WO2010106935A1 - 調整弁装置 - Google Patents

調整弁装置 Download PDF

Info

Publication number
WO2010106935A1
WO2010106935A1 PCT/JP2010/053749 JP2010053749W WO2010106935A1 WO 2010106935 A1 WO2010106935 A1 WO 2010106935A1 JP 2010053749 W JP2010053749 W JP 2010053749W WO 2010106935 A1 WO2010106935 A1 WO 2010106935A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
valve body
space
power transmission
transmission member
Prior art date
Application number
PCT/JP2010/053749
Other languages
English (en)
French (fr)
Inventor
信一 池田
道雄 山路
毅 谷川
裕是 金子
靖司 八木
裕司 小野
忠弘 大見
泰雪 白井
Original Assignee
株式会社フジキン
東京エレクトロン株式会社
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジキン, 東京エレクトロン株式会社, 国立大学法人東北大学 filed Critical 株式会社フジキン
Priority to CN2010800124964A priority Critical patent/CN102365484A/zh
Priority to US13/138,670 priority patent/US20120074339A1/en
Publication of WO2010106935A1 publication Critical patent/WO2010106935A1/ja
Priority to IL215135A priority patent/IL215135A0/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/12Actuating devices; Operating means; Releasing devices actuated by fluid
    • F16K31/126Actuating devices; Operating means; Releasing devices actuated by fluid the fluid acting on a diaphragm, bellows, or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/12Actuating devices; Operating means; Releasing devices actuated by fluid
    • F16K31/126Actuating devices; Operating means; Releasing devices actuated by fluid the fluid acting on a diaphragm, bellows, or the like
    • F16K31/1268Actuating devices; Operating means; Releasing devices actuated by fluid the fluid acting on a diaphragm, bellows, or the like with a plurality of the diaphragms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K27/00Construction of housing; Use of materials therefor
    • F16K27/02Construction of housing; Use of materials therefor of lift valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K41/00Spindle sealings
    • F16K41/10Spindle sealings with diaphragm, e.g. shaped as bellows or tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment

Definitions

  • the present invention relates to a regulating valve device that opens and closes a valve body with a working fluid such as air.
  • valve body is slid to contact or isolate the valve body from the valve seat surface of the transport path, thereby opening and closing the transport path and adjusting the flow rate.
  • the valve body and the valve seat surface are made of stainless steel such as SUS or aluminum, for example.
  • the film forming material (organic molecules) evaporated by the vapor deposition source passes through the transport path together with the carrier gas and is transported to the substrate.
  • the conveyance path needs to be in a high temperature state of 300 ° C. or higher. Thereby, the vicinity of a valve body will be in the high temperature state of 300 degreeC or more.
  • the valve body is coated with a resin such as Ni—Co, the resin has a low heat-resistant temperature. Therefore, when exposed to a high temperature, the resin is likely to be deformed and melted to cause galling or seizure. As a result, the frequency of occurrence of leakage is further increased, and the opening / closing accuracy of the valve body is lowered.
  • a resin such as Ni—Co
  • an object of the present invention is to provide a regulating valve device that optimizes the structure and shape of the valve body and improves the opening / closing accuracy of the valve body.
  • a valve body head and a valve body part are connected by a valve shaft, the valve body is connected to the valve body, and power is supplied to the valve body.
  • a power transmission member that transmits, a valve box that slidably incorporates the valve body and the power transmission member, one end fixed to the power transmission member, and the other end fixed to the valve box,
  • a first bellows that forms a first space at a position opposite to the valve body with respect to the power transmission member, one end is fixed to the power transmission member, and the other end is fixed to the valve box,
  • a second bellows that forms a second space at a position on the valve body side with respect to the power transmission member, a first pipe that communicates with the first space, and a second that communicates with the second space.
  • a working fluid supplied from the first pipe to the first space and the first pipe By transmitting power from the power transmission member to the valve body via the valve shaft in accordance with the ratio of the working fluid supplied from the pipe to the second space, the valve body head causes the valve to An adjustment valve device for opening and closing a conveyance path formed in a box is provided.
  • the first space Us is formed at a position opposite to the valve body 310 with respect to the power transmission member 320a using the first bellows 320b, and the first bellows 320b is formed.
  • the 2nd space Ls is formed in the position by the side of a valve body to power transmission member 320a using the 2nd bellows 320c.
  • the power transmission member 320a sandwiched between the first and second spaces is closed in the valve body direction. Or it can be made to slide in the opening direction.
  • This power is transmitted to the valve body head 310a via the valve shaft 310c.
  • the conveyance path (the forward path 200a1 and the return path 200a2) can be opened and closed by the valve head 310a.
  • the valve body may have a structure in which the valve body head and the valve body part are connected by a valve shaft, or the valve body head and the valve body part may have an integrated structure. .
  • valve shaft may pass through the center in the longitudinal direction of the valve body and be inserted into a recess provided in the center of the valve head.
  • play may be provided between the recess provided in the center of the valve body head and the valve shaft.
  • the clearance between the valve body 310b and the valve shaft 310c in FIG. 5 is controlled to correct the shake of the valve shaft 310c, and the play 310a2 is provided in the recess 310a1 of the valve body head 310a.
  • the slight deviation of the shaft of the valve body head 310a can be adjusted.
  • the space on the valve shaft side and the space on the conveyance path side may be blocked by fixing one end to the valve body head and the other end to the valve body.
  • the portion of the valve body head that comes into contact with the conveyance path may have a tapered shape, and the taper opening ⁇ with respect to a line segment perpendicular to the tip surface of the valve body head may be 40 ° to 80 °.
  • the portion of the valve head that comes into contact with the conveyance path may be arcuate and have a desired radius of curvature.
  • the valve head may be a metal stellite so that the Vickers hardness is 500 HV or more.
  • the valve body head may be provided with a weld deposit of cobalt alloy.
  • the valve seat surface of the conveyance path that comes into contact with the valve body head may be a metal whose surface is processed so that the Vickers hardness is approximately 200 to 400 HV by sheet burnishing.
  • the regulating valve device may be used for opening and closing a transport path for transporting organic molecules forming a target object to the vicinity of the target object.
  • the adjusting valve device may be used in an environment where the inside is 300 ° C. or higher.
  • the structure and shape of the valve body can be optimized and the opening / closing accuracy of the valve body can be improved.
  • FIG. 1 It is a schematic perspective view of the 6-layer continuous film-forming apparatus which concerns on one Embodiment of this invention. It is sectional drawing of the film-forming unit which concerns on the same embodiment. It is a schematic diagram of the organic EL element formed with the 6 layer continuous film-forming apparatus based on the embodiment. It is sectional drawing of the vapor deposition source and conveyance path which concern on the same embodiment. It is sectional drawing of the regulating valve apparatus which concerns on the same embodiment. It is the figure which showed the result of having detected the amount of leaks using the regulating valve apparatus concerning the embodiment.
  • the 6-layer continuous film forming apparatus 10 has a rectangular vacuum vessel Ch.
  • the inside of the vacuum vessel Ch is evacuated by an exhaust device (not shown) and maintained in a desired vacuum state.
  • Six film forming units 20 are arranged side by side inside the vacuum vessel Ch.
  • a partition plate 500 is provided between adjacent film forming units 20.
  • the film forming unit 20 includes three rectangular deposition source units 100, a connecting pipe 200, and three regulating valve devices 300 and a blowing mechanism 400 that are arranged in pairs with the deposition source unit 100.
  • the vapor deposition source unit 100 is made of a metal such as SUS. Since quartz or the like hardly reacts with an organic material, the vapor deposition source unit 100 may be formed of a metal coated with quartz or the like.
  • the vapor deposition source unit 100 is an example of a vapor deposition source that vaporizes a material, and need not be a unit-type vapor deposition source, and may be a general crucible.
  • Vaporization includes not only a phenomenon in which a liquid changes into a gas but also a phenomenon in which a solid changes directly into a gas without passing through a liquid state (that is, sublimation).
  • the vaporized organic molecules are transported to the blowing mechanism 400 through the connecting pipe 200 and blown out from a slit-like opening Op provided at the upper part of the blowing mechanism 400.
  • the blown-out organic molecules are attached to the substrate G, whereby the substrate G is formed.
  • the partition plate 500 prevents the organic molecules blown out from the adjacent openings Op from being formed while being mixed.
  • the face-down substrate G that slides and moves at the ceiling position of the vacuum vessel Ch is formed, but the substrate G may be arranged face-up.
  • the vapor deposition source unit 100 includes a material input unit 110 and an outer case 120.
  • the material input device 110 includes a material container 110a for storing an organic film forming material and a carrier gas introduction channel 110b.
  • the outer case 120 is formed in a bottle shape, and the material feeder 110 is detachably mounted in the hollow interior.
  • the internal space of the vapor deposition source unit 100 is defined.
  • the internal space of the vapor deposition source unit 100 communicates with a conveyance path 200 a formed inside the connection pipe 200.
  • the conveyance path 200 a is opened and closed by the opening and closing mechanism of the regulating valve device 300.
  • the regulating valve device 300 opens and closes the conveyance path 200a with pressurized air supplied from an air supply source 600 provided outside the vacuum vessel Ch.
  • the internal structure of the regulating valve device 300 will be described later.
  • the end of the material input device 110 is connected to a gas supply source (not shown), and introduces argon gas supplied from the gas supply source into the flow path 110b.
  • the argon gas functions as a carrier gas for transporting organic molecules of the film forming material stored in the material container 110a.
  • the carrier gas is not limited to argon gas, and may be any inert gas such as helium gas or krypton gas.
  • the organic molecules of the film forming material are transported from the vapor deposition source unit 100 through the transport path 200a of the connecting pipe 200 to the blowing mechanism 400, temporarily stay in the buffer space S, and then pass through the slit-shaped opening Op on the substrate G. Adhere to.
  • the substrate G travels above the first to sixth blowing mechanisms 400 at a certain speed.
  • the first hole injection layer, the second hole transport layer, the third blue light emitting layer, and the fourth green light emitting layer are sequentially formed on the ITO of the substrate G.
  • the fifth red light emitting layer and the sixth electron transport layer are formed.
  • the first to sixth organic layers are continuously formed.
  • the blue light emitting layer, the green light emitting layer, and the red light emitting layer of the third to fifth layers are light emitting layers that emit light by recombination of holes and electrons.
  • the metal layer (electron injection layer and cathode) on the organic layer is formed by sputtering.
  • an organic EL element having a structure in which the organic layer is sandwiched between the anode (anode) and the cathode (cathode) is formed on the glass substrate.
  • a voltage is applied to the anode and cathode of the organic EL element, holes (holes) are injected into the organic layer from the anode, and electrons are injected into the organic layer from the cathode.
  • the injected holes and electrons recombine in the organic layer, and light emission occurs at this time.
  • the connecting pipe 200 conveys the vaporized organic molecules to the blowing mechanism 400 via the regulating valve device 300.
  • the valve body of the regulating valve device 300 is opened during the film formation, the organic molecules vaporized in each vapor deposition source unit 100 are transported by the carrier gas while being transported by the carrier gas from the forward path 200a1 to the return path 200a2. And transported to the blowing mechanism 400.
  • the valve body of the regulating valve device 300 is closed when no film is formed, the forward path 200a1 and the return path 200a2 of the transport path are closed, and the transport of organic molecules is stopped.
  • the regulating valve device 300 has a cylindrical valve box 305.
  • the valve box 305 is divided into three parts: a front member 305a, a central bonnet 305b, and a rear member 305c.
  • the valve box 305 is hollow, and a valve body 310 is built in substantially the center thereof.
  • the valve element 310 is separated into a valve element head part 310a and a valve element body part 310b.
  • the valve head 310a and the valve body 310b are connected by a valve shaft 310c.
  • the valve shaft 310c is a rod-shaped member, and passes through the center of the valve body part 310b in the longitudinal direction, and is fitted into a recess 310a1 provided at the center of the valve body head 310a.
  • the protrusion 310b1 of the valve body 310b is inserted into an annular recess 305a1 provided in the bonnet 305b of the valve box 305.
  • an outward path 200a1 and a return path 200a2 of the transport path 200a are formed in the front member 305a of the valve box 305.
  • the recess 305a1 is provided with a space in which the valve body 310b can slide in the longitudinal direction in a state in which the protrusion 310b1 is inserted, and a heat-resistant buffer member 315 is interposed in the space.
  • a heat-resistant buffer member 315 is interposed in the space.
  • An example of the buffer member 315 is a metal gasket. The buffer member 315 blocks the vacuum on the conveyance path side and the atmosphere on the valve shaft 310c side, and reduces mechanical interference between the protrusion 310b1 and the bonnet 305b due to sliding of the valve body part 310b.
  • a play 310a2 is also provided in the recess 310a1 of the valve body head 310a with the valve shaft 310c inserted.
  • the valve body 310 since the valve body part 310b and the valve body head part 310a are separated, by controlling the clearance (gap) between the valve body part 310b and the valve shaft 310c, The deviation of the center position of the valve body 310 during the opening / closing operation is corrected.
  • a slight deviation of the shaft of the valve head 310a can be adjusted.
  • the valve body head 310a is brought into contact with the valve seat surface 200a3 without deviation, so that the close contact between the valve body head 310a and the valve seat surface 200a3 can be increased, thereby preventing leakage.
  • the adjustment valve device 300 is used in a high temperature state or is used in a low temperature state, so that an influence is caused due to thermal expansion of the metal. Even so, since the influence can be absorbed by the separation structure of the valve body 310 as described above, the leakage of the valve body portion at the time of opening and closing can be effectively prevented as compared with the integrated valve body.
  • the valve body drive unit 320 is provided on the rear member 305c of the valve box 305.
  • the valve body drive unit 320 includes a power transmission member 320a, a first bellows 320b, and a second bellows 320c built in the valve box 305.
  • the power transmission member 320a is substantially T-shaped and is screwed to the end of the valve shaft 310c.
  • the first bellows 320b has one end welded to the power transmission member 320a and the other end welded to the rear member 305c. Accordingly, the first side which is isolated by the power transmission member 320a, the first bellows 320b, and the rear member 305c on the rear side of the valve box 305 (position opposite to the valve body 310 with respect to the power transmission member 320a). A space Us is formed.
  • the second bellows 320c has one end welded to the power transmission member 320a and the other end welded to the rear member 305c.
  • the power transmission member 320a, the first bellows 320b, the second bellows 320c, and the rear member 305c are isolated on the front side of the valve box 305 (position on the valve body side with respect to the power transmission member 320a).
  • a second space Ls is formed.
  • the first pipe 320d communicates with the first space Us isolated by the first bellows 320b.
  • the first pipe 320d is connected to the supply pipe Ar1 of the air supply source 600.
  • the first pipe 320d supplies the pressurized air output from the air supply source 600 to the first space Us.
  • the second pipe 320e communicates with the second space Ls isolated by the first bellows 320b and the second bellows 320c.
  • the second pipe 320e is connected to the supply pipe Ar2 of the air supply source 600.
  • the second pipe 320e supplies the pressurized air output from the air supply source 600 to the second space Ls.
  • the power transmission member 320a slides in the direction of pressing the valve body 310. Then, the valve body head portion 310a is pushed forward via the valve shaft 310c, whereby the valve body head portion 310a closes the forward path 200a1 of the conveyance path, and the valve body 310 is closed.
  • the power transmission member 320a slides in the direction of pulling the valve body 310.
  • the valve body head 310a is pulled backward via the valve shaft 310c, whereby the valve body head 310a is separated from the forward path 200a1 of the conveyance path, and the valve body 310 is opened.
  • the third bellows 325 has one end welded to the valve body head portion 310a and the other end welded to the valve body portion 310b. Thereby, the atmospheric space on the valve shaft side and the vacuum space on the transport path side are blocked. Further, the clearance between the valve body part 310b and the valve shaft 310c can be managed by supporting the valve body part 310b and the valve body head part 310a by the third bellows 325. Thus, the valve body body portion 310b and the valve shaft 310c are controlled to contact with each other during the valve body opening / closing operation so that friction is not generated.
  • the bonnet 305b is provided with a purge port 330 for purging the sealed space between the bonnet 305b and the valve body drive unit 320.
  • a metal gasket 335 for sealing is interposed on the contact surface between the front member 305a and the bonnet 305b and the contact surface between the bonnet 305b and the rear member 305c of the valve box 305 in order to ensure hermeticity.
  • the adjustment valve apparatus 300 can be made into a structure suitable for use in a vacuum environment.
  • valve body and valve seat In the regulating valve device 300 according to the present embodiment, in addition to the separation of the valve body 310 as described above, the operability and the sealing performance can be stably maintained even in a high temperature environment of about 500 ° C.
  • the material, shape, and surface processing of the valve body and valve seat are optimized.
  • valve body and valve seat (Material and surface treatment of valve body and valve seat) Specifically, the inventors adopted austenitic stainless steel with excellent heat resistance as the material of the valve seat surface 200a3 and the valve body 310. In addition, the inventors processed the surface of the valve body 310 with Stellite (registered trademark) finish or F2 coat (registered trademark) so that the Vickers hardness was 500 HV or more. Stellite is a stainless steel with a cobalt alloy weld pile, and F2 coating is a process of coating stainless steel with a material in which phosphorus is mixed into nickel.
  • Stellite is a stainless steel with a cobalt alloy weld pile
  • F2 coating is a process of coating stainless steel with a material in which phosphorus is mixed into nickel.
  • the Vickers hardness of the valve body head 310a is 500 HV or more, and when F2 is coated, the Vickers hardness of the valve body head 310a is about 700 HV. Therefore, the F2 coat is more preferable than the stellite scale because of its high hardness.
  • valve seat side for example, burnishing stainless steel.
  • the metal surface is crushed by a roller and plastically deformed to harden the surface layer and finish the surface into a mirror surface.
  • the inventors surface-treat the valve seat surface 200a3 so that the Vickers hardness is approximately 200 to 400 HV.
  • the inventors set the F2 coat and Vickers hardness of the valve head 310a to 500 HV or more, and the Vickers hardness of the valve seat surface 200a3 to approximately 200 to 400 HV by seat burnishing, A hardness difference was provided between the valve body head portion 310a and the valve seat surface 200a3, and different surface hardening treatments were applied to the valve body head portion 310a and the valve seat surface 200a3. As a result, a smooth opening and closing operation of the valve body 310 was realized, and galling and image sticking were prevented.
  • valve seat surface 200a3 is too hard, the crystal structure of the material forming the valve seat surface 200a3 is broken, the corrosion resistance is lowered, the material constituting the valve seat is peeled off, and it flies into the transport path.
  • the Vickers hardness of the valve seat surface 200a3 is set to 400 HV or less (preferably approximately 200 to 400 HV) because it is mixed into the film forming material and causes contamination.
  • the portion of the valve body head 310a that contacts the valve seat surface 200a3 has a tapered shape, and the taper opening ⁇ with respect to a line perpendicular to the tip surface of the valve body head 310a is 40 ° to 80 °.
  • the reason why the taper opening ⁇ is limited to 40 ° to 80 ° is to improve the sheet property. Thereby, the valve body 310 is opened and closed more smoothly, and galling and image sticking are prevented.
  • the contact portion of the valve head 310a with the valve seat surface 200a3 may be arcuate. In that case, it is preferable to have a desired radius of curvature. Thereby, the valve body 310 is opened and closed more smoothly, and galling and image sticking are prevented.
  • valve body 310 when the valve body 310 is assembled and finished, by performing coaxiality and alignment (sliding) between the valve seat and the valve body, the center axis of the valve body 310 and the valve seat surface 200a3 is prevented from being displaced. Set to the finished state. In this way, by performing special surface hardening treatment and preventing galling and seizure, a regulating valve that can stably maintain operability, sealing performance and heat resistance using a valve body and a valve seat made of metal.
  • the device 300 could be constructed.
  • valve body 310 The inventor verified the leak state of the valve body 310 using the regulating valve device 300 having the above-described configuration. The experiment was performed both in a state in which the valve box 305 was at a high temperature of 500 ° C. and in a state in which the valve box 305 was at room temperature.
  • the taper opening ⁇ of the contact portion of the valve body head 310a was 60 ° C.
  • the valve head 310a is made of SUS316 stainless steel with a surface treatment of F2 coating, and the valve seat surface 200a3 is made of SUS316 stainless steel with burnishing.
  • the Vickers hardness of the valve head 310a was 700 HV, and the Vickers hardness was 400 HV by seat burnishing of the valve seat (valve seat surface 200a3).
  • the operating pressure (MPa) that is, the pressurized air supplied from the first pipe 320d presses the power transmission member 320a.
  • MPa the pressure at the time of changing
  • the leak amount was on the order of 10 ⁇ 11 (Pa ⁇ m 3 / sec) or less at all the operating pressures examined (0.20 to 0.60: MPs).
  • MPa 0.25 to 0.55
  • the leak amount detection result was below the minimum detection sensitivity. This indicates that the leak amount could not be detected because almost no leak occurred.
  • the leakage amount was on the order of 10 ⁇ 9 (Pa ⁇ m 3 / sec) or less at the operating pressure (0.50 to 0.60: MPs). From the above, even when the temperature in the valve box is room temperature, the leakage amount is on the order of 10 ⁇ 9 (Pa ⁇ m 3 / sec) or less when the operating pressure is 0.50 to 0.60 (MPa). It was found that the amount of leakage can be further reduced at a high temperature of about 500 ° C.
  • the regulating valve device 300 Compared with the conventional regulating valve device having a leak amount of about 10 ⁇ 3 to 10 ⁇ 4 (Pa ⁇ m 3 / sec), the regulating valve device 300 according to the present embodiment has the valve body 310 and the valve By optimizing the material, shape and surface processing of the seat, it was proved that the opening / closing operation of the valve body 310 can be repeated with almost no leakage.
  • the organic vapor deposition material that passes through the transfer path 200a is used in an environment of high temperature and reduced pressure.
  • the reason why the organic vapor deposition material is used at a high temperature will be described.
  • the film-forming material (organic molecules) evaporated in the vapor deposition source unit 100 is transported to the substrate G through the transport path 200 a by the carrier gas Ar.
  • the conveyance path 200a needs to be in a high temperature state of 300 ° C. or higher in order to avoid deposition of the film forming material on the inner wall of the conveyance path 200a.
  • the reason why the organic vapor deposition material is used under reduced pressure is that it is desired to transport organic molecules to the substrate G with almost no contamination by making the inside of the transport path 200a in a decompressed state.
  • the regulating valve device 300 according to the present embodiment when used in the organic film six-layer continuous film forming device 10, the vicinity of the valve body 310 is in a high temperature and reduced pressure state.
  • leakage hardly occurs, so that the atmosphere on the valve shaft side does not flow into the conveyance path side even when the conveyance path side is in a vacuum environment.
  • the regulating valve device 300 can maintain a very high hermeticity even at a high temperature of about 500 ° C. Further, by forming both the valve body side and the valve seat side from metal and adopting the separation structure of the valve body, it is possible to realize a valve mechanism capable of preventing leakage with high accuracy.
  • the regulating valve device according to the present invention is used not only for opening / closing a conveyance path provided in an organic EL device, but also for a manufacturing device requiring a valve opening / closing mechanism such as a semiconductor manufacturing device or an FPD device. be able to.
  • the regulating valve device according to the present invention can be used even in a high temperature state of about 500 ° C., and can be used even in a vacuum state of about 10 ⁇ 1 to 10 2 Pa.
  • the working fluid supplied to the regulating valve apparatus which concerns on this invention is not restricted to this, Gas, such as inert gas, oil, etc. It may be a liquid.
  • a powdery (solid) organic material can be used as a film forming material of the organic EL device according to the present invention.
  • a liquid organic metal is mainly used as a film forming material, and the vaporized film forming material is decomposed on a heated object to be processed, whereby a thin film is grown on the object to be processed.
  • MOCVD Metal Organic Chemical Vapor Deposition: It can also be used for organometallic vapor phase epitaxy.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electroluminescent Light Sources (AREA)
  • Details Of Valves (AREA)
  • Lift Valve (AREA)
  • Fluid-Driven Valves (AREA)

Abstract

【課題】作動流体により弁体を開閉する調整弁装置を提供する。 【解決手段】弁体310は、弁体頭部310aと弁体身部310bとが弁軸310cにより連結された構造を有する。弁箱305は、弁体310と動力伝達部材320aとを摺動可能に内蔵する。第1のベローズ320bは、動力伝達部材320a及び弁箱305に固着されることにより、動力伝達部材320aに対して弁体と反対側の位置に第1の空間Usを形成する。第2のベローズ320cは、動力伝達部材320a及び弁箱305に固着されることにより、動力伝達部材320aに対して弁体側の位置に第2の空間Lsを形成する。第1の配管320dから第1の空間Usに供給されたエアーと第2の配管320eから第2の空間Lsに供給されたエアーとの比率に応じて動力伝達部材320aから弁体頭部310aに動力を伝達し、搬送路200aを開閉する。

Description

調整弁装置
 本発明は、エアー等の作動流体により弁体を開閉する調整弁装置に関する。
 従来から、半導体製造装置、有機EL(Electro Luminescence)装置、FPD(FLat Panel Display)装置等の製造装置において、成膜等の製造に使用される流体の搬送路の開閉や流量調整のために搬送路に調整弁装置を設けることが提案されている(特許文献1,2を参照)。たとえば、特許文献1、2に記載された調整弁装置では、ベローズの一端を弁体に溶接し、他端をベローズホルダに溶接し、これにより、弁体を収納した弁箱内の搬送路と弁軸の周囲の空間とをベローズにより区画する。この状態にて弁体を摺動させて、弁体を搬送路の弁座面に当接又は弁座面から隔離することにより、搬送路の開閉や流量調整を行う。弁体及び弁座面は、たとえば、SUS等のステンレスやアルミニウムにより形成されている。
特開平06-074363号公報 特開平11-153235号公報
 しかしながら、弁体の開閉動作時、弁体と弁座面との間の機械的な干渉や、組み立て時に発生する弁体と弁座面との僅かな偏りにより弁体の開閉部分にてリークが発生する場合がある。特に、調整弁装置の内部が300℃以上に達するプロセス条件において弁体の開閉動作が行われる場合、リークの発生頻度が高くなったり、リーク量が多くなったりする。たとえば、有機EL装置の搬送路に調整弁装置を取り付けて、調整弁装置により搬送路の開閉を行う場合について考える。蒸着源にて蒸発した成膜材料(有機分子)は、キャリアガスとともに搬送路を通過して基板まで搬送される。搬送中、付着係数を考慮して成膜材料が搬送路の内壁に付着することを回避するために、搬送路を300℃以上の高温状態にする必要がある。これにより、弁体の近傍が300℃以上の高温状態になる。このような状態で弁体の開閉動作を繰り返すと、機械的な干渉だけでなく熱の影響を受けて弁体と弁座面との間に摩擦や溶解が生じ、カジリや焼き付きが引き起こされる。この結果、弁体の開閉部分にてリークが頻出しかつリーク量も増加する。Ni-Co等の樹脂が弁体にコーティングされている場合には、樹脂は耐熱温度が低いため、高温にさらされると変形及び溶解して、カジリや焼き付きが発生する可能性が高くなる。この結果、リークの発生頻度は更に高くなり、弁体の開閉精度が低下する。
 そこで、上記課題を解決するために、本発明は、弁体の構造や形状を適正化し、弁体の開閉精度を向上させた調整弁装置を提供することを目的とする。
 すなわち、上記課題を解決するために、弁体頭部と弁体身部とが弁軸により連結された弁体と、前記弁軸を介して前記弁体に連結され、前記弁体に動力を伝達する動力伝達部材と、前記弁体と前記動力伝達部材とを摺動可能に内蔵する弁箱と、一端を前記動力伝達部材に固着し、他端を前記弁箱に固着することにより、前記動力伝達部材に対して前記弁体と反対側の位置に第1の空間を形成する第1のベローズと、一端を前記動力伝達部材に固着し、他端を前記弁箱に固着することにより、前記動力伝達部材に対して前記弁体側の位置に第2の空間を形成する第2のベローズと、前記第1の空間と連通する第1の配管と、前記第2の空間と連通する第2の配管と、を備え、前記第1の配管から前記第1の空間に供給された作動流体と前記第2の配管から前記第2の空間に供給された作動流体との比率に応じて前記動力伝達部材から前記弁軸を介して前記弁体に動力を伝達することにより、前記弁体頭部によって前記弁箱に形成された搬送路を開閉する調整弁装置が提供される。
 これによれば、図5に示したように第1のベローズ320bを用いて動力伝達部材320aに対して弁体310と反対側の位置に第1の空間Usが形成され、第1のベローズ320b及び第2のベローズ320cを用いて動力伝達部材320aに対して弁体側の位置に第2の空間Lsが形成される。この第1の空間Usに供給される作動流体と第2の空間Lsに供給される作動流体との比率により、第1及び第2の空間に挟まれた動力伝達部材320aを弁体の閉方向又は開方向に摺動させることができる。この動力は、弁軸310cを介して弁体頭部310aに伝えられる。この結果、弁体頭部310aにより搬送路(往路200a1及び復路200a2)を開閉することができる。
 弁体は、弁体頭部と弁体身部とが弁軸により連結された構造を有していてもよいし、弁体頭部と弁体身部とが一体構造になっていても良い。
 また、前記弁軸は、前記弁体身部の長手方向の中央を貫通し、前記弁体頭部の中央に設けられた凹部に挿入されていてもよい。
 さらに、前記弁体頭部の中央に設けられた凹部と前記弁軸との間には、遊びが設けられていてもよい。
 このような構造により、図5の弁体身部310bと弁軸310cとのクリアランスを制御して弁軸310cのぶれを補正するとともに弁体頭部310aの凹部310a1に遊び310a2を設けたことにより、弁体頭部310aの軸の微少なずれを調整することができる。これにより、弁体頭部310aを弁座面200a3に偏りなく当接することにより、弁体頭部310aと弁座面200a3との密着性を高くして、リークを防ぐことができる。
 一端を前記弁体頭部に固着し、他端を前記弁体身部に固着することにより、前記弁軸側の空間と前記搬送路側の空間とを遮断してもよい。
 前記弁体頭部の前記搬送路に当接する部分はテーパ形状であり、前記弁体頭部の先端面に垂直な線分に対するテーパ開度θは、40°~80°であってもよい。
 前記弁体頭部の前記搬送路に当接する部分は円弧状であり、所望の曲率半径を有する構造であってもよい。
 前記弁体頭部は、ビッカース硬さが500HV以上になるようにステライト盛りされた金属であってもよい。
 前記弁体頭部には、コバルト合金系の溶接盛りが施されていてもよい。
 前記弁体頭部に当接する前記搬送路の弁座面は、シートバニシング加工によりビッカース硬さが概ね200以上400HV以下になるように表面加工された金属であってもよい。
 前記調整弁装置は、被処理体を成膜する有機分子を被処理体近傍まで搬送する搬送路の開閉に用いられてもよい。
 前記調整弁装置は、内部が300℃以上になる環境下において使用されてもよい。
 以上説明したように、本発明によれば、弁体の構造や形状を適正化し、弁体の開閉精度を向上させることができる。
本発明の一実施形態に係る6層連続成膜装置の概略斜視図である。 同実施形態に係る成膜ユニットの断面図である。 同実施形態に係る6層連続成膜装置により形成された有機EL素子の模式図である。 同実施形態に係る蒸着源及び搬送路の断面図である。 同実施形態に係る調整弁装置の断面図である。 同実施形態に係る調整弁装置を用いてリーク量を検出した結果を示した図である。
 以下に添付図面を参照しながら、本発明の一実施形態にかかる調整弁装置について詳細に説明する。なお、以下の説明及び添付図面において、同一の構成及び機能を有する構成要素については、同一符号を付することにより、重複説明を省略する。
 なお、説明は以下の順序で行う。
1.調整弁装置を利用する6層連続成膜装置の全体構成
2.6層連続成膜装置に係る成膜ユニットの内部構成
3.成膜ユニットに係る調整弁装置の内部構成
4.弁体及び弁座面の構造、形状、表面処理
5.リーク状態の検証
[6層連続成膜装置]
 まず、本発明の一実施形態に係る調整弁装置が用いられる6層連続成膜装置について、その概略構成を示した図1を参照しながら説明する。
 6層連続成膜装置10は、矩形状の真空容器Chを有している。真空容器Chの内部は、図示しない排気装置により排気され、所望の真空状態に維持されている。真空容器Chの内部には、成膜ユニット20が6つ並んで配置されている。隣接する成膜ユニット20の間には、隔壁板500がそれぞれ設けられている。成膜ユニット20は、矩形状の3個の蒸着源ユニット100、連結管200及び蒸着源ユニット100と対になって配置される3つの調整弁装置300及び吹き出し機構400を有している。
 蒸着源ユニット100は、SUS等の金属から形成されている。石英等は有機材料と反応しにくいため、蒸着源ユニット100は、石英等でコーティングされた金属から形成されていてもよい。なお、蒸着源ユニット100は、材料を気化する蒸着源の一例であり、ユニット型の蒸着源である必要はなく、一般的なるつぼであってもよい。
 蒸着源ユニット100の内部には、異なる種類の有機材料が納められている。蒸着源ユニット100の壁面には、図示しないヒーターが埋設されている。ヒーターは、蒸着源ユニット100を所望の温度に温め、有機材料を気化させる。なお、気化とは、液体が気体に変わる現象だけでなく、固体が液体の状態を経ずに直接気体に変わる現象(すなわち、昇華)も含んでいる。
 気化された有機分子は、連結管200を通って、吹き出し機構400まで運ばれ、吹き出し機構400の上部に設けられたスリット状の開口Opから吹き出される。吹き出された有機分子は、基板Gに付着され、これにより基板Gが成膜される。隔壁板500は、隣接する開口Opから吹き出された有機分子同士が混在しながら成膜されることを防止する。なお、本実施形態では、図1に示したように、真空容器Chの天井位置にてスライド移動するフェースダウンの基板Gを成膜したが、基板Gはフェースアップに配置されていてもよい。
[成膜ユニット]
 つぎに、図1の1-1断面を示した図2を参照しながら、成膜ユニット20の内部構造について説明する。なお、図1に示した他の5つの成膜ユニット20は、図1の1-1断面の成膜ユニット20と同一構造であるためその説明を省略する。
 蒸着源ユニット100は、材料投入器110と外部ケース120とを有している。材料投入器110は、有機成膜材料を収納する材料容器110aとキャリアガスの導入流路110bとを有する。外部ケース120は、ボトル状に形成され、中空の内部に材料投入器110が着脱可能に装着されるようになっている。材料投入器110が外部ケース120に装着されると、蒸着源ユニット100の内部空間が画定される。蒸着源ユニット100の内部空間は、連結管200の内部に形成された搬送路200aと連通する。搬送路200aは、調整弁装置300の開閉機構により開閉される。調整弁装置300は、真空容器Chの外部に設けられたエアー供給源600から供給される加圧エアーにより搬送路200aを開閉する。調整弁装置300の内部構造については後述する。
 材料投入器110の端部は、図示しないガス供給源に接続され、ガス供給源から供給されるアルゴンガスを流路110bに導入する。アルゴンガスは、材料容器110aに収納された成膜材料の有機分子を搬送するキャリアガスとして機能する。なお、キャリアガスは、アルゴンガスに限られず、ヘリウムガスやクリプトンガスなどの不活性ガスであればよい。
 成膜材料の有機分子は、蒸着源ユニット100から連結管200の搬送路200aを通って吹き出し機構400に搬送され、バッファ空間Sに一時滞留した後、スリット状の開口Opを通って基板G上に付着する。
[有機膜構造]
 本実施形態にかかる6層連続成膜装置10では、図1に示したように、基板Gは1~6番目の吹き出し機構400の上方をある速度で進行する。進行中、図3に示したように、基板GのITO上に順に、第1層のホール注入層、第2層のホール輸送層、第3層の青発光層、第4層の緑発光層、第5層の赤発光層、第6層の電子輸送層が成膜される。このようにして、本実施形態にかかる6層連続成膜装置10では、第1層~第6層の有機層が連続成膜される。このうち、第3層~第5層の青発光層、緑発光層、赤発光層は、ホールと電子の再結合により発光する発光層である。また、有機層上のメタル層(電子注入層及び陰極)は、スパッタリングにより成膜される。
 これにより、有機層を陽極(アノード)および陰極(カソード)にてサンドイッチした構造の有機EL素子がガラス基板上に形成される。有機EL素子の陽極および陰極に電圧を印加すると、陽極からはホール(正孔)が有機層に注入され、陰極からは電子が有機層に注入される。注入されたホールおよび電子は有機層にて再結合し、このとき発光が生じる。
[搬送路の経路]
 つぎに、図2の2-2断面を示した図4を参照しながら、搬送路200aの経路について簡単に説明する。前述したように、連結管200は、調整弁装置300を経由して気化有機分子を吹き出し機構400側へ搬送する。具体的には、調整弁装置300の弁体は成膜中には開くため、各蒸着源ユニット100にて気化された有機分子は、キャリアガスにより搬送されながら、搬送路の往路200a1から復路200a2に通され、吹き出し機構400まで搬送される。一方、調整弁装置300の弁体は成膜しないときには閉じるため、搬送路の往路200a1と復路200a2とは閉塞され、有機分子の搬送は停止させる。
[調整弁装置]
 次に、調整弁装置300の断面を示した図5を参照しながら、調整弁装置300の内部構成及び動作について詳述する。調整弁装置300は、円筒状の弁箱305を有している。弁箱305は、前方部材305a、中央のボンネット305b、後方部材305cの3つに分かれている。弁箱305は中空になっていて、その略中央に弁体310が内蔵されている。
 弁体310は、弁体頭部310aと弁体身部310bとに分離されている。弁体頭部310aと弁体身部310bとは、弁軸310cにより連結されている。具体的には、弁軸310cは棒状部材であって、弁体身部310bの長手方向の中央を貫通し、弁体頭部310aの中央に設けられた凹部310a1に嵌入されている。弁体身部310bの突出部310b1は、弁箱305のボンネット305bに設けられた環状の凹部305a1に挿入されている。弁箱305の前方部材305aには、搬送路200aの往路200a1及び復路200a2が形成されている。
 凹部305a1には、突出部310b1が挿入された状態にて、弁体身部310bがその長手方向に摺動可能な空間が設けられていて、その空間には耐熱性の緩衝部材315が介在している。緩衝部材315の一例としては、金属製ガスケットが挙げられる。緩衝部材315は、搬送路側の真空と弁軸310c側の大気を遮断するとともに弁体身部310bの摺動による突出部310b1とボンネット305bとの機械的干渉を緩和するようになっている。
(弁体身部及び弁体頭部の分離構造)
 弁体頭部310aの凹部310a1にも、弁軸310cが挿入された状態で遊び310a2が設けられている。本実施形態に係る弁体310では、弁体身部310bと弁体頭部310aとが分離されているので、弁体身部310bと弁軸310cとのクリアランス(隙間)を制御することにより、開閉動作時の弁体310の中心位置のずれを補正する。これに加えて、弁体頭部310aの凹部310a1に遊び310a2を設けたことにより、弁体頭部310aの軸の微少なずれを調整することができる。これにより、弁体頭部310aを弁座面200a3に偏りなく当接することにより、弁体頭部310aと弁座面200a3との密着性を高くして、リークを防ぐことができる。この結果、本実施形態に係る分離型の弁体310によれば、調整弁装置300が高温状態にて使用されたり、低温状態にて使用されたりして金属が熱膨張することによる影響が生じたとしても、弁体310の分離構造により上述したようにその影響を吸収できるため、一体型の弁体に比べて開閉時の弁体部分のリークを効果的に防ぐことができる。
 弁箱305の後方部材305cには、弁体駆動部320が設けられている。弁体駆動部320は、弁箱305に内蔵された動力伝達部材320a、第1のベローズ320b及び第2のベローズ320cを有している。動力伝達部材320aは、略T字状であって、弁軸310cの端部にねじ止めされている。
 第1のベローズ320bは、一端が動力伝達部材320aに溶接され、他端が後方部材305cに溶接されている。これにより、弁箱305の後部側(動力伝達部材320aに対して弁体310と反対側の位置)に、動力伝達部材320aと第1のベローズ320bと後方部材305cとにより隔絶された第1の空間Usが形成される。
 第2のベローズ320cは、一端が動力伝達部材320aに溶接され、他端が後方部材305cに溶接されている。これにより、弁箱305の前部側(動力伝達部材320aに対して弁体側の位置)に、動力伝達部材320aと第1のベローズ320bと第2のベローズ320cと後方部材305cとにより隔絶された第2の空間Lsが形成される。
 第1の配管320dは、第1のベローズ320bにより隔離された第1の空間Usと連通する。第1の配管320dは、エアー供給源600の供給管Ar1に連結されている。第1の配管320dは、エアー供給源600から出力された加圧エアーを第1の空間Usに供給する。
 第2の配管320eは、第1のベローズ320bと第2のベローズ320cとにより隔絶された第2の空間Lsと連通する。第2の配管320eは、エアー供給源600の供給管Ar2に連結されている。第2の配管320eは、エアー供給源600から出力された加圧エアーを第2の空間Lsに供給する。
 かかる構成によれば、第1の配管320dから第1の空間Usに供給された加圧エアーと第2の配管320eから第2の空間Lsに供給された加圧エアーとの比率に応じて、動力伝達部材320aから弁軸310cを介して弁体頭部310aに動力が伝達される。これにより、弁体頭部310aがその長手方向に進行又は後退することによって弁箱305に形成された搬送路の往路200a1及び復路200a2を開閉する。開閉方向は、第1の空間Usに供給された加圧エアーと第2の空間Lsに供給された加圧エアーとの比率により定まる。
 たとえば、第2の空間Lsに供給された加圧エアーに対する第1の空間Usに供給された加圧エアーの比率が高くなった場合、動力伝達部材320aは、弁体310を押圧する方向にスライドし、弁体頭部310aが弁軸310cを介して前方方向に押され、これにより、弁体頭部310aが搬送路の往路200a1を閉塞し、弁体310が閉まる。
 一方、第2の空間Lsに供給された加圧エアーに対する第1の空間Usに供給された加圧エアーの比率が低くなった場合、動力伝達部材320aは、弁体310を引っ張る方向にスライドし、弁軸310cを介して弁体頭部310aが後方方向に引っ張られ、これにより、弁体頭部310aが搬送路の往路200a1から離隔し、弁体310が開く。
 第3のベローズ325は、一端が弁体頭部310aに溶接され、他端が弁体身部310bに溶接されている。これにより、弁軸側の大気空間と搬送路側の真空空間とが遮断される。また、弁体身部310bと弁体頭部310aとの間を第3のベローズ325により支えることによって、弁体身部310bと弁軸310cとの間のクリアランスを管理することができる。これにより、弁体開閉動作時に弁体身部310bと弁軸310cとが接触して摩擦が生じないように制御されている。なお、ボンネット305bには、ボンネット305bと弁体駆動部320との間の密閉空間内をパージするパージポート330が設けられている。
 弁箱305の前方部材305aとボンネット305bとの接面、及びボンネット305bと後方部材305cとの接面には密閉性を確保するためにシール用の金属製ガスケット335が介設されている。これにより、調整弁装置300を真空環境下での使用に適した構造とすることができる。
[弁体及び弁座面の表面処理]
 本実施形態にかかる調整弁装置300では、上述したように弁体310を分離構造にしたことに加えて、500℃程度の高温環境においても操作性及びシール性を安定して維持できるように、弁体及び弁座の材質、形状及び表面加工の最適化を図っている。
(弁体及び弁座の材質及び表面処理)
 具体的には、発明者らは、弁座面200a3及び弁体310の材質として、耐熱性に優れたオーステナイト系ステンレス鋼を採用した。加えて、発明者らは、弁体310の表面を、ビッカース硬さが500HV以上になるように、ステライト(登録商標)仕上げ又はF2コート(登録商標)により加工した。ステライトは、ステンレス鋼にコバルト合金系の溶接盛りを施したものであり、F2コートは、ニッケルにリンを混入させた材料にてステンレス鋼をコーティングする処理である。たとえば、ステンレス鋼をステライト盛りすると、弁体頭部310aのビッカース硬さは500HV以上になり、F2コートすると、弁体頭部310aのビッカース硬さは700HV程度になる。よって、硬度の高さからステライト盛りよりF2コートの方が好ましい。
 弁座側(弁座面200a3)は、たとえば、ステンレス鋼をバニシング加工する。バニシング加工では、金属表面をローラで押しつぶし塑性変形させることにより、表層を硬化させるとともに表面が鏡面に仕上げられる。本実施形態では、発明者らは、弁座面200a3のビッカース硬さを概ね200以上400HV以下になるように表面加工する。
 以上のように、発明者らは、弁体頭部310aのF2コート、ビッカース硬さを500HV以上とし、弁座面200a3のビッカース硬さをシートバニシング加工により概ね200以上400HV以下とすることにより、弁体頭部310aと弁座面200a3との間に硬度差を設け、かつ弁体頭部310a及び弁座面200a3に異なる表面硬化処理を施した。これにより、弁体310のスムーズな開閉動作を実現し、カジリや焼き付きを防止した。
 一方、弁座面200a3が硬すぎると弁座面200a3を形成する材質の結晶構造が崩れて、耐食性が落ち、弁座を構成する材質が剥離して搬送路中に飛来し、搬送路中の成膜材料に混入してコンタミネーションの原因になるため、弁座面200a3のビッカース硬さは、400HV以下(好ましくは、概ね200以上400HV以下)とした。
(弁体及び弁座の形状)
 弁体頭部310aの弁座面200a3と当接する部分はテーパ形状であり、弁体頭部310aの先端面に垂直な線分に対するテーパ開度θは40°~80°である。テーパ開度θを40°~80°に限定したのは、シート性向上のためである。これにより、弁体310をさらにスムーズに開閉し、カジリや焼き付きを防止する。
 なお、弁体頭部310aの弁座面200a3との当接部分は円弧状であってもよい。その場合、所望の曲率半径をもたせることが好ましい。これにより、弁体310をさらにスムーズに開閉し、カジリや焼き付きを防止する。
 さらに、弁体310の組み立て仕上げ時には、弁座と弁体との同軸度、調芯(摺り合わせ)を行うことにより、弁体310と弁座面200a3との中心軸のずれをなくして最適な仕上げ状態にする。このようにして、特殊な表面硬化処理を行い、カジリ、焼き付きを防止したことにより、金属同士の弁体及び弁座を用いて、操作性、シール性及び耐熱性を安定して維持できる調整弁装置300を構築することができた。
[リーク状態の検証]
 発明者は、上記構成の調整弁装置300を用いて弁体310のリーク状態について検証した。実験は、弁箱305を500℃の高温にした状態と、弁箱305を室温にした状態との両方について行われた。弁体頭部310aの当接部分のテーパ開度θは60℃とした。弁体頭部310aは、SUS316のステンレス鋼にF2コートの表面処理が施され、弁座面200a3は、SUS316のステンレス鋼にバニシング加工が施されている。弁体頭部310aのビッカース硬さは700HV、弁座(弁座面200a3)のシートバニシング加工によりビッカース硬さは400HVであった。
 弁箱305内(ボディ)の温度が500℃の場合、図6に示したように、操作圧力(MPa)、すなわち、第1の配管320dから供給された加圧エアーが動力伝達部材320aを押圧する際の圧力を可変させたとき、検査したすべての操作圧力(0.20~0.60:MPs)においてリーク量は10-11(Pa×m/sec)以下のオーダーであった。特に、操作圧力が0.25~0.55(MPa)の場合、リーク量の検出結果は、最小検出感度以下であった。これは、ほとんどリークが生じていないのでリーク量を検出不可能であったことを示している。
 一方、弁箱内の温度が室温の場合、操作圧力(0.50~0.60:MPs)においてリーク量は、10-9(Pa×m/sec)以下のオーダーであった。以上から、弁箱内の温度が室温の場合であっても操作圧力が0.50~0.60(MPa)の場合、リーク量は、10-9(Pa×m/sec)以下のオーダーを達成することができ、500℃程度の高温状態では、更にリーク量を減少させることができることがわかった。従来の調整弁装置では、リーク量が10-3~10-4(Pa×m/sec)程度であったことと比較すると、本実施形態にかかる調整弁装置300では、弁体310及び弁座の材質、形状及び表面加工の最適化を図ったことにより、ほとんどリークが生じていない状態で弁体310の開閉動作を繰り返すことができることが立証された。
 特に、有機成膜の場合、搬送路200aを通過する有機蒸着材料は、高温、減圧の環境下で使用される。有機蒸着材料が高温下で使用される理由について説明する。図2に示したように蒸着源ユニット100にて蒸発した成膜材料(有機分子)は、キャリアガスArにより搬送路200aを通過して基板Gまで搬送される。搬送中、付着係数を考慮して、成膜材料が搬送路200aの内壁に付着することを回避するために、搬送路200aを300℃以上の高温状態にする必要がある。また、有機蒸着材料が減圧下で使用される理由は、搬送路200aの内部を減圧状態にすることにより、コンタミネーションがほとんど存在しない状態で有機分子を基板Gまで搬送したいからである。
 以上から、本実施形態にかかる調整弁装置300が、有機膜の6層連続成膜装置10に使用される場合、弁体310の近傍は、高温、減圧状態にある。しかしながら、上述したように、以上に説明した弁体310の開閉機構では、リークがほとんど生じないため、搬送路側が真空環境下にあっても、弁軸側の大気が搬送路側に流入しない。この結果、搬送路200aを通過する有機材料の劣化を防ぎ、良好な有機成膜を実現することができる。
 特に、本実施形態にかかる調整弁装置300は、500℃程度の高温状態でも非常に高い密閉性を保つことができる。また、弁体側及び弁座側をともに金属により形成し、かつ弁体の分離構造を採用したことにより、高い精度でリークを防止できる弁機構を実現することができる。
 以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明は係る例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。
 たとえば、本発明に係る調整弁装置は、有機EL装置に設けられた搬送路の開閉に使用されるだけでなく、半導体製造装置やFPD装置等の弁の開閉機構が必要な製造装置に使用することができる。特に、本発明にかかる調整弁装置は、500℃程度の高温状態でも使用することができ、10-1~10Pa程度の真空状態でも使用することができる。
 また、上記実施形態では、本発明に係る調整弁装置にエアーを供給したが、本発明に係る調整弁装置に供給される作動流体はこれに限られず、不活性ガス等のガスやオイル等の液体であってもよい。
 なお、本発明に係る有機EL装置の成膜材料には、パウダー状(固体)の有機材料を用いることができる。成膜材料に主に液体の有機金属を用い、気化させた成膜材料を加熱された被処理体上で分解させることにより、被処理体上に薄膜を成長させるMOCVD(Metal Organic Chemical Vapor Deposition:有機金属気相成長法)に用いることもできる。
 10        6層連続成膜装置
 20        成膜ユニット
 100       蒸着源ユニット
 200       連結管
 200a      搬送路
 200a1     往路
 200a2     復路
 300       調整弁装置
 305       弁箱
 305a      前方部材
 305b      ボンネット
 305c      後方部材
 310       弁体
 310a      弁体頭部
 310b      弁体身部
 310c      弁軸
 315       シール部材
 320       弁体駆動部
 320a      動力伝達部材
 320b      第1のベローズ
 320c      第2のベローズ
 320d      第1の配管
 320e      第2の配管
 330       パージポート
 335       金属製ガスケット
 400       吹き出し機構
 500       隔壁板
 600       エアー供給源

Claims (11)

  1.  弁体頭部と弁体身部とが弁軸により連結された弁体と、
     前記弁軸を介して前記弁体に連結され、前記弁体に動力を伝達する動力伝達部材と、
     前記弁体と前記動力伝達部材とを摺動可能に内蔵する弁箱と、
     一端を前記動力伝達部材に固着し、他端を前記弁箱に固着することにより、前記動力伝達部材に対して前記弁体と反対側の位置に第1の空間を形成する第1のベローズと、
     一端を前記動力伝達部材に固着し、他端を前記弁箱に固着することにより、前記動力伝達部材に対して前記弁体側の位置に第2の空間を形成する第2のベローズと、
     前記第1の空間と連通する第1の配管と、
     前記第2の空間と連通する第2の配管と、を備え、
     前記第1の配管から前記第1の空間に供給された作動流体と前記第2の配管から前記第2の空間に供給された作動流体との比率に応じて前記動力伝達部材から前記弁軸を介して前記弁体に動力を伝達することにより、前記弁体頭部によって前記弁箱に形成された搬送路を開閉する調整弁装置。
  2.  前記弁軸は、前記弁体身部の長手方向の中央を貫通し、前記弁体頭部の中央に設けられた凹部に挿入される請求項1に記載された調整弁装置。
  3.  前記弁体頭部の中央に設けられた凹部と前記弁軸との間には、遊びが設けられている請求項2に記載された調整弁装置。
  4.  一端を前記弁体頭部に固着し、他端を前記弁体身部に固着することにより、前記弁軸側の空間と前記搬送路側の空間とを遮断する第3のベローズを備える請求項1に記載された調整弁装置。
  5.  前記弁体頭部の前記搬送路に当接する部分はテーパ形状であり、前記弁体頭部の先端面に垂直な線分に対するテーパ開度θは40°~80°である請求項1に記載された調整弁装置。
  6.  前記弁体頭部の前記搬送路に当接する部分は円弧状であり、所望の曲率半径を有する構造である請求項1に記載された調整弁装置。
  7.  前記弁体頭部は、ビッカース硬さが500HV以上になるようにステライト盛りされた金属である請求項1に記載された調整弁装置。
  8.  前記弁体頭部には、コバルト合金系の溶接盛りが施されている請求項7に記載された調整弁装置。
  9.  前記弁体頭部に当接する前記搬送路の弁座面は、シートバニシング加工によりビッカース硬さが概ね200以上400HV以下になるように表面加工された金属である請求項1に記載された調整弁装置。
  10.  前記調整弁装置は、被処理体を成膜する有機分子を被処理体近傍まで搬送する搬送路の開閉に用いられる請求項1に記載された調整弁装置。
  11.  前記調整弁装置は、内部が300℃以上になる環境下において使用される請求項10に記載された調整弁装置。
PCT/JP2010/053749 2009-03-17 2010-03-08 調整弁装置 WO2010106935A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2010800124964A CN102365484A (zh) 2009-03-17 2010-03-08 调整阀装置
US13/138,670 US20120074339A1 (en) 2009-03-17 2010-03-08 Regulating valve device
IL215135A IL215135A0 (en) 2009-03-17 2011-09-13 Regulating valve device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-064546 2009-03-17
JP2009064546A JP5616029B2 (ja) 2009-03-17 2009-03-17 調整弁装置

Publications (1)

Publication Number Publication Date
WO2010106935A1 true WO2010106935A1 (ja) 2010-09-23

Family

ID=42739596

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053749 WO2010106935A1 (ja) 2009-03-17 2010-03-08 調整弁装置

Country Status (7)

Country Link
US (1) US20120074339A1 (ja)
JP (1) JP5616029B2 (ja)
KR (1) KR20110127214A (ja)
CN (1) CN102365484A (ja)
IL (1) IL215135A0 (ja)
TW (1) TWI403657B (ja)
WO (1) WO2010106935A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102954283A (zh) * 2012-10-29 2013-03-06 浙江盾安阀门有限公司 一种波纹管焊接组件及其生产方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4484227B2 (ja) 2006-10-02 2010-06-16 ボッシュ株式会社 コモンレール
JP2011099542A (ja) * 2009-11-09 2011-05-19 Fujikin Inc 調整弁装置
EP3747310A1 (en) * 2019-06-07 2020-12-09 The Procter & Gamble Company Filament transportation device
JPWO2021100415A1 (ja) * 2019-11-21 2021-05-27

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008120788A1 (ja) * 2007-04-02 2008-10-09 Fujikin Incorporated ヒータ内蔵バルブ

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1758644A (en) * 1926-09-03 1930-05-13 Augustine Davis Jr Tank valve
US3315700A (en) * 1964-02-03 1967-04-25 Eugene C Greenwood Tubular jacketed double bellows valve
US3701361A (en) * 1971-03-08 1972-10-31 Stuart E Bunn Valve assembly and valve member therefor
US3802660A (en) * 1972-09-07 1974-04-09 Nasa Flow control valve
US3871616A (en) * 1973-12-10 1975-03-18 Julian S Taylor Gate valve disc
JPS59129746A (ja) * 1983-01-18 1984-07-26 Mitsubishi Metal Corp エンジンバルブおよび同バルブシ−ト用Co基合金
US5915410A (en) * 1996-02-01 1999-06-29 Zajac; John Pneumatically operated positive shutoff throttle valve
GB2315841A (en) * 1996-07-30 1998-02-11 Goodwin R Int Ltd Dual plate check valve
JP3994117B2 (ja) * 2002-11-07 2007-10-17 Smc株式会社 ヒーター付きポペット弁
CN2864252Y (zh) * 2006-01-19 2007-01-31 林民东 刻度异型蝶阀
CN101012884A (zh) * 2007-02-07 2007-08-08 株洲鸿远高压阀门有限公司 活动式截止阀
JP4948295B2 (ja) * 2007-07-06 2012-06-06 愛三工業株式会社 燃料噴射弁

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008120788A1 (ja) * 2007-04-02 2008-10-09 Fujikin Incorporated ヒータ内蔵バルブ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102954283A (zh) * 2012-10-29 2013-03-06 浙江盾安阀门有限公司 一种波纹管焊接组件及其生产方法
CN102954283B (zh) * 2012-10-29 2014-01-08 浙江盾安阀门有限公司 一种波纹管焊接组件及其生产方法

Also Published As

Publication number Publication date
JP2010216577A (ja) 2010-09-30
US20120074339A1 (en) 2012-03-29
CN102365484A (zh) 2012-02-29
TW201102548A (en) 2011-01-16
IL215135A0 (en) 2011-12-29
JP5616029B2 (ja) 2014-10-29
KR20110127214A (ko) 2011-11-24
TWI403657B (zh) 2013-08-01

Similar Documents

Publication Publication Date Title
WO2011055688A1 (ja) 調整弁装置
WO2010106935A1 (ja) 調整弁装置
JP5301736B2 (ja) 成膜装置及び成膜材料供給方法
KR102267234B1 (ko) 기판 상에 원자 층을 증착시키는 장치 및 방법
JP5043394B2 (ja) 蒸着装置およびその運転方法
TW201321548A (zh) 在基板上沉積原子層之方法及裝置
JP2001207265A (ja) 成膜装置
WO2008041558A1 (fr) Dispositif de dÉpÔt en phase vapeur, dispositif de commande du dispositif de dÉpÔt en phase vapeur, procÉdÉ de commande du dispositif de dÉpÔt en phase vapeur et procÉdÉ d'utilisation du dispositif de dÉpÔt en phase vapeur
JPH0250962A (ja) 成膜装置及び成膜方法
US20080029494A1 (en) System and method for treating surfaces of components
WO2008018498A1 (fr) Dispositif de formation de film, système de formation de film et procédé de formation de film
KR20080098813A (ko) 캐니스터 온도조절장치, 유기물 공급라인 및 이를 이용한유기물 증착장치
JP2010007101A (ja) 蒸着源、成膜装置および成膜方法
JP2008038224A (ja) 成膜装置、成膜システムおよび成膜方法
KR101168150B1 (ko) 박막 증착장치
US20050241585A1 (en) System for vaporizing materials onto a substrate surface
WO2003104520A1 (ja) 有機薄膜の形成方法
JP2000282241A (ja) 多層薄膜の製造方法
JP2009057614A (ja) 蒸着装置及び蒸着方法
JP2004217968A (ja) ガス搬送システム、成膜装置および有機el素子の製造装置
JP5209954B2 (ja) 成膜処理用治具及びプラズマcvd装置
JP2010031325A (ja) 弁体を開閉するエアー駆動装置用の連結部品
JP2005054221A (ja) 反応室、高温トラップ及び処理装置
JP2017160508A (ja) 真空成膜装置および成膜方法
JP2010144212A (ja) 材料供給装置及び材料供給方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080012496.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10753427

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117021414

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13138670

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10753427

Country of ref document: EP

Kind code of ref document: A1