These external terminals 104 are connected to the external terminals 104 (not shown) of the fuel cell unit 16 at the end of the adjacent fuel cell stack 14, and finally 10 fuel cell stacks 14 are connected.
- all of the 160 fuel cell units 16 are connected in series to form the fuel cell assembly 12.
- the current flows as shown by a broken line A when viewed from above.
- the generated electric power is taken out from output terminals 106 connected to both sides of the fuel cell unit 12.
- FIG. 7 is a perspective view showing a current collector used in a fuel cell stack (fuel cell assembly) of a solid oxide fuel cell (SOFC) according to the first embodiment of the present invention
- FIG. 9 is a front view of the current collector shown in FIG. 9
- FIG. 9 is a plan view of the current collector shown in FIG. 7
- FIG. 10 is a perspective view showing a state where the current collector shown in FIG. 7 is attached to the fuel cell unit.
- FIG. 11 is a perspective view showing an assembly process of the solid oxide fuel cell (SOFC) fuel cell stack according to the first embodiment of the present invention.
- SOFC solid oxide fuel cell
- the current collector 102 is connected to the entire outer peripheral surface of the outer electrode layer 92, which is the air electrode of the fuel cell unit 16 (fuel cell 84), and a central portion 108 for air electrode connection, A connection that extends obliquely upward and downward from the central portion 108 toward both ends of the adjacent fuel cell unit 16 and is electrically connected to the inner electrode terminal 86 attached to the inner electrode layer 90 that is a fuel electrode. Part 110.
- the central portion 108 of the current collector 102 has a vertical portion 108a extending in the longitudinal direction along the fuel cell unit 16, and a semicircular arc shape in the horizontal direction along the surface of the outer electrode layer 92 from the vertical portion 108a. It is formed from a large number of comb teeth 108b extending in a curved manner.
- the radius of curvature of the comb-tooth portion 108b is set to be slightly smaller than the radius of curvature of the outer peripheral surface of the outer electrode layer 92, whereby an urging force is generated at the time of attachment and the attachment is easy.
- the connecting portion 110 of the current collector 102 includes an inclined portion 110a that extends obliquely upward and downward toward both ends of the adjacent fuel cell unit 16 (fuel cell 84), and an inner electrode from the inclined portion 110.
- the inner electrode terminal 86 extends in the direction of the terminal 86 and is formed of a sandwiching surface portion 110b that is in surface contact so as to sandwich the flat surface 86b of the fuel cell unit 16 from both ends. Further, a long hole 110c in which a part of the cylindrical portion 86 of the inner electrode terminal 86 is opened is formed in the sandwiching surface portion 110b of the connecting portion 110 of the current collector 102.
- the hole 110 c functions as a locking portion 110 d that locks with the cylindrical portion 86 of the inner electrode terminal 86.
- the current collector 102 is attached to the fuel cell unit 16, and the two are electrically connected to form a subassembly. At this time, an urging force is generated in the comb-tooth portion 108b of the central portion 108 of the current collector 102, and the current collector 102 can be attached stably.
- the sub-assembled fuel cell unit 16 to which the current collector 102 is attached (here, for convenience, this fuel cell unit 16 is referred to as a first fuel cell unit 120). ) Is inserted into the through hole 68 a of the lower support plate 68. Next, the fuel cell unit 16 (120) is rotated toward the fuel cell unit 16 adjacent to the left side (here, for convenience, this fuel cell unit 16 is referred to as the second fuel cell unit 122), The current collector 102 is brought close to the fuel cell unit 16 (122).
- the cylindrical portion 86a of the inner electrode terminal 86 of the second fuel cell unit 16 (122) is accommodated in the long hole 112c of the current collector and is locked by the long hole 112c (locking portion 110d).
- the sandwiching surface portion 110b is sandwiched from both sides of the second fuel cell unit 16 (122) to achieve stable electrical connection. In this way, the 16 fuel cell units 16 are mounted on the lower support plate 68.
- the upper support plate 100 is attached, and the assembly of the fuel cell unit 14 is completed.
- the ten fuel cell units 14 are electrically connected in series, and the assembly of the fuel cell assembly 12 is completed.
- the operation of the fuel cell assembly according to the first embodiment of the present invention described above, particularly the relationship with the current collector 102 will be described in detail.
- the outer electrode layer 92 which is the central outer peripheral portion of the first fuel cell unit 16 (120) and the second fuel cell 16 (122) adjacent to the first fuel cell unit 16 (120).
- the current flows between the inner electrode terminals 86, which are both ends, so that the distance through which the current flows is shortened and the electrical resistance is reduced.
- the second fuel cell unit 16 (120 which is adjacent to the outer electrode layer 92 which is the central outer peripheral portion of the first fuel cell unit 16 (120).
- the electrons move between the upper and lower electrodes, so that the moving distance of the electrons is shortened and the electrical resistance is reduced. Furthermore, in the outer electrode layer 92 which is the central outer peripheral portion of the first fuel cell unit 16 (120), the current passes through the current collector 102 having a relatively small electric resistance, so that the current collection loss due to the electric resistance is reduced. As a result, according to the present invention, the power generation efficiency by the fuel cell is improved.
- the connecting portions 110 connected to the inner electrode terminals 86 at both ends of the second fuel cell unit 16 (122) of the current collector 102 sandwich the second fuel cell 16 (122) from above and below. Since the surface portion 110b is provided, the assembly stability of the fuel cell assembly 12 can be achieved. Furthermore, since the current collector 102 is in surface contact with the inner electrode terminal 86 at the end of the second fuel cell unit 16 (122), thereby increasing the contact area, the current of the fuel cell unit of the current collector 102 is increased. The contact resistance with the inner electrode terminal 86 can be reduced.
- the connecting portion 110 connected to the inner electrode terminal 86 at both ends of the second fuel cell unit 16 (122) of the current collector 102 is inclined toward the second fuel cell 16 (122). Since 110a is provided, the first fuel cell unit 16 (120) and the second fuel cell unit 16 (122) can be connected at a short distance, and the electric resistance can be reduced.
- the sandwiching surface portion 110b of the connecting portion 110 of the current collector 102 includes a locking portion 110d having a long hole 110c that opens a part thereof and accommodates the tubular portion 86a.
- the sandwiched surface portion 110b of the connecting portion 110 is brought into contact with the flat surface 86b of the inner electrode terminal 86 and the cylindrical portion 86a is accommodated and slid.
- the current collector 102 can be assembled to the first fuel cell unit 16 (122).
- the current collector 102 is electrically connected to the outer electrode layer 92 of the first fuel cell 16 (120) in advance and sub-assembled, and then the sub-assembled first fuel cell.
- the cell 16 (120) is inserted into the through hole 68a of the lower support plate 68, and then the current collector 102 is connected to the inner electrode terminal 86 of the adjacent second fuel cell unit 16 (122). Since the fuel cell unit 16 is mounted on the lower support plate 68, the fuel cell assembly 12 can be assembled by a simple method.
- FIG. 12 is a perspective view showing a current collector used in a fuel cell stack of a solid oxide fuel cell (SOFC) according to a second embodiment of the present invention
- FIG. 13 is a front view of the current collector shown in FIG. 14 is a plan view of the current collector shown in FIG. 12
- FIG. 15 is a perspective view showing a state where the current collector shown in FIG. 12 is attached to the fuel cell unit
- FIG. It is a perspective view which shows the assembly process of the fuel cell stack of the solid oxide fuel cell (SOFC) by 2nd Embodiment of invention.
- the electrical power collector 202 is for the connection for air electrodes electrically connected with the whole outer peripheral surface of the outer side electrode layer 92 which is an air electrode of the fuel cell unit 16 (fuel cell 84). And the inner electrode terminal 86 attached to the inner electrode layer 90 which is a fuel electrode extending obliquely upward and downward from the central portion 208 toward both ends of the adjacent fuel cell unit 16. And a connection part 210 connected in a connected manner.
- the central portion 208 of the current collector 202 has a vertical portion 208a extending in the longitudinal direction along the fuel cell unit 16, and a semicircular arc shape in the horizontal direction along the surface of the outer electrode layer 92 from the vertical portion 208a. It is formed from a large number of comb teeth 208b extending in a curved manner.
- the radius of curvature of the comb-tooth portion 208b is set to be slightly smaller than the radius of curvature of the outer peripheral surface of the outer electrode layer 92, whereby an urging force is generated during attachment and the attachment is easy.
- the connecting portion 210 of the current collector 202 includes an inclined portion 210a extending obliquely upward and downward toward both ends of the adjacent fuel cell unit 16 (fuel cell 84), and an inner electrode from the inclined portion 210.
- the cap portion 210 b extends in the direction of the terminal 86. Further, a center hole 210c is formed at the center of the cap portion 210b of the connecting portion 210 of the current collector 202, and the cylindrical portion 86 of the inner electrode terminal 86 described above passes therethrough.
- the cap portion 210b has an outer peripheral portion 210d, and the outer peripheral portion 210d is attached so that the cap portion 210b completely covers the outer peripheral side of the flat surface 86b of the inner electrode terminal 86.
- the inclined portion 210a of the connecting portion 210 of the current collector 202 has a center 120a of the first fuel cell unit 16 (120) and the second fuel cell unit in a top view. 16 (122) is formed so as to pass through the shortest distance along the line B connecting the center 122a.
- the outer electrode layer 92 and the inner electrode terminal 86 are covered with the cap part 210b of the current collector 202 on the inner electrode terminal 86 at both ends of the second fuel cell unit 16 (122). Are electrically connected and sub-assembled. At this time, the cap portions 210b at both ends are attracted toward the inner side in the longitudinal direction by the urging force of the connection portion 210, and a stable connection state can be obtained.
- the second fuel cell unit 16 (122) that is sub-assembled that is, to which the current collector 202 is attached, is inserted into the through hole 68 a of the lower support plate 68.
- the fuel cell unit 16 (122) is rotated toward the fuel cell unit 16 (120) adjacent on the right side to bring the current collector 202 closer to the first fuel cell unit 16 (120).
- an urging force is generated in the comb-tooth portion 108b of the central portion 208 of the current collector 202, and the central portion 208 of the current collector 102 is stabilized on the outer electrode layer 92 of the first fuel cell unit 16 (120).
- Can be attached In this way, the 16 fuel cell units 16 are mounted on the lower support plate 68. Thereafter, the upper support plate 100 is attached, and the assembly of the fuel cell unit 14 is completed.
- the connecting portion 210 of the current collector 202 includes cap portions 210b that come into contact with the inner electrode terminals 86 at both ends of the second fuel cell unit 16 (122). 202 can be stably attached to both ends of the second fuel cell unit 16 (122).
- the inclined portion 210a of the connection portion 210 of the current collector 202 has the center 120a of the first fuel cell unit 16 (120) and the second fuel cell unit 16 (122) in top view. ) Of the first fuel cell unit 16 (120) and the second fuel by the connecting portion 210 of the current collector 202. Since the battery cell unit 16 (122) is connected with the shortest distance, the electric resistance is reduced.
- FIG. 17 is a perspective view showing an upper half of a current collector used in a fuel cell stack of a solid oxide fuel cell (SOFC) according to a third embodiment of the present invention.
- the current collector 302 has a clamping surface portion 304 similar to that of the first embodiment on both the upper side and the lower side, and the inner electrode terminal of the clamping surface portion 304.
- a conductive cushion material 306 that is a variation absorbing portion is attached to a surface that contacts the flat surface 86b of 86. Since the cushion material 306 is compressed and contracted in the longitudinal direction, the variation in the longitudinal direction of the fuel cells can be absorbed.
- FIG. 18 is a schematic diagram showing a part of the lower half of the fuel cell stack including the current collector according to the first example of the fourth embodiment of the present invention
- FIG. 19 is a second diagram of the fourth embodiment of the present invention. It is the schematic which shows a part of lower half of the fuel cell stack containing the electrical power collector by an example.
- the connecting portion 404 of the current collector 402 includes a substantially S-shaped step 406 in the middle thereof. Since the step portion 406 is S-shaped, it is easily elastically deformed. In the first example of the fourth embodiment, when a force is applied to the step portion 406, the longitudinal and lateral variations of the fuel cell unit 16 (the fuel cell 84) are absorbed by elastic deformation. Can do.
- a substantially S-shaped step 410 is provided in the vicinity of the central portion 408 of the connection portion 404 of the current collector 402. .
- the step portion 410 can absorb variations in the longitudinal direction and the lateral direction of the fuel cell unit 16 (fuel cell 84). .
- FIG. 20 is a schematic view showing a part of the lower half of the fuel cell stack including the current collector according to the fifth embodiment of the present invention.
- connection part 504 of the current collector 502 includes a convex R-shaped part 508 toward the central part 506 of the current collector 502.
- connection portion 504 of the current collector 502 includes the R-shaped portion 508 that is convex toward the center portion 506, and thus both ends of the first fuel cell unit 16 (120) itself.
- the outer electrode layer 92 and the second outer electrode layer 92 which are the central outer peripheral portion of the first fuel electrode cell unit 16 (120) at a short distance C while avoiding a short circuit due to contact with the inner electrode terminal 86 which is an electrode of the second portion.
- the inner electrode terminals 86 which are both ends of the fuel electrode cell unit 16 (122) can be connected. As a result, the arrangement pitch of the fuel cell units can be narrowed.
- FIG. 21 is a perspective view showing an upper half of a current collector used in a fuel cell stack of a solid oxide fuel cell (SOFC) according to a sixth embodiment of the present invention.
- SOFC solid oxide fuel cell
- the stress relaxation portion 608 is provided, so that the proximity portion of the central portion 604 of the current collector 602 with the connection portion 606 is provided.
- the stress concentration generated in 604a is alleviated.
- FIG. 22 is a partial sectional view showing a fuel cell unit of a solid oxide fuel cell (SOFC) according to a seventh embodiment of the present invention
- FIG. 23 is a solid oxide fuel cell (SOFC) according to a seventh embodiment of the present invention.
- FIG. 24 is a front view showing a fuel cell stack of a solid oxide fuel cell (SOFC) according to a seventh embodiment of the present invention
- FIG. 26 is a perspective view showing a current collector used in a fuel cell stack of a solid oxide fuel cell (SOFC) according to a seventh embodiment
- FIG. 26 is a front view of the current collector shown in FIG.
- FIG. 28 is a plan view of the current collector shown in FIG. 25, and FIG. 28 is a front view showing the adjacent arrangement of the current collector shown in FIG.
- the fuel cell unit 700 has the same basic structure as the fuel cell unit 16 in the first embodiment shown in FIG. 4. The difference is that in the fuel cell unit 700 in the present embodiment, a current collecting film 702 is provided on the outer peripheral side of the outer electrode layer 92. A first current collector 710 and a second current collector 712, which will be described in detail later, are attached to the current collector film 702.
- the current collecting film 702 is a porous (porous) conductive film and includes Ag, Pd, and LSCF.
- the thickness of the current collecting film 702 is preferably 0.1 to 50 ⁇ m, and more preferably 0.5 to 30 ⁇ m.
- the current collecting film 702 functions as an electrical path when the outer electrode layer 92 is thin and difficult to conduct electricity, or when it is made of a material having low conductivity.
- the current collecting film 702 can be omitted as necessary. When the current collector film 702 is omitted, the first current collector 710 and the second current collector 712 are directly attached to the outer periphery of the outer electrode layer 92.
- the fuel cell stack 704 according to the present embodiment has the same basic structure as the fuel cell stack 14 according to the first embodiment shown in FIG. Only the structure is different. Hereinafter, the structure of the current collector will be specifically described.
- the rightmost fuel cell located in the front row is the first fuel cell 706, and is arranged adjacent to the left side of the first fuel cell 706. The fuel cell thus formed will be described as a second fuel cell 708.
- the current collector includes a first current collector 710 provided on the upper side of the fuel cell and a second current collector 712 provided on the lower side.
- the first current collector 710 and the second current collector 712 have a symmetrical structure with respect to the vertical direction.
- the first current collector 710 and the second current collector 712 are metal current collectors obtained by applying silver plating to a heat-resistant alloy.
- a heat-resistant alloy for example, a ferrite alloy that forms an alumina coating is preferable.
- the first and second current collectors 710 and 712 made of metal have such rigidity (strength) that the necessary support rigidity can be obtained when they are attached to the fuel cell.
- the metal material of the current collector is the same as the current collector in the first to sixth embodiments described above.
- the first current collector 710 includes an outer electrode grip 714 positioned below, an inner electrode grip 716 positioned above, and these grips 714 and 716.
- a connecting portion 718 to be connected and a sandwiching surface portion 720 in surface contact so as to sandwich the flat surface 86b of the inner electrode terminal 86 from the upper end side of the fuel cell unit 700 are provided.
- the second current collector 712 also has an outer electrode grip 714 positioned above, an inner electrode grip 716 positioned below, and a connection 718 connecting these grips 714 and 716,
- a sandwiching surface portion 720 is provided in surface contact so as to sandwich the flat surface 86 b of the inner electrode terminal 86 from the lower end side of the fuel cell unit 700.
- the outer electrode gripping portion 714 of the first current collector 710 is formed on the outer electrode layer (first electrode) 92 of the first fuel cell 706. 702 is connected.
- the inner electrode gripping portion 714 of the first current collector 710 is connected to an inner electrode terminal (second electrode) 86 at the upper end of the second fuel cell 708.
- the outer electrode holding portion 714 of the second current collector 712 is also connected to the outer electrode layer (first electrode) 92 of the first fuel cell 706 via the current collector film 702.
- the inner electrode gripping portion 714 of the second current collector 710 is connected to an inner electrode terminal (second electrode) 86 at the lower end of the second fuel cell 708.
- the outer electrode holding portion 714 of the first current collector 710 and the outer electrode holding portion 714 of the second current collector 712 are respectively the longitudinal center of the first fuel cell 706. Are arranged at both ends of the outer electrode layer 92 farthest from the
- the outer electrode gripping portion 714 located below the first current collector 710 is orthogonal to the longitudinal direction Y of the fuel cell so as to surround the outer periphery of the first fuel cell 706.
- Two protrusions 714a and 714b which are first grips extending along the X direction (circumferential direction), a notch 714c formed between these protrusions 714a and 714b, and protrusions 714a and 714b.
- one projecting portion 714d which is a second gripping portion facing each other.
- the second current collector 712 has a similar structure.
- the fuel cell of one protrusion 714 d which is the second gripping portion of the outer electrode gripping portion 714 of the first current collector 710 attached to the first fuel cell 706.
- the position along the longitudinal direction Y is a notch 714c formed by two projecting portions 714a and 714b which are first gripping portions of the first current collector 710 attached to the adjacent second fuel cell 708.
- the positions of the fuel cells in the longitudinal direction Y coincide with each other.
- the second current collector 712 has a similar structure.
- the inner electrode gripping portion 716 located above the first current collector 710 is orthogonal to the longitudinal direction Y of the fuel cell so as to surround the outer periphery of the inner electrode terminal 86.
- one projecting portion 716d which is a second gripping portion facing each other.
- the second current collector 712 has a similar structure.
- the second current collector 712 has a similar structure.
- the 1st current collector which is a current collector which electrically connects the 1st fuel cell 706 and the 2nd fuel cell 708 adjacent to this.
- the body 710 and the second current collector 712 generate currents generated in the power generation units (the inner electrode layer 90, the outer electrode layer 92, and the electrolyte layer 94) of the first fuel cell 706 respectively. Since the outer electrode layer 92 of 706 is distributed from two different locations to the inner electrode terminal 86 of the second fuel cell 708, each of the first current collector 710 and the second current collector 712 The value of the current flowing through the capacitor becomes smaller, thereby reducing the electric resistance. Furthermore, since the current moves to a closer location of the two locations in the outer electrode layer 92 of the first fuel cell 706, the current transfer path in the outer electrode layer 92 is shortened, thereby reducing the electrical resistance. To do.
- the first fuel cell 706 and the second fuel cell 708 each have inner electrode terminals 86 at both ends, and the first fuel cell 706 Since the current generated in the electrolyte layer 94 is distributed and passed to both ends of the second fuel cell 708 by the first and second current collectors 710 and 712 that are electrically independent, Even if a problem occurs in the current path (one current collector) and no current flows, the current flows in the other current path (the other current collector), so that the current path can be easily secured.
- the mechanical current collector in which the first current collector 710 and the second current collector 712 are arranged apart from each other.
- the first fuel cell 706 and the second fuel cell have predetermined rigidity necessary for supporting the first fuel cell 706 and the second fuel cell 708, and at two locations. Since the cell 708 is supported, the support rigidity and stability of the first fuel cell 706 and the second fuel cell 708 are improved, and thereby the rigidity of the fuel cell assembly is increased and stabilized. It becomes a structure.
- the first current collector 710 and the second current collector 720 are arranged so that the fuel gas flows in the outer electrode layer 92 of the first fuel cell 706. Since the distance between the outer electrodes of the fuel cells 706 generated by the large current generated on the upstream side of the fuel gas can be shortened, the electric resistance can be reduced. Can do.
- the first current collector 710 and the second current collector 712 are mutually connected from the longitudinal center of the outer electrode layer 92 of the first fuel cell 706. Since they are arranged so as to be separated from each other, the current generated in the region away from the longitudinal center of the outer electrode layer 92 of the first fuel cell 706 flows to the closer current collector, so that the first current The moving distance in the outer electrode layer 92 of the fuel cell 706 can be shortened, and thereby the electric resistance can be reduced.
- the first current collector 710 and the second current collector 712 are the most from the center in the longitudinal direction of the outer electrode layer 92 of the first fuel cell 706. Since the first current collector 710 and the second current collector 712 are arranged at the two opposite ends, the connection portion between the first electrode 926 and the outer electrode layer 92 of the first fuel cell 706 and the second fuel cell 708. The distance between the both ends of the first electrode collector 710 and the second electrode collector 712 is shortened, and the distance between the first electrode 710 and the second electrode collector 712 is shortened. The electrical resistance in the second current collector 712 is reduced.
- the fuel cell assembly according to the present embodiment has a porous current collecting film 702 provided on the outer peripheral side of the outer electrode layer 92 of the first fuel cell 706, and this current collecting film. Since the first current collector 710 and the second current collector 712 are electrically connected to 702, a dense current collector made of, for example, metal is applied to the outer electrode layer 92 of the first fuel cell 706 in a wide range. There is no need to connect, the area for taking in air from the outer electrode layer 92 of the first fuel cell 706 is increased, and furthermore, since air flows along the current collecting film 702, air turbulence can be reduced, The shortage of air taken in by the first fuel battery cell 706 can be prevented.
- the first current collector 710 and the second current collector 712 are attached to the first fuel cell 706 and the second fuel cell 708, respectively. So as not to be in contact with each other and to be separated from the other current collector by a predetermined distance, with the mounting portion of the other current collector disposed at the same position along the longitudinal direction of the other adjacent fuel cells. Since the notch 714c is formed, contact and discharge between adjacent current collectors can be prevented. As a result, since the distance between adjacent fuel cells can be shortened, the fuel cell assembly can be reduced in size.
- the first gripping portion in which the mounting portions of the first current collector 710 and the second current collector 712 are formed with two projecting portions 714a and 714b. And a second grip part formed with one projecting part 714d, and one projecting part of the second grip part at a position corresponding to the longitudinal phrase position of the fuel cell of the notch part 714c of the first grip part. Since 714d is formed, the first current collector 710 and the second current collector 712 can be stably attached to the fuel cell as well as preventing contact and discharge between adjacent current collectors. it can.
- the fuel cell unit is not provided with the inner electrode terminals at both ends of the fuel cell unit, and the fuel cell unit is connected to the inner electrode layer directly or via other inclusions. Applicable. Moreover, a fuel cell may be used in the meaning of a fuel cell unit including an inner electrode terminal.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
Description
このように構成された本発明においては、第1の燃料電池セルとこれに隣接する第2の燃料電池セルを電気的に接続する集電体が、第1の燃料電池セルの発電部において発生した電流を、第1の燃料電池セルの第1電極の相異なる2箇所から第2の燃料電池セルの第2電極へ分配して流すようにしているので、集電体に流れる電流の値が小さくなり、それにより、電気抵抗が減少する。さらに、第1の燃料電池セルの第1電極において2箇所のうちのより近い箇所へ電流が移動するので、第1電極における電流の移動経路が短くなり、それにより、電気抵抗が減少する。この結果、本発明によれば、燃料電池セル集合体の発電効率を向上させることができる。
このように構成された本発明においては、第1の燃料電池セル及び第2の燃料電池セルがそれぞれ両端に第2電極を備え、第1の燃料電池セルの発電部において発生した電流を、電気的に独立した第1集電体及び第2集電体により、第2の燃料電池セルの両端へ分配して流すようにしているので、一方の電流経路(一方の集電体)に不具合が生じて電流が流れなくても、他方の電流経路(他方の集電体)に電流が流れるので、電流経路を容易に確保することができる。
このように構成された本発明においては、第1集電体及び第2集電体が互いに離間して配置された機械的集電体であるので、一方の集電体に不具合が生じて電流が流れなくても、他方の集電体により電流経路を容易に確保することができる。さらに、機械的集電体は、第1の燃料電池セル及び第2の燃料電池セルを支持するために必要な所定の剛性を有し、且つ、複数個所で第1の燃料電池セル及び第2の燃料電池セルを支持するようにしているので、第1の燃料電池セル及び第2の燃料電池セルの支持剛性及び安定性が向上し、それにより、燃料電池セル集合体の剛性も大きくなり安定構造となる。
このように構成された本発明においては、第1集電体及び第2集電体が第1の燃料電池セルの外部において燃料ガスの流れる方向に沿って離間して配置されているので、第1ガス及び第2ガスの何れか一方の燃料ガスの上流側で発生した大きな電流の第1の燃料電池セルの外部の第1電極内における移動距離を短くすることができ、それにより、電気抵抗を低減することができる。
このように構成された本発明においては、第1集電体及び第2集電体が、第1の燃料電池セルの外部の長手方向の中心から互いに離れるように配置されているので、第1の燃料電池セルの外部の第1電極内の長手方向の中心から離れた領域で発生した電流が近い方の集電体へ流れるため、電流の第1の燃料電池セルの外部の第1電極内における移動距離を短くすることができ、それにより、電気抵抗を低減することができる。
このように構成された本発明においては、第1集電体及び第2集電体が、第1の燃料電池セルの外部の長手方向の中心から最も離れた両端部にそれぞれ配置されているので、第1集電体及び第2集電体の第1の燃料電池セルの第1電極との接続部と第2の燃料電池セルの両端の第2電極との接続部との距離が短くなるので、集電体における電流移動経路が短くなり、それにより、第1集電体及び第2集電体における電気抵抗が低減する。
このように構成された本発明においては、第1集電体及び第2集電体が、それぞれ、第1の燃料電池セルの外部の両端部から第2の燃料電池セルの両端の第2電極の方向に傾斜する傾斜部を備えているので、短い距離で、第1の燃料電池セルと第2の燃料電池セルを接続することができ、電気抵抗を低減させることができる。
このように構成された本発明においては、第1集電体及び第2集電体の傾斜部が、それぞれ、弾性変形し易い段部を備えているので、この段部が弾性変形することにより、第1及び第2の燃料電池セルの長さ方向及び横方向のばらつきを吸収することができる。
このように構成された本発明においては、それぞれ、第1集電体及び第2集電体の傾斜部が、第1の燃料電池セルの長手方向の中心に向けて凸形状のR形状部を備えているので、第1の燃料電池セル自身の両端の第2電極と接触してショートすることを回避しながら、短い距離で、第1の燃料電極セルの第1電極と第2の燃料電池セルの両端の第2電極とを接続することができる。その結果、燃料電池セルの配列ピッチを狭めることができる。
このように構成された本発明においては、第1集電体及び第2集電体の傾斜部が、上面視で、第1の燃料電池セルの中心と第2の燃料電池セルの中心とを結ぶ線に沿った最短距離で接続するように構成されているので、電気抵抗が小さくなる。
このように構成された本発明においては、第1集電体及び第2集電体が、それぞれ、第2の燃料電池セルの端部の第2電極の少なくとも一部と接触するキャップ部を備えているので、第1集電体及び第2集電体を第2の燃料電池セルの端部の第2電極に安定して取り付けることができる。
このように構成された本発明においては、第1集電体及び第2集電体が、それぞれ、第2の燃料電池セルの端部の第2電極を上下方向から挟む挟み面部を備えているので、燃料電池セル集合体の組立て上の安定性が図れ、また、第1集電体及び第2集電体が第2の燃料電池セルの端部で第2電極と面接触し、それにより、接触面積が増大するので、第1集電体及び第2集電体の第2の燃料電池セルの第2電極との接触抵抗を低減することができる。
このように構成された本発明においては、ばらつき吸収部により、燃料電池セルの長さ方向のばらつきを吸収することができる。
このように構成された本発明においては、第1集電体及び第2集電体の挟み面部を第2の燃料電池セルに取り付ける際に、挟み面部を第2の燃料電池セルの両端部に接触させると共に筒状部分を収納してスライドさせるだけで、第1集電体及び第2集電体を第2の燃料電池セルに組み付けることができる。
このように構成された本発明においては、第1集電体及び第2集電体に力が作用しても、緩和部が設けられているので、第1集電体及び第2集電体の第1の燃料電池セルの第1電極と接触する部分の近接部に発生する応力集中が緩和される。
このように構成された本発明においては、第1の燃料電池セルの長手方向に沿った中央部において電気的に接続されているので、第1の燃料電池セルの中央外周部と第1の燃料電池セルに隣接する第2の燃料電池セルの両端部との間で電流が流れるので、電流が流れる距離が短くなり、電気抵抗が小さくなる。さらに、第1の燃料電池セルの中央外周部では、電流が電気抵抗の比較的小さな集電体を通るので電気抵抗による集電ロスが少なくなる。
このように構成された本発明においては、第1の燃料電池セルの第1電極の外側に設けられた多孔質の集電膜を有し、この集電膜に第1集電体及び第2集電体が電気的に接続されているので、第1の燃料電池セルの第1電極に緻密な例えば金属製の集電体を広範囲に接続する必要がなく、第1の燃料電池セルの第1電極から第2ガスを取り込む面積が増大し、さらに、第2ガスが集電膜に沿って流れるので第2ガスの乱れを低減でき、これにより、第1の燃料電池セルが取り込む第2ガスの不足を防止することができる。
このように構成された本発明においては、第1集電体及び第2集電体の第1の燃料電池セル及び第2の燃料電池セルへのそれぞれの取付部に、隣接する他の燃料電池セルの長手方向に沿った同じ位置に配置された他の集電体の取付部と互いに接触せず且つ他の集電体から所定の距離だけ離れるように、切欠部が形成されているので、隣接する集電体どうしの接触及び放電を防止することができる。この結果、隣接する燃料電池セル間の距離を短くすることができるので、燃料電池セル集合体の小型化を図ることができる。
このように構成された本発明においては、第1集電体及び第2集電体のそれぞれの取付部が2つの突出部が形成された第1把持部と1つの突出部が形成された第2把持部を備え、さらに、第1把持部の切欠部の燃料電池セルの長手方句位置に対応した位置に第2把持部の1つの突出部が形成されているので、隣接する集電体どうしの接触及び放電を防止るつと共に、第1集電体及び第2集電体を燃料電池セルに対して安定して取り付けることができる。
図1は、本発明の第1実施形態による固体電解質型燃料電池(SOFC)を示す全体構成図である。この図1に示すように、本発明の第1実施形態による固体電解質型燃料電池(SOFC)1は、燃料電池モジュール2と、補機ユニット4を備えている。
また、この燃焼室18の上方には、燃料ガスを改質する改質器20が配置され、残余の燃料ガスの燃焼熱によって改質器20を改質反応が可能な温度となるように加熱している。さらに、この改質器20の上方には、燃焼熱を受けて発電用空気を加熱するための空気用熱交換器22が配置されている。
また、燃料電池モジュール2には、燃料ガスの供給量等を制御するための制御ボックス52が取り付けられている。
さらに、燃料電池モジュール2には、燃料電池モジュールにより発電された電力を外部に供給するための電力取出部(電力変換部)であるインバータ54が接続されている。
図2及び図3に示すように、燃料電池モジュール2のハウジング6内の密閉空間8には、上述したように、下方から順に、燃料電池セル集合体12、改質器20、空気用熱交換器22が配置されている。
空気分配室72のそれぞれには、空気導入管76が接続され、この空気導入管76は、下方に延び、その下端側が、発電室10の下方空間に連通し、発電室10に余熱された空気を導入する。
図3に示すように、燃料ガスと空気との燃焼を開始するための点火装置83が、燃焼室18に設けられている。
図4に示すように、燃料電池セルユニット16は、燃料電池セル84と、この燃料電池セル84の上下方向端部にそれぞれ接続された内側電極端子86とを備えている。
燃料電池セル84は、上下方向に延びる管状構造体であり、内部に燃料ガス流路88を形成する円筒形の内側電極層90と、円筒形の外側電極層92と、内側電極層90と外側電極層92との間にある電解質層94とを備えている。この内側電極層90は、燃料ガスが通過する燃料極であり、(-)極となり、一方、外側電極層92は、空気と接触する空気極であり、(+)極となっている。
先ず、図10に示すように、燃料電池セルユニット16に集電体102を取り付け、両者を電気的に接続し、サブアセンブリする。このとき、集電体102の中央部108の櫛歯部108bには付勢力が生じ、集電体102を安定して取り付けることが可能である。
この後、図6に示したように、10個の燃料電池セルユニット14が電気的に直列に接続され、燃料電池セル集合体12の組立てが完了する。
先ず、集電体102において、第1燃料電池セルユニット16(120)の中央外周部である外側電極層92と第1燃料電池セルユニット16(120)に隣接する第2燃料電池セル16(122)の両端部である内側電極端子86との間で電流が流れるので、電流が流れる距離が短くなり、電気抵抗が小さくなる。次に、燃料電池セルユニット16(燃料電池セル84)において、第1の燃料電池セルユニット16(120)の中央外周部である外側電極層92と隣接する第2の燃料電池セルユニット16(120)の上端及び下端の電極との間で電子が移動するので、電子の移動距離が短くなり電気抵抗が小さくなる。さらに、第1の燃料電池セルユニット16(120)の中央外周部である外側電極層92では、電流が電気抵抗の比較的小さな集電体102を通るので電気抵抗による集電ロスが少なくなる。この結果、本発明によれば、燃料電池セルによる発電効率が向上する。
先ず、図15に示すように、第2燃料電池セルユニット16(122)に両端部である内側電極端子86に集電体202のキャップ部210bを被せて、外側電極層92と内側電極端子86とを電気的に接続し、サブアセンブリする。このとき、接続部210の付勢力により、両端のキャップ部210bが長手方向内側に向って引き付けられ、安定した接続状態を得ることができる。
図17に示すように、第3実施形態においては、集電体302は、上側及び下側の両方において、第1実施形態と同様な挟み面部304を有し、この挟み面部304の内側電極端子86の平坦面86bと接触する面に、ばらつき吸収部である導電性のクッション材306が貼り付けられている。
このクッション材306は、圧縮されて長手方向に縮むようになっているので、燃料電池セルの長手方向のばらつきを吸収することができる。
第4実施形態の第1例においては、この段部406に力が作用すると、弾性変形することにより、燃料電池セルユニット16(燃料電池セル84)の長手方向及び横方向のばらつきを吸収することができる。
第4実施形態の第2例においても、同様に、この段部410により、燃料電池セルユニット16(燃料電池セル84)の長手方向及び横方向のばらつきを吸収することができるようになっている。
図21に示すように、第6実施形態においては、集電体602の中央部604が、接続部606との近接部604aよりも上方向外側及び下方向外側にそれぞれ延長された応力緩和部608を備えている。
第6実施形態においては、集電体602の接続部606に力が作用しても、応力緩和部608が設けられているので、集電体602の中央部604の接続部606との近接部604aに発生する応力集中が緩和される。
この集電膜702は、多孔質(気孔)の導電性膜であり、AgとPdとLSCFを備えている。集電膜702の厚さは、0.1~50μmであることが好ましく、より好ましくは、0.5~30μmである。集電膜702は、外側電極層92が薄くて電気を通しにくい場合や導電率の低い材料で作られている場合に電気の通路として機能する。
これらの第1集電体710と第2集電体712は、耐熱合金に銀メッキを施した金属製の集電体である。耐熱合金としては、例えば、アルミナ被膜を形成するフェライト合金が好ましい。この金属製の第1集電体710と第2集電体712は、これらを燃料電池セルに取り付けたとき必要な支持剛性を得ることができるような剛性(強度)を有している。
この集電体の金属材料は、上述した第1実施形態乃至第6実施形態における集電体も同様である。
同様に、第2集電体712も、上方に位置する外側電極用把持部714と、下方に位置する内側電極用把持部716と、これらの把持部714,716を接続する接続部718と、内側電極端子86の平坦面86bを燃料電池セルユニット700の下端側から挟むように面接触する挟み面部720を備えている。
同様に、第2集電体712の外側側電極用把持部714も、第1の燃料電池セル706の外側電極層(第1電極)92に集電膜702を介して接続されている。一方、第2集電体710の内側電極用把持部714は、第2の燃料電池セル708の下端にある内側電極端子(第2電極)86に接続されている。
図25及び図28に示すように、第1集電体710の下方に位置する外側電極用把持部714は、第1の燃料電池セル706の外周を取り囲むよう燃料電池セルの長手方向Yに直交するX方向(円周方向)に沿って延びる第1把持部である2つの突出部714a,714bと、これら突出部714a,714bの間に形成された切欠部714cと、突出部714a,714bに対向する第2把持部である1つの突起部714dと、を備えている。第2集電体712も同様な構造となっている。
Claims (20)
- 第1の燃料電池セルと、
この第1の燃料電池セルに隣接して配置された第2の燃料電池セルと、
これらの第1の燃料電池セルと第2の燃料電池セルを電気的に接続する集電体と、を備え、
上記第1の燃料電池セル及び第2の燃料電池セルは、ぞれぞれ、内部に第1ガスが流れる第1電極と、外部に第2ガスが流れ第1電極と異なる極性の第2電極と、これらの第1電極と第2電極の間に配置された電解質と、により発電を行なう発電部を備え、
上記集電体は、上記第1の燃料電池セルの発電部において発生した電流を、上記第1の燃料電池セルの第1電極の相異なる2箇所から上記第2の燃料電池セルの第2電極へ分配して流すように構成されていることを特徴とする燃料電池セル集合体。 - 上記第1の燃料電池セル及び第2の燃料電池セルは、それぞれ、両端に第2電極を備え、上記集電体は、上記第1の燃料電池セルの発電部において発生した電流を、上記第1の燃料電池セルの第1電極の第1箇所から上記第2の燃料電池セルの一端の第2電極へ分配して流す第1集電体、及び、上記第1の燃料電池セルの第1電極の第2箇所から上記第2の燃料電池セルの他端の第2電極へ分配して流す第2集電体を備え、これらの第1集電体及び第2集電体は電気的に独立している請求項1に記載の燃料電池セル集合体。
- 上記第1集電体及び第2集電体は、それぞれ、上記第1の燃料電池セルの外部において互いに離間して配置され、且つ、上記第1の燃料電池セル及び第2の燃料電池セルを支持するために必要な所定の剛性を有する機械的集電体である請求項2に記載の燃料電池セル集合体。
- 上記第1集電体及び第2集電体は、上記第1の燃料電池セルの外部において上記第1ガス及び第2ガスの流れる方向に沿って離間して配置されている請求項3に記載の燃料電池セル集合体。
- 上記第1集電体及び第2集電体は、上記第1の燃料電池セルの外部の長手方向の中心から互いに離れるように配置されている請求項4に記載の燃料電池セル集合体。
- 上記第1集電体及び第2集電体は、上記第1の燃料電池セルの外部の長手方向の中心から最も離れた両端部にそれぞれ配置されている請求項4に記載の燃料電池セル集合体。
- 上記第1集電体及び第2集電体は、それぞれ、上記第1の燃料電池セルの外部の両端部から上記第2の燃料電池セルの両端の第2電極の方向に傾斜する傾斜部を備えている請求項6に記載に燃料電池セル集合体。
- 上記第1集電体及び第2集電体の傾斜部は、それぞれ、弾性変形し易い段部を備えている請求項7に記載の燃料電池セル集合体。
- 上記第1集電体及び第2集電体の傾斜部は、それぞれ、上記第1の燃料電池セルの長手方向の中心に向けて凸形状のR形状部を備えている請求項7に記載の燃料電池セル集合体。
- 上記第1集電体及び第2集電体の傾斜部は、それぞれ、上面視で、第1の燃料電池セルの中心と第2の燃料電池セルの中心とを結ぶ線に沿った最短距離で接続するように構成されている請求項7に記載の燃料電池セル集合体。
- 上記第1集電体及び第2集電体は、それぞれ、第2の燃料電池セルの端部の第2電極の少なくとも一部と接触するキャップ部を備えている請求項6に記載の燃料電池セル集合体。
- 上記第1集電体及び第2集電体は、それぞれ、上記第2の燃料電池セルの端部の第2電極を上下方向から挟む挟み面部を備えている請求項6に記載の燃料電池セル集合体。
- 上記第1集電体及び第2集電体の挟み面部は、それぞれ、ばらつき吸収部を備えている請求項12に記載の燃料電池セル集合体。
- 上記第2の燃料電池セルは両端部に筒状部分を備え、上記第1集電体及び第2集電体の挟み面部が、その一部を開放して上記筒状部分を収納する長孔を有する係止部を備えている請求項12に記載の燃料電池セル集合体。
- 上記第1集電体及び第2集電体は、それぞれ、上記第1の燃料電池セルの第1電極と接触する部分の近接部に応力集中を緩和する緩和部を備えている請求項6に記載の燃料電池セル集合体。
- 上記第1集電体及び第2集電体は、第1の燃料電池セルの長手方向に沿った中央外周部において電気的に接続されている請求項6に記載の燃料電池セル集合体。
- 更に、上記第1の燃料電池セルの第1電極の外側に設けられた多孔質の導電性の集電膜を有し、この集電膜に上記第1集電体及び第2集電体が電気的に接続されている請求項6に記載の燃料電池セル集合体。
- 上記第1集電体及び第2集電体の第1の燃料電池セル及び第2の燃料電池セルへのそれぞれの取付部に、隣接する他の燃料電池セルの長手方向に沿った同じ位置に配置された他の集電体の取付部と互いに接触せず且つ他の集電体から所定の距離だけ離れるように、切欠部が形成されている請求項6に記載の燃料電池セル集合体。
- 上記第1集電体及び第2集電体の第1の燃料電池セル及び第2の燃料電池セルへのそれぞれの取付部は、燃料電池セルの長手方向に直交する方向に延びる第1の把持部とこの第1把持部と対向する第2把持部を備え、第1把持部に上記切欠部を形成する2つの突出部が形成され、第2把持部に第1把持部の上記切欠部の燃料電池セルの長手方向位置に対応した位置に1つの突出部が形成されている請求項18に記載の燃料電池セル集合体。
- 請求項1乃至19に記載された燃料電池セル集合体を備えた燃料電池。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP10758821.2A EP2416414B1 (en) | 2009-03-31 | 2010-03-31 | Fuel cell aggregate and fuel cell |
JP2011507270A JP5578332B2 (ja) | 2009-03-31 | 2010-03-31 | 燃料電池セル集合体及び燃料電池 |
US13/262,008 US8921006B2 (en) | 2009-03-31 | 2010-03-31 | Fuel cell assembly and fuel cell device with current collector between fuel cells |
CN201080019158.3A CN102414886B (zh) | 2009-03-31 | 2010-03-31 | 燃料电池单电池集合体及燃料电池 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009-087053 | 2009-03-31 | ||
JP2009087053 | 2009-03-31 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010114050A1 true WO2010114050A1 (ja) | 2010-10-07 |
Family
ID=42828339
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/055917 WO2010114050A1 (ja) | 2009-03-31 | 2010-03-31 | 燃料電池セル集合体及び燃料電池 |
Country Status (5)
Country | Link |
---|---|
US (1) | US8921006B2 (ja) |
EP (1) | EP2416414B1 (ja) |
JP (1) | JP5578332B2 (ja) |
CN (1) | CN102414886B (ja) |
WO (1) | WO2010114050A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011210632A (ja) * | 2010-03-30 | 2011-10-20 | Toto Ltd | 燃料電池セル集合体 |
JP2012014850A (ja) * | 2010-06-29 | 2012-01-19 | Kyocera Corp | 横縞型固体酸化物形燃料電池セルスタック、横縞型固体酸化物形燃料電池バンドルおよび燃料電池 |
JP2013077512A (ja) * | 2011-09-30 | 2013-04-25 | Toto Ltd | 燃料電池装置 |
US8951691B2 (en) * | 2011-12-06 | 2015-02-10 | Samsung Sdi Co., Ltd. | Solid oxide fuel cell stack |
JP2015118854A (ja) * | 2013-12-19 | 2015-06-25 | 京セラ株式会社 | セルスタック装置、燃料電池モジュールおよび燃料電池装置 |
JP2017183224A (ja) * | 2016-03-31 | 2017-10-05 | 大阪瓦斯株式会社 | 電気化学素子、セルユニット、電気化学モジュール、電気化学装置およびエネルギーシステム |
JP2018147648A (ja) * | 2017-03-03 | 2018-09-20 | アイシン精機株式会社 | 燃料電池セルの接続部材 |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9065096B2 (en) * | 2011-02-24 | 2015-06-23 | Samsung Sdi Co., Ltd. | Fuel cell stack |
CN111403764B (zh) * | 2020-03-31 | 2021-05-18 | 西安交通大学 | 一种金属支撑型微管固体氧化物燃料电池堆结构 |
CN111403765B (zh) * | 2020-03-31 | 2021-08-31 | 西安交通大学 | 一种扁管型固体氧化物燃料电池的电池堆结构 |
CN114221007B (zh) * | 2021-11-28 | 2024-04-19 | 郑州佛光发电设备股份有限公司 | 一种电堆总线引出接头 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09274927A (ja) | 1996-04-03 | 1997-10-21 | Fujikura Ltd | 固体電解質型燃料電池 |
JP2002289249A (ja) | 2001-03-22 | 2002-10-04 | National Institute Of Advanced Industrial & Technology | 固体電解質型燃料電池スタック構造体 |
JP2005166552A (ja) * | 2003-12-04 | 2005-06-23 | Canon Inc | 燃料電池 |
JP2006004741A (ja) * | 2004-06-17 | 2006-01-05 | Toyota Motor Corp | チューブ型燃料電池 |
JP2006100091A (ja) * | 2004-09-29 | 2006-04-13 | Kyocera Corp | 燃料電池セルスタック及び燃料電池 |
JP2008071712A (ja) | 2006-09-15 | 2008-03-27 | Toto Ltd | 燃料電池セル体、燃料電池セルユニット、燃料電池セルスタック及びそれらを含む燃料電池 |
JP2009004221A (ja) * | 2007-06-21 | 2009-01-08 | Kikusui Chemical Industries Co Ltd | インターコネクターの形成方法 |
JP2010055862A (ja) * | 2008-08-27 | 2010-03-11 | Toto Ltd | 燃料電池ユニット |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000182645A (ja) * | 1998-12-15 | 2000-06-30 | Kansai Electric Power Co Inc:The | 固体電解質型燃料電池モジュール |
US7364812B2 (en) * | 2004-03-19 | 2008-04-29 | Pittsburgh Electric Engines, Inc. | Multi-function solid oxide fuel cell bundle and method of making the same |
WO2006113491A1 (en) * | 2005-04-15 | 2006-10-26 | Acumentrics Corporation | Current collection in anode supported tubular fuel cells |
-
2010
- 2010-03-31 EP EP10758821.2A patent/EP2416414B1/en active Active
- 2010-03-31 JP JP2011507270A patent/JP5578332B2/ja active Active
- 2010-03-31 WO PCT/JP2010/055917 patent/WO2010114050A1/ja active Application Filing
- 2010-03-31 US US13/262,008 patent/US8921006B2/en active Active
- 2010-03-31 CN CN201080019158.3A patent/CN102414886B/zh active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09274927A (ja) | 1996-04-03 | 1997-10-21 | Fujikura Ltd | 固体電解質型燃料電池 |
JP2002289249A (ja) | 2001-03-22 | 2002-10-04 | National Institute Of Advanced Industrial & Technology | 固体電解質型燃料電池スタック構造体 |
JP2005166552A (ja) * | 2003-12-04 | 2005-06-23 | Canon Inc | 燃料電池 |
JP2006004741A (ja) * | 2004-06-17 | 2006-01-05 | Toyota Motor Corp | チューブ型燃料電池 |
JP2006100091A (ja) * | 2004-09-29 | 2006-04-13 | Kyocera Corp | 燃料電池セルスタック及び燃料電池 |
JP2008071712A (ja) | 2006-09-15 | 2008-03-27 | Toto Ltd | 燃料電池セル体、燃料電池セルユニット、燃料電池セルスタック及びそれらを含む燃料電池 |
JP2009004221A (ja) * | 2007-06-21 | 2009-01-08 | Kikusui Chemical Industries Co Ltd | インターコネクターの形成方法 |
JP2010055862A (ja) * | 2008-08-27 | 2010-03-11 | Toto Ltd | 燃料電池ユニット |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011210632A (ja) * | 2010-03-30 | 2011-10-20 | Toto Ltd | 燃料電池セル集合体 |
JP2012014850A (ja) * | 2010-06-29 | 2012-01-19 | Kyocera Corp | 横縞型固体酸化物形燃料電池セルスタック、横縞型固体酸化物形燃料電池バンドルおよび燃料電池 |
JP2013077512A (ja) * | 2011-09-30 | 2013-04-25 | Toto Ltd | 燃料電池装置 |
US8951691B2 (en) * | 2011-12-06 | 2015-02-10 | Samsung Sdi Co., Ltd. | Solid oxide fuel cell stack |
JP2015118854A (ja) * | 2013-12-19 | 2015-06-25 | 京セラ株式会社 | セルスタック装置、燃料電池モジュールおよび燃料電池装置 |
JP2017183224A (ja) * | 2016-03-31 | 2017-10-05 | 大阪瓦斯株式会社 | 電気化学素子、セルユニット、電気化学モジュール、電気化学装置およびエネルギーシステム |
JP2018147648A (ja) * | 2017-03-03 | 2018-09-20 | アイシン精機株式会社 | 燃料電池セルの接続部材 |
Also Published As
Publication number | Publication date |
---|---|
EP2416414A4 (en) | 2014-12-31 |
CN102414886B (zh) | 2014-10-22 |
US20120021327A1 (en) | 2012-01-26 |
JPWO2010114050A1 (ja) | 2012-10-11 |
EP2416414B1 (en) | 2018-01-10 |
CN102414886A (zh) | 2012-04-11 |
US8921006B2 (en) | 2014-12-30 |
EP2416414A1 (en) | 2012-02-08 |
JP5578332B2 (ja) | 2014-08-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5578332B2 (ja) | 燃料電池セル集合体及び燃料電池 | |
EP2514018B1 (en) | Fuel cell module | |
US11018361B2 (en) | Fuel cell stack device and fuel cell device | |
US8507139B2 (en) | Fuel cell module | |
JP5551495B2 (ja) | 燃料電池モジュール | |
JP5565753B2 (ja) | 固体酸化物型燃料電池セル用集電体及びそれを用いた固体酸化物型燃料電池セル集合体 | |
JP5418986B2 (ja) | 燃料電池セル集合体 | |
EP3537526B1 (en) | Electrochemical cell stack | |
JP7508352B2 (ja) | 燃料電池モジュール | |
JP5483259B2 (ja) | 燃料電池セル集合体 | |
JP6797153B2 (ja) | 電気化学反応セルスタック | |
JP5569868B2 (ja) | 燃料電池セル体、燃料電池セルユニット、燃料電池セルスタック及びそれらを含む燃料電池 | |
JP2020098804A (ja) | 固体酸化物形燃料電池装置 | |
JP6690996B2 (ja) | 電気化学反応セルスタック | |
JP6450885B2 (ja) | 電気化学反応セルスタック | |
US20220140380A1 (en) | Cell stack device, module, and module housing device | |
JP2018045935A (ja) | 燃料電池セルスタック | |
JP2018045936A (ja) | 燃料電池セルスタック | |
JP2018045934A (ja) | 燃料電池セルスタック | |
JP2013077512A (ja) | 燃料電池装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080019158.3 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10758821 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011507270 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13262008 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010758821 Country of ref document: EP |