WO2010107262A2 - 열변환반응 밀폐용기 - Google Patents

열변환반응 밀폐용기 Download PDF

Info

Publication number
WO2010107262A2
WO2010107262A2 PCT/KR2010/001686 KR2010001686W WO2010107262A2 WO 2010107262 A2 WO2010107262 A2 WO 2010107262A2 KR 2010001686 W KR2010001686 W KR 2010001686W WO 2010107262 A2 WO2010107262 A2 WO 2010107262A2
Authority
WO
WIPO (PCT)
Prior art keywords
bezel
hot zone
conversion reaction
inlet hole
heat
Prior art date
Application number
PCT/KR2010/001686
Other languages
English (en)
French (fr)
Other versions
WO2010107262A3 (ko
Inventor
윤순광
정재철
김태수
김태형
유선일
김경호
Original Assignee
주식회사수성기술
한국실리콘주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020090023875A external-priority patent/KR101079340B1/ko
Priority claimed from KR1020090027973A external-priority patent/KR101181458B1/ko
Application filed by 주식회사수성기술, 한국실리콘주식회사 filed Critical 주식회사수성기술
Priority to US13/257,034 priority Critical patent/US20120039760A1/en
Priority to JP2012500722A priority patent/JP2012520759A/ja
Priority to CN2010800129826A priority patent/CN102361688A/zh
Publication of WO2010107262A2 publication Critical patent/WO2010107262A2/ko
Publication of WO2010107262A3 publication Critical patent/WO2010107262A3/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/08Compounds containing halogen
    • C01B33/107Halogenated silanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/02Apparatus characterised by being constructed of material selected for its chemically-resistant properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J4/00Feed or outlet devices; Feed or outlet control devices
    • B01J4/001Feed or outlet devices as such, e.g. feeding tubes
    • B01J4/002Nozzle-type elements
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/02Silicon
    • C01B33/021Preparation
    • C01B33/027Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material
    • C01B33/035Preparation by decomposition or reduction of gaseous or vaporised silicon compounds other than silica or silica-containing material by decomposition or reduction of gaseous or vaporised silicon compounds in the presence of heated filaments of silicon, carbon or a refractory metal, e.g. tantalum or tungsten, or in the presence of heated silicon rods on which the formed silicon is deposited, a silicon rod being obtained, e.g. Siemens process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00074Controlling the temperature by indirect heating or cooling employing heat exchange fluids
    • B01J2219/00087Controlling the temperature by indirect heating or cooling employing heat exchange fluids with heat exchange elements outside the reactor
    • B01J2219/00094Jackets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00132Controlling the temperature using electric heating or cooling elements
    • B01J2219/00135Electric resistance heaters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00051Controlling the temperature
    • B01J2219/00159Controlling the temperature controlling multiple zones along the direction of flow, e.g. pre-heating and after-cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/02Apparatus characterised by their chemically-resistant properties
    • B01J2219/025Apparatus characterised by their chemically-resistant properties characterised by the construction materials of the reactor vessel proper
    • B01J2219/0277Metal based
    • B01J2219/0286Steel

Definitions

  • the present invention relates to a heat conversion reaction closed container, and more particularly, to prevent the bezel from being heated above the limit temperature by supplying the reaction gas into the hot zone in a heated state by absorbing heat energy lost to the outside through the bezel. And, it relates to a heat conversion reaction closed container that can reduce the power consumption of the heater for maintaining the temperature inside the hot zone.
  • solar grade silicon has been obtained primarily from the surplus of the semiconductor industry.
  • semiconductor grade silicon produces commercially available solar cell grade materials using conventional processes.
  • One conventional process converts metallurgical silicon into silane or one of polysilane or chlorosilane compounds.
  • the silane, polysilane or chlorosilane is pyrolyzed in a Siemens-type reactor to form polysilicon of high purity.
  • polysilicon rods are produced by thermal decomposition of a gaseous silicon compound, such as silane or polysilane or chlorosilane, on a filament substrate, also called a slim rod.
  • a gaseous silicon compound such as silane or polysilane or chlorosilane
  • Such slim rods are generally made of high purity polysilicon to ensure product purity levels.
  • the STC is reused by reducing to TCS by thermal hydrogenation in the state of mixing with hydrogen (H 2 ).
  • a conventional converter for converting a conventional STC to TCS by thermal conversion reaction.
  • a conventional converter has a heater 13 installed on an upper surface of the base plate 10, and has a vertical or bell-jar type vessel 20 for forming a hot zone 21.
  • the base plate 10 is assembled above.
  • a shield 40 is installed between the heater 13 and the bezel 20 to reduce heat lost inside the hot zone 21 to the bezel 20 and to the outside.
  • a gas in which STC and hydrogen (H 2 ) are mixed through the inlet hole 11 formed through the plate surface of the base plate 10 is referred to as a hot zone ( 21, while supplying power to the heater 13 to heat the internal temperature of the hot zone 21 to about 900 °C to 1500 °C, the reaction gas inside the hot zone 21 by the hydrogenation reaction at a high temperature It is converted into TCS and hydrogen chloride (HCl) and discharged through the outlet hole (12).
  • the bezel 20 surrounding the hot zone 21 is a structural material made of metal, and carbon steel and stainless steel are usually formed of a cladding structure.
  • a cooling jacket 31 through which cooling water circulates is disposed outside the bezel 20 to raise the temperature of the bezel 20 to 300 ° C. or less. Keep it.
  • the bezel 20 surrounding the hot zone 21 is to build a separate cooling system 30 for structural stability To cool.
  • This conventional configuration has a low heat efficiency due to the high heat energy lost to the outside through the bezel 20.
  • the power consumption is increased because it is to be supplied again through the heater 13 as much heat energy lost by heat transfer from the hot zone to the bezel.
  • reaction gas (STC + H 2 ) is supplied at a high pressure through the inlet hole 11 formed in the center and the outer periphery of the base plate 10 so that the reaction is evenly circulated in the hot zone 21.
  • the temperature of the reaction gas is supplied at the vaporization temperature of the STC according to the supply pressure, a large amount of thermal energy is required to maintain the hot zone 21 at about 900 ° C to 1500 ° C.
  • the cooling system 30 is a cooling water circulation unit 32 for circulating the cooling water to the cooling jacket 31 provided on the outside of the bezel 20 and the bezel 20 through the cooling jacket 31.
  • devices such as a cooling unit 33 for recooling the coolant whose temperature has risen and a tank for storing the coolant should be installed around the converter. Therefore, it takes up a lot of space with complicated piping, and power consumption is increased because equipment such as a pump for circulating coolant must be driven.
  • an object of the present invention is to solve such a conventional problem, by absorbing the heat energy lost to the outside of the bezel in the process of supplying the reaction gas to the hot zone to be supplied to the hot zone, the bezel is heated above the limit temperature It is to provide a heat conversion reaction closed container that does not have to provide a separate cooling system for cooling the bezel, so as to prevent the.
  • reaction gas absorbs thermal energy and is supplied to the hot zone in a heated state, it is possible to prevent the temperature of the hot zone from dropping sharply and to provide a heat conversion reaction closed container that can reduce power consumption of the heater.
  • the object is, according to the present invention, the base plate; and the bezel to form a closed hot zone between the base plate; and a heater disposed in the hot zone; and to supply and discharge the reaction gas to the hot zone Inlet and outlet holes; And a heat exchange part formed inside the bezel such that the reaction gas supplied to the hot zone through the inlet hole absorbs heat energy transferred to the bezel to cool the temperature of the bezel and is supplied to the hot zone in a heated state. It is achieved by a heat conversion reaction closed container comprising a.
  • the heat exchange part is preferably made of a circulation passage circulating the space between the bezel and the hot zone and connecting the inlet hole and the hot zone.
  • the circulation passage partition wall separating the space adjacent to the inner surface of the bezel including the inlet hole and the space including the heater and the outlet hole, the reaction gas supplied through the inlet hole is the space between the partition wall and the bezel It is preferable to include a through hole formed on the plate surface of the partition spaced apart from the inlet hole to be supplied to the hot zone after heat exchange while moving.
  • the partition wall is provided in two or more tubular sizes having a size to each other to divide the space adjacent to the inner surface of the bezel including the inlet hole and the space including the heater and the outlet hole in a multi-layer, the inside of the large partition wall As a result, it is preferable that the barrier rib be small in size.
  • the two or more partition walls are preferably formed through the through-holes formed on the plate surface to be alternate with each other based on the inlet hole is to switch the movement path of the supply gas.
  • the partition wall is preferably made of a cylindrical shape, the upper side is closed, and further comprises a cover in which the outer periphery is in close contact with the inner surface of the bezel.
  • the partition wall is preferably made of a material having heat resistance with respect to the temperature heated by the heat energy transferred from the hot zone at the installed position.
  • the injection nozzle is provided on the gas discharge side of the inlet hole to distribute the gas supplied to the heat exchange unit; preferably includes.
  • the inflow hole is preferably formed in a plurality so as to be spaced apart a predetermined interval on the plate surface of the base plate corresponding to the area between the partition wall and the bezel.
  • the injection nozzle has one end connected to the inlet hole and supplied with gas, and the other end formed with a closed supply pipe, and at least one injection hole formed laterally from the supply pipe to discharge gas.
  • the injection nozzle is preferably formed with a guide to guide the gas spaced apart from the injection hole in the downward direction.
  • the injection nozzle has one end connected to the inlet hole and supplied with gas, and the other end formed with a closed supply pipe, and at least one injection hole through which the gas is discharged in a downward inclination direction from the supply pipe.
  • thermoconversion closed container is provided that does not require a system.
  • reaction gas absorbs thermal energy and is supplied to the hot zone in a heated state
  • a heat conversion reaction closed container is provided to prevent the temperature of the hot zone from dropping rapidly and to reduce the power consumption of the heater.
  • the heat exchange area is increased to increase heat exchange efficiency.
  • a heat conversion reaction closed container that can be improved.
  • thermoconversion sealed container is provided.
  • a heat conversion reaction closed container can be provided to improve heat exchange efficiency by allowing heat exchange to occur in a region between a plurality of injection nozzles and a lower region of a circulation passage in which the injection nozzles are located.
  • FIG. 1 is a cross-sectional view of a conventional trichlorosilane conversion apparatus by thermal conversion reaction of silicon tetrachloride
  • FIG. 2 is a perspective view of the heat conversion reaction closed container of the present invention
  • FIG. 3 is an exploded perspective view of the heat conversion reaction closed container of the present invention
  • Figure 4 is a front sectional view of the heat conversion reaction sealed container
  • Figure 6 is a partial cutaway perspective view of a second embodiment of the heat conversion reaction closed container of the present invention.
  • Figure 7 is an exploded perspective view according to a second embodiment of the heat conversion reaction closed container of the present invention.
  • FIG. 8 is a front sectional view of a second embodiment of a heat conversion reaction closed vessel.
  • FIG. 9 is a perspective view of a third embodiment of the heat conversion reaction closed container of the present invention.
  • FIG. 10 is an exploded perspective view of a third embodiment of the heat conversion reaction closed container of the present invention.
  • FIG. 11 is a front sectional view of a third embodiment of the heat conversion reaction closed container of the present invention.
  • FIG. 12 is an enlarged view of a portion “A” of FIG. 11;
  • Figure 13 is a cross-sectional view showing another embodiment of the injection nozzle according to the heat conversion reaction closed container of the present invention.
  • FIG. 14 is a cross-sectional view of a fourth embodiment of the heat conversion reaction closed container of the present invention.
  • FIG. 2 is a partially cutaway perspective view of the heat conversion reaction closed container of the present invention
  • Figure 3 is an exploded perspective view of the heat conversion reaction closed container of the present invention.
  • the heat conversion reaction closed container of the present invention as shown in the drawing comprises a base plate 110, a bezel 120, and a heat exchanger 130 provided on the bezel 120 side,
  • the thermal conversion reaction closed container of the present invention converts silicon tetrachloride (Silicon Tetracloride; STC, SiCl 4 ) into trichlorosilane (TCS, SiHCl 3 ) through a thermal conversion reaction.
  • STC silicon tetrachloride
  • TCS trichlorosilane
  • SiHCl 3 trichlorosilane
  • the base plate 110 has an outlet hole 112 formed at the center thereof, and a plurality of inlet holes 111 are formed in the circumferential direction at the outer circumference thereof, and a heater 113 generating heat by application of power is installed on the upper surface. do.
  • the bezel 120 is assembled to the base plate 110 to form a hot zone 123 sealed from an external region.
  • the bezel 120 covers a side wall 121 and an upper side of the side wall 121.
  • a description will be given taking an example consisting of 122.
  • the heat exchange part 130 is a state in which the reaction gas (STC + H 2 ) flowing through the inlet hole 111 of the base plate 110 absorbs heat energy from the side wall 121 of the bezel 120 and is heated.
  • a circulation passage 131 connecting the inlet hole 111 into which the reaction gas flows and the hot zone 123. Is done.
  • cylindrical partitions 132 having different diameters are arranged to be concentric, and through holes 132a formed at one end or the other end of each partition 132 are positioned at the inlet hole 111.
  • a zigzag-shaped circulation passage 131 is formed while being formed at positions staggered from one end or the other end with respect to each other.
  • the reaction gas introduced into the circulation passage 131 through the inflow hole 111 located between the partition wall 132 disposed on the outside of the plurality of partition walls 132 and the side wall 121 of the bezel 120 is a partition wall.
  • the spaces between the partition walls 132 are zigzag through the through holes 132a of the 132. Therefore, since the bezel 120 absorbs the heat energy transferred to the bezel 120 and the partition wall 132, not only the bezel 120 is heated but also heats the reaction gas supplied to the hot zone by using the heat energy lost to the outside of the bezel 120. The utilization efficiency of the is improved.
  • the circulation passage 131 is formed by staggering the through holes 132a of the partition wall 132 to form a zigzag movement path, but the reaction gas moves through the circulation path in the process of passing through the circulation passage. It can also be configured in various forms to increase the heat exchange area and the heat exchange time by dispersing or converting.
  • the thermal energy transmitted to the partition wall 132 is different depending on the location of the partition wall 132, that is, the distance from the heater 113, and thus, each partition wall 132 is heated to different temperatures.
  • the temperature of the hot zone 123 is about 1200 ° C. and the temperature of the reaction gas supplied through the inlet hole 111 is 80 ° C.
  • the side wall 121 maintains a temperature of about 200 ° C.
  • the side wall is Since the partitions 132 contacting the hot zone 123 from the partition 132 facing the 121 are heated to a temperature of about 300 ° C., 500 ° C., and 700 ° C., respectively, the plurality of partitions 122 are located at the installed position. It should be made of a material having heat resistance corresponding to the heating temperature.
  • the inlet hole 111 of the base plate 110 is adjacent to each other to supply the reaction gas at an equal pressure in the horizontal direction in the space between the bezel 120 and the outermost partition wall 132 A large number is provided.
  • the through hole 132a is formed to penetrate through the plate surface of the partition 132 in the drawing, one end of the partition 132 is fixed to the base plate 110 or the cover 122 side, and the other end is
  • the through hole 132a may be formed through the spaced spaced apart from the cover 122 or the base plate 110 by a predetermined distance, and may be formed in various forms for connecting both spaces of the partition wall 132.
  • the bezel 120 includes the side wall 121 and the cover 122 as an example.
  • the bezel 120 is provided inside the bezel 120.
  • the heat exchanger 130 is formed in a shape corresponding to the inner surface of the bezel 120, that is, the same shape as the bezel 120 to configure a partition 132 spaced a predetermined distance from the inner surface of the bezel 120. It is possible. At this time, it is also possible to improve the heat exchange efficiency of the circulation passage 131 by arranging the partitions 132 as described above in a plurality and through-holes 132a are alternately formed.
  • Figure 4 is a front sectional view of the heat conversion reaction closed container of the present invention
  • Figure 5 is a plan sectional view of the heat conversion reaction closed container of the present invention.
  • the side wall 121 of the bezel 120 is disposed above the outer edge of the base plate 110, and the cover 122 is disposed at the upper end of the side wall 121 while the airtight hot zone is airtight. 123 is formed. Then, while the power is applied to the heater 113 provided above the base plate 110, the internal temperature of the hot zone 123 is heated to about 900 °C to 1500 °C suitable for the reaction.
  • the heat exchanger 130 is provided on the inner surface of the side wall 121 of the bezel 120 to surround the hot zone 123 by a circulation passage 131 connecting the inlet 111 and the hot zone 123. Cooling the 121 and at the same time increasing the temperature of the reaction gas supplied to the hot zone 123.
  • the circulation passage 131 is fixed between the inlet hole 111 and the heater 113, the lower end is fixed to the base plate 110, the upper end is fixed to the cover 122 and the through hole 132a is formed on the plate surface It is comprised by the partition 132 which connects both spaces.
  • the through holes 132a are alternately formed at one end or the other end of the partition 132 based on the inflow hole 111 to connect the inflow hole 111 and the hot zone 123 in a zigzag form.
  • the reaction gas introduced into the circulation passage 131 through the inlet hole 111 absorbs the heat energy transferred to the bezel 120 and the partition wall 132 to cool the bezel 120 and to be heated at the same time. It is supplied to the hot zone 123.
  • reaction gas absorbs the heat energy transferred to the side wall 121 of the bezel 120 and is supplied to the hot zone 123 in a heated state, the utilization efficiency of the heat energy is improved, as well as the temperature of the hot zone 123. It is possible to reduce the power consumption of the heater 113 for maintaining at a high temperature suitable for the reaction.
  • the circulation passage 131 is formed in a zigzag form by the inflow hole 111 disposed to intersect one end or the other end with respect to the plurality of partitions 132 and the inflow hole 111 as described above. Therefore, the heat exchange area between the reaction gas introduced into the circulation passage 131 through the inflow hole 111 and the bezel 120 and the partition wall 132 is increased.
  • FIG. 5 is a cross-sectional view taken along the line A-A 'of FIG. 4, and is formed through the outer periphery of the base plate 110 as shown in the drawing, and is located between the side wall 121 and the outer partition 132.
  • Balls 111 are formed in plural at equal intervals along the circumferential direction, the reaction gas is supplied through each inlet hole 111 is supplied to the hot zone 123 through the circulation passage 131.
  • the reaction gas is supplied at an equal pressure to all the inflow side regions of the circulation passage 131.
  • the reaction gas rises or falls at an equal pressure with respect to the horizontal direction in each region of the circulation passage 131, the temperature of the side walls 121 and the partition walls 132 is prevented from increasing intensively in some regions. Done.
  • FIG. 6 is a partial cutaway perspective view of a second embodiment of the heat conversion reaction closed container of the present invention
  • Figure 7 is an exploded perspective view according to a second embodiment of the heat conversion reaction closed container of the present invention.
  • the bezel 120 in the second embodiment of the heat conversion reaction closed container of the present invention as shown in the drawings is made of a bell-jar type (opening one side), the opening side is the base plate 110 ) To form a hot zone inside.
  • the circulation passage 131 of the heat exchange part 130 provided inside the bezel 120 and connecting the inflow hole 111 and the hot zone 123 may have the inflow hole 111 and the heater of the base plate 110.
  • At least one cylindrical partition wall 132 disposed between the 113, through-hole 132a formed at the end of the partition wall 132 on the opposite side of the inflow hole 111, and the outer peripheral portion is It is formed to be in close contact with the inner surface of the bezel is configured to include a cover 133 for closing the upper side of the cylindrical partition 132.
  • a plurality of cylindrical partitions having different diameters are provided, and the through-holes formed in each partition are alternately formed based on the inflow hole. It is also possible to achieve a zigzag movement path. (See FIG. 6)
  • components other than the bezel and the heat exchanger have the same configuration as in the above-described embodiment, detailed description thereof will be omitted.
  • FIG. 8 is a front sectional view according to a second embodiment of the heat conversion reaction closed container of the present invention.
  • the heat exchange part 130 has a cylindrical partition wall 132 having an upper side opened between the inlet hole 111 of the base plate 110 and the bell-shaped bezel 120, and the inflow from the plate surface of the partition wall 132.
  • a through hole 132a formed at a position spaced apart from the ball 111 to connect the two side spaces, and the upper side of the partition 132 to close the opening side and the outer periphery is in close contact with the inner surface of the bezel 120 It consists of a cover 133.
  • the partition 132 is provided with a plurality of different sizes, the space including the inlet hole 111 adjacent to the inner surface of the bezel 120 while both ends are supported on the cover 133 and the base plate 110.
  • the space between the outlet hole 112 and the heater 113 is divided into a plurality of layers.
  • the plurality of partition wall 132 is formed through the through-hole 132a at a mutually staggered position on the basis of the inlet hole 111, the circulation passage 131 for connecting between the inlet hole 111 and the hot zone 123 ) Is zigzag.
  • the hot zone 123 maintains a temperature of about 900 ° C. to 1500 ° C. through the inlet hole 111.
  • the supplied reaction gas is supplied at a vaporization temperature of STC which is much lower than the temperature of the hot zone maintaining the temperature of about 900 ° C to 1500 ° C.
  • the reaction gas absorbs the heat energy transferred to the bezel 120 and the partition wall 132 while passing through the zigzag-shaped circulation passage 131 connecting the inlet 111 and the hot zone 123, the bezel 120 ), It is not necessary to provide a separate cooling system as in the prior art.
  • the reaction gas supplied at the vaporization temperature of the STC which is much lower than the temperature of the hot zone, is heated to a temperature of about 500 ° C. to 900 ° C. while passing through the circulation passage 131 of the heat exchange unit 130. Since the temperature of the hot zone 123 can be prevented from being drastically lowered due to the inflow of the reaction gas, the power consumption of the heater 113 can be further reduced.
  • the plurality of partitions 132 constituting the circulation passage 131 has a supply temperature of the reaction gas supplied to the hot zone, the amount of heat lost to the outside of the bezel 120, and The number may be adjusted in consideration of heat exchange efficiency according to the material.
  • FIG. 9 is a perspective view of a third embodiment of the heat conversion reaction closed container of the present invention
  • Figure 10 is an exploded perspective view of a third embodiment of the heat conversion reaction closed container of the present invention.
  • the third embodiment of the heat conversion reaction closed container of the present invention as shown in the drawings comprises a base plate 110, a bezel 120, a heat exchanger 130 and a spray nozzle 140, Since the injection nozzle 140 is installed in the inlet hole 111 of the base plate 110, it differs from the above-described embodiment, and thus, detailed description of the rest of the configuration except for the injection nozzle 140 will be omitted.
  • the injection nozzle 140 as described above is installed on the gas discharge side of the inlet hole 111 to disperse the injection direction of the reaction gas, one end of which is connected to the inlet hole 111 and the other end of the supply pipe 141 ) And at least one injection hole 142 formed laterally at the other end of the supply pipe 141 to discharge the reaction gas, and the reaction gas injected laterally through the injection hole 142. It is configured to include a guide 143 is spaced apart from the injection hole 142 by a predetermined interval to guide in the direction.
  • FIG. 11 is a sectional front view of a third embodiment of the heat conversion reaction closed container of the present invention
  • FIG. 12 is an enlarged view of portion “A” of FIG. 11.
  • a circulation passage 131 is formed between the inlet hole 111 and the hot zone 123 by the heat exchanger 130 installed inside the bezel 120.
  • a circulation passage 131 connecting the inflow hole 111 and the hot zone 123 by the plurality of partitions 132 constituting the heat exchange part 130 and through holes 132a formed in the partitions is provided.
  • a zigzag movement path is achieved.
  • reaction gas supplied to the vaporization temperature of the STC which is much lower than the temperature of the hot zone 123 through the inlet hole 111 passes through the circulating passage 131 in a zigzag form through the inlet hole 111, and the bezel 120. And absorbs heat energy transferred to the partition wall 132 and is supplied to the hot zone 123 in a heated state.
  • the injection nozzles 140 are assembled on the discharge sides of the inlet holes 111 to disperse the reaction gas supplied to the circulation passage 131 of the heat exchange unit 130 through the inlet hole 111 so that the injection pressure is one. Prevents concentration on the area.
  • the reaction gas is injected toward the lower region of the circulation passage 131, the reaction gas is supplied to the region between the adjacent injection nozzles 140, thereby performing heat exchange, thereby improving heat exchange efficiency.
  • the reaction gas supplied through the inlet hole 111 passes through the supply pipe 141 and the other end of the supply pipe 141 of the injection nozzle 140 installed at the gas discharge side of the inlet hole 111 in a lateral direction.
  • the supply pressure is dispersed while being discharged to the formed injection hole 142, respectively.
  • the reaction gas is injected toward the bottom surface of the base plate 110 by the guide 143 provided at a position spaced apart from the injection hole 142 by a predetermined distance.
  • the reaction gas moves at a uniform pressure from the lower region to the upper region of the circulation passage 131, the time for absorbing the heat energy transferred to the partition wall 132 and the bezel 120 is extended.
  • the reaction gas is switched from the two injection nozzles 140, the supply direction is supplied to the heat exchange is made to provide an advantage that the heat exchange efficiency is improved.
  • FIG. 13 is a cross-sectional view showing another embodiment of the spray nozzle according to the heat conversion reaction closed container of the present invention.
  • the injection nozzle 140 ′ of another embodiment as shown in the drawing has a supply pipe 141 having one end connected to the inlet hole 111 and the other end closed, and a downward inclination direction from the other end of the supply pipe 141. It has a difference from the injection nozzle 140 of the above-described embodiment in that at least one injection hole 142 is formed to discharge the reaction gas is formed.
  • the injection nozzle 140 ' according to another embodiment of the present invention, which is configured as described above, is installed at the reaction gas discharge side of the inlet hole 111 located between the bezel 120 and the partition wall 132.
  • the reaction gas is supplied through the inlet hole 111 in the state, the lower portion of the circulation passage 131 through the plurality of injection holes 142 formed to be inclined downward from the other end of the supply pipe 141 of the injection nozzle 140 '. Discharged.
  • the reaction gas is dispersed in various directions, and the injection holes 142 are formed to be inclined downward so that the supply direction of the reaction gas is inclined downward in the lower region of the circulation passage 131.
  • the reaction gas is moved evenly to the upper region by the pressure concentrated in the lower region of the circulation passage 131, so that the time for absorbing the heat energy transferred to the partition wall 132 and the bezel 120 is extended.
  • the reaction gas is also supplied to the space between the adjacent pair of injection nozzles 140 ′ to provide heat exchange efficiency in the entire area between the partition wall 132 and the bezel 120. do.
  • FIG. 14 is a cross-sectional view of a fourth embodiment of the heat conversion reaction closed container of the present invention, in which the heat conversion reaction closed container of the present invention is a chemical vapor deposition reactor (CVD reactor) for producing high purity polycrystalline silicon. It demonstrates as an example.
  • CVD reactor chemical vapor deposition reactor
  • the heat conversion reaction closed container includes a base plate 110, a bezel 120, a heat exchanger 130, and a spray nozzle 140. do.
  • the heater 113 provided in the base plate 110 is heat-resisted by a supply of power, and a seed filament is applied to induce deposition of silicon on an outer surface.
  • the circulation passage 131 of the heat exchanger 130 is disposed to surround the heater 113 and the outlet hole 112 and includes a heater 113 and an outlet hole 112 and an inlet hole 111.
  • Bell-shaped partition wall 132 that divides the space adjacent to the inner surface of the bezel 120 including a) and the through hole 132a formed on the opposite side of the partition wall 132 based on the inflow hole 111 It is composed by.
  • the configuration other than the heater 113 and the circulation passage 131 as described above has the same configuration as the above-described embodiment.
  • the injection nozzle 140 installed in the portion indicated by "A" of Fig. 14 is the injection nozzle 140 shown in Fig. 13 mentioned in the above-described embodiment or the injection nozzle 140 'shown in Fig. Since the configuration is the same as, the description of the same configuration as the above embodiment is omitted.
  • the inlet hole (When the reaction gas (TCS + H 2 ) is supplied through 111, the silicon component in the reaction gas is deposited on the outer surface of the heater 113, and hydrogen chloride (3HCl) remaining after the reaction causes the outlet hole 112 to be discharged. Is discharged through.
  • the reaction gas supplied through the inlet hole 111 is introduced into the space between the partition wall 132 and the bezel 120, and circulates along the moving path of the circulation passage 131 by the supply pressure, After absorbing the heat energy transmitted to the 120 and the partition 132, the bezel 120 and the partition 132 in the process of supplying the hot zone 123 through the through hole 132a spaced apart from the inlet hole 111 It absorbs heat energy transferred to).
  • the reaction gas supplied at a temperature lower than the reaction temperature is supplied to the hot zone in a heated state, the power consumption of the heater 113 for maintaining the temperature of the hot zone 123 at a high temperature can be reduced.
  • the reaction gas absorbs the heat energy transferred to the bezel 120 and the partition wall 132 to cool the bezel 120, a cooling system that is separately installed outside the bezel 120 to cool the bezel 120 is provided. It may omit or provide an advantage of minimizing the capacity or driving amount of the cooling system.
  • the injection nozzles 140 are assembled on the discharge sides of the inlet holes 111, the supply pressure of the reaction gas supplied to the circulation passage 131 of the heat exchange unit 130 is distributed through the inlet hole 111.
  • the reaction gas is injected toward the lower region of the circulation passage 131, the reaction gas is supplied to the region between the lower region of the circulation passage 131 and the adjacent pair of injection nozzles 140, thereby performing heat exchange. The efficiency is improved.
  • thermoconversion closed container is provided that does not require a system.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Silicon Compounds (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

본 발명은 열변환반응 밀폐용기에 관한 것으로서, 본 발명에 따른 열변환반응 밀폐용기는 유틸리티들이 설치되는 베이스 플레이트;와, 상기 베이스 플레이트와의 사이에 밀폐된 핫존을 형성하는 베젤;과, 상기 핫존에 배치되는 히터;와, 상기 핫존으로 반응 가스를 공급 및 배출하는 유입공과 유출공; 및, 상기 유입공을 통해 핫존으로 공급되는 반응 가스가 상기 베젤로 전달되는 열에너지를 흡수하여 베젤의 온도를 냉각시키는 것과 동시에 가열된 상태로 상기 핫존으로 공급되도록 상기 베젤의 내측에 형성되는 열교환부;를 포함하는 것을 특징으로 한다. 이에 의하여, 베젤의 내측에 마련된 열교환부를 통해 반응 가스가 핫존으로 공급되는 과정에서, 핫존의 히터로부터 베젤로 전달되어 외부로 손실되는 열에너지를 핫존으로 공급되는 반응 가스가 흡수하므로 베젤이 한계온도 이상으로 가열되는 것이 방지되며, 상기 베젤의 외측으로 손실되는 열에너지를 흡수한 반응 가스가 가열되어 핫존으로 공급되므로 히터의 전력소비량을 절감할 수 있는 열변환반응 밀폐용기가 제공된다.

Description

열변환반응 밀폐용기
본 발명은 열변환반응 밀폐용기에 관한 것으로서, 보다 상세하게는 반응가스가 베젤을 통해 외부로 손실되는 열에너지를 흡수하여 가열된 상태로 핫존 내부로 공급되도록 함으로써 베젤이 한계온도 이상으로 가열되는 것을 방지하고, 핫존 내부의 온도를 유지하기 위한 히터의 전력소비량을 절감할 수 있는 열변환반응 밀폐용기에 관한 것이다.
지금까지, 태양전지급(solar grade) 실리콘은 주로 반도체 산업의 잉여물로부터 얻어졌다. 그러나, 몇몇 반도체급 실리콘의 제조업체는 태양전지급 물질을 통상의 공정을 사용하여 상업적으로 생산한다. 하나의 통상의 공정은 금속급(metallurgical) 실리콘을 실란 또는 폴리실란 또는 클로로실란 화합물들 중 하나로 변환한다. 상기 실란, 폴리실란 또는 클로로실란은 지멘스형 반응기 (Siemens-type reactor) 중에서 열분해되어, 고순도(highgrade purity)의 폴리실리콘을 형성한다.
이러한 지멘스 공정에서, 폴리실리콘 로드(rod)는 슬림 로드(slim rod)라고도 불리는 필라멘트 기판상에서 기상 실리콘 화합물, 예컨데, 실란 또는 폴리실란 또는 클로로실란의 열분해에 의하여 제조된다. 이러한 슬림 로드는 생성물 순도 수준을 확보하기 위하여 일반적으로 고순도 폴리실리콘으로 만들어진다.
상기와 같이 반응기 내에서 트리클로로실란(Trichlorosilane;TCS, 삼염화실란(SiHCl3), 이하 'TCS'라고 함)을 수소와 반응시켜 다결정 실리콘을 제조하는데 있어서, 다결정 실리콘의 석출과정에서 다량의 실리콘 테트라클로라이드(Silicon Tetracloride;STC, 사염화규소(SiCl4)이하 "STC"라고 함)이 수득된다.
상기 STC는 수소(H2)와 혼합된 상태에서 열 수소화 반응으로 TCS로 환원시켜 재사용된다.
도 1은 종래 STC를 열변환반응시켜 TCS로 변환하는 변환장치(Converter)의 단면도이다. 도면에서와 같이 종래의 변환장치는 베이스 플레이트(10)의 상면에 히터(13)가 설치되고, 핫존(Hot zone, 21)을 형성하기 위한 종형 또는 벨자형 베젤(bell-jar type Vessel, 20)이 상기 베이스 플레이트(10)의 상측에 조립된다. 그리고, 상기 히터(13)와 베젤(20)의 사이에서 핫존(21) 내부의 열이 베젤(20)로 전달되어 외부로 손실되는 것을 줄이기 위한 쉴드(shield, 40)가 설치된다.
상기와 같이 조립된 상태에서, 상기 베이스 플레이트(10)의 판면에 관통형성된 유입공(11)을 통해 STC와 수소(H2)가 혼합된 가스(이하, '반응 가스'라고 함)를 핫존(21)으로 공급하면서, 상기 히터(13)에 전원을 인가하여 핫존(21)의 내부온도를 약 900℃ 내지 1500℃로 가열하면, 핫존(21) 내부에서 반응 가스가 고온에서의 수소화반응에 의해 TCS와 염화수소(HCl)로 변환되어 유출공(12)을 통해 배출된다.
상기 핫존(21)을 감싸는 베젤(20)은 금속재질의 구조재로서, 통상 카본스틸과 스테인레스스틸이 크래딩(Crading) 구조로 이루어진다. 이러한 베젤(20)은 약 500℃ 이상으로 가열되는 경우 구조재로서의 강성이 저하되므로 베젤(20)의 외측에 냉각수가 순환하는 냉각자켓(31)을 배치하여 베젤(20)의 온도를 300℃ 이하로 유지시킨다.
즉, 핫존(21)에서는 반응 가스의 열변환반응을 유도하기 위해 반응에 적합한 높은 온도를 유지하고, 핫존(21)을 감싸는 베젤(20)은 구조적 안정을 위해 별도의 냉각시스템(30)을 구축하여 냉각시키는 구성을 갖는다. 이러한 종래의 구성은 베젤(20)을 통해 외부로 손실되는 열에너지가 많으므로 열에너지의 이용효율이 낮다. 또한, 핫존으로부터 베젤로 열전달되어 손실되는 열에너지만큼 히터(13)를 통해 다시 공급해야하는 것이므로 전력소비량이 상승하게 되는 문제점이 있다.
또한, 반응 가스(STC+H2)는 핫존(21) 내부에서 골고루 순환되면서 반응을 일으킬 수 있도록 베이스 플레이트(10)의 중앙 및 외주연부에 다수 형성된 유입공(11)을 통해 고압으로 공급된다. 이때 반응가스의 온도는 공급압력에 따른 STC 의 기화온도로 공급되므로 핫존(21)을 약 900℃ 내지 1500℃로 유지하기 위해서는 많은 열에너지를 필요로 하게 된다.
또한, 상기 냉각시스템(30)은 상기 베젤(20)의 외측에 마련된 냉각자켓(31)으로 냉각수를 순환시키기 위한 냉각수 순환부(32)와, 상기 냉각자켓(31)을 통해 베젤(20)을 냉각시키는 과정에서 온도가 상승된 냉각수를 다시 냉각시키기 위한 냉각부(33) 및, 냉각수를 보관하기 위한 탱크와 같은 장치들이 변환장치의 주변에 설치되어야 한다. 따라서 복잡한 배관과 함께 공간을 많이 차지하게 되고, 냉각수를 순환시키기 위한 펌프 등과 같은 장비들을 구동시켜야 하므로 전력의 소비가 증가한다. 또한, 냉각시스템의 구축 및 운용에 대해 막대한 투자비가 증가하게 되는 문제점이 있다.
따라서, 본 발명의 목적은 이와 같은 종래의 문제점을 해결하기 위한 것으로서, 반응가스가 핫존으로 공급되는 과정에서 베젤의 외부로 손실되는 열에너지를 흡수하여 핫존으로 공급되도록 함으로써, 베젤이 한계온도 이상으로 가열되는 것을 방지하므로, 베젤을 냉각시키기 위한 별도의 냉각시스템을 구비하지 않아도 되는 열변환반응 밀폐용기를 제공함에 있다.
또한, 반응가스가 열에너지를 흡수하여 가열된 상태로 핫존으로 공급되므로 핫존의 온도가 급격히 낮아지는 것을 방지하는 것은 물론, 히터의 전력소비량을 절감할 수 있는 열변환반응 밀폐용기를 제공함에 있다.
또한, 상기 열교환부를 구성하는 다수의 격벽과, 격벽의 일단부 또는 타단부에 형성되는 관통공을 통해 유입공과 핫존을 연결하는 순환통로를 지그재그형태로 배치함으로써 열교환효율을 향상시킬 수 있는 열변환반응 밀폐용기를 제공함에 있다.
또한, 유입공과 핫존을 연결하는 순환통로의 가스유입측에 반응가스의 분사압력을 분산시키는 것과 동시에 인접한 분사노즐과의 사이영역까지 반응가스가 골고루 공급되도록 하는 분사노즐을 마련함으로써 열교환효율을 향상시킬 수 있는 열변환반응 밀폐용기를 제공함에 있다.
또한, 다수 마련되는 분사노즐들의 사이영역 및 분사노즐이 위치한 순환통로의 하부영역에서도 열교환이 이루어질 수 있도록 함으로써 열교환효율을 향상시킬 수 있는 열변환반응 밀폐용기를 제공함에 있다.
상기 목적은, 본 발명에 따라, 베이스 플레이트;와, 상기 베이스 플레이트와의 사이에 밀폐된 핫존을 형성하는 베젤;과, 상기 핫존에 배치되는 히터;와, 상기 핫존으로 반응 가스를 공급 및 배출하는 유입공과 유출공; 및, 상기 유입공을 통해 핫존으로 공급되는 반응 가스가 상기 베젤로 전달되는 열에너지를 흡수하여 베젤의 온도를 냉각시키는 것과 동시에 가열된 상태로 상기 핫존으로 공급되도록 상기 베젤의 내측에 형성되는 열교환부;를 포함하는 것을 특징으로 하는 열변환반응 밀폐용기에 의해 달성된다.
여기서, 상기 열교환부는 상기 베젤과 핫존 사이 공간을 순환하며 상기 유입공과 핫존을 연결하는 순환통로로 이루어지는 것이 바람직하다.
또한, 상기 순환통로는 유입공을 포함하는 베젤의 내측면에 인접한 공간과 히터와 유출공을 포함하는 공간을 구분하는 격벽과, 상기 유입공을 통해 공급된 반응가스가 격벽과 베젤의 사이공간을 이동하면서 열교환을 이룬 뒤 핫존으로 공급되도록 유입공으로부터 이격 되어 상기 격벽의 판면에 형성되는 관통공을 포함하는 것이 바람직하다.
또한, 상기 격벽은 유입공을 포함하는 베젤의 내측면에 인접한 공간과 히터와 유출공을 포함하는 공간의 사이를 다층으로 구분하도록 서로 크기를 갖는 두개 이상의 통형으로 마련되고, 크기가 큰 격벽의 내측으로 크기가 작은 격벽이 삽입되는 형태로 배치되는 것이 바람직하다.
또한, 상기 두개 이상의 격벽은 판면에 형성되는 관통공이 유입공을 기준으로 서로 엇갈리게 형성되어 공급가스의 이동경로가 전환되는 것이 바람직하다.
또한, 상기 격벽은 상측이 개구된 통형으로 이루어지고, 상기 격벽들의 상측을 마감하며 외주연부가 상기 베젤의 내측면에 밀착되는 커버를 더 포함하는 것이 바람직하다.
또한, 상기 격벽은 설치된 위치에서 핫존으로부터 전달되는 열에너지에 의해 가열되는 온도에 대하여 내열성을 갖는 재질로 이루어지는 것이 바람직하다.
또한, 상기 유입공의 가스 배출측에 마련되어 상기 열교환부로 공급되는 가스를 분산시키는 분사노즐;을 포함하는 것이 바람직하다.
또한, 상기 유입공은 상기 격벽과 베젤의 사이영역에 대응되는 베이스플레이트의 판면에 소정간격 이격되도록 다수 형성되는 것이 바람직하다.
또한, 상기 분사노즐은 일단부가 상기 유입공과 연결되어 가스가 공급되고 타단부는 마감된 공급관과, 상기 공급관으로부터 측방향으로 형성되어 가스가 배출되는 적어도 하나의 분사공이 형성되는 것이 바람직하다.
또한, 상기 분사노즐은 상기 분사공으로부터 이격되어 측방향으로 분사되는 가스를 하측방향으로 유도하는 가이드가 형성되는 것이 바람직하다.
또한, 상기 분사노즐은 일단부가 상기 유입공과 연결되어 가스가 공급되고 타단부는 마감된 공급관과, 상기 공급관으로부터 하향경사방향으로 형성되어 가스가 배출되는 적어도 하나의 분사공이 형성되는 것이 바람직하다.
본 발명에 따르면, 반응가스가 핫존으로 공급되는 과정에서 베젤의 외부로 손실되는 열에너지를 흡수하여 핫존으로 공급되도록 함으로써, 베젤이 한계온도 이상으로 가열되는 것을 방지하므로, 베젤을 냉각시키기 위한 별도의 냉각시스템을 구비하지 않아도 되는 열변환반응 밀폐용기가 제공된다.
또한, 반응가스가 열에너지를 흡수하여 가열된 상태로 핫존으로 공급되므로 핫존의 온도가 급격히 낮아지는 것을 방지하는 것은 물론, 히터의 전력소비량을 절감할 수 있는 열변환반응 밀폐용기가 제공된다.
또한, 상기 열교환부를 구성하는 다수의 격벽과, 격벽의 일단부 또는 타단부에 형성되는 관통공을 통해 유입공과 핫존을 연결하는 순환통로를 지그재그형태로 배치하는 것에 의해 열교환면적이 증대되어 열교환효율을 향상시킬 수 있는 열변환반응 밀폐용기가 제공된다.
또한, 유입공과 핫존을 연결하는 순환통로의 가스유입측에 반응가스의 분사압력을 분산시키는 것과 동시에 인접한 분사노즐과의 사이영역까지 반응가스가 골고루 공급되도록 하는 분사노즐을 마련함으로써 열교환효율을 향상시킬 수 있는 열변환반응 밀폐용기가 제공된다.
또한, 다수 마련되는 분사노즐들의 사이영역 및 분사노즐이 위치한 순환통로의 하부영역에서도 열교환이 이루어질 수 있도록 함으로써 열교환효율을 향상시킬 수 있는 열변환반응 밀폐용기가 제공된다.
도 1은 종래 실리콘 테트라클로라이드의 열변환반응에 의한 트리클로로실란 변환장치의 단면도,
도 2는 본 발명 열변환반응 밀폐용기의 사시도,
도 3은 본 발명 열변환반응 밀폐용기의 분해사시도,
도 4는 열변환반응 밀폐용기의 정단면도,
도 5는 열변환반응 밀폐용기의 평단면도,
도 6은 본 발명 열변환반응 밀폐용기의 제2실시예의 부분절개 사시도,
도 7은 본 발명 열변환반응 밀폐용기의 제2실시예에 따른 분해사시도
도 8은 열변환반응 밀폐용기의 제2실시예의 정단면도이다.
도 9는 본 발명 열변환반응 밀폐용기의 제3실시예의 사시도,
도 10은 본 발명 열변환반응 밀폐용기의 제3실시예의 분해사시도,
도 11은 본 발명 열변환반응 밀폐용기의 제3실시예의 정단면도,
도 12는 도 11의 "A"부분의 확대도,
도 13은 본 발명 열변환반응 밀폐용기에 따른 분사노즐의 다른실시예를 나타낸 단면도이고,
도 14는 본 발명 열변환반응 밀폐용기의 제4실시예의 단면도이다.
설명에 앞서, 여러 실시예에 있어서, 동일한 구성을 가지는 구성요소에 대해서는 동일한 부호를 사용하여 대표적으로 제1실시예에서 설명하고, 그 외의 실시예에서는 제1실시예와 다른 구성에 대해서 설명하기로 한다.
이하, 첨부한 도면을 참조하여 본 발명의 제1실시예에 따른 열변환반응 밀폐용기에 대하여 상세하게 설명한다.
첨부도면 중 도 2는 본 발명 열변환반응 밀폐용기의 부분절개 사시도이고, 도 3은 본 발명 열변환반응 밀폐용기의 분해사시도이다.
상기 도면에서 도시하는 바와 같은 본 발명 열변환반응 밀폐용기는 베이스 플레이트(110)와, 베젤(120)과, 상기 베젤(120)측에 마련되는 열교환부(130)를 포함하여 구성되는 것으로서, 본 실시예에서는 본 발명의 열변환반응 밀폐용기가 열변환반응을 통해 실리콘 테트라클로라이드(Silicon Tetracloride;STC, SiCl4)를 트리클로로실란(Trichlorosilane;TCS, SiHCl3)으로 변환하는 STC-TCS 변환기(STC-TCS converter)인 것으로 예를 들어 설명한다.
상기 베이스 플레이트(110)는 중앙에 유출공(112)이 형성되고, 외주연부에 다수의 유입공(111)들이 원주방향으로 형성되며, 전원의 인가에 의해 발열하는 히터(113)가 상면에 설치된다.
상기 베젤(120)은 외부영역으로부터 밀폐된 핫존(123)을 형성하도록 상기 베이스 플레이트(110)에 조립되는 것으로서, 본 실시예에서는 측벽(121)과, 상기 측벽(121)의 상측을 마감하는 덮개(122)로 구성되는 것을 예로 들어 설명한다.
상기 열교환부(130)는 상기 베이스 플레이트(110)의 유입공(111)을 통해 유입되는 반응 가스(STC+H2)가 상기 베젤(120)의 측벽(121)으로부터 열에너지를 흡수하여 가열된 상태로 상기 핫존(123)으로 공급되도록 상기 베젤(120)의 측벽(121) 내측면에 형성되는 것으로서, 반응 가스가 유입되는 유입공(111)과 핫존(123)을 연결하는 순환통로(131)로 이루어진다.
특히, 본 실시예에서는 서로 다른 직경을 갖는 원통형 격벽(132)이 동심을 이루도록 배치되고, 각 격벽(132)의 일단부 또는 타단부에 형성되는 관통공(132a)이 유입공(111)의 위치를 기준으로 일단부 또는 타단부 중에서 서로 엇갈리는 위치에 각각 형성되면서 지그재그 형태의 순환통로(131)가 구성된다.
즉, 다수의 격벽(132)들 중 외측에 배치된 격벽(132)과 베젤(120)의 측벽(121) 사이에 위치한 유입공(111)을 통해 순환통로(131)로 유입된 반응 가스가 격벽(132)들의 관통공(132a)을 통해 격벽(132)들의 사이공간을 지그재그형태로 순환된다. 따라서 베젤(120) 및 격벽(132)으로 전달된 열에너지를 흡수하므로 베젤(120)이 가열되는 것은 물론, 베젤(120)의 외측으로 손실되는 열에너지를 이용하여 핫존으로 공급되는 반응 가스를 가열하므로 열에너지의 이용효율이 향상된다.
한편, 본 실시예에서는 순환통로(131)가 격벽(132)의 관통공(132a)이 서로 엇갈리게 형성하여 지그재그 형태의 이동경로를 이는 것으로 설명하였으나, 반응가스가 순환통로를 경유하는 과정에서 이동경로를 분산시키거나 전환시키는 것에 의해 열교환면적 및 열교환시간을 증가시키기 위한 다양한 형태로도 구성될 수 있을 것이다.
또한, 상기와 같이 다수개의 격벽(132)으로 구성되는 경우, 격벽(132)의 설치되는 위치, 즉 히터(113)와의 거리에 따라 격벽(132)에 전달되는 열에너지가 서로 다르므로, 각각의 격벽(132)이 서로 다른 온도로 가열된다. 예를 들어, 핫존(123)의 온도가 약 1200℃ 이고 유입공(111)을 통해 공급되는 반응 가스의 온도가 80℃인 경우, 측벽(121)은 약 200℃이하의 온도를 유지하고, 측벽(121)과 마주하는 격벽(132)으로부터 핫존(123)에 접하는 격벽(132)들은 각각 약 300℃, 500℃, 700℃정도의 온도로 가열되므로, 다수의 격벽(122)들은 설치된 위치에서의 가열온도에 대응되는 내열성을 갖는 재질로 구성되어야 할 것이다.
또한, 상기 베이스 플레이트(110)의 유입공(111)은 베젤(120)과 최외곽에 배치된 격벽(132)의 사이공간에서 수평방향에 대하여 균등한 압력으로 반응 가스를 공급하기 위해 서로 인접한 간격으로 다수 마련된다.
아울러, 상기 도면에서는 격벽(132)의 판면에 관통공(132a)이 관통 형성되는 것으로 도시하였으나, 격벽(132)의 일단부가 베이스 플레이트(110) 또는 덮개(122)측에 고정되고, 타단부는 덮개(122) 또는 베이스 플레이트(110)로부터 소정간격 이격되면서 이격된 공간을 통해 관통공(132a)을 형성하는 등, 격벽(132)의 양측 공간을 연결하기 위한 다양한 형태로 형성될 수 있을 것이다.
또한, 본 실시예에서는 베젤(120)이 측벽(121)과 덮개(122)로 구성되는 것을 예로 들어 설명하였으나, 벨자형의 베젤(120)이 적용되는 경우, 상기 베젤(120)의 내측에 마련되는 열교환부(130)는 상기 베젤(120)의 내측면에 대응되는 형태, 즉 베젤(120)과 동일한 형태로 이루어져 베젤(120)의 내측면으로부터 소정간격 이격되는 격벽(132)으로 구성하는 것도 가능하다. 이때, 상기와 같은 격벽(132)을 다중으로 배치하고, 관통공(132a)을 서로 엇갈리게 형성하여 순환통로(131)의 열교환효율을 향상시키는 것도 가능할 것이다.
지금부터는 상술한 열변환반응 밀폐용기의 제1실시예의 작동에 대하여 설명한다.
첨부도면 중 도 4는 본 발명 열변환반응 밀폐용기의 정단면도이고, 도 5는 본 발명 열변환반응 밀폐용기의 평단면도이다.
먼저, 도 4에서 도시하는 바와 같이 베이스 플레이트(110)의 외연부 상측에 베젤(120)의 측벽(121)이 배치되고, 상기 측벽(121)의 상단부에는 덮개(122)가 배치되면서 기밀한 핫존(123)을 형성하게 된다. 그리고, 상기 베이스 플레이트(110)의 상측에 마련된 히터(113)에 전원이 인가되면서 핫존(123)의 내부온도가 반응에 적합한 약 900℃ 내지 1500℃로 가열된다.
상기와 같이 핫존(123)의 내부온도가 상승한 상태에서 베이스 플레이트(110)의 유입공(111)을 통해 STC와 H2를 함께 공급하면, 핫존(123) 내부에서 열 수소화반응을 통해 TCS와 HCl로 변환되어 유출공(112)을 통해 배출된다.
이때, 상기 베젤(120)의 측벽(121)의 내측면에는 열교환부(130)가 마련되어 유입공(111)과 핫존(123)을 연결하는 순환통로(131)에 의해 핫존(123)을 감싸는 측벽(121)을 냉각시키는 것과 동시에 핫존(123)으로 공급되는 반응 가스의 온도를 상승시킨다.
특히, 상기 순환통로(131)는 유입공(111)과 히터(113)의 사이에서 하단부가 베이스 플레이트(110)에 고정되고 상단부는 덮개(122)에 고정되고 판면에 관통공(132a)이 형성되어 양측 공간을 연결하는 격벽(132)에 의해 구성된다. 상기 관통공(132a)은 상기 유입공(111)을 기준으로 격벽(132)의 일단부 또는 타단부에 서로 엇갈리게 형성되면서 상기 유입공(111)과 핫존(123)을 지그재그형태로 연결한다.
유입공(111)을 통해 상기와 같은 순환통로(131)로 유입된 반응가스는 베젤(120) 및 격벽(132)으로 전달된 열에너지를 흡수하여 베젤(120)을 냉각시키는 것과 동시에 가열된 상태로 핫존(123)으로 공급된다.
따라서, 베젤(120)을 냉각시키기 위한 별도의 냉각시스템이 필요로 하지 않게 되는 것과 동시에, 상기 베젤(20)의 외측으로 열에너지가 손실되는 것을 방지하므로 열에너지의 이용효율이 향상되는 이점을 제공하게 된다.
또한, 베젤(120)의 측벽(121)으로 전달된 열에너지를 반응가스가 흡수하여 가열된 상태로 핫존(123)으로 공급되므로, 열에너지의 이용효율이 향상되는 것은 물론, 핫존(123)의 온도를 반응에 적합한 고온의 온도로 유지하기 위한 히터(113)의 전력소비량을 줄일 수 있게 된다.
또한, 상기와 같이 다수의 격벽(132)과 유입공(111)을 기준으로 일단부 또는 타단부에 교차되게 배치되는 유입공(111)에 의해 순환통로(131)가 지그재그 형태를 이루게 된다. 따라서, 유입공(111)을 통해 순환통로(131)로 유입된 반응 가스와 베젤(120) 및 격벽(132)과의 열교환면적이 증대된다.
한편, 도 5는 도 4의 A-A'선 단면을 나타낸 것으로, 도면에서와 같이 베이스 플레이트(110)의 외주연부에 관통형성되어 측벽(121)과 외측 격벽(132)의 사이에 위치하는 유입공(111)은 원주방향을 따라 등간격으로 다수 형성되어 각각의 유입공(111)을 통해 반응 가스가 공급되어 순환통로(131)를 통해 핫존(123)으로 공급된다.
이때, 상기 유입공(111)이 등간격으로 조밀하게 형성되어 있으므로, 순환통로(131)의 유입측 전 영역에 대하여 반응 가스가 균등한 압력으로 공급된다. 또한, 반응 가스가 순환통로(131)의 각 영역에서의 수평방향에 대하여 균등한 압력으로 상승하거나 하강하게 되므로 측벽(121)과 격벽(132)들의 온도가 일부 영역에서 집중적으로 상승하게 되는 것을 방지하게 된다.
다음으로 본 발명의 제2실시예에 따른 열변환반응 밀폐용기에 대하여 설명한다.
첨부도면 중 도 6은 본 발명 열변환반응 밀폐용기의 제2실시예의 부분절개 사시도이고, 도 7은 본 발명 열변환반응 밀폐용기의 제2실시예에 따른 분해사시도이다.
상기 도면에서 도시하는 바와 같은 본 발명의 열변환반응 밀폐용기의 제2실시예에서의 베젤(120)은 일측이 개구된 벨자형(bell-jar type)으로 이루어지고, 개구측이 베이스 플레이트(110)에 조립되면서 내측에 핫존을 형성한다.
또한, 상기 베젤(120)의 내측에 마련되어 유입공(111)과 핫존(123)을 연결하는 열교환부(130)의 순환통로(131)는 상기 베이스 플레이트(110)의 유입공(111)과 히터(113) 사이에 사이에 설치되는 적어도 하나의 통형 격벽(132)과, 상기 격벽(132)의 판면에서 상기 유입공(111)의 반대측 단부에 형성되는 관통공(132a) 및, 외주연부가 상기 베젤의 내측면에 밀착되도록 형성되어 상기 통형 격벽(132)의 상측을 마감하는 커버(133)를 포함하여 구성된다.
아울러, 상술한 실시예에서와 같이 순환통로의 열교환 효율을 증가시키기 위해 직경이 서로 다른 다수의 통형 격벽을 다수 마련하고, 각 격벽에 형성되는 관통공이 유입공을 기준으로 하여 서로 엇갈리게 형성되는 것에 의해 지그재그 형태의 이동경로를 이루도록 하는 것도 가능하다. (도 6참조)
한편, 상기 베젤과 열교환부 이외의 구성요소는 상술한 실시예와 동일한 구성을 가지므로 상세한 설명은 생략한다.
첨부도면 중 도 8은 본 발명 열변환반응 밀폐용기의 제2실시예에 따른 정단면도이다.
도 8에서 도시하는 바와 같이
열교환부(130)는 베이스 플레이트(110)의 유입공(111)과 벨자형 베젤(120)의 사이에 설치되는 상측이 개구된 통형 격벽(132)과, 상기 격벽(132)의 판면에서 상기 유입공(111)으로부터 이격된 위치에 형성되어 양측 공간을 연결하는 관통공(132a)과, 상기 격벽(132)의 상측을 개구측을 마감하며 외주연부가 상기 베젤(120)의 내측면에 밀착되는 커버(133)로 구성된다.
또한, 상기 격벽(132)은 크기가 서로 다른 다수개로 마련되고, 커버(133)와 베이스 플레이트(110)에 양단부가 지지되면서 베젤(120)의 내측면에 인접한 유입공(111)을 포함하는 공간과 유출공(112)과 히터(113)를 포함하는 공간의 사이를 다수개의 층으로 구분한다. 이때, 상기 다수의 격벽(132)은 유입공(111)을 기준으로하여 서로 엇갈리는 위치에 관통공(132a)이 형성되면서 유입공(111)과 핫존(123)의 사이를 연결하는 순환통로(131)가 지그재그 형태로 이루어진다.
즉, 핫존(123)을 감싸고 있는 베젤(120)의 내측에 열교환부(130)가 배치된 상태에서, 유입공(111)을 통해 약 900℃ 내지 1500℃의 온도를 유지하는 핫존(123)으로 공급되는 반응가스는 약 900℃ 내지 1500℃의 온도를 유지하는 핫존의 온도보다 매우 낮은 STC의 기화온도로 공급된다. 이때, 상기 반응가스가 유입공(111)과 핫존(123)을 연결하는 지그재그형태의 순환통로(131)를 통과하면서 베젤(120) 및 격벽(132)으로 전달된 열에너지를 흡수하게 되므로 베젤(120)을 냉각시키기 위하여 종래와 같이 별도의 냉각시스템을 마련하지 않아도 된다.
아울러, 상기와 같이 핫존의 온도보다 매우 낮은 STC의 기화온도로 공급되는 반응가스가 열교환부(130)의 순환통로(131)를 통과하면서 약 500℃ 내지 900℃ 정도의 온도로 가열된 상태로 핫존(123)으로 공급되므로 핫존(123)의 온도가 반응 가스의 유입에 의해 급격하게 저하되는 것을 방지할 수 있으므로, 히터(113)의 전력소모량을 추가로 줄일 수 있게 된다.
한편, 상술한 바와 같이 상기 순환통로(131)를 구성하는 다수의 격벽(132)들은 핫존으로 공급되는 반응 가스의 공급 온도와, 베젤(120)의 외부로 손실되는 열량과, 격벽(132)의 재질에 따른 열교환효율 등을 고려하여 그 개수가 조절될 수 있을 것이다.
이하, 첨부한 도면을 참조하여 본 발명의 제3실시예에 따른 열변환반응 밀폐용기에 대하여 상세하게 설명한다.
첨부도면 중 도 9는 본 발명 열변환반응 밀폐용기의 제3실시예의 사시도이고, 도 10은 본 발명 열변환반응 밀폐용기의 제3실시예의 분해사시도이다.
상기 도면에서 도시하는 바와 같은 본 발명 열변환반응 밀폐용기의 제3실시예는 베이스 플레이트(110)와, 베젤(120)과, 열교환부(130) 및 분사노즐(140)을 포함하여 구성되며, 베이스 플레이트(110)의 유입공(111)에 분사노즐(140)이 설치되는 점에서 상술한 실시예와 차이를 가지므로, 분사노즐(140)을 제외한 나머지 구성에 대한 상세한 설명은 생략한다.
상기와 같은 분사노즐(140)은 상기 유입공(111)의 가스 배출측에 설치되어 반응가스의 분사방향를 분산시키는 것으로서, 일단부가 상기 유입공(111)과 연결되고 타단부는 마감된 공급관(141)과, 상기 공급관(141)의 타단부에서 측방향으로 형성되어 반응가스가 배출되도록 하는 적어도 하나의 분사공(142) 및, 상기 분사공(142)을 통해 측방향으로 분사되는 반응가스를 하측방향으로 유도하도록 상기 분사공(142)으로부터 소정간격 이격되어 설치되는 가이드(143)를 포함하여 구성된다.
지금부터는 상술한 열변환반응 밀폐용기의 제3실시예의 작동에 대하여 설명한다.
첨부도면 중 도 11은 본 발명 열변환반응 밀폐용기의 제3실시예의 정단면도이고, 도 12는 도 11의 "A"부분의 확대도이다.
먼저, 도 11에서 도시하는 바와 같이 베젤(120)의 내측에 설치되는 열교환부(130)에 의해 유입공(111)과 핫존(123)의 사이를 연결하는 순환통로(131)가 형성된다.
그리고, 상기 열교환부(130)를 구성하는 다수의 격벽(132)과 상기 격벽에 형성된 관통공(132a)에 의해 유입공(111)과 핫존(123)의 사이를 연결하는 순환통로(131)가 지그재그 형태의 이동경로를 이루게 된다.
이러한 상태에서 유입공(111)을 통해 핫존(123)의 온도보다 매우 낮은 STC의 기화온도로 공급되는 반응가스는 유입공(111)을 통해 지그재그형태의 순환통로(131)를 통과하면서 베젤(120) 및 격벽(132)으로 전달되는 열에너지를 흡수하여 가열된 상태로 핫존(123)으로 공급된다.
특히, 상기 유입공(111)들의 배출측에는 분사노즐(140)이 각각 조립되어 유입공(111)을 통해 열교환부(130)의 순환통로(131)로 공급되는 반응가스를 분산시켜 분사압력이 일영역에 집중되는 것을 방지한다. 또한, 반응가스가 순환통로(131)의 하부영역을 향해 분사되도록 하는 것에 의해 인접한 분사노즐(140)과의 사이영역까지 반응가스가 공급되면서 열교환을 이루게 되므로 열교환효율이 향상된다.
즉, 유입공(111)을 통해 공급되는 반응가스는 유입공(111)의 가스 배출측에 설치된 분사노즐(140)의 공급관(141)과 공급관(141)의 타단부에서 측방향을 향해 다수 관통형성된 분사공(142)으로 각각 배출되면서 공급압력이 분산된다. 또한, 상기 분사공(142)으로부터 소정간격 이격된 위치에 마련된 가이드(143)에 의해 반응가스가 베이스 플레이트(110)의 바닥면을 향해 분사된다.
따라서, 반응가스가 순환통로(131)의 하부영역으로부터 상부영역에 이르기까지 균등한 압력으로 이동하므로 격벽(132) 및 베젤(120)로 전달되는 열에너지를 흡수하는 시간이 연장된다. 또한, 인접한 분사노즐(140)과의 사이영역에서도 양측 분사노즐(140)로부터 공급방향이 전환된 반응가스가 공급되어 열교환이 이루어지게 되므로 열교환효율이 향상되는 이점을 제공하게 된다.
다음으로 본 발명 열변환반응 밀폐용기에 따른 분사노즐의 다른실시예에 대하여 설명한다.
첨부도면 중 도 13은 본 발명 열변환반응 밀폐용기에 따른 분사노즐의 다른실시예를 나타낸 단면도이다.
상기 도면에서 도시하는 바와 같은 다른실시예의 분사노즐(140')은 일단부가 유입공(111)과 연결되고 타단부는 마감된 공급관(141)과, 상기 공급관(141)의 타단부로부터 하향경사방향으로 형성되어 반응가스가 배출되는 적어도 하나의 분사공(142)이 형성된 점에서 상술한 실시예의 분사노즐(140)과 차이점을 갖는다.
상기와 같이 구성되는 본 발명 열변환반응 밀폐용기에 따른 다른실시예의 분사노즐(140')은 베젤(120)과 격벽(132)의 사이영역에 위치한 유입공(111)의 반응가스 배출측에 설치된 상태에서 유입공(111)을 통해 반응가스가 공급되면, 분사노즐(140')의 공급관(141) 타단부에서 하향경사지게 형성된 다수의 분사공(142)을 통해 순환통로(131)의 하부영역으로 배출된다.
이때, 분사공(142)이 다수개로 이루어져 있으므로 반응가스가 여러 방향으로 분산되는 것과 함께 분사공(142)이 하향경사지게 형성되어 반응가스의 공급방향이 순환통로(131)의 하부영역에서 하향경사지게 공급되는 것에 의해 반응가스가 순환통로(131)의 하부영역에서 집중되는 압력에 의해 상부영역까지 균등하게 이동하게 되므로 격벽(132) 및 베젤(120)로 전달되는 열에너지를 흡수하는 시간이 연장되는 것은 물론, 인접한 한 쌍의 분사노즐(140') 사이공간으로도 반응가스가 공급되어 격벽(132)과 베젤(120)의 사이 전영역에서 열교환이 이루어지게 되는 등, 열교환효율이 향상되는 이점을 제공하게 된다.
첨부도면 중 도 14는 본 발명 열변환반응 밀폐용기의 제4실시예의 단면도로서, 본 실시예에서는 본 발명의 열변환반응 밀폐용기가 고순도 다결정실리콘을 생산하기 위한 화학기상증착 반응기(CVD reactor)인 것으로 예를 들어 설명한다.
도 14에서 도시하는 바와 같이 본 발명의 제4실시예에 따른 열변환반응 밀폐용기는 베이스 플레이트(110)와, 베젤(120)과, 열교환부(130) 및 분사노즐(140)을 포함하여 구성된다.
여기서, 상기 베이스 플레이트(110)에 마련되는 히터(113)는 전원의 공급에 의해 저항발열하여 외표면에 실리콘의 증착을 유도하는 시드 필라멘트(Seed filament)가 적용된다.
또한, 상기 열교환부(130)의 순환통로(131)는 상기 히터(113)와 유출공(112)을 감싸도록 배치되어 히터(113)와 유출공(112)을 포함하는 공간과 유입공(111)을 포함하는 베젤(120)의 내측면에 인접한 공간을 구분하는 벨자형 격벽(132)과, 상기 유입공(111)을 기준으로 상기 격벽(132)의 대향측에 형성되는 관통공(132a)에 의해 구성된다.
상기와 같은 히터(113) 및 순환통로(131) 이외의 구성은 상술한 실시예와 동일한 구성으로 이루어진다. 또한, 도 14의 "A"로 표시된 부분에 설치되는 상기 분사노즐(140)은 상술한 실시예에서 언급된 도 13에 도시된 분사노즐(140) 또는 도 14에 도시된 분사노즐(140')과 동일한 형태로 이루어지는 것이므로, 상기한 실시예와 동일한 구성에 대한 설명은 생략한다.
본 발명 열변환반응 밀폐용기의 제4실시예의 작용을 살펴보면, 히터(113)로 전원을 인가하여 히터(113)의 표면온도를 통상의 반응온도인 약 1100℃로 유지되도록 한 뒤, 유입공(111)을 통해 반응가스(TCS+H2)를 공급하면, 반응가스중의 실리콘 성분이 상기 히터(113)의 외측표면에 증착되고, 반응 후 잔류하는 염화수소(3HCl)는 유출공(112)을 통해 배출된다.
이때, 상기 유입공(111)을 통해 공급되는 반응가스가 격벽(132)과 베젤(120)의 사이공간으로 유입되어, 공급압력에 의해 상기 순환통로(131)의 이동경로를 따라 순환하면서 베젤(120)과 격벽(132)으로 전달되는 열에너지를 흡수한 뒤, 상기 유입공(111)으로부터 이격 배치된 관통공(132a)을 통해 핫존(123)으로 공급되는 과정에서 베젤(120)과 격벽(132)으로 전달되는 열에너지를 흡수하게 된다.
따라서, 반응온도보다 낮은 온도로 공급되는 반응가스가 가열된 상태로 핫존으로 공급되는 것이므로 핫존(123)의 온도를 고온으로 유지하기 위한 히터(113)의 전력소비량을 줄일 수 있게 된다. 또한, 베젤(120)과 격벽(132)으로 전달되는 열에너지를 반응가스가 흡수하면서 베젤(120)을 냉각시키게 되므로 베젤(120)을 냉각시키기 위해 베젤(120)의 외측에 별도로 설치되는 냉각시스템을 생략하거나, 냉각시스템의 용량 또는 구동량을 최소화 시킬 수 있는 이점을 제공하게 된다.
또한, 상기 유입공(111)들의 배출측에 분사노즐(140)이 각각 조립되므로, 유입공(111)을 통해 열교환부(130)의 순환통로(131)로 공급되는 반응가스의 공급압력이 분산되는 것과 함께 반응가스가 순환통로(131)의 하부영역을 향해 분사되므로 순환통로(131)의 하부영역 및 인접한 한 쌍의 분사노즐(140)간의 사이영역까지 반응가스가 공급되면서 열교환을 이루게 되므로 열교환효율이 향상된다.
본 발명의 권리범위는 상술한 실시예에 한정되는 것이 아니라 첨부된 특허청구범위 내에서 다양한 형태의 실시예로 구현될 수 있다. 특허청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 누구든지 변형 가능한 다양한 범위까지 본 발명의 청구범위 기재의 범위 내에 있는 것으로 본다.
본 발명에 따르면, 반응가스가 핫존으로 공급되는 과정에서 베젤의 외부로 손실되는 열에너지를 흡수하여 핫존으로 공급되도록 함으로써, 베젤이 한계온도 이상으로 가열되는 것을 방지하므로, 베젤을 냉각시키기 위한 별도의 냉각시스템을 구비하지 않아도 되는 열변환반응 밀폐용기가 제공된다.

Claims (12)

  1. 베이스 플레이트;
    상기 베이스 플레이트와의 사이에 밀폐된 핫존을 형성하는 베젤;
    상기 핫존에 배치되는 히터;
    상기 핫존으로 반응 가스를 공급 및 배출하는 유입공과 유출공; 및,
    상기 유입공을 통해 핫존으로 공급되는 반응 가스가 상기 베젤로 전달되는 열에너지를 흡수하여 베젤의 온도를 냉각시키는 것과 동시에 가열된 상태로 상기 핫존으로 공급되도록 상기 베젤의 내측에 형성되는 열교환부;를 포함하는 것을 특징으로 하는 열변환반응 밀폐용기.
  2. 제 1항에 있어서,
    상기 열교환부는 상기 베젤과 핫존 사이 공간을 순환하며 상기 유입공과 핫존을 연결하는 순환통로로 이루어지는 것을 특징으로 하는 열변환반응 밀폐용기.
  3. 제 2항에 있어서,
    상기 순환통로는 유입공을 포함하는 베젤의 내측면에 인접한 공간과 히터와 유출공을 포함하는 공간을 구분하는 격벽과, 상기 유입공을 통해 공급된 반응가스가 격벽과 베젤의 사이공간을 이동하면서 열교환을 이룬 뒤 핫존으로 공급되도록 유입공으로부터 이격 되어 상기 격벽의 판면에 형성되는 관통공을 포함하는 것을 특징으로 하는 열변환반응 밀폐용기.
  4. 제 3항에 있어서,
    상기 격벽은 유입공을 포함하는 베젤의 내측면에 인접한 공간과 히터와 유출공을 포함하는 공간의 사이를 다층으로 구분하도록 서로 크기를 갖는 두개 이상의 통형으로 마련되고, 크기가 큰 격벽의 내측으로 크기가 작은 격벽이 삽입되는 형태로 배치되는 것을 특징으로 하는 열변환반응 밀폐용기.
  5. 제 4항에 있어서,
    상기 두개 이상의 격벽은 판면에 형성되는 관통공이 유입공을 기준으로 서로 엇갈리게 형성되어 공급가스의 이동경로가 전환되는 것을 특징으로 하는 열변환반응 밀폐용기.
  6. 제 5항에 있어서,
    상기 격벽은 상측이 개구된 통형으로 이루어지고, 상기 격벽들의 상측을 마감하며 외주연부가 상기 베젤의 내측면에 밀착되는 커버를 더 포함하는 것을 특징으로 하는 열변환반응 밀폐용기.
  7. 제 6항에 있어서,
    상기 격벽은 설치된 위치에서 핫존으로부터 전달되는 열에너지에 의해 가열되는 온도에 대하여 내열성을 갖는 재질로 이루어지는 것을 특징으로 하는 열변환반응 밀폐용기.
  8. 제 1항 내지 제 7항 중 어느 한 항에 있어서,
    상기 유입공의 가스 배출측에 마련되어 상기 열교환부로 공급되는 가스를 분산시키는 분사노즐;을 포함하는 열변환반응 밀폐용기.
  9. 제 8항에 있어서,
    상기 유입공은 상기 격벽과 베젤의 사이영역에 대응되는 베이스플레이트의 판면에 소정간격 이격되도록 다수 형성되는 것을 특징으로 하는 열변환반응 밀폐용기.
  10. 제 9항에 있어서,
    상기 분사노즐은 일단부가 상기 유입공과 연결되어 가스가 공급되고 타단부는 마감된 공급관과, 상기 공급관으로부터 측방향으로 형성되어 가스가 배출되는 적어도 하나의 분사공이 형성되는 것을 특징으로 하는 열변환반응 밀폐용기.
  11. 제 10항에 있어서,
    상기 분사노즐은 상기 분사공으로부터 이격되어 측방향으로 분사되는 가스를 하측방향으로 유도하는 가이드가 형성되는 것을 특징으로 하는 열변환반응 밀폐용기.
  12. 제 11항에 있어서,
    상기 분사노즐은 일단부가 상기 유입공과 연결되어 가스가 공급되고 타단부는 마감된 공급관과, 상기 공급관으로부터 하향경사방향으로 형성되어 가스가 배출되는 적어도 하나의 분사공이 형성되는 것을 특징으로 하는 열변환반응 밀폐용기.
PCT/KR2010/001686 2009-03-20 2010-03-18 열변환반응 밀폐용기 WO2010107262A2 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/257,034 US20120039760A1 (en) 2009-03-20 2010-03-18 Hermetic Container for Thermal Conversion Reaction
JP2012500722A JP2012520759A (ja) 2009-03-20 2010-03-18 熱変換反応密閉容器
CN2010800129826A CN102361688A (zh) 2009-03-20 2010-03-18 热转换反应密封容器

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020090023875A KR101079340B1 (ko) 2009-03-20 2009-03-20 열변환반응에 의한 트리클로로실란 제조장치
KR10-2009-0023875 2009-03-20
KR1020090027973A KR101181458B1 (ko) 2009-04-01 2009-04-01 열변환반응 밀폐용기
KR10-2009-0027973 2009-04-01

Publications (2)

Publication Number Publication Date
WO2010107262A2 true WO2010107262A2 (ko) 2010-09-23
WO2010107262A3 WO2010107262A3 (ko) 2010-12-23

Family

ID=42740138

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/001686 WO2010107262A2 (ko) 2009-03-20 2010-03-18 열변환반응 밀폐용기

Country Status (4)

Country Link
US (1) US20120039760A1 (ko)
JP (1) JP2012520759A (ko)
CN (1) CN102361688A (ko)
WO (1) WO2010107262A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110274851A1 (en) * 2010-05-10 2011-11-10 Mitsubishi Materials Corporation Apparatus for producing polycrystalline silicon

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9168502B2 (en) * 2011-11-28 2015-10-27 Mitsubishi Materials Corporation Apparatus for producing trichlorosilane
KR101895526B1 (ko) * 2015-08-28 2018-09-05 한화케미칼 주식회사 폴리실리콘 제조 장치
US11293094B2 (en) * 2018-04-05 2022-04-05 Tokuyama Corporation Polycrystalline silicon rod manufacturing method, and reactor
WO2020255672A1 (ja) * 2019-06-17 2020-12-24 株式会社トクヤマ 棒状体、治具、取り外し方法およびシリコンロッドの製造方法
KR20210065054A (ko) * 2019-11-25 2021-06-03 주식회사 원익아이피에스 가스 공급 블록 및 이를 포함하는 기판 처리 장치
CN113753899B (zh) * 2021-10-25 2022-05-03 江苏大学 一种还原炉保温结构、多晶硅还原炉及工作方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080159942A1 (en) * 2005-03-05 2008-07-03 Rico Berthold Reactor And Process For The Preparation Of Silicon
US20080233037A1 (en) * 2007-03-19 2008-09-25 Chisso Corporation Apparatus and method for manufacturing high purity polycrystalline silicon
EP2000434A2 (en) * 2006-10-31 2008-12-10 Mitsubishi Materials Corporation Trichlorosilane production apparatus
EP2003092A1 (en) * 2006-10-31 2008-12-17 Mitsubishi Materials Corporation Trichlorosilane production apparatus

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3057701A (en) * 1956-09-27 1962-10-09 British Titan Products Apparatus for the distribution of gases
JPS5753231A (en) * 1980-09-17 1982-03-30 Hitachi Maxell Ltd Powder withdrawing apparatus
JPH0761445B2 (ja) * 1986-11-13 1995-07-05 トヨタ自動車株式会社 金属化合物の微粉末の製造方法及び装置
JPH0732311U (ja) * 1993-11-29 1995-06-16 石川島播磨重工業株式会社 流動層ボイラの空気分散ノズル
JP3166025B2 (ja) * 1994-10-17 2001-05-14 信越化学工業株式会社 流動床式混合・分散装置用ノズル
GB9500226D0 (en) * 1995-01-06 1995-03-01 Bp Chem Int Ltd Nozzle
JP2005230586A (ja) * 2002-03-08 2005-09-02 Shuzo Nomura ガス混合装置及びガス反応装置
JP2007229556A (ja) * 2006-02-28 2007-09-13 Hitachi Ltd 化学反応装置
CN201105992Y (zh) * 2007-10-23 2008-08-27 四川永祥多晶硅有限公司 多晶硅氢还原炉进气喷口

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080159942A1 (en) * 2005-03-05 2008-07-03 Rico Berthold Reactor And Process For The Preparation Of Silicon
EP2000434A2 (en) * 2006-10-31 2008-12-10 Mitsubishi Materials Corporation Trichlorosilane production apparatus
EP2003092A1 (en) * 2006-10-31 2008-12-17 Mitsubishi Materials Corporation Trichlorosilane production apparatus
US20080233037A1 (en) * 2007-03-19 2008-09-25 Chisso Corporation Apparatus and method for manufacturing high purity polycrystalline silicon

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110274851A1 (en) * 2010-05-10 2011-11-10 Mitsubishi Materials Corporation Apparatus for producing polycrystalline silicon
US9315895B2 (en) * 2010-05-10 2016-04-19 Mitsubishi Materials Corporation Apparatus for producing polycrystalline silicon

Also Published As

Publication number Publication date
WO2010107262A3 (ko) 2010-12-23
US20120039760A1 (en) 2012-02-16
JP2012520759A (ja) 2012-09-10
CN102361688A (zh) 2012-02-22

Similar Documents

Publication Publication Date Title
WO2010107262A2 (ko) 열변환반응 밀폐용기
JP5411295B2 (ja) モノシラン工程を使用した多結晶ケイ素生成用反応基
RU2490576C2 (ru) Реактор кипящего слоя
US5545387A (en) Production of high-purity polycrystalline silicon rod for semiconductor applications
WO2010076973A2 (ko) 폴리 실리콘 증착장치
US20090155138A1 (en) Apparatus for Producing Trichlorosilane
WO2010110551A2 (ko) 폴리실리콘 제조용 화학기상증착 반응기
KR101329033B1 (ko) 유동층 반응기
WO2015160160A1 (ko) 입자크기의 균일도를 향상시킨 연속식 질화규소 제조장치 및 제조방법
TWI616564B (zh) 多晶矽製造裝置
CN105473501A (zh) 卤代硅烷加氢用单块整体热交换器和设备及方法
WO2011078628A2 (en) Heat treatment container for vacuum heat treatment apparatus
KR101329035B1 (ko) 유동층 반응기
KR101329029B1 (ko) 반응가스 공급노즐을 포함하는 유동층 반응기
KR100406389B1 (ko) 반도체적용을위한고순도다결정실리콘로드의제조장치및방법
WO2014042410A1 (ko) 자켓과 이를 사용한 반응기
WO2012015132A1 (en) Heat treatment container for vacuum heat treatment apparatus
CN102161489B (zh) 三氯硅烷制造装置及制造方法
KR101079340B1 (ko) 열변환반응에 의한 트리클로로실란 제조장치
JPH07226384A (ja) 半導体グレード・シリコンの化学蒸着用反応器
KR101181458B1 (ko) 열변환반응 밀폐용기
WO2016060429A1 (ko) 화학기상장치용 반응챔버
WO2015174705A1 (ko) 수평형 반응기를 이용한 폴리실리콘 제조 장치 및 제조 방법
US9468042B2 (en) Apparatus for producing trichlorosilane
WO2017043892A1 (ko) 폴리실리콘 제조 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080012982.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10753712

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2012500722

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13257034

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10753712

Country of ref document: EP

Kind code of ref document: A2