WO2010110179A1 - アクティブ素子基板とその製造方法、及びこの製造方法で製造したアクティブ素子基板を用いた表示装置 - Google Patents

アクティブ素子基板とその製造方法、及びこの製造方法で製造したアクティブ素子基板を用いた表示装置 Download PDF

Info

Publication number
WO2010110179A1
WO2010110179A1 PCT/JP2010/054724 JP2010054724W WO2010110179A1 WO 2010110179 A1 WO2010110179 A1 WO 2010110179A1 JP 2010054724 W JP2010054724 W JP 2010054724W WO 2010110179 A1 WO2010110179 A1 WO 2010110179A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
line
drain electrode
data line
resist
Prior art date
Application number
PCT/JP2010/054724
Other languages
English (en)
French (fr)
Inventor
齊藤 裕
洋一 野田
山元 良高
Original Assignee
株式会社フューチャービジョン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フューチャービジョン filed Critical 株式会社フューチャービジョン
Priority to US13/258,764 priority Critical patent/US20120068202A1/en
Priority to JP2011506010A priority patent/JPWO2010110179A1/ja
Priority to CN2010800132833A priority patent/CN102388413A/zh
Publication of WO2010110179A1 publication Critical patent/WO2010110179A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1248Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or shape of the interlayer dielectric specially adapted to the circuit arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1288Multistep manufacturing methods employing particular masking sequences or specially adapted masks, e.g. half-tone mask
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134372Electrodes characterised by their geometrical arrangement for fringe field switching [FFS] where the common electrode is not patterned
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136209Light shielding layers, e.g. black matrix, incorporated in the active matrix substrate, e.g. structurally associated with the switching element
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136222Colour filters incorporated in the active matrix substrate
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136227Through-hole connection of the pixel electrode to the active element through an insulation layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136231Active matrix addressed cells for reducing the number of lithographic steps
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/13625Patterning using multi-mask exposure

Definitions

  • the present invention relates to a display device including an active element substrate (active substrate, TFT substrate) on which a thin film element such as a thin film transistor is formed, and in particular, the active element substrate, a manufacturing method thereof, and an active element manufactured by this manufacturing method.
  • the present invention relates to a display device using a substrate.
  • an active type flat panel display such as a liquid crystal display or an organic EL display
  • a pixel portion is formed using an active element typified by a thin film transistor.
  • a thin film transistor will be described as an example of the active element.
  • the thin film transistor that forms the pixel portion has an inverted staggered structure in which a gate electrode is formed on an insulating substrate such as a glass plate, and a semiconductor layer such as a channel region or a source / drain region and an insulating layer are stacked thereon. Is often used.
  • Such a thin film transistor a scanning line (gate line) for supplying a signal to the gate electrode, a data line (also called a signal line) for supplying a data signal to the source electrode, and a drain electrode are connected to the liquid crystal layer.
  • a pixel circuit of the liquid crystal display device is configured by combining elements such as one display electrode (for example, a pixel electrode) for applying a voltage. Note that the source electrode and the drain electrode are interchanged during operation, but here they are described as being fixed as described above.
  • An insulating substrate (hereinafter also referred to as a pixel array substrate, a thin film transistor substrate (TFT substrate), or an active matrix substrate) in which the pixel circuits are arranged in a matrix, a color filter, and a light shielding film that shields the periphery of the color filter (generally a black matrix)
  • the other display electrode for example, also referred to as a counter electrode or a common electrode
  • a common electrode provided on the active substrate side is also known as an IPS mode or an FFS mode.
  • peripheral members such as a drive circuit and a backlight are attached to these liquid crystal panels to constitute a liquid crystal display device.
  • the pixel electrode or the counter electrode is used as one display electrode
  • the counter electrode or the pixel electrode is used as the other display electrode.
  • either one of the pixel electrode or the counter electrode and the other electrode is used. Is specifically described as a counter electrode or a pixel electrode.
  • Patent Document 1 As a method for reducing the number of repetitions of the photolithography process (also simply referred to as photolithography process) of the above active matrix substrate, there is Patent Document 1.
  • a gate insulating film, a semiconductor layer suitable for silicon, and an ohmic contact layer (n + layer) are sequentially formed on a substrate on which a gate line is formed by a chemical vapor deposition (CVD) method.
  • CVD chemical vapor deposition
  • a metal thin film to be a source electrode / drain electrode is formed thereon by sputtering.
  • a photosensitive resist (photoresist) is applied thereon, and patterning of source / drain electrodes, formation of semiconductor layer islands (active layer islands), and ohmic contact layers are performed in a single photolithography process by halftone exposure. The etching removal of the channel part is realized at the same time.
  • Patent Document 2 discloses a method for manufacturing an active matrix substrate using a halftone exposure method, in a TN mode, MVA by four photolithography processes of two halftone exposure methods and two normal exposure methods.
  • a method for forming a mode, IPS mode active matrix substrate is disclosed.
  • a color filter is provided on the counter substrate.
  • the color filter is formed not on the counter substrate but on the pixel electrode of the active matrix substrate.
  • a bank formed by patterning a resist is provided on the entire pixel area, and colored ink is applied to the recesses (grooves) formed in this bank.
  • an ink containing a black colorant is dropped and applied around the color cells by an ink jet apparatus to form a light shielding layer (black matrix).
  • Patent Document 4 an opening region is provided between thin film transistors (TFTs) of an active matrix substrate, and a curable ink is dropped and applied thereto by an ink jet apparatus, and a color filter is formed by curing, and a pixel electrode is formed thereon. Forming.
  • TFTs thin film transistors
  • a gate insulating film, an island of a semiconductor layer, and a channel region are formed on an insulating substrate on which a gate line and a storage capacitor line are formed, and then a data line, a source / drain electrode, a color filter, and a pixel are formed.
  • a method is disclosed in which a bank made of a polyimide film is formed in an electrode forming groove by an ink jet apparatus, and predetermined ink is dropped and applied to the groove of each bank by an ink jet apparatus.
  • the color filter ink is dropped and applied to the groove of the bank forming the pixel electrode, and then the conductive ink to be the pixel electrode is dropped and applied to the upper surface of the groove by an ink jet apparatus.
  • An active matrix substrate is manufactured by connecting a part of the pixel electrode and the drain electrode and connecting a part of the data line and the source electrode.
  • a thin film is formed by vapor deposition in vacuum such as CVD or sputtering, and patterning of the formed thin film is not necessary through processes such as photoresist coating, mask exposure, development, etc.
  • This process is performed by repeating the photolithography process of removing a necessary portion by etching several times. For this reason, many processes are required for manufacturing an active matrix substrate, and the manufacturing cost is high.
  • each cell of the color filter is connected to the light transmitting portion of the pixel electrode in consideration of the alignment accuracy of the light transmitting portion of the pixel of the active matrix substrate and the color filter.
  • a black matrix is formed to be small. For this reason, the aperture ratio of the pixel is reduced, and as a result, the power consumption of the liquid crystal display device is increased.
  • a method for forming a color filter on a pixel array on an active matrix substrate has also been proposed, but the number of manufacturing processes is sufficient, such as requiring a photolithographic process for producing a dedicated bank for forming the color filter. It has not been reduced.
  • An object of the present invention is to provide an active element substrate in which the number of photolithography processes is reduced and the manufacturing cost is reduced, a manufacturing method thereof, and a display device using the active element substrate manufactured by this manufacturing method.
  • the present invention employs a method of forming a photoresist film by a resist coating method that uses a slit coating method for forming a thin film element such as a thin film transistor on an active substrate constituting a display device, and patterning the photosensitive resist film.
  • a halftone exposure method is used.
  • the halftone exposure method is an ink receiver for the ink jet method.
  • the present invention is characterized by being applied to the formation of a bank groove formed of a resist.
  • the recess (bank groove) surrounded by the bank may be simply referred to as a bank.
  • the color filter is placed on the pixel array of the active matrix substrate to solve the problem that the light transmitting portion of the display device is smaller than the light transmitting portion of the pixel electrode due to the alignment accuracy with the counter substrate.
  • the aperture ratio is improved by forming the color filter forming bank and the pixel electrode forming bank in common.
  • the gate insulating film covering the terminal portion of the gate line and the terminal portion of the data line is etched, and the connection portion of the data line and the terminal portion is exposed.
  • the number of steps can be greatly shortened, and the aperture ratio of the display device can be greatly improved.
  • the power consumption of the liquid crystal display device is reduced.
  • the color filter is formed on the pixel array of the active matrix substrate as described above, the alignment accuracy with the counter substrate becomes unnecessary, so that the substrate of the counter substrate is made of a material different from the active matrix substrate. Therefore, it is possible to use an inexpensive glass substrate or a plastic substrate having a high light transmittance, so that the material cost can be greatly reduced.
  • a color filter is first formed on a pixel of an active matrix substrate in which a common line is formed in the same layer as the gate line and the gate electrode.
  • a transparent pixel electrode is solidly formed on the color filter, and then an interlayer insulating film is formed by CVD.
  • a photoresist is applied thereon and patterned by a halftone exposure method to form a bank made of a resist material having high light transmittance for forming a comb-like common electrode (common electrode, counter electrode).
  • the interlayer insulating film of the common electrode connecting portion connecting the common electrode to the common line is removed by etching to expose the common electrode connecting electrode, and the bank material covering the bottom surface of the comb-shaped electrode forming bank groove is ashed.
  • the comb-tooth-like resist pattern is formed on the comb-like transparent common electrode by the ink-jet method, thereby greatly reducing the number of processes and greatly improving the aperture ratio of the display device.
  • the counter substrate may be made of a material different from that of the active matrix substrate, and an inexpensive glass substrate or a plastic substrate with high light transmittance can be used to provide a display device with significantly reduced material costs. .
  • FIG. 1 is an explanatory diagram of steps of a first photolitho process and steps of a second photolitho process in Embodiment 1 according to the present invention.
  • FIG. 2A is a plan view for explaining a process in the first embodiment according to the present invention.
  • 2B is a cross-sectional view taken along line AA in FIG. 2A.
  • 2C is a cross-sectional view illustrating a process following FIG. 2B along the line AA in FIG. 2A.
  • FIG. 3A is a plan view of a main part of an active element substrate for explaining a thin film transistor, a data line, a source electrode, and a drain electrode formed by the second photolithography process of FIG. 1A.
  • FIG. 3B is a cross-sectional view showing a state in which the resist along the line BB in FIG. 3A is patterned into a predetermined pattern.
  • FIG. 3C is a cross-sectional view showing a state in which etching is performed to leave the island portion and the additional capacitance portion of the thin film transistor using the patterned resist along the line BB in FIG. 3A as an etching mask.
  • 3D shows a state in which the resist along the line BB in FIG. 3A is ashed to reduce the thickness of the resist film to open the halftone exposed portion 302, and the underlying source / drain metal is etched to form a semiconductor island.
  • FIG. 3E is a cross-sectional view showing a state where the upper-layer photoresist is removed after the formation of the semiconductor island along the line BB in FIG. 3A.
  • FIG. 4A is a diagram for explaining steps in the third photolithography process of the first embodiment according to the present invention.
  • FIG. 4B is a plan view of the main part of the pixel portion showing a state in which the pixel electrode is formed by the third photolithography process.
  • FIG. 4C is a cross-sectional view taken along the line CC of FIG. 4B for explaining a main part of the process of forming the pixel electrode.
  • FIG. 4D is a cross-sectional view of FIG. 4C taken along line CC in FIG. 4B for explaining a main part of the pixel electrode formation process.
  • FIG. 4A is a diagram for explaining steps in the third photolithography process of the first embodiment according to the present invention.
  • FIG. 4B is a plan view of the main part of the pixel portion showing a state
  • FIG. 4E is a cross-sectional view subsequent to FIG. 4D along the line CC in FIG. 4B for explaining the main part of the process of forming the pixel electrode.
  • FIG. 5A is a plan view of relevant parts for explaining the configuration of the terminal portion according to the first embodiment of the present invention.
  • FIG. 5B is a cross-sectional view taken along line DD in FIG. 5A.
  • FIG. 5C is a cross-sectional view illustrating a process following FIG. 5B along the line DD in FIG. 5A.
  • FIG. 5D is a cross-sectional view illustrating a process following FIG. 5C along the line DD in FIG. 5A.
  • FIG. 5E is a cross-sectional view illustrating a process following FIG. 5D along the line DD in FIG.
  • FIG. 6A is a diagram illustrating steps in the third photolithography process of the second embodiment according to the present invention.
  • FIG. 6B is a plan view of the main part of the pixel portion showing a state in which a black photoresist is applied by the third photolithography process and halftone exposure is performed.
  • 6C is a cross-sectional view taken along line EE of FIG. 6B.
  • 6D is a cross-sectional view illustrating a process following FIG. 6C along the line EE in FIG. 6B.
  • FIG. 6E is a cross-sectional view illustrating a process following FIG. 6D along the line E-E in FIG. 6B.
  • 6F is a cross-sectional view illustrating a process following FIG. 6E along the line EE in FIG.
  • FIG. 7A is a plan view of an essential part of the active element substrate for explaining the configuration of the terminal part according to Embodiment 2 of the present invention.
  • 7B is a cross-sectional view taken along line FF in FIG. 7A.
  • FIG. 7C is a cross-sectional view illustrating a process following 7B along line FF in FIG. 7A.
  • FIG. 7D is a cross-sectional view illustrating a process following 7C along line FF in FIG. 7A.
  • FIG. 7E is a cross-sectional view illustrating a process following 7D along line FF in FIG. 7A.
  • FIG. 8 is a diagram for explaining the steps in the third photolithography process of the third embodiment according to the present invention.
  • FIG. 8 is a diagram for explaining the steps in the third photolithography process of the third embodiment according to the present invention.
  • FIG. 8A is a plan view of a principal part of a pixel portion of an active element substrate according to Embodiment 3 of the present invention.
  • FIG. 8B is a cross-sectional view taken along the line U-U in FIG. 8A showing a state where the resist has been subjected to halftone exposure.
  • 8C is a cross-sectional view taken along the line U-U in FIG. 8A showing a state in which the resist patterned in FIG. 8B is ashed.
  • 8D is a cross-sectional view taken along the line U-U in FIG. 8A showing a state in which the pixel electrode connected to the drain electrode is formed by storing ink droplets in a necessary region using the resist of FIG. 8C as a bank.
  • FIG. 8B is a cross-sectional view taken along the line U-U in FIG. 8A showing a state where the resist has been subjected to halftone exposure.
  • 8C is a cross-sectional view taken along the line U-U in FIG
  • FIG. 9A is a plan view of a principal part of a terminal portion of an active element substrate according to Embodiment 3 of the present invention.
  • FIG. 9B is a cross-sectional view taken along line VV in FIG. 9A showing a process from resist coating to connection of the data line and the data line terminal.
  • FIG. 9C is a cross-sectional view taken along the line V-V in FIG. 9A subsequent to FIG. 9B showing the process from resist coating to connection of the data line and the data line terminal.
  • FIG. 9D is a cross-sectional view taken along the line V-V in FIG. 9A showing the process from resist coating to connection of the data line and the data line terminal, following FIG. 9C.
  • FIG. 9B is a cross-sectional view taken along line VV in FIG. 9A showing a process from resist coating to connection of the data line and the data line terminal, following FIG. 9C.
  • FIG. 9E is a cross-sectional view taken along the line V-V in FIG. 9A, following FIG. 9D, showing a process from resist coating to connection between the data line and the data line terminal.
  • FIG. 9F is a cross-sectional view taken along the line WW in FIG. 9A showing the process from resist coating to connection of the common line and the common electrode connection portion.
  • FIG. 9G is a cross-sectional view taken along the line W-W of FIG. 9A subsequent to FIG. 9F showing the process from resist coating to connection of the common line and the common electrode connection portion.
  • FIG. 9H is a cross-sectional view taken along the line WW in FIG. 9A, following FIG. 9G, showing the process from resist coating to connection between the common line and the common electrode connection portion.
  • FIG. 9E is a cross-sectional view taken along the line V-V in FIG. 9A, following FIG. 9D, showing a process from resist coating to connection between the data line and the data line terminal.
  • FIG. 9F is
  • FIG. 9I is a cross-sectional view taken along line WW in FIG. 9A showing the process from resist coating to connection between the common line and the common electrode connection portion, following FIG. 9H.
  • FIG. 10A is an explanatory diagram of a photolithography process for an active element substrate in which a comb-shaped common electrode is formed above a pixel electrode according to Embodiment 3 of the present invention.
  • FIG. 10B is a plan view of the main part of the pixel portion of the active element substrate for explaining a state in which the common electrode is formed on the pixel electrode according to Embodiment 3 of the present invention.
  • 10C is a cross-sectional view taken along line XX of FIG. 10B.
  • FIG. 10D is a cross-sectional view illustrating a process following FIG.
  • FIG. 11A is a plan view of a principal part of a terminal portion of an active element substrate for explaining a state in which a common electrode is formed on a pixel electrode according to Embodiment 3 of the present invention.
  • FIG. 11B is a cross-sectional view taken along line YY of FIG. 10B for explaining a process of forming a common electrode on the pixel electrode.
  • FIG. 11C is a cross-sectional view of FIG. 11B taken along line YY of FIG. 10B for explaining a process of forming a common electrode on the pixel electrode.
  • FIG. 11D is a cross-sectional view of FIG. 11C taken along line YY of FIG.
  • FIG. 10B for explaining a process of forming a common electrode on the pixel electrode.
  • FIG. 11E is a cross-sectional view of FIG. 11D taken along line YY of FIG. 10B for explaining a process of forming a common electrode on the pixel electrode.
  • FIG. 12A is a diagram for explaining steps in the fourth photolithography process of the fourth embodiment according to the present invention.
  • FIG. 12B is a plan view of a principal part of the pixel portion of the substrate on which the pixel electrode of Example 4 according to the present invention is formed.
  • 12C is a cross-sectional view taken along the line ZZ in FIG. 12B.
  • 12D is a cross-sectional view illustrating a process following FIG. 12C along the line ZZ in FIG. 12B.
  • FIG. 13A is a cross-sectional view taken along line AA-AA in FIG. 12B.
  • 13B is a cross-sectional view following FIG. 13A along the line AA-AA in FIG. 12B.
  • FIG. 14A is a diagram illustrating the process steps for forming the common electrode according to the fourth embodiment of the present invention.
  • 14B is a plan view of a main part of the pixel portion according to the fourth embodiment of the present invention.
  • FIG. 14C is a cross-sectional view taken along line BB-BB in FIG. 14B.
  • 14D is a cross-sectional view illustrating a process following FIG. 14C taken along line BB-BB in FIG. 14B.
  • 15A is a cross-sectional view taken along the line CC-CC in FIG. 14B.
  • FIG. 15B is a cross-sectional view illustrating a process following FIG. 15A along the line CC-CC in FIG. 14B.
  • FIG. 16 shows a process of an FFS-COA liquid crystal display device in which a gate line, a gate electrode, and a common line according to the fifth embodiment of the present invention are formed, and a color filter and a pixel electrode are formed on a TFT substrate on which a thin film transistor channel is formed. It is a figure explaining.
  • FIG. 17A is a plan view of the principal part of the image portion of the active element substrate according to Embodiment 5 of the present invention.
  • FIG. 17B is a cross-sectional view taken along line EE of FIG. 17A.
  • 17C is a cross-sectional view illustrating a process following FIG. 17B along the line EE in FIG. 17A.
  • 17D is a cross-sectional view illustrating a process following FIG. 17C along the line EE in FIG. 17A.
  • FIG. 17E is a cross-sectional view illustrating a process subsequent to FIG. 17D along the line EE in FIG.
  • FIG. 18A is a cross-sectional view taken along the line GG in FIG. 17A for explaining the connection process between the common electrode and the common line.
  • 18B is a cross-sectional view subsequent to FIG. 18A along the line GG in FIG. 17A for explaining the connection process between the common electrode and the common line.
  • 18C is a cross-sectional view subsequent to FIG.
  • FIG. 19A is a plan view of a principal part of a terminal portion of an active element substrate according to Embodiment 5 of the present invention.
  • 19B is a cross-sectional view taken along line FF in FIG. 19A.
  • FIG. 19C is a cross-sectional view illustrating the process following FIG.
  • FIG. 19B along the line FF in FIG. 19A.
  • FIG. 19D is a cross-sectional view illustrating a process following FIG. 19C taken along line FF in FIG. 19A.
  • FIG. 19E is a cross-sectional view illustrating a process following FIG. 19D taken along line FF in FIG. 19A.
  • FIG. 20 is a diagram illustrating a process for forming a common electrode connection portion of an active element substrate according to Embodiment 5 of the present invention.
  • FIG. 20A is a plan view of a pixel portion of an active element substrate according to Embodiment 5 of the present invention.
  • 20B is a cross-sectional view taken along line HH in FIG. 20A.
  • 20C is a cross-sectional view illustrating a process following FIG.
  • FIG. 21 is a diagram illustrating a process for forming a common electrode of an active element substrate according to Embodiment 5 of the present invention.
  • FIG. 21A is a plan view of a comb-like common electrode of an active element substrate according to Embodiment 5 of the present invention.
  • 21B is a cross-sectional view taken along the line KK in FIG. 21A.
  • FIG. 21C is a cross-sectional view illustrating a process following FIG. 21B along the line KK in FIG. 21A.
  • FIG. 21D is a cross-sectional view taken along line LL in FIG. 21A.
  • FIG. 21E is a cross-sectional view illustrating a process following FIG. 21D taken along line LL in FIG. 21A.
  • FIG. 22 is a diagram illustrating a process for forming a common electrode on an active element substrate according to Embodiment 6 of the present invention.
  • FIG. 23A is a plan view of a pixel portion of an active element substrate according to Embodiment 6 of the present invention.
  • FIG. 23B is a cross-sectional view of the active element substrate according to Example 6 of the present invention taken along line MM in FIG. 23A.
  • FIG. 23C is a cross-sectional view illustrating the process following FIG. 23B along the line MM in FIG.
  • FIG. 24A is a plan view of a terminal portion of an active element substrate according to Embodiment 6 of the present invention.
  • 24B is a cross-sectional view of the active element substrate according to Embodiment 6 of the present invention, taken along line NN in FIG. 23A.
  • 24C is a cross-sectional view illustrating the process following FIG. 24B along the line NN in FIG. 23A for the active element substrate according to the sixth embodiment of the invention.
  • 24D is a cross-sectional view illustrating the process following FIG. 24C taken along line NN in FIG. 23A for the active element substrate according to the sixth embodiment of the invention.
  • 24E is a cross-sectional view illustrating a process following FIG.
  • FIG. 24D taken along the line NN in FIG. 23A for the active element substrate according to the sixth embodiment of the invention.
  • FIG. 25 is a view for explaining a process of forming a multi-domain vertical alignment (MVA) type TFT substrate according to Embodiment 7 of the present invention.
  • FIG. 26A is a plan view showing one pixel portion of a TFT substrate according to a multi-domain vertical alignment (MVA) system in which the pixel according to the seventh embodiment of the present invention is divided into slits.
  • 26B is a cross-sectional view of the TFT substrate according to Example 7 of the present invention, taken along line OO in FIG. 26A.
  • FIG. 26C is a plan view of one pixel illustrating the configuration of another pixel electrode in which a protrusion is provided on a multi-domain vertical alignment (MVA) type pixel according to Embodiment 7 of the present invention.
  • FIG. 26D is a cross-sectional view taken along the line PP in FIG. 26C.
  • FIG. 26E is a cross-sectional view illustrating a process following FIG. 26D taken along the line P-P in FIG. 26C.
  • FIG. 27 is a view for explaining a process for forming a multi-domain vertical alignment (MVA-COA) type TFT substrate in which a color filter according to Example 8 of the present invention is provided on the TFT substrate side.
  • FIG. 28A is a plan view showing one pixel portion of a TFT substrate according to a multi-domain vertical alignment (MVA) system in which the pixel according to the eighth embodiment of the present invention is divided into slits.
  • 28B is a cross-sectional view taken along the line QQ in FIG. 28A.
  • FIG. 28C is a plan view of one pixel illustrating the configuration of another pixel electrode in which a protrusion is provided on a multi-domain vertical alignment (MVA-COA) pixel according to Example 8 of the present invention.
  • 28D is a cross-sectional view taken along the line RR in FIG. 28C.
  • FIG. 28E is a cross-sectional view illustrating a process following FIG. 28D taken along the line RR in FIG. 28C.
  • FIG. 29 is a view for explaining a third photolithography formation process of a multi-domain vertical alignment (MVA-COA) type TFT substrate in which a color filter according to Example 9 of the present invention is provided on the TFT substrate side.
  • FIG. 30A is a plan view of an essential part of an image portion showing a state in which a black photoresist is applied by a third photolithography process and halftone exposure is performed.
  • FIG. 30B is a cross-sectional view taken along the line E-E in FIG. 30A, showing a state after the third photolithography process described in step (S-63) in FIG. 29.
  • 30C is a cross-sectional view illustrating a process following FIG. 30B along the line EE in FIG. 30A.
  • FIG. 30D is a cross-sectional view illustrating a process following FIG. 30C taken along line EE in FIG. 30A.
  • FIG. 30E is a cross-sectional view illustrating a process following FIG. 30D along the line EE in FIG. 30A.
  • FIG. 31A is a plan view showing one pixel portion of a TFT substrate according to a multi-domain vertical alignment (MVA) system in which the pixel of Example 9 of the present invention is divided into slits.
  • 31B is a cross-sectional view taken along the line S-S in FIG. 31A.
  • FIG. 31C is a cross-sectional view taken along the line S-S in FIG. 31A.
  • FIG. 32A shows the color filter according to the ninth embodiment of the present invention.
  • FIG. 33A is a plan view showing one pixel portion of a TFT substrate in which a bank for forming a color filter, a pixel electrode and the like has a two-layer structure in a pixel electrode configuration in which a color filter according to Example 10 of the present invention is provided on the TFT substrate side.
  • FIG. 33B is a cross-sectional view taken along the line DD-DD in FIG. 33A.
  • FIG. 33C is a cross-sectional view illustrating a process following FIG. 33B along the line DD-DD in FIG. 33A.
  • FIG. 33D illustrates the configuration of another pixel electrode in which an insulating film is formed on the channel portion by inkjet before forming the black bank in the pixel electrode configuration in which the color filter according to Example 10 of the present invention is provided on the TFT substrate side. It is sectional drawing which followed the DD-DD line of FIG. 33A.
  • FIG. 33E is a cross-sectional view illustrating a process following FIG. 33D along the line DD-DD in FIG. 33A.
  • FIG. 33F is a cross-sectional view illustrating a process following FIG. 33E along the line DD-DD in FIG. 33A.
  • FIG. 34 is a schematic view of a liquid crystal display device for explaining a structural example of a display device according to the present invention.
  • Gate metal gate line / gate electrode / capacitor wiring forming metal film
  • 201 ... Gate line 202 ... Gate electrode 203 ... Retention capacitance line (common line) 300... Resist (photosensitive photoresist) 301... Resist (after ashing) 302... Resist (halftone exposure part) 400...
  • IJ resist bank (slit coater coating, halftone exposure) 701... IJ resist bank (after ashing: bank for pixel electrode formation) 702... Resist (halftone exposure part) 703... Projection (bank for preventing color filter leakage) 704... Insulating resist 705... Insulating film (current leakage preventing insulating film between source / drain electrode channels) 700K ... IJ black resist bank 701K ... IJ black resist bank (after ashing) 800... Pixel electrode (PX) 801 ... Terminal part connection part 803 ... Common wire 804 ... Common electrode connection electrode 805 ... Common electrode 806 ...
  • ITO transparent conductive film
  • Common electrode connection portion 807
  • Pixel division portion 808
  • Continuous portion 900
  • Gate line terminal 901 ⁇ ⁇ ⁇ Data line terminal 902 ⁇ ⁇ ⁇ Common line terminal 1000 ⁇ ⁇ ... Contact hole 1100 ... Color filter 1100G ... Color filter G (green filter) 1100B Color filter B (blue filter) 1100R Color filter R (red filter) 1200 ... interlayer insulating film 1700 ... resist 1800 ... ridge 2000 ... counter substrate 2001 ... alignment film 2002 ... liquid crystal 2003 ... backlight 2004 ... driver 2005 ... Display control device.
  • photoresist coating and halftone are suitable for the slit coating method for the processing process of the constituent layers of the thin film transistor on the active substrate constituting the display device and the conductive film forming process such as the pixel electrode and the common electrode. Reduction of the number of photolithography processes is realized by using resist bank patterning using exposure and applying conductive film material ink by an ink jet method.
  • the active element substrate and the manufacturing method thereof according to Example 1 of the present invention will be described with reference to FIGS. 1 to 5E.
  • the first embodiment is a so-called TN mode, in which a pixel electrode which is one display electrode is provided on the active element substrate side, and a counter electrode (common electrode) which is the other display electrode and a color filter are provided on the counter substrate side.
  • the present invention relates to an active element substrate used for a liquid crystal display device constituting a display device.
  • a thin film transistor is used as the active element.
  • the active element substrate is described as a thin film transistor substrate or simply a TFT substrate.
  • the first photolithography process is a step of forming a gate line, a gate electrode, and a storage capacitor line (common line).
  • the second photolithography process is a step from the formation of the semiconductor island (active layer island) to the formation of the channel by etching the data line, the source electrode / drain electrode, and the back channel thereof.
  • the back channel is a gap on the back surface of the channel portion of the transistor obtained by etching away the ohmic contact layer (n + layer) in the gap between the source electrode and the drain electrode in the upper layer of the semiconductor island. Since this ohmic contact layer has conductivity, this layer is etched so that the source electrode and the drain electrode face each other on the semiconductor to form a channel of the transistor.
  • a gate metal sputtering step is performed in which gate metal is sputtered on an insulating substrate (hereinafter also simply referred to as a substrate) that does not generate ions that contaminate the semiconductor layer and is preferably made of low thermal expansion glass.
  • Step-1 hereinafter expressed as S-1
  • the photoresist coating in step (S-2) may be performed by a slit coating method, an ink jet method (IJ), or a spin coating method.
  • a gate insulating layer (SiN), a silicon layer (a-Si), and an ohmic contact layer (n + ) are deposited in this order by CVD so as to cover the gate line, the gate electrode, and the storage capacitor line.
  • processing is performed by changing etching conditions such as an etching chemical.
  • etching conditions such as an etching chemical.
  • wet etching is mainly used for metals
  • dry etching is mainly used for silicon layers and ohmic contact layers (n +).
  • FIG. 2A is a plan view of a principal part for explaining the gate line and gate electrode pattern formed by the first photolithography process of FIG. 1A.
  • 2B and 2C are cross-sectional views taken along the line AA of FIG. 2A for explaining a main part of the process of forming the gate line and the gate electrode.
  • FIG. 2B shows a state in which a gate line patterned in the first photo process, a resist for a gate electrode, and a resist 300 for a storage capacitor line are formed on a gate metal 200 sputtered on the substrate 100.
  • FIG. 2C shows a state in which the gate metal 200 is etched using the resist 300 of FIG. 2B as a mask, the resist 300 is removed, and the gate line 201, the gate electrode 202, and the storage capacitor line 203 are formed.
  • FIG. 3A is a plan view of a main part of an active element substrate for explaining a thin film transistor, a data line, a source electrode, and a drain electrode formed by the second photolithography process of FIG. 1A.
  • 3B to 3E are cross-sectional views taken along the line BB of FIG. 3A for explaining the main part of the formation process of the thin film transistor, the data line, the source electrode, and the drain electrode.
  • the gate insulating film (SiN) 400, the silicon layer (a-Si) 500, and the ohmic contact layer (n + ) 501 cover the gate line 201, the gate electrode 202 and the storage capacitor line 203 shown in FIG. 2A.
  • CVD three-layer CVD film formation.
  • a source / drain metal (S / D metal) 600 to be a source line and a source / drain electrode is formed thereon by sputtering.
  • a photoresist is applied using a slit coater (an ink jet device may be used) and dried to form a photoresist layer 300.
  • the photoresist layer 300 is exposed through an exposure mask having a halftone opening in part.
  • the halftone exposure portion 302 is located in the channel formation portion of the thin film transistor.
  • the gap along the BB line of the halftone exposure portion 302 is the channel width.
  • a negative type photoresist is used so that the photoresist portion of the sufficiently exposed portion (all exposed portions) is solubilized in all layers, and the shaded portion of the exposure mask is insoluble in the developer solution.
  • the exposure mask is a pattern having a light transmittance such that the exposure light energy (light quantity) of the halftone exposure portion is smaller than that of the entire exposure portion, or an opening pattern in which the exposure amount is reduced by light interference. Suppresses solubilization reaction of partial photoresist.
  • the amount of light at the halftone exposure portion is determined in relation to the resist thinning amount in ashing described later.
  • a positive photoresist may be used, and a required halftone exposure may be performed in combination with an exposure mask having exposure characteristics opposite to those described above.
  • FIG. 3B shows a state in which the resist is patterned into a predetermined pattern.
  • etching is performed to leave island portions and data line portions of the thin film transistors using the patterned resist as an etching mask.
  • etching (S-7) of the source / drain metal (S / D metal) 600 to be the data line, the source electrode, and the drain electrode is performed.
  • the silicon layer (a-Si) 500 is etched following the ohmic contact layer (n + ) 501 (S-8).
  • etching chemicals corresponding to the respective layers are used.
  • the resist 300 is ashed to reduce the thickness of the resist film 300, thereby opening the halftone exposed portion 302 and exposing the underlying source / drain metal 600 (S-9).
  • the exposed source / drain metal 600 of the channel portion is etched (S-10).
  • the lower ohmic contact layer (n + ) 501 is etched (back channel etching: S-11), and finally the resist is removed.
  • S-9 source / drain metal 600
  • S-10 lower ohmic contact layer
  • S-11 back channel etching
  • 4A to 5E are explanatory diagrams of the third photolithography process of the first embodiment according to the present invention.
  • 4A is a view for explaining steps in the third photolithography process of Embodiment 1 according to the present invention.
  • a photoresist is applied to the thin film transistor substrate shown in FIG. 3E using a slit coater, and a halftone exposure mask is used.
  • a contact hole connecting the pixel portion and the pixel electrode as one display electrode to the drain electrode is half-tone exposed, and the terminal portion of the gate line and the terminal portion of the data line are fully exposed to form a bank around the pixel electrode.
  • S-12 This step (S-12) is the third photolithography process.
  • the terminal portion of the gate line and the terminal portion of the data line are exposed (S-13). Thereafter, the resist is ashed to remove the resist in the pixel portion and the contact hole (S-14). The pixel portion and the contact hole are surrounded by a resist bank. Inside this bank, ink in which a transparent conductive film material suitable for ITO is dispersed is dropped and applied (S-15). Thereafter, the ink film is baked to form a pixel electrode connected to the thin film transistor.
  • FIG. 4B is a main part plan view of the pixel portion showing a state in which the pixel electrode is formed by the third photolithography process of the first embodiment according to the present invention.
  • the pixel electrode 800 is connected to the drain electrode of the thin film transistor TFT through the contact hole 1000.
  • the pixel electrode 800 connected to the drain electrode of the thin film transistor TFT through the contact hole 1000 is disposed inside the bank 701 formed above the two gate lines 201 and the two data lines.
  • FIG. 4C to 4E are cross-sectional views taken along the line CC of FIG. 4B for explaining the main part of the process of forming the pixel electrode.
  • a photoresist is applied to the thin film transistor substrate shown in FIG. 3E with a slit coater, and a contact hole connecting the pixel portion and the pixel electrode to the drain electrode is subjected to half-tone exposure using a half-tone exposure mask.
  • the terminal portion and the terminal portion of the data line are fully exposed, and show a state after the third photolithography process described in step (S-12) of FIG. 4A in which a bank is formed around the pixel electrode.
  • the resist film is thinned by halftone exposure in the pixel portion and the contact hole 1000.
  • the thinned halftone exposed resist is indicated by 702.
  • a half-tone exposed portion of the resist 702 is surrounded by a thick resist 700.
  • FIG. 4D shows a state in which the resist film 700 and the resist 702 at the halftone exposure portion are ashed to reduce the thickness.
  • the resist in the pixel portion and the contact hole portion is removed by ashing.
  • the film thickness of the remaining resist 701 is slightly thinner than that of the resist 702 in the removed halftone exposure portion.
  • FIG. 4E shows a pixel electrode 800 made of a transparent conductive film, in which an ink in which a transparent conductive material suitable for ITO is dispersed is dropped inside the bank for pixel formation formed by the resist 701 using an inkjet apparatus. Indicates the state.
  • a pixel electrode 800 is connected to the drain electrode 603 of the thin film transistor through a contact hole 1000.
  • the height h from the substrate 100 of the upper surface of the transparent conductive film covering the drain electrode 603 is lower than the height H from the substrate 100 of the upper surface of the bank for pixel formation formed by the resist 701 (height). h is less than height H).
  • FIG. 5A is a plan view of relevant parts for explaining the configuration of the terminal portion according to the first embodiment of the present invention.
  • 5A is a plan view corresponding to FIG. 5B described later in which the terminal portion is covered with the gate insulating film 601.
  • FIG. 5B to 5E are cross-sectional views along the line DD in FIG. 5A.
  • FIG. 5B shows a state in which the resist film 700 subjected to halftone exposure is reduced in thickness at the contact hole 1000 connecting the data line and its terminal 901.
  • FIG. 5C shows a state where the gate insulating film 601 is removed by etching using the resist film 700 and the halftone exposure resist 702 as an etching mask.
  • FIG. 5D shows a state in which the resist film is thinned by ashing, and it is shown that the resist in the portion of the contact hole 1000 is removed and the data line 601 is exposed.
  • FIG. 5E shows that a terminal connection portion 801 is formed by dropping and applying an ink in which a transparent conductive material suitable for ITO is dispersed in the contact hole 1000 with an ink jet apparatus, and a data line is connected to the terminal 901 by the terminal connection portion 801. Indicates the connected state.
  • the height h ′ of the upper surface of the terminal connection portion 801 from the substrate 100 is lower than the height H ′ of the upper surface of the bank for forming pixels formed of the resist 701 from the substrate 100 (height h ′). Is less than the height H ′).
  • ITO which is the same material as the pixel electrode 800, is preferably used as a material to be dropped and applied to the contact hole 1000.
  • the material is conductive and has a low contact resistance between the data line 400 and the terminal portion 901. I need it.
  • Ni, Mo, W, etc. may be used.
  • the active matrix substrate can be manufactured with a small number of processes as a whole, and a TN liquid crystal display device can be provided at low cost.
  • Example 2 relates to a TN liquid crystal display device of a so-called TN system and a color filter on array (COA) system (TN-COA) in which a color filter is formed on an active element substrate.
  • TN-COA color filter on array
  • the active element a thin film transistor is used as in the first embodiment.
  • the active element substrate is described as a thin film transistor (TFT) substrate.
  • FIG. 6A is a diagram for explaining steps in the third photolithography process of Example 2 according to the present invention, in which a black photoresist mixed with a black material is applied to the thin film transistor substrate shown in FIG. 3E using a slit coater; The contact hole connecting the pixel portion and the pixel electrode to the drain electrode using a halftone exposure mask is halftone exposed, the terminal portion of the gate line and the terminal portion of the data line are fully exposed, and a black photoresist ( A bank of simply black resist is formed (S-16). This step (S-16) is the third photolithography process.
  • a black resist protrusion formed unexposed is provided between the pixel electrode formation portion and the contact hole connecting the pixel electrode and the drain electrode of the thin film transistor.
  • This protrusion is for preventing the color filter ink, which is applied by ink jet before the pixel electrode is applied by ink jet, from overflowing into the contact hole.
  • the terminal portion of the gate line and the terminal portion of the data line are exposed (S-17). Thereafter, the resist is ashed to remove the resist in the pixel portion and the contact hole (S-18). The pixel portion and the contact hole are surrounded by a black resist bank. The protrusion is located between the pixel electrode forming portion and the contact hole.
  • the ink in which a color filter material of a predetermined color (R, G, or B) is dispersed is applied to the inside of the bank and the pixel electrode formation side of the ridge by applying an ink jet device (S-19).
  • the color filter ink is prevented from leaking into the contact hole by the protrusions.
  • the bank of black resists surrounds the pixels and functions as a black matrix. Thereafter, the ink film is baked to form a color filter.
  • An ink in which a transparent conductive film material suitable for ITO is dispersed is dropped and applied on the upper layer of the color filter and over the above-mentioned protrusions so as to cover and reach the contact hole (S-20). Thereafter, the ink film is baked to form a pixel electrode as one display electrode connected to the drain electrode of the thin film transistor.
  • the firing of the color filter and the firing of the pixel electrode are performed independently, but the firing of the color filter is performed at a low temperature that does not cause a problem in forming the ink film for forming the pixel electrode.
  • the firing may be performed at once.
  • FIG. 6B is a plan view of a main part of the pixel portion showing a state in which a black photoresist is applied by the third photolithography process and halftone exposure is performed.
  • the halftone exposure part is a pixel electrode forming part (color filter is applied to the lower layer of the pixel electrode) as one display electrode and a contact hole part.
  • the contact hole 1000 is isolated from the pixel electrode formation portion by a protrusion 703.
  • FIG. 6C to 6F are cross-sectional views taken along line EE in FIG. 6B.
  • a black photoresist 700K is applied to the thin film transistor substrate by inkjet, and the contact hole connecting the pixel portion and the pixel electrode to the drain electrode is subjected to halftone exposure using a halftone exposure mask, and the terminal portion of the gate line and the data line are connected.
  • the terminal portion is fully exposed, and shows the third photolithography process described in step (S-16) of FIG. 6A in which a black bank is formed around the pixel electrode.
  • the resist film is thinned by halftone exposure in the pixel portion and the contact hole 1000.
  • the black resist of the halftone exposure part which became thin is shown by 702K.
  • the periphery of the resist 702K in the halftone exposure portion is surrounded by a thick black resist 700K.
  • FIG. 6D shows a state in which the black resist film 700K and the black resist 702K at the halftone exposure portion are ashed and thinned.
  • the resist in the pixel portion and the contact hole portion is removed by ashing.
  • the film thickness of the remaining black resist 701K is slightly thinner than the removed black resist 702K of the halftone exposure portion.
  • FIG. 6E shows a state in which the color filter ink 1100 is applied to the inside of the bank for pixel formation formed of the black resist 701K by using an ink jet apparatus.
  • FIG. 6F shows a pixel electrode 800 in which ink in which a transparent conductive material suitable for ITO is dispersed is dropped on the color filter 1100 and over the ridge 703K to the contact hole 1000 by an inkjet device. Indicates the state.
  • a pixel electrode 800 is connected to the drain electrode 603 of the thin film transistor through a contact hole 1000.
  • FIG. 7A is a plan view of an essential part of the active element substrate for explaining the configuration of the terminal part according to the second embodiment of the present invention.
  • FIG. 7A is a plan view of an active element substrate corresponding to FIG. 7B described later in which the terminal portion is covered with a gate insulating film 601.
  • 7B to 7E are cross-sectional views taken along line FF in FIG. 7A.
  • FIG. 7B shows a state where the black resist film 700K subjected to the halftone exposure is reduced in thickness at the portion of the contact hole 1000 connecting the data line and the terminal 901 thereof.
  • FIG. 7C shows a state in which the gate insulating film 400 is removed by etching using the black resist film 700K and the halftone exposure resist 702K as an etching mask.
  • FIG. 7D shows a state in which the thickness of the black resist film is reduced by the ashing process, and it is shown that the black resist in the contact hole 1000 is removed and the data line 601 is exposed.
  • FIG. 7E shows a state in which ink in which a transparent conductive material suitable for ITO is dispersed is dropped and applied to the contact hole 1000 by an inkjet apparatus, and the data line 601 is connected to the terminal 901 by the terminal connection portion 801.
  • ITO which is the same material as the pixel electrode 800, is preferably used as a material to be dropped and applied to the contact hole 1000.
  • the material is conductive and has a low contact resistance between the data line 400 and the terminal portion 901. I need it.
  • Ni, Mo, W, etc. may be used. The same applies to the embodiments described below.
  • the active element substrate and the liquid crystal display device can be manufactured inexpensively with a small number of processes as a whole. Since the color filter is formed on the TFT substrate side, the aperture ratio is improved without considering the margin of alignment with the counter substrate, and as a result, the power consumption of the liquid crystal display device is reduced, and the TFT substrate is used as the counter substrate.
  • An inexpensive glass substrate made of a material different from the above or a plastic substrate excellent in light transmittance can be adopted, and a color filter on array type TN liquid crystal display device with reduced material cost can be provided.
  • Example 3 relates to an active element substrate for a so-called FFS (Fringe Field Switching) type liquid crystal display device.
  • FFS Flexible Field Switching
  • the first photolithography process for forming the gate line, the gate electrode and the additional capacitance line (common line) on the substrate and the second photolithography process for forming the channel of the thin film transistor are described in the first embodiment. 2 is the same as FIG. 2, and a duplicate description is omitted.
  • the third photolithography process of the third embodiment will be described.
  • the common line is formed simultaneously with the gate line and the gate electrode, but the common line may be considered to be the same as the additional capacitance line in the first and second embodiments.
  • FIG. 8 is a diagram for explaining steps in the third photolithography process of the third embodiment according to the present invention.
  • a photoresist is applied to the substrate obtained by the above-described second photolithography process using a slit coater.
  • the photoresist is exposed using a halftone exposure mask and patterned to form a bank (IJ bank) (S-21).
  • IJ bank bank
  • the gate insulating film is processed and removed by etching to form a contact hole 1000 for connecting the gate line terminal 900, the common line terminal 902, the data line terminal 901, and the data line terminal, and a contact hole 1000 at the common electrode connection portion of the common line. Then, the underlying wiring or electrode is exposed (S-22). The resist is ashed to reduce the thickness (S-23). Ink formed by dispersing ITO as a transparent conductive film in a bank made of resist is applied using an ink jet device, and ITO is embedded in the pixel electrode and each contact hole to form each connection electrode. (S-24).
  • FIG. 8A is a plan view of the principal part of the image portion of the active element substrate according to Embodiment 3 of the present invention.
  • One unit pixel (each color pixel in the case of color display, sub-pixel: sub-pixel) is formed in an area surrounded by two gate lines 201 and two data lines 601 formed on the substrate 100. .
  • FIG. 8A shows a state in which a bank 700 is formed by halftone exposure and development of a resist.
  • a thin resist film 702 is formed by halftone exposure at a pixel electrode formation portion and a contact hole 1000 portion connecting the pixel electrode to the drain electrode of the thin film transistor.
  • the common line 803 is formed in the direction parallel to the gate line 201 at the center of the pixel. In the pixel electrode formation region, a part of the bank protrudes above the common line 803 to form a common electrode connection portion 807, and a contact hole 1000 is formed in the common electrode connection portion 807.
  • FIG. 8B is a cross-sectional view taken along the line U-U in FIG. 8A.
  • a thin film transistor array is formed on the substrate 100.
  • a photoresist is coated thereon, exposed using a halftone exposure mask, and developed to pattern a resist composed of the unexposed portion 700 and the halftone exposed portion 701.
  • the unexposed portion has a thick resist film, and the halftone exposed portion 701 has a thin resist film.
  • FIG. 8C is a cross-sectional view taken along the line U-U in FIG. 8A showing a state in which the resist patterned in FIG. 8B is ashed.
  • the resist film thickness is reduced, and the resist 701 at the halftone exposure portion is removed.
  • the gate insulating film 400 in the pixel electrode formation region is exposed, and the drain electrode 603 is exposed in the contact hole 1000 portion.
  • the resist 701 becomes a bank to store ink droplets in a necessary area. This state is shown in FIG. 8D.
  • FIG. 9A is a plan view of a principal part of a terminal portion of an active element substrate according to Embodiment 3 of the present invention.
  • a gate line terminal 900, a data line terminal 901, and a common line terminal 902 are formed on the terminal portion of the active element substrate.
  • the resist bank 701 (FIG. 9D) has a common electrode connection portion 807 protruding into the pixel formation region above the common line 803, and a common electrode as the other display electrode described later is common to the common electrode connection portion 807.
  • a contact hole 1000 for forming a common electrode connection electrode 804 (FIG. 9I) connected to the line 803 is provided.
  • FIGS. 9B to 9I are cross-sectional views taken along the line V-V in FIG. 9A showing the process from resist coating to connection of data lines and data line terminals.
  • FIG. 9B shows a state in which a resist 700 is applied, exposed using a halftone exposure mask, developed, and patterned. The resist of the halftone exposure portion is indicated by 702. Using this resist pattern as an etching mask, the gate insulating film 400 is etched to expose the data line terminal 901 portion and the contact hole 1000 portion. This state is shown in FIG. 9C.
  • FIG. 9D shows a state where the data line 601 is exposed by ashing the resist to remove the resist at the halftone exposure portion. Thereafter, the ink in which ITO is dispersed is applied by ink jetting to form the terminal portion connection portion 801. This state is shown in FIG. 9E.
  • FIG. 9F is a cross-sectional view taken along the line WW in FIG. 9A showing the process from resist coating to formation of the common line and the common electrode connection electrode.
  • FIG. 9F shows a state in which a resist 700 is applied, exposed using a halftone exposure mask, a halftone exposed portion 702 is formed, developed, and patterned.
  • the contact hole 1000 described with reference to FIGS. 8A and 9A is formed in a part of the common line 803.
  • the gate insulating film 400 in the contact hole 1000 is etched to expose the common line 803 directly below. This is shown in FIG. 9G.
  • FIG. 9H shows a state in which the resist is ashed, and shows that the entire exposed portion is a resist film 701 having a reduced thickness by ashing.
  • the common electrode connection electrode 804 is formed by applying the ITO dispersed ink to the contact hole 1000 by inkjet application. This is shown in FIG. 9H.
  • the ITO dispersion ink is applied in the same process as the formation of the terminal portion connection electrode and the pixel electrode.
  • FIG. 10A is an explanatory diagram of a photolithography process for an active element substrate in which a comb-shaped common electrode is formed above a pixel electrode according to Embodiment 3 of the present invention.
  • an interlayer insulating film is formed by CVD on the active element substrate shown in FIGS. 8D, 9E, and 9I (S-25).
  • the interlayer insulating film is made of silicon nitride (SiN), but is not limited to this.
  • a photoresist is applied onto the interlayer insulating film by a slit coater, exposed using a halftone exposure mask, and developed to form a resist pattern (S-26).
  • the interlayer insulating film is etched to expose the common electrode connection portion and the terminal portion (S-27).
  • the resist is ashed to remove the resist in the halftone portion (S-28), and an ITO ink in which a transparent conductive material suitable for ITO is dispersed is applied by ink jet (S-29).
  • ITO ink is stored in a bank of resist. Thereafter, the ink film is baked to form a comb-like common electrode connected to the common line.
  • FIG. 10B is a plan view of the main part of the pixel portion of the active element substrate for explaining a state in which the common electrode is formed on the pixel electrode.
  • a comb-like common electrode 805 is formed on the substrate 100 with an interlayer insulating film 1200 interposed therebetween.
  • the common electrode 805 is connected to the common line 803 by the common electrode connection electrode 804.
  • FIGS. 10C and 10D are cross-sectional views taken along line XX of FIG. 10B.
  • An interlayer insulating film (SiN) 1200 is formed by CVD on the substrate described in FIGS. 8A and 9A, and A photoresist 700 is applied thereon, halftone exposure is performed with a halftone exposure mask, and development is performed to form a common electrode connection portion and a comb-like common electrode pattern.
  • the resist is ashed to form a bank surrounding the pixel region and the contact hole.
  • the comb-like resist pattern 701 penetrates through the lower interlayer insulating film 1200.
  • FIG. 11A is a plan view of a principal part of a terminal portion of an active element substrate for explaining a state in which a common electrode is formed on a pixel electrode.
  • a comb-like common electrode 805 is formed on the substrate 100 through an interlayer insulating film.
  • the common electrode 805 is connected to the common line 803 by the common electrode connection electrode 804.
  • FIG. 11B to 11E are cross-sectional views taken along the line YY of FIG. 10B for explaining the process of forming the common electrode on the pixel electrode.
  • a photoresist 700 is applied on the interlayer insulating film 1200, and a comb-like resist pattern is formed using a halftone exposure mask.
  • FIG. 11C using the resist pattern as an etching mask, the interlayer insulating film 1200 in the common electrode connection portion, the gate line terminal portion, the common line terminal portion, and the data line terminal portion is etched away.
  • the portion of the comb-like resist pattern is half-tone exposed. As shown in FIG. 11D, the resist is ashed to penetrate the opening of the common electrode forming portion of the comb-like resist pattern through the interlayer insulating film 1200. Let An ink in which a transparent conductive material suitable for ITO is dispersed is applied to the common electrode formation portion and the opening on the common electrode connection electrode 804 by ink jet to form a comb-like common electrode 805 and the common electrode connection electrode 804. And the common electrode 805 are connected. This state is shown in FIG. 11E.
  • the active element substrate and the liquid crystal display device can be manufactured with a small number of processes as a whole, and the FFS type can be manufactured.
  • a liquid crystal display device can be provided at low cost.
  • the active element substrate and the manufacturing method thereof according to Example 4 of the present invention will be described with reference to FIGS. 12A to 15B.
  • the fourth embodiment is a modification of the third embodiment, in which an active element substrate for an FFS mode liquid crystal display device is manufactured five times, one more photolitho process than the third embodiment.
  • a first photolithography process for forming a gate line, a gate electrode and an additional capacitance line (common line) on a substrate a second photolithography process for forming a channel of a thin film transistor, and a third for forming a pixel electrode. Since the process up to the photolitho process is the same as that of the third embodiment, a duplicate description is omitted.
  • the fourth photolithography process of the fourth embodiment will be described.
  • FIG. 12A is a diagram for explaining steps in the fourth photolithography process of the fourth embodiment according to the present invention.
  • an interlayer insulating film SiN is formed by CVD on the substrate on which the pixel electrode 800 is formed in Example 3 (S-30).
  • a photoresist is applied thereon, exposed (S-31), and developed to etch the interlayer insulating film between the common electrode connection portion and the terminal portion, thereby exposing the common electrode connection portion and the terminal portion (S-32).
  • FIG. 12B is a plan view of the main part of the pixel portion of the substrate on which the pixel electrode is formed.
  • an interlayer insulating film SiN
  • a photoresist 1700 is applied thereon, exposed using an exposure mask, and developed to form a resist pattern.
  • FIG. 12D is a cross-sectional view taken along line ZZ in FIG. 12B for explaining the state, and FIG. 12D shows a state in which the resist is removed after etching the interlayer insulating film of the common electrode connection portion using the resist pattern as an etching mask (FIG. 13B). In FIG. 12D, the resist is simply removed.
  • FIG. 13A and 13B are cross-sectional views of the common electrode connecting portion along the line AA-AA in FIG. 12B.
  • FIG. 13A shows a state in which a photoresist 1700 is applied so as to cover the interlayer insulating film 1200 formed on the interlayer insulating film 1200 and patterned to provide an opening above the common electrode connection electrode 804.
  • FIG. 13B shows a state in which the interlayer insulating film 1200 is etched using the resist pattern of FIG. 13A as an etching mask to expose the common electrode connection electrode 804.
  • FIG. 14A is a diagram for explaining the process steps for forming the common electrode.
  • a transparent conductive material suitable for ITO is sputtered onto the substrate described in FIGS. 12D and 13B (S-33).
  • a photoresist is applied thereon, exposed with an exposure mask, and developed to form a comb-shaped resist pattern for forming a common electrode (S-34).
  • ITO is etched with this resist pattern to form a comb-like common electrode (S-35).
  • FIG. 14B is a plan view of the main part of the pixel portion of the fourth embodiment.
  • FIG. 14C is a cross-sectional view taken along the line BB-BB in FIG. 14B showing a state in which the pattern of the common electrode forming resist 1700 is formed on the ITO.
  • FIG. 14D shows a state in which ITO 806 is etched using this resist pattern as an etching mask to form a comb-like common electrode 805.
  • FIG. 15A is a cross-sectional view taken along the line CC-CC of FIG. 14B and shows a state in which a photoresist 1700 is applied on ITO 806, exposed, developed and patterned. A state in which the ITO 806 is etched using this resist pattern as an etching mask to form a comb-like common electrode connected to the common electrode connection electrode 804 is shown.
  • the active element substrate and the liquid crystal display device can be manufactured with a small number of processes as a whole, and the FFS type liquid crystal can be manufactured.
  • a display device can be provided at low cost.
  • Example 5 relates to an active element substrate for a liquid crystal display device (FFS-COA method) of the above-described FFS method and having a color filter formed on the TFT substrate side. Since the first photolithography process for forming the gate line, the gate electrode, and the common line on the substrate of the fifth embodiment and the second photolithography process for forming the channel of the thin film transistor are the same as those of the fourth embodiment described above, overlapping Explanation is omitted, and here, the third photolithography process of the fifth embodiment will be described.
  • FFS-COA method liquid crystal display device
  • FIG. 16 is a diagram for explaining the process of the FFS-COA type liquid crystal display device in which the color filter and the pixel electrode are formed on the TFT substrate in which the gate line, the gate electrode, and the common line are formed and the channel of the thin film transistor is formed.
  • a gate line, a gate electrode, and a common line are formed, a photoresist is applied to the TFT substrate on which a thin film transistor channel is formed by a slit coater, and a resist pattern having a resist bank function for forming pixel electrodes, color filters, and common electrodes is formed.
  • Form (S-36) Form (S-36).
  • the gate insulating film is etched to form gate line terminals, common line terminals, data line terminals, contact holes for connecting the data lines and data line terminals, and contact holes for connecting the common electrodes to the common lines. (S-37).
  • the resist pattern is ashed to remove the resist at the halftone exposure portion (S-38).
  • the ink in which the color filter material is dispersed in the pixel region is applied using an ink jet device (S-39). Thereafter, an ink in which a transparent conductive film material suitable for ITO is dispersed is applied using an ink jet to form a pixel electrode, and a contact hole for connecting the data line and the data line terminal and a contact for connecting the common electrode to the common line.
  • An ITO film is buried in the hole to make a contact (S-40).
  • FIG. 17A is a plan view of the principal part of the image portion of the active element substrate according to Embodiment 5 of the present invention.
  • One unit pixel (each color pixel in the case of color display, sub-pixel: sub-pixel) is formed in an area surrounded by two gate lines 201 and two data lines 601 formed on the substrate 100.
  • . 17B to 17E are cross-sectional views taken along the line EE of FIG. 17A
  • FIGS. 18A to 18E are cross-sectional views taken along the line GG of FIG. 17A.
  • FIG. 19A is a plan view of the principal part of the terminal portion of the active element substrate according to Embodiment 5 of the present invention.
  • 19B to 19E are cross-sectional views taken along line FF in FIG. 19A.
  • FIGS. 17A and 17B to 17E an active element substrate manufacturing process according to Embodiment 5 of the present invention will be described.
  • a resist 700K mixed with a black material is subjected to halftone exposure and developed to form a bank 700K.
  • a pixel electrode formation portion and a contact hole 1000 portion connecting the pixel electrode to the drain electrode of the thin film transistor are formed into a thin resist film 702K by halftone exposure.
  • the common line 803 is formed in the direction parallel to the gate line 201 at the center of the pixel.
  • a part of the bank protrudes above the common line 803 to form a common electrode connection portion 807, and a contact hole 1000 is formed in the common electrode connection portion 807.
  • the resist pattern after exposure and development of the resist 700K has a protrusion 703K formed between the color filter application portion in the pixel region and the drain portion of the thin film transistor.
  • the protrusions 703K prevent the color filter ink from overflowing into the drain electrode 603 of the thin film transistor when the color filter 1100 is applied in the resist bank 701K as shown in FIGS. 17C to 17D.
  • an ITO ink in which a transparent conductive material suitable for ITO is dispersed in the resist bank 701K is applied by an ink jet apparatus to form a pixel electrode 800.
  • the ITO ink is applied to the drain electrode 603 of the thin film transistor beyond the protrusion 703K, and connects the pixel electrode 800 to the drain electrode. This state is shown in FIG. 17E.
  • FIG. 18A to 18E show a connection process between the common electrode and the common line, which is described along the line GG in FIG. 17A.
  • a common line 803 is formed in the same layer in the pixel region in parallel with the gate line.
  • a common line 803 is covered with an interlayer insulating film 400, and a data line 601 is formed thereon.
  • a photoresist 700K mixed with a black material is applied thereon, and halftone exposure is performed using an exposure mask.
  • FIG. 18A shows a resist pattern after development, where an unexposed portion is 700K and a halftone exposed portion is 702K.
  • the interlayer insulating film 400 is etched to remove the interlayer insulating film 400 in the common electrode connection portion 807 and expose the lower common line 803. This state is shown in FIG. 18B. Subsequently, the resist is ashed to remove the resist at the halftone exposure portion.
  • the resist 701K becomes a resist bank (FIG. 18C).
  • An ink of a color filter material is applied into the bank 701K using an ink jet device (FIG. 18D).
  • an ITO ink in which a transparent conductive material suitable for ITO is dispersed is applied by an ink jet apparatus to form the pixel electrode 800 and the common electrode connection electrode 804.
  • the common electrode connection electrode 804 is filled in the common electrode connection portion 807 and connected to the common electrode 803. This state is shown in FIG. 18E.
  • FIG. 19A is a plan view of a principal part of a terminal portion of an active element substrate according to Embodiment 5 of the present invention.
  • the resist 700K mixed with a black material is subjected to halftone exposure and developed to form a resist bank 700K.
  • 19A to 19E show a process for connecting the data line 601 to the data line terminal 901.
  • FIG. 19B shows a state where the contact hole 1000 portion connecting the data line 601 to the data line terminal 901 has a resist subjected to halftone exposure.
  • FIG. 19C shows a state in which the interlayer insulating film 400 is etched using the resist pattern of FIG. 19B as an etching mask to remove the terminal 901 and the interlayer insulating film 400 in the contact hole 1000 portion. Thereafter, ashing is performed to reduce the thickness of the resist pattern, and the resist at the halftone exposure portion is removed (FIG. 19D).
  • An ITO ink in which a transparent conductive material suitable for ITO is dispersed is applied by an inkjet apparatus.
  • the contact hole 1000 is filled with a transparent conductive material, and the data line 601 is connected to the data line terminal 901 through the terminal connection portion 801 (FIG. 19E).
  • FIG. 20 is a diagram illustrating a process for forming a common electrode connection portion of an active element substrate according to Embodiment 5 of the present invention.
  • an interlayer insulating film is formed on the substrate shown in FIG. 17E by CVD.
  • SiN is used for the interlayer insulating film (S-41).
  • the interlayer insulating film is covered, a resist is applied, exposed, and developed (S-42), and the interlayer insulating film between the common electrode connecting portion and the terminal portion is etched (S-43).
  • FIG. 20A is a plan view of the pixel portion, and cross-sectional views taken along the line HH are FIGS. 20B to 20C, and cross-sectional views taken along the line JJ are FIGS. 20D to 20E.
  • an interlayer insulating film 400 is formed, and a resist 1700 is applied thereon.
  • a resist pattern is formed by exposure, and the interlayer insulating film is etched to expose the terminal portion and the like.
  • the resist is removed to expose the interlayer insulating film 400 (FIG. 20C).
  • FIG. 20D shows a state in which a resist opening is formed above the common electrode connection electrode 804.
  • the interlayer insulating film 400 is etched through this opening to expose the common electrode connection electrode 804 (FIG. 20E).
  • a common electrode is formed thereon by a process described below.
  • FIG. 21 is a diagram for explaining a process for forming a common electrode of an active element substrate according to Embodiment 5 of the present invention.
  • a transparent conductive material suitable for ITO is formed by sputtering on the interlayer insulating film of the active substrate (TFT substrate) described in FIG. 20E (S-44).
  • a photoresist is applied thereon, exposed, and developed to form a comb-like resist pattern (S-45). Using this resist pattern as an etching mask, a comb-like common electrode is formed (S-46).
  • FIG. 21A is a plan view of a comb-like common electrode.
  • 21B and 21C are cross-sectional views illustrating a process for forming a comb-shaped common electrode along the line KK in FIG. 21A
  • FIGS. 21D and 21E are comb teeth along the line LL in FIG. 21A. It is sectional drawing explaining the formation process of a common electrode connection part.
  • a photoresist 1700 is applied on a substrate on which a transparent conductive film (ITO film) 806 is formed by sputtering ITO on the substrate shown in FIG. 20C, and exposure having a comb-like common electrode pattern is performed.
  • ITO film transparent conductive film
  • FIG. 21C shows a state where the ITO film 806 is etched using the resist of FIG. 21B as an etching mask to form a comb-like common electrode 805.
  • FIG. 21D shows a state in which ITO is sputtered on the substrate shown in FIG. 20E to form a transparent conductive film 806, and a photoresist 1700 is applied thereon to expose the photoresist 1700 in FIG. Indicates.
  • FIG. 21E shows a state where the ITO film 806 between adjacent pixels is removed by etching to form a comb-like common electrode 805, the pixels are separated, and the resist 1700 is removed.
  • the comb-shaped common electrode 805 is connected to the common line 803 through the pixel portion connection electrode 804.
  • FIG. 22 is a diagram for explaining another process for forming a common electrode on an active element substrate according to Embodiment 6 of the present invention.
  • a SiN film is formed by CVD on the TFT substrate shown in FIGS. 17E and 18E to form an interlayer insulating film (S-47).
  • a photoresist is applied to cover the interlayer insulating film, and halftone exposure is performed using a halftone exposure mask (S-48).
  • S-48 halftone exposure mask
  • the common electrode connection part and the terminal part, which have been fully exposed by etching the interlayer insulating film, are exposed (S-49).
  • the photoresist is ashed (S-50), and the resist at the comb-shaped common electrode forming portion which is a halftone exposure portion is opened.
  • ITO is applied by inkjet to form a comb-like electrode and connect the common electrode connecting electrode and the comb electrode (S-51).
  • FIG. 23A is a plan view of the pixel portion of the active element substrate according to the sixth embodiment of the present invention, which virtually shows a comb-shaped electrode and the like.
  • 23B and 23C are cross-sectional views taken along line MM in FIG. 23A.
  • FIG. 23B shows a resist pattern obtained by halftone exposure on the interlayer insulating film 1200
  • FIG. 23C shows a state in which the resist pattern is ashed. .
  • FIG. 24A is a plan view of the terminal portion of the active element substrate according to the sixth embodiment of the present invention, which virtually shows a comb-like electrode and the like.
  • 24B to 24E are cross-sectional views taken along line NN in FIG. 23A.
  • 24B shows a resist pattern obtained by half-tone exposure of the interlayer insulating film 1200
  • FIG. 24C shows a state in which the interlayer insulating film 1200 in the common electrode connecting portion is removed by etching, and the common electrode connecting electrode 804 is exposed
  • FIG. Indicates the state of ashing the pattern.
  • FIG. 24E shows a state in which ITO is applied by ink jetting to the opening of the comb-shaped electrode portion penetrating by ashing and the common electrode connection electrode 804.
  • the active element substrate and the liquid crystal display device can be manufactured with a small number of processes as a whole by reducing the number of phototriso processes.
  • the number of photolitho processes can be reduced by one step compared to the fifth embodiment, and in both the fifth and sixth embodiments, the color filter is formed on the TFT substrate side, so that the position of the counter substrate can be reduced.
  • a low-cost glass substrate made of a material different from the TFT substrate as the counter substrate, or a plastic with excellent light transmittance, which improves the aperture ratio without considering the alignment tolerance and consequently reduces the power consumption of the liquid crystal display device.
  • a color filter on array type FFS-COA type liquid crystal display device which can employ a substrate and reduce material costs can be provided at low cost.
  • FIG. 25 is a diagram for explaining a process for forming a multi-domain vertical alignment (MVA) TFT substrate according to Example 7 of the present invention.
  • a resist bank is formed in a pixel portion by a slit coater on a TFT substrate that has been subjected to the same photolithography process as in Example 1 (S-52).
  • a portion of the interlayer insulating film without the resist is etched to expose a contact hole for connection between the terminal and the signal line (S-53).
  • the resist is ashed (S-54), and ITO is applied to the contact hole between the pixel electrode and the signal line by ink jet (S-55).
  • FIG. 26A is a plan view showing one pixel portion of the TFT substrate according to Example 7 of the present invention.
  • 26B is a cross-sectional view taken along the line OO in FIG. 26A.
  • the pixel electrode 800 is formed by applying ITO ink in a bank formed of the resist 700 by inkjet.
  • This pixel electrode 800 is divided by a slit-like pixel dividing portion 808 made of resist, and the inclination of each pixel electrode divided in the upper and lower halves of the pixel (in the extending direction of the data line 601 in FIG. 26A) is reversed.
  • the domain direction is two directions.
  • the divided pixel electrodes are connected by a continuous portion 809 provided at the upper and lower ends of the pixel.
  • FIG. 26C is a plan view of one pixel illustrating the configuration of another pixel electrode of the multi-domain vertical alignment (MVA) method according to Example 7 of the invention.
  • 26D and 26E are cross-sectional views along the line P-P in FIG. 26C.
  • the pixel electrode 800 is formed by applying an ITO ink by inkjet in a bank formed of the resist 700 (FIG. 26D).
  • a resist protrusion 1800 is applied and formed on the pixel electrode 800 by ink jet at the same inclination as that of the pixel dividing portion 808 in FIG. 26A (S-56 in FIG. 25). This projection 1800 forms two domains.
  • the active element substrate and the liquid crystal display device can be manufactured with a small number of processes as a whole by reducing the number of phototriso processes, and the MVA type liquid crystal display can be manufactured.
  • Equipment can be provided at low cost.
  • FIG. 27 is a diagram for explaining a process for forming a multi-domain vertical alignment (MVA-COA) type TFT substrate in which the color filter according to Example 8 of the present invention is provided on the TFT substrate side.
  • a black resist bank is formed in the pixel portion by a slit coater on a TFT substrate subjected to the same photolithography process as that of the first embodiment (S-57).
  • the portion of the interlayer insulating film without the resist is etched to expose the contact hole for connecting the terminal and the signal line (S-58).
  • the resist is ashed (S-59), and three color (R, G, B) color filters are formed by ink-jet coating (S-60).
  • ITO is applied onto the contact hole between the pixel electrode and the signal line by ink jetting on the color filter (S-61).
  • FIG. 28A is a plan view showing one pixel portion of the TFT substrate according to Example 8 of the present invention.
  • 28B is a cross-sectional view taken along line QQ in FIG. 28A.
  • the pixel electrode 800 is formed by applying an ITO ink by inkjet onto a color filter 1100 applied in a bank formed of a black resist 700K.
  • the pixel electrode 800 is divided by a slit-like pixel dividing portion 808 made of black resist, and is connected to the drain electrode of the thin film transistor beyond the black resist protrusion 703.
  • FIG. 28C is a plan view of one pixel illustrating the configuration of another pixel electrode of the multi-domain vertical alignment (MVA-COA) method according to the eighth embodiment of the present invention.
  • 28D and 28E are cross-sectional views taken along line RR in FIG. 28C.
  • the pixel electrode 800 is formed by applying an ITO ink by inkjet onto a color filter 1100 applied by inkjet in a bank formed of black resist 700K (FIG. 28D).
  • a resist protrusion 1800 is applied and formed on the pixel electrode 800 by ink jet at the same inclination as the pixel dividing portion 808 in FIG. 28C (S-62 in FIG. 27). This projection 1800 forms two domains.
  • the active element substrate and the liquid crystal display device can be manufactured with a small number of processes as a whole by reducing the number of phototriso processes.
  • the aperture ratio is improved without considering the margin of alignment with the counter substrate, resulting in a reduction in power consumption of the liquid crystal display device, and a material different from the TFT substrate as the counter substrate.
  • a color filter on array type MVA type liquid crystal display device can be provided at low cost by adopting a low-cost glass substrate or a plastic substrate excellent in light transmittance and reducing the material cost.
  • FIG. 29 is a diagram illustrating a process for forming a multi-domain vertical alignment (MVA-COA) type TFT substrate in which the color filter according to Example 9 of the present invention is provided on the TFT substrate side. Steps (S-63) to (S-67) of this process are the same as steps (S-16) to (S-20) for forming the color filter of Example 2 described with reference to FIGS. 6A to 6E. It is.
  • VMA-COA multi-domain vertical alignment
  • FIG. 30A is a plan view of an essential part of an image portion showing a state in which a black photoresist is applied by a third photolithography process and halftone exposure is performed.
  • the halftone exposure portion is a pixel electrode formation portion (a color filter is applied to the lower layer of the pixel electrode) and a contact hole portion.
  • the contact hole 1000 is isolated from the pixel electrode formation portion by the protrusion 703K.
  • a black photoresist 700K is applied to a thin film transistor substrate with a slit coater, and a contact hole connecting the pixel portion and the pixel electrode to the drain electrode is subjected to halftone exposure using a halftone exposure mask, and the terminal portion and data of the gate line are exposed.
  • the terminal portion of the line is fully exposed, and shows the third photolithography process described in step (S-63) of FIG. 29 in which a black bank is formed around the pixel electrode.
  • the resist film is thinned by halftone exposure in the pixel portion and the contact hole 1000.
  • the black resist of the halftone exposure part which became thin is shown by 702K.
  • the periphery of the resist 702K in the halftone exposure portion is surrounded by a thick black resist 700K.
  • FIG. 30C shows a state where the thickness is reduced by ashing the black resist film 700K and the black resist 702K in the halftone exposure portion.
  • the resist in the pixel portion and the contact hole portion is removed by ashing.
  • the film thickness of the remaining black resist 701K is slightly thinner than the removed black resist 702K of the halftone exposure portion.
  • FIG. 30D shows a state in which the color filter ink 1100 is applied to the inside of the bank for pixel formation formed of the black resist 701K by using an ink jet device.
  • an ink in which a transparent conductive material suitable for ITO is dispersed is applied to the pixel electrode 800 over the color filter 1100 and over the protrusions 703K to the contact hole 1000.
  • a pixel electrode 800 is connected to the drain electrode 603 of the thin film transistor through a contact hole 1000.
  • FIG. 31A is a plan view showing one pixel portion of a TFT substrate according to Embodiment 9 of the present invention.
  • FIG. 31B is a cross-sectional view taken along the line SS of FIG. 31A.
  • the pixel electrode 800 is formed by applying an ITO ink by inkjet in a bank formed of a black resist 700K. The pixel electrode 800 is then exposed to a mask having a pattern in which a resist is applied and divided by the slit-shaped pixel dividing portion 808. After development, the pixel electrode 800 is divided by the slit-shaped pixel dividing portion 808 by etching, and the pixel electrode 800 is divided.
  • the pixel electrodes divided in the upper and lower halves have two domains with the inclination of each pixel electrode reversed.
  • the divided pixel electrodes are connected by a continuous portion 809 provided at the upper and lower ends of the pixel.
  • FIG. 32A is a plan view of one pixel illustrating the configuration of another pixel electrode of a multi-domain vertical alignment (MVA-COA) system in which the color filter according to Example 9 of the present invention is provided on the TFT substrate side.
  • 32B is a cross-sectional view taken along line TT in FIG. 32A.
  • the pixel electrode 800 is formed by applying ITO ink by inkjet in a bank formed of black resist 700K (FIG. 32B).
  • a resist coat is applied on the pixel electrode 800 by a slit coater, and then exposed and developed with a mask having an inclined pattern similar to that of the pixel dividing portion 808 in FIG. 31A to form a resist protrusion 1800 (see FIG. 27). S-62). This projection 1800 forms two domains.
  • the active element substrate and the liquid crystal display device can be manufactured with a small number of processes as a whole by reducing the number of phototriso processes.
  • the aperture ratio is improved without considering the margin of alignment with the counter substrate, and as a result, the power consumption of the liquid crystal display device is reduced, and the counter substrate is made of a material different from that of the TFT substrate.
  • a color filter on array type MVA-COA type liquid crystal display device can be provided at low cost by adopting an inexpensive glass substrate or a plastic substrate having excellent light transmittance and reducing material costs.
  • FIG. 33A shows a step of forming a bank 700K by halftone exposure and development of a resist 700K mixed with a black material applied by a slit coater in forming a color filter on array type pixel electrode according to Example 10 of the present invention. It is a figure explaining the new process regarding. 33B and 33C are diagrams showing a cross section taken along line DD-DD in FIG. 33A. As described above, in FIGS. 6A to 6F for the TN method, FIGS. 16 and 17A to 17E for the FFS method, and FIGS. 27, 28A to 28B and 28C to 28E for the MVA method, Although described as a single layer, mixing the black material into the resist may impair the insulating properties of the resist.
  • the IJ bank formed of the black resist is composed of two kinds of materials, and as shown in FIG. 31B, the first layer resist is an insulating resist 704, and the second layer is a black resist 700K. And Accordingly, since the back channel portion of the transistor is filled with the insulating resist 704, current leakage does not occur between the source electrode and the drain electrode.
  • the resist of the half-tone exposed portion 702 can be stabilized against fluctuations in exposure due to half-tone exposure.
  • the remaining film thickness can be obtained.
  • FIG. 33D shows a step of forming a bank 700K by halftone exposure and development of a resist 700K mixed with a black material applied by a slit coater in forming a color filter on array type pixel electrode according to Example 10 of the present invention. It is sectional drawing along the DD-DD line of FIG. 33A of 1 pixel explaining the structure of the other pixel electrode regarding. 33E and 33F are cross-sectional views showing a process following FIG. 33D along the line DD-DD in FIG. 33A.
  • FIG. 33D in the cross-sectional view taken along the line DD-DD before forming the bank 700K in FIG. 33A, a channel portion formed by the source electrode 602 and the drain electrode 603 is formed.
  • An insulating film 705 is applied and formed by inkjet.
  • FIG. 33E the resist 700K mixed with the black material applied by the slit coater is subjected to half-tone exposure and developed to form the bank 700K. Current leakage is prevented by the insulating film 705.
  • FIG. 33F is a cross-sectional view of the black resist 700K after ashing, showing a state in which the halftone exposure portion resist 702 on the drain electrode 603 has been removed by ashing, and the channels are isolated by the insulating film 705.
  • the tenth embodiment of the present invention described above, in the TFT substrate of the color filter on-array type liquid crystal display device, a stable operation of the transistor is ensured, and the halftone exposure portion with respect to the fluctuation of the exposure amount in the halftone exposure.
  • the resist residual film thickness can be obtained almost equal, and the process stability is improved.
  • FIG. 34 is a configuration diagram of a liquid crystal display device for explaining an embodiment of the display device according to the present invention.
  • This liquid crystal display device is configured by sealing a liquid crystal 2002 in a bonding gap between any of the active element substrates 100 and the counter substrate 2000 described in the above embodiment.
  • the counter substrate 2000 may be the same glass as the active element substrate 100, or may be an insulating substrate made of a different inorganic material or an insulating film made of plastic.
  • An alignment film 2001 is applied to the interface between each substrate and the liquid crystal.
  • a backlight 2003 is provided on the back surface of the active element substrate 100.
  • a drive circuit 2004 is provided as an IC chip or a circuit formed directly on the substrate surface.
  • the drive circuit 2004 is supplied with a timing signal and video data for display from the display control device 2005.
  • the present invention can be applied not only to an active substrate constituting a liquid crystal display device but also to an active substrate for a flat panel display such as an organic EL display device, and similarly applicable to various semiconductor devices using a photolithography process. It is.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Liquid Crystal (AREA)
  • Thin Film Transistor (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

 ホトリソプロセス数を削減し、製造コストを低減したアクティブ素子基板とその製造方法、及びこの製造方法で製造したアクティブ素子基板を用いた表示装置を提供する。 表示装置を構成するアクティブ基板に画素を形成するプロセスに、アクティブ素子と表示電極を塗布方式で形成したホトレジスト膜又は黒色ホトレジスト膜をハーフトーン露光してバンク、或いはエッチングパターンを形成して絶縁膜を加工すると共に、透明導電膜やカラーフィルタをインクジェット法を用いて形成する。

Description

アクティブ素子基板とその製造方法、及びこの製造方法で製造したアクティブ素子基板を用いた表示装置
 本発明は、薄膜トランジスタ等の薄膜素子を形成したアクティブ素子基板(アクティブ基板、TFT基板)で構成される表示装置に係り、特に上記アクティブ素子基板とその製造方法、およびこの製造方法で製造したアクティブ素子基板を用いた表示装置に関する。
 液晶表示装置や有機EL表示装置などのアクティブ方式のフラットパネル型の表示装置(FPD)では、薄膜トランジスタを典型とするアクティブ素子を用いて画素部が形成される。以下では、アクティブ素子として薄膜トランジスタを例として説明する。画素部を形成する薄膜トランジスタとしては、ガラス板などの絶縁基板上にゲート電極を形成し、この上にチャネル領域やソース/ドレイン領域などの半導体層と絶縁層を積層した逆スタガ型の構造のものが多く用いられている。
 このような薄膜トランジスタと、ゲート電極に信号を供給するための走査線(ゲート線)、ソース電極にデータ信号を供給するためのデータ線(信号線とも言う)、ドレイン電極と接続されて液晶層に電圧を印加するための一方の表示電極(例えば、画素電極)、などの要素を組合せて液晶表示装置の画素回路が構成される。なお、ソース電極とドレイン電極とは動作中に入れ替わるがここでは上記のように固定して説明する。この画素回路をマトリクス状に配列した絶縁基板(以下、画素アレイ基板、薄膜トランジスタ基板(TFT基板)、あるいはアクティブマトリクス基板とも言う)と、カラーフィルタ及びカラーフィルタの周囲を遮光する遮光膜(一般にブラックマトリックスと称する)、必要により他方の表示電極(例えば、対向電極、コモン電極とも言う)などが形成された対向基板とを貼り合わせて、これらの間に液晶を封入することにより液晶パネルが構成される。また、アクティブ基板側にコモン電極を設けるものもIPSモードやFFSモードとして知られている。そして、これらの液晶パネルに駆動回路やバックライトなどの周辺部材を取り付けて液晶表示装置が構成される。なお、画素電極あるいは対向電極を一方の表示電極とした場合、対向電極あるいは画素電極を他方の表示電極とするが、後述する実施の形態では、何れか一方を画素電極あるいは対向電極、何れか他方を対向電極あるいは画素電極として具体的にして説明する。
 上記のアクティブマトリックス基板のホトリソグラフィプロセス(単にホトリソプロセスとも言う)の繰り返し数を低減する方法として特許文献1がある。特許文献1では、ゲート線を形成した基板上に、ゲート絶縁膜、シリコンを好適とする半導体層、オーミックコンタクト層(n層)を化学的気相堆積(CVD)法で順次形成する。更に、その上にソース電極/ドレイン電極となるメタル薄膜をスパッタリングにて形成する。この上に感光性レジスト(ホトレジスト)を塗布し、ハーフトーン露光法により1回のホトリソプロセスで、ソース電極/ドレイン電極のパターニングと半導体層のアイランド(能動層アイランド)の形成及びオーミックコンタクト層のチャネル部のエッチング除去を同時に実現している。
 また、特許文献2には、ハーフトーン露光法を用いたアクティブマトリックス基板の製造方法として、2回のハーフトーン露光法と2回の通常の露光法の4回のホトリソプロセスでTNモード、MVAモード、IPSモードのアクティブマトリックス基板を形成する方法が開示されている。
 対向基板にカラーフィルタを設けるものが多いが、特許文献3ではカラーフィルタは対向基板でなくアクティブマトリックス基板の画素電極上に形成している。このカラーフィルタを形成するため、画素領域全面にレジストをパターニングして形成した土手(バンク)を設け、このバンクで形成される凹み(溝)の中に着色したインクを塗布して各色のカラー単位画素(カラーセル)を形成後、このカラーセルの周囲に黒色系の着色剤を含んだインクをインクジェット装置により滴下し塗布して遮光層(ブラックマトリクス)を形成している。
 特許文献4では、アクティブマトリックス基板の薄膜トランジスタ(TFT)間に開口領域を設けここに硬化性インクをインクジェット装置によって滴下して塗布し、硬化させることでカラーフィルタを形成し、この上に画素電極を形成している。
 そして、特許文献5は、ゲート線、保持容量線を形成した絶縁基板上に、ゲート絶縁膜、半導体層のアイランド及びチャネル領域を形成後、データ線、ソース電極/ドレイン電極、及びカラーフィルタと画素電極の形成用溝をインクジェット装置によりポリイミド膜によるバンクを形成し、それぞれのバンクの溝に所定のインクをインクジェット装置にて滴下し塗布する方法を開示している。特に、画素電極を形成するバンクの溝にはカラーフィルタ用インクを滴下し塗布した後、その上面に画素電極となる導電性インクをインクジェット装置で滴下し塗布する。この画素電極とドレイン電極の一部を接続し、データ線とソース電極の一部を接続してアクティブマトリックス基板を製作している。
特開平10−163174号公報
特開2007−310334号公報
特開平7−134290号公報
特開平9−292633号公報
特開2003−315829号公報
 上記の液晶表示装置の製造では、CVDやスパッタリングなどの真空中の気相堆積法により薄膜を形成し、形成した薄膜のパターニングにはホトレジストの塗布、マスク露光、現像、等のプロセスを経て、不要な部分をエッチングにより除去するというホトリソプロセスを何度か繰返すことにより行われる。そのためアクティブマトリックス基板の製造には多くのプロセスを要し、製造コストの高いものとなっている。
 また、カラーフィルタを対向基板に設けている液晶表示装置では、アクティブマトリックス基板の画素の光透過部とカラーフィルタとの合わせ位置精度を考慮して画素電極の光透過部よりカラーフィルタの各セルが小さくなるようにブラックマトリックスを形成している。そのため、画素の開口率が小さくなってしまい、結果として液晶表示装置の消費電力を大きくしてしまう。
 カラーフィルタをアクティブマトリックス基板の画素アレイ上に形成する方法も提案されているが、カラーフィルタを形成するための専用のバンクを製作するためのホトリソプロセスを必要とするなど、製造プロセス数は充分には削減されていない。
 本発明の目的は、ホトリソプロセス数を削減し、製造コストを低減したアクティブ素子基板とその製造方法、及びこの製造方法で製造したアクティブ素子基板を用いた表示装置を提供することにある。
 本発明は、表示装置を構成するアクティブ基板における薄膜トランジスタ等の薄膜素子の形成プロセスにスリットコート法を好適とするレジスト塗布方式でホトレジスト膜を形成する方法を採用すると共に、当該感光性レジスト膜のパターニングにハーフトーン露光法を用いることを特徴とする。
 本発明では、ホトトリソプロセス数を削減することにより、アクティブマトリックス基板及び液晶表示装置を全体として少ないプロセス数で安価に製造可能であるため、ハーフトーン露光法をインクジェット法のインクの受容体であるレジストで形成したバンク溝の形成に適用したことを特徴とする。以下では、バンクで囲まれた凹み(バンク溝)を単にバンクということもある。
 なお、液晶表示装置において、その対向基板との合わせ精度の問題から表示装置の光透過部が画素電極の光透過部より小さくなる問題に対しては、カラーフィルタをアクティブマトリックス基板の画素アレイ上に形成することとし、かつカラーフィルタ形成用のバンクと画素電極形成用のバンクを共通とすることにより開口率を向上する。
 また、この共通のバンクをハーフトーン露光法で形成することによって、ゲート線の端子部とデータ線の端子部を被覆するゲート絶縁膜をエッチングし、かつデータ線とその端子部の接続部を露出しすることで、工程数も大幅に短縮でき、表示装置の開口率も大幅に向上させることが可能となり、結果として液晶表示装置の消費電力を低減する。更に、前記のようにカラーフィルタをアクティブマトリックス基板の画素アレイ上に形成することにより、対向基板との合わせ精度が不要となることから、対向基板の材質としてはアクティブマトリックス基板とは異なる材質の基板で良く、安価なガラス基板や光透過率の高いプラスチック基板の採用も可能となり、大幅な材料費の低減が可能となる。
 また、FFSモードの液晶表示装置に関しては、ゲート線とゲート電極と同層にコモン線を形成したアクティブマトリックス基板の画素上に、先ずカラーフィルタを形成する。このカラーフィルタ上に透明な画素電極をベタ形成した後、層間絶縁膜をCVDで形成する。この上にホトレジストを塗布し、ハーフトーン露光法でパターニングして櫛歯状のコモン電極(共通電極、対向電極)形成用の光透過性の高いレジスト材料からなるバンクを形成する。その後、コモン電極をコモン線に接続するコモン電極接続部の層間絶縁膜をエッチングにより除去してコモン電極接続電極を露出させ、櫛歯電極形成用バンク溝の底面を覆っているバンク材をアッシング処理で除去した後、櫛歯状のレジストパターンに、インクジェット法にて櫛歯状の透明なコモン電極を形成することでプロセス数を大幅に低減させると共に、表示装置の開口率も大幅に向上させ、対向基板の材質としてはアクティブマトリックス基板とは異なる材質の基板で良く、安価なガラス基板や光透過率の高いプラスチック基板の採用で、材料費を大幅に低減させた表示装置を提供することができる。
[規則91に基づく訂正 24.03.2010] 
 図1は本発明に係る実施例1における第1ホトリソプロセスのステップと第2ホトリソプロセスのステップの説明図である。
 図2Aは本発明に係る実施例1におけるプロセスを説明する平面図である。
 図2Bは図2AのA−A線に沿った断面図である。
 図2Cは図2AのA−A線に沿った図2Bに続くプロセスを説明する断面図である。
 図3Aは図1Aの第2ホトリソプロセスで形成された薄膜トランジスタ、データ線、ソース電極およびドレイン電極を説明するアクティブ素子基板の要部平面図である。
 図3Bは図3AのB−B線に沿ったレジストを所定のパターンにパターニングした状態を示す断面図である。
 図3Cは図3AのB−B線に沿ったパターニングしたレジストをエッチングマスクとして薄膜トランジスタのアイランド部分と付加容量部分を残すエッチングを行った状態を示す断面図である。
 図3Dは図3AのB−B線に沿ったレジストをアッシングしてレジスト膜を減厚してハーフトーン露光部分302を開口させ、下層のソース/ドレインメタルをエッチングして半導体アイランドを形成した状態を示す断面図である。
 図3Eは図3AのB−B線に沿った半導体アイランドの形成後に上層のホトレジストを除去した状態を示す断面図である。
 図4Aは本発明に係る実施例1の第3ホトリソプロセスにおけるステップを説明する図である。
 図4Bは第3ホトリソプロセスで画素電極を形成した状態を示す画素部の要部平面図である。
 図4Cは画素電極の形成過程の要部を説明する図4BのC−C線に沿った断面図である。
 図4Dは画素電極の形成過程の要部を説明する図4BのC−C線に沿った図4Cに続く断面図である。
 図4Eは画素電極の形成過程の要部を説明する図4BのC−C線に沿った図4Dに続く断面図である。
 図5Aは本発明の実施例1に係る端子部の構成を説明する要部平面図である。
 図5Bは図5AのD−D線に沿った断面図である。
 図5Cは図5AのD−D線に沿った図5Bに続くプロセスを説明する断面図である。
 図5Dは図5AのD−D線に沿った図5Cに続くプロセスを説明する断面図である。
 図5Eは図5AのD−D線に沿った図5Dに続くプロセスを説明する断面図である。
 図6Aは本発明に係る実施例2の第3ホトリソプロセスにおけるステップを説明する図である。
 図6Bは第3ホトリソプロセスで黒色ホトレジストを塗布し、ハーフトーン露光を施した状態を示す画素部の要部平面図である。
 図6Cは図6BのE−E線に沿った断面図である。
 図6Dは図6BのE−E線に沿った図6Cに続くプロセスを説明する断面図である。
 図6Eは図6BのE−E線に沿った図6Dに続くプロセスを説明する断面図である。
 図6Fは図6BのE−E線に沿った図6Eに続くプロセスを説明する断面図である。
 図7Aは本発明の実施例2に係る端子部の構成を説明するアクティブ素子基板の要部平面図である。
 図7Bは図7AのF−F線に沿った断面図である。
 図7Cは図7AのF−F線に沿った7Bに続くプロセスを説明する断面図である。
 図7Dは図7AのF−F線に沿った7Cに続くプロセスを説明する断面図である。
 図7Eは図7AのF−F線に沿った7Dに続くプロセスを説明する断面図である。
 図8は本発明に係る実施例3の第3ホトリソプロセスにおけるステップを説明する図である。
 図8Aは本発明の実施例3に係るアクティブ素子基板の画素部の要部平面図である。
 図8Bはレジストをハーフトーン露光した状態を示す図8AのU−U線に沿った断面図である。
 図8Cは図8Bでパターニングしたレジストをアッシングした状態を示す図8AのU−U線に沿った断面図である。
 図8Dは図8Cのレジストをバンクとして必要な領域内にインク滴を貯留させてドレイン電極に接続した画素電極を形成した状態を示す図8AのU−U線に沿った断面図である。
 図9Aは本発明の実施例3に係るアクティブ素子基板の端子部の要部平面図である。
 図9Bはレジスト塗布からデータ線とデータ線端子の接続までのプロセスを示す図9AのV−V線に沿った断面図である。
 図9Cはレジスト塗布からデータ線とデータ線端子の接続までのプロセスを示す図9Bに続く図9AのV−V線に沿った断面図である。
 図9Dはレジスト塗布からデータ線とデータ線端子の接続までのプロセスを示す図9Cに続く図9AのV−V線に沿った断面図である。
 図9Eはレジスト塗布からデータ線とデータ線端子の接続までのプロセスを示す図9Dに続く図9AのV−V線に沿った断面図である。
 図9Fはレジスト塗布からコモン線とコモン電極接続部の接続までのプロセスを示す図9AのW−W線に沿った断面図である。
 図9Gはレジスト塗布からコモン線とコモン電極接続部の接続までのプロセスを示す図9Fに続く図9AのW−W線に沿った断面図である。
 図9Hはレジスト塗布からコモン線とコモン電極接続部の接続までのプロセスを示す図9Gに続く図9AのW−W線に沿った断面図である。
 図9Iはレジスト塗布からコモン線とコモン電極接続部の接続までのプロセスを示す図9Hに続く図9AのW−W線に沿った断面図である。
 図10Aは本発明の実施例3に係る画素電極の上方に櫛型のコモン電極を形成するアクティブ素子基板のホトリソプロセスの説明図である。
 図10Bは本発明の実施例3に係る画素電極の上にコモン電極を形成した状態を説明するアクティブ素子基板の画素部の要部平面図である。
 図10Cは図10BのX−X線に沿った断面図である。
 図10Dは図10BのX−X線に沿った図10Cに続くプロセスを説明する断面図である。
 図11Aは本発明の実施例3に係る画素電極の上にコモン電極を形成した状態を説明するアクティブ素子基板の端子部の要部平面図である。
 図11Bは画素電極の上にコモン電極を形成するプロセスを説明する図10BのY−Y線に沿った断面図である。
 図11Cは画素電極の上にコモン電極を形成するプロセスを説明する図10BのY−Y線に沿った図11Bに続く断面図である。
 図11Dは画素電極の上にコモン電極を形成するプロセスを説明する図10BのY−Y線に沿った図11Cに続く断面図である。
 図11Eは画素電極の上にコモン電極を形成するプロセスを説明する図10BのY−Y線に沿った図11Dに続く断面図である。
 図12Aは本発明に係る実施例4の第4ホトリソプロセスにおけるステップを説明する図である。
 図12Bは本発明に係る実施例4の画素電極を形成した基板の画素部の要部平面図である。
 図12Cは図12BのZ−Z線に沿った断面図である。
 図12Dは図12BのZ−Z線に沿った図12Cに続くプロセスを説明する断面図である。
 図13Aは図12BのAA−AA線に沿った断面図である。
 図13Bは図12BのAA−AA線に沿った図13Aに続く断面図である。
 図14Aは本発明の実施例4のコモン電極の形成プロセスステップを説明する図である。
 図14Bは本発明の実施例4の画素部の要部平面図である
 図14Cは図14BのBB−BB線に沿った断面図である。
 図14Dは図14BのBB−BB線に沿った図14Cに続くプロセスを説明する断面図である。
 図15Aは図14BのCC−CC線に沿った断面図である。
 図15Bは図14BのCC−CC線に沿った図15Aに続くプロセスを説明する断面図である。
 図16は本発明の実施例5に係るゲート線とゲート電極およびコモン線を形成し、薄膜トランジスタのチャネルを形成したTFT基板にカラーフィルタと画素電極を形成するFFS−COA方式液晶表示装置のプロセスを説明する図である。
 図17Aは本発明の実施例5に係るアクティブ素子基板の画像部の要部平面図である。
 図17Bは図17AのE−E線に沿った断面図である。
 図17Cは図17AのE−E線に沿った図17Bに続くプロセスを説明する断面図である。
 図17Dは図17AのE−E線に沿った図17Cに続くプロセスを説明する断面図である
 図17Eは図17AのE−E線に沿った図17Dに続くプロセスを説明する断面図である
 図18Aはコモン電極とコモン線との接続プロセスを説明する図17AのG−G線に沿った断面図である。
 図18Bはコモン電極とコモン線との接続プロセスを説明する図17AのG−G線に沿った図18Aに続く断面図である。
 図18Cはコモン電極とコモン線との接続プロセスを説明する図17AのG−G線に沿った図18Bに続く断面図である。
 図18Dはコモン電極とコモン線との接続プロセスを説明する図17AのG−G線に沿った図18Cに続く断面図である。
 図18Eはコモン電極とコモン線との接続プロセスを説明する図17AのG−G線に沿った図18Dに続く断面図である。
 図19Aは本発明の実施例5に係るアクティブ素子基板の端子部の要部平面図である。
 図19Bは図19AのF−F線に沿った断面図である。
 図19Cは図19AのF−F線に沿った図19Bに続くプロセスを説明する断面図である。
 図19Dは図19AのF−F線に沿った図19Cに続くプロセスを説明する断面図である。
 図19Eは図19AのF−F線に沿った図19Dに続くプロセスを説明する断面図である。
 図20は本発明の実施例5に係るアクティブ素子基板のコモン電極接続部の形成プロセスを説明する図である。
 図20Aは本発明の実施例5に係るアクティブ素子基板の画素部の平面図である。
 図20Bは図20AのH−H線に沿った断面図である。
 図20Cは図20AのH−H線に沿った図20Bに続くプロセスを説明する断面図である。
 図20Dは図20AのJ−J線に沿った断面図である。
 図20Eは図20AのJ−J線に沿った図20Dに続くプロセスを説明する断面図である。
 図21は本発明の実施例5に係るアクティブ素子基板のコモン電極の形成プロセスを説明する図である。
 図21Aは本発明の実施例5に係るアクティブ素子基板の櫛歯状コモン電極の平面図である。
 図21Bは図21AのK−K線に沿った断面図である。
 図21Cは図21AのK−K線に沿った図21Bに続くプロセスを説明する断面図である。
 図21Dは図21AのL−L線に沿った断面図である。
 図21Eは図21AのL−L線に沿った図21Dに続くプロセスを説明する断面図である。
 図22は本発明の実施例6に係るアクティブ素子基板にコモン電極を形成するプロセスを説明する図である。
 図23Aは本発明の実施例6に係るアクティブ素子基板の画素部の平面図である。
 図23Bは本発明の実施例6に係るアクティブ素子基板の図23AのM−M線に沿った断面図である。
 図23Cは本発明の実施例6に係るアクティブ素子基板の図23AのM−M線に沿った図23Bに続くプロセスを説明する断面図である。
 図24Aは本発明の実施例6に係るアクティブ素子基板の端子部の平面図である。
 図24Bは発明の実施例6に係るアクティブ素子基板の図23AのN−N線に沿った断面図である。
 図24Cは発明の実施例6に係るアクティブ素子基板の図23AのN−N線に沿った図24Bに続くプロセスを説明する断面図である。
 図24Dは発明の実施例6に係るアクティブ素子基板の図23AのN−N線に沿った図24Cに続くプロセスを説明する断面図である。
 図24Eは発明の実施例6に係るアクティブ素子基板の図23AのN−N線に沿った図24Dに続くプロセスを説明する断面図である。
 図25は本発明の実施例7に係るマルチドメイン垂直配向(MVA)方式のTFT基板の形成プロセスを説明する図である。
 図26Aは本発明の実施例7の画素をスリット状に分割するマルチドメイン垂直配向(MVA)方式に係るTFT基板の1画素部分を示す平面図である。
 図26Bは本発明の実施例7に係るTFT基板の図26AのO−O線に沿った断面図である。
 図26Cは本発明の実施例7に係るマルチドメイン垂直配向(MVA)方式の画素上に突起物を設ける他の画素電極の構成を説明する1画素の平面図である。
 図26Dは図26CのP−P線に沿った断面図である。
 図26Eは図26CのP−P線に沿った図26Dに続くプロセスを説明する断面図である。
 図27は本発明の実施例8に係るカラーフィルタがTFT基板側に設けたマルチドメイン垂直配向(MVA—COA)方式のTFT基板の形成プロセスを説明する図である。
 図28Aは本発明の実施例8の画素をスリット状に分割するマルチドメイン垂直配向(MVA)方式に係るTFT基板の1画素部分を示す平面図である。
 図28Bは図28AのQ−Q線に沿った断面図である。
 図28Cは本発明の実施例8に係るマルチドメイン垂直配向(MVA−COA)方式の画素上に突起物を設ける他の画素電極の構成を説明する1画素の平面図である。
 図28Dは図28CのR−R線に沿った断面図である。
 図28Eは図28CのR−R線に沿った図28Dに続くプロセスを説明する断面図である。
 図29は本発明の実施例9に係るカラーフィルタをTFT基板側に設けたマルチドメイン垂直配向(MVA—COA)方式のTFT基板の第3ホトリソ形成プロセスを説明する図である。
 図30Aは第3ホトリソプロセスで黒色ホトレジストを塗布し、ハーフトーン露光を施した状態を示す画像部の要部平面図である。
 図30Bは図29のステップ(S−63)で説明した第3ホトリソ処理した状態を示す図30AのE−E線に沿った断面図である。
 図30Cは図30AのE−E線に沿った図30Bに続くプロセスを説明する断面図である。
 図30Dは図30AのE−E線に沿った図30Cに続くプロセスを説明する断面図である。
 図30Eは図30AのE−E線に沿った図30Dに続くプロセスを説明する断面図である。
 図31Aは本発明の実施例9の画素をスリット状に分割するマルチドメイン垂直配向(MVA)方式に係るTFT基板の1画素部分を示す平面図である。
 図31Bは図31AのS−S線に沿った断面図である
 図31Cは図31AのS−S線に沿った断面図である
 図32Aは本発明の実施例9に係るカラーフィルタをTFT基板側に設けたマルチドメイン垂直配向(MVA−COA)方式の画素上に突起物を設ける他の画素電極の構成を説明する1画素の平面図である。
 図32Bは図32AのT−T線に沿った断面図である。
 図33Aは本発明の実施例10に係るカラーフィルタをTFT基板側に設けた画素電極構成において、カラーフィルタ及び画素電極等を形成するバンクを2層構造にしたTFT基板の1画素部分を示す平面図である。
 図33Bは図33AのDD−DD線に沿った断面図である。
 図33Cは図33AのDD−DD線に沿った図33Bに続くプロセスを説明する断面図である。
 図33Dは本発明の実施例10に係るカラーフィルタをTFT基板側に設けた画素電極構成において、黒色バンクの形成前にチャネル部にインクジェットにより絶縁膜を形成した他の画素電極の構成を説明する図33AのDD−DD線に沿った断面図である。
 図33Eは図33AのDD−DD線に沿った図33Dに続くプロセスを説明する断面図である。
 図33Fは図33AのDD−DD線に沿った図33Eに続くプロセスを説明する断面図である。
 図34は本発明に係る表示装置の構成例を説明する液晶表示装置の概略図である。
100・・・・絶縁基板
200・・・・ゲートメタル(ゲート線/ゲート電極/容量配線形成用金属膜)
201・・・・ゲート線
202・・・・ゲート電極
203・・・・保持容量線(コモン線)
300・・・・レジスト(感光性ホトレジスト)
301・・・・レジスト(アッシング後)
302・・・・レジスト(ハーフトーン露光部分)
400・・・・ゲート絶縁膜(SiN)
500・・・・半導体層(Si)
501・・・・オーミックコンタクト層(n+Si)
600・・・・ソース/ドレインメタル(S/Dメタル:データ線/ソース電極/ドレイン電極形成用金属膜)
601・・・・データ線(信号線DL)
602・・・・ソース電極(SD1)
603・・・・ドレイン電極(SD2)
604・・・・チャネル
700・・・・IJレジストバンク(スリットコーター塗布、ハーフトーン露光)
701・・・・IJレジストバンク(アッシング後:画素電極形成用のバンク)
702・・・・レジスト(ハーフトーン露光部分)
703・・・・突条(カラーフィルタの漏れ出し防止バンク)
704・・・・絶縁性レジスト
705・・・・絶縁膜(ソース/ドレイン電極チャネル間の電流リーク防止絶縁膜)
700K・・・・IJ黒色レジストバンク
701K・・・・IJ黒色レジストバンク(アッシング後)
800・・・・画素電極(PX)
801・・・・端子部接続部
803・・・・コモン線
804・・・・コモン電極接続電極
805・・・・コモン電極
806・・・・ITO(透明導電膜)
807・・・・コモン電極接続部
808・・・・画素分割部
809・・・・連続部
900・・・・ゲート線端子
901・・・・データ線端子
902・・・・コモン線端子
1000・・・・コンタクトホール
1100・・・・カラーフィルタ
1100G・・・カラーフィルタG(緑フィルタ)
1100B・・・カラーフィルタB(青フィルタ)
1100R・・・カラーフィルタR(赤フィルタ)
1200・・・層間絶縁膜
1700・・・レジスト
1800・・・突条
2000・・・対向基板
2001・・・配向膜
2002・・・液晶
2003・・・バックライト
2004・・・ドライバ
2005・・・表示制御装置。
 以下に説明する各実施例は、表示装置を構成するアクティブ基板における薄膜トランジスタの構成層の加工プロセスや画素電極やコモン電極などの導電膜形成プロセスにスリットコート法を好適とするホトレジストの塗布とハーフトーン露光を用いたレジストバンクのパターニングと、導電膜材料インクのインクジェット法による塗布とを用いることでホトリソプロセス数の削減を実現する。
 本発明の実施例1のアクティブ素子基板とその製造方法を図1~図5Eを用いて説明する。実施例1は、所謂TN方式で、一方の表示電極である画素電極はアクティブ素子基板側に設け、他方の表示電極である対向電極(コモン電極)とカラーフィルタが対向基板側にある形式の液晶表示装置を構成する液晶表示装置に用いるアクティブ素子基板に係る。アクティブ素子としては薄膜トランジスタを用いる。以下では、アクティブ素子基板を薄膜トランジスタ基板、あるいは単にTFT基板として説明する。
 図1~図3Eは、本発明に係る実施例1における第1ホトリソプロセスのステップと第2ホトリソプロセスのステップの説明図である。第1ホトリソプロセスはゲート線とゲート電極および保持容量線(コモン線)を形成するステップである。また、第2ホトリソプロセスは半導体アイランド(能動層アイランド)の形成から、データ線とソース電極/ドレイン電極とそのバックチャネルをエッチングしてチャネルを形成するまでのステップである。バックチャネルは半導体アイランドの上層にあるソース電極/ドレイン電極間隙のオーミックコンタクト層(n層)をエッチング除去したトランジスタのチャネル部の背面の間隙である。このオーミックコンタクト層は導電性を有するためこの層をエッチングしてソース電極とドレイン電極を半導体上で対向させトランジスタのチャネルを形成する。
 第1ホトリソプロセスでは、半導体層を汚染するイオンを発生せず、かつ低熱膨張のガラスを好適とする絶縁基板(以下、単に基板とも称する)の上にゲートメタルをスパッタするゲートメタルスパッタするステップ(ステップ‐1、以下S‐1のように表記する)と、
 スパッタしたゲートメタルの上にホトレジストを塗布し、マスク露光し、現像して、ゲート線、ゲート電極、保持容量線の部分にレジストを残留させるステップ(S‐2)と、
 これをエッチング加工してゲート線、ゲート電極、保持容量線の部分を除くゲートメタルを除去するステップ(S‐3)とからなる。
 ステップ(S‐2)でのホトレジストを塗布は、スリットコート法でも、インクジェット法(IJ)でも、あるいはスピンコート法でもよい。
 第2ホトリソプロセスでは、ゲート線、ゲート電極、保持容量線を覆ってゲート絶縁層(SiN)、シリコン層(a—Si)、オーミックコンタクト層(n)をCVDによりこの順で堆積する3層CVD成膜ステップ(S‐4)と、
 堆積した3層CVDの上にソース/ドレイン用メタル(データ線/ソース電極/ドレイン電極の形成用メタル)をスパッタするステップ(S‐5)と、
 ソース/ドレイン用メタルを覆ってホトレジストを塗布し、このホトレジストをハーフトーン露光マスクを用いて露光し、現像して、半導体アイランドとデータ線/ソース電極およびドレイン電極の部分にレジストを残留させ、その他の部分のレジストを除去するステップ(S‐6)、残留レジストをエッチングマスクとしてソース/ドレイン用メタルをエッチングするステップ(S‐7)と、
 ステップ(S‐7)で露出したオーミックコンタクト層(n)とその下層のシリコン層(a—Si)をエッチングするステップ(S‐8)とその後にアッシング(S−9)してレジストの厚みを薄くし、ハーフトーン露光部分302(チャネル部分)を開口させ、ソース/ドレイン用メタルを露出させるステップ(S‐9)と、
 ハーフトーン露光部分の開口に露出したソース/ドレイン用メタルをエッチングしてオーミックコンタクト層(n)を露出させるチャネル部メタルエッチングのステップ(S‐10)と、
 ハーフトーン露光部分の開口に露出したオーミックコンタクト層(n)をエッチングするバックチャネルエッチングのステップ(S‐11)とからなる。
 上記の各エッチングのステップでは、エッチング薬液等、エッチング条件を変えて加工することは言うまでもない。一般的なエッチングとしては、メタルはウエットエッチングが、シリコン層とオーミックコンタクト層(n+)はドライエッチングが主に利用されている。
 図2Aは、図1Aの第1ホトリソプロセスで形成されたゲート線とゲート電極のパターンを説明する要部平面図である。図2Bと図2Cは、ゲート線とゲート電極の形成過程の要部を説明する図2AのA−A線に沿った断面図である。図2Bは、基板100上にスパッタされたゲートメタル200の上に、第1ホトプロセスでパターニングされたゲート線とゲート電極用のレジスト及び保持容量線のレジスト300のパターンが形成されている状態を示す。図2Cは、図2Bのレジスト300をマスクとしてゲートメタル200をエッチングし、レジスト300を除去してゲート線201とゲート電極202及び保持容量線203を形成した状態を示す。
 図3Aは、図1Aの第2ホトリソプロセスで形成された薄膜トランジスタ、データ線、ソース電極およびドレイン電極を説明するアクティブ素子基板の要部平面図である。2本のゲート線201と2本のデータ線601で囲まれた領域に1単位画素:pixel(カラー表示の場合の各カラー画素である副画素:sub−pixel)が形成される。
 図3B~図3Eは、薄膜トランジスタ、データ線、ソース電極およびドレイン電極の形成過程の要部を説明する図3AのB−B線に沿った断面図である。図3Bでは、前記図2Aに示したゲート線201とゲート電極202及び保持容量線203を覆ってゲート絶縁膜(SiN)400、シリコン層(a—Si)500、オーミックコンタクト層(n)501をCVDによりこの順で堆積する(3層CVD成膜)。その上に、ソース線とソース電極及びドレイン電極となるソース/ドレインメタル(S/Dメタル)600をスパッタで成膜する。さらにその上に、スリットコーター(インクジェット装置を用いても良い)を用いてホトレジストを塗布し、乾燥してホトレジスト層300とする。このホトレジス層300をハーフトーン開口を一部に有する露光マスクを介して露光する。ハーフトーン露光部分302は薄膜トランジスタのチャネル形成部分に位置させる。そして、このハーフトーン露光部分302のB−B線に沿った間隙はチャネル幅となる。
 この露光プロセスでは、ネガ型のホトレジストを用い、十分な露光部分(全露光部)のホトレジストの部分は全層が可溶化し、露光マスクで影となった部分は現像薬液に不溶となるようにした。露光マスクは、そのハーフトーン露光部分の露光光のエネルギー(光量)が、全露光部に比べて少なくなるような光透過率からなるパターン又は光の干渉により露光量が少なくなる開口パターンとして、当該部分のホトレジストの可溶化反応を抑制する。ハーフトーン露光部分の光量は、後述するアッシングでのレジスト減厚量との関係で決定される。なお、ポジ型のホトレジストを用い、上記とは逆の露光特性を有する露光マスクと組み合わせて所要のハーフトーン露光を行うようにしてもよい。図3Bはレジストを所定のパターンにパターニングした状態を示す。
 図3Cは、パターニングしたレジストをエッチングマスクとして薄膜トランジスタのアイランド部分とデータ線部分を残すエッチングを行う。このエッチング加工では、データ線とソース電極及びドレイン電極となるソース/ドレインメタル(S/Dメタル)600のエッチング(S−7)を行う。更に、オーミックコンタクト層(n)501に続いてシリコン層(a—Si)500をエッチングする(S−8)。このソース/ドレインメタル(S/Dメタル)600、オーミックコンタクト層(n)501、シリコン層(a—Si)500のエッチングでは、それぞれの層に応じたエッチング薬液を用いて行う。
 図3Dは、レジスト300をアッシングしてレジスト膜を減厚してハーフトーン露光部分302を開口させ、下層のソース/ドレインメタル600を露出させる(S−9)。露出させたチャネル部分のソース/ドレインメタル600をエッチングする(S−10)。次に、下層のオーミックコンタクト層(n)501をエッチングして(バックチャネルのエッチング:S−11)、最後にレジストを除去する。この状態を図3Eに示す。以上が本発明に係る実施例1の第1ホトリソ工程と第2ホトリソ工程までの説明である。
 図4A~図5Eは、本発明に係る実施例1の第3ホトリソプロセスの説明図である。図4Aは、本発明に係る実施例1の第3ホトリソプロセスにおけるステップを説明する図で、前記図3Eに示した薄膜トランジスタ基板にスリットコーターを用いホトレジストを塗布し、ハーフトーン露光マスクを用いて画素部と一方の表示電極としての画素電極をドレイン電極に接続するコンタクトホールはハーフトーン露光し、ゲート線の端子部とデータ線の端子部は全露光し、画素電極の周りにバンクを形成する(S−12)。このステップ(S−12)が第3ホトリソプロセスである。
 このレジストをマスクとしてゲート線の端子部とデータ線の端子部を露出させる(S−13)。その後、レジストをアッシングして、画素部とコンタクトホールのレジストを除去する(S−14)。画素部とコンタクトホールはレジストのバンクで囲まれる。このバンクの内側にITOを好適とする透明導電膜材料を分散したインクを滴下し、塗布する(S−15)。その後、このインク膜を焼成して薄膜トランジスタに接続した画素電極とする。
 図4Bは、本発明に係る実施例1の第3ホトリソプロセスで画素電極を形成した状態を示す画素部の要部平面図である。画素電極800はコンタクトホール1000で薄膜トランジスタTFTのドレイン電極と接続している。コンタクトホール1000で薄膜トランジスタTFTのドレイン電極と接続した画素電極800は、2本のゲート線201と2本のデータ線の上方に形成されたバンク701の内側に配置されている。
 図4C~図4Eは、画素電極の形成過程の要部を説明する図4BのC−C線に沿った断面図である。図4Cでは、前記図3Eに示した薄膜トランジスタ基板にスリットコーターでホトレジストを塗布し、ハーフトーン露光マスクを用いて画素部と画素電極をドレイン電極に接続するコンタクトホールはハーフトーン露光し、ゲート線の端子部とデータ線の端子部は全露光し、画素電極の周りにバンクを形成する図4Aのステップ(S−12)で説明した第3ホトリソ処理した状態を示す。この第3ホトリソ処理では、画素部とコンタクトホール1000の部分がハーフトーン露光でレジスト膜が薄くなっている。薄くなったハーフトーン露光部分のレジストを702で示す。ハーフトーン露光部分のレジスト702の周りは厚いレジスト700で囲まれている。
 図4Dは、レジスト膜700とハーフトーン露光部分のレジスト702をアッシングして減厚した状態を示す。アッシングにより画素部分とコンタクトホール部分のレジストは除去されている。残留したレジスト701の膜厚は、除去されたハーフトーン露光部分のレジスト702の分、あるいはそれよりも若干だけ薄くなっている。
 図4Eは、レジスト701で形成される画素形成用のバンクの内側にITOを好適とする透明導電材料を分散したインクをインクジェット装置で滴下して塗布し、透明導電膜からなる画素電極800とした状態を示す。薄膜トランジスタのドレイン電極603に画素電極800がコンタクトホール1000で接続している。ドレイン電極603を覆う透明導電膜の上面の基板100からの高さhは、レジスト701で形成される画素形成用のバンクの上面の基板100からの高さHよりも低くなっている(高さhは高さH未満)。このことは、以下の各実施例でも同様である。
 図5Aは、本発明の実施例1に係る端子部の構成を説明する要部平面図である。なお、図5Aは端子部分がゲート絶縁膜601で覆われている後述の図5Bに相当する平面図である。図5B~図5Eは、図5AのD−D線に沿った断面図である。
 図5Bは、ハーフトーン露光したレジスト膜700がデータ線とその端子901を接続するコンタクトホール1000の部分で減厚されている様子を示している。図5Cは、レジスト膜700とハーフトーン露光レジスト702をエッチングマスクとしてゲート絶縁膜601をエッチング除去した状態を示す。図5Dは、アッシング処理してレジスト膜を減厚した状態を示し、コンタクトホール1000の部分のレジストが除去されてデータ線601が露出していることが示されている。
 図5Eは、コンタクトホール1000の部分にITOを好適とする透明導電材料を分散したインクをインクジェット装置で滴下して塗布して端子接続部801とし、この端子接続部801でデータ線を端子901に接続した状態を示す。端子接続部801の上面の基板100からの高さh’は、レジスト701で形成される画素形成用のバンクの上面の基板100からの高さH’よりも低くなっている(高さh’は高さH’未満)。このことは、以下の各実施例でも同様である。ここで、コンタクトホール1000の部分に滴下して塗布する材料として画素電極800と同じ材質のITOを好適としたが、導電性を有しデータ線400と端子部901とのコンタクト抵抗が小さい材料であれば良い。例えば、Ni、Mo、W等でも良い。
 以上説明した本発明の実施例1によれば、ホトリソプロセス数を削減することにより、アクティブマトリックス基板を全体として少ないプロセス数で製造することができ、TN型の液晶表示装置を安価に提供できる。
 本発明の実施例2のアクティブ素子基板とその製造方法を図6A~図6F、および図7A~図7Eを用いて説明する。実施例2は、所謂TN方式、かつカラーフィルタをアクティブ素子基板に形成したカラーフィルタオンアレイ(COA)方式(TN−COA)のTN型液晶表示装置に係る。アクティブ素子には実施例1と同様に薄膜トランジスタを用いる。以下では、アクティブ素子基板を薄膜トランジスタ(TFT)基板として説明する。
 実施例2の第1ホトプロセスと第2ホトプロセスは実施例1の図1A~図3Eでの説明と同様なので、重複した説明は省略する。以下では、実施例2の特徴部分である第3ホトプロセスを説明する。
 図6Aは、本発明に係る実施例2の第3ホトリソプロセスにおけるステップを説明する図で、前記図3Eに示した薄膜トランジスタ基板にスリットコーターを用いて黒色材料を混入した黒色ホトレジストを塗布し、ハーフトーン露光マスクを用いて画素部と画素電極をドレイン電極に接続するコンタクトホールはハーフトーン露光し、ゲート線の端子部とデータ線の端子部は全露光し、画素電極の周りに黒色ホトレジスト(単に、黒色レジストとも言う)のバンクを形成する(S−16)。このステップ(S−16)が第3ホトリソプロセスである。
 このとき、画素電極の形成部分と当該画素電極と薄膜トランジスタのドレイン電極を接続するコンタクトホールとの間に、未露光されて形成される黒色レジストの突条を設ける。この突条は、画素電極のインクジェット塗布前に同じくインクジェットで塗布するカラーフィルタインクがコンタクトホールに溢れ出るのを防止するためのものである。
 また、このレジストをマスクとしてゲート線の端子部とデータ線の端子部を露出させる(S−17)。その後、レジストをアッシングして、画素部とコンタクトホールのレジストを除去する(S−18)。画素部とコンタクトホールは黒色レジストのバンクで囲まれる。画素電極の形成部分とコンタクトホールとの間に上記突条が位置する。
 バンクの内側、かつに突条の画素電極形成側にインクジェット装置の塗布により所定の色(R,G,Bの何れか)のカラーフィルタ材料を分散したインクを塗布する(S−19)。カラーフィルタのインクは上記突条によってコンタクトホールへの漏れ出しが阻止される。黒色レジストのバンクは画素の周りを囲んでブラックマトリクスとして機能する。その後、このインク膜を焼成してカラーフィルタを形成する。
 このカラーフィルタの上層、かつ上記突条を乗り越え、かつ覆ってコンタクトホールに達するようにITOを好適とする透明導電膜材料を分散したインクを滴下し、塗布する(S−20)。その後、このインク膜を焼成して薄膜トランジスタのドレイン電極に接続した一方の表示電極としての画素電極とする。
 ここでは、カラーフィルタの焼成と画素電極の焼成を単独に行ったが、カラーフィルタの焼成は画素電極形成用のインク膜を形成するのに問題を生じない程度の低温での焼成とし、本来の焼成は一括でも良い。
 図6Bは、第3ホトリソプロセスで黒色ホトレジストを塗布し、ハーフトーン露光を施した状態を示す画素部の要部平面図である。ハーフトーン露光部は一方の表示電極としての画素電極形成部分(画素電極の下層にカラーフィルタが塗布される)とコンタクトホールの部分である。図6Bに示されたように、コンタクトホール1000は突条703で画素電極の形成部分と隔離されている。
 図6C~図6Fは、図6BのE−E線に沿った断面図である。図6Cは薄膜トランジスタ基板にインクジェットで黒色ホトレジスト700Kを塗布し、ハーフトーン露光マスクを用いて画素部と画素電極をドレイン電極に接続するコンタクトホールはハーフトーン露光し、ゲート線の端子部とデータ線の端子部は全露光し、画素電極の周りに黒色バンクを形成する図6Aのステップ(S−16)で説明した第3ホトリソ処理した状態を示す。この第3ホトリソ処理では、画素部とコンタクトホール1000の部分がハーフトーン露光でレジスト膜が薄くなっている。薄くなったハーフトーン露光部分の黒色レジストを702Kで示す。ハーフトーン露光部分のレジスト702Kの周りは厚い黒色レジスト700Kで囲まれている。
 図6Dは、黒色レジスト膜700Kとハーフトーン露光部分の黒色レジスト702Kをアッシングして減厚した状態を示す。アッシングにより画素部分とコンタクトホール部分のレジストは除去されている。残留した黒色レジスト701Kの膜厚は、除去されたハーフトーン露光部分の黒色レジスト702Kの分、あるいはそれよりも若干だけ薄くなっている。
 図6Eは、黒色レジスト701Kで形成される画素形成用のバンクの内側にインクジェット装置を用いてカラーフィルタインク1100を塗布した状態を示す。そして、図6Fは、カラーフィルタ1100の上と突条703Kを乗り越えてコンタクトホール1000迄の領域にITOを好適とする透明導電材料を分散したインクをインクジェット装置で滴下して塗布し、画素電極800とした状態を示す。薄膜トランジスタのドレイン電極603に画素電極800がコンタクトホール1000で接続している。
 図7Aは、本発明の実施例2に係る端子部の構成を説明するアクティブ素子基板の要部平面図である。なお、図7Aは端子部分がゲート絶縁膜601で覆われている後述の図7Bに相当するアクティブ素子基板の平面図である。図7B~図7Eは、図7AのF−F線に沿った断面図である。
 図7Bは、ハーフトーン露光した黒色レジスト膜700Kがデータ線とその端子901を接続するコンタクトホール1000の部分で減厚されている様子を示している。図7Cは、黒色レジスト膜700Kとハーフトーン露光レジスト702Kをエッチングマスクとしてゲート絶縁膜400をエッチング除去した状態を示す。図7Dは、アッシング処理して黒色レジスト膜を減厚した状態を示し、コンタクトホール1000の部分の黒色レジストが除去されてデータ線601が露出していることが示されている。
 図7Eは、コンタクトホール1000の部分にITOを好適とする透明導電材料を分散したインクをインクジェット装置で滴下して塗布し、データ線601を端子901に端子接続部801で接続した状態を示す。ここで、コンタクトホール1000の部分に滴下して塗布する材料として画素電極800と同じ材質のITOを好適としたが、導電性を有しデータ線400と端子部901とのコンタクト抵抗が小さい材料であれば良い。例えば、Ni、Mo、W等でも良い。これは、以下で説明する実施例においても同様である。
 以上説明した本発明の実施例2によれば、ホトトリソプロセス数を削減することにより、アクティブ素子基板及び液晶表示装置を少ない全体として少ないプロセス数でアクティブ素子基板を安価に製造することができると共に、カラーフィルタをTFT基板側に形成したことにより対向基板との位置合わせ裕度を考慮することなく、開口率を向上させ、結果として液晶表示装置の消費電力を低減し、かつ対向基板としてTFT基板とは異なる材質の安価なガラス基板又は光透過率に優れたプラスチック基板が採用でき材料費を低減したカラーフィルタオンアレイ方式のTN型液晶表示装置を提供できる。
 本発明の実施例3のアクティブ素子基板とその製造方法を図8~図11Eを用いて説明する。実施例3は、所謂FFS(Fringe Field Switching)方式の液晶表示装置用のアクティブ素子基板に係るものである。実施例3において、基板の上にゲート線とゲート電極および付加容量線(コモン線)を形成する第1ホトリソプロセスと薄膜トランジスタのチャネルを形成する第2ホトリソプロセスまでは前記した実施例1、2と同じであるので、重複説明は省略し、ここでは実施例3の第3ホトリソプロセスから説明する。なお、第1ホトリソプロセスでは、ゲート線とゲート電極と共にコモン線も同時に形成するが、コモン線は実施例1、2における付加容量線と同じものと考えてよい。
 図8は、本発明に係る実施例3の第3ホトリソプロセスにおけるステップを説明する図である。前記した第2ホトリソプロセスで得られた基板に、スリットコーターによりホトレジストを塗布する。このホトレジストをハーフトーン露光マスクを用いて露光し、パターニングしてバンク(IJバンク)を形成する(S−21)。
 エッチング処理によりゲート絶縁膜を加工除去してゲート線端子900とコモン線端子902及びデータ線端子901、データ線端子との接続用のコンタクトホール1000、コモン線のコモン電極接続部にコンタクトホール1000を形成して下層の配線あるは電極を露出させる(S−22)。レジストをアッシングして減厚する(S−23)。レジストで形成されたバンク内に、透明導電膜としてのITOを分散したインクを、インクジェット装置を用いて塗布し、画素電極、上記各コンタクトホールにITOが埋め込まれ、各々の接続用の電極が形成される(S−24)。
 図8Aは、本発明の実施例3に係るアクティブ素子基板の画像部の要部平面図である。基板100上に形成された2本のゲート線201と2本のデータ線601で囲まれた領域に1単位画素(カラー表示の場合の各カラー画素、副画素:sub−pixel)が形成される。図8Aはレジストをハーフトーン露光し、現像してバンク700を形成した状態を示す。画素電極形成部分と、画素電極を薄膜トランジスタのドレイン電極に接続するコンタクトホール1000の部分がハーフトーン露光で薄いレジスト膜702とされている。コモン線803は画素の中央部分をゲート線201に平行な方向に形成されている。画素電極の形成領域でコモン線803の上方にバンクの一部が突出してコモン電極接続部807を形成し、このコモン電極接続部807にコンタクトホール1000が形成されている。
 図8Bは、図8AのU−U線に沿った断面図である。基板100の上に薄膜トランジスタアレーが形成されている。この上にホトレジストを塗布し、ハーフトーン露光マスクを用いて露光し、現像することで未露光部700とハーフトーン露光部701で構成されるレジストがパターニングされる。未露光部はレジストの膜厚が厚く、ハーフトーン露光部701はレジストの膜厚は薄い。
 図8Cは、図8Bでパターニングしたレジストをアッシングした状態を示す図8AのU−U線に沿った断面図である。このアッシング処理によりレジストの膜厚は減少し、ハーフトーン露光部分のレジスト701は除去される。その結果、画素電極形成領域のゲート絶縁膜400が露出すると共に、コンタクトホール1000の部分にドレイン電極603が露出する。この露出したゲート絶縁膜400とコンタクトホール1000の部分に露出したドレイン電極603を覆ってITOを好適とする透明導電膜材料を分散したインクをインクジェット塗布して薄膜トランジスタのドレイン電極603に接続した画素電極800を形成する。このインクジェット塗布時に、レジスト701がバンクとなって必要な領域内にインク滴を貯留させる。この状態を図8Dに示す。
 図9Aは、本発明の実施例3に係るアクティブ素子基板の端子部の要部平面図である。アクティブ素子基板の端子部には、ゲート線端子900、データ線端子901、コモン線端子902が形成されている。レジストのバンク701(図9D)は、コモン線803の上方で画素形成領域に突出したコモン電極接続部807を有し、このコモン電極接続部807に後述する他方の表示電極としてのコモン電極をコモン線803に接続するコモン電極接続電極804(図9I)を形成するためのコンタクトホール1000を備えている。
 図9B~図9Iは、レジスト塗布からデータ線とデータ線端子の接続までのプロセスを示す図9AのV−V線に沿った断面図である。図9Bでは、レジスト700を塗布し、ハーフトーン露光マスクを用いて露光し、現像してパターニングした状態を示す。ハーフトーン露光部分のレジストを702で示す。このレジストパターンをエッチングマスクとしてゲート絶縁膜400をエッチング加工し、データ線端子901の部分とコンタクトホール1000の部分を露出させる。この状態を図9Cに示す。
 図9Dは、レジストをアッシングしてハーフトーン露光部分のレジストを除去してデータ線601を露出させた状態を示す。その後、ITOを分散したインクをインクジェット塗布し端子部接続部801を形成する。この状態を図9Eに示す。
 図9Fは、レジスト塗布からコモン線とコモン電極接続電極の形成までのプロセスを示す図9AのW−W線に沿った断面図である。図9Fは、レジスト700を塗布し、ハーフトーン露光マスクを用いて露光し、ハーフトーン露光部分702を形成し、現像してパターニングした状態を示す。コモン線803の一部には図8A、図9Aで説明したコンタクトホール1000が形成される。このコンタクトホール1000の部分のゲート絶縁膜400をエッチングし、直下のコモン線803を露出させる。これを図9Gに示す。
 図9Hは、レジストをアッシングした状態を示し、全露光部分がアッシングによって減厚されたレジスト膜701となっていることを示す。図9Hに示したように、コンタクトホール1000にインクジェット塗布でITO分散インクを塗布してコモン電極接続電極804を形成する。これを図9Hに示す。ITO分散インクの塗布は前記した端子部接続電極と画素電極の形成と同時プロセスで行われる。
 図10Aは、本発明の実施例3に係る画素電極の上方に櫛型のコモン電極を形成するアクティブ素子基板のホトリソプロセスの説明図である。図10Aにおいて、前記図8D、図9E、図9Iに示したアクティブ素子基板にCVDにより層間絶縁膜を成膜する(S−25)。この層間絶縁膜には窒化シリコン(SiN)を用いるがこれに限るものではない。スリットコーターにより層間絶縁膜の上にホトレジストを塗布し、ハーフトーン露光マスクを用いて露光し、現像してレジストパターンを形成する(S−26)。
 このレジストパターンをエッチングマスクとして層間絶縁膜をエッチングし、コモン電極接続部、端子部を露出する(S−27)。次に、レジストをアッシングしてハーフトーン部分のレジストを除去し(S−28)、インクジェットによりITOを好適とする透明導電材料を分散したITOインクを塗布する(S−29)。ITOインクはレジストのバンク内に貯留される。その後、このインク膜を焼成してコモン線に接続した櫛歯状のコモン電極とする。
 図10Bは、画素電極の上にコモン電極を形成した状態を説明するアクティブ素子基板の画素部の要部平面図である。基板100には層間絶縁膜1200を介して櫛歯状のコモン電極805が形成される。コモン電極805はコモン電極接続電極804でコモン線803に接続している。
 図10Cと図10Dは、図10BのX−X線に沿った断面図であり、前記図8A、図9Aで説明した基板の上にCVDにより層間絶縁膜(SiN)1200を成膜し、さらにその上にホトレジスト700を塗布し、ハーフトーン露光マスクでハーフトーン露光し、現像してコモン電極接続部、櫛歯状コモン電極パターンを形成する。これを図10Dに示したように、レジストをアッシングして画素領域、コンタクトホールの部分を囲むバンクを形成する。これにより、櫛歯状のレジストパターン701は下層の層間絶縁膜1200に貫通する。
 図11Aは、画素電極の上にコモン電極を形成した状態を説明するアクティブ素子基板の端子部の要部平面図である。基板100には層間絶縁膜を介して櫛歯状のコモン電極805が形成される。コモン電極805はコモン電極接続電極804でコモン線803に接続している。
 図11B~図11Eは、画素電極の上にコモン電極を形成するプロセスを説明する図10BのY−Y線に沿った断面図である。図11Bは層間絶縁膜1200の上にホトレジスト700を塗布し、ハーフトーン露光マスクを用いて櫛歯状のレジストパターンを形成する。図11Cではレジストパターンをエッチングマスクとしてコモン電極接続部とゲート線端子部、コモン線端子部、データ線端子部の層間絶縁膜1200をエッチング除去する。
 櫛歯状のレジストパターンの部分はハーフトーン露光されており、図11Dに示したように、レジストをアッシングして前記櫛歯状のレジストパターンのコモン電極形成部分の開口を層間絶縁膜1200に貫通させる。このコモン電極形成部分とコモン電極接続電極804上の開口にITOを好適とする透明導電材料を分散したインクをインクジェットで塗布し、櫛歯状のコモン電極805を形成すると共に、コモン電極接続電極804とコモン電極805を接続する。この状態を図11Eに示す。
 以上説明した本発明の実施例3によれば、ホトトリソプロセス数を削減することにより、アクティブ素子基板及び液晶表示装置を少ない全体として少ないプロセス数でアクティブ素子基板を製造することができ、FFS型液晶表示装置を安価に提供できる。
 本発明の実施例4のアクティブ素子基板とその製造方法を図12A~図15Bを用いて説明する。実施例4は、実施例3の変形例であり、FFS方式の液晶表示装置用のアクティブ素子基板を実施例3よりもホトリソプロセスが1つ多い5回で製造するものである。実施例4において、基板の上にゲート線とゲート電極および付加容量線(コモン線)を形成する第1ホトリソプロセスと薄膜トランジスタのチャネルを形成する第2ホトリソプロセスおよび画素電極を形成する第3ホトリソプロセスまでは前記した実施例3と同じであるので、重複説明は省略する。ここでは実施例4の第4ホトリソプロセスから説明する。
 図12Aは、本発明に係る実施例4の第4ホトリソプロセスにおけるステップを説明する図である。先ず、実施例3で画素電極800を形成した基板にCVDにより層間絶縁膜(SiN)を成膜する(S−30)。その上にホトレジストを塗布し、露光し(S−31)、現像してコモン電極接続部と端子部の層間絶縁膜をエッチングし、コモン電極接続部と端子部を露出させる(S−32)。
 図12Bは、画素電極を形成した基板の画素部の要部平面図である。図12Cは画素電極を形成した基板の上にCVDにより層間絶縁膜(SiN)を成膜し、その上にホトレジスト1700を塗布して露光マスクを用いて露光し、現像してレジストパターンを形成した状態を説明する図12BのZ−Z線に沿った断面図、図12Dはレジストパターンをエッチングマスクとしてコモン電極接続部の層間絶縁膜をエッチングした後にレジストを除去した状態(図13B)を示す。図12Dでは、単にレジストが除去された状態となっている。
 図13Aと図13Bは、図12BのAA−AA線に沿ったコモン電極接続部の断面図である。図13Aには層間絶縁膜1200の上に成膜した層間絶縁膜1200を覆ってホトレジスト1700を塗布し、パターニングしてコモン電極接続電極804の上部に開口を設けた状態を示している。図13Bは図13Aのレジストパターンをエッチングマスクとして層間絶縁膜1200をエッチングしてコモン電極接続電極804を露出した状態を示す。
 図14Aは、コモン電極の形成プロセスステップを説明する図である。まず、前記図12Dと図13Bで説明した基板にITOを好適とする透明導電材料をスパッタする(S−33)。この上にホトレジストを塗布し、露光マスクで露光し、現像して櫛歯状のコモン電極形成用レジストパターンを形成する(S−34)。このレジストパターンでITOをエッチングして櫛歯状のコモン電極を形成する(S−35)。
 図14Bは、実施例4の画素部の要部平面図である。図14Cは、ITOの上にコモン電極形成用レジスト1700のパターンを形成した状態を示す図14BのBB−BB線に沿った断面図である。このレジストパターンをエッチングマスクとしてITO806をエッチングして櫛歯状のコモン電極805を形成した状態を図14Dに示す。
 図15Aは、図14BのCC−CC線に沿った断面図であり、ITO806の上にホトレジスト1700を塗布し、露光し、現像してパターニングした状態を示す。このレジストパターンをエッチングマスクとしてITO806をエッチングし、コモン電極接続電極804に接続した櫛歯状のコモン電極を形成した状態を示す。
 以上説明した本発明の実施例4によっても、ホトトリソプロセス数を削減することにより、アクティブ素子基板及び液晶表示装置を少ない全体として少ないプロセス数でアクティブ素子基板を製造することができ、FFS型液晶表示装置を安価に提供できる。
 本発明の実施例5のアクティブ素子基板とその製造方法を図16~図21Eを用いて説明する。実施例5は、前記したFFS方式で、かつカラーフィルタをTFT基板側に形成した方式の液晶表示装置(FFS−COA方式)用のアクティブ素子基板に係るものである。実施例5の基板の上にゲート線とゲート電極およびコモン線を形成する第1ホトリソプロセスと薄膜トランジスタのチャネルを形成する第2ホトリソプロセスまでは前記した実施例4と同じであるので、重複説明は省略し、ここでは実施例5の第3ホトリソプロセスから説明する。
 図16は、ゲート線とゲート電極およびコモン線を形成し、薄膜トランジスタのチャネルを形成したTFT基板にカラーフィルタと画素電極を形成するFFS−COA方式液晶表示装置のプロセスを説明する図である。先ず、ゲート線とゲート電極およびコモン線を形成し、薄膜トランジスタのチャネルを形成したTFT基板にスリットコーターでホトレジストを塗布して画素電極、カラーフィルタ、コモン電極形成用のレジストバンク機能を有するレジストパターンを形成する(S−36)。このレジストパターンをエッチングマスクとしてゲート絶縁膜をエッチングし、ゲート線端子、コモン線端子、データ線端子、データ線とデータ線端子の接続用コンタクトホール、コモン電極をコモン線に接続するコンタクトホールを形成する(S−37)。
 レジストパターンをアッシングしてハーフトーン露光部分のレジストを除去する(S−38)。画素領域にカラーフィルタ材料を分散したインクを、インクジェット装置を用いて塗布する(S−39)。その後、ITOを好適とする透明導電膜材料を分散したインクをインクジェット用いて塗布し、画素電極を形成すると共に、データ線とデータ線端子の接続用コンタクトホールおよびコモン電極をコモン線に接続するコンタクトホールにITO膜を埋め込んでコンタクトをとる(S−40)。
 図17Aは、本発明の実施例5に係るアクティブ素子基板の画像部の要部平面図である。基板100上に形成された2本のゲート線201と2本のデータ線601で囲まれた領域に1単位画素(カラー表示の場合の各カラー画素、副画素:sub−pixel)が形成される。図17B~図17Eは図17AのE−E線に沿った断面図、図18A~図18Eは図17AのG−G線に沿った断面図である。また、図19Aは、本発明の実施例5に係るアクティブ素子基板の端子部の要部平面図である。図19B~図19Eは図19AのF−F線に沿った断面図である。
 図17A~図19Eにより、本発明の実施例5に係るアクティブ素子基板の製造プロセスを説明する。図17A、図17B~図17Eにおいて、黒色材料を混入したレジスト700Kをハーフトーン露光し、現像してバンク700Kを形成する。画素電極形成部分と、画素電極を薄膜トランジスタのドレイン電極に接続するコンタクトホール1000の部分がハーフトーン露光で薄いレジスト膜702Kとされている。コモン線803は画素の中央部分をゲート線201に平行な方向に形成されている。画素電極の形成領域でコモン線803の上方にバンクの一部が突出してコモン電極接続部807を形成し、このコモン電極接続部807にコンタクトホール1000が形成されている。
 図17Bにおいて、レジスト700Kを露光、現像後のレジストパターンは、画素領域のカラーフィルタ塗布部分と薄膜トランジスタのドレイン部分との間に突状703Kが形成されている。この突状703Kは、アッシング後にも図17C−図17Dに示したように、カラーフィルタ1100をレジストバンク701K内に塗布する際に、カラーフィルタインクが薄膜トランジスタのドレイン電極603に溢れ出さないための防壁として機能する。カラーフィルタ1100を形成後、レジストバンク701K内にITOを好適とする透明導電材料を分散したITOインクをインクジェット装置で塗布し、画素電極800とする。このとき、ITOインクは突状703Kを超えて薄膜トランジスタのドレイン電極603にも塗布され、画素電極800をドレイン電極に接続する。この状態を図17Eに示す。
 図18A~図18Eは、図17AのG−G線に沿って説明するコモン電極とコモン線との接続プロセスである。G−G線上において、画素領域をゲート線と平行に、かつ同層にコモン線803が形成されている。図18Aにおいて、コモン線803は層間絶縁膜400で覆われ、その上にデータ線601が形成されている。この上に黒色材料を混入したホトレジスト700Kを塗布し、露光マスクでハーフトーン露光を施す。図18Aは現像後のレジストパターンを示し、未露光部分は700Kで、ハーフトーン露光部分は702Kで示す。
 このレジストパターンをエッチングマスクとして層間絶縁膜400をエッチングしてコモン電極接続部807の層間絶縁膜400を除去して下層のコモン線803を露出させる。この状態を図18Bに示す。続いて、レジストをアッシングしてハーフトーン露光部分のレジストを除去する。レジスト701Kがレジストバンクとなる(図18C)。インクジェット装置を用いてカラーフィルタ材料のインクをバンク701K内に塗布する(図18D)。然る後、ITOを好適とする透明導電材料を分散したITOインクをインクジェット装置で塗布して画素電極800とコモン電極接続電極804を形成する。コモン電極接続電極804はコモン電極接続部807の中に充填されてコモン電極803と接続される。この状態を図18Eに示す。
 図19Aは、本発明の実施例5に係るアクティブ素子基板の端子部の要部平面図である。図17Aで説明したように、黒色材料を混入したレジスト700Kをハーフトーン露光し、現像してレジストバンク700Kを形成する。図19A~図19Eはデータ線601をデータ線端子901に接続するプロセスを示す。図19Bはデータ線601をデータ線端子901に接続するコンタクトホール1000部分がハーフトーン露光されたレジストを有している様子を示している。
 図19Cには、図19Bのレジストパターンをエッチングマスクとして層間絶縁膜400をエッチングし、端子901とコンタクトホール1000部分の層間絶縁膜400を除去した状態を示す。その後、アッシングを施してレジストパターンを減厚し、ハーフトーン露光部分のレジストを除去する(図19D)。インクジェット装置によりITOを好適とする透明導電材料を分散したITOインクを塗布する。コンタクトホール1000部分に透明導電材料が充填されて、データ線601はデータ線端子901に端子接続部801で接続される(図19E)。
 図20は、本発明の実施例5に係るアクティブ素子基板のコモン電極接続部の形成プロセスを説明する図である。図20A~図20Eでも説明するが、このプロセスでは、前記図17Eに示した基板にCVDによって層間絶縁膜を成膜する。ここでは、層間絶縁膜にSiNを用いる(S−41)。この層間絶縁膜を覆ってレジストを塗布し、露光し、現像して(S−42)コモン電極接続部と端子部の層間絶縁膜をエッチングする(S−43)。
 図20Aは、画素部の平面図で、そのH−H線に沿った断面図が図20B~図20Cで、J−J線に沿った断面図が図20D~図20Eである。図20Bは層間絶縁膜400を成膜し、その上にレジスト1700を塗布する。露光でレジストパターンを形成し、層間絶縁膜をエッチングして前記した端子部等を露出させる。画素部では、レジストを除去して層間絶縁膜400を露出させる(図20C)。
 図20Dは、コモン電極接続電極804の上方にレジスト開口が形成されている状態を示す。この開口で層間絶縁膜400をエッチングし、コモン電極接続電極804を露出させる(図20E)。この上に次に説明するプロセスでコモン電極を形成する。
 図21は、本発明の実施例5に係るアクティブ素子基板のコモン電極の形成プロセスを説明する図である。図20Eで説明したアクティブ基板(TFT基板)の層間絶縁膜の上にITOを好適とする透明導電材料をスパッタで成膜する(S−44)。その上にホトレジストを塗布し、露光し、現像して櫛歯状のレジストパターンを形成する(S−45)。このレジストパターンをエッチングマスクとして櫛歯状のコモン電極を形成する(S−46)。
 図21Aは、櫛歯状コモン電極の平面図である。図21Bと図21Cは、図21AのK−K線に沿った櫛歯状コモン電極の形成プロセスを説明する断面図、図21Dと図21Eは、図21AのL−L線に沿った櫛歯状コモン電極接続部の形成プロセスを説明する断面図である。図21Bには、前記図20Cに示した基板の上にITOをスパッタして透明導電膜(ITO膜)806を形成した基板の上にホトレジスト1700を塗布し、櫛歯状コモン電極パターンを有する露光マスクを用いて露光し、現像して、櫛歯状コモン電極パターンのレジスト開口を形成した状態を示す。図21Cは、図21BのレジストをエッチングマスクとしてITO膜806をエッチングし、櫛歯状のコモン電極805を形成した状態を示す。
 図21Dは、図20Eに示した基板の上にITOをスパッタして透明導電膜806を形成しその上にホトレジスト1700を塗布した図21Bのホトレジスト1700の露光で画素間にレジスト開口を形成した状態を示す。図21Eは、隣接する画素との間のITO膜806をエッチング除去して櫛歯状のコモン電極805を形成し、かつ画素間を分離し、レジスト1700を除去した状態を示す。櫛歯状のコモン電極805は画素部接続電極804を通してコモン線803に接続されている。
 図22は、本発明の実施例6に係るアクティブ素子基板にコモン電極を形成する他のプロセスを説明する図である。前記図17E及び図18Eで示したTFT基板の上にCVDでSiNを成膜して層間絶縁膜とする(S−47)。この層間絶縁膜を覆ってホトレジストを塗布し、ハーフトーン露光マスクを用いてハーフトーン露光をする(S−48)。層間絶縁膜をエッチングして全露光したコモン電極接続部と端子部を露出させる(S−49)。ホトレジストをアッシングし(S−50)、ハーフトーン露光部分である櫛型コモン電極形成部分のレジストを開口させる。その上にインクジェットによりITOを塗布して櫛歯状電極の形成およびコモン電極接続電極と櫛型電極の接続を行う(S−51)。
 図23Aは、本発明の実施例6に係るアクティブ素子基板の画素部の平面図であり、櫛型電極などを仮想的に示したものである。図23Bと図23Cは、図23AのM−M線に沿った断面図であり、図23Bは層間絶縁膜1200にハーフトーン露光したレジストパターンを示し、図23Cはレジストパターンをアッシングした状態を示す。
 図24Aは、本発明の実施例6に係るアクティブ素子基板の端子部の平面図であり、櫛歯状電極などを仮想的に示したものである。図24B~図24Eは、図23AのN−N線に沿った断面図である。図24Bは層間絶縁膜1200にハーフトーン露光したレジストパターンを示し、図24Cはコモン電極接続部の層間絶縁膜1200をエッチング除去してコモン電極接続電極804を露出させた状態を、図24Dはレジストパターンをアッシングした状態を示す。図24Eはアッシングにより貫通した櫛型電極部の開口とコモン電極接続電極804にITOをインクジェット塗布した状態を示す。
 以上説明した本発明の実施例5及び実施例6も、ホトトリソプロセス数を削減することにより、アクティブ素子基板及び液晶表示装置を全体として少ないプロセス数でアクティブ素子基板を製造することができる。そして、本発明の実施例6では、実施例5に比べホトリソプロセス数を1工程削減できると共に、実施例5も実施例6もカラーフィルタをTFT基板側に形成したことにより対向基板との位置合わせ裕度を考慮することなく、開口率を向上させ、結果として液晶表示装置の消費電力を低減し、かつ対向基板としてTFT基板とは異なる材質の安価なガラス基板又は光透過率に優れたプラスチック基板が採用でき材料費を低減したカラーフィルタオンアレイ方式のFFS−COA型液晶表示装置を安価に提供できる。
 図25は、本発明の実施例7に係るマルチドメイン垂直配向(MVA)方式のTFT基板の形成プロセスを説明する図である。このプロセスでは、先ず実施例1と同様の2回のホトリソプロセスを施したTFT基板の上にスリットコーターによって画素部にレジストのバンクを形成する(S−52)。レジストの無い部分の層間絶縁膜をエッチングし、端子と信号線との接続用のコンタクトホールを露出させる(S−53)。次に、レジストをアッシングして(S−54)、インクジェットにより画素電極と信号線とのコンタクトホールにITOを塗布する(S−55)。
 図26Aは、本発明の実施例7に係るTFT基板の1画素部分を示す平面図である。図26Bは、図26AのO−O線に沿った断面図である。この実施例では、画素電極800はレジスト700で形成したバンク内にITOインクをインクジェットで塗布することで形成される。この画素電極800はレジストで構成されるスリット状の画素分割部808で分割すると共に、画素の上下各半分(図26Aではデータ線601の延在方向)で分割した各画素電極の傾斜を逆にしてドメイン方向を2方向としてある。そして、分割された画素電極を当該画素の上下端に設けた連続部809で接続している。
 図26Cは、本発明の実施例7に係るマルチドメイン垂直配向(MVA)方式の他の画素電極の構成を説明する1画素の平面図である。図26Dと図26Eは、図26CのP−P線に沿った断面図である。画素電極800はレジスト700で形成したバンク内にITOインクをインクジェットで塗布して形成される(図26D)。図26Eに示したように、この画素電極800の上にインクジェットにより図26Aの画素分割部808と同様の傾斜でレジストの突起物1800を塗布して形成する(図25のS−56)。この突起物1800によって2つのドメインを形成する。
 以上説明した本発明の実施例7も、ホトトリソプロセス数を削減することにより、アクティブ素子基板及び液晶表示装置を少ない全体として少ないプロセス数でアクティブ素子基板を製造することができ、MVA型液晶表示装置を安価に提供できる。
 図27は、本発明の実施例8に係るカラーフィルタがTFT基板側に設けたマルチドメイン垂直配向(MVA—COA)方式のTFT基板の形成プロセスを説明する図である。このプロセスでは、先ず実施例1と同様の2回のホトリソプロセスを施したTFT基板の上にスリットコーターによって画素部に黒色レジストのバンクを形成する(S−57)。レジストの無い部分の層間絶縁膜をエッチングし、端子と信号線との接続用のコンタクトホールを露出させる(S−58)。次に、レジストをアッシングして(S−59)、3色(R,G,B)のカラーフィルタをインクジェット塗布して形成する(S−60)。さらに、このカラーフィルタの上に、インクジェットによって画素電極と信号線とのコンタクトホールにITOを塗布する(S−61)。
 図28Aは、本発明の実施例8に係るTFT基板の1画素部分を示す平面図である。図28Bは、図28AのQ−Q線に沿った断面図である。この実施例では、画素電極800は黒色レジスト700Kで形成したバンク内に塗布されたカラーフィルタ1100の上にITOインクをインクジェットで塗布することで形成される。この画素電極800は黒色レジストで構成されるスリット状の画素分割部808で分割されると共に、黒色レジストの突条703を超えて薄膜トランジスタのドレイン電極に接続している。
 図28Cは、本発明の実施例8に係るマルチドメイン垂直配向(MVA−COA)方式の他の画素電極の構成を説明する1画素の平面図である。図28Dと図28Eは、図28CのR−R線に沿った断面図である。画素電極800は黒色レジスト700Kで形成したバンク内にインクジェットにより塗布されたカラーフィルタ1100の上にITOインクをインクジェットで塗布して形成される(図28D)。図28Eに示したように、この画素電極800の上にインクジェットにより図28Cの画素分割部808と同様の傾斜でレジストの突起物1800を塗布して形成する(図27のS−62)。この突起物1800によって2つのドメインを形成する。
 以上説明した本発明の実施例8も、ホトトリソプロセス数を削減することにより、アクティブ素子基板及び液晶表示装置を少ない全体として少ないプロセス数でアクティブ素子基板を製造することができると共に、カラーフィルタをTFT基板側に形成したことにより対向基板との位置合わせ裕度を考慮することなく、開口率を向上させ、結果として液晶表示装置の消費電力を低減し、かつ対向基板としてTFT基板とは異なる材質の安価なガラス基板又は光透過率に優れたプラスチック基板が採用でき材料費を低減したカラーフィルタオンアレイ方式のMVA型液晶表示装置を安価に提供できる。
 図29は、本発明の実施例9に係るカラーフィルタをTFT基板側に設けたマルチドメイン垂直配向(MVA—COA)方式のTFT基板の形成プロセスを説明する図である。このプロセスのステップ(S−63)~(S−67)は、前記図6A~図6Eで説明した実施例2のカラーフィルタを形成するステップステップ(S−16)~(S−20)と同じである。
 図30Aは、第3ホトリソプロセスで黒色ホトレジストを塗布し、ハーフトーン露光を施した状態を示す画像部の要部平面図である。ハーフトーン露光部は画素電極形成部分(画素電極の下層にカラーフィルタが塗布される)とコンタクトホールの部分である。図30Bから図30Eに示されたように、コンタクトホール1000は突条703Kで画素電極の形成部分と隔離されている。
 図30Bは、薄膜トランジスタ基板にスリットコーターで黒色ホトレジスト700Kを塗布し、ハーフトーン露光マスクを用いて画素部と画素電極をドレイン電極に接続するコンタクトホールはハーフトーン露光し、ゲート線の端子部とデータ線の端子部は全露光し、画素電極の周りに黒色バンクを形成する図29のステップ(S−63)で説明した第3ホトリソ処理した状態を示す。この第3ホトリソ処理では、画素部とコンタクトホール1000の部分がハーフトーン露光でレジスト膜が薄くなっている。薄くなったハーフトーン露光部分の黒色レジストを702Kで示す。ハーフトーン露光部分のレジスト702Kの周りは厚い黒色レジスト700Kで囲まれている。
 図30Cは、黒色レジスト膜700Kとハーフトーン露光部分の黒色レジスト702Kをアッシングして減厚した状態を示す。アッシングにより画素部分とコンタクトホール部分のレジストは除去されている。残留した黒色レジスト701Kの膜厚は、除去されたハーフトーン露光部分の黒色レジスト702Kの分、あるいはそれよりも若干だけ薄くなっている。
 図30Dは、黒色レジスト701Kで形成される画素形成用のバンクの内側にインクジェット装置を用いてカラーフィルタインク1100を塗布した状態を示す。そして、図30Eは、カラーフィルタ1100の上と突条703Kを乗り越えてコンタクトホール1000迄の領域にITOを好適とする透明導電材料を分散したインクをインクジェット装置で滴下して塗布し、画素電極800とした状態を示す。薄膜トランジスタのドレイン電極603に画素電極800がコンタクトホール1000で接続している。
 図31Aは、本発明の実施例9に係るTFT基板の1画素部分を示す平面図である。図31Bは、図31AのS−S線に沿った断面図である。この実施例では、画素電極800は黒色レジスト700Kで形成したバンク内にITOインクをインクジェットで塗布することで形成される。この画素電極800は、その後、レジストを塗布されスリット状の画素分割部808で分割するパターンを有するマスクにより露光され、現像した後エッチングにより、スリット状の画素分割部808で分割すると共に、画素の上下各半分(図31Aではデータ線601の延在方向)で分割した各画素電極の傾斜を逆にしてドメインを2つとしてある。そして、分割された画素電極を当該画素の上下端に設けた連続部809で接続している。
 図32Aは、本発明の実施例9に係るカラーフィルタをTFT基板側に設けたマルチドメイン垂直配向(MVA−COA)方式の他の画素電極の構成を説明する1画素の平面図である。図32Bは、図32AのT−T線に沿った断面図である。画素電極800は黒色レジスト700Kで形成したバンク内にITOインクをインクジェットで塗布して形成される(図32B)。この画素電極800の上にスリットコーターによりレジストを塗布した後、図31Aの画素分割部808と同様の傾斜のパターンを持つマスクで露光、現像してレジストの突条1800を形成する(図27のS−62)。この突起物1800によって2つのドメインを形成する。
 以上説明した本発明の実施例9も、ホトトリソプロセス数を削減することにより、アクティブ素子基板及び液晶表示装置を全体として少ないプロセス数でアクティブ素子基板を製造することができると共に、カラーフィルタをTFT基板側に形成したことにより対向基板との位置合わせ裕度を考慮することなく、開口率を向上させ、結果として液晶表示装置の消費電力を低減し、かつ対向基板としてTFT基板とは異なる材質の安価なガラス基板又は光透過率に優れたプラスチック基板が採用でき材料費を低減したカラーフィルタオンアレイ方式のMVA−COA型液晶表示装置を安価に提供できる。
 図33Aは、本発明の実施例10に係るカラーフィルタオンアレイ方式の画素電極形成において、スリットコーターにより塗布した黒色材料を混入したレジスト700Kをハーフトーン露光し、現像してバンク700Kを形成する工程に関する新たなプロセスについて説明する図である。図33B及び図33Cは、図33AのDD−DD線の断面を示す図である。前記のように、TN方式では図6Aから図6Fで、FFS方式では図16及び図17Aから図17Eで、MVA方式では図27及び図28Aから図28Bと図28Cから図28Eにおいて、黒色レジストの単層で説明したが、黒色材料をレジストに混入することにより、レジストの絶縁性が損なわれる可能性がある。この場合には、黒色レジストで形成するIJバンクを2種類の材料の構成とし、図31Bに記載のように、第1層のレジストは絶縁性を有するレジスト704とし、第2層を黒色レジスト700Kとする。これにより、トランジスタのバックチャネル部は絶縁性を有するレジスト704で埋められるのでソース電極及びドレイン電極間での電流のリークが発生しない。
 また、ここで、第1層のレジスト704の露光感度を第2層のレジスト700Kの露光感度より小さくすることで、ハーフトーン露光による露光量の変動に対し安定してハーフトーン露光部分702のレジスト残膜厚を得られる。
 図33Dは、本発明の実施例10に係るカラーフィルタオンアレイ方式の画素電極形成において、スリットコーターにより塗布した黒色材料を混入したレジスト700Kをハーフトーン露光し、現像してバンク700Kを形成する工程に関する他の画素電極の構成を説明する1画素の図33AのDD−DD線に沿った断面図である。図33E、図33Fは、図33AのDD−DD線に沿った図33Dに続くプロセスを示す断面図である。
 上記他の方式の実施例では、図33Dに示すように、図33Aのバンク700Kを形成する前のDD−DD線に沿った断面図において、ソース電極602とドレイン電極603で形成されるチャネル部に絶縁膜705をインクジェットにより塗布形成する。その後、図33Eに示すように、スリットコーターにより塗布した黒色材料を混入したレジスト700Kをハーフトーン露光し、現像してバンク700Kを形成することで黒色レジストの絶縁性が損なわれた場合でもチャネル間の電流リークは絶縁膜705により防止される。
 図33Fは、黒色レジスト700Kのアッシング後を示す断面図で、アッシングによりドレイン電極603上のハーフトーン露光部レジスト702を除去した状態を示し、チャネル間は絶縁膜705で隔絶されている。
 以上説明した本発明の実施例10によれば、カラーフィルタオンアレイ方式の液晶表示装置のTFT基板において、トランジスタの安定動作を確保すると共に、ハーフトーン露光において露光量の変動に対しハーフトーン露光部分のレジスト残膜厚をほぼ等しく得られプロセスの安定性が向上する。
 図34は、本発明に係る表示装置の一実施例を説明する液晶表示装置の構成図である。この液晶表示装置は、前記実施例で説明した何れかのアクティブ素子基板100と対向基板2000との貼り合わせ間隙に液晶2002を封入して構成される。なお、対向基板2000はアクティブ素子基板100と同様のガラスでも、あるいは異なる無機材質の絶縁基板もしくはプラスチック製の絶縁フィルムでもよい。各基板と液晶との界面には配向膜2001が塗布されている。アクティブ素子基板100の背面にはバックライト2003が設けられている。
 アクティブ素子基板100の周辺には駆動回路2004がICチップ又は基板面に直接形成された回路として設けられている。駆動回路2004には、表示制御装置2005から表示のためのタイミング信号と映像データが供給される。
 本発明は、液晶表示装置を構成するアクティブ基板に限らず、有機EL表示装置などのフラットパネルディスプレイ用のアクティブ基板にも適用でき、またホトリソプロセスを用いる各種の半導体装置にも同様に適用可能である。

Claims (30)

  1. 絶縁基板の上に形成されたゲート線と保持容量線およびデータ線端子と、
    前記ゲート線と保持容量線を覆うゲート絶縁膜と、
    前記ゲート絶縁膜の上にアレイ状に形成されて、半導体層とこの半導体の上層にチャネルを形成する如くソース電極側とドレイン電極側とに間隙を介して分離されたオーミックコンタクト層を有する複数の能動層アイランドと、
    前記ソース電極側のオーミックコンタクト層に接続したソース電極およびこのソース電極につながるデータ線と、
    前記ドレイン電極側のオーミックコンタクト層に接続したドレイン電極およびこのドレイン電極に連続的に接続した透明導電膜で形成された一方の表示電極を有するアクティブ素子基板であって、
    前記ゲート絶縁膜は前記一方の表示電極の形成領域では当該一方の表示電極で覆われており、
    前記オーミックコンタクト層の間隙と前記ソース電極および前記データ線と、隣接画素のデータ線を覆って前記一方の表示電極の形成領域と前記ドレイン電極を囲んで設けられたレジストのバンクを有し、
    前記一方の表示電極と前記ドレイン電極とに連続的に接続した前記透明導電膜の前記絶縁基板の上面からの高さは、前記レジストのバンクの前記絶縁基板の上面からの高さ未満であることを特徴とするアクティブ素子基板。
  2. 絶縁基板の上に形成されたゲート線と保持容量線およびデータ線端子と、
    前記ゲート線と保持容量線を覆うゲート絶縁膜と、
    前記ゲート絶縁膜の上にアレイ状に形成されて、半導体層とこの半導体の上層にチャネルを形成する如くソース電極側とドレイン電極側とに間隙を介して分離されたオーミックコンタクト層を有する複数の能動層アイランドと、
    前記ソース電極側のオーミックコンタクト層に接続したソース電極およびこのソース電極につながるデータ線と、
    前記ドレイン電極側のオーミックコンタクト層に接続したドレイン電極およびこのドレイン電極に連続的に接続した透明導電膜で形成された一方の表示電極と、
    前記一方の表示電極と前記ゲート絶縁膜の間に設けられたカラーフィルタとを有するアクティブ素子基板であって、
    前記オーミックコンタクト層の間隙と前記ソース電極および前記データ線と、隣接画素のデータ線を覆って前記一方の表示電極の形成領域と前記ドレイン電極を囲んで設けられたレジストのバンクを有し、
    前記カラーフィルタの上に設けられた前記一方の表示電極と前記ドレイン電極とに連続的に接続した前記透明導電膜の前記絶縁基板からの高さは、前記レジストのバンクの前記絶縁基板からの高さ未満であることを特徴とするアクティブ素子基板。
  3. 請求項1又は2において、
    前記一方の表示電極の上に層間絶縁膜を介して他方の表示電極を有することを特徴とするアクティブ素子基板。
  4. 請求項1又は2において、
    前記一方の表示電極はべた電極であることを特徴とするアクティブ素子基板。
  5. 請求項3において、
    前記一方の表示電極はべた電極で、前記他方の表示電極は櫛歯型であることを特徴とするアクティブ素子基板。
  6. 請求項5において、
    前記他方の表示電極は櫛歯型に形成されて1画素の領域内で複数に分割されており、各分割領域では前記櫛歯型の傾斜方向が異なることを特徴とするアクティブ素子基板。
  7. 請求項1又は2において、
    前記一方の表示電極はべた電極であり、該べた電極の上にマルチドメインを形成するホトレジストの突条を有することを特徴とするアクティブ素子基板。
  8. 請求項1又は2において、
    前記一方の表示電極は画素中央部で線対称となる傾斜を有するスリット状の切り欠きを設け、該電極上にマルチドメインを形成することを特徴とするアクティブ素子基板。
  9. 請求項2乃至8の何れかにおいて、
    前記一方の表示電極を形成するためのバンクが積層構造で、少なくともチャネル間が絶縁性の材料で隔絶されていることを特徴とするアクティブ素子基板。
  10. 請求項9において、
    前記バンクは絶縁性レジストと黒色レジストの積層であり、前記黒色レジストが前記絶縁性レジストの上層にあることを特徴とするアクティブ素子基板。
  11. 絶縁基板の上に形成されたゲート線と保持容量線およびデータ線端子と、
    前記ゲート線と保持容量線を覆うゲート絶縁膜と、
    前記ゲート絶縁膜の上にアレイ状に形成されて、半導体層とこの半導体の上層にチャネルを形成する如くソース電極側とドレイン電極側とに間隙を介して分離されたオーミックコンタクト層を有する複数の能動層アイランドと、
    前記ソース電極側のオーミックコンタクト層に接続したソース電極およびこのソース電極につながるデータ線と、
    前記ドレイン電極側のオーミックコンタクト層に接続したドレイン電極およびこのドレイン電極に連続的に接続した透明導電膜で形成された一方の表示電極を有するアクティブ素子基板の製造方法であって、
    前記絶縁基板の上に形成された前記データ線と前記ソース電極および前記ドレイン電極の上にホトレジストを塗布し、
    ハーフトーン露光マスクを用いて、前記ゲート線の端子部分、前記保持容量線の端子部分及び前記データ線の端子部分と前記データ線と前記端子部分との接続のためのコンタクトホールの一部を全露光すると共に、前記一方の表示電極の形成領域と前記ドレイン電極部分をハーフトーン露光し、
    前記ホトレジストを現像して、前記全露光部分のホトレジストを除去すると共に、前記ハーフトーン露光部分のホトレジストを薄く残し、
    前記ホトレジストを除去した部分の前記ゲート絶縁膜をエッチングして除去し、
    前記ホトレジストをアッシングして前記ハーフトーン露光部分のホトレジストを除去し、
    前記アッシングで残留した前記ホトレジストをバンクとして、前記ハーフトーン露光部分のホトレジストを除去した前記一方の表示電極の形成領域と前記ドレイン電極部分に透明導電材料のインクをインクジェット法を用いて塗布して、前記ドレイン電極部の接続した前記一方の表示電極を形成することを特徴とするアクティブ素子基板の製造方法。
  12. 請求項11において、
    前記複数の能動層アイランドと前記ソース電極及び前記データ線と前記ドレイン電極が、絶縁基板の上に形成されたゲート線と保持容量線およびデータ線端子と、
    前記ゲート線と保持容量線を覆うゲート絶縁膜と、
    前記ゲート絶縁膜の上にアレイ状に形成されて、半導体層とこの半導体の上層にチャネルを形成する如くソース電極側とドレイン電極側とに間隙を介して分離されたオーミックコンタクト層を有する複数の能動層アイランドと、
    前記ソース電極側のオーミックコンタクト層に接続したソース電極およびこのソース電極につながるデータ線と、
    前記ドレイン電極側のオーミックコンタクト層に接続したドレイン電極およびこのドレイン電極に連続的に接続した透明導電膜で形成された一方の表示電極を有するアクティブ素子基板の製造方法であって、
    前記絶縁基板上に、前記ゲート線と前記保持容量線および前記データ線の端子部を形成し、
    前記ゲート線と前記保持容量線および前記データ線の端子部を覆って、前記ゲート絶縁膜、前記半導体層、前記オーミックコンタクト層を、この順で連続的に成膜して積層膜を形成し、
    前記積層膜を薄膜トランジスタを構成するための複数の能動層アイランドに加工して、前記能動層アイランドを前記絶縁基板の上にアレイ状に形成し、
    前記能動層アイランドの上に、前記データ線と前記ソース電極および前記ドレイン電極とを形成したことを特徴とするアクティブ素子基板の製造方法。
  13. 請求項11において、
    前記複数の能動層アイランドと前記ソース電極及び前記データ線と前記ドレイン電極が、絶縁基板の上に形成されたゲート線と保持容量線およびデータ線端子と、
    前記ゲート線と保持容量線を覆うゲート絶縁膜と、
    前記ゲート絶縁膜の上にアレイ状に形成されて、半導体層とこの半導体の上層にチャネルを形成する如くソース電極側とドレイン電極側とに間隙を介して分離されたオーミックコンタクト層を有する複数の能動層アイランドと、
    前記ソース電極側のオーミックコンタクト層に接続したソース電極およびこのソース電極につながるデータ線と、
    前記ドレイン電極側のオーミックコンタクト層に接続したドレイン電極およびこのドレイン電極に連続的に接続した透明導電膜で形成された一方の表示電極を有するアクティブ素子基板の製造方法であって、
    前記絶縁基板上に、前記ゲート線と前記保持容量線および前記データ線の端子部を形成し、
    前記ゲート線と前記保持容量線および前記データ線の端子部を覆って、前記ゲート絶縁膜、前記半導体層、前記オーミックコンタクト層を、この順で連続的に成膜して積層膜を形成し、
    前記積層膜の全面を覆うようにソース線、ソース電極、ドレイン電極となるメタル膜を形成し、
    前記メタル膜上にホトレジストを塗布し、ハーフトーンマスクを用いてソース電極とドレイン電極が連続した形状でソース線と連続した形状で全露光すると共に、チャネル形成部をハーフトーン露光し、
    前記ソース線と該ソース電極と連続したドレイン電極を形成し、
    このパターンをエッチングマスクとして、前記積層膜を薄膜トランジスタを構成するための複数の能動層アイランドに加工して、前記能動層アイランドを前記絶縁基板の上にアレイ状に形成し、
    その後、アッシィングによりハーフトーン露光部のレジストを除去し、前記ソース電極と前記ドレイン電極が連続しているチャネル部をエッチング除去し、
    更に、このエッチングにより露出したオーミックコンタクト層をエッチングしてバックチャネルを形成し、
    前記能動層アイランドの上に、前記データ線と前記ソース電極および前記ドレイン電極とを形成したことを特徴とするアクティブ素子基板の製造方法。
  14. 絶縁基板の上に形成されたゲート線と保持容量線およびデータ線端子と、
    前記ゲート線と保持容量線を覆うゲート絶縁膜と、
    前記ゲート絶縁膜の上にアレイ状に形成されて、半導体層とこの半導体の上層にチャネルを形成する如くソース電極側とドレイン電極側とに間隙を介して分離されたオーミックコンタクト層を有する複数の能動層アイランドと、
    前記ソース電極側のオーミックコンタクト層に接続したソース電極およびこのソース電極につながるデータ線と、
    前記ドレイン電極側のオーミックコンタクト層に接続したドレイン電極およびこのドレイン電極に連続的に接続した透明導電膜で形成された一方の表示電極を有するアクティブ素子基板の製造方法であって、
    前記絶縁基板の上に形成された前記データ線と前記ソース電極および前記ドレイン電極の上にホトレジストを塗布し、
    ハーフトーン露光マスクを用いて、前記ゲート線の端子部分、前記保持容量線の端子部分及び前記データ線の端子部分と前記データ線と前記端子部分との接続のためのコンタクトホールの一部を全露光すると共に、前記一方の表示電極の形成領域と前記ドレイン電極部分をハーフトーン露光し、
    前記ホトレジストを現像して、前記全露光部分のホトレジストを除去すると共に、前記ハーフトーン露光部分のホトレジストを薄く残し、
    前記ホトレジストを除去した部分の前記ゲート絶縁膜をエッチングして除去し、
    前記ホトレジストをアッシングして前記ハーフトーン露光部分のホトレジストを除去し、
    前記アッシングで残留した前記ホトレジストをバンクとして、前記ハーフトーン露光部分のホトレジストを除去した前記一方の表示電極の形成領域にインクジェット法を用いてカラーフィルタ材料インクを塗布してカラーフィルタを形成後、
    前記アッシングで残留した前記ホトレジストをバンクとして、前記カラーフィルタの上と前記ドレイン電極部分に透明導電材料のインクを、インクジェット法を用いて塗布して、前記ドレイン電極部の接続した前記一方の表示電極を形成することを特徴とするアクティブ素子基板の製造方法。
  15. 請求項14において、
    前記複数の能動層アイランドと前記ソース電極及び前記データ線と前記ドレイン電極が、絶縁基板の上に形成されたゲート線と保持容量線およびデータ線端子と、
    前記ゲート線と保持容量線を覆うゲート絶縁膜と、
    前記ゲート絶縁膜の上にアレイ状に形成されて、半導体層とこの半導体の上層にチャネルを形成する如くソース電極側とドレイン電極側とに間隙を介して分離されたオーミックコンタクト層を有する複数の能動層アイランドと、
    前記ソース電極側のオーミックコンタクト層に接続したソース電極およびこのソース電極につながるデータ線と、
    前記ドレイン電極側のオーミックコンタクト層に接続したドレイン電極およびこのドレイン電極に連続的に接続した透明導電膜で形成された一方の表示電極を有するアクティブ素子基板の製造方法であって、
    前記絶縁基板上に、前記ゲート線と前記保持容量線および前記データ線の端子部を形成し、
    前記ゲート線と前記保持容量線および前記データ線の端子部を覆って、前記ゲート絶縁膜、前記半導体層、前記オーミックコンタクト層を、この順で連続的に成膜して積層膜を形成し、
    前記積層膜を薄膜トランジスタを構成するための複数の能動層アイランドに加工して、前記能動層アイランドを前記絶縁基板の上にアレイ状に形成し、
    前記能動層アイランドの上に、前記データ線と前記ソース電極および前記ドレイン電極とを形成したことを特徴とするアクティブ素子基板の製造方法。
  16. 請求項14において、
    前記複数の能動層アイランドと前記ソース電極及び前記データ線と前記ドレイン電極が、絶縁基板の上に形成されたゲート線と保持容量線およびデータ線端子と、
    前記ゲート線と保持容量線を覆うゲート絶縁膜と、
    前記ゲート絶縁膜の上にアレイ状に形成されて、半導体層とこの半導体の上層にチャネルを形成する如くソース電極側とドレイン電極側とに間隙を介して分離されたオーミックコンタクト層を有する複数の能動層アイランドと、
    前記ソース電極側のオーミックコンタクト層に接続したソース電極およびこのソース電極につながるデータ線と、
    前記ドレイン電極側のオーミックコンタクト層に接続したドレイン電極およびこのドレイン電極に連続的に接続した透明導電膜で形成された一方の表示電極を有するアクティブ素子基板の製造方法であって、
     前記絶縁基板上に、前記ゲート線と前記保持容量線および前記データ線の端子部を形成し、
    前記ゲート線と前記保持容量線および前記データ線の端子部を覆って、前記ゲート絶縁膜、前記半導体層、前記オーミックコンタクト層を、この順で連続的に成膜して積層膜を形成し、
    前記積層膜の全面を覆うようにソース線、ソース電極、ドレイン電極となるメタル膜を形成し、
    前記メタル膜上にホトレジストを塗布しハーフトーンマスクを用いてソース電極とドレイン電極が連続した形状(チャネル部が形成されていない)でソース線と連続した形状で全露光すると共にチャネル形成部をハーフトーン露光し、ソース線とソース電極と連続したドレイン電極を形成し、このパターンをエッチングマスクとして、
    前記積層膜を薄膜トランジスタを構成するための複数の能動層アイランドに加工して、前記能動層アイランドを前記絶縁基板の上にアレイ状に形成し、
    その後アッシィングによりハーフトーン露光部のレジストを除去し、ソース電極とドレイン電極が連続しているチャネル部をエッチング除去し、更にこれにより露出したオーミックコンタクト層をエッチングしてバックチャネルを形成し、
    前記能動層アイランドの上に、前記データ線と前記ソース電極および前記ドレイン電極とを形成したことを特徴とするアクティブ素子基板の製造方法。
  17. 請求項11乃至16の何れかにおいて、
    前記一方の表示電極の上に層間絶縁膜を介して他方の表示電極を形成することを特徴とするアクティブ素子基板の製造方法。
  18. 請求項11乃至17の何れかにおいて、
    前記ホトレジストを全露光する部分は、前記ゲート線の端子部分、前記保持容量線の端子部分及び前記データ線の端子部分と前記データ線と前記端子部分との接続のためのコンタクトホールの一部であり、
    エッチングにより、前記データ線の端子部分と前記データ線と前記端子部分との接続のためのコンタクトホールの部分のゲート絶縁膜を除去することを特徴とするアクティブ素子基板の製造方法。
  19. 請求項11乃至17の何れかにおいて、
    前記一方の表示電極の上に、液晶がマルチドメインを形成する突条をインクジェット法にて形成することを特徴とするアクティブ素子基板の製造方法。
  20. 請求項14乃至17の何れかにおいて、
    前記インクジェット法に用いるレジストのバンクの一部又は全てが遮光性であることを特徴とするアクティブ素子基板の製造方法。
  21. 請求項20において、
    前記インクジェット法に用いるレジストのバンクは積層構造で、少なくとも前記チャネルを形成する部分には絶縁膜が形成されたことを特徴とするアクティブ素子基板の製造方法。
  22. 請求項21において、
    前記バンクは絶縁性レジストと黒色レジストの積層であり黒色レジストが上層で、かつ絶縁性レジストの必要露光量は黒色レジストに比べ大きいことを特徴とするアクティブ素子基板の製造方法。
  23. 請求項11乃至17の何れかにおいて、
    前記対向基板の材質がアクティブ素子基板とは異なる材料を用いることを特徴とするアクティブ素子基板の製造方法。
  24. 請求項17において、
    前記インクジェット法に用いるレジストのバンクには、前記エッチング用のマスク機能と、前記コモン電極接続部形成用のスルーホール加工用のマスクの機能を有し、
    前記ゲート絶縁膜のエッチング加工した後にアッシング処理して前記データ線端子部の接続時に前記他方の表示電極接続部を形成し、
    その後、前記アクティブ基板の最上面に層間絶縁膜形成し、前記層間絶縁膜上にハーフトーン露光用のレジストのバンクを形成し、
    前記バンクをマスクとして前記ゲート線及び前記データ線の端子部を被覆している層間絶縁膜をエッチング除去すると同時に、前記他方の表示電極接続部を形成するためのスルーホールを形成し、
    前記層間絶縁膜のエッチング時に前記端子部の露出と前記スルーホール形成し、
    前記バンクのレジストをアッシングして櫛歯状の透明導電膜形成用のバンクを開口し、
    前記バンクの開口に透明導電膜材料インクをインクジェット法で塗布して、前記他方の表示電極と前記他方の表示電極接続部とのコンタクトを形成することを特徴とするアクティブ素子基板の製造方法。
  25. 請求項17において、
    前記インクジェット法を用いたレジストのバンクは、前記エッチング用のマスク機能と前記他方の表示電極接続部形成のためのスルーホールを形成するためのエッチングマスクの機能を有し、
    前記ゲート絶縁膜をエッチング加工した後にアッシング処理して前記データ線端子部接続時に前記他方の表示電極接続部を形成し、
    前記アクティブ基板の最上面に、層間絶縁膜を形成し、
    然る後、ホトリソプロセスにより前記ゲート線、保持容量線及び前記データ線の端子部と前記他方の表示電極接続部を覆っている前記層間絶縁膜をエッチング除去して前記ゲート線及び前記データ線の端子部と前記他方の表示電極接続部を露出させ、
    前記露出させた前記ゲート線及び前記データ線の端子部と前記他方の表示電極接続部に透明導電膜材料を蒸着して透明導電膜を形成し、
    前記レジストのマスクを用いて櫛歯電極を形成することを特徴とするアクティブ素子基板の製造方法。
  26. 絶縁基板の上に形成されたゲート線と保持容量線およびデータ線端子と、前記ゲート線と保持容量線を覆うゲート絶縁膜と、前記ゲート絶縁膜の上にアレイ状に形成され、半導体層とこの半導体の上層にチャネルを形成する如くソース電極側とドレイン電極側とに間隙を介して分離されたオーミックコンタクト層を有する複数の能動層アイランドと、前記ソース電極側のオーミックコンタクト層に接続したソース電極およびこのソース電極につながるデータ線と、前記ドレイン電極側のオーミックコンタクト層に接続したドレイン電極およびこのドレイン電極に連続的に接続した透明導電膜で形成された一方の表示電極を有するアクティブ素子基板と、
    前記絶縁基板とは異なる絶縁基板の上に、カラーフィルタと他方の表示電極を備えた対向基板とを有し、
    前記アクティブ素子基板は、その前記ゲート絶縁膜が前記一方の表示電極の形成領域では当該一方の表示電極で覆われており、
    前記ソース電極とドレイン電極の各オーミックコンタクト層の対向間隙と前記ソース電極および前記データ線と、隣接画素のデータ線を覆って前記一方の表示電極の形成領域と前記ドレイン電極を囲んで設けられたレジストのバンクを有し、
    前記一方の表示電極と前記ドレイン電極とに連続的に接続した前記透明導電膜の前記絶縁基板の上面からの高さは、前記レジストのバンクの前記絶縁基板の上面からの高さ未満であり、
    前記アクティブ素子基板の前記一方の表示電極と前記対向基板の前記他方の表示電極のそれぞれを覆って配向膜を有し、
    前記アクティブ素子基板と前記対向基板の各配向膜を対向させた間隙に液晶を封入してなることを特徴とする表示装置。
  27. 絶縁基板の上に形成されたゲート線と保持容量線およびデータ線端子と、前記ゲート線と保持容量線を覆うゲート絶縁膜と、前記ゲート絶縁膜の上にアレイ状に形成されて、半導体層とこの半導体の上層にチャネルを形成する如くソース電極側とドレイン電極側とに間隙を介して分離されたオーミックコンタクト層を有する複数の能動層アイランドと、前記ソース電極側のオーミックコンタクト層に接続したソース電極およびこのソース電極につながるデータ線と、前記ドレイン電極側のオーミックコンタクト層に接続したドレイン電極およびこのドレイン電極に連続的に接続した透明導電膜で形成された一方の表示電極と、前記一方の表示電極と前記ゲート絶縁膜の間に設けられたカラーフィルタとを有するアクティブ素子基板と、
    前記絶縁基板とは異なる絶縁基板の上に、他方の表示電極を備えた対向基板とを有し、
    前記アクティブ素子基板は、その前記ソース電極とドレイン電極の各オーミックコンタクト層の対向間隙と前記ソース電極および前記データ線と、隣接画素のデータ線を覆って前記一方の表示電極の形成領域と前記ドレイン電極を囲んで設けられたレジストのバンクを有し、
    前記カラーフィルタの上に設けられた前記一方の表示電極と前記ドレイン電極とに連続的に接続した前記透明導電膜の前記絶縁基板からの高さは、前記レジストのバンクの前記絶縁基板からの高さ未満であり、前記アクティブ素子基板の前記一方の表示電極と前記対向基板の前記他方の表示電極のそれぞれを覆って配向膜を有し、
    前記アクティブ素子基板と前記対向基板の各配向膜を対向させた間隙に液晶を封入してなることを特徴とする表示装置。
  28. 請求項26又は27において、
    前記一方の表示電極の上に層間絶縁膜膜を介して他方の表示電極を有することを特徴とする表示装置。
  29. 請求項27又は28において、
    前記対向基板の材質がアクティブ素子基板とは異なる材料を用いることを特徴とする表示装置。
  30. 請求項27乃至29において、
    前記バンクは絶縁膜と黒色レジストの積層で少なくともチャネル間が絶縁性の材料で隔絶されていることを特徴とする表示装置。
PCT/JP2010/054724 2009-03-23 2010-03-12 アクティブ素子基板とその製造方法、及びこの製造方法で製造したアクティブ素子基板を用いた表示装置 WO2010110179A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/258,764 US20120068202A1 (en) 2009-03-23 2010-03-12 Active matrix substrate, method of manufacturing the same and display equipment using active matrix substrate manufactured by the same method
JP2011506010A JPWO2010110179A1 (ja) 2009-03-23 2010-03-12 アクティブ素子基板とその製造方法、及びこの製造方法で製造したアクティブ素子基板を用いた表示装置
CN2010800132833A CN102388413A (zh) 2009-03-23 2010-03-12 有源矩阵基板及其制造方法以及使用由该方法所制造的有源矩阵基板的显示设备

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009069696 2009-03-23
JP2009-069696 2009-03-23

Publications (1)

Publication Number Publication Date
WO2010110179A1 true WO2010110179A1 (ja) 2010-09-30

Family

ID=42780871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/054724 WO2010110179A1 (ja) 2009-03-23 2010-03-12 アクティブ素子基板とその製造方法、及びこの製造方法で製造したアクティブ素子基板を用いた表示装置

Country Status (4)

Country Link
US (1) US20120068202A1 (ja)
JP (1) JPWO2010110179A1 (ja)
CN (1) CN102388413A (ja)
WO (1) WO2010110179A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012099721A (ja) * 2010-11-04 2012-05-24 Mitsubishi Electric Corp 薄膜トランジスタアレイ基板、及び液晶表示装置

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8518729B1 (en) * 2012-09-07 2013-08-27 Shenzhen China Star Optoelectronics Technology Co., Ltd. Method for manufacturing liquid crystal display panel
CN102799014B (zh) * 2012-09-07 2014-09-10 深圳市华星光电技术有限公司 液晶显示面板的制作方法
JP6116220B2 (ja) * 2012-12-12 2017-04-19 三菱電機株式会社 液晶表示パネル
CN103151305B (zh) * 2013-02-28 2015-06-03 京东方科技集团股份有限公司 一种薄膜晶体管阵列基板、制备方法以及显示装置
CN105700257B (zh) * 2014-11-27 2019-09-13 鸿富锦精密工业(深圳)有限公司 薄膜晶体管阵列基板及液晶显示面板
TWI578502B (zh) * 2014-11-27 2017-04-11 鴻海精密工業股份有限公司 薄膜電晶體陣列基板及液晶顯示面板
CN104617104B (zh) * 2015-01-08 2017-06-13 京东方科技集团股份有限公司 阵列基板及其制作方法、显示装置
CN104752343B (zh) * 2015-04-14 2017-07-28 深圳市华星光电技术有限公司 双栅极氧化物半导体tft基板的制作方法及其结构
CN104867870B (zh) * 2015-04-14 2017-09-01 深圳市华星光电技术有限公司 双栅极氧化物半导体tft基板的制作方法及其结构
CN104900654B (zh) * 2015-04-14 2017-09-26 深圳市华星光电技术有限公司 双栅极氧化物半导体tft基板的制作方法及其结构
CN105280138A (zh) * 2015-10-09 2016-01-27 深圳典邦科技有限公司 一种硅基大尺寸oled图像收发装置及制造方法
WO2017142032A1 (ja) * 2016-02-19 2017-08-24 シャープ株式会社 走査アンテナおよびその製造方法
KR102514411B1 (ko) * 2016-03-31 2023-03-28 삼성디스플레이 주식회사 디스플레이 장치 및 그 제조방법
KR20180062254A (ko) * 2016-11-30 2018-06-08 엘지디스플레이 주식회사 유기 발광 표시 패널
KR20180077439A (ko) 2016-12-29 2018-07-09 엘지디스플레이 주식회사 전계 발광 표시 장치 및 그 제조 방법
CN107482089A (zh) * 2017-08-08 2017-12-15 湘能华磊光电股份有限公司 一种高亮度led芯片及其制备方法
CN113658913B (zh) * 2021-07-09 2024-05-31 深圳莱宝高科技股份有限公司 阵列基板制造方法、阵列基板、电子纸器件及其制造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000353594A (ja) * 1998-03-17 2000-12-19 Seiko Epson Corp 薄膜パターニング用基板
JP2002250935A (ja) * 2001-02-26 2002-09-06 Sharp Corp 液晶用マトリクス基板の製造方法
JP2003318131A (ja) * 2002-04-22 2003-11-07 Seiko Epson Corp デバイスの製造方法、デバイス及び電子機器
JP2007034151A (ja) * 2005-07-29 2007-02-08 Hitachi Displays Ltd 液晶表示装置
JP2007053333A (ja) * 2005-07-20 2007-03-01 Seiko Epson Corp 膜パターンの形成方法、デバイス、電気光学装置、電子機器、及びアクティブマトリクス基板の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0792574B2 (ja) * 1988-12-21 1995-10-09 インターナショナル・ビジネス・マシーンズ・コーポレーション 液晶表示装置およびその製造方法
JPH07271020A (ja) * 1994-03-18 1995-10-20 Internatl Business Mach Corp <Ibm> ブラックマトリックス形成用感光性組成物、カラーフィルター基板及びそれを用いた液晶表示装置
JP2006164708A (ja) * 2004-12-06 2006-06-22 Semiconductor Energy Lab Co Ltd 電子機器および発光装置
KR101127218B1 (ko) * 2005-05-19 2012-03-30 엘지디스플레이 주식회사 액정표시장치용 어레이 기판과 그 제조방법
JP2008129314A (ja) * 2006-11-21 2008-06-05 Hitachi Displays Ltd 画像表示装置およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000353594A (ja) * 1998-03-17 2000-12-19 Seiko Epson Corp 薄膜パターニング用基板
JP2002250935A (ja) * 2001-02-26 2002-09-06 Sharp Corp 液晶用マトリクス基板の製造方法
JP2003318131A (ja) * 2002-04-22 2003-11-07 Seiko Epson Corp デバイスの製造方法、デバイス及び電子機器
JP2007053333A (ja) * 2005-07-20 2007-03-01 Seiko Epson Corp 膜パターンの形成方法、デバイス、電気光学装置、電子機器、及びアクティブマトリクス基板の製造方法
JP2007034151A (ja) * 2005-07-29 2007-02-08 Hitachi Displays Ltd 液晶表示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012099721A (ja) * 2010-11-04 2012-05-24 Mitsubishi Electric Corp 薄膜トランジスタアレイ基板、及び液晶表示装置

Also Published As

Publication number Publication date
US20120068202A1 (en) 2012-03-22
CN102388413A (zh) 2012-03-21
JPWO2010110179A1 (ja) 2012-09-27

Similar Documents

Publication Publication Date Title
WO2010110179A1 (ja) アクティブ素子基板とその製造方法、及びこの製造方法で製造したアクティブ素子基板を用いた表示装置
US9570477B2 (en) Thin film transistor array panel and manufacturing method of the same
KR100518051B1 (ko) 능동 매트릭스형 액정 디스플레이 장치와 그 제조 방법
KR100816333B1 (ko) 액정 표시 장치용 색 필터 기판 및 박막 트랜지스터 기판및 이들의 제조 방법
US8018540B2 (en) Liquid crystal display and method for manufacturing the same
JP3383047B2 (ja) アクティブマトリクス基板
US7602452B2 (en) Liquid crystal display device and method for manufacturing the same
JP5528475B2 (ja) アクティブマトリクス基板及びその製造方法
US20080088788A1 (en) Display panel and method of manufacturing the same
US8004636B2 (en) Manufacturing thin film transistor array panels for flat panel displays
JP5559983B2 (ja) 薄膜トランジスター表示板及びその製造方法
US20090273747A1 (en) Liquid crystal display and method for manufacturing the same
CN100485470C (zh) 液晶显示器及其制造方法
US7884366B2 (en) Thin film transistor array panel and method for manufacturing the same
US20160202518A1 (en) Liquid crystal display and manufacturing method thereof
JP2008225514A (ja) 液晶表示装置及びその製造方法
US8435722B2 (en) Method for fabricating liquid crystal display device
KR20170080215A (ko) 액정표시장치
CN114217483B (zh) 阵列基板、阵列基板的制作方法和显示装置
KR0175384B1 (ko) 액정 표시 장치용 박막 트랜지스터 기판의 제조 방법
CN111736399A (zh) 一种阵列基板及显示面板
KR100860178B1 (ko) 액정표시장치 및 그 제조 방법
JP2002107734A (ja) 液晶表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080013283.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10755976

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011506010

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13258764

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10755976

Country of ref document: EP

Kind code of ref document: A1