WO2010113298A1 - 気相反応装置 - Google Patents

気相反応装置 Download PDF

Info

Publication number
WO2010113298A1
WO2010113298A1 PCT/JP2009/056815 JP2009056815W WO2010113298A1 WO 2010113298 A1 WO2010113298 A1 WO 2010113298A1 JP 2009056815 W JP2009056815 W JP 2009056815W WO 2010113298 A1 WO2010113298 A1 WO 2010113298A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
reaction vessel
gas
heat transfer
gas phase
Prior art date
Application number
PCT/JP2009/056815
Other languages
English (en)
French (fr)
Inventor
一利 寺内
潤 中本
慎一 吉澤
一正 松音
光則 河南
Original Assignee
電気化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 電気化学工業株式会社 filed Critical 電気化学工業株式会社
Priority to PCT/JP2009/056815 priority Critical patent/WO2010113298A1/ja
Priority to JP2011506915A priority patent/JP5511794B2/ja
Priority to TW099102351A priority patent/TW201038479A/zh
Publication of WO2010113298A1 publication Critical patent/WO2010113298A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J12/00Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor
    • B01J12/005Chemical processes in general for reacting gaseous media with gaseous media; Apparatus specially adapted therefor carried out at high temperatures, e.g. by pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/08Compounds containing halogen
    • C01B33/107Halogenated silanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/003Arrangements for modifying heat-transfer, e.g. increasing, decreasing by using permeable mass, perforated or porous materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00132Controlling the temperature using electric heating or cooling elements
    • B01J2219/00135Electric resistance heaters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/0015Controlling the temperature by thermal insulation means
    • B01J2219/00155Controlling the temperature by thermal insulation means using insulating materials or refractories
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00761Details of the reactor
    • B01J2219/00763Baffles
    • B01J2219/00765Baffles attached to the reactor wall
    • B01J2219/00777Baffles attached to the reactor wall horizontal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the present invention relates to a gas phase reactor.
  • Trichlorosilane (SiHCl 3 ) is a special material gas used for manufacturing semiconductors, liquid crystal panels, solar cells, and the like. In recent years, demand has been steadily expanding, and growth is expected as a CVD material widely used in the electronics field.
  • Trichlorosilane is produced by the following reaction in which hydrogen (H 2 ) is added to tetrachlorosilane (SiCl 4 ). SiCl 4 + H 2 ⁇ SiHCl 3 + HCl (1)
  • This reaction is a thermal equilibrium gas phase reaction, and a positive reaction occurs by heating a raw material gas composed of gasified tetrachlorosilane and hydrogen to a high temperature of about 700 to 1400 ° C. to obtain trichlorosilane.
  • Patent Document 1 As a reaction apparatus for this type of gas phase reaction, for example, an apparatus as described in Patent Document 1 is known.
  • This device includes a reaction chamber composed of an outer chamber and an inner chamber surrounded by a heating element and formed by concentrically arranged tubes, and a diverter provided at the upper portion of the reaction chamber and interconnecting the outer chamber and the inner chamber. And a heat exchanger provided in the lower part of the reaction chamber for exchanging heat between the raw material gas introduced into the outer chamber and the reaction product gas derived from the inner chamber.
  • the raw material gas is preheated through a heat exchanger and supplied to the outer chamber, and the reaction proceeds while flowing from the outer chamber through the divertor through the inner chamber, and is cooled and discharged as a reaction product gas by the heat exchanger.
  • the reaction chamber is a double chamber via a diverter, and the gas is reciprocated up and down in the order of the outer chamber and the inner chamber.
  • the outlet gas temperature of the reaction chamber was lowered.
  • the reaction product gas cannot be rapidly cooled, the produced trichlorosilane may react reversely with tetrachlorosilane, resulting in a problem that a high reaction yield cannot be obtained.
  • One object of the present invention is to provide a gas phase reaction apparatus that at least partially eliminates the disadvantages of the prior art. Another object of the present invention is to provide a gas phase reactor that maintains high heat transfer efficiency. It is a further object of the present invention to provide a gas phase reactor capable of preventing a reverse reaction as much as possible and achieving a high reaction yield, particularly a reactor suitable for a high temperature gas phase reaction of chlorosilane and hydrogen. is there.
  • a reaction vessel for reacting a plurality of kinds of raw material gases supplied from the inflow port at a predetermined inflow velocity and performing a gas phase reaction and discharging as a reaction product gas from the outflow port;
  • a heating means attached to the reaction vessel for heating the inside of the reaction vessel;
  • a gas phase reaction apparatus provided with a heat transfer member that is disposed inside a reaction vessel and narrows a gas flow path to increase a gas flow rate.
  • the reaction vessel may have any structure and material suitable for high-temperature gas phase reaction, but has an inlet on one side of the vessel, and an outlet on the other side remote from the one side. And a structure that can take a predetermined distance between the inlet and the outlet, and is preferably made of a material that heats the wall surface by the heating means and transfers heat to the inside of the reaction vessel.
  • the heating means may be of any structure as long as the inside of the reaction vessel can be heated, but preferably has a structure in which the reaction vessel wall surface is heated to bring the inside of the reaction vessel to a high temperature heating state.
  • the reaction vessel can be formed of a material having excellent heat conductivity, and the reaction vessel wall can be directly heated.
  • the reaction vessel can be formed of a material having excellent heat transfer properties, and a heater can be provided outside the reaction vessel to heat the reaction vessel wall surface.
  • the reaction container is entirely contained in the storage container and insulated from the surroundings. However, particularly when the latter external heater is installed, the reaction container and the heater are provided with argon in the storage container. It is preferable to fill such an inert gas.
  • a heat transfer member is a member that heats the inside of the reaction vessel as a result of the heating means heating the reaction vessel itself, and moves the heat to the gas flow flowing in the reaction vessel. Means. Therefore, the above heat transfer member is made of a material suitable for such heat transfer, and may be of any material and structure as long as it has a structure capable of reducing the gas flow path to increase the gas flow rate. Absent.
  • a gas flow path can be formed by combining a plurality of molding fillers having through holes and recesses, a baffle plate having through holes of various shapes, and the like can be used.
  • the provided carbon plate-like body, particularly a perforated plate, can be suitably used.
  • the arrangement method of the heat transfer member can take various modes depending on the structure, and is not particularly limited.
  • the gas flows through the through holes of the heat transfer member across the gas flow path of the reaction vessel.
  • increasing the gas flow rate means that the gas flow rate at the part where the gas contacts the heat transfer member is compared with the gas flow rate when the gas flows while leaving the heat transfer member and away from the heat transfer member. This means that the gas flow rate of the latter is higher than that of the former.
  • the gas flow rate at the hole outlet of the perforated plate is increased compared to the gas flow rate at the hole inlet.
  • the rate of increase depends on the aperture ratio and the like, but can be several times, for example, 3 times.
  • the heat transfer member is disposed inside the reaction vessel, when the reaction vessel is heated by the heating means, the heat transfer member is heated by radiation heat transfer from the wall of the reaction vessel, etc.
  • the heat transfer from the heat transfer member to the gas flow can further heat the gas flow in the reaction vessel, and the heat transfer member can increase the flow velocity of the gas flow flowing in the vicinity of the gas flow from the heat transfer member.
  • Heat transfer efficiency to the gas flow is increased, and the gas flow is disturbed by the heat transfer member, and convection heat transfer is also generated. Therefore, compared to the case where no heat transfer member is provided in the reaction vessel, the amount of heat transfer to the gas flow in the reaction vessel increases, achieving high heat transfer efficiency in the reaction vessel and consequently high reaction yield. can do.
  • the reaction vessel is configured by a cylindrical body that extends in the vertical direction and forms a gas flow path from the lower inflow port to the upper outflow port, and the heat transfer member is the reaction vessel.
  • the tubular body can be constituted by a plurality of perforated plates that are arranged in a substantially horizontal direction and spaced apart in the vertical direction.
  • the reaction vessel is preferably a carbon cylindrical reactor.
  • a cylindrical portion extending in the vertical direction, a bottom portion provided at the lower portion of the cylindrical portion, and a ceiling provided at the upper portion of the cylindrical portion.
  • a plate portion, an inflow port is provided at the bottom, and an outflow port is provided at a position close to the top plate portion of the cylindrical portion.
  • the reaction vessel has such a cylindrical structure
  • the structure of the apparatus becomes simpler than when the gas flow path is reciprocated in the vertical direction.
  • the heat transfer member is composed of a plurality of perforated plates arranged as described above, the flow rate is increased when the gas flow flows through the hole, and high heat transfer efficiency can be achieved. Can also be produced effectively.
  • the present inventors for example, about the flow rate of the gas passing through the holes, the porosity of the porous plate, the clearance between the inner wall of the reaction vessel and the porous plate, the thickness of the porous plate, etc.
  • we studied diligently we studied diligently.
  • high heat transfer efficiency can be obtained by setting the predetermined parameters within the following ranges.
  • the perforated plate has a porous portion in which the flow rate of gas passing therethrough is 2 m / s or more, and a plate material having an open area ratio of 25% or less is used for the reaction vessel. It is preferable that a predetermined clearance is provided between the inner wall and the inner wall.
  • the clearance between the perforated plate and the inner wall of the reaction vessel is preferably substantially uniform over the circumferential direction, and is preferably designed to be in the range of 6/1000 to 50/1000 of the inner wall diameter of the reaction vessel. .
  • the hole diameter of the hole portion of the perforated plate is preferably 25/1000 or less of the inner wall diameter of the reaction vessel, and the number of holes is preferably a number that makes the open area ratio 25% or less.
  • the thickness t of the porous plate is preferably 10 mm ⁇ t ⁇ 60 mm. This does not apply if there is no problem in manufacturing.
  • the aperture ratio of the perforated plate is the ratio of the total cross-sectional area of the hole to the total area in plan view including the hole of the perforated plate, and the clearance is the distance between the outer edge and the inner wall surface of the perforated plate. Distance.
  • a plurality of perforated plates are arranged at intervals in the vertical direction, and the perforated plates adjacent to each other in the vertical direction have holes formed in eccentric positions.
  • the spacing intervals in the vertical direction of the perforated plate may be equal or unequal.
  • the reaction vessel and the heat transfer member may be made of a carbon member whose surface may be coated with silicon carbide.
  • the reason why the carbon member is made is that such a member is excellent in heat resistance, thermal shock resistance, corrosion resistance, and the like.
  • the carbon member is formed by hydrogen supplied into the reaction vessel or hydrogen combustion. The generated water is subject to tissue thinning or embrittlement. Therefore, it is preferable to treat the surface with a silicon carbide coating for long-term use.
  • the silicon carbide coating treatment can be performed with a thickness of 10 to 500 ⁇ m by, for example, a CVD method.
  • the gas phase reaction apparatus includes a metal outer cylinder container and a heat insulating layer lined on the outer cylinder container, and a storage container in which an inert gas is sealed. It is preferable that the reaction vessel and the heating means are accommodated. By adopting such a configuration, it is possible to prevent the heat generated from the heating means from escaping to the outside of the apparatus as much as possible, and to heat the reaction vessel as uniformly as possible.
  • the gas phase reactor according to the present invention is particularly preferably used in a reaction system in which a plurality of kinds of source gases contain tetrachlorosilane and hydrogen, and a reaction product gas contains trichlorosilane and hydrogen chloride.
  • the source gas may contain chemical species other than tetrachlorosilane and hydrogen, and the circulating fluid from other systems may be evaporated and supplied together.
  • the reaction product gas may contain chemical species other than trichlorosilane and hydrogen chloride, such as unreacted raw material components, high-boiling substances such as hexachlorodisilane, low-boiling substances such as dichlorosilane, and the like.
  • the reaction in addition to any one of the above-described various configurations, in order to further increase the heat transfer efficiency in the reaction vessel, the reaction is performed in the reaction vessel close to the outlet.
  • a reflective member that can direct the flow of the product gas toward the outlet may be provided.
  • the reflecting member may be any member as long as it can reflect the reaction product gas flow when it hits it and direct the reaction product gas flow toward the outlet, but the heating means heats the inside of the reaction vessel. As a result, it is preferable that the reflecting member itself disposed in the reaction vessel is also heated and the heat transfer member moves the heat to the gas flow in the reaction vessel.
  • the reflecting member is preferably a plate material that receives and reflects the flow of the reaction product gas and directs the flow to the outlet, and is made of a material suitable for heat transfer, for example, a carbon plate is preferably used. it can.
  • a gas phase reactor the heat transfer efficiency to the gas flow in the reaction vessel can be further increased by the reflecting member, and a high reaction yield can be achieved.
  • the gas phase reaction apparatus preferably includes a quenching tower that quenches the reaction product gas derived from the reaction vessel in addition to any one of the above-described various configurations.
  • the reaction product gas can be cooled as quickly as possible to freeze the equilibrium and prevent the reverse reaction from occurring as much as possible.
  • a reaction vessel for reacting a plurality of kinds of raw material gases supplied from the inflow port at a predetermined inflow velocity and performing a gas phase reaction and discharging as a reaction product gas from the outflow port;
  • a heating means attached to the reaction vessel for heating the inside of the reaction vessel;
  • a heat transfer member disposed inside the reaction vessel to narrow the gas flow path to increase the gas flow rate, and a quenching device connected to the reaction vessel to quench the reaction product gas derived from the outlet of the reaction vessel
  • a gas phase reaction apparatus is provided.
  • FIG. 1 It is a schematic longitudinal cross-sectional view of the reaction apparatus which concerns on embodiment of this invention. It is a schematic diagram for demonstrating the heat transfer process from a heater to a gas flow in the reactor of FIG. 1, (a) represents the radiant heat transfer from a heater to a reaction container, (b) is in the reaction container wall body. (C) represents radiant heat transfer from the inner surface of the reaction vessel to the porous plate, and (d) represents convective heat transfer from the inner surface of the reaction vessel and from the porous plate to the gas. 3 is a graph showing the results of Example 1. 10 is a graph showing the results of Example 2.
  • the gas phase reaction apparatus 10 includes a cylindrical container 11, a reaction container 12 housed in the container 11, a container 11 and a reaction container 12. And a heater (heating means) 13 for heating the inside of the reaction vessel 12 and a quenching tower (quenching device) 14 connected to the reaction vessel 12.
  • the storage container 11 has a heat-insulating brick layer 16a lined on the inner surface of the bottom and periphery of the steel outer cylinder container 15, and a heat insulating material layer 16b such as an alumina heat insulating material lined on the upper inner surface of the outer cylinder container 15, respectively.
  • a heat insulating container comprising a cylindrical body portion 11a, a canopy portion 11b provided at the upper end of the body portion 11a, and a bottom plate portion 11c provided at the lower end of the body portion 11a, and provided on the outer surface of the body portion 11a.
  • the supported support member 11d is supported on the foundation and installed with its axis centered up and down.
  • a through hole 11e is formed at the center of the bottom plate portion 11c, and a through hole 11f is formed at a predetermined position on the upper edge side of the body portion 11a.
  • the reaction vessel 12 is supported by a lower portion inside the storage container 11 and has a substantially cylinder made of carbon that is stored with a space between the inner wall of the body 11a of the storage container 11 and the canopy 11b with the axis centered vertically.
  • a plurality of substantially cylindrical members of a predetermined height are arranged in a substantially coaxial manner up and down in a cylindrical reaction vessel, and the butted ends are fastened by screwing or fastening by an external fitting ring.
  • the cylinder body (cylinder body) 17 is tightened airtightly by means, a carbon bottom plate member 18 is provided at the lower end portion of the cylinder body 17, and a carbon canopy member 19 is provided at the upper end portion of the cylinder body 17.
  • the cylindrical container is airtightly fastened by the same fastening means as the members.
  • the reaction vessel 12 has a bottom plate member 18 fitted into the through hole 11e of the bottom plate portion 11c of the storage vessel 11 and supported by the storage vessel 11.
  • the bottom plate member 18 has a flow of the raw material gas to the reaction vessel 12.
  • a through hole serving as the inlet 12a is formed, and an inflow pipe 20 connected to an evaporator (not shown) is connected to and attached to the through hole.
  • the canopy member 19 is made of a closing member, and a through hole serving as the outlet 12b of the reaction vessel 12 is formed on the side surface of the cylindrical member of the cylindrical body 17 close to the canopy member 19, and a reaction product gas extraction pipe is inserted into the through hole. 21 is attached.
  • the extraction pipe 21 is further inserted into the through hole 11 f of the storage container 11 and extends substantially horizontally to the outside of the storage container 11, and is connected to the quenching tower 14.
  • the heater 13 is a set of two whose front ends are electrically connected to each other, and is vertically spaced with a space in the circumferential direction of the reaction vessel 12 in a space between the inner wall of the trunk portion 11 a of the containing vessel 11 and the reaction vessel 12.
  • a plurality of long-bar-shaped carbon-made heating elements 13a disposed, and a plurality of sets of electrodes 13b that are connected to the respective base ends of the heating elements 13a and transfer electric power to the heating elements 13a. It becomes.
  • the base end side of the heating element 13 a is supported on the canopy 11 b of the storage container 11 via a heat insulating material or the like, and the distal end side of the heating element 13 a is suspended to the vicinity of the bottom plate part 11 c of the storage container 11.
  • the inside of the storage container 11 is filled with an inert gas such as argon, and there is an inert gas around and above the reaction container 12.
  • the heater 13 When the heater 13 is applied, the heating element 13 a is heated, The reaction vessel 12 is heated to about 1300 ° C. from the outer periphery and the upper side together with the inert gas.
  • the quenching tower 14 instantaneously cools the reaction product gas mainly composed of a mixture of trichlorosilane and hydrogen chloride extracted from the extraction pipe 21 of the reaction vessel 12, and is disposed adjacent to the container 11.
  • a steel cylindrical tower main body 22, a spray device 23 provided with a nozzle attached to the tower main body 22 and spraying the cooling liquid inside the tower main body 22, and the cooling liquid accumulated in the tower main body 22 are taken out.
  • a pump (not shown) that circulates in the spray device 23, a cooling device (not shown) that cools the coolant, and a conduit (not shown) for taking out the reaction product gas after quenching from the top of the quenching tower 14 are provided. To do.
  • a reaction product gas introduction pipe 24 into which the extraction pipe 21 of the reaction vessel 12 is inserted is provided substantially horizontally on the side wall of the tower main body 22, and the tip of the extraction pipe 21 extends to the inside of the tower main body 22.
  • the coolant is sprayed from the top to the bottom with respect to the reaction product gas flowing out from the extraction pipe 21.
  • a plurality of disc-shaped carbon porous plates 25 having a predetermined hole area ratio, hole diameter, and number of holes are provided inside the reaction vessel 12, and the cylindrical body 17. Are arranged at intervals in the height direction. These perforated plates 25 are basically arranged at substantially equal intervals and substantially horizontally over substantially the entire length of the cylindrical body 17, but a predetermined clearance is maintained between the inner wall surface of the reaction vessel 12.
  • each porous plate 25 is basically manufactured or arranged so that the hole 25a of one porous plate 25 and the hole 25a of the porous plate 25 positioned above and below the same are not coaxial.
  • the installation method of the porous plate 25 is arbitrary.
  • a plurality of recesses are formed at corresponding positions on the upper surface of the bottom plate member 18 and the lower surface of the lowermost porous plate 25, respectively.
  • the bottom plate member 18 is inserted into the bottom plate member 18 by fitting the lower end portions of the plurality of rod-shaped spacer members 26 into the recesses of the member 18 and fitting the upper end portions of the rod-like spacer members 26 into the recesses on the lower surface of the porous plate 25.
  • the porous plate 25 is stacked at a predetermined interval by repeating this process.
  • a plurality of support edges may be formed or attached to the inner wall surface of the reaction vessel 12 at intervals in the circumferential direction, and the porous plates 25 may be placed thereon.
  • the spacer member 26 here is also a carbon member.
  • the present inventors have influenced the influence of the porosity of the porous plate, the clearance with the inner wall, the thickness of the porous plate, etc. on the installation effect, Verified.
  • the porous plate 25 it was found that when the porous plate 25 was provided, the heat transfer efficiency in the reaction vessel 12 was greatly improved, and it was found that the porous plate 25 to be used preferably has the following characteristics. -Having a porous portion 25a in which the flow velocity of the passing gas is 2 m / s or more-having a porosity of 25% or less-clearance between the inner wall of the reaction vessel 12 is the inner wall diameter of the reaction vessel 12 Those in the range of 6/1000 to 50/1000.
  • the hole diameter is 25/1000 or less of the inner wall diameter of the reaction vessel 12, and the number of holes is a number that makes the opening ratio 25% or less.
  • the thickness t of the porous plate is preferably 10 mm ⁇ t ⁇ 60 mm, and is not limited to this as long as there is no problem in manufacturing.
  • the aperture ratio of the perforated plate is the ratio of the total cross-sectional area of the hole to the total area in plan view including the hole of the perforated plate, and the clearance is the inner edge of the outer edge of the perforated plate and the reaction vessel. The distance from the wall.
  • a graphite material having excellent airtightness is preferable, and in particular, the strength is high because of the fine particle structure, and the characteristics such as thermal expansion are the same in any direction. It is preferable to use isotropic high-purity graphite that is also excellent in heat resistance and corrosion resistance. Further, carbon is subjected to thinning or embrittlement of the structure as shown below due to hydrogen supplied into the reaction vessel or water generated by hydrogen combustion. C + 2H 2 ⁇ CH 4 C + H 2 O ⁇ H 2 + CO C + 2H 2 O ⁇ 2H 2 + CO 2 In order to prevent this, a silicon carbide film is preferably formed on the surface of the carbon member.
  • the method for forming the silicon carbide film is not particularly limited, but typically it can be formed by vapor deposition by a CVD method.
  • a method using a mixed gas of a silicon halide compound such as tetrachlorosilane or trichlorosilane and a hydrocarbon compound such as methane or propane, or methyl Silicon carbide is deposited on the surface of a heated carbon member while thermally decomposing a halogenated silicon compound such as trichlorosilane, triphenylchlorosilane, methyldichlorosilane, dimethyldichlorosilane, and trimethylchlorosilane with hydrogen.
  • the thickness of the silicon carbide coating is preferably 10 to 500 ⁇ m, more preferably 30 to 300 ⁇ m. If the thickness of the silicon carbide coating is 10 ⁇ m or more, the corrosion of the carbon member due to hydrogen, water, methane, etc. existing in the reaction vessel can be sufficiently suppressed, and if it is 500 ⁇ m or less, the silicon carbide coating is cracked. Cracking of the structure of the carbon member is not promoted.
  • a mixed gas of tetrachlorosilane and hydrogen gasified by the evaporator is introduced into the reaction vessel 12 from the inlet 12a at a predetermined introduction flow rate.
  • the reaction vessel 12 is heated from the outside by a heater 13, and the heater 13 is arranged outside the reaction vessel 12 at equal intervals in the circumferential direction, and the containing vessel 11 is filled with an inert gas such as argon gas. Therefore, the outer peripheral surface of the reaction vessel 12 is heated relatively uniformly. When the heat reaches the outer surface of the reaction vessel 12 by radiant heat transfer from the heater 13 (see FIG.
  • the reaction vessel 12 is made of carbon.
  • heat is efficiently transferred from the outer surface to the inner surface by conduction heat transfer to the inner wall surface of the reaction vessel 12, and the inner wall surface of the cylindrical body 17 becomes high temperature (see FIG. 2B).
  • the inside of the reaction vessel 12 is heated to a high temperature of about 700 to 1400 ° C. by radiant heat transfer or the like.
  • the heat is transferred to the gas flow flowing in the reaction vessel 12 by convection heat transfer, and the gas flow is heated.
  • radiant heat transfer is performed from the inner wall surface of the cylindrical body 17 of the reaction vessel 12 toward the porous plate 25.
  • the perforated plate 25 is heated (see FIG.
  • the heat from the perforated plate 25 hits the perforated plate 25 or is transmitted to the gas flow flowing through the holes 25a of the perforated plate 25. Further, the raw material gas and the reaction product gas flow in a mixed manner, and convective heat transfer occurs around the hole 25a of the perforated plate 25, thereby heating the gas (see FIG. 2 (d)). Since the perforated plate 25 to be heated is arranged in the reaction vessel 12 as described above, the heat transfer area in the reaction vessel 12 is increased and convection heat transfer is also generated. Since the flow rate of the gas flow increases when the gas flow passes through the hole 25a of the plate 25, the heat transfer efficiency in the vicinity of the hole 25a of the perforated plate 25 increases.
  • the gas flow flowing in the reaction vessel 12 is efficiently heated, the thermal equilibrium reaction of the formula (1) proceeds in the forward direction, and the introduced source gas is a reaction mainly composed of trichlorosilane and hydrogen chloride. It is converted into product gas, and is led from the outlet 12 b to the quenching tower 14 through the extraction pipe 21.
  • the porous plate 25 is provided inside the reaction vessel 12 heated by the heater 13, the gas flow is mixed and the reaction vessel 12 is mixed.
  • the heat transfer efficiency inside is improved by radiant heat transfer and convective heat transfer by the perforated plate 25.
  • the extraction pipe 21 is provided at the outlet 12 b of the reaction vessel 12 and connected to the quenching tower 14, the reaction product gas is sufficiently extracted in the state of being extracted from the extraction pipe 21 due to the effect of the porous plate 25. Since the reaction product gas is instantaneously cooled in the quenching tower 14 from this state, the equilibrium reaction is frozen and the reverse reaction is effectively prevented.
  • Example 1 ⁇ Influence of the thickness of the porous plate on the heat transfer amount> In the following reactor, the influence of the thickness of the porous plate on the installation effect of the porous plate was verified.
  • Container Outer cylinder container: SUS304, 19 mm thick Thermal insulation layer: Alumina thermal insulation, 29 mm thickness Thermal insulation brick layer: Alumina brick, 500 mm thickness Inert gas layer: Argon, 163 mm layer
  • Reaction vessel Carbon cylindrical reactor, 100 mm thick, Cylinder inner diameter: 750 mm
  • a plurality of disc-shaped perforated plates having thicknesses of 20 mm, 40 mm, and 60 mm (in order, perforated plate 1, reference perforated plate, and perforated plate 2) were produced.
  • Each perforated plate was made of carbon having a diameter of 74 cm, in which a large number of holes having a hole diameter of 5 mm were formed in the same pattern, and a plurality of fixing holes for fixing to a support rod at predetermined positions.
  • a reference perforated plate having a thickness of 40 mm was horizontally arranged using a spacer member with a vertical interval inside the cylindrical body in the reaction vessel. Further, thermocouples were appropriately installed at the gas inlet, the gas outlet, the center of the barrel, and the like of the reactor.
  • Example 2 ⁇ Influence of clearance of porous plate on heat transfer> Except for replacing the porous plate used, the same reaction apparatus and operating conditions as described in Example 1 were used to verify the effect of the clearance between the porous plate and the inner wall of the reaction vessel on the installation effect of the porous plate did.
  • a plurality of disc-shaped perforated plates (in order of perforated plate 3, reference perforated plate, and perforated plates 4 to 7) each having a different outer diameter of 746 mm, 740 mm, and 736 to 710 mm and a thickness of 40 mm were manufactured.
  • Each perforated plate was made of carbon in which a large number of holes having a hole diameter of 5 mm were formed in the same pattern, and were provided with a plurality of recesses for fixing to a spacer member at a predetermined position.
  • a reference perforated plate having an outer diameter of 740 mm was arranged inside the cylindrical body in the reaction vessel with a space in the vertical direction. At this time, the clearance between the perforated plate and the inner wall of the reaction vessel was 5 mm.
  • trichlorosilane production reaction was carried out, the temperature at each temperature measurement point such as the inlet gas temperature and the outlet gas temperature during the reaction process was measured, and the heat transfer amount in the entire reaction vessel was calculated to be 8760 kcal / h.
  • Example 3 ⁇ Effects of hole diameter and number of holes on the amount of heat transfer> Except that the porous plate used was changed, the same reactor and operating conditions as those described in Example 1 were used to verify the influence of the hole diameter and the number of holes on the installation effect of the porous plate. Three types of perforated plates with different hole diameters, number of holes, and open area ratio were manufactured.
  • the first perforated plate is a reference perforated plate, having a hole diameter of 15 mm ⁇ , the number of holes of 504, an aperture ratio of 20.7%
  • the second porous plate (perforated plate 8) has a hole diameter of 15 mm ⁇ , the number of holes of 1024,
  • the porosity was 42.1%
  • the third porous plate (porous plate 9) had a pore diameter of 10.5 mm ⁇ , 1024 holes, and a porosity of 20.7%.
  • Each perforated plate is placed inside the cylindrical body in the reaction container with a space in the vertical direction, and in this state, the trichlorosilane production reaction is performed, and each temperature such as the inlet gas temperature and the outlet gas temperature during the reaction process. The temperature at the measurement point was measured, and the amount of heat transfer in the entire reaction vessel was calculated. The obtained results are shown in Table 3.
  • the amount of heat transfer does not increase even if the number of holes in the perforated plate is simply increased. This seems to be because the heat transfer coefficient decreases as a result of the decrease in flow velocity. However, it can be seen that the heat transfer amount increases when the hole area ratio is 20.7%, the diameter of the hole is reduced and the number of holes is increased (in the example of the table, the heat transfer amount is increased by 6.9%). .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Silicon Compounds (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

 伝熱効率を高く保ちながら、逆反応等をできるだけ防止して高い反応収率を達成することができる、特にクロロシランと水素の高温気相反応に適した反応装置が提供される。該反応装置は、流入口から所定の流入流速で供給される複数種の原料ガスを気相反応させて流出口から反応生成ガスとして排出する反応容器と、反応容器に付設されて反応容器の内部を加熱する加熱手段と、反応容器の内部に配設されてガスの流路面積を絞ってガス流速を高める伝熱部材とを具備してなる。

Description

気相反応装置
 本発明は気相反応装置に関する。
 トリクロロシラン(SiHCl)は、半導体、液晶パネル、太陽電池等の製造に用いられる特殊材料ガスである。近年、需要は順調に拡大し、エレクトロニクス分野で広く使用されるCVD材料として、今後も伸びが期待されている。
 トリクロロシランは、テトラクロロシラン(SiCl)に水素(H)を付加させる以下の反応によって生成される。
SiCl+H→SiHCl+HCl     (1)
 この反応は、熱平衡気相反応であり、ガス化したテトラクロロシランと水素からなる原料ガスを約700~1400℃の高温に加熱することにより正反応が起こり、トリクロロシランが得られる。
 従来、この種の気相反応の反応装置としては、例えば特許文献1に記載されているような装置が知られている。この装置は、周囲を発熱体によって囲まれると共に同心配置の管によって形成された外室と内室からなる反応室と、反応室の上部に設けられて外室と内室を相互に連通させるダイバータと、反応室の下部に設けられて外室に導入される原料ガスと内室から導出される反応生成ガスとの熱交換を行う熱交換器とを具備してなる。原料ガスは熱交換器を通して予熱されて外室に供給され、外室からダイバータを経て内室を流れる間に反応が進行し、反応生成ガスとして熱交換器によって冷却されて排出される。
 しかしながら、上記のような反応装置では、反応室がダイバータを介した二重室とされ、ガスが外室と内室の順に上下に往復させられる構造とされているため、
反応室の出口ガス温度が低下してしまう問題があった。
また、反応生成ガスの冷却を急速に行えないため、生成したトリクロロシランがテトラクロロシランに逆反応してしまう虞があり、高い反応収率が得られないという問題もある。
特開平6-293511号公報
 本発明の一目的は、従来技術における不具合を少なくとも部分的に解消した気相反応装置を提供することにある。
 本発明の他の目的は、伝熱効率を高く保つ気相反応装置を提供することにある。
 本発明の更なる目的は、逆反応等をできるだけ防止して高い反応収率を達成することができる気相反応装置、特にクロロシランと水素の高温気相反応に適した反応装置を提供することにある。
 よって、本発明では、
 流入口から所定の流入流速で供給される複数種の原料ガスを気相反応させて流出口から反応生成ガスとして排出する反応容器と、
 反応容器に付設されて反応容器の内部を加熱する加熱手段と、
 反応容器の内部に配設されてガスの流路を絞ってガス流速を高める伝熱部材とを具備してなる気相反応装置が提供される。
 ここで、反応容器は、高温気相反応に適した構造、材料からなるものであれば如何なるものでもよいが、容器の一側に流入口を備え、一側とは遠隔の他側に流出口を備え、流入口と流出口との間に所定の距離がとれる構造のものが好ましく、また加熱手段によって壁面が加熱されて反応容器内部に熱を伝達する材料から構成されるのが好ましい。
 加熱手段は、反応容器の内部を加熱できる構造のものであれば、如何なるものでも構わないが、反応容器壁面を加熱して反応容器内部を高温加熱状態にする構造のものが好ましい。一態様では、反応容器を伝熱性に優れた材料で形成し、反応容器壁を直接加熱する構造とすることができる。他の態様では、反応容器を伝熱性に優れた材料で形成し、反応容器の外部にヒータを配して反応容器壁面を加熱する構造とすることができる。何れの場合も反応容器は、全体を収容容器に収容し、周囲とは断熱するのが好ましいが、特に後者の外部ヒータを設置する場合は、反応容器とヒータを配した収容容器内にはアルゴンのような不活性ガス等を充填しておくのが好ましい。
伝熱部材とは、加熱手段が反応容器の内部を加熱する結果、反応容器の内部に配設されている伝熱部材自体も加熱され、反応容器内を流れるガス流にその熱を移動させる部材を意味する。よって、上記の伝熱部材は、かかる熱移動に適した材料からなり、またガスの流路を絞ってガス流速を高めることができる構造を有するものであれば、如何なる材料、構造のものでも構わない。例えば、透孔や凹部を備えた複数の成型充填物を組み合わせてガス流路を形成できるものや、種々の形状の貫通孔を備えた邪魔板などが利用できるが、一又は複数の貫通孔を備えたカーボン製の板状体、特に多孔板が好適に利用できる。また伝熱部材の配置方法は、その構造に応じて様々な態様を取り得、特に限定するものではないが、反応容器のガス流路を横断してガスが伝熱部材の貫通孔等を流通するように配置できる。尚、ここで、ガス流速を高めるとは、ガスが伝熱部材に接触する部位におけるガス流速とガスが伝熱部材に接しながら流れ伝熱部材から離れていく際のガス流速を比較した場合に後者のガス流速が前者よりも高くなっていることを意味する。例えば、多孔板を用いた場合、多孔板の孔部出口でのガス流速は、孔部入口でのガス流速に比して上昇させられる。その上昇割合は、開孔率などに依存するが、数倍、例えば3倍等にすることができる。
 かかる気相反応装置では、反応容器の内部に伝熱部材を配設したので、加熱手段により反応容器を加熱すると、反応容器の壁体等からの輻射伝熱等により伝熱部材が加熱され、かかる伝熱部材からガス流への熱移動により反応容器中のガス流を更に加熱することができる上、伝熱部材によってその付近を流れるガス流の流速が高められるので、伝熱部材等からのガス流への伝熱効率が高くなり、また伝熱部材によりガス流が乱れて対流伝熱も生じる。よって、反応容器内に伝熱部材を配設しない場合に比して、反応容器内におけるガス流への伝熱量が増加し、反応容器内において高い伝熱効率を、またひいては高反応収率を達成することができる。
 一態様では、上記において、反応容器は、上下方向に延び、下部側の流入口から上部側の流出口に至るガス流路を形成する筒状体から構成し、伝熱部材は、反応容器の内部に、筒状体を略水平方向に横断し上下方向に間隔をあけて配設された複数の多孔板から構成することができる。特に、反応容器は、カーボン製の円筒状反応器が好ましく、一例では、上下方向に延びる円筒状部と、円筒状部の下部に設けられた底部と、円筒状部の上部に設けられた天板部とを具備し、底部に流入口が設けられ、筒状部の天板部に近接する位置に流出口が設けられた構造とできる。
 反応容器をこのような筒状体構造にすると、ガス流路を上下方向に往復させる場合に比して、装置の構造が簡単になる。また、伝熱部材を、上記のように配設された複数の多孔板から構成すると、ガス流が孔部を流れるときに流速が高まり、高い伝熱効率を達成することができ、また対流伝熱も効果的に生じさせることができる。
 本発明者等は、後記する実施例において説明するように、孔部等を通過するガスの流速、多孔板の開孔率、反応容器内壁と多孔板とのクリアランス、多孔板の厚みなどについて、実験的に最適な範囲を求めるべく、鋭意検討した。その結果、所定のパラメータについて次のような範囲にすれば高い伝熱効率が得られることが知見された。
 すなわち、上記において、多孔板は、通過するガスの流速を2m/s以上とする多孔部を有してなるものとするのが好ましく、また25%以下の開孔率を有する板材を反応容器の内壁との間に所定のクリアランスをあけて配設したものとするのが好ましい。多孔板と反応容器の内壁との間のクリアランスは、周方向にわたって略均一であるのが好ましく、また反応容器の内壁直径の6/1000~50/1000の範囲にあるように設計するのが好ましい。多孔板の孔部の孔径は、反応容器の内壁直径の25/1000以下であり、孔数が開孔率を25%以下とする数であるのが好ましい。また、多孔板の厚さtは10mm≦t≦60mmが好ましい。製作加工上問題が無ければこの限りではない。
 ここで、多孔板の開孔率とは、多孔板の孔部を含む平面視における総面積に対する孔部横断面積の総計の割合であり、クリアランスとは、多孔板の外縁端面と内壁面との距離である。
 また別の態様では、上記において、複数の多孔板が上下方向に間隔をあけて配設され、上下に隣接する各多孔板は、孔部が互いに偏心位置に形成されてなるものとするのが好ましい。多孔板の上下方向の離間間隔は等間隔であっても不等間隔であってもよい。
 このような構成とすることによって、ガス流の流れが反応容器の下部の流入口から上部側の流出口に流れていく間に十分に混合されて化学反応が促進され、かつ対流伝熱等による伝熱量が増加する。
 また更なる態様では、上記において、反応容器と伝熱部材は、表面が炭化ケイ素被覆されていてもよいカーボン製部材製とすることができる。カーボン製部材とするのは、かかる部材が耐熱性、耐熱衝撃性、耐食性等に優れるからであるが、後述するように、カーボン製部材は反応容器内に供給される水素や、水素の燃焼により生成する水によって組織の減肉または脆化を受けてしまう。従って、長期にわたる使用に対しては、表面に炭化ケイ素被膜処理を施すのが好ましい。炭化ケイ素被膜処理は、例えばCVD法により10~500μmの厚みで行うことができる。
 また別の態様によれば、上記において、気相反応装置は、金属製の外筒容器と外筒容器に内張りされた断熱層とを具備し内部に不活性ガスが封入された収容容器に、反応容器と加熱手段が収容されてなるのが好ましい。
 かかる構成とすることによって、加熱手段から発生された熱を装置外部に逃がすことを極力防止することができ、また反応容器の加熱を極力均一に行わせることができる。
 更に別の態様によれば、本発明に係る気相反応装置は、複数種の原料ガスが、テトラクロロシランと水素を含み、反応生成ガスがトリクロロシランと塩化水素を含む反応系に特に好適に使用される。
 ここで、原料ガスには、テトラクロロシランと水素以外の化学種が含まれていてもよく、また他の系からの循環液等も蒸発させて併せて供給されてもよい。また、反応生成ガスには、トリクロロシランと塩化水素以外の化学種、例えば未反応の原料成分やヘキサクロロジシラン等の高沸点物質、ジクロロシラン等の低沸点物質等々が含まれうる。
 更に本発明に係る気相反応装置においては、上記の種々の構成の何れか一に加えて、反応容器内の伝熱効率を更に高めるために、反応容器の内部に流出口に近接して、反応生成ガスの流れを流出口に向け得る反射部材を設けることができる。
 かかる反射部材は、反応生成ガスの流れが当たるとこれを反射させ、反応生成ガスの流れを流出口に向け得る部材であれば、如何なるものでも構わないが、加熱手段が反応容器の内部を加熱する結果、反応容器の内部に配設されている反射部材自体も加熱され、反応容器内のガス流にその熱を移動させる伝熱部材であるのが好ましい。よって、反射部材は、好ましくは反応生成ガスの流れを受けて反射させ流れを流出口へ向ける板材であって、熱移動に適した材料から構成され、例えばカーボン製の板状体が好適に利用できる。
 かかる気相反応装置では、反射部材により反応容器中のガス流への伝熱効率を更に高めることができ、高い反応収率を達成することができる。
 更に本発明に係る気相反応装置においては、上記の種々の構成の何れか一に加えて、反応容器から導出される反応生成ガスを急冷する急冷塔を備えるのが好ましい。
 このような構成によって、反応生成ガスを可能な限り瞬時に冷却して平衡を凍結し、逆反応が起こるのを極力防止することができる。
 すなわち、本発明の一態様では、
 流入口から所定の流入流速で供給される複数種の原料ガスを気相反応させて流出口から反応生成ガスとして排出する反応容器と、
 反応容器に付設されて反応容器の内部を加熱する加熱手段と、
 反応容器の内部に配設されてガスの流路を絞ってガス流速を高める伝熱部材と
 反応容器に接続されて反応容器の流出口から導出される反応生成ガスを急冷する急冷装置と
を具備してなる気相反応装置が提供される。
本発明の実施形態に係る反応装置の概略縦断面図である。 図1の反応装置におけるヒータからガス流への伝熱プロセスを説明するための模式図で、(a)はヒータから反応容器への輻射伝熱を表し、(b)は反応容器壁体中における伝導伝熱を表し、(c)は反応容器内面から多孔板への輻射伝熱を表し、(d)は反応容器内表面と多孔板からガスへの対流伝熱を表す。 実施例1の結果を示すグラフである。 実施例2の結果を示すグラフである。
10        気相反応装置
11        収容容器
11a       胴部
11b       天蓋部
11c       底板部
11d       支持部材
11e,11f   貫通孔
12        反応容器
12a       流入口
12b       流出口
13        ヒータ(加熱手段)
13a       発熱体
13b       電極
14        急冷塔(急冷装置)
15        外筒容器
16a,16b   断熱煉瓦層,断熱材層(断熱層)
17        円筒体(筒状体)
18        底板部材(底部)
19        天蓋部材(天板部)
20        流入管
21        抜き出し管
22        塔本体
23        スプレー装置
24        反応生成ガス導入管
25        多孔板(伝熱部材)
25a       孔部
26        スペーサ部材
 以下、本発明の気相反応装置の一実施形態について、図面を参照して説明する。
 図1に示す実施形態では、気相反応装置10は、円筒状の収容容器11と、収容容器11の内部に収容された反応容器12と、収容容器11の内部に収容されると共に反応容器12に付設されて反応容器12の内部を加熱するヒータ(加熱手段)13と、反応容器12に接続された急冷塔(急冷装置)14とを具備する。
  収容容器11は、鋼製の外筒容器15の底部及び周部の各内面に断熱煉瓦層16aが、外筒容器15の上部内面にアルミナ製断熱材等の断熱材層16bがそれぞれ内張りされた断熱容器で、円筒状の胴部11aと、胴部11aの上端に設けられた天蓋部11bと、胴部11aの下端に設けられた底板部11cとからなり、胴部11aの外側面に設けられた支持部材11dが基礎上に支持されて軸心を上下に向けて設置されている。底板部11cの中心に貫通孔11eが形成され、胴部11aの上縁側の所定位置に貫通孔11fが形成されている。
 反応容器12は、収容容器11の内部に下部が支持されて軸心を上下に向け収容容器11の胴部11a内壁と天蓋部11bとの間に空間をあけて収容されたカーボン製の略円筒状の反応容器で、所定高さの複数の略円筒部材を、端部同士を突き合わせて略同軸状に上下に配し、突き合わせ端部を、螺合締結や外嵌合リングによる締結等の締結手段により気密的に締結して円筒体(筒状体)17とし、円筒体17の下端部にカーボン製の底板部材18を、円筒体17の上端部にカーボン製の天蓋部材19を、それぞれ円筒部材同士と同様の締結手段で気密的に締結した円筒状容器である。反応容器12は、その底板部材18が収容容器11の底板部11cの貫通孔11eに嵌め込まれて収容容器11に支持されており、その底板部材18には、反応容器12への原料ガスの流入口12aとなる貫通孔が形成され、該貫通孔に図示しない蒸発缶に接続された流入管20が連通されて取り付けられている。天蓋部材19は閉塞部材からなり、反応容器12の流出口12bとなる貫通孔は、天蓋部材19に近接する円筒体17の円筒部材の側面に形成され、該貫通孔に反応生成ガスの抜き出し管21が取り付けられている。該抜き出し管21は、更に収容容器11の貫通孔11fに挿通されて収容容器11の外部まで略水平に延び、急冷塔14に接続されている。
 ヒータ13は、先端側が電気的に互いに接続された二本一組で、収容容器11の胴部11a内壁と反応容器12との間の空間に反応容器12の周方向に間隔をあけて鉛直に配設された長尺棒状のカーボン製の複数組の発熱体13aと、発熱体13aの各基端側に連結されて発熱体13aへの電力の授受を行う複数組の電極13bとを具備してなる。発熱体13aの基端側は、収容容器11の天蓋部11bに断熱材等を介して支持され、発熱体13aの先端側は収容容器11の底板部11cの近くまで垂下させられている。
 収容容器11の内部にはアルゴン等の不活性ガスが充填され、反応容器12の周りと上部には不活性ガスが存在しており、ヒータ13が印加されると、発熱体13aが加熱され、不活性ガスと共に反応容器12が外周及び上方から例えば1300℃程度に加熱される構成とされている。
 急冷塔14は、反応容器12の抜き出し管21から抜き出されるトリクロロシランと塩化水素の混合物を主成分とする反応生成ガスを瞬時に冷却するもので、収容容器11に隣接して配設された鋼製円筒状の塔本体22と、塔本体22に付設されて塔本体22の内部に冷却液を噴霧するノズルを備えたスプレー装置23と、塔本体22の内部に溜まった冷却液を取り出してスプレー装置23に循環させるポンプ(図示略)と、冷却液を冷却する冷却装置(図示略)と、急冷塔14の頂部から急冷後の反応生成ガスを取り出すための導管(図示略)とを具備する。塔本体22の側壁には反応容器12の抜き出し管21が挿入される反応生成ガス導入管24が略水平に設けられ、抜き出し管21の先端は塔本体22の内部まで延び、スプレー装置23のノズルからの冷却液が抜き出し管21から流出する反応生成ガスに対して上から下に向けて噴霧されるように構成されている。
 本実施形態に係る気相反応装置10では、反応容器12の内部に、所定の開孔率、孔径、孔数を有する円板状のカーボン製の多孔板25が、複数枚、その円筒体17の高さ方向に間隔をあけて配設されている。これら多孔板25は、円筒体17の高さ方向の略全長にわたって基本的には略等間隔にかつ略水平に配置されるが、反応容器12の内壁面との間には所定のクリアランスが保たれ、また各多孔板25は、基本的には、一の多孔板25の孔部25aとその上下に位置する多孔板25の孔部25aが同軸にはならないように製作され又は配置される。
 ここで、多孔板25の設置方法は、任意であり、例えば、図示例では、底板部材18の上面と最下位の多孔板25の下面の対応する位置にそれぞれ複数の凹所を形成し、底板部材18の凹所に、複数の棒状スペーサ部材26の下端部を嵌入させ、多孔板25の下面の凹所に該棒状スペーサ部材26の上端部を嵌入させることによって、多孔板25を底板部材18の上方所定位置に配し、これを繰り返して、多孔板25を所定の間隔をあけて積み上げている。別法としては、反応容器12の内壁面に周方向に間隔をあけて複数の支持縁を形成し又は取付け、その上に各多孔板25を載置していくようにしてもよい。尚、ここでのスペーサ部材26もカーボン製部材とすることは言うまでもない。
 上記のようにして反応容器12の内部に設置された多孔板25について、本発明者等は、その設置効果に対する多孔板の開孔率、内壁とのクリアランス、多孔板の厚み等の影響を、検証した。その結果、多孔板25を設けると、反応容器12における伝熱効率が大幅に向上させられることが知見され、使用する多孔板25としては次のような特性を具備するものが好ましいことが分かった。
  ・通過するガスの流速を2m/s以上とする多孔部25aを有するもの
  ・25%以下の開孔率を有するもの
  ・反応容器12の内壁との間のクリアランスが、反応容器12の内壁直径の6/1000~50/1000の範囲にあるもの
  ・孔部の孔径が反応容器12の内壁直径の25/1000以下であり、孔数が開孔率を25%以下とする数であるもの。
  ・多孔板の厚さt は10mm≦t≦60mmが好ましく、製作加工上問題が無ければこの限りではない。
 ここで、多孔板の開孔率とは、多孔板の孔部を含む平面視における総面積に対する孔部横断面積の総計の割合であり、クリアランスとは、多孔板の外縁端面と反応容器の内壁面との距離である。
 上記において、カーボン製部材を構成する材質としては、気密性に優れた黒鉛材が好ましく、特に、微粒子構造のため強度が高く、熱膨張等の特性がどの方向に対しても同一であることから耐熱性および耐食性にも優れている等方性高純度黒鉛を用いることが好ましい。
 更に、カーボンは、反応容器内に供給される水素や、水素の燃焼により生成する水によって、以下に示すように、組織の減肉または脆化を受けてしまう。
    C+2H→CH
    C+HO→H+CO
    C+2HO→2H+CO
 これを防止するために、上記カーボン製の部材の表面には炭化ケイ素被膜が形成されるのが好ましい。
 炭化ケイ素被膜の形成方法は、特に制限はないが、典型的にはCVD法により蒸着させて形成することができる。CVD法により所定部材の表面に炭化ケイ素被膜を形成するには、例えば、テトラクロロシラン又はトリクロロシランのようなハロゲン化ケイ素化合物とメタンやプロパンなどの炭化水素化合物との混合ガスを用いる方法、またはメチルトリクロロシラン、トリフェニルクロロシラン、メチルジクロロシラン、ジメチルジクロロシラン、トリメチルクロロシランのような炭化水素基を有するハロゲン化ケイ素化合物を水素で熱分解しながら、加熱されたカーボン製部材の表面に炭化ケイ素を堆積させる方法を用いることができる。炭化ケイ素被膜の厚みは、10~500μmとすることが好ましく、30~300μmであればさらに好ましい。炭化ケイ素被膜の厚みが10μm以上であれば、反応容器内に存在する水素、水、メタン等によるカーボン製部材の腐食を十分に抑制でき、また、500μm以下であれば、炭化ケイ素被膜のひび割れやカーボン製部材の組織の割れが助長されることもない。
 次に、本実施形態に係る気相反応装置10の作用を、図1に加えて、図2の模式図を適宜参照しながら説明する。
 蒸発缶でガス化されたテトラクロロシランと水素の混合ガスは流入口12aから所定の導入流速で反応容器12中に導入される。反応容器12は、ヒータ13によって外部から加熱されるが、ヒータ13は反応容器12の外部に周方向に等間隔に配設され、収容容器11内にはアルゴンガス等の不活性ガスが充填されているので、反応容器12の外周面が比較的均一に加熱される。ヒータ13から輻射伝熱によって熱が反応容器12の外面に到達し(図2(a)参照)、反応容器12全体が加熱されると、反応容器12はカーボン製であるため、反応容器12の壁体では、その外表面から内表面に向けて伝導伝熱によって効率的に熱が反応容器12内壁表面へと伝わり、円筒体17の内壁表面が高温になり(図2(b)参照)、反応容器12の内部が輻射伝熱等によって約700~1400℃の高温に加熱される。そして、反応容器12内を流れるガス流に対流伝熱によってその熱が伝わり、ガス流が加熱されると同時に、反応容器12の円筒体17の内壁表面から多孔板25に向けて輻射伝熱が生じ、多孔板25が加熱される(図2(c)参照)と共に、多孔板25からの熱が、多孔板25にぶつかり又は多孔板25の孔部25aを流通するガス流に伝わっていく。また原料ガスと反応生成ガスが入り交じって流れ、多孔板25の孔部25a周辺では対流伝熱が生じ、これによってもガスが加熱される(図2(d)参照)。このように加熱される多孔板25が反応容器12内に配置されているので反応容器12内における伝熱面積が増加しまた対流伝熱も生じる結果、ガス流への伝熱量が高まり、また多孔板25の孔部25aをガス流が通過する際にガス流の流速が高まるので、多孔板25の孔部25a付近での伝熱効率が高まる。このようにして、反応容器12内を流れるガス流が効率よく加熱され、式(1)の熱平衡反応が正方向に進行し、導入された原料ガスがトリクロロシランと塩化水素を主成分とする反応生成ガスに転換され、流出口12bから抜き出し管21を介して急冷塔14に導かれる。
 このように、本実施形態に係る気相反応装置10では、ヒータ13によって加熱される反応容器12の内部に多孔板25が設けられているために、ガス流の混合が生じると共に、反応容器12内における伝熱効率が多孔板25による輻射伝熱と対流伝熱によって向上させられる。
 また、反応容器12の流出口12bに抜き出し管21を設け、急冷塔14に接続したので、多孔板25の効果も相俟って、反応生成ガスは抜き出し管21から抜き出される状態では十分に加熱された状態にあり、この状態から急冷塔14において反応生成ガスを瞬時に冷却するので、平衡反応が凍結され、逆反応が効果的に防止される。
 以上、本発明の一実施形態を説明したが、本発明はかかる実施形態に限定されるものではないことは言うまでもない。例えば、多孔板25に加えて、反応容器12の内部に流出口12bに近接して、反応生成ガスの流れが当たるとこれを反射させ、反応生成ガスの流れを流出口に向け得るカーボン等の伝熱性材料からなる反射板を設けてもよい。かかる反射部材により反応容器中のガス流への伝熱効率を更に高めることができ、高い反応収率を達成することができる。また多孔板25に邪魔板や他の成型充填物を組み合わせた構造としてもよい。更に、反応容器12は図示例では上下方向に同径の円筒状であるが、流出口12bの付近や流入口12aの付近を縮径部としてもよい。
 以下、多孔板の設置効果について検証した実施例を記載する。尚、この実施例は、多孔板の典型例について設置効果を確認するためのものであって、多孔板の構成がかかる実施例によって限定されるものではない。
実施例1
<伝熱量に対する多孔板の厚みの影響>
 次の反応装置において多孔板の設置効果に対する多孔板の厚みの影響を検証した。
  収容容器:
   外筒容器:SUS304製、19mm厚
   断熱材層:アルミナ製断熱材、29mm厚
   断熱煉瓦層:アルミナ製煉瓦、500mm厚
   不活性ガス層:アルゴン、163mm層
  反応容器:
   カーボン製円筒状反応器、100mm厚
   円筒部内径:750mm
 厚みが20mm、40mm、60mmの円板状の多孔板(順に多孔板1、基準多孔板、多孔板2)をそれぞれ複数枚製作した。各多孔板は、孔径5mmの多数の孔部が同一パターンで形成され、所定位置に支持棒に固定するための複数の固定孔を備えたカーボン製の直径74cmのものであった。
 先ず40mmの厚みの基準多孔板を、反応容器内の円筒体内部に上下に間隔をあけて、スペーサ部材を用いて水平に配置していった。また反応装置のガス入口、ガス出口、胴部中央部等に適宜熱電対を設置した。
 この状態で、ヒータを印加して反応容器を1300℃まで加熱した後、反応装置にテトラクロロシランと水素(モル=1:2)の混合ガスを1513kg/hで供給し、0.1MPaGで反応を行わせてトリクロロシランを生成した。そして、反応過程中におけるガス温度:1124.9℃、出口ガス温度等の各温度測定点の温度を測定し、反応容器全体における伝熱量を算定したところ、8760kcal/hであった。
 同様にして、20mmの厚みの多孔板1及び60mmの厚みの多孔板2について操作を繰り返して、測定温度から伝熱量を算定した。
 この結果、次表に示すような結果が得られた。
Figure JPOXMLDOC01-appb-T000001
 この結果を図3にグラフの形でも示す。
 これらの結果から分かるように、基準多孔板に対して厚みを1.5倍にした多孔板2では、伝面積が25%上昇しており、基準多孔板に対して厚みを1/2にした多孔板1では、伝面積当たりの伝熱量が26%上昇した。これらの結果から、多孔板は薄くし、枚数を増やせば、伝熱量が増加することが期待できることが分かる。
実施例2
<伝熱量に対する多孔板のクリアランスの影響>
 用いた多孔板を代えた以外は、実施例1に記載したものと同じ反応装置、操作条件を用いて、多孔板の設置効果に対する多孔板と反応容器の内壁との間のクリアランスの影響を検証した。
 外径が746mm、740mm、736~710mmと様々で、厚みが40mmの円板状の多孔板(順に多孔板3、基準多孔板、多孔板4~7)をそれぞれ複数枚製作した。各多孔板は、孔径5mmの多数の孔部が同一パターンで形成され、所定位置にスペーサ部材に固定するための複数の凹所を備えたカーボン製のものであった。
 先ず外径が740mmの基準多孔板を、反応容器内の円筒体内部に上下に間隔をあけて、配置した。このときの多孔板と反応容器内壁間のクリアランスは5mmであった。この状態で、トリクロロシランの生成反応を行わせ、反応過程中における入口ガス温度、出口ガス温度等の各温度測定点の温度を測定し、反応容器全体における伝熱量を算定したところ、8760kcal/hであった。
 同様にして、外径が746mm、736mm、730mm、720mm、710mm(クリアランスで2、7、10、15、20mm)の多孔板3~7をそれぞれ設置し、操作を繰り返して、測定温度から伝熱量を算定した。
 この結果、次表に示すような結果が得られた。
Figure JPOXMLDOC01-appb-T000002
 この結果を図3に示すグラフにも示す。
 これらの結果から分かるように、多孔板のクリアランスの最適値は10mmであり、このときに伝熱量は最大となる。これにより、伝熱係数、反応容器外表面からの伝熱量の増加により、伝熱量は5%上昇する。
実施例3
<伝熱量に対する多孔板の孔径・孔数の影響>
 用いた多孔板を代えた以外は、実施例1に記載したものと同じ反応装置、操作条件を用いて、多孔板の設置効果に対する孔径・孔数の影響を検証した。
 孔径、孔数、開孔率を変更した3種類の多孔板を製作した。先ず、第1の多孔板は基準多孔板で、孔径15mmφ、孔数504個、開孔率20.7%、第2の多孔板(多孔板8)は、孔径15mmφ、孔数1024個、開孔率42.1%のものであり、第3の多孔板(多孔板9)は、孔径10.5mmφ、孔数1024個、開孔率20.7%のものであった。
 各多孔板を、反応容器内の円筒体内部に上下に間隔をあけて配置し、この状態で、トリクロロシランの生成反応を行わせ、反応過程中における入口ガス温度、出口ガス温度等の各温度測定点の温度を測定し、反応容器全体における伝熱量を算定した。
 得られた結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 これらの結果から分かるように、多孔板の孔数を単純に増加させても伝熱量は増加しない。これは流速が低下する結果、伝熱係数が減少してしまうためであると思われる。しかしながら、開孔率を20.7%とし、孔部を小径化させ、かつ孔数を増加させると伝熱量が増加することが分かる(表の例では、伝熱量は6.9%の上昇)。

Claims (10)

  1.  流入口から所定の流入流速で供給される複数種の原料ガスを気相反応させて流出口から反応生成ガスとして排出する反応容器と、
     反応容器に付設されて反応容器の内部を加熱する加熱手段と、
     反応容器の内部に配設されてガスの流路面積を絞ってガス流速を高める伝熱部材とを具備してなる気相反応装置。
  2.  反応容器が、上下方向に延び、下部側の流入口から上部側の流出口に至るガス流路を形成する筒状体からなり、
     伝熱部材が、反応容器の内部に、筒状体を略水平方向に横断し上下方向に間隔をあけて配設された複数の多孔板からなる請求項1に記載の気相反応装置。
  3.  伝熱部材が、通過するガスの流速を2m/s以上とする孔部を有してなる多孔板である請求項1又は2に記載の気相反応装置。
  4.  伝熱部材が、25%以下の開孔率を有する多孔板である請求項1から3の何れか一項に記載の気相反応装置。
  5.  多孔板の孔部の孔径が反応容器の内壁直径の25/1000以下である請求項4に記載の気相反応装置。
  6.  反応容器が円筒体であり、伝熱部材が反応容器の内壁との間に反応容器の内壁直径の6/1000~50/1000の範囲のクリアランスをあけて配設された円板状の多孔板である請求項1から5の何れか一項に記載の気相反応装置。
  7.  複数の多孔板が上下方向に間隔をあけて配設され、上下に隣接する各多孔板は、孔部が互いに偏心位置に形成されてなる請求項2から6の何れか一項に記載の気相反応装置。
  8.  伝熱部材が、表面が炭化ケイ素被覆されたカーボン製の多孔板である請求項2から7の何れか一項に記載の気相反応装置。
  9.  金属製の外筒容器と外筒容器に内張りされた断熱層とを具備し内部に不活性ガスが封入された収容容器に反応容器と加熱手段が収容されてなる請求項1から8の何れか一項に記載の気相反応装置。
  10.  複数種の原料ガスが、テトラクロロシランと水素を含み、反応生成ガスがトリクロロシランと塩化水素を含む請求項1から9の何れか一項に記載の気相反応装置。
PCT/JP2009/056815 2009-04-01 2009-04-01 気相反応装置 WO2010113298A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2009/056815 WO2010113298A1 (ja) 2009-04-01 2009-04-01 気相反応装置
JP2011506915A JP5511794B2 (ja) 2009-04-01 2009-04-01 気相反応装置
TW099102351A TW201038479A (en) 2009-04-01 2010-01-28 Gas-phase reaction device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/056815 WO2010113298A1 (ja) 2009-04-01 2009-04-01 気相反応装置

Publications (1)

Publication Number Publication Date
WO2010113298A1 true WO2010113298A1 (ja) 2010-10-07

Family

ID=42827626

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056815 WO2010113298A1 (ja) 2009-04-01 2009-04-01 気相反応装置

Country Status (3)

Country Link
JP (1) JP5511794B2 (ja)
TW (1) TW201038479A (ja)
WO (1) WO2010113298A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012177274A3 (en) * 2011-06-21 2014-07-10 Gtat Corporation Apparatus and methods for conversion of silicon tetrachloride to trichlorosilane
JP2016076393A (ja) * 2014-10-07 2016-05-12 信越化学工業株式会社 非水電解質二次電池用導電性負極材の製造方法及び製造装置
US10315181B2 (en) 2010-09-27 2019-06-11 Gtat Corporation Heater and related methods therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58155343U (ja) * 1982-04-08 1983-10-17 工業技術院長 ZnSe化合物の気相反応装置
JPS62123011A (ja) * 1985-11-25 1987-06-04 Koujiyundo Silicon Kk トリクロルシランの製造方法およびその装置
JP2008137885A (ja) * 2006-11-07 2008-06-19 Mitsubishi Materials Corp トリクロロシランの製造方法およびトリクロロシラン製造装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58155343U (ja) * 1982-04-08 1983-10-17 工業技術院長 ZnSe化合物の気相反応装置
JPS62123011A (ja) * 1985-11-25 1987-06-04 Koujiyundo Silicon Kk トリクロルシランの製造方法およびその装置
JP2008137885A (ja) * 2006-11-07 2008-06-19 Mitsubishi Materials Corp トリクロロシランの製造方法およびトリクロロシラン製造装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10315181B2 (en) 2010-09-27 2019-06-11 Gtat Corporation Heater and related methods therefor
WO2012177274A3 (en) * 2011-06-21 2014-07-10 Gtat Corporation Apparatus and methods for conversion of silicon tetrachloride to trichlorosilane
CN103987453A (zh) * 2011-06-21 2014-08-13 Gtat公司 用于将四氯化硅转换成三氯硅烷的装置及方法
US9217609B2 (en) 2011-06-21 2015-12-22 Gtat Corporation Apparatus and methods for conversion of silicon tetrachloride to trichlorosilane
CN103987453B (zh) * 2011-06-21 2017-04-12 Gtat公司 用于将四氯化硅转换成三氯硅烷的装置及方法
JP2016076393A (ja) * 2014-10-07 2016-05-12 信越化学工業株式会社 非水電解質二次電池用導電性負極材の製造方法及び製造装置

Also Published As

Publication number Publication date
TW201038479A (en) 2010-11-01
JP5511794B2 (ja) 2014-06-04
JPWO2010113298A1 (ja) 2012-10-04

Similar Documents

Publication Publication Date Title
ES2346463T3 (es) Procedimiento y dispositivo para la hidrogenacion de clorosilanos.
US7998428B2 (en) Apparatus for producing trichlorosilane
KR101914535B1 (ko) 다결정질 실리콘 과립 제조용 유동층 반응기 및 제조 방법
US8168123B2 (en) Fluidized bed reactor for production of high purity silicon
KR101115697B1 (ko) 에너지 효율을 높여주는 복사열 차단막을 갖는 화학기상증착 반응기
US9416014B2 (en) Method for producing trichlorosilane
JP5727362B2 (ja) 化学気相蒸着反応器内にガスを流通させるためのシステムおよび方法
JP5444839B2 (ja) トリクロロシラン製造装置及び製造方法
US20120325138A1 (en) Film-forming apparatus and film-forming method
ES2543305T3 (es) Procedimiento y dispositivo para la conversión química del tetracloruro de silicio en el triclorosilano
JP5511794B2 (ja) 気相反応装置
US9493359B2 (en) Apparatus for producing trichlorosilane
KR101329035B1 (ko) 유동층 반응기
JP5511795B2 (ja) 気相反応装置
CN106999888B (zh) 制备多晶硅颗粒的流化床反应器和组装该流化床反应器的方法
JP5436454B2 (ja) 発熱装置
JP6641473B2 (ja) 流動床反応器、および粒状の多結晶シリコンの製造方法
KR101311739B1 (ko) 폴리실리콘 제조장치
JP2006176811A (ja) 結晶性SiC膜の製造方法
JP2011157223A (ja) トリクロロシラン製造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09842652

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011506915

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09842652

Country of ref document: EP

Kind code of ref document: A1