WO2010109839A1 - シングルスクリュー圧縮機 - Google Patents

シングルスクリュー圧縮機 Download PDF

Info

Publication number
WO2010109839A1
WO2010109839A1 PCT/JP2010/002003 JP2010002003W WO2010109839A1 WO 2010109839 A1 WO2010109839 A1 WO 2010109839A1 JP 2010002003 W JP2010002003 W JP 2010002003W WO 2010109839 A1 WO2010109839 A1 WO 2010109839A1
Authority
WO
WIPO (PCT)
Prior art keywords
screw rotor
fluid chamber
gate
spiral groove
rotor
Prior art date
Application number
PCT/JP2010/002003
Other languages
English (en)
French (fr)
Inventor
モハモド アンワー ホセイン
増田正典
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to CN201080013028.9A priority Critical patent/CN102362074B/zh
Priority to US13/258,062 priority patent/US9470229B2/en
Priority to EP10755642.5A priority patent/EP2412980B1/en
Priority to BRPI1006275A priority patent/BRPI1006275A2/pt
Publication of WO2010109839A1 publication Critical patent/WO2010109839A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/48Rotary-piston pumps with non-parallel axes of movement of co-operating members
    • F04C18/50Rotary-piston pumps with non-parallel axes of movement of co-operating members the axes being arranged at an angle of 90 degrees
    • F04C18/52Rotary-piston pumps with non-parallel axes of movement of co-operating members the axes being arranged at an angle of 90 degrees of intermeshing engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/082Details specially related to intermeshing engagement type pumps
    • F04C18/086Carter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/12Arrangements for admission or discharge of the working fluid, e.g. constructional features of the inlet or outlet

Definitions

  • the present invention relates to a measure for improving the efficiency of a single screw compressor.
  • Patent Document 1 discloses a single screw compressor including one screw rotor and two gate rotors.
  • the screw rotor is generally formed in a columnar shape, and a plurality of spiral grooves are carved on the outer peripheral portion thereof. Each spiral groove opens on the outer peripheral surface of the screw rotor. Moreover, the start end of each spiral groove is opened to one end face of the screw rotor.
  • the gate rotor is generally formed in a flat plate shape and is disposed on the side of the screw rotor. The gate rotor is provided with a plurality of rectangular plate-shaped gates in a radial pattern. The gate rotor is installed such that its rotation axis is orthogonal to the rotation axis of the screw rotor, and the gate is engaged with the spiral groove of the screw rotor.
  • a screw rotor and a gate rotor are accommodated in a casing. Further, a low pressure space into which the low pressure fluid before compression flows is formed in the casing.
  • the gate rotor rotates as the screw rotor rotates. Then, the gate of the gate rotor relatively moves from the start end (end portion on the suction side) to the end end (end portion on the discharge side) of the spiral groove.
  • the low pressure fluid flows into the fluid chamber from the outer peripheral surface side and the end surface side of the screw rotor. Thereafter, the fluid chamber is partitioned from the low-pressure space by a partition wall portion (inner cylinder) of the casing that covers the outer peripheral surface of the screw rotor and a gate that has entered the spiral groove.
  • the compression stroke in which the fluid in the fluid chamber is compressed, the volume of the fluid chamber is reduced by the relative movement of the gate from the start end of the spiral groove toward the flow end, and the fluid in the fluid chamber is compressed.
  • the low pressure fluid flows into the spiral groove from the outer peripheral surface side and the end surface side of the screw rotor during the suction stroke, and in the compression stroke, the spiral groove is formed by the partition wall portion and the gate of the casing. Partitioned from low pressure space.
  • the point at which the spiral groove is partitioned from the low pressure space by the partition wall portion of the casing and the point before and after the point at which the spiral groove is partitioned from the low pressure space by the gate are not particularly considered. It was common to partition the groove from the low pressure space at the same time by the partition wall portion of the casing and the gate.
  • the screw rotor is rotating during operation of the single screw compressor. For this reason, if the timing of partitioning the fluid chamber from the low-pressure space by the partition wall portion of the casing is delayed, centrifugal force acts on the low-pressure fluid flowing into the fluid chamber during the suction stroke, and flows out from the fluid chamber toward the outer periphery of the screw rotor. The amount of low-pressure fluid will increase. As a result, the amount of fluid that flows into the fluid chamber and is compressed is reduced, and the efficiency of the single screw compressor may be reduced.
  • the present invention has been made in view of the above points, and an object of the present invention is to increase the amount of fluid that flows into a fluid chamber and is compressed in a single screw compressor, thereby improving the operation efficiency of the single screw compressor. There is to make it.
  • the first invention includes a screw rotor (40) formed with a plurality of spiral grooves (41) that open to the outer peripheral surface thereof to form a fluid chamber (23), and a spiral groove (41) of the screw rotor (40).
  • the gate (51) meshing with the spiral groove (41) of the screw rotor (40) relatively moves from the start end to the end of the spiral groove (41), and the spiral groove (
  • the target is a single screw compressor in which the fluid in the fluid chamber (23) formed by 41) is compressed.
  • the low pressure fluid before compression sucked into the casing (10) flows into the casing (10), and at the start end of the spiral groove (41) opened at the end face of the screw rotor (40).
  • the spiral groove (41) forming the fluid chamber (23) has the suction opening (36). After moving from the position facing to the position covered by the partition wall (30), The gate (51) entering the spiral groove (41) is partitioned from the low-pressure space (S1).
  • the screw rotor (40) and the gate rotor (50) are accommodated in the casing (10).
  • a low pressure space (S1) is formed in the casing (10).
  • the low-pressure space (S1) communicates with the start end of the spiral groove (41) that opens to the end face of the screw rotor (40).
  • the low-pressure fluid in the low-pressure space (S1) flows into the spiral groove (41) during the suction stroke from the end face side of the screw rotor (40) (that is, the start end side of the spiral groove (41)).
  • a suction opening (36) is formed in the partition wall (30).
  • the screw rotor (40 ) Flows from not only the end face side of the screw rotor (40) but also from the outer peripheral face side of the screw rotor (40).
  • the spiral groove (41) formed in the screw rotor (40) moves.
  • the spiral groove (41) forming the fluid chamber (23) during the suction stroke moves from a position facing the suction opening (36) to a position covered by the partition wall (30).
  • the fluid chamber (23) in the suction stroke is moved to the start end side of the spiral groove (41) forming the same.
  • Low pressure fluid continues to flow in.
  • the fluid chamber (23) during the suction stroke includes a partition wall (30) that covers the spiral groove (41) that forms the gate, and a gate (51) that has entered the spiral groove (41) that forms the partition wall (30).
  • a portion sandwiched between two adjacent spiral grooves (41) on the outer peripheral surface of the screw rotor (40) is an inner surface of the partition wall (30).
  • the circumferential seal surface (45) seals between two adjacent spiral grooves (41) in sliding contact with (35), and the rotation of the screw rotor (40) out of the peripheral edge of the circumferential seal surface (45)
  • the portion located forward in the direction becomes the front edge (46) of the circumferential seal surface (45), and the opening facing the suction opening (36) on the inner surface (35) of the partition wall (30)
  • the side edge portion (37) is parallel to the front edge (46) of the circumferential sealing surface (45).
  • the circumferential seal surface (45) moves from the position facing the suction opening (36) toward the partition wall (30).
  • Low pressure fluid flows into the fluid chamber (23) to be formed from the outer peripheral surface side of the screw rotor (40).
  • the opening side edge portion (37) of the inner side surface (35) is formed in a shape parallel to the front edge (46) of the circumferential seal surface (45). Yes. Therefore, the front edge (46) of the circumferential seal surface (45) is the partition wall portion of the opening portion of the spiral groove (41) on the outer peripheral surface of the screw rotor (40) that faces the suction opening (36). The entire length from the start end to the end of the spiral groove (41) is open to the low-pressure space (S1) until just before overlapping the opening side edge (37) of the inner surface (35) of (30).
  • the opening side wall surface (38) facing the suction opening (36) has an outer periphery of the screw rotor (40). It is a slope that faces the surface.
  • the low-pressure fluid flowing into the fluid chamber (23) during the suction stroke flows from the end face side of the screw rotor (40) toward the suction opening (36), and then the screw rotor (40) The direction is changed in the axial direction and flows into the fluid chamber (23). At that time, a part of the low-pressure fluid flowing into the fluid chamber (23) collides with the opening side wall surface (38) of the partition wall (30) and then flows into the fluid chamber (23).
  • the opening side wall surface (38) of the partition wall portion (30) is an inclined surface facing the outer peripheral surface side of the screw rotor (40).
  • the low-pressure fluid that has collided with the opening side wall surface (38) of the partition wall (30) flows along the opening side wall surface (38) that is a slope, and the flow direction is the axis of the screw rotor (40). Change smoothly to the side.
  • the motor (15) for rotationally driving the screw rotor (40) and the frequency of the alternating current supplied to the motor (15) are set.
  • an inverter (100) for changing, and the rotational speed of the screw rotor (40) can be adjusted by changing the output frequency of the inverter (100).
  • AC is supplied to the electric motor (15) that drives the screw rotor (40) via the inverter (100).
  • the rotational speed of the electric motor (15) changes, and the rotational speed of the screw rotor (40) driven by the electric motor (15) also changes.
  • the rotational speed of the screw rotor (40) changes, the mass flow rate of the fluid sucked into the single screw compressor (1) and discharged after compression changes. That is, when the rotational speed of the screw rotor (40) changes, the operating capacity of the single screw compressor (1) changes.
  • the fluid chamber (23) during the suction stroke is first covered by the partition wall (30), and then the gate (51) entering the spiral groove (41). Partitioned from the low-pressure space (S1). That is, in the present invention, the fluid chamber (23) during the suction stroke is blocked from the low-pressure space (S1) relatively early by the partition wall (30) covering the spiral groove (41) forming the fluid chamber (23).
  • the partition wall (30) prevents fluid from flowing out of the fluid chamber (23). Therefore, according to the present invention, the amount of fluid that leaks from the fluid chamber (23) to the outer peripheral side of the screw rotor (40) due to centrifugal force can be reduced, and the fluid chamber (23 during the suction stroke) ) To increase the amount of fluid inhaled. As a result, the operating efficiency of the single screw compressor (1) can be improved.
  • the fluid chamber (23) is formed even after the fluid chamber (23) during the suction stroke is covered with the partition wall (30).
  • the gate (51) enters the beginning of the spiral groove (41). In the process of the gate (51) entering the starting end of the spiral groove (41), the low pressure fluid is pushed into the fluid chamber (23) formed by the spiral groove (41) by the gate (51).
  • the gate (51) pushes the low-pressure fluid into the fluid chamber (23) during the suction stroke
  • the fluid chamber (23) during the suction stroke is separated from the partition wall (30). Is separated from the low-pressure space (S1).
  • the low-pressure fluid pushed into the fluid chamber (23) by the gate (51) remains in the fluid chamber (23) without leaking to the outer peripheral side of the screw rotor (40). Therefore, according to the present invention, even when the gate (51) pushes the low-pressure fluid into the fluid chamber (23), the amount of the low-pressure fluid flowing into the fluid chamber (23) during the suction stroke can be increased. The operating efficiency of the single screw compressor (1) can be improved.
  • the opening side edge (37) of the inner surface (35) of the partition wall (30) is parallel to the front edge (46) of the circumferential seal surface (45). Therefore, the front edge (46) of the circumferential seal surface (45) is the partition wall portion of the opening portion of the spiral groove (41) on the outer peripheral surface of the screw rotor (40) that faces the suction opening (36).
  • the entire length from the start end to the end of the inner side surface (35) of the inner surface (35) of (30) is maintained in an open state in the low pressure space (S1). Therefore, according to the present invention, the opening area of the portion of the spiral groove (41) that forms the fluid chamber (23) in the suction stroke that faces the suction opening (36) is set in front of the circumferential seal surface (45).
  • the opening side wall surface (38) of the partition wall (30) is an inclined surface facing the outer peripheral surface side of the screw rotor (40). For this reason, the flow direction of the low-pressure fluid that collides with the opening side wall surface (38) of the partition wall (30) is smoothly changed to the axial center side of the screw rotor (40) by the opening side wall surface (38) that is a slope. Is done. Therefore, according to the present invention, the disturbance of the flow of the low-pressure fluid flowing into the fluid chamber (23) during the suction stroke can be suppressed, and the low-pressure fluid is transferred from the low-pressure space (S1) to the fluid chamber (23) during the suction stroke. Can be reduced in pressure loss.
  • AC is supplied to the electric motor (15) that drives the screw rotor (40) via the inverter (100). And if the output frequency of an inverter (100) is changed, the rotational speed of a screw rotor (40) will change and the operating capacity of a single screw compressor (1) will change.
  • the rotational speed of the screw rotor (40) may be set to a higher value than in the case where it is performed. As the rotational speed of the screw rotor (40) increases, the centrifugal force acting on the fluid in the fluid chamber (23) during the suction stroke also increases and leaks from the fluid chamber (23) to the outer periphery of the screw rotor (40). There is a possibility that the amount of fluid to be discharged increases.
  • the spiral groove (41) forming the fluid chamber (23) during the suction stroke is first partitioned from the low pressure space (S1) by the partition wall (30), and then the spiral groove. It is partitioned from the low-pressure space (S1) by the gate (51) that has entered (41).
  • the fluid chamber (23) during the suction stroke is partitioned from the low pressure space (S1) relatively early by the partition wall (30) covering the spiral groove (41) forming the fluid chamber (23). Therefore, in the single screw compressor (1) of the fourth invention in which the rotational speed of the screw rotor (40) can be set to a high value, the outer periphery of the screw rotor (40) is received from the fluid chamber (23) by receiving centrifugal force. The amount of fluid leaking to the side can be kept low, and the operating efficiency of the single screw compressor (1) can be kept high.
  • FIG. 3 is a development view of a screw rotor and a cylindrical wall, where (A) shows a state in which a fluid chamber during the suction stroke is exposed to the suction opening, and (B) shows a low-pressure space due to the fluid chamber during the suction stroke only by the cylindrical wall.
  • FIG. 6 is a schematic cross-sectional view showing a BB cross section in FIG. 5. It is a top view which shows operation
  • FIG. 9 is a development view of a screw rotor and a cylindrical wall in a modification of the embodiment, in which (A) shows a state in which a fluid chamber in the suction stroke is exposed to the suction opening, and (B) shows a fluid chamber in the suction stroke. A state in which the fluid chamber is partitioned from the low-pressure space only by the cylindrical wall is shown. (C) A state in which the fluid chamber in the suction stroke is partitioned from the low-pressure space by both the cylindrical wall and the gate is shown.
  • the single screw compressor (1) of the present embodiment (hereinafter simply referred to as a screw compressor) is provided in a refrigerant circuit that performs a refrigeration cycle and compresses the refrigerant.
  • the compression mechanism (20) and the electric motor (15) for driving the compression mechanism (20) are accommodated in one casing (10).
  • the screw compressor (1) is configured as a semi-hermetic type.
  • the casing (10) is formed in a horizontally long cylindrical shape.
  • the internal space of the casing (10) is partitioned into a low pressure space (S1) located on one end side of the casing (10) and a high pressure space (S2) located on the other end side of the casing (10).
  • the casing (10) is provided with a suction port (11) communicating with the low pressure space (S1) and a discharge port (12) communicating with the high pressure space (S2).
  • the low-pressure gas refrigerant that is, low-pressure fluid flowing from the evaporator of the refrigerant circuit flows into the low-pressure space (S1) through the suction port (11).
  • the compressed high-pressure gas refrigerant discharged from the compression mechanism (20) to the high-pressure space (S2) is supplied to the condenser of the refrigerant circuit through the discharge port (12).
  • the electric motor (15) is disposed in the low pressure space (S1), and the compression mechanism (20) is disposed between the low pressure space (S1) and the high pressure space (S2).
  • the drive shaft (21) of the compression mechanism (20) is connected to the electric motor (15).
  • An oil separator (16) is disposed in the high pressure space (S2). The oil separator (16) separates the refrigerating machine oil from the refrigerant discharged from the compression mechanism (20).
  • the screw compressor (1) is provided with an inverter (100).
  • the input side of the inverter (100) is connected to the commercial power source (101), and the output side thereof is connected to the electric motor (15).
  • the inverter (100) adjusts the AC frequency input from the commercial power supply (101), and supplies the AC converted to a predetermined frequency to the electric motor (15).
  • the compression mechanism (20) includes a cylindrical wall (30) formed in the casing (10) and one screw rotor (in the cylindrical wall (30)). 40) and two gate rotors (50) meshing with the screw rotor (40).
  • the cylindrical wall (30) is provided so as to cover the outer peripheral surface of the screw rotor (40).
  • the cylindrical wall (30) constitutes a partition wall portion. Details of the cylindrical wall (30) will be described later.
  • the drive shaft (21) is inserted through the screw rotor (40).
  • the screw rotor (40) and the drive shaft (21) are connected by a key (22).
  • the drive shaft (21) is arranged coaxially with the screw rotor (40).
  • the tip of the drive shaft (21) is freely rotatable on a bearing holder (60) located on the high pressure side of the compression mechanism (20) (the right side when the axial direction of the drive shaft (21) in FIG. 1 is the left-right direction). It is supported by.
  • the bearing holder (60) supports the drive shaft (21) via a ball bearing (61).
  • the screw rotor (40) is a metal member formed in a substantially columnar shape.
  • the screw rotor (40) is rotatably inserted into the cylindrical wall (30).
  • the screw rotor (40) is formed with a plurality (six in this embodiment) of spiral grooves (41) extending spirally from one end to the other end of the screw rotor (40).
  • Each spiral groove (41) opens to the outer peripheral surface of the screw rotor (40), and forms a fluid chamber (23).
  • Each screw groove (41) of the screw rotor (40) has a left end in FIG. 5 as a start end and a right end in the same figure as a termination. Further, the screw rotor (40) has a left end portion (end portion on the suction side) in FIG. In the screw rotor (40) shown in FIG. 5, the start end of the spiral groove (41) is opened at the left end face formed in a tapered surface, whereas the end of the spiral groove (41) is not opened at the right end face. .
  • the side wall surface positioned forward in the rotational direction of the screw rotor (40) is the front wall surface (42), and the side wall surface positioned rearward in the rotational direction of the screw rotor (40) is the rear wall surface ( 43).
  • a portion sandwiched between two adjacent spiral grooves (41) constitutes a circumferential seal surface (45).
  • a portion of the peripheral edge that is located in front of the screw rotor (40) in the rotational direction is a front edge (46), and the peripheral edge is behind the rotational direction of the screw rotor (40). The position is the trailing edge (47).
  • a portion adjacent to the terminal end of the spiral groove (41) constitutes an axial seal surface (48).
  • the axial seal surface (48) is a circumferential surface along the end surface of the screw rotor (40).
  • the screw rotor (40) is inserted into the cylindrical wall (30).
  • the circumferential seal surface (45) and the axial seal surface (48) of the screw rotor (40) are in sliding contact with the inner surface (35) of the cylindrical wall (30).
  • the circumferential seal surface (45) and the axial seal surface (48) of the screw rotor (40) and the inner surface (35) of the cylindrical wall (30) are not in physical contact with each other. A minimum clearance necessary for smoothly rotating the screw rotor (40) is provided between the two.
  • An oil film made of refrigerating machine oil is formed between the circumferential seal surface (45) and axial seal surface (48) of the screw rotor (40) and the inner surface (35) of the cylindrical wall (30). The oil film ensures the airtightness of the fluid chamber (23).
  • Each gate rotor (50) is a resin member provided with a plurality of (11 in this embodiment) gates (51) formed in a rectangular plate shape in a radial pattern.
  • Each gate rotor (50) is disposed outside the cylindrical wall (30) so as to be axially symmetric with respect to the rotational axis of the screw rotor (40). That is, in the screw compressor (1) of the present embodiment, the two gate rotors (50) are arranged at equiangular intervals (180 ° intervals in the present embodiment) around the rotation center axis of the screw rotor (40). Yes.
  • the axis of each gate rotor (50) is orthogonal to the axis of the screw rotor (40).
  • Each gate rotor (50) is arranged so that the gate (51) penetrates a part of the cylindrical wall (30) and meshes with the spiral groove (41) of the screw rotor (40).
  • the gate (51) meshed with the spiral groove (41) of the screw rotor (40) is slidably in contact with the front wall surface (42) or the rear wall surface (43) of the spiral groove (41), and the tip portion is spiral. It is in sliding contact with the bottom wall surface (44) of the groove (41).
  • a minimum clearance necessary for smoothly rotating the screw rotor (40) is provided between the gate (51) engaged with the spiral groove (41) and the screw rotor (40).
  • An oil film made of refrigerating machine oil is formed between the gate (51) engaged with the spiral groove (41) and the screw rotor (40), and the air tightness of the fluid chamber (23) is secured by this oil film.
  • the gate rotor (50) is attached to a metal rotor support member (55) (see FIGS. 3 and 4).
  • the rotor support member (55) includes a base portion (56), an arm portion (57), and a shaft portion (58).
  • the base (56) is formed in a slightly thick disk shape.
  • the same number of arms (57) as the gates (51) of the gate rotor (50) are provided and extend radially outward from the outer peripheral surface of the base (56).
  • the shaft portion (58) is formed in a rod shape and is erected on the base portion (56).
  • the central axis of the shaft portion (58) coincides with the central axis of the base portion (56).
  • the gate rotor (50) is attached to a surface of the base portion (56) and the arm portion (57) opposite to the shaft portion (58). Each arm part (57) is in contact with the back surface of the gate (51).
  • the rotor support member (55) to which the gate rotor (50) is attached is accommodated in a gate rotor chamber (90) defined in the casing (10) adjacent to the cylindrical wall (30) (FIG. 3). See).
  • the rotor support member (55) disposed on the right side of the screw rotor (40) in FIG. 3 is installed in such a posture that the gate rotor (50) is on the lower end side.
  • the rotor support member (55) disposed on the left side of the screw rotor (40) in the figure is installed in such a posture that the gate rotor (50) is on the upper end side.
  • each rotor support member (55) is rotatably supported by a bearing housing (91) in the gate rotor chamber (90) via ball bearings (92, 93).
  • Each gate rotor chamber (90) communicates with the low pressure space (S1).
  • the screw compressor (1) is provided with a slide valve (70) as a capacity control mechanism.
  • the slide valve (70) is provided in a slide valve housing portion (31) in which a cylindrical wall (30) bulges radially outward at two locations in the circumferential direction.
  • the slide valve (70) is configured such that the inner surface forms part of the inner peripheral surface of the cylindrical wall (30) and is slidable in the axial direction of the cylindrical wall (30).
  • the end surface (P1) of the slide valve storage (31) And an end face (P2) of the slide valve (70) is formed with an axial gap.
  • the axial gap serves as a bypass passage (33) for returning the refrigerant from the fluid chamber (23) to the low pressure space (S1).
  • the slide valve (70) is moved to change the opening of the bypass passage (33), the capacity of the compression mechanism (20) changes.
  • the slide valve (70) has a discharge port (25) for communicating the fluid chamber (23) and the high-pressure space (S2).
  • the screw compressor (1) is provided with a slide valve drive mechanism (80) for sliding the slide valve (70).
  • the slide valve drive mechanism (80) includes a cylinder (81) fixed to the bearing holder (60), a piston (82) loaded in the cylinder (81), and a piston rod ( 83), the connecting rod (85) connecting the arm (84) and the slide valve (70), and the arm (84) in the right direction of FIG. 2 (the arm (84)). And a spring (86) that urges the casing (10) in the direction of pulling away from the casing (10).
  • the slide valve drive mechanism (80) shown in FIG. 2 the internal pressure of the left space of the piston (82) (the space on the screw rotor (40) side of the piston (82)) is changed to the right space (piston (82) of the piston (82). ) Is higher than the internal pressure of the arm (84) side.
  • the slide valve drive mechanism (80) is configured to adjust the position of the slide valve (70) by adjusting the internal pressure in the right space of the piston (82) (ie, the gas pressure in the right space). ing.
  • the suction pressure of the compression mechanism (20) acts on one of the axial end surfaces of the slide valve (70), and the discharge pressure of the compression mechanism (20) acts on the other. .
  • a force in the direction of pressing the slide valve (70) toward the low pressure space (S1) always acts on the slide valve (70). Therefore, when the internal pressure of the left space and the right space of the piston (82) in the slide valve drive mechanism (80) is changed, the magnitude of the force in the direction of pulling the slide valve (70) back to the high pressure space (S2) side changes. As a result, the position of the slide valve (70) changes.
  • the cylindrical wall (30) has a suction opening (36) for exposing a part of the outer peripheral surface of the screw rotor (40) to the low pressure space (S1).
  • the suction opening (36) is an opening having a shape in which the circumferential width of the cylindrical wall (30) gradually narrows from the left end to the right end of the screw rotor (40) in FIG.
  • the suction opening (36) formed in the portion of the cylindrical wall (30) that covers the upper side of the screw rotor (40) is shown.
  • a suction opening (36) is also formed in a portion covering the lower side (see FIG. 3).
  • the shape of the suction opening (36) formed in the portion of the cylindrical wall (30) that covers the lower side of the screw rotor (40) is that of the cylindrical wall (30) with respect to the rotational axis of the screw rotor (40).
  • the suction opening (36) formed in a portion covering the upper side of the screw rotor (40) has an axisymmetric shape.
  • the opening edge (37) of the inner surface (35) of the cylindrical wall (30) is parallel to the front edge (46) of the circumferential seal surface (45) of the screw rotor (40). It has a shape that draws a curve.
  • This opening side edge (37) is parallel to the front edge (46) of the circumferential sealing surface (45) over its entire length. That is, the opening side edge (37) can overlap with the front edge (46) of the circumferential seal surface (45) moving with the rotation of the screw rotor (40) over its entire length. (See FIG. 6B).
  • the position of the opening side edge (37) is adjacent to the front edge (46a) when the opening side edge (37) overlaps the front edge (46a) of the circumferential seal surface (45a).
  • the gate (51a) that has entered the spiral groove (41a) is set so as not to come into contact with the rear wall surface (43a) of the spiral groove (41a) (see FIG. 6B).
  • the wall surface facing the suction opening (36) (that is, the opening side edge (37) of the inner surface (35) to the outer peripheral side of the cylindrical wall (30).
  • the extending wall surface is an open side wall surface (38).
  • the opening side wall surface (38) is an inclined surface facing the screw rotor (40) side. That is, the opening side wall surface (38) has a slope that approaches the screw rotor (40) as it proceeds from the left side to the right side in the figure.
  • the screw rotor (40) rotates as the drive shaft (21) rotates.
  • the gate rotor (50) also rotates, and the compression mechanism (20) repeats the suction stroke, the compression stroke, and the discharge stroke.
  • the description will be given focusing on the fluid chamber (23) with dots in FIG.
  • the fluid chamber (23) with dots is in communication with the low-pressure space (S1).
  • the spiral groove (41) forming the fluid chamber (23) meshes with the gate (51) of the gate rotor (50) located on the lower side of the figure.
  • the gate (51) relatively moves toward the end of the spiral groove (41), and the volume of the fluid chamber (23) increases accordingly.
  • the low-pressure gas refrigerant in the low-pressure space (S1) is sucked into the fluid chamber (23).
  • a suction process in which the low-pressure gas refrigerant flows into the fluid chamber (23) will be described in detail with reference to FIG.
  • a description will be given focusing on one spiral groove (41a) forming the fluid chamber (23a) during the suction stroke.
  • a part of the spiral groove (41a) is covered with the cylindrical wall (30) and the remaining part faces the suction opening (36).
  • the gate (51a) enters the spiral groove (41a) from the start end side.
  • the gate (51a) is in sliding contact with only the front wall surface (42a) and the bottom wall surface (44a) of the spiral groove (41a), and is not in sliding contact with the rear wall surface (43a) of the spiral groove (41a).
  • the fluid chamber (23a) formed by the spiral groove (41a) during the suction stroke is in a low pressure space (S1) on both the outer peripheral surface side and the end surface side of the screw rotor (40). Communicated with.
  • low-pressure gas refrigerant flows into the fluid chamber (23a) from both the outer peripheral surface side and the end surface side of the screw rotor (40).
  • the fluid chamber (23a) has the opening on the outer peripheral surface side of the screw rotor (40) completely closed by the cylindrical wall (30), and is partitioned from the low pressure space (S1) by the cylindrical wall (30). It is done.
  • the gate (51a) entering the spiral groove (41a) has a rear wall surface (43a) of the spiral groove (41a) as in the state shown in FIG. 6 (A). There is no sliding contact. For this reason, the fluid chamber (23a) during the suction stroke is separated from the low pressure space (S1) by the cylindrical wall (30) at the outer peripheral surface side of the screw rotor (40), while the end surface of the screw rotor (40). The side is still in communication with the low-pressure space (S1). In this state, the low-pressure gas refrigerant flows into the fluid chamber (23a) only from the end face side of the screw rotor (40).
  • the gate (51a) that has entered the spiral groove (41a) starts to slidably contact the rear wall surface (43a) of the spiral groove (41a) when it reaches the state shown in FIG. 6 (C). That is, when the state shown in FIG. 6C is reached, the gate (51a) is in sliding contact with all of the front wall surface (42a), the rear wall surface (43a), and the bottom wall surface (44a) of the spiral groove (41a).
  • the fluid chamber (23a) is partitioned from the low pressure space (S1) by the gate (51a). As a result, when the state shown in FIG. 6C is reached, the fluid chamber (23a) becomes a closed space that is partitioned from the low-pressure space (S1) by both the cylindrical wall (30) and the gate (51a). The process ends.
  • the fluid chamber (23a) during the suction stroke has a cylindrical wall (23a) from the position where the spiral groove (41a) forming the fluid chamber (23a) faces the suction opening (36). After moving to the position covered with 30) and partitioned from the low-pressure space (S1), it is partitioned from the low-pressure space (S1) by the gate (51a) that has entered the spiral groove (41a) forming the space.
  • the fluid chamber (23a) during the suction stroke is separated from the low-pressure space (S1) by the cylindrical wall (30) before the fluid chamber (23a) is partitioned from the low-pressure space (S1) by the gate (51a).
  • the shape of the opening side edge (37) in the inner surface (35) of the cylindrical wall (30) is set so as to be partitioned.
  • AC from the commercial power source (101) is supplied via the inverter (100) to the electric motor (15) that drives the screw rotor (40).
  • the rotational speed of the electric motor (15) changes, and the rotational speed of the screw rotor (40) driven by the electric motor (15) also changes.
  • the rotational speed of the screw rotor (40) changes, the mass flow rate of the refrigerant that is sucked into the screw compressor (1) and discharged after compression changes. That is, when the rotational speed of the screw rotor (40) changes, the operating capacity of the screw compressor (1) changes.
  • the adjustment range of the output fraction in the inverter (100) is set such that the lower limit value is lower (eg, 30 Hz) than the AC frequency (eg, 60 Hz) supplied from the commercial power source (101), and the upper limit value is commercial.
  • the frequency is set to a value (for example, 120 Hz) higher than the AC frequency supplied from the power source (101).
  • the rotational speed of the screw rotor (40) in the screw compressor (1) of the present embodiment is a low value to a high value compared to the case where the alternating current from the commercial power source (101) is supplied to the electric motor (15) as it is. Can vary up to.
  • the fluid chamber (23a) during the suction stroke is first covered by the cylindrical wall (30), and then is lowered by the gate (51a) that has entered the spiral groove (41a). Partitioned from the space (S1). That is, in this screw compressor (1), the fluid chamber (23a) during the suction stroke is partitioned from the low-pressure space (S1) relatively early by the cylindrical wall (30) covering the spiral groove (41a) forming the chamber. It is done.
  • the spiral groove that forms the fluid chamber (23a) after the fluid chamber (23a) during the suction stroke is covered by the cylindrical wall (30).
  • the gate (51a) enters the beginning of (41a).
  • the low pressure gas refrigerant is pushed into the fluid chamber (23a) formed by the spiral groove (41a) by the gate (51a).
  • the fluid chamber (23a) during the suction stroke is It is partitioned from (S1).
  • the low-pressure gas refrigerant pushed into the fluid chamber (23a) by the gate (51a) remains in the fluid chamber (23a) without leaking to the outer peripheral side of the screw rotor (40). Therefore, according to this embodiment, even when the gate (51a) pushes the low-pressure gas refrigerant into the fluid chamber (23a), the amount of the low-pressure gas refrigerant flowing into the fluid chamber (23a) during the intake stroke is increased. And the operating efficiency of the screw compressor (1) can be improved.
  • the opening side edge (37) of the inner surface (35) of the cylindrical wall (30) is parallel to the front edge (46) of the circumferential seal surface (45). It has become. For this reason, the portion of the opening of the spiral groove (41) on the outer peripheral surface of the screw rotor (40) that faces the suction opening (36) is such that the front edge (46) of the circumferential seal surface (45) is a cylindrical wall ( The entire length from the start end to the end of the inner side surface (35) of the inner surface (35) of 30) is maintained in an open state in the low pressure space (S1).
  • the opening area of the portion facing the suction opening (36) in the spiral groove (41a) forming the fluid chamber (23a) during the suction stroke is set to the circumferential seal surface (45a).
  • the front edge (46a) can be kept as large as possible until just before it overlaps the opening side edge (37) of the inner surface (35) of the cylindrical wall, and the fluid chamber (23a) during the suction stroke from the low pressure space (S1) The pressure loss when the low-pressure gas refrigerant flows into the can be reduced.
  • the opening side wall surface (38) of the cylindrical wall (30) is an inclined surface facing the outer peripheral surface side of the screw rotor (40). For this reason, the flow direction of the low-pressure gas refrigerant that hits the opening side wall surface (38) of the cylindrical wall (30) is smoothly changed to the axial center side of the screw rotor (40) by the opening side wall surface (38) that is a slope. Is done. Therefore, according to the present embodiment, it is possible to suppress the disturbance of the flow of the low-pressure gas refrigerant flowing into the fluid chamber (23a) during the suction stroke, and from the low-pressure space (S1) to the fluid chamber (23a) during the suction stroke. Pressure loss when the low-pressure gas refrigerant flows can be reduced.
  • AC from the commercial power source (101) is supplied via the inverter (100) to the electric motor (15) that drives the screw rotor (40). And if the output frequency of an inverter (100) is changed, the rotational speed of a screw rotor (40) will change and the operating capacity of a screw compressor (1) will change.
  • the rotational speed of the screw rotor (40) may be set to a high value. As the rotational speed of the screw rotor (40) increases, the centrifugal force acting on the gas refrigerant in the fluid chamber (23a) during the suction stroke also increases, and the fluid chamber (23a) moves toward the outer periphery of the screw rotor (40). There is a risk that the amount of leaking gas refrigerant will increase.
  • the spiral groove (41a) forming the fluid chamber (23a) during the suction stroke is first partitioned from the low pressure space (S1) by the cylindrical wall (30), Thereafter, it is partitioned from the low pressure space (S1) by the gate (51a) that has entered the spiral groove (41a).
  • the fluid chamber (23a) during the suction stroke is partitioned from the low-pressure space (S1) relatively early by the cylindrical wall (30) covering the spiral groove (41a) forming the fluid chamber (23a).
  • the centrifugal force is received from the fluid chamber (23a) to the outer peripheral side of the screw rotor (40).
  • the amount of leaking gas refrigerant can be kept low, and the operating efficiency of the screw compressor (1) can be kept high.
  • the moving speed of the gate (51) increases, the fluid leaks from the fluid chamber (23a) during the suction stroke to the starting end side of the spiral groove (41a) while the gate (51) enters the spiral groove (41).
  • the screw compressor (1) of this embodiment even when the rotational speed of the screw rotor (40) is set to a high value, the amount of low-pressure gas refrigerant flowing into the fluid chamber (23a) during the suction stroke is reduced. By ensuring sufficiently, the operating efficiency of the screw compressor (1) can be kept high.
  • the shape of the opening side edge (37) of the inner surface (35) of the cylindrical wall (30) is the circumferential direction of the screw rotor (40).
  • the seal surface (45) may have a different shape from the front edge (46) (that is, a shape not parallel to the front edge (46) of the circumferential seal surface (45)).
  • FIG. 9B when the entire spiral groove (41a) forming the fluid chamber (23a) during the suction stroke is covered by the cylindrical wall (30), this spiral is formed.
  • the gate (51a) entering the groove (41a) is in sliding contact with only the front wall surface (42a) and the bottom wall surface (44a) of the spiral groove (41a), and the rear wall surface (43a) of the spiral groove (41a). Do not touch. Therefore, also in this modification, the fluid chamber (23a) during the suction stroke is partitioned from the low pressure space (S1) by the gate (51a) after being partitioned from the low pressure space (S1) by the cylindrical wall (30).
  • the present invention is useful for a single screw compressor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

【課題】シングルスクリュー圧縮機において、低圧流体がスクリューロータ の外周方向へ流出するのを防止し、シングルスクリュー圧縮機の運転効率を 向上させる。 【解決手段】スクリューロータ(40)が回転すると、吸入行程中の流体室(23a)を形成する螺旋溝(41a)は、吸入用開口(36)から円筒壁(30)へ向かって移動する。吸入行程中の流体室(23a)は、それを形成する螺旋溝(41a)へ進入してきたゲート(51a)によって低圧空間から仕切られる。スクリューロータ(40)の外周面を覆う円筒壁(30)の開口側縁部(37)は、吸入行程中の流体室(23a)がゲート(51a)によって低圧空間から仕切られる前に円筒壁(30)で覆われるような形状に形成される。

Description

シングルスクリュー圧縮機
 本発明は、シングルスクリュー圧縮機の効率向上策に関するものである。
 従来より、冷媒や空気を圧縮する圧縮機として、シングルスクリュー圧縮機が用いられている。例えば、特許文献1には、1つのスクリューロータと2つのゲートロータとを備えたシングルスクリュー圧縮機が開示されている。
 このシングルスクリュー圧縮機について説明する。スクリューロータは、概ね円柱状に形成されており、その外周部に複数条の螺旋溝が刻まれている。各螺旋溝は、スクリューロータの外周面に開口している。また、各螺旋溝の始端は、スクリューロータの一方の端面に開口している。ゲートロータは、概ね平板状に形成されており、スクリューロータの側方に配置されている。このゲートロータには、複数の長方形板状のゲートが放射状に設けられている。ゲートロータは、その回転軸がスクリューロータの回転軸と直交する姿勢で設置され、ゲートがスクリューロータの螺旋溝と噛み合わされる。
 このシングルスクリュー圧縮機では、スクリューロータとゲートロータがケーシングに収容されている。また、ケーシング内には、圧縮前の低圧流体が流入する低圧空間が形成される。スクリューロータを電動機等で回転駆動すると、スクリューロータの回転に伴ってゲートロータが回転する。そして、ゲートロータのゲートが、螺旋溝の始端(吸入側の端部)から終端(吐出側の端部)へ向かって相対的に移動する。
 スクリューロータの螺旋溝によって形成される流体室へ低圧流体が吸入される吸入行程では、スクリューロータの外周面側と端面側から流体室へ低圧流体が流入する。その後、流体室は、スクリューロータの外周面を覆うケーシングの仕切り壁部(内筒)と、螺旋溝へ進入してきたゲートとによって、低圧空間から仕切られる。そして、流体室内の流体が圧縮される圧縮行程では、ゲートが螺旋溝の始端から流端へ向かって相対的に移動することによって流体室の容積が縮小し、流体室内の流体が圧縮される。
特開平06-042474号公報
 上述したように、シングルスクリュー圧縮機では、吸入行程中にはスクリューロータの外周面側と端面側から低圧流体が螺旋溝に流入し、圧縮行程では螺旋溝がケーシングの仕切り壁部とゲートとによって低圧空間から仕切られる。そして、従来のシングルスクリュー圧縮機では、螺旋溝がケーシングの仕切り壁部によって低圧空間から仕切られる時点と、螺旋溝がゲートによって低圧空間から仕切られる時点の先後については特に考慮されておらず、螺旋溝をケーシングの仕切り壁部とゲートとによって低圧空間から同時に仕切るのが一般的であった。
 ここで、シングルスクリュー圧縮機の運転中には、スクリューロータが回転している。このため、ケーシングの仕切り壁部によって流体室を低圧空間から仕切るタイミングが遅れると、吸入行程中の流体室へ流入した低圧流体に遠心力が作用し、流体室からスクリューロータの外周方向へ流出する低圧流体の量が増加してしまう。その結果、流体室へ流入して圧縮される流体の量が減少し、シングルスクリュー圧縮機の効率低下を招くおそれがあった。
 本発明は、かかる点に鑑みてなされたものであり、その目的は、シングルスクリュー圧縮機において、流体室へ流入して圧縮される流体の量を増加させ、シングルスクリュー圧縮機の運転効率を向上させることにある。
 第1の発明は、その外周面に開口して流体室(23)を形成する複数の螺旋溝(41)が形成されたスクリューロータ(40)と、該スクリューロータ(40)の螺旋溝(41)と噛み合わされる複数のゲート(51)が放射状に形成されたゲートロータ(50)と、該スクリューロータ(40)及び該ゲートロータ(50)を収容するケーシング(10)とを備え、上記スクリューロータ(40)が回転すると、該スクリューロータ(40)の螺旋溝(41)に噛み合うゲート(51)が該螺旋溝(41)の始端から終端へ向かって相対的に移動し、該螺旋溝(41)により形成された流体室(23)内の流体が圧縮されるシングルスクリュー圧縮機を対象とする。そして、上記ケーシング(10)の内部には、該ケーシング(10)へ吸い込まれた圧縮前の低圧流体が流入し且つ上記スクリューロータ(40)の端面に開口する上記螺旋溝(41)の始端に連通する低圧空間(S1)と、上記螺旋溝(41)により形成される流体室(23)が上記低圧空間(S1)から仕切られるように上記スクリューロータ(40)の外周面を覆う仕切り壁部(30)とが設けられる一方、上記仕切り壁部(30)には、上記スクリューロータ(40)の外周面の一部を上記低圧空間(S1)に露出させるための吸入用開口(36)が形成されており、上記低圧空間(S1)から低圧流体が流入する吸入行程中の流体室(23)は、該流体室(23)を形成する螺旋溝(41)が上記吸入用開口(36)に臨む位置から上記仕切り壁部(30)で覆われる位置へ移動した後に、該螺旋溝(41)へ進入した上記ゲート(51)によって上記低圧空間(S1)から仕切られるものである。
 第1の発明では、スクリューロータ(40)とゲートロータ(50)がケーシング(10)に収容される。ケーシング(10)内には、低圧空間(S1)が形成される。低圧空間(S1)は、スクリューロータ(40)の端面に開口する螺旋溝(41)の始端と連通している。吸入行程中の螺旋溝(41)には、スクリューロータ(40)の端面側(即ち、螺旋溝(41)の始端側)から低圧空間(S1)内の低圧流体が流入する。また、仕切り壁部(30)には、吸入用開口(36)が形成される。吸入行程中の流体室(23)を形成する螺旋溝(41)が吸入用開口(36)に臨む位置に在る状態において、この吸入行程中の流体室(23)へは、スクリューロータ(40)の端面側からだけでなく、スクリューロータ(40)の外周面側からも低圧流体が流入する。
 第1の発明において、スクリューロータ(40)が回転すると、スクリューロータ(40)に形成された螺旋溝(41)が移動する。吸入行程中の流体室(23)を形成する螺旋溝(41)は、吸入用開口(36)に臨む位置から仕切り壁部(30)によって覆われる位置へ移動する。この螺旋溝(41)が仕切り壁部(30)によって覆われる状態となってから暫くの間において、吸入行程中の流体室(23)へは、それを形成する螺旋溝(41)の始端側から低圧流体が流入し続ける。その後、吸入行程中の流体室(23)は、それを形成する螺旋溝(41)を覆う仕切り壁部(30)と、それを形成する螺旋溝(41)へ進入してきたゲート(51)とによって、低圧空間(S1)から仕切られる。そして、スクリューロータ(40)が更に回転してゲート(51)が移動すると、低圧空間(S1)から仕切られた流体室(23)の容積が減少し、この流体室(23)内の流体が圧縮される。
 第2の発明は、上記第1の発明において、上記スクリューロータ(40)の外周面のうち隣接する二つの螺旋溝(41)に挟まれた部分が、上記仕切り壁部(30)の内側面(35)と摺接して隣接する二つの螺旋溝(41)の間をシールする周方向シール面(45)となり、上記周方向シール面(45)の周縁のうち上記スクリューロータ(40)の回転方向の前方に位置する部分が、該周方向シール面(45)の前縁(46)となり、上記仕切り壁部(30)の内側面(35)では、上記吸入用開口(36)に臨む開口側縁部(37)が上記周方向シール面(45)の前縁(46)と平行になっているものである。
 第2の発明において、スクリューロータ(40)が回転すると、周方向シール面(45)は、吸入用開口(36)に臨む位置から仕切り壁部(30)へ向かって移動してゆく。この状態において、周方向シール面(45)よりもスクリューロータ(40)の回転方向の前方(即ち、周方向シール面(45)の前縁(46)側)に位置する螺旋溝(41)が形成する流体室(23)へは、スクリューロータ(40)の外周面側から低圧流体が流入する。そして、周方向シール面(45)の前縁(46)が仕切り壁部(30)の内側面(35)の開口側縁部(37)を過ぎると、その周方向シール面(45)の前縁(46)側に位置する螺旋溝(41)が仕切り壁部(30)によって覆われ、その螺旋溝(41)によって形成される吸入行程中の流体室(23)が仕切り壁部(30)によって低圧空間(S1)から仕切られる。
 第2の発明の仕切り壁部(30)では、その内側面(35)の開口側縁部(37)が、周方向シール面(45)の前縁(46)と平行な形状に形成されている。このため、スクリューロータ(40)の外周面における螺旋溝(41)の開口部のうち吸入用開口(36)に臨む部分は、周方向シール面(45)の前縁(46)が仕切り壁部(30)の内側面(35)の開口側縁部(37)と重なる直前まで、螺旋溝(41)の始端から終端までの全長に亘る全体が低圧空間(S1)に開口した状態となる。
 第3の発明は、上記第1又は第2の発明において、上記仕切り壁部(30)では、上記吸入用開口(36)に臨む開口側壁面(38)が、上記スクリューロータ(40)の外周面側を向く斜面となっているものである。
 第3の発明において、吸入行程中の流体室(23)へ流入する低圧流体は、スクリューロータ(40)の端面側から吸入用開口(36)へ向かって流れ込み、その後にスクリューロータ(40)の軸心方向へ向きを変えて流体室(23)へ流れ込む。その際、流体室(23)へ流入する低圧流体の一部は、仕切り壁部(30)の開口側壁面(38)にぶつかってから流体室(23)へ流入する。この発明において、仕切り壁部(30)の開口側壁面(38)は、スクリューロータ(40)の外周面側を向く斜面となっている。このため、仕切り壁部(30)の開口側壁面(38)にぶつかった低圧流体は、斜面となった開口側壁面(38)に沿って流れ、その流れ方向がスクリューロータ(40)の軸心側へスムーズに変更される。
 第4の発明は、上記第1から第3までの何れか一つの発明において、上記スクリューロータ(40)を回転駆動する電動機(15)と、上記電動機(15)へ供給される交流の周波数を変更するためのインバータ(100)とを備え、上記インバータ(100)の出力周波数を変更することによって上記スクリューロータ(40)の回転速度を調節可能に構成されるものである。
 第4の発明において、スクリューロータ(40)を駆動する電動機(15)には、インバータ(100)を介して交流が供給される。インバータ(100)の出力周波数を変更すると、電動機(15)の回転速度が変化し、電動機(15)によって駆動されるスクリューロータ(40)の回転速度も変化する。そして、スクリューロータ(40)の回転速度が変化すると、シングルスクリュー圧縮機(1)へ吸入されて圧縮後に吐出される流体の質量流量が変化する。即ち、スクリューロータ(40)の回転速度が変化すると、シングルスクリュー圧縮機(1)の運転容量が変化する。
 本発明のシングルスクリュー圧縮機(1)において、吸入行程中の流体室(23)は、先ず仕切り壁部(30)によって覆われ、その後に螺旋溝(41)へ進入してきたゲート(51)によって低圧空間(S1)から仕切られる。つまり、本発明において、吸入行程中の流体室(23)は、それを形成する螺旋溝(41)を覆う仕切り壁部(30)によって比較的早期に低圧空間(S1)から遮断される。
 吸入行程中の流体室(23)が仕切り壁部(30)によって覆われた状態では、スクリューロータ(40)の回転に起因する遠心力が流体室(23)内の流体に作用しても、仕切り壁部(30)が流体室(23)からの流体の流出を阻止する。このため、本発明によれば、遠心力を受けて流体室(23)からスクリューロータ(40)の外周側へ漏れてゆく流体の量を削減することができ、吸入行程中の流体室(23)へ吸入される流体の量を増加させることができる。その結果、シングルスクリュー圧縮機(1)の運転効率を向上させることができる。
 また、本発明のシングルスクリュー圧縮機(1)では、吸入行程中の流体室(23)が仕切り壁部(30)によって覆われる状態となった後においても、この流体室(23)を形成する螺旋溝(41)の始端へゲート(51)が進入してゆく。螺旋溝(41)の始端へゲート(51)が進入してゆく過程において、螺旋溝(41)によって形成された流体室(23)へは、ゲート(51)によって低圧流体が押し込まれてゆく。本発明のシングルスクリュー圧縮機(1)では、ゲート(51)が吸入行程中の流体室(23)へ低圧流体を押し込む時点において、吸入行程中の流体室(23)が仕切り壁部(30)によって低圧空間(S1)から仕切られている。このため、ゲート(51)によって流体室(23)へ押し込まれた低圧流体は、スクリューロータ(40)の外周側へ漏れ出すことなく流体室(23)内に留まる。従って、本発明によれば、ゲート(51)が流体室(23)へ低圧流体を押し込むことによっても、吸入行程中の流体室(23)へ流入する低圧流体の量を増加させることができ、シングルスクリュー圧縮機(1)の運転効率を向上させることができる。
 上記第2の発明では、仕切り壁部(30)の内側面(35)の開口側縁部(37)が、周方向シール面(45)の前縁(46)と平行になっている。このため、スクリューロータ(40)の外周面における螺旋溝(41)の開口部のうち吸入用開口(36)に臨む部分は、周方向シール面(45)の前縁(46)が仕切り壁部(30)の内側面(35)の開口側縁部(37)と重なる直前まで、その始端から終端までの全長に亘る全体が低圧空間(S1)に開口した状態に保たれる。従って、この発明によれば、吸入行程中の流体室(23)を形成する螺旋溝(41)のうち吸入用開口(36)に臨む部分の開口面積を、周方向シール面(45)の前縁(46)が仕切り壁部(30)の内側面(35)の開口側縁部(37)と重なる直前まで可能な限り大きく保つことができ、低圧空間(S1)から吸入行程中の流体室(23)へ低圧流体が流入する際の圧力損失を低減することができる。
 上記第3の発明において、仕切り壁部(30)の開口側壁面(38)は、スクリューロータ(40)の外周面側を向く斜面となっている。このため、仕切り壁部(30)の開口側壁面(38)にぶつかった低圧流体の流れ方向は、斜面となった開口側壁面(38)によってスクリューロータ(40)の軸心側へスムーズに変更される。従って、この発明によれば、吸入行程中の流体室(23)へ流入する低圧流体の流れの乱れを抑えることができ、低圧空間(S1)から吸入行程中の流体室(23)へ低圧流体が流入する際の圧力損失を低減することができる。
 上記第4の発明では、スクリューロータ(40)を駆動する電動機(15)にインバータ(100)を介して交流が供給される。そして、インバータ(100)の出力周波数を変更すると、スクリューロータ(40)の回転速度が変化し、シングルスクリュー圧縮機(1)の運転容量が変化する。
 ここで、インバータ(100)の出力周波数を変更することによって運転容量を変更可能なシングルスクリュー圧縮機(1)では、例えば商用電源から電動機(15)へインバータ(100)を介さずに電力を供給する場合に比べ、スクリューロータ(40)の回転速度が高い値に設定される場合がある。そして、スクリューロータ(40)の回転速度が高くなると、吸入行程中の流体室(23)内の流体に作用する遠心力も大きくなり、流体室(23)からスクリューロータ(40)の外周側へ漏れ出す流体の量が多くなるおそれがある。
 それに対し、上記第4の発明において、吸入行程中の流体室(23)を形成する螺旋溝(41)は、先ず仕切り壁部(30)によって低圧空間(S1)から仕切られ、その後に螺旋溝(41)へ進入してきたゲート(51)によって低圧空間(S1)から仕切られる。そして、吸入行程中の流体室(23)は、それを形成する螺旋溝(41)を覆う仕切り壁部(30)によって比較的早期に低圧空間(S1)から仕切られることになる。従って、スクリューロータ(40)の回転速度が高い値に設定され得る第4の発明のシングルスクリュー圧縮機(1)においても、遠心力を受けて流体室(23)からスクリューロータ(40)の外周側へ漏れ出す流体の量を低く抑えることができ、シングルスクリュー圧縮機(1)の運転効率を高く保つことができる。
 また、スクリューロータ(40)の回転速度が高くなるほど、ゲート(51)の移動速度も速くなる。そして、ゲート(51)の移動速度が高いほど、螺旋溝(41)へゲート(51)が進入する過程で吸入行程中の流体室(23)から螺旋溝(41)の始端側へ漏れ出す流体の量が少なくなる。つまり、スクリューロータ(40)の回転速度が高くなるほど、吸入行程中の流体室(23)へゲート(51)によって押し込まれる低圧流体の量が多くなる。従って、第4の発明のシングルスクリュー圧縮機(1)では、スクリューロータ(40)の回転速度が高い値に設定された場合でも、流体室(23)へ流入する低圧流体の量を充分に確保することによってシングルスクリュー圧縮機(1)の運転効率を高く保つことができる。
シングルスクリュー圧縮機の概略構成図である。 シングルスクリュー圧縮機の要部の構成を示す縦断面図である。 図2におけるA-A断面を示す断面図である。 シングルスクリュー圧縮機の要部を抜き出して示す斜視図である。 シングルスクリュー圧縮機の要部を上方から見た状態を示す概略の一部断面図である。 スクリューロータ及び円筒壁の展開図であって、(A)は吸入行程中の流体室が吸入用開口に露出した状態を示し、(B)は吸入行程中の流体室が円筒壁だけによって低圧空間から仕切られた状態を示し、(C)吸入行程中の流体室が円筒壁とゲートの両方によって低圧空間から仕切られた状態を示す。 図5におけるB-B断面を示す概略断面図である。 シングルスクリュー圧縮機の圧縮機構の動作を示す平面図であり、(A)は吸入行程を示し、(B)は圧縮行程を示し、(C)は吐出行程示す。 実施形態の変形例におけるスクリューロータ及び円筒壁の展開図であって、(A)は吸入行程中の流体室が吸入用開口に露出した状態を示し、(B)は吸入行程中の流体室が円筒壁だけによって低圧空間から仕切られた状態を示し、(C)吸入行程中の流体室が円筒壁とゲートの両方によって低圧空間から仕切られた状態を示す。
 以下、本発明の実施形態を図面に基づいて詳細に説明する。
 本実施形態のシングルスクリュー圧縮機(1)(以下、単にスクリュー圧縮機と言う。)は、冷凍サイクルを行う冷媒回路に設けられて冷媒を圧縮するためのものである。
 図1に示すように、スクリュー圧縮機(1)では、圧縮機構(20)とそれを駆動する電動機(15)とが1つのケーシング(10)に収容されている。このスクリュー圧縮機(1)は、半密閉型に構成されている。
 ケーシング(10)は、横長の円筒状に形成されている。ケーシング(10)の内部空間は、ケーシング(10)の一端側に位置する低圧空間(S1)と、ケーシング(10)の他端側に位置する高圧空間(S2)とに仕切られている。ケーシング(10)には、低圧空間(S1)に連通する吸入口(11)と、高圧空間(S2)に連通する吐出口(12)とが設けられている。冷媒回路の蒸発器から流れてきた低圧ガス冷媒(即ち、低圧流体)は、吸入口(11)を通って低圧空間(S1)へ流入する。また、圧縮機構(20)から高圧空間(S2)へ吐出された圧縮後の高圧ガス冷媒は、吐出口(12)を通って冷媒回路の凝縮器へ供給される。
 ケーシング(10)内では、低圧空間(S1)に電動機(15)が配置され、低圧空間(S1)と高圧空間(S2)の間に圧縮機構(20)が配置されている。圧縮機構(20)の駆動軸(21)は、電動機(15)に連結されている。また、高圧空間(S2)には、油分離器(16)が配置されている。油分離器(16)は、圧縮機構(20)から吐出された冷媒から冷凍機油を分離する。
 スクリュー圧縮機(1)には、インバータ(100)が設けられている。インバータ(100)は、その入力側が商用電源(101)に接続され、その出力側が電動機(15)に接続されている。インバータ(100)は、商用電源(101)から入力された交流の周波数を調節し、所定の周波数に変換された交流を電動機(15)へ供給する。
 図2,図3に示すように、圧縮機構(20)は、ケーシング(10)内に形成された円筒壁(30)と、該円筒壁(30)の中に配置された1つのスクリューロータ(40)と、該スクリューロータ(40)に噛み合う2つのゲートロータ(50)とを備えている。
 円筒壁(30)は、スクリューロータ(40)の外周面を覆うように設けられている。この円筒壁(30)は、仕切り壁部を構成している。円筒壁(30)の詳細については、後述する。
 スクリューロータ(40)には、駆動軸(21)が挿通されている。スクリューロータ(40)と駆動軸(21)は、キー(22)によって連結されている。駆動軸(21)は、スクリューロータ(40)と同軸上に配置されている。駆動軸(21)の先端部は、圧縮機構(20)の高圧側(図1における駆動軸(21)の軸方向を左右方向とした場合の右側)に位置する軸受ホルダ(60)に回転自在に支持されている。この軸受ホルダ(60)は、玉軸受(61)を介して駆動軸(21)を支持している。
 図4,図5に示すように、スクリューロータ(40)は、概ね円柱状に形成された金属製の部材である。スクリューロータ(40)は、円筒壁(30)に回転可能に挿入されている。スクリューロータ(40)には、スクリューロータ(40)の一端から他端へ向かって螺旋状に延びる螺旋溝(41)が複数(本実施形態では、6本)形成されている。各螺旋溝(41)は、スクリューロータ(40)の外周面に開口しており、流体室(23)を形成する。
 スクリューロータ(40)の各螺旋溝(41)は、図5における左端が始端となり、同図における右端が終端となっている。また、スクリューロータ(40)は、同図における左端部(吸入側の端部)がテーパー状に形成されている。図5に示すスクリューロータ(40)では、テーパー面状に形成されたその左端面に螺旋溝(41)の始端が開口する一方、その右端面に螺旋溝(41)の終端は開口していない。各螺旋溝(41)では、スクリューロータ(40)の回転方向の前方に位置する側壁面が前方壁面(42)となり、スクリューロータ(40)の回転方向の後方に位置する側壁面が後方壁面(43)となっている。
 スクリューロータ(40)の外周面では、隣り合う二つの螺旋溝(41)に挟まれた部分が周方向シール面(45)を構成している。周方向シール面(45)では、その周縁のうちスクリューロータ(40)の回転方向の前方に位置する部分が前縁(46)となり、その周縁のうちスクリューロータ(40)の回転方向の後方に位置する部分が後縁(47)となっている。また、スクリューロータ(40)の外周面では、螺旋溝(41)の終端に隣接する部分が軸方向シール面(48)を構成している。この軸方向シール面(48)は、スクリューロータ(40)の端面に沿った円周面となっている。
 上述したように、スクリューロータ(40)は、円筒壁(30)に挿入されている。そして、スクリューロータ(40)の周方向シール面(45)及び軸方向シール面(48)は、円筒壁(30)の内側面(35)と摺接する。
 なお、スクリューロータ(40)の周方向シール面(45)及び軸方向シール面(48)と円筒壁(30)の内側面(35)とは、物理的に接触している訳ではなく、両者の間にはスクリューロータ(40)をスムーズに回転させるために必要な最小限のクリアランスが設けられている。そして、スクリューロータ(40)の周方向シール面(45)及び軸方向シール面(48)と円筒壁(30)の内側面(35)との間には冷凍機油からなる油膜が形成され、この油膜によって流体室(23)の気密性が確保される。
 各ゲートロータ(50)は、長方形板状に形成された複数(本実施形態では、11枚)のゲート(51)が放射状に設けられた樹脂製の部材である。各ゲートロータ(50)は、円筒壁(30)の外側に、スクリューロータ(40)の回転軸に対して軸対称となるように配置されている。つまり、本実施形態のスクリュー圧縮機(1)では、二つのゲートロータ(50)が、スクリューロータ(40)の回転中心軸周りに等角度間隔(本実施形態では180°間隔)で配置されている。各ゲートロータ(50)の軸心は、スクリューロータ(40)の軸心と直交している。各ゲートロータ(50)は、ゲート(51)が円筒壁(30)の一部を貫通してスクリューロータ(40)の螺旋溝(41)に噛み合うように配置されている。
 スクリューロータ(40)の螺旋溝(41)に噛み合ったゲート(51)は、その両側部が螺旋溝(41)の前方壁面(42)又は後方壁面(43)と摺接し、その先端部が螺旋溝(41)の底壁面(44)と摺接する。なお、螺旋溝(41)に噛み合ったゲート(51)とスクリューロータ(40)との間には、スクリューロータ(40)をスムーズに回転させるために必要な最小限のクリアランスが設けられている。螺旋溝(41)に噛み合ったゲート(51)とスクリューロータ(40)との間には冷凍機油からなる油膜が形成され、この油膜によって流体室(23)の気密性が確保される。
 ゲートロータ(50)は、金属製のロータ支持部材(55)に取り付けられている(図3,4を参照)。ロータ支持部材(55)は、基部(56)とアーム部(57)と軸部(58)とを備えている。基部(56)は、やや肉厚の円板状に形成されている。アーム部(57)は、ゲートロータ(50)のゲート(51)と同数だけ設けられており、基部(56)の外周面から外側へ向かって放射状に延びている。軸部(58)は、棒状に形成されて基部(56)に立設されている。軸部(58)の中心軸は、基部(56)の中心軸と一致している。ゲートロータ(50)は、基部(56)及びアーム部(57)における軸部(58)とは反対側の面に取り付けられている。各アーム部(57)は、ゲート(51)の裏面に当接している。
 ゲートロータ(50)が取り付けられたロータ支持部材(55)は、円筒壁(30)に隣接してケーシング(10)内に区画形成されたゲートロータ室(90)に収容されている(図3を参照)。図3におけるスクリューロータ(40)の右側に配置されたロータ支持部材(55)は、ゲートロータ(50)が下端側となる姿勢で設置されている。一方、同図におけるスクリューロータ(40)の左側に配置されたロータ支持部材(55)は、ゲートロータ(50)が上端側となる姿勢で設置されている。各ロータ支持部材(55)の軸部(58)は、ゲートロータ室(90)内の軸受ハウジング(91)に玉軸受(92,93)を介して回転自在に支持されている。なお、各ゲートロータ室(90)は、低圧空間(S1)に連通している。
 スクリュー圧縮機(1)には、容量制御機構としてスライドバルブ(70)が設けられている。このスライドバルブ(70)は、円筒壁(30)がその周方向の2カ所において径方向外側に膨出したスライドバルブ収納部(31)内に設けられている。スライドバルブ(70)は、内面が円筒壁(30)の内周面の一部を構成すると共に、円筒壁(30)の軸方向にスライド可能に構成されている。
 スライドバルブ(70)が高圧空間(S2)寄り(図2における駆動軸(21)の軸方向を左右方向とした場合の右側寄り)へスライドすると、スライドバルブ収納部(31)の端面(P1)とスライドバルブ(70)の端面(P2)との間に軸方向隙間が形成される。この軸方向隙間は、流体室(23)から低圧空間(S1)へ冷媒を戻すためのバイパス通路(33)となっている。スライドバルブ(70)を移動させてバイパス通路(33)の開度を変更すると、圧縮機構(20)の容量が変化する。また、スライドバルブ(70)には、流体室(23)と高圧空間(S2)とを連通させるための吐出ポート(25)が形成されている。
 上記スクリュー圧縮機(1)には、スライドバルブ(70)をスライド駆動させるためのスライドバルブ駆動機構(80)が設けられている。このスライドバルブ駆動機構(80)は、軸受ホルダ(60)に固定されたシリンダ(81)と、該シリンダ(81)内に装填されたピストン(82)と、該ピストン(82)のピストンロッド(83)に連結されたアーム(84)と、該アーム(84)とスライドバルブ(70)とを連結する連結ロッド(85)と、アーム(84)を図2の右方向(アーム(84)をケーシング(10)から引き離す方向)に付勢するスプリング(86)とを備えている。
 図2に示すスライドバルブ駆動機構(80)では、ピストン(82)の左側空間(ピストン(82)のスクリューロータ(40)側の空間)の内圧が、ピストン(82)の右側空間(ピストン(82)のアーム(84)側の空間)の内圧よりも高くなっている。そして、スライドバルブ駆動機構(80)は、ピストン(82)の右側空間の内圧(即ち、右側空間内のガス圧)を調節することによって、スライドバルブ(70)の位置を調整するように構成されている。
 スクリュー圧縮機(1)の運転中において、スライドバルブ(70)では、その軸方向の端面の一方に圧縮機構(20)の吸入圧が、他方に圧縮機構(20)の吐出圧がそれぞれ作用する。このため、スクリュー圧縮機(1)の運転中において、スライドバルブ(70)には、常にスライドバルブ(70)を低圧空間(S1)側へ押す方向の力が作用する。従って、スライドバルブ駆動機構(80)におけるピストン(82)の左側空間及び右側空間の内圧を変更すると、スライドバルブ(70)を高圧空間(S2)側へ引き戻す方向の力の大きさが変化し、その結果、スライドバルブ(70)の位置が変化する。
 円筒壁(30)の詳細について、図5~図7を参照しながら説明する。
 図5に示すように、円筒壁(30)には、スクリューロータ(40)の外周面の一部を低圧空間(S1)に露出させるための吸入用開口(36)が形成されている。この吸入用開口(36)は、円筒壁(30)の周方向における幅が図5におけるスクリューロータ(40)の左端から右端へ向かって次第に狭まる形状の開口である。なお、図5では、円筒壁(30)のうちスクリューロータ(40)の上側を覆う部分に形成された吸入用開口(36)が図示されているが、円筒壁(30)のうちスクリューロータ(40)の下側を覆う部分にも吸入用開口(36)が形成されている(図3を参照)。円筒壁(30)のうちスクリューロータ(40)の下側を覆う部分に形成された吸入用開口(36)の形状は、スクリューロータ(40)の回転軸に対して、円筒壁(30)のうちスクリューロータ(40)の上側を覆う部分に形成された吸入用開口(36)と軸対称な形状となっている。
 円筒壁(30)の内側面(35)では、吸入用開口(36)に臨む縁部が開口側縁部(37)となっている。図6に示すように、円筒壁(30)の内側面(35)の開口側縁部(37)は、スクリューロータ(40)の周方向シール面(45)の前縁(46)と平行な曲線を描く形状となっている。この開口側縁部(37)は、その全長に亘って周方向シール面(45)の前縁(46)と平行になっている。つまり、この開口側縁部(37)は、スクリューロータ(40)の回転に伴って移動する周方向シール面(45)の前縁(46)と、その全長に亘って重なり合うことが可能な形状となっている(図6(B)を参照)。また、この開口側縁部(37)の位置は、開口側縁部(37)が周方向シール面(45a)の前縁(46a)と重なり合った時点において、この前縁(46a)に隣接する螺旋溝(41a)に進入してきたゲート(51a)が未だ螺旋溝(41a)の後方壁面(43a)と接触しない状態となるように設定されている(図6(B)を参照)。
 図7に示すように、円筒壁(30)では、吸入用開口(36)に臨む壁面(即ち、その内側面(35)の開口側縁部(37)から円筒壁(30)の外周側へ延びる壁面)が、開口側壁面(38)となっている。この開口側壁面(38)は、スクリューロータ(40)側を向いた斜面となっている。つまり、この開口側壁面(38)は、同図の左側から右側へ進につれてスクリューロータ(40)に近付くような斜面となっている。
  -運転動作-
 スクリュー圧縮機(1)の運転動作について説明する。
 スクリュー圧縮機(1)において電動機(15)を起動すると、駆動軸(21)が回転するのに伴ってスクリューロータ(40)が回転する。このスクリューロータ(40)の回転に伴ってゲートロータ(50)も回転し、圧縮機構(20)が吸入行程、圧縮行程および吐出行程を繰り返す。ここでは、図8においてドットを付した流体室(23)に着目して説明する。
 図8(A)において、ドットを付した流体室(23)は、低圧空間(S1)に連通している。また、この流体室(23)を形成する螺旋溝(41)は、同図の下側に位置するゲートロータ(50)のゲート(51)と噛み合わされている。スクリューロータ(40)が回転すると、このゲート(51)が螺旋溝(41)の終端へ向かって相対的に移動し、それに伴って流体室(23)の容積が拡大する。その結果、低圧空間(S1)の低圧ガス冷媒が流体室(23)へ吸い込まれる。
 スクリューロータ(40)が更に回転すると、図8(B)の状態となる。同図において、ドットを付した流体室(23)は、閉じきり状態となっている。つまり、この流体室(23)が形成されている螺旋溝(41)は、同図の上側に位置するゲートロータ(50)のゲート(51)と噛み合わされ、このゲート(51)によって低圧空間(S1)から仕切られている。そして、スクリューロータ(40)の回転に伴ってゲート(51)が螺旋溝(41)の終端へ向かって相対的に移動すると、流体室(23)の容積が次第に縮小する。その結果、流体室(23)内のガス冷媒が圧縮される。
 スクリューロータ(40)が更に回転すると、図8(C)の状態となる。同図において、ドットを付した流体室(23)は、吐出ポート(25)を介して高圧空間(S2)と連通した状態となっている。そして、スクリューロータ(40)の回転に伴ってゲート(51)が螺旋溝(41)の終端へ向かって相対的に移動すると、圧縮された冷媒ガスが流体室(23)から高圧空間(S2)へ押し出されてゆく。
 流体室(23)へ低圧ガス冷媒が流入する吸入行程について、図6を参照しながら詳細に説明する。ここでは、吸入行程中の流体室(23a)を形成する一つの螺旋溝(41a)に着目して説明する。
 図6(A)において、螺旋溝(41a)は、その一部分が円筒壁(30)に覆われて残りの部分が吸入用開口(36)に臨む状態となっている。また、螺旋溝(41a)には、その始端側からゲート(51a)が進入してきている。このゲート(51a)は、螺旋溝(41a)の前方壁面(42a)及び底壁面(44a)だけと摺接し、螺旋溝(41a)の後方壁面(43a)とは摺接していない。
 図6(A)に示す状態において、螺旋溝(41a)によって形成された吸入行程中の流体室(23a)は、スクリューロータ(40)の外周面側と端面側の両方において低圧空間(S1)と連通している。そして、この状態において、流体室(23a)へは、スクリューロータ(40)の外周面側と端面側の両方から低圧ガス冷媒が流入する。
 図6(A)に示す状態からスクリューロータ(40)が回転すると、図6(B)に示す状態となる。図6(B)に示す状態では、螺旋溝(41a)に隣接する周方向シール面(45a)の前縁(46a)が、円筒壁(30)の内側面(35)の開口側縁部(37)と重なり合う。そして、図6(B)に示す状態になった時点では、吸入行程中の流体室(23a)を形成する螺旋溝(41a)の全体が円筒壁(30)によって覆われる。つまり、この時点において、流体室(23a)は、スクリューロータ(40)の外周面側の開口部が円筒壁(30)によって完全に閉塞され、円筒壁(30)によって低圧空間(S1)から仕切られる。
 この図6(B)に示す状態において、螺旋溝(41a)へ進入しつつあるゲート(51a)は、図6(A)に示す状態と同様に、螺旋溝(41a)の後方壁面(43a)とは摺接していない。このため、吸入行程中の流体室(23a)は、スクリューロータ(40)の外周面側の開口部が円筒壁(30)によって低圧空間(S1)から仕切られる一方、スクリューロータ(40)の端面側では依然として低圧空間(S1)に連通した状態となっている。そして、この状態において、流体室(23a)へは、スクリューロータ(40)の端面側だけから低圧ガス冷媒が流入する。
 図6(B)に示す状態からスクリューロータ(40)が回転すると、図6(C)に示す状態となる。図6(C)に示す状態において、周方向シール面(45a)の前縁(46a)は、円筒壁(30)の内側面(35)の開口側縁部(37)を通過している。そして、円筒壁(30)の内側面(35)の開口側縁部(37)は、周方向シール面(45a)の前縁(46a)と後縁(47a)の間に位置している。
 螺旋溝(41a)へ進入してきたゲート(51a)は、図6(C)に示す状態になった時点において、螺旋溝(41a)の後方壁面(43a)と摺接し始める。つまり、図6(C)に示す状態になった時点では、ゲート(51a)が螺旋溝(41a)の前方壁面(42a)と後方壁面(43a)と底壁面(44a)の全てと摺接し、流体室(23a)がゲート(51a)によって低圧空間(S1)から仕切られる。その結果、図6(C)に示す状態になった時点では、流体室(23a)が円筒壁(30)とゲート(51a)の両方によって低圧空間(S1)から仕切られた閉空間となり、吸入行程が終了する。
 このように、本実施形態のスクリュー圧縮機(1)において、吸入行程中の流体室(23a)は、それを形成する螺旋溝(41a)が吸入用開口(36)に臨む位置から円筒壁(30)で覆われる位置へ移動して低圧空間(S1)から仕切られた後に、それを形成する螺旋溝(41a)へ進入したゲート(51a)によって低圧空間(S1)から仕切られる。そして、このスクリュー圧縮機(1)では、吸入行程中の流体室(23a)がゲート(51a)によって低圧空間(S1)から仕切られるよりも前に円筒壁(30)によって低圧空間(S1)から仕切られるように、円筒壁(30)の内側面(35)における開口側縁部(37)の形状が設定されている。
 ここで、本実施形態のスクリュー圧縮機(1)では、スクリューロータ(40)を駆動する電動機(15)に対し、商用電源(101)からの交流がインバータ(100)を介して供給される。インバータ(100)の出力周波数を変更すると、電動機(15)の回転速度が変化し、電動機(15)によって駆動されるスクリューロータ(40)の回転速度も変化する。そして、スクリューロータ(40)の回転速度が変化すると、スクリュー圧縮機(1)へ吸入されて圧縮後に吐出される冷媒の質量流量が変化する。即ち、スクリューロータ(40)の回転速度が変化すると、スクリュー圧縮機(1)の運転容量が変化する。
 インバータ(100)における出力数端数の調節範囲は、その下限値が商用電源(101)から供給される交流の周波数(例えば60Hz)よりも低い値(例えば30Hz)に設定され、その上限値が商用電源(101)から供給される交流の周波数よりも高い値(例えば120Hz)に設定されている。このため、本実施形態のスクリュー圧縮機(1)におけるスクリューロータ(40)の回転速度は、商用電源(101)からの交流をそのまま電動機(15)へ供給する場合に比べて低い値から高い値まで変化し得る。
  -実施形態の効果-
 本実施形態のスクリュー圧縮機(1)において、吸入行程中の流体室(23a)は、先ず円筒壁(30)によって覆われ、その後に螺旋溝(41a)へ進入してきたゲート(51a)によって低圧空間(S1)から仕切られる。つまり、このスクリュー圧縮機(1)において、吸入行程中の流体室(23a)は、それを形成する螺旋溝(41a)を覆う円筒壁(30)によって比較的早期に低圧空間(S1)から仕切られる。
 吸入行程中の流体室(23a)が円筒壁(30)によって覆われた状態では、スクリューロータ(40)の回転に起因する遠心力が流体室(23a)内のガス冷媒に作用しても、円筒壁(30)が流体室(23a)からのガス冷媒の流出を阻止する。このため、本実施形態によれば、遠心力を受けて流体室(23a)からスクリューロータ(40)の外周側へ漏れてゆくガス冷媒の量を削減することができ、吸入行程中の流体室(23a)へ吸入されるガス冷媒の量を増加させることができる。その結果、スクリュー圧縮機(1)の運転効率を向上させることができる。
 また、本実施形態のスクリュー圧縮機(1)では、吸入行程中の流体室(23a)が円筒壁(30)によって覆われる状態となった後も、この流体室(23a)を形成する螺旋溝(41a)の始端へゲート(51a)が進入してゆく。螺旋溝(41a)の始端へゲート(51a)が進入してゆく過程において、螺旋溝(41a)によって形成された流体室(23a)へは、ゲート(51a)によって低圧ガス冷媒が押し込まれてゆく。このスクリュー圧縮機(1)では、ゲート(51a)が吸入行程中の流体室(23a)へ低圧ガス冷媒を押し込む時点において、吸入行程中の流体室(23a)が円筒壁(30)によって低圧空間(S1)から仕切られている。このため、ゲート(51a)によって流体室(23a)へ押し込まれた低圧ガス冷媒は、スクリューロータ(40)の外周側へ漏れ出すことなく流体室(23a)内に留まる。従って、本実施形態によれば、ゲート(51a)が流体室(23a)へ低圧ガス冷媒を押し込むことによっても、吸入行程中の流体室(23a)へ流入する低圧ガス冷媒の量を増加させることができ、スクリュー圧縮機(1)の運転効率を向上させることができる。
 また、本実施形態のスクリュー圧縮機(1)では、円筒壁(30)の内側面(35)の開口側縁部(37)が、周方向シール面(45)の前縁(46)と平行になっている。このため、スクリューロータ(40)の外周面における螺旋溝(41)の開口部のうち吸入用開口(36)に臨む部分は、周方向シール面(45)の前縁(46)が円筒壁(30)の内側面(35)の開口側縁部(37)と重なる直前まで、その始端から終端までの全長に亘る全体が低圧空間(S1)に開口した状態に保たれる。従って、本実施形態によれば、吸入行程中の流体室(23a)を形成する螺旋溝(41a)のうち吸入用開口(36)に臨む部分の開口面積を、周方向シール面(45a)の前縁(46a)が円筒壁の内側面(35)の開口側縁部(37)と重なる直前まで可能な限り大きく保つことができ、低圧空間(S1)から吸入行程中の流体室(23a)へ低圧ガス冷媒が流入する際の圧力損失を低減することができる。
 また、本実施形態のスクリュー圧縮機(1)において、円筒壁(30)の開口側壁面(38)は、スクリューロータ(40)の外周面側を向く斜面となっている。このため、円筒壁(30)の開口側壁面(38)にぶつかった低圧ガス冷媒の流れ方向は、斜面となった開口側壁面(38)によってスクリューロータ(40)の軸心側へスムーズに変更される。従って、本実施形態によれば、吸入行程中の流体室(23a)へ流入する低圧ガス冷媒の流れの乱れを抑えることができ、低圧空間(S1)から吸入行程中の流体室(23a)へ低圧ガス冷媒が流入する際の圧力損失を低減することができる。
 また、本実施形態のスクリュー圧縮機(1)では、スクリューロータ(40)を駆動する電動機(15)に対し、商用電源(101)からの交流がインバータ(100)を介して供給される。そして、インバータ(100)の出力周波数を変更すると、スクリューロータ(40)の回転速度が変化し、スクリュー圧縮機(1)の運転容量が変化する。
 ここで、インバータ(100)の出力周波数を変更することによって運転容量を変更可能なスクリュー圧縮機(1)では、商用電源(101)からの交流をそのまま電動機(15)へ供給する場合に比べ、スクリューロータ(40)の回転速度が高い値に設定される場合がある。そして、スクリューロータ(40)の回転速度が高くなると、吸入行程中の流体室(23a)内のガス冷媒に作用する遠心力も大きくなり、流体室(23a)からスクリューロータ(40)の外周側へ漏れ出すガス冷媒の量が多くなるおそれがある。
 それに対し、本実施形態のスクリュー圧縮機(1)において、吸入行程中の流体室(23a)を形成する螺旋溝(41a)は、先ず円筒壁(30)によって低圧空間(S1)から仕切られ、その後に螺旋溝(41a)へ進入してきたゲート(51a)によって低圧空間(S1)から仕切られる。そして、吸入行程中の流体室(23a)は、それを形成する螺旋溝(41a)を覆う円筒壁(30)によって比較的早期に低圧空間(S1)から仕切られることになる。従って、スクリューロータ(40)の回転速度が高い値に設定され得る本実施形態のスクリュー圧縮機(1)においても、遠心力を受けて流体室(23a)からスクリューロータ(40)の外周側へ漏れ出すガス冷媒の量を低く抑えることができ、スクリュー圧縮機(1)の運転効率を高く保つことができる。
 また、スクリューロータ(40)の回転速度が高くなるほど、ゲート(51)の移動速度も速くなる。そして、ゲート(51)の移動速度が高いほど、螺旋溝(41)へゲート(51)が進入する過程で吸入行程中の流体室(23a)から螺旋溝(41a)の始端側へ漏れ出す流体の量が少なくなる。つまり、スクリューロータ(40)の回転速度が高くなるほど、吸入行程中の流体室(23a)へゲート(51a)によって押し込まれる低圧ガス冷媒の量が多くなる。従って、本実施形態のスクリュー圧縮機(1)では、スクリューロータ(40)の回転速度が高い値に設定された場合でも、吸入行程中の流体室(23a)へ流入する低圧ガス冷媒の量を充分に確保することによってスクリュー圧縮機(1)の運転効率を高く保つことができる。
  -実施形態の変形例-
 図9に示すように、本実施形態のスクリュー圧縮機(1)では、円筒壁(30)の内側面(35)の開口側縁部(37)の形状が、スクリューロータ(40)の周方向シール面(45)の前縁(46)とは異なる形状(即ち、周方向シール面(45)の前縁(46)と平行でない形状)になっていてもよい。本変形例においても、図9(B)に示すように、吸入行程中の流体室(23a)を形成する螺旋溝(41a)の全体が円筒壁(30)によって覆われた時点において、この螺旋溝(41a)に進入しつつあるゲート(51a)は、螺旋溝(41a)の前方壁面(42a)及び底壁面(44a)だけと摺接し、螺旋溝(41a)の後方壁面(43a)とは接触しない。従って、本変形例でも、吸入行程中の流体室(23a)は、円筒壁(30)によって低圧空間(S1)から仕切られた後にゲート(51a)によって低圧空間(S1)から仕切られる。
 なお、以上の実施形態は、本質的に好ましい例示であって、本発明、その適用物、あるいはその用途の範囲を制限することを意図するものではない。
 以上説明したように、本発明は、シングルスクリュー圧縮機について有用である。
  1  シングルスクリュー圧縮機
  10  ケーシング
  15  電動機
  23  流体室
  30  円筒壁(仕切り壁部)
  35  内側面
  36  吸入用開口
  37  開口側縁部
  38  開口側壁面
  40  スクリューロータ
  41  螺旋溝
  45  周方向シール面
  46  前縁
  50  ゲートロータ
  51  ゲート
 100  インバータ
  S1  低圧空間

Claims (4)

  1.  その外周面に開口して流体室(23)を形成する複数の螺旋溝(41)が形成されたスクリューロータ(40)と、該スクリューロータ(40)の螺旋溝(41)と噛み合わされる複数のゲート(51)が放射状に形成されたゲートロータ(50)と、該スクリューロータ(40)及び該ゲートロータ(50)を収容するケーシング(10)とを備え、
     上記スクリューロータ(40)が回転すると、該スクリューロータ(40)の螺旋溝(41)に噛み合うゲート(51)が該螺旋溝(41)の始端から終端へ向かって相対的に移動し、該螺旋溝(41)により形成された流体室(23)内の流体が圧縮されるシングルスクリュー圧縮機であって、
     上記ケーシング(10)の内部には、該ケーシング(10)へ吸い込まれた圧縮前の低圧流体が流入し且つ上記スクリューロータ(40)の端面に開口する上記螺旋溝(41)の始端に連通する低圧空間(S1)と、上記螺旋溝(41)により形成される流体室(23)が上記低圧空間(S1)から仕切られるように上記スクリューロータ(40)の外周面を覆う仕切り壁部(30)とが設けられる一方、
     上記仕切り壁部(30)には、上記スクリューロータ(40)の外周面の一部を上記低圧空間(S1)に露出させるための吸入用開口(36)が形成されており、
     上記低圧空間(S1)から低圧流体が流入する吸入行程中の流体室(23)は、該流体室(23)を形成する螺旋溝(41)が上記吸入用開口(36)に臨む位置から上記仕切り壁部(30)で覆われる位置へ移動した後に、該螺旋溝(41)へ進入した上記ゲート(51)によって上記低圧空間(S1)から仕切られる
    ことを特徴とするシングルスクリュー圧縮機。
  2.  請求項1において、
     上記スクリューロータ(40)の外周面のうち隣接する二つの螺旋溝(41)に挟まれた部分が、上記仕切り壁部(30)の内側面(35)と摺接して隣接する二つの螺旋溝(41)の間をシールする周方向シール面(45)となり、
     上記周方向シール面(45)の周縁のうち上記スクリューロータ(40)の回転方向の前方に位置する部分が、該周方向シール面(45)の前縁(46)となり、
     上記仕切り壁部(30)の内側面(35)では、上記吸入用開口(36)に臨む開口側縁部(37)が上記周方向シール面(45)の前縁(46)と平行になっている
    ことを特徴とするシングルスクリュー圧縮機。
  3.  請求項1又は2において、
     上記仕切り壁部(30)では、上記吸入用開口(36)に臨む開口側壁面(38)が、上記スクリューロータ(40)の外周面側を向く斜面となっている
    ことを特徴とするシングルスクリュー圧縮機。
  4.  請求項1において、
     上記スクリューロータ(40)を回転駆動する電動機(15)と、
     上記電動機(15)へ供給される交流の周波数を変更するためのインバータ(100)とを備え、
     上記インバータ(100)の出力周波数を変更することによって上記スクリューロータ(40)の回転速度を調節可能に構成されている
    ことを特徴とするシングルスクリュー圧縮機。
PCT/JP2010/002003 2009-03-24 2010-03-19 シングルスクリュー圧縮機 WO2010109839A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201080013028.9A CN102362074B (zh) 2009-03-24 2010-03-19 单螺杆式压缩机
US13/258,062 US9470229B2 (en) 2009-03-24 2010-03-19 Single screw compressor
EP10755642.5A EP2412980B1 (en) 2009-03-24 2010-03-19 Single screw compressor
BRPI1006275A BRPI1006275A2 (pt) 2009-03-24 2010-03-19 compressor de parafuso único

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009072690A JP4666086B2 (ja) 2009-03-24 2009-03-24 シングルスクリュー圧縮機
JP2009-072690 2009-03-24

Publications (1)

Publication Number Publication Date
WO2010109839A1 true WO2010109839A1 (ja) 2010-09-30

Family

ID=42780537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/002003 WO2010109839A1 (ja) 2009-03-24 2010-03-19 シングルスクリュー圧縮機

Country Status (6)

Country Link
US (1) US9470229B2 (ja)
EP (1) EP2412980B1 (ja)
JP (1) JP4666086B2 (ja)
CN (1) CN102362074B (ja)
BR (1) BRPI1006275A2 (ja)
WO (1) WO2010109839A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9057373B2 (en) 2011-11-22 2015-06-16 Vilter Manufacturing Llc Single screw compressor with high output

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6729425B2 (ja) * 2017-01-30 2020-07-22 ダイキン工業株式会社 シングルスクリュー圧縮機

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0642474A (ja) 1992-07-24 1994-02-15 Daikin Ind Ltd シングルスクリュー圧縮機
JP2009019623A (ja) * 2007-06-11 2009-01-29 Daikin Ind Ltd 圧縮機

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5082431A (en) * 1986-07-03 1992-01-21 The United States Of America As Represented By The Secretary Of The Navy Mechanical scavenging system for single screw compressors
JPH06101668A (ja) * 1992-09-18 1994-04-12 Daikin Ind Ltd シングルスクリュー圧縮機
US5782624A (en) * 1995-11-01 1998-07-21 Jensen; David L. Fluid compression/expansion machine with fluted main rotor having ruled surface root
JP3456090B2 (ja) * 1996-05-14 2003-10-14 北越工業株式会社 油冷式スクリュ圧縮機
US6398532B1 (en) * 1999-10-26 2002-06-04 Shiliang Zha Single screw compressor
JP3840899B2 (ja) * 2001-01-05 2006-11-01 ダイキン工業株式会社 シングルスクリュー圧縮機
US7153112B2 (en) * 2003-12-09 2006-12-26 Dresser-Rand Company Compressor and a method for compressing fluid
US7096681B2 (en) * 2004-02-27 2006-08-29 York International Corporation System and method for variable speed operation of a screw compressor
CN100476211C (zh) * 2004-04-28 2009-04-08 乐金电子(天津)电器有限公司 螺旋压缩机
US7891955B2 (en) * 2007-02-22 2011-02-22 Vilter Manufacturing Llc Compressor having a dual slide valve assembly

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0642474A (ja) 1992-07-24 1994-02-15 Daikin Ind Ltd シングルスクリュー圧縮機
JP2009019623A (ja) * 2007-06-11 2009-01-29 Daikin Ind Ltd 圧縮機

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2412980A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9057373B2 (en) 2011-11-22 2015-06-16 Vilter Manufacturing Llc Single screw compressor with high output

Also Published As

Publication number Publication date
US20120009079A1 (en) 2012-01-12
JP4666086B2 (ja) 2011-04-06
CN102362074A (zh) 2012-02-22
CN102362074B (zh) 2014-10-22
EP2412980A1 (en) 2012-02-01
BRPI1006275A2 (pt) 2019-06-25
US9470229B2 (en) 2016-10-18
JP2010223137A (ja) 2010-10-07
EP2412980A4 (en) 2015-04-08
EP2412980B1 (en) 2016-01-06

Similar Documents

Publication Publication Date Title
CN108571447B (zh) 容积式机器及其操作方法、螺旋件、车辆空调系统和车辆
JP5083401B2 (ja) スクロール型圧縮機
JP4645754B2 (ja) スクリュー圧縮機
JP4911260B1 (ja) スクリュー圧縮機
JP2007170253A (ja) スクロール圧縮機
KR20180116984A (ko) 로터리 압축기
TW201641822A (zh) 螺桿壓縮機以及具有螺桿壓縮機之冷凍循環裝置
EP3575603B1 (en) Scroll compressor having enhanced discharge structure
JP4666086B2 (ja) シングルスクリュー圧縮機
US8568119B2 (en) Single screw compressor
JP5943101B1 (ja) スクリュー圧縮機
US11136982B2 (en) Screw compressor
JP5854594B2 (ja) スクリュー圧縮機
JP7044973B2 (ja) スクリュー圧縮機
JP6699329B2 (ja) スクリュー圧縮機
JP2013068093A (ja) スクリュー圧縮機
JP2017089504A (ja) スクロール圧縮機
JP2016020651A (ja) スクリュー圧縮機
JP2012097590A (ja) シングルスクリュー圧縮機
GB2526252A (en) A revolving vane compressor and method of operating the same
WO2022158519A1 (ja) スクロール圧縮機
JP2019007399A (ja) シングルスクリュー圧縮機
KR20180094412A (ko) 로터리 압축기
WO2023162744A1 (ja) スクリュー圧縮機及び冷凍装置
WO2018139161A1 (ja) シングルスクリュー圧縮機

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080013028.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10755642

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010755642

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 3902/KOLNP/2011

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 13258062

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI1006275

Country of ref document: BR

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: PI1006275

Country of ref document: BR

Free format text: APRESENTAR A TRADUCAO SIMPLES DA FOLHA DE ROSTO DA CERTIDAO DE DEPOSITO DA PRIORIDADE JP 2009-072690 DE 24/03/2009 OU DECLARACAO CONTENDO, OBRIGATORIAMENTE, TODOS OS DADOS IDENTIFICADORES DESTA (DEPOSITANTE(S), INVENTOR(ES), NUMERO DE REGISTRO, DATA DE DEPOSITO E TITULO), CONFORME O PARAGRAFO UNICO DO ART. 25 DA RESOLUCAO 77/2013, UMA VEZ QUE NAO FOI POSSIVEL DETERMINAR O(S) TITULAR(ES) DA CITADA PRIORIDADE, NEM SEUS INVENTORES, INFORMACAO NECESSARIA PARA O EXAME.

ENP Entry into the national phase

Ref document number: PI1006275

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110920