WO2010109734A1 - 鞍乗型車両用排気ガス浄化触媒 - Google Patents

鞍乗型車両用排気ガス浄化触媒 Download PDF

Info

Publication number
WO2010109734A1
WO2010109734A1 PCT/JP2009/071467 JP2009071467W WO2010109734A1 WO 2010109734 A1 WO2010109734 A1 WO 2010109734A1 JP 2009071467 W JP2009071467 W JP 2009071467W WO 2010109734 A1 WO2010109734 A1 WO 2010109734A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
mass
amount
metal
carrier
Prior art date
Application number
PCT/JP2009/071467
Other languages
English (en)
French (fr)
Inventor
忠寿 政谷
弘幸 堀村
正光 辻
禎昭 伊藤
三ツ川 誠
博明 宮田
茂栄 柴
睦郎 川崎
大吾 大野
Original Assignee
本田技研工業株式会社
三井金属鉱業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社, 三井金属鉱業株式会社 filed Critical 本田技研工業株式会社
Priority to JP2011505814A priority Critical patent/JP5425888B2/ja
Priority to BRPI0924487-5A priority patent/BRPI0924487B1/pt
Priority to EP09842344.5A priority patent/EP2412437B1/en
Priority to CN2009801583885A priority patent/CN102361691B/zh
Publication of WO2010109734A1 publication Critical patent/WO2010109734A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2803Construction of catalytic reactors characterised by structure, by material or by manufacturing of catalyst support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0225Coating of metal substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0242Coating followed by impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • B01J37/033Using Hydrolysis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • F01N3/2882Catalytic reactors combined or associated with other devices, e.g. exhaust silencers or other exhaust purification devices
    • F01N3/2885Catalytic reactors combined or associated with other devices, e.g. exhaust silencers or other exhaust purification devices with exhaust silencers in a single housing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1021Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1023Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/102Platinum group metals
    • B01D2255/1025Rhodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2063Lanthanum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2065Cerium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2068Neodymium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20715Zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/40Mixed oxides
    • B01D2255/407Zr-Ce mixed oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/902Multilayered catalyst
    • B01D2255/9022Two layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • B01D2258/014Stoichiometric gasoline engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • F01N2510/068Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings
    • F01N2510/0682Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings having a discontinuous, uneven or partially overlapping coating of catalytic material, e.g. higher amount of material upstream than downstream or vice versa
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2510/00Surface coverings
    • F01N2510/06Surface coverings for exhaust purification, e.g. catalytic reaction
    • F01N2510/068Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings
    • F01N2510/0684Surface coverings for exhaust purification, e.g. catalytic reaction characterised by the distribution of the catalytic coatings having more than one coating layer, e.g. multi-layered coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2590/00Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines
    • F01N2590/04Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines for motorcycles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to a straddle-type vehicle exhaust gas purification catalyst, and more specifically, by suppressing the metallization of PdO (palladium oxide) used as a catalyst component, the particle growth of Pd fine particles due to the metallization of PdO (sinter) Reduction of catalyst activity due to the ring) is suppressed, and therefore the concentration change of oxygen, HC (hydrocarbon) and CO (carbon monoxide) in the exhaust gas is drastic, and the A / F window width is very wide.
  • the present invention relates to an exhaust gas purification catalyst for straddle-type vehicles that is less likely to cause a decrease in catalyst activity even when used in an exhaust gas atmosphere of a vehicle.
  • HC, CO, NOx nitrogen oxide
  • a three-way catalyst has been used for the purpose of purifying these components, and a noble metal has been used as the main component of the catalyst.
  • straddle-type vehicles such as motorcycles generally use Pt and Rh as catalyst noble metals.
  • JP 2009-000648 A Japanese Patent Laid-Open No. 10-296085
  • the present invention has been made in view of the above circumstances, and by suppressing the metallization of PdO used as a catalyst component, the catalytic activity is reduced due to the particle growth of Pd fine particles resulting from the metallization of PdO. Therefore, the concentration of oxygen, HC, and CO in the exhaust gas is drastically changed, and even when used in an exhaust gas atmosphere of a saddle-ride type vehicle having a very wide A / F window width, the catalytic activity is hardly lowered.
  • An object of the present invention is to provide an exhaust gas purification catalyst for a straddle-type vehicle.
  • the catalyst layer has two layers and the lower layer is a cerium-zirconium-based composite oxide having high OSC performance, and the mass of cerium oxide is oxidized.
  • Dispersing metal Pd or Pd oxide on a specific composite oxide material having a mass greater than that of zirconium, and dispersing Rh or Rh + Pt on a specific cerium-zirconium-based composite oxide material as an upper layer By using this, the reduction of PdO at the time of A / F fluctuation is suppressed, the durability stability of palladium is improved, and furthermore, the thermal stability of cerium oxide, which is inferior in thermal stability, is improved to be a saddle type
  • the third element Nd and the fourth element La are dissolved in the cerium-zirconium composite oxide in order to maintain high OSC performance and the like even when exposed to vehicle exhaust gas for a long time.
  • the carrier By making the carrier into a carrier, the decrease in the OSC performance and the catalyst purification performance after supporting the noble metal is improved, and the durability performance is improved.
  • the straddle-type vehicle engine has an average value of the air-fuel ratio (A / F). It has been found that the present invention can be applied from a so-called lean state to a rich state of 14.5 or less.
  • the straddle-type vehicle exhaust gas purification catalyst of the present invention includes a first catalyst layer formed on the surface of a carrier made of ceramics or a metal material, and a second catalyst layer formed on the first catalyst layer.
  • the amount of CeO 2 is 45 to 70% by mass
  • the amount of ZrO 2 is 20 to 45% by mass
  • the amount of Nd 2 O 3 is 2 to 20% by mass.
  • the two-catalyst layer has an amount of ZrO 2 of 50 to 95% by mass, an amount of CeO 2 of 0 to 40% by mass, an amount of Nd 2 O 3 of 2 to 20% by mass, and La 2 O 3
  • a carrier comprising a zirconium-based composite oxide in an amount of 1 to 10% by mass, and a carrier supported by the carrier
  • the catalyst component comprising a metal Pd or Pd oxide is a cerium-zirconium-based composite oxide having high OSC performance, and is supported on a specific carrier in which the mass of cerium oxide is larger than the mass of zirconium oxide.
  • the metallization of PdO as a catalyst component is suppressed, so that a decrease in catalyst activity due to the particle growth of Pd fine particles due to the metallization of PdO is suppressed.
  • the concentration of oxygen, HC, and CO in the interior is drastically changed, and even when used in the exhaust gas atmosphere of a straddle-type vehicle with a very wide A / F window width, the catalytic activity is unlikely to decrease.
  • the exhaust gas purification catalyst for type vehicles can improve durability and purification performance even when Pd is used, and the mean value of the air-fuel ratio (A / F) is 14.5 or less for the saddle type vehicle engine. Made such rich catalyst durability be used in the state, the purification performance can be ensured.
  • 1 is a schematic partial cross-sectional view of a two-layered catalyst of the present invention. It is a graph showing the correlation between the CeO 2 amount and T-50 of composite oxide in the lower layer. It is a graph showing the correlation between the composite amount of CeO 2 in the oxide and 400 ° C. purification rate of the lower layer.
  • 1 is a side view schematically showing the outline of a motorcycle using an exhaust gas purification catalyst of the present invention.
  • 1 is a side view schematically showing an outline of a scooter type motorcycle using an exhaust gas purification catalyst of the present invention.
  • FIG. 5 is a view schematically showing an exhaust purification device together with the peripheral configuration when the exhaust gas purification catalyst of the present invention is incorporated in the motorcycle shown in FIG. 4.
  • FIG. 5 is a view schematically showing an exhaust purification device together with the peripheral configuration when the exhaust gas purification catalyst of the present invention is incorporated in the motorcycle shown in FIG. 4.
  • FIG. 5 is a diagram schematically showing an exhaust purification device together with a muffler when the exhaust gas purification catalyst of the present invention is incorporated in the motorcycle shown in FIG. 4. It is a graph which shows the driving conditions which calculated
  • the straddle-type vehicle includes not only a straddle-type motorcycle, a straddle-type tricycle, and a straddle-type four-wheel vehicle, which are generally referred to as a straddle-type vehicle, but also includes a scooter-type motorcycle.
  • the exhaust gas purification catalyst for straddle-type vehicles of the present invention has a first catalyst layer formed on the surface of a carrier made of ceramics or a metal material, and a second catalyst layer formed on the first catalyst layer.
  • the first catalyst layer has an amount of CeO 2 of 45 to 70% by mass, an amount of ZrO 2 of 20 to 45% by mass, and an amount of Nd 2 O 3 of 2 to 20% by mass; It has a carrier made of a cerium-zirconium composite oxide having an amount of La 2 O 3 of 1 to 10% by mass, and a catalyst component made of metal Pd or Pd oxide supported on the carrier.
  • the carrier used in the first catalyst layer of the exhaust gas purification catalyst for straddle-type vehicles of the present invention is a Ce compound that can be changed to CeO 2 by firing, a Zr compound that can be changed to ZrO 2 by firing, and Nd 2 O 3 by firing.
  • the pH of the solution containing the Nd compound that can change to La and the La compound that can change to La 2 O 3 by firing is adjusted to about 6.0 to 8.0, and the resulting precipitate is filtered and washed. It can be obtained by sufficiently drying, followed by firing, for example, by firing at 1000 ° C. for 3 hours.
  • the carrier carrying the catalyst component made of metal Pd or Pd oxide used for the first catalyst layer of the exhaust gas purification catalyst for saddle riding type vehicles of the present invention is mixed with an aqueous solution of a water-soluble palladium compound while stirring.
  • the carrier obtained by the above method can be added to absorb liquid, then dried sufficiently, and then fired, for example, by firing at 500 ° C. for 3 hours.
  • the first catalyst layer of the straddle-type vehicle exhaust gas purification catalyst of the present invention a decrease in catalyst activity due to the growth of Pd fine particles due to the metallization of PdO is suppressed, and accordingly, oxygen in the exhaust gas, HC
  • it is made of metal Pd or Pd oxide in order to prevent the catalytic activity from being lowered even when used in an exhaust gas atmosphere of a saddle-ride type vehicle with a drastic change in CO concentration and a very wide A / F window width.
  • the amount of CeO 2 in the carrier for supporting the catalyst component is preferably 45 to 70% by mass
  • the amount of ZrO 2 is 20 to 45% by mass
  • the mass of CeO 2 is preferably larger than the mass of ZrO 2. .
  • the amount of CeO 2 exceeds 70% by mass, or the amount of ZrO 2 is less than 20% by mass, the amount of CeO 2 is less than 45% by mass, or the amount of ZrO 2 is less than 55% by mass.
  • the performance of the active species is not sufficiently exerted, and at the high temperature, for example, at a temperature of 900 ° C. or higher, the specific surface area of the support is greatly decreased, which may cause thermal deterioration of the catalyst. .
  • the amount of CeO 2 is less than 45% by mass, the ability to suppress the reduction of PdO tends to be reduced, and when the amount of ZrO 2 exceeds 45% by mass, the CeO 2 Since the amount is reduced, it is not preferable.
  • the cerium-zirconium-based composite oxide carrier for supporting the catalyst component composed of metal Pd or Pd oxide is further Nd 2 O 3 and Contains La 2 O 3 .
  • Nd 2 O 3 and La 2 O 3 the thermal stability of CeO 2 is improved, and the deterioration of the OSC performance of the carrier made of the cerium-zirconium-based composite oxide and the catalyst purification performance after supporting the noble metal is improved. , Durability performance is improved.
  • it is essential that the amount of Nd 2 O 3 is 2% by mass or more and the amount of La 2 O 3 is 1% by mass or more.
  • a relatively inexpensive metal Pd or Pd oxide is used as a catalyst component among noble metals.
  • the amount of these catalyst components is less than 0.3% by mass in terms of metal Pd based on the mass of the carrier, the purification performance for exhaust gas tends to be insufficient, and conversely, 5% in terms of metal Pd. If it exceeds 100%, the cost of the exhaust gas purification catalyst becomes high, and the enhancement of the effect commensurate with the increase in the cost cannot be obtained. Therefore, the amount of these catalyst components is preferably 0.3 to 5% by mass in terms of metal Pd based on the mass of the carrier.
  • the amount of ZrO 2 in the second catalyst layer formed on the first catalyst layer is 50 to 95% by mass, and the amount of CeO 2 is 0 to
  • a carrier composed of a zirconium-based composite oxide having a content of 40% by mass, an amount of Nd 2 O 3 of 2 to 20% by mass, and an amount of La 2 O 3 of 1 to 10% by mass, and a carrier supported on the carrier
  • a catalyst component made of metal Rh or Rh oxide, or a catalyst component made of metal Rh or Rh oxide and metal Pt or Pt oxide the amount of ZrO 2 as a carrier for supporting the is 50 to 95 mass%, the amount of CeO 2 is 0 to 40 mass%, the amount of Nd 2 O 3 is 2 to 20 mass%, La 2 A carrier made of a zirconium-based composite oxide having an O 3 amount of 1 to 10% by mass is used.
  • a carrier is a Zr compound that can be changed to ZrO 2 by firing, Ce that can be changed to CeO 2 by firing.
  • the pH of the solution containing the compound, the Nd compound that can be changed to Nd 2 O 3 by firing, and the La compound that can be changed to La 2 O 3 by firing was adjusted to about 6.0 to 8.0, and obtained. Filter and wash the precipitate It can be obtained by, for example, baking at 1000 ° C. for 3 hours by purifying, sufficiently drying, and then baking.
  • a catalyst component made of metal Rh or Rh oxide or a catalyst made of metal Rh or Rh oxide and metal Pt or Pt oxide used in the second catalyst layer of the exhaust gas purification catalyst for saddle riding type vehicles of the present invention is absorbed into the aqueous solution of the water-soluble rhodium compound or the aqueous solution containing the water-soluble rhodium compound and the water-soluble platinum compound by adding the carrier obtained by the above method while stirring. And then sufficiently dried and then fired, for example, by firing at 500 ° C. for 3 hours.
  • the catalyst component composed of the supported metal Rh or Rh oxide, or the metal Rh or Rh oxide and the metal Pt or Pt oxide.
  • the carrier for supporting the catalyst component The amount of ZrO 2 is 50 to 95% by mass and the amount of CeO 2 is 0 to 40% by mass. That is, even when CeO 2 is not contained, the intended effect of the present invention can be obtained.
  • the amount of ZrO 2 exceeds 95% by mass, the amounts of Nd 2 O 3 and La 2 O 3 will be reduced accordingly, and the intended effect of the present invention will be reduced.
  • the amount of ZrO 2 is less than 50% by mass, the carrier characteristics tend to deteriorate.
  • a catalyst component made of metal Rh or Rh oxide, or a catalyst component made of metal Rh or Rh oxide and metal Pt or Pt oxide Zirconium-based composite oxide carrier for supporting Nd 2 O 3 and La 2 O 3 further.
  • Nd 2 O 3 and La 2 O 3 the decrease in the OSC performance of the carrier composed of the zirconium-based composite oxide and the catalyst purification performance after supporting the noble metal is dramatically improved, and the durability performance is improved.
  • it is essential that the amount of Nd 2 O 3 is 2% by mass or more and the amount of La 2 O 3 is 1% by mass or more.
  • the catalyst component is a metal Rh or Rh oxide
  • the first catalyst layer and the first catalyst layer are formed on a carrier made of ceramics or a metal material. Two catalyst layers are supported and used.
  • the shape of the carrier made of the ceramic or metal material is not particularly limited, but is generally a monolith shape such as a honeycomb or a plate, or a pellet shape, and preferably a honeycomb shape. Examples of the material of such a carrier include ceramics such as alumina, mullite, cordierite, and metal materials such as stainless steel.
  • a carrier made of ceramics or a metal material for example, a stainless steel metal honeycomb carrier (300 cell, ⁇ 30 ⁇ 30L, test piece with a capacity of 21 cc) is immersed in the washcoat solution, and then the excess washcoat solution in the cell is blown with air. And dried, and calcined at 500 ° C. for 1 hour to form a first catalyst layer.
  • the amount of Pd supported is 0.7 to 5.5 g per liter of the catalyst in terms of metal.
  • the amount of these catalyst components is less than 0.7 g in terms of metal Pd per liter of catalyst, the purification performance for exhaust gas tends to be insufficient, and conversely if the amount exceeds 5.5 g in terms of metal Pd.
  • the cost of the exhaust gas purification catalyst becomes high, and the enhancement of the effect commensurate with the increase in the cost cannot be obtained. Accordingly, the amount of these catalyst components is preferably 0.7 to 5.5 g in terms of metal Pd per liter of the catalyst.
  • a catalyst component comprising the above metal Rh or Rh oxide, or a carrier carrying a catalyst component comprising the metal Rh or Rh oxide and the metal Pt or Pt oxide, 50 to 80% by mass, and a heat-resistant alumina-based component 10 to 40% by mass, binder material solid content of 5 to 20% by mass, and an appropriate amount of distilled water are placed in a ball mill and wet pulverized to prepare a washcoat solution.
  • the excess washcoat solution in the cell is removed by air blowing, dried, and calcined at, for example, 500 ° C. for 1 hour to obtain the second catalyst. Form a layer.
  • the total supported amount of Pd, Rh, and Pt is 0.7 to 6.5 g per liter of the catalyst in terms of metal. If the total amount of these catalyst components is less than 0.7 g in terms of metal per liter of catalyst, the purification performance for exhaust gas tends to be insufficient, and conversely if it exceeds 6.5 g in terms of metal. The cost of the exhaust gas purification catalyst becomes high, and the enhancement of the effect commensurate with the increase in the cost cannot be obtained. Accordingly, the total amount of these catalyst components is preferably 0.7 to 6.5 g in terms of metal per liter of the catalyst.
  • the heat-resistant alumina-based component that can be used in the present invention may be any one generally used in conventional three-way catalysts for exhaust gas purification, but Al 2 O 3 , La 2 O 3 -Al 2 O 3 composite oxidation And a BaO—Al 2 O 3 composite oxide, MgO—Al 2 O 3 composite oxide, ZrO 2 —CeO 2 —Al 2 O 3 composite oxide, or a mixture thereof.
  • the ratio of the mass of the first catalyst layer to the mass of the second catalyst layer in consideration of cost, performance, etc. Is preferably 1 to 3: 1.
  • the straddle-type vehicle exhaust gas purification catalyst of the present invention there are two catalyst layers, Pd is contained in the lower first catalyst layer, and the upper second catalyst layer contains reducing gas. Since Rh or Rh + Pt, which has high removal activity and high durability, is contained, it is possible to prevent the reducing gas from diffusing into the lower layer containing Pd even when the air-fuel ratio is rich or when the air-fuel ratio fluctuates. Therefore, the durability of Pd in the lower layer where the durability of Pd is improved by a specific carrier can be further improved.
  • the straddle-type vehicle exhaust gas purification catalyst according to the present invention can suppress the reducing gas from diffusing into the lower layer containing Pd even in a rich state of the air-fuel ratio, and is therefore mounted on the straddle-type vehicle according to the present invention. Even when the average value of the air-fuel ratio of the engine is 14.5 or less richer than the theoretical air-fuel ratio of 14.6, the NOx purification is performed while improving the durability of the lower Pd as described above. Performance can be improved.
  • the present invention will be described based on production examples, examples, comparative examples, performance tests and reference tests.
  • the parts by mass indicating the relative amounts of the respective components indicate the amounts excluding the dispersion medium and the solvent.
  • Production Example 5 Use 92 parts by mass of zirconium nitrate (in terms of ZrO 2 ), 5 parts by mass of neodymium nitrate (in terms of Nd 2 O 3 ) and 3 parts by mass of lanthanum nitrate (in terms of La 2 O 3 ), using cerium nitrate A 92ZrO 2 -5Nd 2 O 3 -3La 2 O 3 composite oxide B5 was prepared in the same manner as in Production Example 2 except that this was not done.
  • Production Example 6 (related to comparative example) 46CeO 2 In the same manner as in Production Example 2, except that 46 parts by mass of cerium nitrate (in terms of CeO 2 ) and 54 parts by mass of zirconium nitrate (in terms of ZrO 2 ) were used and neodymium nitrate and lanthanum nitrate were not used. -54ZrO 2 composite oxide B6 (containing no Nd 2 O 3 and La 2 O 3 ) was prepared.
  • Example 1 60 parts by mass of composite oxide B2 powder prepared in Production Example 2, 35 parts by mass of activated alumina powder, 5 parts by mass of an alumina sol-based binder material (in terms of alumina) and 150 parts by mass of pure water were placed in a ball mill and wet-ground for 8 hours. Thus, a lower layer slurry (wash coat solution) was prepared.
  • the metal honeycomb carrier on which the above-mentioned lower coat layer was formed was immersed in an aqueous palladium nitrate solution having a predetermined concentration, taken out, and then fired at 500 ° C. for 1 hour to form a palladium-supported catalyst layer.
  • the upper layer slurry was washed on the metal honeycomb carrier on which the palladium-supported catalyst lower layer was formed, dried and fired at 500 ° C. for 1 hour to form an upper coat layer.
  • the amount of the washcoat of the upper coat layer was 50 g per liter of the carrier substrate.
  • FIG. 1 is a schematic partial cross-sectional view of the two-layered catalyst thus obtained.
  • FIG. 1 (a) shows a case of a metal honeycomb
  • FIG. 1 (b) shows a case of a monolith honeycomb.
  • 1 is a stainless steel metal honeycomb carrier
  • 2 is a lower layer (first catalyst layer) carrying palladium
  • 3 is an upper layer (second catalyst) carrying platinum and rhodium
  • 4 is a ceramic honeycomb carrier.
  • the amount of palladium supported in the lower layer of this catalyst is 1.50 g per liter of the carrier substrate in terms of Pd
  • the amount of platinum supported in the upper layer is 0.75 g per liter of the carrier substrate in terms of Pt
  • the amount of rhodium supported in terms of Rh The amount was 0.15 g per liter of the carrier substrate.
  • Example 2 In the method described in Example 1, the lower layer slurry was prepared using the composite oxide B3 powder prepared in Production Example 3 instead of the composite oxide B2 powder prepared in Production Example 2. Thus, a two-layered catalyst was prepared.
  • Comparative Example 1 (lower layer is out of range)
  • the lower layer slurry was prepared using the composite oxide B1 powder prepared in Production Example 1 instead of the composite oxide B2 powder prepared in Production Example 2.
  • a two-layered catalyst was prepared.
  • Comparative Example 2 (lower layer is out of range)
  • the lower layer slurry was prepared using the composite oxide B4 powder prepared in Production Example 4 instead of the composite oxide B2 powder prepared in Production Example 2.
  • a two-layered catalyst was prepared.
  • Comparative Example 3 (lower layer is out of range)
  • the lower layer slurry was prepared using the composite oxide B5 powder prepared in Production Example 5 instead of the composite oxide B2 powder prepared in Production Example 2.
  • a two-layered catalyst was prepared.
  • Example 3 In the method described in Example 2, the slurry for the upper layer was prepared using the composite oxide B5 powder prepared in Production Example 5 instead of the composite oxide B4 powder prepared in Production Example 4. Thus, a two-layered catalyst was prepared.
  • Example 4 In the method described in Example 2, the amount of the washcoat of the lower coat layer of 100 g per liter of the carrier substrate was increased to 150 g, and the amount of the washcoat of the upper coat layer of 50 g per liter of the carrier substrate was reduced to 30 g.
  • a two-layered catalyst was prepared in the same manner as in Example 2 except for the above.
  • Example 5 In the method described in Example 2, 30 parts by mass of composite oxide B3 powder prepared in Production Example 3, 65 parts by mass of activated alumina powder, 5 parts by mass of an alumina sol-based binder material (in terms of alumina) and 150 parts by mass of pure water A two-layered catalyst was prepared in the same manner as in Example 2 except that the slurry for the lower layer was prepared using.
  • Comparative Example 4 (upper layer is out of range)
  • the slurry for the upper layer was prepared using the composite oxide B3 powder prepared in Production Example 3 instead of the composite oxide B4 powder prepared in Production Example 4.
  • a two-layered catalyst was prepared.
  • Comparative Example 5 both lower layer and upper layer do not include Nd 2 O 3 and La 2 O 3 .
  • a lower layer slurry was prepared using the composite oxide B6 powder prepared in Production Example 6 instead of the composite oxide B2 powder prepared in Production Example 2, and prepared in Production Example 4.
  • a two-layered catalyst was prepared in the same manner as in Example 1 except that the upper layer slurry was prepared using the composite oxide B6 powder prepared in Production Example 6 instead of the composite oxide B4 powder.
  • Comparative Example 6 (the lower layer does not include a complex oxide)
  • the amount of active alumina powder used is 95 parts by mass without using the composite oxide B2 powder prepared in Production Example 2, and the amount of alumina sol-based binder material (in terms of alumina) is used.
  • a catalyst having a two-layer structure was prepared in the same manner as in Example 1 except that the lower layer slurry was prepared with 5 parts by mass and the amount of pure water used was 150 parts by mass.
  • Comparative Example 7 (single layer catalyst)
  • the lower layer slurry produced by the same method as described in Example 2 was made into two types of stainless steel metal honeycomb carriers (300 cells, a test piece having a core size of ⁇ 30 ⁇ 30 L, a core capacity of 25.6 cc, and a core size of ⁇ 40 ⁇ 90 L).
  • an actual vehicle evaluation carrier having a core capacity of 113 cc) dried, and fired at 500 ° C. for 1 hour to form a coat layer.
  • the washcoat mass of this coat layer was 150 g per liter of the carrier substrate.
  • the metal honeycomb carrier on which the above-mentioned coating layer is formed is immersed in a mixed solution of palladium nitrate having a predetermined concentration, rhodium nitrate and platinum, taken out, and then fired at 500 ° C. for 1 hour to obtain palladium, platinum And a single-layer structure catalyst carrying rhodium.
  • the amount of palladium supported on this catalyst is 1.50 g per liter of carrier base material in terms of Pd
  • the amount of platinum supported is 0.75 g per liter of carrier base material in terms of Pt
  • the amount of rhodium supported is 1 L of carrier base material in terms of Rh. It was 0.15 g per unit.
  • compositions of the composite oxides obtained in the above Production Examples 1 to 6 are summarized as shown in Table 1.
  • the configurations of the catalysts obtained in Examples 1 to 5 and Comparative Examples 1 to 7 are summarized as follows. As shown in the table.
  • Comparative Example 1 (88% by mass of CeO 2 in the composite oxide used for the lower layer), Example 1 (65% by mass of CeO 2 in the composite oxide used for the lower layer), Example 2 (for the lower layer) 46% by mass of CeO 2 in the composite oxide used), Comparative Example 2 (30% by mass of CeO 2 in the composite oxide used in the lower layer) and Comparative Example 3 (in the composite oxide used in the lower layer)
  • the graph of the results of the model gas purification performance test for the amount of CeO 2 of 0% by mass is shown in FIG. 2 for T-50 and FIG. 3 for the 400 ° C. purification rate. As is apparent from FIGS. 2 and 3, good results are obtained when the amount of CeO 2 in the composite oxide in the lower layer is 45 to 70% by mass.
  • the exhaust gas purifying catalyst of the present invention is for a saddle type vehicle, and examples of such a saddle type vehicle include a motorcycle shown in FIG. 4 and a scooter type motorcycle shown in FIG.
  • FIG. 6 is a diagram schematically showing an exhaust purification device together with the peripheral configuration when the exhaust gas purification catalyst of the present invention is incorporated in the motorcycle which is the saddle riding type vehicle shown in FIG.
  • This exhaust purification device 10 is mounted on a motorcycle in which fuel is supplied from a fuel injector 13A (which may be a type that uses a carburetor instead of a fuel injector) to air supplied from an air cleaner 11 to an engine (internal combustion engine) 12.
  • a fuel injector 13A which may be a type that uses a carburetor instead of a fuel injector
  • the secondary air introduction device 20 that supplies the secondary air (fresh air) purified by the air cleaner 11 to the exhaust port 12B of the engine 12 and the exhaust gas connected to the exhaust port 12B of the engine 12 via the exhaust pipe 14
  • a muffler 15 and a catalytic converter 30 disposed in the exhaust muffler 15 are provided.
  • arrow X indicates the air flow
  • arrow Y indicates the vacuum pressure
  • arrow Z indicates the flow of blow-by gas generated in the crankcase.
  • the air cleaner 11 is divided into two chambers, a dirty side 11C and a clean side 11D, inside the air cleaner case 11A by a partition wall 11B.
  • the dirty side 11C is provided with an outside air introduction port 11E, and outside air is introduced into the dirty side 11C through the outside air introduction port 11E.
  • a filter element 11F is disposed on the partition wall 11B so as to cover an opening that communicates the dirty side 11C and the clean side 11D. After the air in the dirty side 11C passes through the filter element 11F and is purified, the clean side 11D be introduced.
  • the clean side 11D is provided with an air discharge port 11G.
  • the air discharge port 11G is connected to a throttle valve 13B portion and a fuel injector 13A portion via a connecting tube 16, and further communicated with an intake port 12A of the engine 12.
  • the engine 12 is a general single-cylinder four-cycle engine mounted on a motorcycle.
  • the engine 12 communicates with an intake valve 12D that opens and closes an intake port 12A that communicates with a cylinder hole (cylinder) 12C in the engine 12 and the cylinder hole 12C.
  • An exhaust valve 12E that opens and closes the exhaust port 12B, and a piston 12F that is slidably disposed in the cylinder hole 12C is connected to the crankshaft 12H via a connecting rod 12G.
  • An exhaust muffler 15 is connected to the rear end of the exhaust pipe 14 via a connection pipe 17, and this exhaust muffler 15 functions as a silencer that silences the high-temperature and high-pressure exhaust gas that has passed through the exhaust pipe 14 and discharges it to the outside.
  • the exhaust muffler 15 is divided into a plurality of chambers by a plurality of partition walls 15A, 15B, and each chamber is configured as a multistage expansion type in which the communication pipes 15C, 15D, 15E communicate with each other.
  • a catalytic converter 30 is arranged in the front chamber located.
  • the exhaust pipe 14 (main pipe part), the exhaust muffler 15 (accommodating part), and the connection pipe 17 (connection part) constitute an exhaust pipe of the vehicle.
  • the secondary air introduction device 20 is a mechanism for sending the air (secondary air) of the clean side 11D of the air cleaner 11 to the exhaust port 12B of the engine 12, and connects the clean side 11D of the air cleaner 11 and the exhaust port 12B of the engine 12.
  • a secondary air supply pipe 21 is provided.
  • a valve unit 22 is provided in the middle of the secondary air supply pipe 21, and a reed valve 23 for preventing the exhaust gas from flowing backward from the exhaust port 12B to the secondary air supply pipe 21 is provided with the valve unit 22 and the exhaust port 12B.
  • FIG. 6 shows a state in which the reed valve 23 is disposed above the engine 12 that is closer to the exhaust port 12B from the viewpoint of improving the followability of the reed valve 23.
  • the valve unit 22 includes a secondary air supply control valve 24 that prevents the supply of secondary air to the exhaust port 12B when the engine decelerates.
  • the secondary air supply control valve 24 is connected to the intake port 12A of the engine 12 and the valve. It is configured to operate according to the vacuum pressure of the intake port 12 ⁇ / b> A transmitted through the communication pipe 25 that connects the unit 22.
  • reference numeral 35 in the drawing is a communication pipe that communicates the clean side 11D of the air cleaner 11 and the crankcase of the engine 12.
  • the communication pipe 35 functions as a crankcase emission control device that returns blowby gas generated in the crankcase to the engine 12 through the clean side 11D and the connecting tube 16 and prevents the release of blowby gas.
  • the exhaust purification device 10 includes the exhaust pipe 14, the exhaust muffler 15, the connection pipe 17, the catalytic converter 30 in the exhaust muffler 15, and the like.
  • the connection pipe 17 connects the exhaust pipe 14 and the exhaust muffler 15 having different inner diameters so as not to hinder the flow of exhaust gas from the exhaust pipe 14 to the exhaust muffler 15.
  • the exhaust muffler 15 is configured as a pipe having an inner diameter larger than that of the exhaust pipe 14 in order to increase exhaust efficiency.
  • the inner diameter of the connection pipe 17 is substantially equal to the inner diameter of the exhaust pipe 14 at the end joined to the exhaust pipe 14, and is substantially equal to the inner diameter of the exhaust muffler 15 at the end joined to the exhaust muffler 15.
  • the connecting pipe 17 has a taper shape whose diameter smoothly changes from one end to the other end. Further, the joint part between the exhaust pipe 14 and the connection pipe 17 and the joint part between the connection pipe 17 and the exhaust muffler 15 are joined together by welding.
  • FIG. 7 is a diagram schematically showing an exhaust purification device together with a muffler when the exhaust gas purification catalyst of the present invention is incorporated in the motorcycle shown in FIG.
  • an exhaust muffler 15 is connected to the rear end of the exhaust pipe 14 via a connection pipe 17.
  • the connection pipe 17 connects the exhaust pipe 14 and the exhaust muffler 15 having different inner diameters to the exhaust pipe 14. To the exhaust muffler 15 so as not to disturb the flow of exhaust gas.
  • the exhaust muffler 15 is configured as a pipe having a larger inner diameter than the exhaust pipe 14 in order to increase the exhaust efficiency.
  • connection pipe 17 is substantially equal to the inner diameter of the exhaust pipe 14 at the end joined to the exhaust pipe 14 and substantially equal to the inner diameter of the exhaust muffler 15 at the end joined to the exhaust muffler 15.
  • the connecting pipe 17 has a tapered shape whose diameter smoothly changes from one end to the other end.
  • the exhaust muffler 15 functions as a silencer that silences the high-temperature and high-pressure exhaust gas that has passed through the exhaust pipe 14 and discharges the exhaust gas to the outside.
  • a catalytic converter 30 is disposed in the exhaust muffler 15.
  • the exhaust pipe 14 (main pipe part), the exhaust muffler 15 (housing part), and the connection pipe 17 (connection part) constitute an exhaust pipe of the vehicle.
  • the catalytic converter 30 of the present embodiment has a first catalyst layer formed on the surface of a support made of ceramics or a metal material, and a second catalyst layer formed on the first catalyst layer.
  • the amount of CeO 2 is 45 to 70% by mass
  • the amount of ZrO 2 is 20 to 45% by mass
  • the amount of Nd 2 O 3 is 2 to 20% by mass
  • the amount of La 2 O 3 Having a carrier composed of a cerium-zirconium-based composite oxide having an amount of 1 to 10% by mass and a catalyst component composed of metal Pd or Pd oxide supported on the carrier, and the second catalyst layer is made of ZrO 2 .
  • the amount is 50 to 95% by mass, the amount of CeO 2 is 0 to 40% by mass, the amount of Nd 2 O 3 is 2 to 20% by mass, and the amount of La 2 O 3 is 1 to 10% by mass.
  • a carrier made of a zirconium-based composite oxide and a metal Rh supported on the carrier Or a catalyst component made of Rh oxide, or a catalyst component made of metal Rh or Rh oxide supported on the carrier and a catalyst component made of metal Pt or Pt oxide.
  • An exhaust gas purification catalyst for a riding vehicle is used.
  • the carrier constituting the catalytic converter 30 has heat resistance, for example, made of a ceramic material such as alumina, mullite, cordierite, or a metal material such as stainless steel, iron-aluminum-chromium alloy, etc.
  • the shape is not particularly limited, but is generally a monolith shape such as a honeycomb or a plate, or a pellet shape, preferably a honeycomb shape.
  • the ratio of the air-fuel ratio when the motorcycle and the general automobile were run under the running conditions shown in FIG. 8 was as shown in Table 4.
  • the reference catalysts 1 to 4 were placed in an electric furnace maintained at 900 ° C., heat-treated for 24 hours with a 1% by volume CO—N 2 mixed gas flowing at 20 L / min, and then the catalyst coating layer was scraped off to obtain the obtained powder.
  • the Bd specific surface area, the OSC performance, and the crystallite diameter of Pd by XRD diffraction were measured. The results were as shown in Table 6.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Toxicology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

担体の表面に形成された第一触媒層とその上に形成された第二触媒層とを有し、第一触媒層はCeO2の量が45~70質量%、ZrO2の量が20~45質量%、Nd23の量が2~20質量%、La23の量が1~10質量%である複合酸化物からなるキャリアと、担持された金属Pd又はPd酸化物からなる触媒成分とを有し、第二触媒層はZrO2の量が50~95質量%、CeO2の量が0~40質量%、Nd23の量が2~20質量%、La23の量が1~10質量%である複合酸化物からなるキャリアと、担持された金属Rh又はRh酸化物からなる触媒成分とを有するか、又は担持された金属Rh又はRh酸化物からなる触媒成分及び金属Pt又はPt酸化物からなる触媒成分とを有する鞍乗型車両用排気ガス浄化触媒。

Description

鞍乗型車両用排気ガス浄化触媒
 本発明は鞍乗型車両用排気ガス浄化触媒に関し、より詳しくは、触媒成分として用いるPdO(酸化パラジウム)の金属化を抑制することにより、PdOの金属化に起因するPd微粒子の粒成長(シンタリング)による触媒活性の低下が抑制され、従って、排気ガス中の酸素、HC(炭化水素)及びCO(一酸化炭素)の濃度変化が激しく、A/Fのウィンド幅が非常に広い鞍乗型車両の排気ガス雰囲気で使用しても触媒活性の低下が生じにくい鞍乗型車両用排気ガス浄化触媒に関する。
 自動車等の内燃機関から排出される排気ガス中にはHC、CO、NOx(窒素酸化物)等の成分が含まれている。それで、従来から、これら成分を浄化する目的で三元触媒が用いられており、触媒主成分として貴金属が用いられている。特に自動二輪車等の鞍乗型車両では触媒貴金属としてPt、Rhを用いることが一般的である。
 鞍乗型車両用排気ガス浄化触媒の主要活性成分であるPt及びRhの価格に比較して比較的安価なPdを代替活性成分として利用することにより排気ガス浄化触媒のコストを削減することが検討されている。触媒成分としてRhを用いた場合に比較してPdを用いた場合にはリーンの状態ではNOxの還元浄化性能が悪く、また、リッチの状態では還元性排気ガス成分によるPdOの金属への還元を経由して粒成長による触媒活性の低下が生じることによりPdは耐久性が劣るので、Pd触媒利用の支障となっている。その対策として触媒層を2層にし、上層に触媒成分としてRh又はRh+Ptを用い、下層にPdを用いた触媒も提案されている(例えば、特許文献1、2参照。)。これらの従来技術では、触媒の性能試験をストイキ~リーン雰囲気(A/F ≒15)で燃焼されるガソリンエンジンの排気系で実施していることからも明らかなように、ストイキ~リーンの状態で運転される通常の四輪車への適用を目的としており、A/Fのウィンド幅が四輪車と比較して広く、リッチな状態で運転される割合が多い鞍乗型車両の排気ガス浄化触媒として適しているとは言えない。
特開2009-000648号公報 特開平10-296085号公報
 本発明は、上記のような事情に鑑みてなされたものであり、触媒成分として用いるPdOの金属化を抑制することにより、PdOの金属化に起因するPd微粒子の粒成長による触媒活性の低下が抑制され、従って、排気ガス中の酸素、HC及びCOの濃度変化が激しく、A/Fのウィンド幅が非常に広い鞍乗型車両の排気ガス雰囲気で使用しても触媒活性の低下が生じにくい鞍乗型車両用排気ガス浄化触媒を提供することを目的としている。
 本発明者らは、上記の問題を解決するために鋭意検討した結果、触媒層を2層とし、下層として高いOSC性能を有するセリウム-ジルコニウム系の複合酸化物であって酸化セリウムの質量が酸化ジルコニウムの質量よりも多い特定の複合酸化物材料の上に金属Pd又はPd酸化物を分散させたものを用い、上層としてRh又はRh+Ptを特定のセリウム-ジルコニウム系の複合酸化物材料の上に分散させたものを用いることにより、A/F変動時のPdOの還元が抑制されてパラジウムの耐久安定性が向上し、更に、熱安定性に劣る酸化セリウムの熱安定性を改善して鞍乗型車両排気ガスに長時間に曝されても高いOSC性能などを維持するために、このセリウム-ジルコニウム系複合酸化物に第3の元素Ndと第4の元素Laを固溶体化させてキャリアとすることにより、OSC性能及び貴金属担持後の触媒浄化性能の低下が改善され、耐久性能が向上し、その結果鞍乗型車両エンジンを空燃比(A/F)の平均値がいわゆるリーンの状態から14.5以下となるようなリッチの状態まで適用できることを見出した。
 即ち、本発明の鞍乗型車両用排気ガス浄化触媒は、セラミックス又は金属材料からなる担体の表面に形成された第一触媒層と該第一触媒層の上に形成された第二触媒層とを有し、該第一触媒層はCeO2の量が45~70質量%であり、ZrO2の量が20~45質量%であり、Nd23の量が2~20質量%であり、La23の量が1~10質量%であるセリウム-ジルコニウム系複合酸化物からなるキャリアと、該キャリアに担持された金属Pd又はPd酸化物からなる触媒成分とを有し、該第二触媒層はZrO2の量が50~95質量%であり、CeO2の量が0~40質量%であり、Nd23の量が2~20質量%であり、La23の量が1~10質量%であるジルコニウム系複合酸化物からなるキャリアと、該キャリアに担持された金属Rh又はRh酸化物からなる触媒成分とを有するか、又は該キャリアに担持された金属Rh又はRh酸化物からなる触媒成分及び金属Pt又はPt酸化物からなる触媒成分とを有することを特徴とする。
 金属Pd又はPd酸化物からなる触媒成分が高いOSC性能を有するセリウム-ジルコニウム系の複合酸化物であって酸化セリウムの質量が酸化ジルコニウムの質量よりも多い特定のキャリアに担持されている本発明の鞍乗型車両用排気ガス浄化触媒においては、触媒成分のPdOの金属化が抑制されるので、PdOの金属化に起因するPd微粒子の粒成長による触媒活性の低下が抑制され、従って、排気ガス中の酸素、HC及びCOの濃度変化が激しく、A/Fのウィンド幅が非常に広い鞍乗型車両の排気ガス雰囲気で使用しても触媒活性の低下が生じにくいので、本発明の鞍乗型車両用排気ガス浄化触媒は、Pdを用いても、耐久性、浄化性能を向上させることができ、鞍乗型車両エンジンを空燃比(A/F)の平均値が14.5以下となるようなリッチの状態で用いても触媒の耐久性、浄化性能を確保できる。
本発明の二層構造の触媒の概略部分断面図である。 下層における複合酸化物中のCeO2の量とT-50との相関関係を示すグラフである。 下層における複合酸化物中のCeO2の量と400℃浄化率との相関関係を示すグラフである。 本発明の排気ガス浄化触媒を使用する自動二輪車の輪郭を概略的に示す側面図である。 本発明の排気ガス浄化触媒を使用するスクーター型自動二輪車の輪郭を概略的に示す側面図である。 図4に示す自動二輪車に本発明の排気ガス浄化触媒を組み込んだ場合の排気浄化装置を周辺構成と共に模式的に示す図である。 図4に示す自動二輪車に本発明の排気ガス浄化触媒を組み込んだ場合の排気浄化装置をマフラーと共に模式的に示す図である。 自動二輪車及び一般の四輪車について空燃比の割合を求めた走行条件を示すグラフである。 耐久距離とCO浄化率との相関関係を示すグラフである。 耐久距離とHC浄化率との相関関係を示すグラフである。 耐久距離とNOx浄化率との相関関係を示すグラフである。 参考触媒1~4の耐久後のBET比表面積及びOSC性能とキャリア中のNd23の量(質量%)との相関関係を示すグラフである。 参考触媒1、3及び4の耐久後のXRDを示すチャートである。 参考触媒1及び5の耐久後のTPR測定のチャートである。
 以下に、本発明の実施形態を具体的に説明する。
 本発明において鞍乗型車両とは一般に鞍乗型車両といわれている鞍乗型二輪車、鞍乗型三輪車、鞍乗型四輪車だけでなく、スクーター型自動二輪車も包含するものである。
 本発明の鞍乗型車両用排気ガス浄化触媒はセラミックス又は金属材料からなる担体の表面に形成された第一触媒層と該第一触媒層の上に形成された第二触媒層とを有しており、該第一触媒層はCeO2の量が45~70質量%であり、ZrO2の量が20~45質量%であり、Nd23の量が2~20質量%であり、La23の量が1~10質量%であるセリウム-ジルコニウム系複合酸化物からなるキャリアと、該キャリアに担持された金属Pd又はPd酸化物からなる触媒成分とを有している。
 本発明の鞍乗型車両用排気ガス浄化触媒の第一触媒層に用いるキャリアは、焼成によりCeO2に変化し得るCe化合物、焼成によりZrO2に変化し得るZr化合物、焼成によりNd23に変化し得るNd化合物、及び焼成によりLa23に変化し得るLa化合物を含有する溶液のpHを6.0~8.0程度に調整し、得られた沈殿物をろ過し、洗浄し、十分に乾燥させ、その後焼成することにより、例えば1000℃で3時間焼成することにより得ることができる。
 また、本発明の鞍乗型車両用排気ガス浄化触媒の第一触媒層に用いる金属Pd又はPd酸化物からなる触媒成分を担持したキャリアは、水溶性パラジウム化合物の水溶液中に、撹拌しながら上記の方法で得られたキャリアを添加して吸液させ、次いで十分に乾燥させ、その後焼成することにより、例えば500℃で3時間焼成することにより得ることができる。
 本発明の鞍乗型車両用排気ガス浄化触媒の第一触媒層においては、PdOの金属化に起因するPd微粒子の粒成長による触媒活性の低下を抑制し、従って、排気ガス中の酸素、HC及びCOの濃度変化が激しく、A/Fのウィンド幅が非常に広い鞍乗型車両の排気ガス雰囲気で使用しても触媒活性の低下が生じにくくするために、金属Pd又はPd酸化物からなる触媒成分を担持させるためのキャリア中のCeO2の量を45~70質量%にし、ZrO2の量を20~45質量%にし、CeO2の質量をZrO2の質量よりも多くすることが好ましい。CeO2の量が70質量%を超え、或いはZrO2の量が20質量%未満である場合にも、CeO2の量が45質量%未満であり、或いはZrO2の量が55質量%未満を超える場合にも、活性種の性能が充分には発揮されず、また、高温時に、例えば900℃以上の温度で担体の比表面積の低下が大きく、触媒の熱劣化を引き起こすことがあるので好ましくない。CeO2の量が45質量%未満である場合には、PdOの還元を抑制する能力が低下する傾向があり、また、ZrO2の量が45質量%を超える場合にはそれに応じてCeO2の量が減少するので好ましくない。
 本発明の鞍乗型車両用排気ガス浄化触媒の第一触媒層においては、金属Pd又はPd酸化物からなる触媒成分を担持させるためのセリウム-ジルコニウム系複合酸化物キャリアは更にNd23及びLa23を含有する。Nd23及びLa23を含むことにより、CeO2の熱安定性が良くなり、セリウム-ジルコニウム系複合酸化物からなるキャリアのOSC性能及び貴金属担持後の触媒浄化性能の低下が改善され、耐久性能が向上する。この効果が達成されるためには、Nd23の量が2質量%以上であり、La23の量が1質量%以上であることが必須である。しかし、Nd23の量が20質量%を超えたり、La23の量が10質量%を超えたりする場合には、それに応じてCeO2及びZrO2の相対量が低下し、セリウム-ジルコニウム系複合酸化物からなるキャリアの特性が低下する傾向がある。
 本発明の鞍乗型車両用排気ガス浄化触媒の第一触媒層においては、触媒成分として貴金属の中では比較的安価な金属Pd又はPd酸化物を用いる。これらの触媒成分の量はキャリアの質量を基準として金属Pd換算で0.3質量%未満である場合には排気ガスに対する浄化性能が不十分となる傾向があり、逆に金属Pd換算で5質量%を超える場合には排気ガス浄化触媒のコストが高くなり、そのコストの増加に見合った効果の増強が得られない。従って、これらの触媒成分の量はキャリアの質量を基準として金属Pd換算で0.3~5質量%であることが好ましい。
 また、本発明の鞍乗型車両用排気ガス浄化触媒において第一触媒層の上に形成された第二触媒層はZrO2の量が50~95質量%であり、CeO2の量が0~40質量%であり、Nd23の量が2~20質量%であり、La23の量が1~10質量%であるジルコニウム系複合酸化物からなるキャリアと、該キャリアに担持された金属Rh又はRh酸化物からなる触媒成分とを有するか、又は該キャリアに担持された金属Rh又はRh酸化物からなる触媒成分及び金属Pt又はPt酸化物からなる触媒成分とを有している。
 本発明の鞍乗型車両用排気ガス浄化触媒の第二触媒層においては、金属Rh又はRh酸化物からなる触媒成分、又は金属Rh又はRh酸化物と金属Pt又はPt酸化物とからなる触媒成分を担持させるためのキャリアとしてZrO2の量が50~95質量%であり、CeO2の量が0~40質量%であり、Nd23の量が2~20質量%であり、La23の量が1~10質量%であるジルコニウム系複合酸化物からなるキャリアを用いるが、このようなキャリアは、焼成によりZrO2に変化し得るZr化合物、焼成によりCeO2に変化し得るCe化合物、焼成によりNd23に変化し得るNd化合物、及び焼成によりLa23に変化し得るLa化合物を含有する溶液のpHを6.0~8.0程度に調整し、得られた沈殿物をろ過し、洗浄し、十分に乾燥させ、その後焼成することにより、例えば1000℃で3時間焼成することにより得ることができる。
 また、本発明の鞍乗型車両用排気ガス浄化触媒の第二触媒層に用いる金属Rh又はRh酸化物からなる触媒成分、又は金属Rh又はRh酸化物と金属Pt又はPt酸化物とからなる触媒成分を担持したキャリアは、水溶性ロジウム化合物の水溶液中に、又は水溶性ロジウム化合物及び水溶性白金化合物を含有する水溶液中に、撹拌しながら上記の方法で得られたキャリアを添加して吸液させ、次いで十分に乾燥させ、その後焼成することにより、例えば500℃で3時間焼成することにより得ることができる。
 本発明の鞍乗型車両用排気ガス浄化触媒の第二触媒層においては、担持された金属Rh又はRh酸化物からなる触媒成分、又は金属Rh又はRh酸化物と金属Pt又はPt酸化物とからなる触媒成分が排気ガス中のHC、CO、NOxをより低温で且つより高活性に浄化でき、しかも耐熱性で触媒の熱劣化を防止し得るためには、触媒成分を担持させるためのキャリア中のZrO2の量を50~95質量%にし、CeO2の量を0~40質量%にする。即ち、CeO2を含有しない場合でも本発明で目的とする効果を得ることができる。ZrO2の量が95質量%を超えることは、それに応じてNd23及びLa23の量が減少することになり、本発明で目的とする効果が低下する。逆に、ZrO2の量が50質量%未満になるとキャリアの特性が低下する傾向がある。
 本発明の鞍乗型車両用排気ガス浄化触媒の第二触媒層においては、金属Rh又はRh酸化物からなる触媒成分、又は金属Rh又はRh酸化物と金属Pt又はPt酸化物とからなる触媒成分を担持させるためのジルコニウム系複合酸化物キャリアは更にNd23及びLa23を含有する。Nd23及びLa23を含むことにより、ジルコニウム系複合酸化物からなるキャリアのOSC性能及び貴金属担持後の触媒浄化性能の低下が飛躍的に改善され、耐久性能が向上する。この効果が達成されるためには、Nd23の量が2質量%以上であり、La23の量が1質量%以上であることが必須である。しかし、Nd23の量が20質量%を超えたり、La23の量が10質量%を超えたりする場合には、それに応じてCeO2及びZrO2の相対量が低下し、ジルコニウム系複合酸化物からなるキャリアの特性が低下する傾向がある。
 本発明の鞍乗型車両用排気ガス浄化触媒においては、Pd、Rh及びPtの各々の価格を考量すると、比較的安価で比較的高活性を維持し得るためには、第二触媒層中の触媒成分が金属Rh又はRh酸化物である場合にPdの量とRhの量との質量比が金属換算でPd/Rh=1/1~20/1であり、又第二触媒層中の触媒成分が金属Rh又はRh酸化物と金属Pt又はPt酸化物とからなる場合にPdの量とRhの量とPtの量との質量比が金属換算で(Pt+Pd)/Rh=1/1~20/1であることが好ましい。
 本発明の鞍乗型車両用排気ガス浄化触媒においては、担体に担持された従来の排気ガス浄化用三元触媒と同様に、セラミックス又は金属材料からなる担体上に上記の第一触媒層及び第二触媒層を担持させて用いる。このセラミックス又は金属材料からなる担体の形状は、特に限定されるものではないが、一般的にはハニカム、板等のモノリス形状や、ペレットの形状であり、好ましくはハニカム形状である。また、このような担体の材質としては、例えば、アルミナ、ムライト、コージライト等のセラミックスや、ステンレス等の金属材料が挙げられる。
[規則91に基づく訂正 14.04.2010] 
 本発明の鞍乗型車両用排気ガス浄化触媒の製造においては、最初に、上記の金属Pd又はPd酸化物からなる触媒成分を担持したキャリア50~80質量%と、耐熱性アルミナ系成分10~40質量%と、バインダー材固形分5~20質量%と、適量の蒸留水とをボールミルに入れ、湿式粉砕してウォッシュコート液を調製する。次いで、セラミックス又は金属材料からなる担体、例えばステンレス製メタルハニカム担体(300セル、φ30×30L、容量21ccのテストピース)をそのウォッシュコート液に浸漬した後、エアブローでセル中の余分のウォッシュコート液を除去し、乾燥させ、例えば500℃で1時間焼成して第一触媒層を形成する。この場合に、Pdの担持量が金属換算で触媒1L当り0.7~5.5gとなるようにすることが好ましい。これらの触媒成分の量は触媒1L当り金属Pd換算で0.7g未満である場合には排気ガスに対する浄化性能が不十分となる傾向があり、逆に金属Pd換算で5.5gを超える場合には排気ガス浄化触媒のコストが高くなり、そのコストの増加に見合った効果の増強が得られない。従って、これらの触媒成分の量は触媒1L当り金属Pd換算で0.7~5.5gであることが好ましい。
[規則91に基づく訂正 14.04.2010] 
 その後、上記の金属Rh又はRh酸化物からなる触媒成分、又は金属Rh又はRh酸化物と金属Pt又はPt酸化物とからなる触媒成分を担持したキャリア50~80質量%と、耐熱性アルミナ系成分10~40質量%と、バインダー材固形分5~20質量%と、適量の蒸留水とをボールミルに入れ、湿式粉砕してウォッシュコート液を調製する。次いで、上記の第一触媒層を有する担体をそのウォッシュコート液に浸漬した後、エアブローでセル中の余分のウォッシュコート液を除去し、乾燥させ、例えば500℃で1時間焼成して第二触媒層を形成する。この場合に、PdとRhとPtとの合計担持量が金属換算で触媒1L当り0.7~6.5gとなるようにすることが好ましい。これらの触媒成分の合計量は触媒1L当り金属換算で0.7g未満である場合には排気ガスに対する浄化性能が不十分となる傾向があり、逆に金属換算で6.5gを超える場合には排気ガス浄化触媒のコストが高くなり、そのコストの増加に見合った効果の増強が得られない。従って、これらの触媒成分の合計量は触媒1L当り金属換算で0.7~6.5gであることが好ましい。
 本発明で用いることができる耐熱性アルミナ系成分は従来の排気ガス浄化用三元触媒において一般に用いられている如何なるものでもよいが、Al23、La23-Al23複合酸化物、BaO-Al23複合酸化物、MgO-Al23複合酸化物、ZrO2-CeO2-Al23複合酸化物又はそれらの混合物であることが好ましい。
 本発明の鞍乗型車両用排気ガス浄化触媒においては、コスト、性能等を考慮すると、第一触媒層の質量と第二触媒層の質量との比(第一触媒層:第二触媒層)が1~3:1であることが好ましい。第一触媒層の質量と第二触媒層の質量との比が1:1よりも小さい(第二触媒層の質量が第一触媒層の質量より大きい)場合には同じ性能を達成し得る触媒のコストが高くなり、逆に第一触媒層の質量と第二触媒層の質量との比が3:1よりも大きい(第二触媒層の質量が第一触媒層の質量より小さい)場合には同じ質量の触媒で判断して性能が比較的に低い傾向がある。
 本発明の鞍乗型車両用排気ガス浄化触媒においては、触媒層が2層になっていてPdは下層の第一触媒層に含まれており、上層の第二触媒層には還元性ガスの除去活性が高く且つ耐久性の強いRh又はRh+Ptが含まれているので、空燃比のリッチ状態や空燃比の変動時でも還元性ガスがPdを含有する下層に拡散することを抑制することができるので、特定のキャリアによりPdの耐久性が改善されている下層のPdの耐久性を更に向上させることができる。
 本発明の鞍乗型車両用排気ガス浄化触媒は、空燃比のリッチ状態でも還元性ガスがPdを含有する下層に拡散することを抑制することができるので、本発明の鞍乗型車両に搭載されるエンジンの空燃比の平均値を理論空燃比の14.6よりもリッチな14.5以下とした場合であっても、上記のように下層のPdの耐久性を向上させつつ、NOx浄化性能を向上させることができる。
 以下に、製造例、実施例、比較例、性能試験及び参考試験に基づいて本発明を説明する。以下の製造例、実施例、比較例及び参考試験において、各成分の相対量を示す質量部は分散媒、溶媒を除いた量を示している。
[規則91に基づく訂正 14.04.2010] 
 製造例1(比較例関連)
 硝酸セリウム(CeO2換算量で)88質量部、硝酸ネオジム(Nd23換算量で)10質量部及び硝酸ランタン(La23換算量で)2質量部を5Lのフラスコに入れ、2000mLの純水を加え、1時間撹拌して均一な溶液を調製した。この溶液を撹拌しながら、1NのNH4OH溶液をpHが7になるまで滴下し、得られた沈殿物をろ過し、洗浄し、80℃で15時間乾燥させ、その後1000℃で3時間焼成して88CeO2-10Nd23-2La23複合酸化物B1(ZrO2を含有せず、CeO2の量が範囲外である)を調製した。
[規則91に基づく訂正 14.04.2010] 
 製造例2
 硝酸セリウム(CeO2換算量で)65質量部、硝酸ジルコニウム(ZrO2換算量で)25質量部、硝酸ネオジム(Nd23換算量で)8質量部及び硝酸ランタン(La23換算量で)2質量部を5Lのフラスコに入れ、2000mLの純水を加え、1時間撹拌して均一な溶液を調製した。この溶液を撹拌しながら、1NのNH4OH溶液をpHが7になるまで滴下し、得られた沈殿物をろ過し、洗浄し、80℃で15時間乾燥させ、その後1000℃で3時間焼成して65CeO2-25ZrO2-8Nd23-2La23複合酸化物B2を調製した。
 製造例3
 硝酸セリウム(CeO2換算量で)46質量部、硝酸ジルコニウム(ZrO2換算量で)46質量部、硝酸ネオジム(Nd23換算量で)6質量部及び硝酸ランタン(La23換算量で)2質量部を使用した以外は製造例2と同様にして48CeO2-44ZrO2-6Nd23-2La23複合酸化物B3を調製した。
 製造例4
  硝酸セリウム(CeO2換算量で)30質量部、硝酸ジルコニウム(ZrO2換算量で)60質量部、硝酸ネオジム(Nd23換算量で)8質量部及び硝酸ランタン(La23換算量で)2質量部を使用した以外は製造例2と同様にして30CeO2-60ZrO2-8Nd23-2La23複合酸化物B4を調製した。
 製造例5
  硝酸ジルコニウム(ZrO2換算量で)92質量部、硝酸ネオジム(Nd23換算量で)5質量部及び硝酸ランタン(La23換算量で)3質量部を使用し、硝酸セリウムを使用しなかった以外は製造例2と同様にして92ZrO2-5Nd23-3La23複合酸化物B5を調製した。
 製造例6(比較例関連)
  硝酸セリウム(CeO2換算量で)46質量部及び硝酸ジルコニウム(ZrO2換算量で)54質量部を使用し、硝酸ネオジム及び硝酸ランタンを使用しなかった以外は製造例2と同様にして46CeO2-54ZrO2複合酸化物B6(Nd23及びLa23を含有しない)を調製した。
 実施例1
 製造例2で調製した複合酸化物B2粉末60質量部、活性アルミナ粉末35質量部、アルミナゾル系バインダー材(アルミナ換算量で)5質量部及び純水150質量部をボールミルに入れ、8時間湿式粉砕して下層用スラリー(ウォッシュコート液)を調製した。
 また、製造例4で調製した複合酸化物B4粉末30質量部、活性アルミナ粉末65質量部、アルミナゾル系バインダー材(アルミナ換算量で)5質量部及び純水200質量部をボールミルに入れ、8時間湿式粉砕して上層用スラリー(ウォッシュコート液)を調製した。
[規則91に基づく訂正 14.04.2010] 
 次いで、2種のステンレス製メタルハニカム担体(300セル、コアサイズφ30×30L、コア容量25.6ccのテストピース、及びコアサイズφ40×90L、コア容量113ccの実車評価用担体)をそれぞれ用意し、先ず、上記の下層用スラリーをウォッシュコートし、乾燥させ、500℃で1時間焼成して下コート層を形成した。この下コート層のウォッシュコートの量は担体基材1L当り100gであった。
 次に、所定濃度の硝酸パラジウム水溶液中に上記の下コート層を形成したメタルハニカム担体を浸漬し、取り出した後500℃で1時間焼成して、パラジウム担持下触媒層を形成した。
 次いで、上記のパラジウム担持触媒下層を形成したメタルハニカム担体に上記の上層用スラリーをウォッシュコートし、乾燥させ、500℃で1時間焼成して上コート層を形成した。この上コート層のウォッシュコートの量は担体基材1L当り50gであった。
 次に、所定濃度の硝酸ロジウムと白金の硝酸溶液との混合溶液に上記の上コート層を形成したメタルハニカム担体を浸漬し、取り出した後500℃で1時間焼成して、下層にパラジウムを担持しており上層に白金とロジウムとを担持している二層構造の触媒を調製した。図1はこのようにして得られた二層構造の触媒の概略部分断面図であり、図1(a)はメタルハニカムの場合であり、図1(b)はモノリスハニカムの場合である。図1(a)、図1(b)において1はステンレス製メタルハニカム担体であり、2はパラジウムを担持した下層(第一触媒層)であり、3は白金及びロジウムを担持した上層(第二触媒層)であり、4はセラミックス製ハニカム担体である。この触媒の下層のパラジウム担持量はPd換算で担体基材1L当り1.50gであり、上層の白金担持量はPt換算で担体基材1L当り0.75gであり、ロジウム担持量はRh換算で担体基材1L当り0.15gであった。
 実施例2
 実施例1に記載の方法において、製造例2で調製した複合酸化物B2粉末の代わりに製造例3で調製した複合酸化物B3粉末を用いて下層用スラリーを調製した以外は実施例1と同様にして二層構造の触媒を調製した。
 比較例1(下層が範囲外)
 実施例1に記載の方法において、製造例2で調製した複合酸化物B2粉末の代わりに製造例1で調製した複合酸化物B1粉末を用いて下層用スラリーを調製した以外は実施例1と同様にして二層構造の触媒を調製した。
 比較例2(下層が範囲外)
 実施例1に記載の方法において、製造例2で調製した複合酸化物B2粉末の代わりに製造例4で調製した複合酸化物B4粉末を用いて下層用スラリーを調製した以外は実施例1と同様にして二層構造の触媒を調製した。
 比較例3(下層が範囲外)
 実施例1に記載の方法において、製造例2で調製した複合酸化物B2粉末の代わりに製造例5で調製した複合酸化物B5粉末を用いて下層用スラリーを調製した以外は実施例1と同様にして二層構造の触媒を調製した。
 実施例3
 実施例2に記載の方法において、製造例4で調製した複合酸化物B4粉末の代わりに製造例5で調製した複合酸化物B5粉末を用いて上層用スラリーを調製した以外は実施例2と同様にして二層構造の触媒を調製した。
 実施例4
 実施例2に記載の方法において、担体基材1L当り100gの下コート層のウォッシュコートの量を150gに増量し、担体基材1L当り50gの上コート層のウォッシュコートの量を30gに減量した以外は実施例2と同様にして二層構造の触媒を調製した。
 実施例5
 実施例2に記載の方法において、製造例3で調製した複合酸化物B3粉末30質量部、活性アルミナ粉末65質量部、アルミナゾル系バインダー材(アルミナ換算量で)5質量部及び純水150質量部を用いて下層用スラリーを調製した以外は実施例2と同様にして二層構造の触媒を調製した。
 比較例4(上層が範囲外)
 実施例2に記載の方法において、製造例4で調製した複合酸化物B4粉末の代わりに製造例3で調製した複合酸化物B3粉末を用いて上層用スラリーを調製した以外は実施例2と同様にして二層構造の触媒を調製した。
 比較例5(下層及び上層共Nd23、La23を含まず)
 実施例1に記載の方法において、製造例2で調製した複合酸化物B2粉末の代わりに製造例6で調製した複合酸化物B6粉末を用いて下層用スラリーを調製し、製造例4で調製した複合酸化物B4粉末の代わりに製造例6で調製した複合酸化物B6粉末を用いて上層用スラリーを調製した以外は実施例1と同様にして二層構造の触媒を調製した。
 比較例6(下層が複合酸化物を含まず)
 実施例1に記載の方法において、製造例2で調製した複合酸化物B2粉末を使用しないで活性アルミナ粉末の使用量を95質量部とし、アルミナゾル系バインダー材(アルミナ換算量で)の使用量を5質量部とし、純水の使用量を150質量部として下層用スラリーを調製した以外は実施例1と同様にして二層構造の触媒を調製した。
[規則91に基づく訂正 14.04.2010] 
 比較例7(一層構造触媒)
 実施例2に記載の方法と同じ方法で製造した下層用スラリーを2種のステンレス製メタルハニカム担体(300セル、コアサイズφ30×30L、コア容量25.6ccのテストピース、及びコアサイズφ40×90L、コア容量113ccの実車評価用担体)にウォッシュコートし、乾燥させ、500℃で1時間焼成してコート層を形成した。このコート層のウォッシュコート質量は担体基材1L当り150gであった。次に、所定濃度の硝酸パラジウムと、硝酸ロジウムと白金の硝酸溶液との混合溶液に上記のコート層を形成したメタルハニカム担体を浸漬し、取り出した後500℃で1時間焼成してパラジウム、白金及びロジウムとを担持している一層構造触媒を調製した。この触媒のパラジウム担持量はPd換算で担体基材1L当り1.50gであり、白金担持量はPt換算で担体基材1L当り0.75gであり、ロジウム担持量はRh換算で担体基材1L当り0.15gであった。
 上記製造例1~6で得られた複合酸化物の組成を要約すると第1表に示す通りであり、実施例1~5及び比較例1~7で得られた触媒の構成を要約すると第2表に示す通りである。
Figure JPOXMLDOC01-appb-T000001
[規則91に基づく訂正 14.04.2010] 
Figure WO-DOC-TABLE-2-1
Figure JPOXMLDOC01-appb-T000003
 <各触媒のモデルガス浄化性能試験>
 実施例1~5及び比較例1~7で調製したそれぞれのテストピース触媒を900℃に保持した電気炉に入れ、1体積%CO-N2混合ガスを20L/minで流して24時間熱処理し、その後室温まで冷却した。次いで、下記組成のモデルガス中のHC、CO及びNOx(酸化窒素が400℃で低減される割合(浄化率)及び50%浄化率に到達する温度〔T-50(℃)〕を測定して、各々の触媒の三元浄化性能を評価した。評価条件は下記の通りであった。それらの結果は第3表に示す通りであった。
 モデルガス組成:CO:0.9%、C36:900ppm、C38:450ppm、NO:500ppm、O2:0.5%、CO2:14%、H2O:10%、N2:残余、
 A/F=14.4、
  ガス流速:25L/min、
 昇温:10℃/min。
Figure JPOXMLDOC01-appb-T000004
 比較例1(下層に用いた複合酸化物中のCeO2の量88質量%)、実施例1(下層に用いた複合酸化物中のCeO2の量65質量%)、実施例2(下層に用いた複合酸化物中のCeO2の量46質量%)、比較例2(下層に用いた複合酸化物中のCeO2の量30質量%)及び比較例3(下層に用いた複合酸化物中のCeO2の量0質量%)におけるモデルガス浄化性能試験の結果をグラフに示すとT-50については図2、400℃浄化率については図3となる。図2及び図3から明らかなように、下層における複合酸化物中のCeO2の量が45~70質量%である時に良好な結果が得られる。
 本発明の排気ガス浄化触媒は鞍乗型車両用であり、このような鞍乗型車両として図4に示す自動二輪車や図5に示すスクーター型自動二輪車等がある。
 図6は図4に示す鞍乗型車両である自動二輪車に本発明の排気ガス浄化触媒を組み込んだ場合の排気浄化装置を周辺構成と共に模式的に示す図である。この排気浄化装置10はエアクリーナ11からエンジン(内燃機関)12に供給される空気にフューエルインジェクター13A(フューエルインジェクターの代わりにキャブレターを用いる形式であってもよい)から燃料が供給される自動二輪車に搭載され、エアクリーナ11で浄化された二次空気(新気)をエンジン12の排気ポート12Bに供給する二次空気導入装置20と、エンジン12の排気ポート12Bに排気管14を介して接続された排気マフラー15と、排気マフラー15内に配置された触媒コンバータ30とを備えている。なお、図6において、矢印Xは空気の流れを示し、矢印Yはバキュームプレッシャを示し、矢印Zはクランクケース内で発生したブローバイガスの流れを示している。
 エアクリーナ11は、エアクリーナケース11Aの内部が仕切り壁11Bによってダーティサイド11Cとクリーンサイド11Dとの2室に仕切られている。ダーティサイド11Cには外気導入口11Eが設けられ、この外気導入口11Eを介して外気がダーティサイド11C内に導入される。仕切り壁11Bにはダーティサイド11Cとクリーンサイド11Dとを連通する開口を覆うようにフィルタエレメント11Fが配置され、ダーティサイド11C内の空気がフィルタエレメント11Fを通過して浄化された後にクリーンサイド11Dに導入される。クリーンサイド11Dには空気排出口11Gが設けられ、この空気排出口11Gはコネクティングチューブ16を介してスロットルバルブ13B部、フューエルインジェクター13A部に連結され、更にエンジン12の吸気ポート12Aに連通される。
 エンジン12は自動二輪車に搭載される一般的な単気筒4サイクルエンジンであり、エンジン12内のシリンダ孔(気筒)12Cに連通する吸気ポート12Aを開閉する吸気バルブ12Dと、シリンダ孔12Cに連通する排気ポート12Bを開閉する排気バルブ12Eとを備え、シリンダ孔12Cに摺動自在に配置されたピストン12Fがコンロッド12Gを介してクランクシャフト12Hに連結される。このエンジン12の吸気バルブ12Dが開の状態でピストン12Fが下がる吸気工程(排気バルブ12Eは閉)の際に、ピストン12Fの降下によって生じるエンジン12側の負圧でエアクリーナ11のクリーンサイド11D内の空気がシリンダ孔12Cのピストン12F上方に吸い込まれると共にフューエルインジェクター13Aから燃料が供給されて燃料と空気の混合気がエンジン12に供給される。
 続いて、4サイクルエンジンの一般的な圧縮工程、燃焼工程を経た後に、排気バルブ12Eが開いた状態(吸気バルブ12Dは閉)でピストン12Fが上昇する排気工程が実施されることにより、燃焼ガスが排気ポート12Bに排出され、排気ガスとして排気管14に排出される。
 排気管14の後端には接続管17を介して排気マフラー15が接続され、この排気マフラー15は、排気管14を通った高温・高圧の排気ガスを消音して外部に排出するサイレンサとして機能する。図6には、この排気マフラー15が複数の隔壁15A、15Bによって複数の室に仕切られて各室を連通管15C、15D、15Eで連通した多段膨張型に構成されており、最も上流側に位置する前室に触媒コンバータ30が配置されている。これら排気管14(主管部)、排気マフラー15(収容部)及び接続管17(接続部)は一体となって、上記車両の排気管を構成する。
 二次空気導入装置20は、エアクリーナ11のクリーンサイド11Dの空気(二次空気)をエンジン12の排気ポート12Bに送る機構であり、エアクリーナ11のクリーンサイド11Dとエンジン12の排気ポート12Bとを接続する二次空気供給管21を備える。この二次空気供給管21の途中には、バルブユニット22が設けられると共に、排気ポート12Bから排気ガスを二次空気供給管21へ逆流させないためのリードバルブ23が、バルブユニット22と排気ポート12Bとの間に設けられる。なお、図6では、リードバルブ23の追従性向上の観点から、リードバルブ23を排気ポート12Bにより近い位置であるエンジン12上方に配設した状態を示している。
 バルブユニット22は、エンジン減速時に排気ポート12Bへの二次空気の供給を防ぐ二次空気供給制御バルブ24を備えており、この二次空気供給制御バルブ24は、エンジン12の吸気ポート12Aとバルブユニット22とをつなぐ連通管25を介して伝わる吸気ポート12Aのバキュームプレッシャに応じて作動するように構成されている。
 また、図中符号35は、エアクリーナ11のクリーンサイド11Dと、エンジン12のクランクケースとを連通する連通管である。この連通管35は、クランクケース内で発生するブローバイガスをクリーンサイド11D、コネクティングチューブ16を通してエンジン12に戻し、ブローバイガスの放出を防止するクランクケースエミッション制御装置として機能する。
 排気浄化装置10は上記した排気管14、排気マフラー15、接続管17及び排気マフラー15内の触媒コンバータ30等を備えている。接続管17は内径が異なる排気管14と排気マフラー15とを排気管14から排気マフラー15への排気ガスの流れを妨げないように繋いでいる。排気マフラー15は、排気効率を高めるため、排気管14よりも内径が太い管として構成される。このため、接続管17の内径は、排気管14に接合される側の端では、排気管14の内径とほぼ等しく、排気マフラー15に接合される側の端では排気マフラー15の内径とほぼ等しくなっており、接続管17は、一端から他端にかけて径が滑らかに変化するテーパーを有する形状となっている。また、排気管14と接続管17との接合部、及び、接続管17と排気マフラー15との接合部は、いずれも溶接により接合されている。
 図7は図4に示す自動二輪車に本発明の排気ガス浄化触媒を組み込んだ場合の排気浄化装置をマフラーと共に模式的に示す図である。図6に示す場合と同様に排気管14の後端には接続管17を介して排気マフラー15が接続されており、接続管17は内径が異なる排気管14と排気マフラー15とを排気管14から排気マフラー15への排気ガスの流れを妨げないように繋いでいる。排気マフラー15は排気効率を高めるため排気管14よりも内径が太い管として構成される。このため、接続管17の内径は排気管14に接合される側の端では排気管14の内径とほぼ等しく、排気マフラー15に接合される側の端では排気マフラー15の内径とほぼ等しくなっており、接続管17は、一端から他端にかけて径が滑らかに変化するテーパーを有する形状となっている。この排気マフラー15は、排気管14を通った高温・高圧の排気ガスを消音して外部に排出するサイレンサとして機能する。この排気マフラー15には触媒コンバータ30が配置されている。これら排気管14(主管部)、排気マフラー15(収容部)及び接続管17(接続部)は一体となって上記車両の排気管を構成する。
 本実施形態の触媒コンバータ30は、セラミックス又は金属材料からなる担体の表面に形成された第一触媒層と該第一触媒層の上に形成された第二触媒層とを有し、該第一触媒層はCeO2の量が45~70質量%であり、ZrO2の量が20~45質量%であり、Nd23の量が2~20質量%であり、La23の量が1~10質量%であるセリウム-ジルコニウム系複合酸化物からなるキャリアと、該キャリアに担持された金属Pd又はPd酸化物からなる触媒成分とを有し、該第二触媒層はZrO2の量が50~95質量%であり、CeO2の量が0~40質量%であり、Nd23の量が2~20質量%であり、La23の量が1~10質量%であるジルコニウム系複合酸化物からなるキャリアと、該キャリアに担持された金属Rh又はRh酸化物からなる触媒成分とを有するか、又は該キャリアに担持された金属Rh又はRh酸化物からなる触媒成分及び金属Pt又はPt酸化物からなる触媒成分とを有することを特徴とする鞍乗型車両用排気ガス浄化触媒を用いているものである。
 触媒コンバータ30を構成する担体は耐熱性を有するもの、例えば、アルミナ、ムライト、コージライト等のセラミックスや、ステンレス、鉄-アルミニウム-クロム系合金等の金属材料で作製されたものであり、担体の形状は、特に限定されるものではないが、一般的にはハニカム、板等のモノリス形状や、ペレットの形状であり、好ましくはハニカム形状である。
 自動二輪車及び一般の四輪車について図8に示す走行条件で走行した場合の空燃比の割合を求めたところ、第4表に示す通りであった。
Figure JPOXMLDOC01-appb-T000005
 第4表に示すデータから明らかなように、同じ走行条件を与えた場合、自動二輪車の場合は高負荷域の使用領域が大きく、空燃比の割合が一般の四輪車と比較してリッチ側に振れていて、その平均値は14.5以下になっている。
 <実車浄化性能試験>
 実施例1~5及び比較例1~7で調製したそれぞれの触媒を、実車浄化性能評価のために下記の条件により耐久を行った。
 エンジン排気量:1300cc、
 燃料:無鉛ガソリン、
 触媒入り口ガス温度:730℃、
 耐久時間:32時間、
 A/F変動:燃料カット 10秒、
       リッチスパイク(二次エアカット) 40秒。
[規則91に基づく訂正 14.04.2010] 
 次いで、上記耐久後の各触媒を、図6に示す基本構成を有し、二次エアをカットした状態の自動二輪車のマフラーに組み込み、触媒の実車浄化性能を下記の条件下で測定した。それらの結果(エミッション値)は第5表に示す通りであった。
 使用車両:単気筒125cc自動二輪車、
 燃料:無鉛ガソリン、
 走行モード:図8に示す0-1200秒の範囲を1サイクルとし、車速をMAX70km/hまで引き上げたモード、
 測定方法:ISO6460
Figure JPOXMLDOC01-appb-T000006
 <実車浄化性能耐久試験>
 上記の実車浄化性能試験で用いた自動二輪車を用い、実施例2の排気ガス浄化触媒、比較例6の排気ガス浄化触媒又は比較例7の排気ガス浄化触媒を用い、耐久距離(走行距離)と浄化率との相関関係を求めたところ、CO浄化率については図9に示す通りであり、HC浄化率については図10に示す通りであり、NOx浄化率については図11に示す通りであった。
 <参考試験>
 本発明の鞍乗型車両用排気ガス浄化触媒の第一触媒層(下層)におけるNd23の添加効果、第一触媒層の熱安定性及びPdOの還元抑制効果を評価した。これらの検査においては第二触媒層(上層)が存在しているとRh、Ptの影響を受けて評価が困難になるため、担体に第一触媒層のみを担持させた参考触媒を用いて評価した。用いた参考触媒はそれぞれ下記のキャリアにPdを1.50g/Lの量で担持しているものである。
 48CeO2-44ZrO2-6Nd23-2La23(参考触媒1)
 46CeO2-36ZrO2-16Nd23-2La23(参考触媒2)
 46CeO2-49ZrO2-5La23(参考触媒3)
 46CeO2-28ZrO2-24Nd23-2La23(参考触媒4)
 30CeO2-60ZrO2-8Nd23-2La23(参考触媒5)
 参考触媒1~4を900℃に保持した電気炉に入れ、1体積%CO-N2混合ガスを20L/minで流して24時間熱処理し、次いで触媒のコート層を掻き取り、得られた粉末についてBET比表面積、OSC性能及びXRD回折法によるPdの結晶子径を測定した。それらの結果は第6表に示す通りであった。
Figure JPOXMLDOC01-appb-T000007
 参考触媒1~4についての第6表中のBET比表面積及びOSC性能とキャリア中のNd23の量(質量%)との相関関係は図12に示すグラフの通りである。図12に示すグラフから明らかなように、キャリア中のNd23の量が2~20質量%である時に良好な結果が得られている。
 参考触媒1、3及び4を上記の条件下で900℃で24時間熱処理した後にXRDを求めたところ図13に示すチャートが得られた。図13に示すチャートから明らかなように参考触媒1については耐久後にも相分離がなく、熱安定性が改善されていた。参考触媒3についてはNd23を含有していないため耐久後に相分離し、熱安定性が悪かった。参考触媒4についてはNd23を過剰に(24質量%)含有しているため耐久後に高角度側に相分離し、熱安定性が悪かった。
 参考触媒1及び5を下記の条件(リッチ条件)下で耐久した後にTPR測定を実施したところ図14に示すチャートが得られた。図14に示すチャートから明らかなように、第一触媒層のキャリアが本発明の条件を満足している参考触媒1の場合にはPdOが残ったままであったが、第一触媒層のキャリアが本発明の条件を満足していない参考触媒5の場合にはPdOが消失していた。
 耐久条件:
 エンジン排気量:1300cc、
 燃料:無鉛ガソリン、
 触媒入り口ガス温度:730℃、
 耐久時間:32時間、
 A/F変動:燃料カット 10秒、
       リッチスパイク(二次エアカット) 40秒。

Claims (7)

  1.   セラミックス又は金属材料からなる担体の表面に形成された第一触媒層と該第一触媒層の上に形成された第二触媒層とを有し、該第一触媒層はCeO2の量が45~70質量%であり、ZrO2の量が20~45質量%であり、Nd23の量が2~20質量%であり、La23の量が1~10質量%であるセリウム-ジルコニウム系複合酸化物からなるキャリアと、該キャリアに担持された金属Pd又はPd酸化物からなる触媒成分とを有し、該第二触媒層はZrO2の量が50~95質量%であり、CeO2の量が0~40質量%であり、Nd23の量が2~20質量%であり、La23の量が1~10質量%であるジルコニウム系複合酸化物からなるキャリアと、該キャリアに担持された金属Rh又はRh酸化物からなる触媒成分とを有するか、又は該キャリアに担持された金属Rh又はRh酸化物からなる触媒成分及び金属Pt又はPt酸化物からなる触媒成分とを有することを特徴とする鞍乗型車両用排気ガス浄化触媒。
  2.   第一触媒層において金属Pd又はPd酸化物からなる触媒成分の量が、キャリアの質量を基準として金属Pd換算で0.3~5質量%である請求項1記載の鞍乗型車両用排気ガス浄化触媒。
  3.   第二触媒層中の触媒成分が金属Rh又はRh酸化物である場合にPdの量とRhの量との質量比が金属換算でPd/Rh=1/1~20/1であり、又第二触媒層中の触媒成分が金属Rh又はRh酸化物と金属Pt又はPt酸化物とからなる場合にPdの量とRhの量とPtの量との質量比が金属換算で(Pt+Pd)/Rh=1/1~20/1である請求項1又は2記載の鞍乗型車両用排気ガス浄化触媒。
  4. [規則91に基づく訂正 14.04.2010] 
      第一触媒層はキャリアと触媒成分との合計量50~80質量%と、耐熱性アルミナ系成分10~40質量%と、バインダー材固形分5~20質量%とで構成されており、Pdの担持量が金属換算で触媒1L当り0.7~5.5gである請求項1、2又は3記載の鞍乗型車両用排気ガス浄化触媒。
  5. [規則91に基づく訂正 14.04.2010] 
      第二触媒層はキャリアと触媒成分との合計量50~80質量%と、耐熱性アルミナ系成分10~40質量%と、バインダー材固形分5~20質量%とで構成されており、Pd、Rh及びPtの合計担持量が金属換算で触媒1L当り0.7~6.5gである請求項1~4のいずれか1項に記載の鞍乗型車両用排気ガス浄化触媒。
  6.  第一触媒層の質量と第二触媒層の質量との比が1~3:1である請求項1~5のいずれか1項に記載の鞍乗型車両用排気ガス浄化触媒。
  7.  鞍乗型車両エンジンの空燃比(A/F)の平均値が14.5以下である請求項1~6のいずれか1項に記載の鞍乗型車両用排気ガス浄化触媒。
PCT/JP2009/071467 2009-03-25 2009-12-24 鞍乗型車両用排気ガス浄化触媒 WO2010109734A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011505814A JP5425888B2 (ja) 2009-03-25 2009-12-24 鞍乗型車両用排気ガス浄化触媒
BRPI0924487-5A BRPI0924487B1 (pt) 2009-03-25 2009-12-24 Exhaust gas purification catalyst for a vehicle type selim.
EP09842344.5A EP2412437B1 (en) 2009-03-25 2009-12-24 Exhaust gas purifying catalyst for saddle type vehicle
CN2009801583885A CN102361691B (zh) 2009-03-25 2009-12-24 用于鞍座型车辆的废气净化催化剂

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009075238 2009-03-25
JP2009-075238 2009-03-25

Publications (1)

Publication Number Publication Date
WO2010109734A1 true WO2010109734A1 (ja) 2010-09-30

Family

ID=42780436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/071467 WO2010109734A1 (ja) 2009-03-25 2009-12-24 鞍乗型車両用排気ガス浄化触媒

Country Status (5)

Country Link
EP (1) EP2412437B1 (ja)
JP (1) JP5425888B2 (ja)
CN (2) CN102361691B (ja)
BR (1) BRPI0924487B1 (ja)
WO (1) WO2010109734A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013145375A1 (ja) * 2012-03-30 2013-10-03 本田技研工業株式会社 鞍乗型車両用排気ガス浄化パラジウム単層触媒
JP2014519975A (ja) * 2011-06-01 2014-08-21 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー コールドスタート触媒および排気システムにおけるその使用
JP2018508337A (ja) * 2015-01-19 2018-03-29 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフトUmicore AG & Co.KG 経時劣化安定性が改善された二重層三元触媒
US10022705B2 (en) 2014-12-12 2018-07-17 Honda Motor Co., Ltd. Exhaust gas purifying catalyst
WO2020241250A1 (ja) * 2019-05-24 2020-12-03 本田技研工業株式会社 排気ガス浄化触媒構造体及びその製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5502953B2 (ja) * 2012-08-31 2014-05-28 三井金属鉱業株式会社 触媒担体及び排ガス浄化用触媒
WO2024067058A1 (en) * 2022-09-30 2024-04-04 Johnson Matthey (Shanghai) Chemicals Limited Improved catalysts for gasoline engine exhaust gas treatments

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10296085A (ja) 1997-04-30 1998-11-10 Cataler Kogyo Kk 排ガス浄化用触媒
JP2006263581A (ja) * 2005-03-24 2006-10-05 Mazda Motor Corp 排気ガス浄化用触媒
JP2006263582A (ja) * 2005-03-24 2006-10-05 Mazda Motor Corp 排気ガス浄化用触媒
JP2007275704A (ja) * 2006-04-03 2007-10-25 Johnson Matthey Japan Inc 排気ガス触媒およびそれを用いた排気ガス処理装置
JP2009000648A (ja) 2007-06-22 2009-01-08 Toyota Motor Corp 排ガス浄化用触媒

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10296085A (ja) 1997-04-30 1998-11-10 Cataler Kogyo Kk 排ガス浄化用触媒
JP2006263581A (ja) * 2005-03-24 2006-10-05 Mazda Motor Corp 排気ガス浄化用触媒
JP2006263582A (ja) * 2005-03-24 2006-10-05 Mazda Motor Corp 排気ガス浄化用触媒
JP2007275704A (ja) * 2006-04-03 2007-10-25 Johnson Matthey Japan Inc 排気ガス触媒およびそれを用いた排気ガス処理装置
JP2009000648A (ja) 2007-06-22 2009-01-08 Toyota Motor Corp 排ガス浄化用触媒

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2412437A4

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014519975A (ja) * 2011-06-01 2014-08-21 ジョンソン、マッセイ、パブリック、リミテッド、カンパニー コールドスタート触媒および排気システムにおけるその使用
WO2013145375A1 (ja) * 2012-03-30 2013-10-03 本田技研工業株式会社 鞍乗型車両用排気ガス浄化パラジウム単層触媒
US9737850B2 (en) 2012-03-30 2017-08-22 Honda Motor Co., Ltd. Exhaust gas purification palladium monolayer catalyst for saddle-riding-type vehicle
US10022705B2 (en) 2014-12-12 2018-07-17 Honda Motor Co., Ltd. Exhaust gas purifying catalyst
JP2018508337A (ja) * 2015-01-19 2018-03-29 ユミコア・アクチエンゲゼルシャフト・ウント・コムパニー・コマンディットゲゼルシャフトUmicore AG & Co.KG 経時劣化安定性が改善された二重層三元触媒
WO2020241250A1 (ja) * 2019-05-24 2020-12-03 本田技研工業株式会社 排気ガス浄化触媒構造体及びその製造方法
JPWO2020241250A1 (ja) * 2019-05-24 2021-11-25 本田技研工業株式会社 排気ガス浄化触媒構造体及びその製造方法
JP7130870B2 (ja) 2019-05-24 2022-09-05 本田技研工業株式会社 排気ガス浄化触媒構造体及びその製造方法

Also Published As

Publication number Publication date
JPWO2010109734A1 (ja) 2012-09-27
EP2412437A1 (en) 2012-02-01
CN102361691B (zh) 2013-12-25
CN102361691A (zh) 2012-02-22
CN103285857A (zh) 2013-09-11
BRPI0924487A2 (pt) 2016-02-16
CN103285857B (zh) 2015-03-25
EP2412437A4 (en) 2013-10-30
EP2412437B1 (en) 2017-12-06
BRPI0924487B1 (pt) 2017-11-28
JP5425888B2 (ja) 2014-02-26

Similar Documents

Publication Publication Date Title
JP5425888B2 (ja) 鞍乗型車両用排気ガス浄化触媒
JP6334731B2 (ja) 排気ガス浄化触媒
JP5642107B2 (ja) 鞍乗型車両用排気ガス浄化装置及びそれに用いるパラジウム単層触媒
CN112770836B (zh) 用于汽油发动机的废气净化系统
CN113646085B (zh) 排气净化用催化剂
JP6106458B2 (ja) 排気ガス用触媒装置
KR20130122984A (ko) 배기가스 정화 촉매
CN110997141B (zh) 排气净化用催化剂
US20220154621A1 (en) Exhaust Gas Purification Catalyst
WO2020241250A1 (ja) 排気ガス浄化触媒構造体及びその製造方法
JP7343718B2 (ja) 排ガス浄化用触媒
WO2023176325A1 (ja) 排ガス浄化用触媒
JP7430833B1 (ja) 排ガス浄化用触媒
WO2023136061A1 (ja) 排ガス浄化用触媒
JP2023014660A (ja) 排ガス浄化用触媒
JPH09155161A (ja) ガソリンエンジンの排気ガス浄化方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980158388.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09842344

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011505814

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009842344

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2186/MUMNP/2011

Country of ref document: IN

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: PI0924487

Country of ref document: BR

ENP Entry into the national phase

Ref document number: PI0924487

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110923