WO2010113877A1 - ケトンの製造方法 - Google Patents

ケトンの製造方法 Download PDF

Info

Publication number
WO2010113877A1
WO2010113877A1 PCT/JP2010/055573 JP2010055573W WO2010113877A1 WO 2010113877 A1 WO2010113877 A1 WO 2010113877A1 JP 2010055573 W JP2010055573 W JP 2010055573W WO 2010113877 A1 WO2010113877 A1 WO 2010113877A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
olefin
palladium
carbon
ketone
Prior art date
Application number
PCT/JP2010/055573
Other languages
English (en)
French (fr)
Inventor
清臣 金田
央司 曾禰
Original Assignee
新日本石油株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本石油株式会社 filed Critical 新日本石油株式会社
Priority to JP2011507184A priority Critical patent/JP5613150B2/ja
Publication of WO2010113877A1 publication Critical patent/WO2010113877A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/04Saturated compounds containing keto groups bound to acyclic carbon atoms

Definitions

  • the present invention relates to a method for producing a ketone by oxidizing an olefin.
  • Carbonyl compounds such as ketones such as methyl ethyl ketone (MEK), methyl isobutyl ketone (MIBK) and acetone, and aldehydes typified by acetaldehyde are useful as solvents and chemical raw materials, and are used in various fields.
  • Such a carbonyl compound is usually produced by a two-stage reaction method in which an alcohol produced by hydration of an olefin is dehydrogenated.
  • a one-stage reaction method in which an olefin is directly oxidized is also known. ing.
  • Non-patent Document 1 Angew. Chem. Int. Ed. 2006, 45, 481-485 (Non-patent Document 1) describes a molecular form as a reoxidant when a terminal olefin is oxidized in a polar solvent such as N, N-dimethylacetamide in the presence of a PdCl 2 catalyst.
  • a method for producing ketones using oxygen is disclosed. It is also disclosed that this method makes it possible to produce higher ketones with high selectivity and high yield by oxidizing higher terminal olefins having a large number of carbon atoms.
  • the above method does not require a CuCl 2 catalyst as a cocatalyst, so that it is possible to reduce the amount of the halogen component.
  • Patent Document 1 discloses palladium, oxyacid salts of metals having redox activity (copper, iron, etc.), hydroquinones, and compounds capable of converting the hydroquinones into quinones.
  • Patent Document 1 discloses palladium, oxyacid salts of metals having redox activity (copper, iron, etc.), hydroquinones, and compounds capable of converting the hydroquinones into quinones.
  • a method for producing a carbonyl compound in which an olefin is oxidized with molecular oxygen in an acidic aqueous solution in the presence of (iron phthalocyanine, cobalt tetraphenylporphyrin, etc.) is disclosed.
  • Non-halogenous palladium compounds such as palladium metal powder, palladium trifluoroacetate, palladium acetate, and acetylacetone palladium are exemplified as palladium.
  • J.H. Chem. Soc. , Perkin Trans. 1, 2000, 1915-1918 discloses an olefin oxidation reaction using pyridine and 2-propanol in toluene in the presence of palladium acetate.
  • a non-halogen palladium catalyst is used to oxidize internal olefins and cyclic olefins, thereby converting the corresponding ketone into a conventional non-halogen palladium catalyst.
  • An object of the present invention is to provide a method that can be produced with high yield and high selectivity compared to the method used.
  • the present inventors have used a specific amide-based solvent in the presence of palladium (II) trifluoroacetate, water and molecular oxygen to terminate the terminal in the molecule. It is difficult to produce a high yield and high selectivity by using a conventional non-halogen palladium catalyst by oxidizing an internal olefin or cyclic olefin having one or more carbon-carbon double bonds at other sites.
  • the present inventors have found that the ketone corresponding to the internal olefin or the cyclic olefin can be produced with high yield and high selectivity as compared with the conventional method using a non-halogen palladium catalyst. It was.
  • the method for producing the ketone of the present invention has the following formula (1):
  • R 1 represents an alkyl group having 1 to 4 carbon atoms
  • R 2 and R 3 each independently represents an alkyl group or aryl group having 1 to 4 carbon atoms
  • R 1 and R 2 are In the case of alkyl groups, they may be bonded to each other to form a ring structure.
  • a cyclic olefin is oxidized and an oxo group is bonded to at least one carbon atom constituting the carbon-carbon double bond.
  • the concentration of palladium (II) trifluoroacetate is preferably 0.002 to 1 mol / L.
  • the internal olefin or cyclic olefin is represented by the following formula (2):
  • R 4 to R 7 each independently represents one selected from the group consisting of a hydrogen atom, an alkyl group, an alkenyl group and an aryl group, and at least one of R 4 and R 5 is Any one of an alkyl group, an alkenyl group, and an aryl group, at least one of R 6 and R 7 is any one of an alkyl group, an alkenyl group, and an aryl group, and R 4 and R 6 are alkyl In the case of a group or an alkenyl group, they may be bonded to each other to form a ring structure, and in the case where R 5 and R 7 are an alkyl group or an alkenyl group, they may be bonded to each other to form a ring structure.) Are preferred, and those having no carbon-carbon double bond at the terminal in the molecule are more preferred.
  • the amide solvent is preferably at least one selected from the group consisting of N, N-dimethylacetamide and N-methyl-2-pyrrolidone.
  • the internal olefin or cyclic olefin is preferably oxidized in the absence of a copper catalyst.
  • a ketone corresponding to a high yield and high selectivity as compared with a conventional method using a non-halogen palladium catalyst by oxidizing an internal olefin or a cyclic olefin using a non-halogen palladium catalyst. Can be manufactured.
  • the method for producing the ketone of the present invention comprises the following formula (1):
  • R 1 represents an alkyl group having 1 to 4 carbon atoms
  • R 2 and R 3 each independently represents an alkyl group or aryl group having 1 to 4 carbon atoms
  • R 1 and R 2 are In the case of alkyl groups, they may be bonded to each other to form a ring structure.
  • the olefin used in the present invention is an internal olefin or a cyclic olefin having one or more carbon-carbon double bonds at a site other than the terminal in the molecule.
  • the molecule has one or more carbon-carbon double bonds, olefins having a carbon-carbon double bond at the terminal, and olefins having no carbon-carbon double bond, It can be used as an internal olefin or a cyclic olefin.
  • R 4 to R 7 each independently represents one selected from the group consisting of a hydrogen atom, an alkyl group, an alkenyl group and an aryl group, and at least one of R 4 and R 5 is Any one of an alkyl group, an alkenyl group, and an aryl group, at least one of R 6 and R 7 is any one of an alkyl group, an alkenyl group, and an aryl group, and R 4 and R 6 are alkyl In the case of a group or an alkenyl group, they may be bonded to each other to form a ring structure, and in the case where R 5 and R 7 are an alkyl group or an alkenyl group, they may be bonded to each other to form a ring structure.) The compound represented by these is preferable.
  • the alkyl group and the alkenyl group may be linear, branched or cyclic.
  • the carbon number of the alkyl group is preferably 1 to 12, and more preferably 4 to 12.
  • a hetero atom may be contained as long as the effects of the present invention are not impaired.
  • the position of the C ⁇ C bond in the alkenyl group is not particularly limited, and may be at the terminal or inside of the alkenyl group.
  • an olefin having a C ⁇ C bond at the terminal of the alkenyl group becomes a polyene having a C ⁇ C bond at the terminal and inside of the molecule, and an olefin having a C ⁇ C bond inside the alkenyl group is inside the molecule.
  • the aryl group include a phenyl group, a methylphenyl group, and a benzyl group, and the aryl group may contain a hetero atom as long as the effects of the present invention are not impaired.
  • R 4 and R 6, and / or, R 5 and R 7 each may be bonded together to form a ring structure.
  • a ring structure include cyclic olefins such as cycloalkene and cycloalkadiene.
  • a C ⁇ C bond may exist in a portion other than the ring structure (for example, R 5 and / or R 7 when R 4 and R 6 are combined to form a ring structure).
  • Such internal olefins include 2-butene, 2-pentene, 2-methyl-2-butene, 2-hexene, 3-hexene, 4-methyl-2-pentene, 2-heptene and 3-heptene. 5-methyl-2-hexene, 2-octene, 3-octene, 4-octene, 6-methyl-2-heptene, 2-nonene, 7-methyl-2-octene, 1-phenyl-1-propylene, -Cyclohexyl-1-propylene, 2-decene, 3-decene, 4-decene, 5-decene, 8-methyl-2-nonene, 1-phenyl-2-butene, 1-cyclohexyl-2-butene, 5-undecene Monoolefins such as 6-dodecene, 7-tetradecene, 8-hexadecene, 1,3-pentadiene, 2,4-hexadiene,
  • cyclic olefin examples include cycloalkenes such as cyclopentene, cyclohexene, cyclooctene, and cyclodecene, cycloalkadienes typified by cyclooctadiene, and alkyl groups and alkenyls in these cycloalkenes and cycloalkadienes. Examples thereof include those substituted with a group (for example, vinylcyclohexene, allylcyclohexene).
  • These internal olefins and cyclic olefins may be used alone or in combination of two or more.
  • 2-butene, 2-pentene, 2-methyl-2-butene, 2-hexene are used from the viewpoint of increasing the yield and selectivity of the corresponding ketone to be produced.
  • 3-hexene, 4-methyl-2-pentene, 2-heptene, 2-octene, 3-octene, 4-octene, 5-decene, 6-methyl-2-heptene, cyclopentene, cyclohexene, and cyclooctene are preferred.
  • 2-butene, 3-hexene, 4-octene, 5-decene, 7-tetradecene and cyclohexene are more preferred, and 2-butene, 4-octene and cyclohexene are particularly preferred.
  • the concentration of the internal olefin or cyclic olefin is preferably 0.01 to 5 mol / L, more preferably 0.05 to 1 mol / L. If the concentration of the olefin is less than the lower limit, the corresponding ketone tends to be unable to be obtained in high yield. On the other hand, if the concentration exceeds the upper limit, the oxidation reaction of the olefin does not proceed sufficiently, and high yield is supported. It tends to be impossible to produce ketones.
  • palladium (II) trifluoroacetate is used as the non-halogen palladium catalyst.
  • this palladium (II) trifluoroacetate internal olefins and cyclic olefins are oxidized to produce the corresponding ketones with high yield and high selectivity compared to conventional methods using non-halogen palladium catalysts. It becomes possible to do.
  • other non-halogen palladium catalysts such as palladium acetate are used, the yield and selectivity of the corresponding ketone tend to be lowered.
  • palladium (II) trifluoroacetate may be in a state dissolved in an amide solvent described later, or may be uniformly or non-uniformly dispersed, or a combination thereof.
  • the concentration of palladium (II) trifluoroacetate is preferably 0.002 to 1 mol / L, and more preferably 0.001 to 0.05 mol / L. If the concentration of palladium (II) trifluoroacetate is less than the lower limit, the oxidation reaction of the olefin does not proceed sufficiently, and the corresponding ketone tends to be unable to be produced in a high yield, while exceeding the upper limit. And Pd black, which is an inert species, is produced, and the olefin oxidation reaction does not proceed sufficiently.
  • an amide solvent represented by the formula (1) is used as a solvent.
  • R 1 represents an alkyl group having 1 to 4 carbon atoms
  • R 2 and R 3 each independently represents an alkyl group or aryl group having 1 to 4 carbon atoms.
  • R 1 and R 2 are alkyl groups, they may be bonded to each other to form a ring structure.
  • Examples of such a ring structure include a pyrrolidone skeleton and a caprolactam skeleton.
  • amide solvent used in the present invention include N, N-dimethylacetamide, N, N-diethylacetamide, N, N-dipropylacetamide, N-methyl-N-ethylacetamide, and N-butyl-N.
  • -Phenylacetamide, N, N-dimethylpropanamide, N, N-diethylpropanamide, N-methyl-N-ethylpropanamide, N-methyl-2-pyrrolidone, N-methyl-2-caprolactam, N-ethyl- Examples include 2-caprolactam.
  • These solvents may be used alone or in combination of two or more. In the present invention, these amide solvents and other solvents may be used in combination.
  • N, N-dimethylacetamide and N-methyl-2-pyrrolidone are preferable from the viewpoint of high yield and selectivity in the olefin oxidation reaction.
  • the amount of the amide solvent used in the present invention is appropriately set so that the concentrations of the olefin and palladium (II) trifluoroacetate are within the above range.
  • the corresponding olefin is reacted with water to produce the corresponding ketone.
  • the amount of water added is not particularly limited as long as it is a required amount for the reaction, and can be appropriately set depending on the type of olefin, palladium (II) trifluoroacetate and amide solvent used, the reaction system and the conditions. Specifically, 0.5 to 70 parts by volume is preferable with respect to 100 parts by volume of the amide solvent, and 1 to 50 parts by volume is more preferable. When the amount of water added is less than the lower limit, a sufficient oxidation reaction rate cannot be obtained, and the yield of the corresponding ketone tends to decrease.
  • the palladium component tends to precipitate or aggregate as metallic palladium, and the catalytic activity tends to decrease.
  • the solubility of the olefin in water is low, the contact efficiency between the olefin and palladium (II) trifluoroacetate is reduced, so that a sufficient oxidation reaction rate cannot be obtained, and the yield of the corresponding ketone is reduced. There is a tendency.
  • ⁇ Oxygen> In the present invention, zero-valent palladium after oxidation of the olefin is reoxidized to divalent palladium using molecular oxygen. At this time, since a cocatalyst such as a copper catalyst is not substantially used, the oxidation reaction of the olefin is not inhibited by the copper catalyst, and the corresponding ketone from the internal olefin or cyclic olefin is used as a conventional non-halogen palladium catalyst. Compared to the conventional method, it can be produced with high yield and high selectivity.
  • Examples of the molecular oxygen supply source include oxygen gas, oxygen-enriched air, air, a mixed gas of oxygen gas and dilution gas (collectively referred to as “oxygen-containing gas”), and the like.
  • oxygen-containing gas a mixed gas of oxygen gas and dilution gas
  • Examples of the dilution gas include nitrogen gas, helium gas, argon gas, and carbon dioxide, and nitrogen gas is usually used.
  • these oxygen-containing gases and gases other than the dilution gas can be used in combination as long as the effects of the invention are not impaired. Further, such an oxygen-containing gas may be supplied by mixing with water or an amide solvent as necessary.
  • the oxygen-containing gas is preferably supplied at an oxygen pressure of 0.1 to 1 MPa (more preferably 0.3 to 1 MPa).
  • the oxygen pressure is lower than the lower limit, Pd black, which is an inert species, is generated, and there is a tendency that the corresponding ketone cannot be produced in a high yield.
  • the upper limit is exceeded, oxygenation by-product is generated in some olefins. Products tend to be produced in large amounts (for example, in the case of cyclohexene, 2-cyclohexen-1-one in which the allylic position is oxidized is produced).
  • the oxidation reaction method is not particularly limited as long as palladium (II) trifluoroacetate can be brought into contact with the olefin.
  • palladium (II) trifluoroacetate Any of gas-liquid reaction and / or liquid-liquid reaction can be carried out, and batch, semi-batch, semi-continuous, continuous flow, or a combination thereof can be employed.
  • a specific production method includes batch reaction of a catalyst solution prepared by mixing palladium (II) trifluoroacetate and the amide solvent or a mixed solution obtained by mixing the olefin with the catalyst solution and the oxygen-containing gas.
  • a batch system in which an apparatus is charged and reacted; a semi-batch system in which the olefin and the oxygen-containing gas are continuously supplied into the catalyst solution; Examples thereof include a continuous type, a continuous flow type in which the catalyst solution, the olefin, and the oxygen-containing gas are simultaneously passed through the reaction region.
  • the supply rate of the olefin is preferably 10 to 5000 mol / h per 1 mol of palladium.
  • the supply rate of the olefin is less than the lower limit, the production amount of the corresponding ketone per unit time tends to decrease.
  • the upper limit is exceeded, the inert species Pd Black is generated, and the corresponding ketone is produced. There is a tendency that it cannot be obtained in high yield.
  • the supply rate of the oxygen-containing gas is appropriately adjusted so that the oxygen pressure in the reaction system is within the above range.
  • the reaction temperature for carrying out the oxidation reaction is preferably 0 to 200 ° C, more preferably 20 to 100 ° C.
  • the reaction temperature is less than the lower limit, the reaction rate is slow, and the yield of the corresponding ketone tends to decrease.
  • the upper limit is exceeded, side reactions such as olefin isomerization occur, and the corresponding ketone selectivity. Tend to decrease.
  • the concentration of the copper catalyst used in the conventional Wacker method is preferably 0.03 mol / L or less, more preferably 0.01 mol / L or less, and 0.003 mol / L or less. It is particularly preferred that When the concentration of the copper catalyst exceeds the upper limit, the yield of the corresponding ketone tends to decrease. From this viewpoint, in the present invention, it is most preferable to oxidize the internal olefin or the cyclic olefin in the absence of a copper catalyst. In the conventional Wacker method, the copper catalyst promotes the reoxidation of the palladium catalyst.
  • the corresponding ketone thus obtained can be obtained as a single compound or a mixture having a desired purity or composition by separation and purification according to a conventional method.
  • amide solvents and palladium (II) trifluoroacetate can be separated and recovered and used repeatedly. At this time, palladium (II) trifluoroacetate may be appropriately regenerated as necessary.
  • Example 1 A pressure vessel is charged with palladium (II) trifluoroacetate (Pd (CF 3 COO) 2 , 6.6 mg, 0.02 mmol), dimethylacetamide (DMA, 5 ml) and water (0.5 ml) and heated to 80 ° C. Then, palladium (II) trifluoroacetate was dissolved. The resulting solution was transferred to an autoclave reactor containing an inner tube made of glass or quartz, and then oxygen gas was supplied to pressurize the reactor to 0.9 MPa and stirred for 1 hour.
  • Pd (CF 3 COO) 2 palladium (CF 3 COO) 2 , 6.6 mg, 0.02 mmol
  • DMA dimethylacetamide
  • water 0.5 ml
  • trans-4-octene has the following reaction formula (I):
  • Table 1 shows the conversion of trans-4-octene, the selectivity of 4-octanone with respect to the total amount of product, and the yield of 4-octanone with respect to the charged amount of trans-4-octene.
  • Example 2 2-butene (250.0 mg, 4.45 mmol) was used instead of trans-4-octene, the amount of palladium (II) trifluoroacetate was 20.6 mg (0.062 mmol), the amount of dimethylacetamide was 15 ml, water
  • the oxidation reaction was carried out in the same manner as in Example 1 except that 2-butene was added after depressurizing the inside of the reactor and further reducing the pressure.
  • 2-butene was added after depressurizing the inside of the reactor and further reducing the pressure.
  • 2-butene was added after depressurizing the inside of the reactor and further reducing the pressure.
  • ⁇ O oxo group
  • Table 1 shows the conversion of 2-butene, the selectivity of methyl ethyl ketone relative to the total amount of product, and the yield of methyl ethyl ketone relative to the amount of 2-butene charged.
  • Example 3 Cyclohexene (119.4 mg, 1.46 mmol) was used instead of trans-4-octene, the amount of palladium (II) trifluoroacetate was 19.1 mg (0.058 mmol), the amount of dimethylacetamide was 15 ml, the amount of water The oxidation reaction was carried out in the same manner as in Example 1 except that was changed to 1.5 ml. When the product was analyzed in the same manner as in Example 1, it was confirmed that an oxo group ( ⁇ O) was bonded to a carbon atom in the C ⁇ C bond of cyclohexene, and cyclohexanone was formed.
  • ⁇ O oxo group
  • Table 1 shows the conversion ratio of cyclohexene, the selectivity of cyclohexanone and 2-cyclohexenone with respect to the total amount of product, and the yield of cyclohexanone and 2-cyclohexenone with respect to the charged amount of cyclohexene.
  • Example 1 The oxidation reaction was carried out in the same manner as in Example 1 except that palladium acetate (Pd (OAc) 2 , 4.5 mg, 0.02 mmol) was used instead of palladium (II) trifluoroacetate. Although the product was confirmed in the same manner as in Example 1, the oxidation reaction of trans-4-octene hardly proceeded and 4-octanone was not produced.
  • Example 2 The oxidation reaction was carried out in the same manner as in Example 1 except that 9.5% aqueous sulfuric acid solution (5 ml) was used instead of dimethylacetamide. The product was confirmed in the same manner as in Example 1, and the conversion rate of trans-4-octene, the selectivity of 4-octanone relative to the total amount of product, and the yield of 4-octanone relative to the charged amount of trans-4-octene were calculated. It was measured. The results are shown in Table 1.
  • a corresponding ketone derived from an internal olefin or a cyclic olefin which has been difficult to produce with high yield and high selectivity by a conventional method using a non-halogen palladium catalyst. Can be produced with high yield and selectivity as compared with the conventional method using a non-halogen palladium catalyst.
  • the method for producing a ketone of the present invention uses a non-halogen palladium catalyst, corrosion of a reaction vessel or the like hardly occurs, and is economically advantageous as compared with a method using a halogen palladium catalyst.
  • the yield and selectivity of the corresponding ketone are high, which is economically advantageous, and the ketone obtained by this method is used in industrial applications such as solvents and chemical raw materials. Useful as a raw material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

 下記式(1): (式(1)中、Rは炭素数1~4のアルキル基を表し、RおよびRはそれぞれ独立に炭素数1~4のアルキル基またはアリール基を表し、RとRがアルキル基の場合には互いに結合して環構造を形成してもよい。) で表されるアミド系溶媒中、水、トリフルオロ酢酸パラジウム(II)および分子状酸素の存在下で、分子内の末端以外の部位に1個以上の炭素-炭素二重結合を有する内部オレフィンまたは環状オレフィンを酸化せしめて、前記炭素-炭素二重結合を構成する少なくとも一方の炭素原子にオキソ基を結合せしめるケトンの製造方法。

Description

ケトンの製造方法
 本発明は、オレフィンを酸化してケトンを製造する方法に関する。
 メチルエチルケトン(MEK)やメチルイソブチルケトン(MIBK)、アセトンといったケトン類、アセトアルデヒドに代表されるアルデヒド類などのカルボニル化合物は、溶剤や化学原料として有用であり、様々な分野で用いられている。このようなカルボニル化合物は、通常、オレフィンの水和により生成したアルコールを脱水素せしめる2段反応法により製造されているが、より簡便な方法として、オレフィンを直接酸化せしめる1段反応法も知られている。
 このオレフィンを直接酸化せしめる方法としては、PdCl/CuCl触媒によるワッカー法が知られているが、この方法は、分子内の末端に炭素-炭素二重結合(以下、「C=C結合」と略す)を有する末端オレフィンの酸化には有効であるが、末端以外の部位にC=C結合を有する内部オレフィンの酸化においては反応性が低いといった問題がある。また、オレフィンの炭素数が増加すると反応速度が著しく低下するといった問題もあった。このため、工業的には低級の末端オレフィンを酸化するアセトアルデヒドやアセトンなど低級のカルボニル化合物の製造以外には用いられていない。さらに、PdCl/CuCl触媒はハロゲン成分を多く含有するため、反応容器が腐食しやすいといった問題もあった。
 Angew.Chem.Int.Ed.、2006、45、481-485(非特許文献1)には、PdCl触媒の存在下、N,N-ジメチルアセトアミドなどの極性溶媒中で末端オレフィンを酸化させる際に、再酸化剤として分子状酸素を用いるケトンの製造方法が開示されている。そして、この方法によれば、炭素数が多い高級の末端オレフィンを酸化して高級ケトンを高選択率且つ高収率で製造することが可能となることも開示されている。また、上記方法では、助触媒としてのCuCl触媒を必要としないため、ハロゲン成分の量の低減も図ることが可能となる。
 しかしながら、反応容器の腐食性の観点からはハロゲン成分の量は可能な限り少ないことが好ましく、種々の非ハロゲン系触媒が検討されている。例えば、特開平5-140020号公報(特許文献1)には、パラジウム、レドックス活性を有する金属(銅、鉄など)の酸素酸塩、ヒドロキノン類、および前記ヒドロキノン類をキノン類に変換可能な化合物(鉄フタロシアニン、コバルトテトラフェニルポルフィリンなど)の存在下、酸性水溶液中でオレフィン類を分子状酸素により酸化させるカルボニル化合物の製造方法が開示されている。この特許文献1においては、パラジウムとしてパラジウム金属粉、トリフルオロ酢酸パラジウム、酢酸パラジウム、アセチルアセトンパラジウムなどの非ハロゲン性のパラジウム化合物が例示されている。また、J.Chem.Soc.,Perkin Trans.1、2000、1915-1918(非特許文献2)には、酢酸パラジウムの存在下、トルエン中でピリジンと2-プロパノールとを用いたオレフィンの酸化反応が開示されている。
 しかしながら、内部オレフィンや環状オレフィンを酸化して高収率且つ高選択性でケトンを製造するには、従来の非ハロゲン系パラジウム触媒を用いた製造方法は未だ十分に満足できる方法ではなかった。
特開平5-140020号公報
Angew.Chem.Int.Ed.、2006、45、481-485 J.Chem.Soc.,Perkin Trans.1、2000、1915-1918
 本発明は、上記従来技術の有する課題に鑑みてなされたものであり、非ハロゲン系パラジウム触媒を用いて、内部オレフィンや環状オレフィンを酸化して対応するケトンを、従来の非ハロゲン系パラジウム触媒を用いた方法に比べて高収率且つ高選択性で製造することができる方法を提供することを目的とする。
 本発明者らは、上記目的を達成すべく鋭意研究を重ねた結果、トリフルオロ酢酸パラジウム(II)、水および分子状酸素の存在下で特定のアミド系溶媒を用いることによって、分子内の末端以外の部位に1個以上の炭素-炭素二重結合を有する内部オレフィンまたは環状オレフィンを酸化せしめ、従来の非ハロゲン系パラジウム触媒を用いた方法では高収率且つ高選択性で製造することが困難であった前記内部オレフィンまたは前記環状オレフィンに対応するケトンを、従来の非ハロゲン系パラジウム触媒を用いた方法に比べて高収率且つ高選択性で製造できることを見出し、本発明を完成するに至った。
 すなわち、本発明のケトンの製造方法は、下記式(1):
Figure JPOXMLDOC01-appb-C000003
(式(1)中、Rは炭素数1~4のアルキル基を表し、RおよびRはそれぞれ独立に炭素数1~4のアルキル基またはアリール基を表し、RとRがアルキル基の場合には互いに結合して環構造を形成してもよい。)
で表されるアミド系溶媒中、水、トリフルオロ酢酸パラジウム(II)および分子状酸素の存在下で、分子内の末端以外の部位に1個以上の炭素-炭素二重結合を有する内部オレフィンまたは環状オレフィンを酸化せしめて、前記炭素-炭素二重結合を構成する少なくとも一方の炭素原子にオキソ基を結合せしめる方法である。トリフルオロ酢酸パラジウム(II)の濃度としては0.002~1mol/Lが好ましい。
 本発明のケトンの製造方法において、前記内部オレフィンまたは環状オレフィンとしては、下記式(2):
Figure JPOXMLDOC01-appb-C000004
(式(2)中、R~Rはそれぞれ独立に水素原子、アルキル基、アルケニル基およびアリール基からなる群から選択される1種を表し、RおよびRのうちの少なくとも一方はアルキル基、アルケニル基およびアリール基のうちのいずれかであり、RおよびRのうちの少なくとも一方はアルキル基、アルケニル基およびアリール基のうちのいずれかであり、RとRがアルキル基またはアルケニル基の場合には互いに結合して環構造を形成してもよく、RとRがアルキル基またはアルケニル基の場合には互いに結合して環構造を形成してもよい。)
で表される化合物が好ましく、分子内の末端に炭素-炭素二重結合を有しないものがより好ましい。
 また、前記アミド系溶媒としては、N,N-ジメチルアセトアミドおよびN-メチル-2-ピロリドンからなる群から選択される少なくとも1種が好ましい。
 本発明のケトンの製造方法においては、銅触媒の非存在下で前記内部オレフィンまたは環状オレフィンを酸化せしめることが好ましい。
 なお、本発明の製造方法によって内部オレフィンまたは環状オレフィンを酸化して対応する所望のケトンを、従来の非ハロゲン系パラジウム触媒を用いた方法に比べて高収率且つ高選択性で製造することができる理由は必ずしも定かではないが、本発明者らは以下のように推察する。すなわち、内部オレフィンや環状オレフィンは末端オレフィンに比べて反応性が低いため、従来の非ハロゲン系パラジウム触媒を用いた方法においては十分に酸化反応が進行せず、対応するケトンの収率が低下するものと推察される。また、従来の非ハロゲン系パラジウム触媒を用いた方法においては、内部オレフィンを酸化させる際に、オレフィンの異性化反応が起こるため、内部オレフィンに対応するケトンの生成量が減少し、対応する所望のケトンの選択率も低下するものと推察される。
 一方、本発明のケトンの製造方法においては、銅を用いずに分子状酸素のみを再酸化剤として用いることができるため、末端オレフィンに比べて反応性が低い内部オレフィンや環状オレフィンに対しても効率的にワッカー反応を進行させることができ、対応するケトンの収率が高くなるものと推察される。また、本発明のケトンの製造方法においては、内部オレフィンを酸化させる際にオレフィンの異性化反応が起こらないため、対応する所望のケトンの選択率が高くなるものと推察される。
 本発明によれば、非ハロゲン系パラジウム触媒を用いて、内部オレフィンや環状オレフィンを酸化して、従来の非ハロゲン系パラジウム触媒を用いた方法に比べて高収率且つ高選択性で対応するケトンを製造することが可能となる。
 以下、本発明をその好適な実施形態に即して詳細に説明する。本発明のケトンの製造方法は、下記式(1):
Figure JPOXMLDOC01-appb-C000005
(式(1)中、Rは炭素数1~4のアルキル基を表し、RおよびRはそれぞれ独立に炭素数1~4のアルキル基またはアリール基を表し、RとRがアルキル基の場合には互いに結合して環構造を形成してもよい。)
で表されるアミド系溶媒中、水、トリフルオロ酢酸パラジウム(II)および分子状酸素の存在下で、分子内の末端以外の部位に1個以上の炭素-炭素二重結合を有する内部オレフィンまたは環状オレフィンを酸化せしめて、前記炭素-炭素二重結合を構成する少なくとも一方の炭素原子にオキソ基を結合せしめる方法である。
 <オレフィン>
 本発明に用いられるオレフィンは、分子内の末端以外の部位に1個以上の炭素-炭素二重結合を有する内部オレフィンまたは環状オレフィンである。また、本発明においては、分子内部に1個以上の炭素-炭素二重結合を有していれば、末端に炭素-炭素二重結合を有しているオレフィンも、有していないオレフィンも、内部オレフィンまたは環状オレフィンとして使用することができる。
 このようなオレフィンとしては、下記式(2):
Figure JPOXMLDOC01-appb-C000006
(式(2)中、R~Rはそれぞれ独立に水素原子、アルキル基、アルケニル基およびアリール基からなる群から選択される1種を表し、RおよびRのうちの少なくとも一方はアルキル基、アルケニル基およびアリール基のうちのいずれかであり、RおよびRのうちの少なくとも一方はアルキル基、アルケニル基およびアリール基のうちのいずれかであり、RとRがアルキル基またはアルケニル基の場合には互いに結合して環構造を形成してもよく、RとRがアルキル基またはアルケニル基の場合には互いに結合して環構造を形成してもよい。)
で表される化合物が好ましい。
 前記アルキル基および前記アルケニル基は、直鎖状のものであっても分枝状のものであっても環状のものであってもよい。また、アルキル基の炭素数としては1~12が好ましく、4~12がより好ましい。さらに、本発明の効果を損なわない限りにおいてヘテロ原子を含有していてもよい。前記アルケニル基中のC=C結合の位置としては特に制限はなく、アルケニル基の末端であっても内部であってもよい。例えば、アルケニル基の末端にC=C結合を有するオレフィンは、分子内の末端と内部にC=C結合を有するポリエンとなり、アルケニル基の内部にC=C結合を有するオレフィンは、分子の内部に2個以上のC=C結合を有するポリエンとなる。前記アリール基としてはフェニル基、メチルフェニル基、ベンジル基が挙げられ、本発明の効果を損なわない限りにおいてヘテロ原子を含有していてもよい。
 また、RとR および/または、RとRはそれぞれ互いに結合して環構造を形成してもよい。このような環構造としては、シクロアルケンおよびシクロアルカジエンといった環状オレフィン類などが挙げられる。この場合、環構造以外の部分(例えば、RとRとが結合して環構造を形成した場合にはRおよび/またはR)にC=C結合が存在していてもよい。
 このような内部オレフィンの具体例としては、2-ブテン、2-ペンテン、2-メチル-2-ブテン、2-ヘキセン、3-ヘキセン、4-メチル-2-ペンテン、2-ヘプテン、3-ヘプテン、5-メチル-2-ヘキセン、2-オクテン、3-オクテン、4-オクテン、6-メチル-2-ヘプテン、2-ノネン、7-メチル-2-オクテン、1-フェニル-1-プロピレン、1-シクロヘキシル-1-プロピレン、2-デセン、3-デセン、4-デセン、5-デセン、8-メチル-2-ノネン、1-フェニル-2-ブテン、1-シクロヘキシル-2-ブテン、5-ウンデセン、6-ドデセン、7-テトラデセン、8-ヘキサデセンといったモノオレフィン類、1,3-ペンタジエン、2,4-ヘキサジエン、2,5-ヘプタジエン、1,3-オクタジエン、2,4-デカジエンといったジエン類などが挙げられる。また、これらの内部オレフィンは、シス型、トランス型といった異性体も区別なく使用できる。
 前記環状オレフィンの具体例としては、シクロペンテン、シクロヘキセン、シクロオクテン、シクロデセンといったシクロアルケン類、シクロオクタジエンに代表されるシクロアルカジエン類、およびこれらのシクロアルケン類やシクロアルカジエン類にアルキル基やアルケニル基などが置換したもの(例えば、ビニルシクロヘキセン、アリルシクロヘキセン)などが挙げられる。
 これらの内部オレフィンおよび環状オレフィンは1種を単独で用いてもまたは2種以上を併用してもよい。また、このような内部オレフィンおよび環状オレフィンのうち、生成する対応のケトンの収率および選択率が高くなるという観点から、2-ブテン、2-ペンテン、2-メチル-2-ブテン、2-ヘキセン、3-ヘキセン、4-メチル-2-ペンテン、2-ヘプテン、2-オクテン、3-オクテン、4-オクテン、5-デセン、6-メチル-2-ヘプテン、シクロペンテン、シクロヘキセン、シクロオクテンが好ましく、2-ブテン、3-ヘキセン、4-オクテン、5-デセン、7-テトラデセン、シクロヘキセンがより好ましく、2-ブテン、4-オクテン、シクロヘキセンが特に好ましい。
 本発明の製造方法において、内部オレフィンまたは環状オレフィンの濃度としては、0.01~5mol/Lが好ましく、0.05~1mol/Lがより好ましい。前記オレフィンの濃度が前記下限未満になると高収率で対応するケトンを得ることができない傾向にあり、他方、前記上限を超えると前記オレフィンの酸化反応が十分に進行せず、高収率で対応するケトンを製造することができない傾向にある。
 <トリフルオロ酢酸パラジウム(II)>
 本発明においては、非ハロゲン系パラジウム触媒としてトリフルオロ酢酸パラジウム(II)を使用する。このトリフルオロ酢酸パラジウム(II)を使用することによって内部オレフィンや環状オレフィンを酸化して対応するケトンを、従来の非ハロゲン系パラジウム触媒を用いた方法に比べて高収率且つ高選択性で製造することが可能となる。一方、酢酸パラジウムなど他の非ハロゲン系パラジウム触媒を使用した場合には対応するケトンの収率や選択性が低下する傾向にある。
 本発明において、トリフルオロ酢酸パラジウム(II)は、後述するアミド系溶媒に溶解した状態であっても、均一または不均一に分散した状態であってもよく、これらの組み合わせでもよい。
 また、本発明において、トリフルオロ酢酸パラジウム(II)の濃度としては、0.002~1mol/Lが好ましく、0.001~0.05mol/Lがより好ましい。トリフルオロ酢酸パラジウム(II)の濃度が前記下限未満になると前記オレフィンの酸化反応が十分に進行せず、高収率で対応するケトンを製造することができない傾向にあり、他方、前記上限を超えると不活性種であるPd blackが生成し、オレフィンの酸化反応が十分に進行しない傾向にある。
 <アミド系溶媒>
 本発明においては、溶媒として前記式(1)で表されるアミド系溶媒を使用する。このようなアミド系溶媒を使用することによって、分子状酸素により前記オレフィンを酸化した後の0価のパラジウムを2価のパラジウムに効率よく再酸化することが可能となる。
 前記式(1)中、Rは炭素数1~4のアルキル基を表し、RおよびRはそれぞれ独立に炭素数1~4のアルキル基またはアリール基を表す。RとRがアルキル基の場合には互いに結合して環構造を形成してもよい。このような環構造としては、ピロリドン骨格、カプロラクタム骨格などが挙げられる。
 本発明に用いられる具体的なアミド系溶媒としては、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N,N-ジプロピルアセトアミド、N-メチル-N-エチルアセトアミド、N-ブチル-N-フェニルアセトアミド、N,N-ジメチルプロパンアミド、N,N-ジエチルプロパンアミド、N-メチル-N-エチルプロパンアミド、N-メチル-2-ピロリドン、N-メチル-2-カプロラクタム、N-エチル-2-カプロラクタムなどが挙げられる。これらの溶媒は1種を単独で用いてもまたは2種以上を併用してもよい。また、本発明においては、これらのアミド系溶媒と他の溶媒とを併用してもよい。
 このようなアミド系溶媒のうち、前記オレフィンの酸化反応において収率および選択性が高くなるという観点から、N,N-ジメチルアセトアミドおよびN-メチル-2-ピロリドンが好ましい。
 本発明におけるアミド系溶媒の使用量は、前記オレフィンおよびトリフルオロ酢酸パラジウム(II)の濃度が前記範囲内となるように適宜設定される。
 <水>
 本発明においては、前記オレフィンと水とを反応させて対応するケトンを製造する。水の添加量は反応必要量であれば特に制限はなく、使用するオレフィン、トリフルオロ酢酸パラジウム(II)およびアミド系溶媒の種類、反応方式およびその条件によって適宜設定することができる。具体的には、前記アミド系溶媒100容量部に対して0.5~70容量部が好ましく、1~50容量部がより好ましい。水の添加量が前記下限未満になると十分な酸化反応速度が得られず、対応するケトンの収率が低下する傾向にある。他方、前記上限を超えるとパラジウム成分が金属パラジウムとして沈降または凝集して触媒活性が低下する傾向にある。また、前記オレフィンの水への溶解度が低いため、前記オレフィンとトリフルオロ酢酸パラジウム(II)との接触効率が低下して十分な酸化反応速度が得られず、対応するケトンの収率が低下する傾向にある。
 <酸素>
 本発明においては、前記オレフィンを酸化した後の0価のパラジウムを、分子状酸素を用いて2価のパラジウムに再酸化する。このとき、銅触媒などの共触媒を実質的に使用しないため、前記オレフィンの酸化反応が銅触媒により阻害されず、内部オレフィンまたは環状オレフィンから対応するケトンを、従来の非ハロゲン系パラジウム触媒を用いた方法に比べて高収率且つ高選択性で製造することが可能となる。
 前記分子状酸素の供給源としては、酸素ガス、酸素富化空気、空気、酸素ガスと希釈ガスとの混合ガスなど(これらをまとめて「酸素含有ガス」という)が挙げられる。希釈ガスとしては、窒素ガス、ヘリウムガス、アルゴンガス、二酸化炭素などが挙げられるが、通常、窒素ガスが用いられる。
 本発明においては、発明の効果を損なわない限りにおいて、これらの酸素含有ガスや希釈ガス以外のガスを併用することができる。また、このような酸素含有ガスは、必要に応じて水やアミド系溶媒などと混合して供給してもよい。
 本発明においては、酸素含有ガスを、0.1~1MPa(より好ましくは0.3~1MPa)の酸素圧で供給することが好ましい。酸素圧が前記下限未満になると不活性種であるPd blackが生成し、高収率で対応するケトンを製造できない傾向にあり、他方、前記上限を超えると一部のオレフィンにおいて、酸素化副生成物が多量に生成する(例えば、シクロヘキセンの場合、アリル位が酸化された2-シクロヘキセン1-オンが生成する)傾向にある。
 <酸化反応>
 本発明のケトンの製造方法においては、前記アミド系溶媒中、水、トリフルオロ酢酸パラジウム(II)および分子状酸素の存在下で、前記内部オレフィンまたは環状オレフィンを酸化させ、このオレフィン中のC=C結合を構成する少なくとも一方の炭素原子にオキソ基(=O)を結合させることによってケトンが生成する。なお、本明細書においては、このようなケトンを「対応するケトン」という。
 本発明において、酸化反応の方式としてはトリフルオロ酢酸パラジウム(II)と前記オレフィンとを接触させることができる限り、特に制限はなく、例えば、使用するオレフィンおよびトリフルオロ酢酸パラジウム(II)に応じて、気液反応および/または液液反応のいずれでも実施することが可能であり、また、回分式、半回分式、半連続式、連続流通式、またはこれらの組み合わせを採用することができる。また、オレフィンなどの各成分の供給方法も特に制限はなく、液体状で供給しても気体状で供給してもよい。
 具体的な製造方法としては、トリフルオロ酢酸パラジウム(II)と前記アミド系溶媒とを混合して調製した触媒溶液またはこれに前記オレフィンを混合した混合溶液と、前記酸素含有ガスとを回分式反応装置に仕込んで反応させる回分式、前記触媒溶液中に前記オレフィンと前記酸素含有ガスとを連続的に供給したり、前記混合溶液中に前記酸素含有ガスを連続的に供給する半回分式または半連続式、前記触媒溶液と前記オレフィンと前記酸素含有ガスとを同時に反応領域に流通させる連続流通式などが挙げられる。
 本発明において、前記触媒溶液中に前記オレフィンと前記酸素含有ガスとを連続的に供給する場合、前記オレフィンの供給速度としては、パラジウム1mol当り10~5000mol/hが好ましい。前記オレフィンの供給速度が前記下限未満になると単位時間当たりの対応するケトンの生産量が減少する傾向にあり、他方、前記上限を超えると不活性種であるPd Blackが生成し、対応するケトンを高収率で得ることができない傾向にある。なお、前記酸素含有ガスの供給速度については、反応系内の酸素圧が前記範囲内となるように適宜調整される。
 本発明において、前記酸化反応を実施する際の反応温度としては、0~200℃が好ましく、20~100℃がより好ましい。反応温度が前記下限未満になると反応速度が遅く、対応するケトンの収率が低下する傾向にあり、他方、前記上限を超えるとオレフィンの異性化などの副反応が起こり、対応するケトンの選択率が低下する傾向にある。
 また、本発明においては、従来のワッカー法で用いられる銅触媒の濃度が0.03mol/L以下であることが好ましく、0.01mol/L以下であることがより好ましく、0.003mol/L以下であることが特に好ましい。銅触媒の濃度が前記上限を超えると対応するケトンの収率が低下する傾向にある。このような観点から本発明においては銅触媒の非存在下で前記内部オレフィンまたは前記環状オレフィンを酸化せしめることが最も好ましい。銅触媒は、従来のワッカー法においてはパラジウム触媒の再酸化を促進していたものであるが、本発明のような内部オレフィンまたは環状オレフィンのワッカー反応においては、銅触媒の共存により対応するケトンの収率が低下する傾向にあることから、分子状酸素により効率的に進行するトリフルオロ酢酸パラジウム(II)の活性を阻害するものと推察される。
 このようにして得られた対応するケトンは、常法に従って分離精製することにより所望の純度または組成の単独化合物または混合物として得ることができる。本発明の製造方法においては、酸化反応時の副反応が比較的少ないため、未反応の原料は回収して再度ケトンの製造に使用することができる。また、アミド系溶媒やトリフルオロ酢酸パラジウム(II)も分離回収して繰り返し使用することができる。このとき、トリフルオロ酢酸パラジウム(II)は必要に応じて適宜再生してもよい。
 以下、実施例および比較例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。
 (実施例1)
 耐圧容器に、トリフルオロ酢酸パラジウム(II)(Pd(CFCOO)、6.6mg、0.02mmol)、ジメチルアセトアミド(DMA、5ml)および水(0.5ml)を仕込み、80℃に加熱してトリフルオロ酢酸パラジウム(II)を溶解した。得られた溶液をガラス製または石英製の内筒管入りのオートクレーブ型反応器に移した後、酸素ガスを供給して反応器内を0.9MPaに加圧して1時間攪拌した。その後、反応器内を脱圧し、トランス-4-オクテン(56mg、0.5mmol)を加えた後、酸素ガスを供給して反応器内を0.9MPaに加圧して80℃で6時間酸化反応を行なった。
 反応終了後、生成物をFID検出器を装着したガスクロマトグラフ((株)島津製作所製「GC-2014」、カラム:KOCL 3m)を用いて分析したところ、トランス-4-オクテンのC=C結合中の炭素原子にオキソ基(=O)が結合され、4-オクタノンが生成していることが確認された。従って、トランス-4-オクテンは、下記反応式(I):
Figure JPOXMLDOC01-appb-C000007
のように酸化されたものと推察される。また、トランス-4-オクテンの転化率、全生成物量に対する4-オクタノンの選択率、およびトランス-4-オクテンの仕込量に対する4-オクタノンの収率を表1に示す。
 (実施例2)
 トランス-4-オクテンの代わりに2-ブテン(250.0mg、4.45mmol)を用い、トリフルオロ酢酸パラジウム(II)の量を20.6mg(0.062mmol)、ジメチルアセトアミドの量を15ml、水の量を1.5mlに変更し、2-ブテンを、反応器内を脱圧し、さらに減圧した後に加えた以外は、実施例1と同様にして酸化反応を実施した。生成物を実施例1と同様に分析したところ、2-ブテンのC=C結合中の炭素原子にオキソ基(=O)が結合され、メチルエチルケトンが生成していることが確認された。2-ブテンの転化率、全生成物量に対するメチルエチルケトンの選択率、および2-ブテンの仕込量に対するメチルエチルケトンの収率を表1に示す。
 (実施例3)
 トランス-4-オクテンの代わりにシクロヘキセン(119.4mg、1.46mmol)を用い、トリフルオロ酢酸パラジウム(II)の量を19.1mg(0.058mmol)、ジメチルアセトアミドの量を15ml、水の量を1.5mlに変更した以外は、実施例1と同様にして酸化反応を実施した。生成物を実施例1と同様に分析したところ、シクロヘキセンのC=C結合中の炭素原子にオキソ基(=O)が結合され、シクロヘキサノンが生成していることが確認された。また、シクロヘキセンのアリル位の炭素原子にもオキソ基(=O)が結合され、2-シクロヘキセノンが生成していることも確認された。シクロヘキセンの転化率、全生成物量に対するシクロヘキサノンおよび2-シクロヘキセノンの選択率、シクロヘキセンの仕込量に対するシクロヘキサノンおよび2-シクロヘキセノンの収率を表1に示す。
 (比較例1)
 トリフルオロ酢酸パラジウム(II)の代わりに酢酸パラジウム(Pd(OAc)、4.5mg、0.02mmol)を用いた以外は実施例1と同様にして酸化反応を実施した。実施例1と同様にして生成物を確認したが、トランス-4-オクテンの酸化反応はほとんど進行せず、4-オクタノンは生成していなかった。
 (比較例2)
 ジメチルアセトアミドの代わりに9.5%硫酸水溶液(5ml)を用いた以外は実施例1と同様にして酸化反応を実施した。実施例1と同様にして生成物を確認し、トランス-4-オクテンの転化率、全生成物量に対する4-オクタノンの選択率、およびトランス-4-オクテンの仕込量に対する4-オクタノンの収率を測定した。その結果を表1に示す。
 (参考例1)
 トリフルオロ酢酸パラジウム(II)の代わりに塩化パラジウム(PdCl、3.5mg、0.02mmol)を用いた以外は実施例1と同様にして酸化反応を実施した。生成物を実施例1と同様に分析したところ、トランス-4-オクテンのC=C結合中の炭素原子にオキソ基(=O)が結合され、4-オクタノンが生成していることが確認された。また、トランス-4-オクテンの転化率、全生成物量に対する4-オクタノンの選択率、およびトランス-4-オクテンの仕込量に対する4-オクタノンの収率を表1に示す。
Figure JPOXMLDOC01-appb-T000008
 表1に示した結果から明らかなように、触媒として酢酸パラジウムを用いた場合(比較例1)においては、トランス-4-オクテンの転化率が極めて小さく、トランス-4-オクテンの酸化反応はほとんど進行しないことが確認された。また、溶媒として酸性水溶液を用いた場合(比較例2)においては、4-オクタノンの収率は11%にとどまり、トランス-4-オクテンの転化率は低く、トランス-4-オクテンの異性化反応が進行することが確認された。
 一方、トリフルオロ酢酸パラジウム(II)触媒の存在下、DMA中で内部オレフィンを酸化した本発明のケトンの製造方法(実施例1~2)においては、従来の方法では内部オレフィンの酸化反応がほとんど進行しなかったことを考慮すると、高収率且つ高選択率でオレフィンのC=C結合にオキソ基が結合したケトンが得られた。特に、アルキル鎖が長くなっても対応するケトンの収率の著しい低下は見られず、選択率も高いものであり、本発明においてはオレフィンの異性化反応は起こりにくいものと推察される。
 また、環状オレフィンを酸化した場合(実施例3)においても、比較的高収率且つ高選択率で対応する環状ケトンを製造できることがわかった。
 以上説明したように、本発明によれば、従来の非ハロゲン系パラジウム触媒を用いた方法では高収率且つ高選択性で製造することが困難であった内部オレフィンまたは環状オレフィン由来の対応するケトンを、従来の非ハロゲン系パラジウム触媒を用いた方法に比べて高収率且つ高選択性で製造することが可能となる。
 したがって、本発明のケトンの製造方法は、非ハロゲン系パラジウム触媒を用いているため、反応容器等の腐食が起こりにくく、ハロゲン系パラジウム触媒を用いた方法に比べて経済的に有利であり、さらに、従来の非ハロゲン系パラジウム触媒を用いた方法に比べて対応するケトンの収率および選択性が高く、経済的に有利であり、この方法により得られたケトンは、溶媒や化学原料などの工業原料として有用である。

Claims (6)

  1.  下記式(1):
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Rは炭素数1~4のアルキル基を表し、RおよびRはそれぞれ独立に炭素数1~4のアルキル基またはアリール基を表し、RとRがアルキル基の場合には互いに結合して環構造を形成してもよい。)
    で表されるアミド系溶媒中、水、トリフルオロ酢酸パラジウム(II)および分子状酸素の存在下で、分子内の末端以外の部位に1個以上の炭素-炭素二重結合を有する内部オレフィンまたは環状オレフィンを酸化せしめて、前記炭素-炭素二重結合を構成する少なくとも一方の炭素原子にオキソ基を結合せしめるケトンの製造方法。
  2.  前記内部オレフィンまたは環状オレフィンが下記式(2):
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、R~Rはそれぞれ独立に水素原子、アルキル基、アルケニル基およびアリール基からなる群から選択される1種を表し、RおよびRのうちの少なくとも一方はアルキル基、アルケニル基およびアリール基のうちのいずれかであり、RおよびRのうちの少なくとも一方はアルキル基、アルケニル基およびアリール基のうちのいずれかであり、RとRがアルキル基またはアルケニル基の場合には互いに結合して環構造を形成してもよく、RとRがアルキル基またはアルケニル基の場合には互いに結合して環構造を形成してもよい。)
    で表される化合物である、請求項1に記載のケトンの製造方法。
  3.  前記内部オレフィンまたは環状オレフィンが分子内の末端に炭素-炭素二重結合を有しないものである、請求項1または2に記載のケトンの製造方法。
  4.  前記アミド系溶媒がN,N-ジメチルアセトアミドおよびN-メチル-2-ピロリドンからなる群から選択される少なくとも1種である、請求項1~3のうちのいずれか一項に記載のケトンの製造方法。
  5.  銅触媒の非存在下で前記内部オレフィンまたは環状オレフィンを酸化せしめる、請求項1~4のうちのいずれか一項に記載のケトンの製造方法。
  6.  前記トリフルオロ酢酸パラジウム(II)の濃度が0.002~1mol/Lである、請求項1~5のうちのいずれか一項に記載のケトンの製造方法。
PCT/JP2010/055573 2009-03-30 2010-03-29 ケトンの製造方法 WO2010113877A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011507184A JP5613150B2 (ja) 2009-03-30 2010-03-29 ケトンの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009081238 2009-03-30
JP2009-081238 2009-03-30

Publications (1)

Publication Number Publication Date
WO2010113877A1 true WO2010113877A1 (ja) 2010-10-07

Family

ID=42828166

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/055573 WO2010113877A1 (ja) 2009-03-30 2010-03-29 ケトンの製造方法

Country Status (2)

Country Link
JP (1) JP5613150B2 (ja)
WO (1) WO2010113877A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019172360A1 (ja) 2018-03-09 2019-09-12 ダイキン工業株式会社 カルボニル化合物の製造方法
CN111060584B (zh) * 2019-12-31 2021-04-27 武汉大学 一种碳碳双键异构体的双键位置鉴定方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5592333A (en) * 1978-12-18 1980-07-12 Inst Francais Du Petrole Manufacture of carbonyl compound
JPH05140020A (ja) * 1991-11-15 1993-06-08 Mitsubishi Kasei Corp カルボニル化合物の製造方法
JP2005526710A (ja) * 2002-01-17 2005-09-08 ストックハウゼン ゲーエムベーハー ウント コー カーゲー 不飽和炭化水素化合物を酸化する方法
JP2008231043A (ja) * 2007-03-22 2008-10-02 Sumitomo Chemical Co Ltd ケトンの製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4738943A (en) * 1986-02-04 1988-04-19 Catalytica Associates Palladium-nitrile ligand catalyst system and oxidation process

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5592333A (en) * 1978-12-18 1980-07-12 Inst Francais Du Petrole Manufacture of carbonyl compound
JPH05140020A (ja) * 1991-11-15 1993-06-08 Mitsubishi Kasei Corp カルボニル化合物の製造方法
JP2005526710A (ja) * 2002-01-17 2005-09-08 ストックハウゼン ゲーエムベーハー ウント コー カーゲー 不飽和炭化水素化合物を酸化する方法
JP2008231043A (ja) * 2007-03-22 2008-10-02 Sumitomo Chemical Co Ltd ケトンの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MITSUDOME, T. ET AL.: "Highly efficient Wacker oxidation catalyzed by heterogeneous Pd montmorillonite under acid-free conditions", TETRAHEDRON LETTERS, vol. 47, no. 9, 2006, pages 1425 - 1428 *

Also Published As

Publication number Publication date
JPWO2010113877A1 (ja) 2012-10-11
JP5613150B2 (ja) 2014-10-22

Similar Documents

Publication Publication Date Title
JP5265130B2 (ja) 直鎖状の及びβ−アルキル分岐した脂肪族カルボン酸の接触的製造方法
JP4955886B2 (ja) アルデヒドから脂肪族カルボン酸を製造する方法
AU2019356177B2 (en) Alkane oxidative dehydrogenation and/or alkene oxidation
JP5524861B2 (ja) ケトンの製造方法
EP2441747A1 (en) Method for preparation of dicarboxylic acids from linear or cyclic saturated hydrocarbons by catalytic oxidation
JP2004533477A (ja) 飽和アルコール、ケトン、アルデヒド及びカルボン酸の製造法
JP5613150B2 (ja) ケトンの製造方法
KR20100126497A (ko) 카르보닐 화합물의 제조 방법
KR20080020594A (ko) 물에서 p-크실렌의 액상 산화에 의한 p-톨루엔산의제조방법
EP0237108B1 (en) Process for the preparation of carbonyl compounds
JP3132100B2 (ja) カルボニル化合物の製造方法
US6437180B1 (en) Preparation of aliphatic α, ω-dicarboxylic acids
WO2011043459A1 (ja) ケトンの製造方法
JPH069481A (ja) α,β−不飽和カルボニル化合物の製造方法
WO2011125541A1 (ja) 固定化パラジウム触媒およびそれを用いたケトンの製造方法
JP2004010520A (ja) 脂肪族ジカルボン酸の製造法
JPH0551344A (ja) カルボニル化合物の製造方法
JP2005526017A (ja) 3,5,5−トリメチル−シクロヘキセ−2−エン−1,4−ジオンの製造法
Matsuyama et al. Formal 1, 2-Diketone Decarbonylation Enabled by Synergistic Catalysis of Lewis Acid-Base Pairs and Redox Properties in CeO2
JP2004002327A (ja) シクロアルカンの酸化方法
JPH05148177A (ja) カルボニル化合物の製造方法
JP2009215199A (ja) ケトン化合物の製造方法
JP2002275128A (ja) カルボン酸又はそのエステルの製造方法
JP2009209135A (ja) 環状不飽和化合物の製造方法
JP2010241690A (ja) カルボニル化合物の製法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10758648

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011507184

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10758648

Country of ref document: EP

Kind code of ref document: A1