WO2010106898A1 - 化学物質センシング装置およびそれを備える化学物質センシングシステム - Google Patents

化学物質センシング装置およびそれを備える化学物質センシングシステム Download PDF

Info

Publication number
WO2010106898A1
WO2010106898A1 PCT/JP2010/053201 JP2010053201W WO2010106898A1 WO 2010106898 A1 WO2010106898 A1 WO 2010106898A1 JP 2010053201 W JP2010053201 W JP 2010053201W WO 2010106898 A1 WO2010106898 A1 WO 2010106898A1
Authority
WO
WIPO (PCT)
Prior art keywords
chemical substance
substance sensing
molecular sieve
sieve membrane
sensing device
Prior art date
Application number
PCT/JP2010/053201
Other languages
English (en)
French (fr)
Inventor
美恵子 音無
倫久 川田
幹宏 山中
克俊 高尾
義朗 山本
恵美 肱黒
圭太 原
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2011504798A priority Critical patent/JP4903911B2/ja
Publication of WO2010106898A1 publication Critical patent/WO2010106898A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/127Composition of the body, e.g. the composition of its sensitive layer comprising nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0011Sample conditioning
    • G01N33/0014Sample conditioning by eliminating a gas
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/497Physical analysis of biological material of gaseous biological material, e.g. breath
    • G01N33/4975Physical analysis of biological material of gaseous biological material, e.g. breath other than oxygen, carbon dioxide or alcohol, e.g. organic vapours

Definitions

  • the present invention relates to a chemical substance sensing apparatus and a chemical substance sensing system including the same, and more particularly to a chemical substance sensing apparatus capable of selectively detecting a specific breath marker substance and a chemical substance sensing system including the chemical substance sensing apparatus.
  • Blood, urine, sweat, saliva, exhalation, etc. are generally known as biological specimens used for personal and quick grasp of the health condition.
  • exhaled breath is known to contain a large amount of biological information related to diseases because the air in the alveoli in the body and the blood in the capillaries are only separated by a very thin membrane.
  • ethane, pentane, H 2 O 2 and the like contained in exhaled breath have a high correlation with oxidative stress, and when these concentrations in exhaled breath increase, they tend to have symptoms such as lipid oxidation, asthma and bronchitis.
  • NO, CO, and H 2 O 2 contained in exhaled breath have a high correlation with lung diseases, and when these concentrations in exhaled breath increase, they tend to have symptoms such as asthma and chronic obstructive pneumonia.
  • H 2 and carbon isotopes contained in exhaled breath have a high correlation with gastrointestinal diseases, and symptoms such as indigestion, gastritis, and duodenal ulcer are observed when these concentrations in exhaled breath increase.
  • acetone contained in exhaled breath has a high correlation with metabolic abnormalities, and when the concentration of acetone in the exhaled breath tends to have diabetes symptoms, a decrease in the concentration of acetone contained in exhaled breath tends to cause metabolic syndrome. There is.
  • Patent Document 1 Japanese Laid-Open Patent Publication No. 2001-349888 uses an oxide semiconductor sensor widely used in gas sensors to detect a specific breath marker substance contained in the breath.
  • An apparatus is disclosed.
  • the oxide semiconductor sensor used in the breath measuring device has a surface made of an n-type semiconductor such as SnO 2 or ZnO.
  • the n-type semiconductor adsorbs the exhalation marker substance, the exhalation marker substance and oxygen react to change the electrical resistance.
  • a specific exhalation marker substance for example, acetone
  • the oxide semiconductor sensor has a property of specifying an exhalation marker substance by referring to the amount of reacting oxygen. Therefore, an exhalation marker substance having a large amount of reacting oxygen, such as an exhalation marker substance having a large number of carbon atoms and an exhalation marker substance having a high degree of unsaturation, can be measured with higher accuracy.
  • an oxide semiconductor sensor it is possible to provide a breath measuring device that is small and detects a specific breath marker substance.
  • exhaled breath contains as much as 80% of moisture, but if exhaled breath is introduced into the oxide semiconductor sensor in this state, there is a problem that the oxide semiconductor sensor deteriorates due to moisture. In addition, in a state where moisture remains in the exhaled breath, there is a problem that the moisture inhibits the detection of the exhaled marker substance and the oxide semiconductor sensor cannot detect the exhaled marker substance having a low concentration of ppm to ppb level.
  • Patent Document 2 moisture removing means for measuring the gas in the soil as disclosed in Japanese Patent Application Laid-Open No. 11-281605 (hereinafter also referred to as “Patent Document 2”). Is required.
  • Patent Document 2 By providing the moisture removing means as shown in Patent Document 2, it is possible to avoid a decrease in measurement accuracy due to moisture as described above.
  • the oxide semiconductor sensor disclosed in Patent Document 1 has the same sensitivity when measuring an exhalation marker substance having the same amount of oxygen necessary for oxidation. For this reason, it is impossible in principle to selectively detect only a specific exhalation marker substance (for example, acetone) from 200 kinds or more of exhalation marker substances.
  • a specific exhalation marker substance for example, acetone
  • the oxide semiconductor sensor described above detects the exhalation marker substance by heating at about 300 ° C. and burning the exhalation marker substance. For this reason, the power consumption of the breath measuring device is greatly lost by heating, and as a result, the consumption of the breath measuring device is expedited, and there is a problem that the use time of the breath measuring device becomes extremely short.
  • Patent Document 3 discloses a sensor for detecting an exhalation marker substance other than the above-described oxide semiconductor sensor.
  • a nanostructure sensor using a nanostructure represented by a carbon nanotube (hereinafter also simply referred to as “CNT”) is also disclosed.
  • Such a nanostructure sensor using CNTs is expected to be a next-generation sensor because it is ultra-compact, has low power consumption, is an ultra-sensitive gas sensor, and can measure exhalation in a non-invasive manner. Has been sent.
  • JP 2001-349888 A Japanese Patent Laid-Open No. 11-281605 US Patent Application Publication No. 2007/0048180
  • a specific exhalation marker substance can be detected from 200 or more exhalation marker substances.
  • the accuracy of the detection is still not sufficient, and it is required to detect the expiration marker substance with higher accuracy.
  • the present invention has been made in view of such a current situation, and an object thereof is to provide a chemical substance sensing device capable of detecting a specific exhalation marker substance with higher accuracy, and the same. It is to provide a chemical substance sensing system.
  • the present inventors can detect a specific exhalation marker substance with high accuracy by eliminating exhalation marker substances and moisture that are not required to be contained in the exhalation before the exhalation reaches the chemical substance sensing element. I got the idea. Based on this idea, various studies were made on the configuration of the chemical substance sensing device.
  • the chemical substance sensing device of the present invention includes a chamber divided into three spaces by an introduced molecular sieve membrane and an exhausted molecular sieve membrane, and a chemical substance sensing element in contact with the chamber in the space sandwiched between the introduced molecular sieve membrane and the exhausted molecular sieve membrane It is characterized by providing.
  • the introduced molecular sieve membrane and the discharged molecular sieve membrane are preferably made of zeolite.
  • the average pore diameter of the introduced molecular sieve membrane is preferably larger than the average pore diameter of the discharged molecular sieve membrane.
  • a heating device on the outer surface of the introduced molecular sieve membrane and the outer surface of the discharged molecular sieve membrane.
  • the chemical substance sensing element is preferably a nanostructure sensor.
  • the nanostructure sensor is preferably composed of carbon nanotubes whose surface is modified with a metal complex in the sensing part.
  • the present invention includes the above-described chemical substance sensing device, a gas introduction path for introducing gas into the chemical substance sensing apparatus, a gas introduced from the gas introduction path and the chemical substance sensing apparatus, and gas from the gas introduction path It is also a chemical substance sensing system comprising a moisture removing unit for adsorbing the moisture and a gas discharge path for discharging gas from the chemical substance sensing device.
  • the moisture removing unit includes a hollow fiber.
  • the hollow fiber is preferably made of a fluororesin.
  • the present invention it is possible to provide a chemical substance sensing apparatus capable of detecting a specific exhalation marker substance from multi-component exhalation with high accuracy, and a chemical substance sensing system including the chemical substance sensing apparatus.
  • the chemical substance sensing apparatus of the present invention it is possible to exclude low molecular and high molecular exhalation marker substances, and to suppress deterioration of the chemical substance sensing element.
  • a chemical substance sensing element that is non-invasive, ultra-compact, low power consumption, ultra-sensitive, and highly selective can be provided. Accordingly, it is possible to provide a chemical substance sensing device with less stress on the user during use, and a chemical substance sensing system including the chemical substance sensing apparatus.
  • (A) It is a graph which shows the result when the gas discharged
  • emitted from the chemical substance sensing apparatus of the comparative example 1 is GC.
  • FIG. It is a graph which shows resistance change when sample gas is introduce
  • FIG. It is a schematic diagram which shows one form of the connection method of the chemical substance sensing system of this invention and a terminal device. It is a schematic diagram which shows another form of the connection method of the chemical substance sensing system of this invention and a terminal device.
  • (A) And (b) is the figure which expanded the display screen of the terminal device.
  • FIG. 1 is a schematic diagram showing the structure of the chemical substance sensing system of the present invention.
  • the chemical substance sensing system 1 of the present invention includes a chemical substance sensing device 2, a gas introduction path 13 for introducing gas into the chemical substance sensing apparatus 2, a gas introduction path 13, and a chemical substance.
  • a moisture removing unit 12 that is disposed between the sensing device 2 and adsorbs moisture in the gas from the gas introduction path 13 and a gas discharge path 14 that discharges the gas from the chemical substance sensing device 2 are provided. It is characterized by that.
  • exhaled air is introduced into the chemical substance sensing device 2 from the gas introduction path 13 through the moisture removing unit 12. And the said exhaled air is discharge
  • the material used for the gas introduction path 13 and the gas discharge path 14 is not particularly limited as long as it is lightweight and has an appropriate durability. For example, an acrylic one, a polypropylene one or the like can be used. Can be used.
  • a method of supplying exhalation into the chemical substance sensing device a method of supplying exhalation into the chemical substance sensing device using a mouthpiece is generally used.
  • a check valve for making the supply of exhalation into the chemical substance sensing device 2 constant between the water removing unit 12 and the chemical substance sensing device 2. 15 is preferably provided.
  • exhaled air can be supplied into the chemical substance sensing device 2 at a predetermined flow rate.
  • the exhaled breath supplied into the chemical substance sensing device 2 at a constant pressure and flow rate can be analyzed, and the accuracy of measuring a specific exhaled marker substance can be increased.
  • the method of introducing exhalation into the chemical substance sensing device 2 is not limited to the supply method using the mouthpiece. For example, once collected in a Tedlar back, the Tedlar back to the chemical substance sensing device 2 is collected. Exhalation may be supplied.
  • the material used for such a check valve 15 is not particularly limited as long as it has appropriate durability, and for example, Teflon (registered trademark) or the like can be used.
  • the chemical substance sensing system 1 of the present invention is characterized in that a moisture removing unit 12 is provided between the chemical substance sensing device 2 and the gas introduction path 13.
  • the moisture removing unit 12 is provided for removing moisture in the exhaled breath introduced from the gas introduction path 13.
  • a moisture removing unit 12 is provided between the chemical substance sensing device 2 and the gas introduction path 13.
  • the moisture removing unit 12 is provided for removing moisture in the exhaled breath introduced from the gas introduction path 13.
  • Such a moisture removing unit 12 is preferably provided with a water-absorbing part such as a hollow fiber, silica gel, calcium chloride or the like.
  • a water-absorbing part such as a hollow fiber, silica gel, calcium chloride or the like.
  • the hollow fiber is not an adsorption-type moisture removal mechanism, so that moisture in the expired air is removed without losing the pressure of the expired air, thereby reducing the burden on the user supplying the expired air.
  • the hollow fiber is effective because it is small in size and has little fear of attaching or detaching other exhalation marker substances.
  • Such a hollow fiber material is preferably a fluororesin from the viewpoint of heat resistance and chemical resistance.
  • the hollow fiber preferably has a helical structure with an interval of 0.1 to 2.0 mm from the viewpoint of efficiently removing moisture in the breath, and among them, a helical structure with an interval of 1.0 mm is preferable. The structure is more preferable.
  • the chemical substance sensing device 2 of the present invention includes a chamber 11 divided into three spaces by an introduced molecular sieve membrane 16 and an exhausted molecular sieve membrane 17, and an introduced molecular sieve membrane 16 and an exhausted molecular sieve membrane 17. And a chemical substance sensing element 10 disposed in contact with a chamber in the sandwiched space.
  • the introduced molecular sieve membrane 16 and the discharged molecular sieve membrane 17 divide the chamber 11 into three spaces.
  • the chamber 11 supports the chemical substance sensing element 10 therein, and the introduction molecular sieve film 16 and the exhaust molecular sieve film 17 so that the space containing the chemical substance sensing element 10 can detect only a specific breath marker substance. It is a hollow member provided with.
  • a gas introduction path 13 is connected to one surface of the surface of the chamber 11 via a moisture removing unit 12, and a gas discharge path 14 is connected to the other surface.
  • the shape of the chamber 11 is not limited to a cylindrical shape as shown in FIG. 1, but may be a rectangular shape, a cube, or the like as long as it is a hollow member that can support the chemical substance sensing element 10. A sphere or the like may be used. Moreover, it is preferable that the chamber 11 is comprised with a lightweight and highly durable material, As such a material, resin materials, such as an acrylic resin and a polypropylene resin, can be mentioned, for example.
  • the chamber 11 has a structure necessary for transmitting and receiving a sensor signal change from the chemical substance sensing element 10.
  • “necessary structure” means, for example, having a hole or the like through which the signal measuring conductor 19 connected from the chemical substance sensing element 10 is passed.
  • a low voltage power supply device (not shown) for sensor signal measurement
  • a digital multimeter (not shown)
  • a display device such as a display
  • a chemical substance sensing element 10 can be connected to each other by a conductive wire, and information obtained by the chemical substance sensing element 10 can be output to the outside.
  • the introduced molecular sieve membrane 16 is provided to prevent permeation of an exhalation marker substance having a large molecular diameter in the exhaled breath introduced from the moisture removing unit 12 into the chamber 11.
  • the introduced molecular sieve membrane 16 is preferably a zeolite membrane from the viewpoints of high mechanical strength and excellent pressure resistance and heat resistance.
  • an MOR membrane average pore diameter: 0.56 nm
  • BEA membrane average pore size: 0.76 nm
  • FAU membrane average pore size: 0.72 nm
  • MFI membrane average pore size: 0.56 nm
  • the average pore size of the introduced molecular sieve membrane 16 is preferably larger than the average pore size of the discharged molecular sieve membrane 17, preferably 0.5 nm or more and 0.8 nm or less, and 0.50 nm or more and 0.56 nm or less. It is more preferable that If the average pore diameter of the introduced molecular sieve membrane 16 is less than 0.5 nm, the expiration marker substance cannot be sufficiently supplied to the chemical substance sensing element 10, and if it exceeds 0.8 nm, an expiration marker substance having a large molecular diameter can be obtained. It will permeate, and the selectivity of the exhalation marker substance will decrease. Moreover, it is preferable to use the introduced molecular sieve membrane 16 having a thickness of about 5 ⁇ m.
  • a check valve 15 is preferably installed in the connection between the gas outlet 21 and the chamber 11.
  • the exhaust molecular sieve membrane 17 is provided to allow only molecules having a small molecular diameter to pass through the gas exhaust path 14 out of the exhaled gas exhausted from the chamber 11 to the gas exhaust path 14.
  • Such an exhaust molecular sieve membrane 17 is preferably a zeolite membrane from the same viewpoint as the introduced molecular sieve membrane 16 described above, and more preferably a DDR membrane (average pore diameter: about 0.44 nm) among the zeolite membranes. preferable.
  • the average pore diameter of the discharged molecular sieve membrane 17 is more preferably 0.36 nm or more and 0.44 nm or less. Further, it is preferable to use a discharge molecular sieve membrane 17 having a thickness of about 5 ⁇ m.
  • the base material 20 is provided to support the introduction molecular sieve membrane 16 and the exhaust molecular sieve membrane 17 without hindering the supply and discharge of exhaled air. That is, even when exhaled air is introduced into the chamber 11 at a high pressure, the base material 20 is provided in the chamber 11 to prevent the introduction molecular sieve membrane 16 and the exhaust molecular sieve membrane 17 from shifting to the gas exhaust path 14 side. Can do.
  • Such a base material 20 is preferably provided with a total of two base materials 20, one on each of the introduced molecular sieve membrane 16 and the discharged molecular sieve membrane 17, as shown in FIG. 1. And it is preferable to be provided on the gas discharge path 14 side of the introduced molecular sieve membrane 16 in the chamber 11. Moreover, it is preferable to be provided also on the gas discharge path 14 side of the discharge molecular sieve membrane 17. Moreover, the material used for the base material 20 will not be specifically limited if it is lightweight, For example, the product made from acrylic, a product made from a polypropylene, etc. can be used.
  • FIGS. 2 (a) and 2 (b) are schematic views of a substrate for supporting the introduced molecular sieve membrane and the exhausted molecular sieve membrane, and FIG. 2 (c) shows the chamber cut along the surface including the exhausted molecular sieve membrane. It is a figure which shows the cross section when it did.
  • the base material 20 used in the present invention may be one in which one hole is formed as shown in FIG. 2 (a), or as shown in FIG. 2 (b), Nine holes may be formed inside the mesh. Thus, as long as the base material 20 is provided with the hole used as the path of exhalation, what kind of thing may be sufficient as it. However, from the viewpoint of more stably supporting the introduced molecular sieve membrane 16 and the discharged molecular sieve membrane 17, a mesh shape is preferable.
  • the heating device 18 is provided for detaching the exhalation marker substance adhering to the introduced molecular sieve membrane 16 and the discharged molecular sieve membrane 17 installed in the chemical substance sensing device 2. That is, when the heating device 18 warms the introduction molecular sieve membrane 16 and the exhaust molecular sieve membrane 17, the exhalation marker substance adsorbed on the introduction molecular sieve membrane 16 and the exhaust molecular sieve membrane 17 can be desorbed, and thereby the exhalation marker substance Measurement accuracy can be increased.
  • the performance can be recovered by heating the heating device 18. You can also.
  • Such a heating device 18 is preferably disposed on the outer surface of the introduction molecular sieve membrane 16 and the discharge molecular sieve membrane 17, and as shown in FIG. 2C, the introduction molecular sieve membrane 16 and the discharge molecular sieve membrane 17. More preferably, it is arranged so as to surround the outer surface. By disposing the heating device 18 in this way, it is possible to apply a temperature uniformly to the introduced molecular sieve membrane 16 and the discharged molecular sieve membrane 17 and to suppress the exhalation marker substance from being desorbed non-uniformly.
  • a gas outlet 21 on the side surface of the chamber 11 on the introduction molecular sieve membrane 16 side.
  • the chemical substance sensing element 10 is a sensor that can selectively detect a specific exhalation marker substance.
  • the chemical substance sensing element 10 is disposed in contact with a chamber in a space sandwiched between the introduction molecular sieve membrane 16 and the exhaust molecular sieve membrane 17.
  • one chemical substance sensing element 10 is provided in the chamber 11, but the number of chemical substance sensing elements 10 provided in the chamber 11 is not limited to one. There may be two or more. By providing two or more chemical substance sensing elements 10, a plurality of types of exhalation marker substances can be detected.
  • the chemical substance sensing element 10 is not limited to being provided in the chamber 11 but may be provided in the gas discharge path 14. By providing the chemical substance sensing element 10 in the gas discharge path 14, an exhalation marker substance having a smaller molecular diameter than the chemical substance sensing element 10 provided in the chamber 11 can be detected.
  • a semiconductor sensor, a nanostructure sensor, or the like can be used as the chemical substance sensing element 10 as described above.
  • a semiconductor sensor, a nanostructure sensor, or the like can be used.
  • either one or both of the semiconductor sensor and the nanostructure sensor is used. Use it.
  • FIG. 3 is a schematic diagram showing an example of a chemical substance sensing element used in the present invention.
  • the chemical substance sensing element 10 has a positive electrode 110 and a negative electrode 111, and further includes a sensing unit 104 disposed so as to be in contact with the positive electrode 110 and the negative electrode 111, a positive electrode 110, a negative electrode 111, and An insulator 105 in contact with the sensing unit 104 and a constant resistance 106 are provided.
  • a window provided between the sensing unit 104 and the chamber 11 is provided for a certain period of time.
  • an open structure may be used. Deterioration of the sensing unit 104 can be suppressed by adopting a structure in which the air in the chamber 11 is in contact with the sensing unit 104 only when measuring in this way.
  • the sensing unit 104 is provided to detect a specific exhalation marker substance.
  • the sensing unit 104 is mainly made of a metal oxide and has a property of adsorbing oxygen in the air. At this time, the adsorbed oxygen traps free electrons in the sensing unit 104, and the resistance value of the sensing unit 104 is high in this state.
  • a sample gas containing an exhalation marker substance for example, air containing CO
  • oxygen on the surface of the sensing unit 104 and CO react to become CO 2 , and adsorbed oxygen is transferred from the sensing unit 104. Leave.
  • the fluctuation of the resistance value is calculated by measuring the change in the voltage V RL at the constant resistance 106, and the presence and content of a specific exhalation marker substance can be detected.
  • Such a semiconductor sensor is preferably used as a sensor element for detecting an exhalation marker substance such as acetone, CO, an organic gas containing carbon atoms (for example, hydrocarbon gas, alcohol, etc.), and a flammable gas such as H 2. Can be used.
  • an exhalation marker substance such as acetone, CO, an organic gas containing carbon atoms (for example, hydrocarbon gas, alcohol, etc.), and a flammable gas such as H 2.
  • the nanostructure sensor used in the chemical substance sensing element 10 is the same as the above semiconductor except that the sensing unit 104 is composed of a nanoscale conductive material and that the sensor temperature control means and the insulator are not accompanied.
  • the structure of the sensor can be the same.
  • a structure such as a nanotube, a nanowire, or fullerene can be used.
  • nanoscale conductive material carbon nanofibers and the like are preferably used in addition to the carbon nanotubes described later.
  • a nanoscale conductive material such as a carbon nanotube as a material constituting the sensing unit, the chemical substance sensing element 10 that is small, light, and highly sensitive at room temperature can be realized.
  • the sensing unit 104 includes an aggregate 108 of carbon nanotubes subjected to surface modification.
  • the exhalation marker substance is adsorbed on the surface of the sensing unit, thereby changing the resistance value of the entire nanostructure sensor.
  • the fluctuation of the resistance value can be calculated by measuring the change in the voltage V RL at the constant resistance, and the presence and content of the expiration marker substance in expiration can be clarified.
  • film carbon nanotubes are dispersed in a solvent and then filtered through a membrane filter or the like, or a microwave plasma CVD apparatus is used on a substrate. There are methods for directly growing carbon nanotubes.
  • a sensing part of the nanostructure sensor composed of carbon nanotubes whose surface is modified with a metal complex.
  • the carbon nanotube By subjecting the carbon nanotube to surface modification with a metal complex, the adsorption selectivity for a specific breath marker substance can be further improved, and thereby the detection accuracy of the specific breath marker substance can be further improved.
  • FIG. 4 is a schematic diagram showing an example of a nanostructure sensor provided with a sensing unit composed of carbon nanotubes whose surface is modified with a metal complex.
  • the nanostructure sensor in the present invention is a part for detecting an exhalation marker substance, which is arranged so as to be in contact with two electrodes; a positive electrode 110 and a negative electrode 111; A sensing unit 104; and a constant resistance 106.
  • the sensing unit 104 is composed of an aggregate of carbon nanotubes whose surface is modified with a metal complex 109.
  • the above metal complex is preferably one that selectively adsorbs a specific breath marker substance. That is, for example, as a metal complex, cobalt (II) phthalocyanine that selectively adsorbs nitric oxide; iron (II) phthalocyanine that selectively adsorbs carbon monoxide; copper (II) phthalocyanine that adsorbs pentane; acetone Mention may be made of manganese (II) phthalocyanine which is selectively adsorbed.
  • the sensing unit 104 in addition to a method in which a metal complex is attached and contained in advance in a carbon nanotube, the nanotube is dispersed in a solvent, and then filtered through a membrane filter or the like, or by microwave plasma CVD.
  • a method for producing the sensing unit 104 in addition to a method in which a metal complex is attached and contained in advance in a carbon nanotube, the nanotube is dispersed in a solvent, and then filtered through a membrane filter or the like, or by microwave plasma CVD.
  • a method in which carbon nanotubes are directly grown on a substrate using an apparatus or the like, and then a solution containing a metal complex is applied by spraying with an inkjet or the like.
  • the chemical substance sensing device of the present invention is for detecting a specific exhalation marker substance from about 200 or more exhalation marker substances contained in exhalation.
  • the breath marker substance showing biological information include nitric oxide, carbon monoxide, methyl mercaptan, ethane, pentane, acetone, ammonia and the like.
  • acetone can grasp the state of lipid burning, diabetes and the like.
  • Example 1 Effect of introduced molecular sieve membrane and discharged molecular sieve membrane ⁇
  • Example 1 the chemical substance sensing device 2 shown in FIG. 1 was produced.
  • the chemical substance sensing device 2 of Example 1 is provided with a 5 ⁇ m thick MFI film (average pore diameter: 0.56 nm) as the introduced molecular sieve film 16 in the chamber 11, and a 5 ⁇ m thick DDR film (average fine film) as the discharged molecular sieve film 17. (Pore diameter: 0.44 nm).
  • sucks specifically with acetone was used for the sensing part of the chemical substance sensing element 10 used for this chemical substance sensing apparatus.
  • N 2 gas containing 40% of moisture was exposed to the chamber 11 of the chemical substance sensing device 2 for 4 minutes. And the window which separated the chemical substance sensing element 10 and the chamber 11 was opened, and the resistance change of the chemical substance sensing element 10 was measured for 1 minute.
  • a nitrogen gas containing 15 ppm of acetone, 32 ppm of ethanol, 27 ppm of methanol, and 5 ppm of acetic acid is used as a base gas, and a sample gas containing 40% of moisture is added to the base gas at a flow rate of 250 mL / min for 4 minutes.
  • a sample gas containing 40% of moisture is added to the base gas at a flow rate of 250 mL / min for 4 minutes.
  • the resistance change of said chemical substance sensing element 10 was measured using the constant voltage power supply device (Product name: Digital multimeter (made by Agilent)). Further, the gas discharged from the gas discharge path 14 is collected, and the gas is analyzed using mass spectrometry gas chromatography (GC-MS: Gas Chromatography-Mass Spectroscopy, product name: JMS-K9 (manufactured by JEOL)). It was.
  • GC-MS Gas Chromatography-Mass Spectroscopy, product name: JMS-K9 (manufactured by JEOL)
  • Comparative Example 1 The chemical substance sensing apparatus of Comparative Example 1 was the same as the chemical substance sensing apparatus of Example 1 except that the chemical substance sensing apparatus of Example 1 was equipped with the introduction molecular sieve film 16 and the exhaust molecular sieve film 17 removed. . And also with respect to the chemical substance sensing apparatus of the comparative example 1, while measuring resistance change by the method similar to Example 1, the gas discharged
  • FIG. 5A is a graph showing a measurement result of mass spectrometry gas chromatography of the gas discharged from the gas discharge path of the chemical substance sensing apparatus of Example 1, and FIG. It is a graph which shows the measurement result of the mass spectrometry gas chromatography of the gas discharged
  • FIG. 6 is a graph showing a change in resistance of the chemical substance sensing element provided in the chemical substance sensing devices of Example 1 and Comparative Example 1.
  • the horizontal axis of FIG. 6 indicates time (seconds), and the vertical axis indicates a change in electrical resistance of the chemical substance sensing element.
  • the resistance change of the chemical substance sensing elements of Example 1 and Comparative Example 1 showed no difference when nitrogen gas containing 40% of moisture was introduced, whereas 40% of moisture was changed.
  • the chemical substance sensing element of Example 1 when introducing the containing sample gas had a larger resistance change than the chemical substance sensing element of Comparative Example 1.
  • Example 1 This is because the chemical substance sensing device of Example 1 is provided with the introduced molecular sieve membrane and the discharged molecular sieve membrane, so that acetone to be measured is concentrated in the chamber, and the nanostructure sensor of Example 1 However, it is considered that acetone was selectively adsorbed over that of Comparative Example 1.
  • the gas other than acetone is also contained in the chamber in the same manner as the acetone in Example 1. It is thought that it will be possible to stay in.
  • Example 2 ⁇ Chemical substance sensing system> ⁇ Examination 2: Effect of hollow fiber >>
  • the chemical substance sensing system shown in FIG. 1 was produced.
  • the chemical substance sensing system 1 adsorbs gas moisture from the gas introduction path 13 to the chemical substance sensing apparatus 2 of the first embodiment and a gas introduction path 13 for introducing gas into the chemical substance sensing apparatus 2.
  • emitting gas are provided.
  • the moisture removing unit 12 was provided with a hollow fiber having a helical structure with an interval of 1.0 nm, and the hollow fiber made of a fluororesin was used.
  • Example 2 To such a chemical substance sensing system of Example 2, nitrogen gas containing 85% moisture and nitrogen gas containing no moisture were alternately introduced for 1 minute each, and each was introduced at a flow rate of 250 mL / min. The specimen was brought into contact with the chemical substance sensing element.
  • the window separating the chemical substance sensing element 10 and the chamber 11 was opened so that the breath marker substance was in contact with the chemical substance sensing element 10.
  • the resistance change of the chemical substance sensing element 10 was confirmed.
  • the resistance change was measured by the same method using the same apparatus as in Example 1.
  • Comparative Example 2 The chemical substance sensing system of Comparative Example 2 was the same as the chemical substance sensing system of Example 2, except that the moisture removing unit of the chemical substance sensing system of Example 2 was excluded.
  • the sample introduced into the chemical substance sensing system of Comparative Example 2 was the same as the sample used in Example 2, and the resistance change was measured by the same method.
  • FIG. 7 is a graph showing a change in electric resistance in the chemical substance sensing element used in Example 2 and Comparative Example 2.
  • the horizontal axis of this graph indicates the time (seconds) after the introduction of the specimen, and the vertical axis indicates the resistance change of the chemical substance sensing element.
  • the chemical substance sensing element used in Example 2 is a chemical substance sensing element between them even if nitrogen gas containing 85% moisture is introduced for 1 minute after introducing nitrogen gas containing no moisture for 1 minute. There was no change in the resistance detected.
  • the chemical substance sensing element used in Comparative Example 2 introduced nitrogen gas containing no moisture for 1 minute, and then introduced nitrogen gas containing 85% moisture for 1 minute. A change in resistance was observed.
  • Comparative Example 1 does not have a moisture removal unit having a hollow fiber, so that the sample is introduced into the chamber without removing moisture, and nitrogen gas does not contain moisture. It is considered that there was a difference in resistance change between the introduction of nitrogen and the introduction of nitrogen gas containing 85% moisture.
  • the chemical substance sensing system of Example 2 can efficiently remove moisture by providing a moisture removal unit having a hollow fiber, and can stably measure an exhalation marker substance.
  • FIG. 8 is a schematic diagram showing a connection relationship between the chemical substance sensing system of the present invention and a terminal device.
  • the chemical substance sensing system 1 of the present invention is configured such that the chemical substance sensing element constituting the chemical substance sensing system 1 and the terminal device 203 are connected via a communication cable 202. Data detected by the sensing element can be transmitted to the terminal device 203.
  • connection between the chemical substance sensing element and the terminal device 203 is not limited to an electrical connection by a wired means such as the communication cable 202, but is connected by a communication by a wireless means (for example, Bluetooth). Also good.
  • the result of determining the health condition based on the measurement value obtained by such communication means is displayed on the display 201 of the terminal device 203.
  • FIG. 9 is a schematic diagram showing a connection relationship between the chemical substance sensing system of the present invention and a terminal device.
  • the terminal device 203 connected to the chemical substance sensing system 1 of the present invention is not limited to a notebook personal computer as shown in FIG. 8, but any electronic device having a display capable of displaying the result.
  • a mobile phone as shown in FIG. 9 may be used.
  • FIG. 10 (a) and 10 (b) are schematic views of a display that displays the result of detection of the breath marker substance by the chemical substance sensing element 10.
  • FIG. 10 (a) and 10 (b) are schematic views of a display that displays the result of detection of the breath marker substance by the chemical substance sensing element 10.
  • the concentration of the exhalation marker substance is calculated using a calibration curve for characteristic values created in advance at a known concentration. That is, the characteristic value is a value expressed as a percentage of (peak-top conductance ⁇ conductance immediately before change in electrical resistance) / (conductance immediately before change in electrical resistance).
  • the calculated acetone concentration is displayed on the display 201, and when the acetone concentration shows a value larger than the standard, as shown in FIG. 10 (a), a display prompting attention such as the possibility of diabetes is performed. On the other hand, when the acetone concentration is smaller than the standard value, as shown in FIG. In this way, the subject can easily know his / her physical condition.
  • a chemical substance sensing system that can detect biological information related to a subject's disease and has low stress during use for a non-invasive, ultra-compact, low power consumption, ultra-sensitive, and highly selective user It has been confirmed that steady progress has been made toward the realization of a medical prevention society.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Nanotechnology (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Biophysics (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

 多成分系の呼気のうちから特定の呼気マーカ物質を高精度で検出することができる化学物質センシング装置(2)、およびこれを備える化学物質センシングシステム(1)を提供する。本発明の化学物質センシング装置(2)は、導入分子篩膜(16)および排出分子篩膜(17)により3つの空間に分割されたチャンバ(11)と、導入分子篩膜(16)と排出分子篩膜(17)とにより挟まれた空間のチャンバ(11)に接する化学物質センシング素子(10)とを備えることを特徴とする。

Description

化学物質センシング装置およびそれを備える化学物質センシングシステム
 本発明は、化学物質センシング装置およびそれを備える化学物質センシングシステムに関し、特に特定の呼気マーカ物質を選択的に検出することができる化学物質センシング装置およびそれを備える化学物質センシングシステムに関する。
 現在、日本では、医療費の増大、医療保険制度崩壊等が危惧されており、医療に頼ることを未然に防ぐことができる予防医療社会の実現が急務である。そこで、予防医療社会を実現するために、個人で手軽かつ迅速に健康状態をチェックできるシステムを各人が備える必要があると言われている。
 個人で手軽かつ迅速に健康状態を把握するために用いられる生体検体としては、血液、尿、汗、唾液、呼気等が一般的に知られている。中でも呼気は、体内の肺胞の空気と毛細血管中の血液とが非常に薄い膜で隔てられているだけであることから、疾病に関する生体情報を多く含んでいることが知られている。
 そこで、ヒトの呼気中に微量に存在する揮発性物質の濃度を測定することにより、その揮発性物質の濃度の測定データを得て、当該測定データに基づいて健康状態(代謝反応、生化学的病態メカニズム等)を把握する方法の研究が進められている。呼気は、非侵襲に生体情報を検出することができることから、手軽で迅速に健康状態をチェックできるシステムとして汎用化が期待されている。
 たとえば、呼気に含まれるエタン、ペンタン、H22等は酸化ストレスとの相関が高く、呼気中のこれらの濃度が高くなると脂質酸化、喘息、気管支炎等という症状を持つ傾向がある。また、呼気に含まれるNO、CO、H22は肺疾患との相関が高く、呼気中のこれらの濃度が高くなると喘息、慢性閉塞性肺炎等の症状を持つ傾向がある。また、呼気に含まれるH2、カーボンアイソトープは胃腸疾患との相関が高く、呼気中のこれらの濃度が高くなると消化不良、胃炎、十二指腸潰瘍等の症状が見られる。
 また、呼気に含まれるアセトンは代謝異常との相関が高く、呼気中のアセトン濃度が高くなると糖尿病の症状を持つ傾向があるのに対し、呼気に含まれるアセトン濃度が低くなると、メタボリック症候群の傾向がある。
 このように被験者の呼気に含まれるガスの濃度を検出することにより、被験者が抱える症状の傾向を未然に把握することができる。上述のように疾病に連動して呼気中の濃度が顕著に増減する特有ガスのことを「呼気マーカ物質」と定義する。このような呼気マーカ物質の濃度を把握することにより、疾病傾向を診断する呼気測定機器が近年いくつか開発されている。
 たとえば特開2001-349888号公報(以下「特許文献1」とも記す)には、ガスセンサに広く用いられている酸化物半導体センサを用いて、呼気に含まれる特定の呼気マーカ物質を検知する呼気測定装置が開示されている。この呼気測定装置に用いる酸化物半導体センサは、その表面がSnO2またはZnO等のn型半導体からなるものである。このn型半導体が呼気マーカ物質を吸着すると、呼気マーカ物質と酸素とが反応して電気抵抗が変化する。この電気抵抗の変化を測定することにより、呼気マーカ物質のうちの特定の呼気マーカ物質(たとえばアセトン)を検出するというシステムである。
 このように酸化物半導体センサは、反応する酸素量を参照することにより、呼気マーカ物質を特定するという性質のものである。このため、炭素数の多い呼気マーカ物質および不飽和度の高い呼気マーカ物質のように、反応する酸素量が多い呼気マーカ物質ほど高い精度で測定することができる。このような酸化物半導体センサを用いることにより、小型で、かつ特定の呼気マーカ物質を検出する呼気測定装置を提供することができる。
 通常呼気には80%もの水分が含まれているが、このままの状態で呼気を酸化物半導体センサに導入すると、水分により酸化物半導体センサが劣化するという問題がある。また、呼気に水分を含んだままの状態では、水分が呼気マーカ物質の検出を阻害し、ppm~ppbレベルの低濃度の呼気マーカ物質を酸化物半導体センサが検出できないという問題もあった。
 そこで、水分を含むガスを精度よく測定するためには、特開平11-281605号公報(以下、「特許文献2」とも記す)に開示されているような土壌中のガスを測定する水分除去手段が必要となる。特許文献2に示されるような水分除去手段を備えることにより、上述したような水分による測定精度の低下は回避することができる。
 しかしながら、特許文献1に示される酸化物半導体センサは、酸化に必要な酸素量が同程度の呼気マーカ物質を測定したときには同程度の感度となるものである。このため200種類以上の呼気マーカ物質のうちから特定の呼気マーカ物質(たとえばアセトン)のみを選択的に検出することは原理的に不可能であった。
 また、上記の酸化物半導体センサは、300℃程度の加熱をして呼気マーカ物質を燃焼させることにより、呼気マーカ物質を検出する。このため、加熱することにより呼気測定装置の消費電力が大幅にロスし、結果として呼気測定装置の充電の消耗が早くなり、呼気測定装置の利用時間が極めて短くなるという問題もあった。
 そこで、これらの問題を回避するために、上述の酸化物半導体センサ以外の呼気マーカ物質を検出するセンサとして、米国特許出願公開第2007/0048180号公報(以下「特許文献3」とも記す)には、カーボンナノチューブ(以下においては単に「CNT」とも称する)に代表されるナノ構造体を用いたナノ構造体センサも開示されている。
 このようなCNTを用いたナノ構造体センサは、超小型であって、低消費電力で、しかも超高感度のガスセンサであり、かつ非侵襲で呼気を測定できることから、次世代のセンサとしての期待が寄せられている。
特開2001-349888号公報 特開平11-281605号公報 米国特許出願公開第2007/0048180号公報
 上記のようなナノ構造体センサを用いることにより、200種類以上の呼気マーカ物質のうちから特定の呼気マーカ物質を検出することができる。しかし、その検出の精度は未だ十分なものとは言えず、さらに高い精度で呼気マーカ物質を検出することが要求されている。
 また、呼気マーカ物質とナノ構造体センサとの選択性を高めることにより、呼気に含まれる他成分の呼気マーカ物質のうちから特定の呼気マーカ物質を検出することも要求されている。
 本発明は、このような現状に鑑みてなされたものであって、その目的とするところは、特定の呼気マーカ物質をより高精度に検出することができる化学物質センシング装置、およびそれを備えた化学物質センシングシステムを提供することである。
 本発明者らは、呼気が化学物質センシング素子に到達する前に、呼気に含まれる測定不要な呼気マーカ物質および水分を排除することにより、特定の呼気マーカ物質を高精度に検出することができるという着想を得た。そして当該着想に基づき化学物質センシング装置の構成について種々の検討を重ねた。
 その結果、チャンバ内に導入分子篩膜と排出分子篩膜とを設けることにより、測定する必要のない呼気マーカ物質および水分を効率的に排除し、もって特定の呼気マーカ物質をより高精度で検出することができることを見出した。
 また、化学物質センシングシステムに備えられる水分除去部に中空糸を配置することにより、呼気に含まれる水分を効率的に除去することができ、もって呼気に含まれる低濃度の呼気マーカ物質を検出することができることを見出し、本発明の完成に至った。
 すなわち、本発明の化学物質センシング装置は、導入分子篩膜および排出分子篩膜により3つの空間に分割されたチャンバと、導入分子篩膜と排出分子篩膜とにより挟まれる空間のチャンバに接する化学物質センシング素子とを備えることを特徴とする。
 また、導入分子篩膜および排出分子篩膜は、ゼオライトからなることが好ましい。また、導入分子篩膜の平均細孔径は、排出分子篩膜の平均細孔径よりも大きいことが好ましい。
 また、導入分子篩膜の外表面および排出分子篩膜の外表面に、加熱装置を備えることが好ましい。
 また、化学物質センシング素子は、ナノ構造体センサであることが好ましい。また、ナノ構造体センサは、そのセンシング部が金属錯体により表面修飾したカーボンナノチューブから構成されることが好ましい。
 本発明は、上述の化学物質センシング装置と、化学物質センシング装置に気体を導入するための気体導入経路と、気体導入経路と化学物質センシング装置との間に配置され、かつ気体導入経路からの気体の水分を吸着するための水分除去部と、化学物質センシング装置から気体を排出するための気体排出経路とを備える化学物質センシングシステムでもある。
 化学物質センシング装置と水分除去部との間には、逆止弁が設置され、化学物質センシング装置と気体排出経路との間には、逆止弁が設置されることが好ましい。水分除去部は、中空糸を備えることが好ましい。当該中空糸は、フッ素樹脂からなることが好ましい。
 本発明によれば、多成分系の呼気から特定の呼気マーカ物質を高精度で検出することができる化学物質センシング装置、およびこれを備える化学物質センシングシステムを提供することができる。
 本発明の化学物質センシング装置によれば、低分子および高分子の呼気マーカ物質を排除することができ、化学物質センシング素子の劣化を抑制することができる。
 また、疾患に依存した生体情報を検出することができ、非侵襲、超小型、低消費電力、超高感度、および高選択性の化学物質センシング素子を提供することができる。これにより使用時にユーザーのストレスが少ない化学物質センシング装置、およびこれを備えた化学物質センシングシステムを提供することができる。
本発明の化学物質センシングシステムの一形態を示す模式図である。 (a)本発明の化学物質センシング装置に用いられる基材の形状の一例を示す図であり、(b)は、(a)とは別の基材の形状の一例を示す図である。(c)本発明の化学物質センシング装置において、排出分子篩膜を含む面でチャンバを切断したときの模式的な断面図である。 化学物質センシング素子として用いることができる半導体センサの一例を示す模式図である。 金属錯体により表面修飾されたカーボンナノチューブから構成されるセンシング部を備えたナノ構造体センサの一例を示す模式図である。 (a)実施例1の化学物質センシング装置から排出されたガスをGC-MSで測定したときの結果を示すグラフであり、(b)比較例1の化学物質センシング装置から排出されたガスをGC-MSで測定したときの結果を示すグラフである。 実施例1および比較例1の化学物質センシング装置に、サンプルガスを導入したときの抵抗変化を示すグラフである。 実施例2および比較例2の化学物質センシングシステムに、サンプルガスを導入したときの抵抗変化を示すグラフである。 本発明の化学物質センシングシステムと端末装置との接続方法の一形態を示す模式的な図である。 本発明の化学物質センシングシステムと端末装置との接続方法の他の一形態を示す模式的な図である。 (a)および(b)は、端末装置の表示画面を拡大した図である。
 以下、図面に基づいて本発明の実施の形態を説明する。以下の図面において同一または相当する部分には、同一の参照符号を付することとし、その説明は繰り返さないものとする。なお、図面における長さ、大きさ、幅等の寸法は、図面の明瞭化および簡略化のため適宜に変更されたものであり、実際の寸法を表すものではない。
 <化学物質センシングシステム>
 図1は、本発明の化学物質センシングシステムの構造を示す模式図である。本発明の化学物質センシングシステム1は、図1に示されるように、化学物質センシング装置2と、化学物質センシング装置2に気体を導入するための気体導入経路13と、気体導入経路13と化学物質センシング装置2との間に配置され、かつ気体導入経路13からの気体の水分を吸着するための水分除去部12と、化学物質センシング装置2から気体を排出するための気体排出経路14とを備えることを特徴とする。
 このように本発明の化学物質センシングシステム1において、呼気は気体導入経路13から水分除去部12を通って、化学物質センシング装置2内に導入される。そして、当該呼気は、化学物質センシング装置2のチャンバ11内で、特定の呼気マーカ物質を検出した後に、気体排出経路14を通じて外気に放出される。このような気体導入経路13および気体排出経路14に用いられる材料は、軽量で適切な耐久性を持つものであれば特に限定されることはなく、たとえばアクリル製のもの、ポリプロピレン製のもの等を用いることができる。
 ここで、化学物質センシング装置内に呼気を供給する方法としては、マウスピースのようなものを使用して化学物質センシング装置内に呼気を供給する方法が一般的である。このようにマウスピースを用いて呼気を供給する場合、水分除去部12と化学物質センシング装置2との間には、化学物質センシング装置2内への呼気の供給を一定にするための逆止弁15を設けることが好ましい。また、化学物質センシング装置2と気体排出経路14との間には、化学物質センシング装置2から外部に速やかに呼気を排出できるように逆止弁15を設けることが好ましい。
 このように逆止弁15を設けることにより、化学物質センシング装置2内に所定の流速で呼気を供給することができる。これにより一定の圧力および流速で化学物質センシング装置2内に供給された呼気を分析することができ、特定の呼気マーカ物質を測定する精度を高めることができる。なお、化学物質センシング装置2内に呼気を導入する方法としては、マウスピースを用いた供給方法のみに限られるものではなく、たとえばテドラーバックに一旦採取した上で、当該テドラーバックから化学物質センシング装置2に呼気を供給してもよい。
 このような逆止弁15に用いられる材料は、適切な耐久性を有するものであれば特に限定されることはなく、たとえばテフロン(登録商標)等を用いることができる。
 <水分除去部>
 本発明の化学物質センシングシステム1は、化学物質センシング装置2と気体導入経路13との間に水分除去部12を設けることを特徴とする。水分除去部12は、気体導入経路13から導入された呼気中の水分を除去するために設けられるものである。このように化学物質センシングシステム1に水分除去部12を設けることにより、呼気中に含まれる水分を除去することができる。そして、このように呼気に含まれる水分を除去することにより、ppm~ppbレベルの極めて低濃度の呼気マーカ物質を検知することができる。また、水分除去部12を設けることにより、水分による化学物質センシング素子10の劣化を抑制することもできる。
 このような水分除去部12は、中空糸、シリカゲル、塩化カルシウム等の吸水性を示すものを備えることが好ましい。これらの吸水性を示すものの中でも、中空糸は吸着型の水分除去機構ではないことから、呼気の圧力が損失することなく呼気中の水分を除去し、もって呼気を供給するユーザーの負担を軽減する。しかも、中空糸は、小型であって、他の呼気マーカ物質の着脱する懸念が少ないことからも有効である。
 このような中空糸の材料は、耐熱性および耐薬品性を有するという観点から、フッ素樹脂を用いることが好ましい。また、中空糸は、呼気中の水分を効率的に除去するという観点から、0.1~2.0mmの間隔のらせん状の構造であることが好ましく、その中でも1.0mmの間隔のらせん状の構造であることがより好ましい。
 <化学物質センシング装置>
 本発明の化学物質センシング装置2は、図1に示されるように、導入分子篩膜16および排出分子篩膜17により3つの空間に分割されたチャンバ11と、導入分子篩膜16と排出分子篩膜17とにより挟まれた空間のチャンバに接して配置される化学物質センシング素子10とを備えることを特徴とする。この導入分子篩膜16および排出分子篩膜17によりチャンバ11が3つの空間に分割されたものとなる。
 このようにチャンバ11内に導入分子篩膜16と排出分子篩膜17とを備えることにより、化学物質センシング素子10を含むチャンバ11内の空間に、特定の分子径を有する呼気マーカ物質のみが濃縮されることとなり、化学物質センシング素子10が特定の分子径を有する呼気マーカ物質を高精度で検出することができる。
 これは、呼気に含まれる呼気マーカ物質のうち分子径の大きい呼気マーカ物質は、導入分子篩膜16によりチャンバ11内への透過が妨げられるとともに、分子径の小さい呼気マーカ物質は、排出分子篩膜17を透過してチャンバ11内から外部に排出され、化学物質センシング素子10を含むチャンバ11内の空間には、特定の分子径を有する呼気マーカ物質のみが残存するためである。
 以下においては、化学物質センシング装置を構成する各部材を説明する。
 (チャンバ)
 チャンバ11は、その内部に化学物質センシング素子10を支持し、当該化学物質センシング素子10を含む空間が特定の呼気マーカ物質のみを検出することができるように、導入分子篩膜16および排出分子篩膜17を備える中空部材である。チャンバ11の表面のうちの一方の面には水分除去部12を介して気体導入経路13が接続されており、その他方の面には気体排出経路14が接続されている。
 このようなチャンバ11の形状は、図1に示されるような円柱状のもののみに限られるものではなく、化学物質センシング素子10を支持することができる中空部材であれば長方体、立方体、球体等であってもよい。また、チャンバ11は、軽量で耐久性の高い材料により構成されることが好ましく、このような材料としては、たとえば、アクリル樹脂、ポリプロピレン樹脂等の樹脂材料を挙げることができる。
 また、チャンバ11は、化学物質センシング素子10からのセンサ信号変化を送受信するために必要な構造を備える。ここでの「必要な構造」とは、たとえば化学物質センシング素子10から接続された信号測定用導線19を通す穴等を有することを意味する。このような構造にすることにより、センサ信号測定用の低電圧電源装置(図示せず)、デジタルマルチメータ(図示せず)、およびディスプレイ等の表示装置(図示せず)と、化学物質センシング素子10とを導線により接続することができ、化学物質センシング素子10が得た情報を外部へ出力することができる。
 (導入分子篩膜)
 導入分子篩膜16は、水分除去部12からチャンバ11内に導入される呼気のうち、分子径の大きな呼気マーカ物質が透過するのを防ぐために設けられるものである。このような導入分子篩膜16は、機械的強度が強く、かつ耐圧性および耐熱性に優れるという観点から、ゼオライト膜を用いることが好ましく、ゼオライト膜の中でもMOR膜(平均細孔径:0.56nm)、BEA膜(平均細孔径:0.76nm)、FAU膜(平均細孔径:0.72nm)、MFI膜(平均細孔径:0.56nm)のいずれかであることがより好ましい。
 このような導入分子篩膜16の平均細孔径は、排出分子篩膜17の平均細孔径よりも大きいことが好ましく、0.5nm以上0.8nm以下であることが好ましく、0.50nm以上0.56nm以下であることがより好ましい。導入分子篩膜16の平均細孔径が0.5nm未満であると化学物質センシング素子10に呼気マーカ物質を十分に供給することができず、0.8nmを超えると分子径の大きな呼気マーカ物質をも透過させることとなり、呼気マーカ物質の選択性が低下することとなる。また、導入分子篩膜16の厚みは、5μm程度のものを用いることが好ましい。
 また、導入分子篩膜16と水分除去部12との間のチャンバ11に気体排出口21を設けることが好ましい。これにより導入分子篩膜16を透過しないような分子径の大きな呼気マーカ物質が、導入分子篩膜16と水分除去部12との間のチャンバ11に残留することを防止することができる。気体排出口21とチャンバ11との接続には逆止弁15を設置することが好ましい。これによりチャンバ11内の圧力を一定に保ちつつ呼気を排出することができる。
 (排出分子篩膜)
 排出分子篩膜17は、チャンバ11から気体排出経路14に排出する呼気のうち、分子径の小さな分子のみを気体排出経路14に透過させるために設けられるものである。このような排出分子篩膜17は、上述した導入分子篩膜16と同様の観点からゼオライト膜であることが好ましく、ゼオライト膜の中でも、DDR膜(平均細孔径:約0.44nm)であることがより好ましい。排出分子篩膜17の平均細孔径は、0.36nm以上0.44nm以下であることがより好ましい。また、排出分子篩膜17の厚みは、5μm程度のものを用いることが好ましい。
 このように導入分子篩膜16および排出分子篩膜17の平均細孔径を規定することにより、呼気マーカ物質のうちの分子径の大きな分子は導入分子篩膜16を透過しない。また測定に用いない分子径の小さい分子は排出分子篩膜17を通過する。このようにして検出に必要な呼気マーカ物質のみを化学物質センシング素子10に供給し、その検出精度を高めることができる。
 (基材)
 基材20は、呼気の供給および排出を妨げることなく、導入分子篩膜16および排出分子篩膜17を支持するために設けられるものである。すなわち、呼気がチャンバ11内に高圧で導入されたとしても、チャンバ11内に基材20を設けることにより、導入分子篩膜16および排出分子篩膜17が気体排出経路14側にずれることを防止することができる。
 このような基材20は、図1に示されるように、導入分子篩膜16および排出分子篩膜17の両方に各1個ずつ合計2個の基材20を設けることが好ましい。そして、チャンバ11内の導入分子篩膜16の気体排出経路14側に設けられることが好ましい。また、排出分子篩膜17の気体排出経路14側にも設けられることが好ましい。また、基材20に用いられる材料は、軽量なものであれば特に限定されるものではなく、たとえばアクリル製、ポリプロピレン製等を用いることができる。
 図2(a)および(b)は、導入分子篩膜および排出分子篩膜を支持するための基材の模式的な図であり、図2(c)は、排出分子篩膜を含む面でチャンバを切断したときの断面を示す図である。
 本発明に用いられる基材20は、図2(a)に示されるように、その内部に1つの穴が形成されたものであってもよいし、図2(b)に示されるように、その内部にメッシュ状に9個の穴が形成されたものであってもよい。このように基材20は、呼気の通り道となる穴が設けられているものであれば、いかなるものでもよい。ただし、導入分子篩膜16および排出分子篩膜17をより安定して支持するという観点から、メッシュ状の形状であることが好ましい。
 (加熱装置)
 加熱装置18は、化学物質センシング装置2に設置される導入分子篩膜16および排出分子篩膜17に付着した呼気マーカ物質を脱離させるために設けられるものである。すなわち、加熱装置18が導入分子篩膜16および排出分子篩膜17を温めることにより、導入分子篩膜16および排出分子篩膜17に吸着している呼気マーカ物質の脱着を行なうことができ、これにより呼気マーカ物質の測定精度を高めることができる。
 また、化学物質センシング装置2を長期間使用して、導入分子篩膜16および排出分子篩膜17の分子篩としての性能が低下したときにも、加熱装置18を加熱すれば、それらの性能を回復させることもできる。
 このような加熱装置18は、導入分子篩膜16および排出分子篩膜17の外表面に配置されていることが好ましく、図2(c)に示されるように、導入分子篩膜16および排出分子篩膜17の外側面を囲むように配置されることがより好ましい。このように加熱装置18を配置することにより、導入分子篩膜16および排出分子篩膜17に均一に温度を加えることができ、不均一に呼気マーカ物質が脱着されるのを抑制することができる。
 また、導入分子篩膜16側のチャンバ11の側面に気体排出口21を設けることが好ましい。このような位置に気体排出口21を設けることにより、分子系の大きい分子を含む呼気を外部に排出することができる。
 (化学物質センシング素子)
 化学物質センシング素子10は、特定の呼気マーカ物質を選択的に検出することができるセンサである。そして、化学物質センシング素子10は、導入分子篩膜16と排出分子篩膜17とに挟まれた空間のチャンバに接して配置されるものである。
 図1においては、チャンバ11内に化学物質センシング素子10が1つ設けられたものが示されているが、チャンバ11内に設けられる化学物質センシング素子10の個数は、1つに限られるものではなく、2つ以上設けてもよい。2つ以上の化学物質センシング素子10を設けることにより、複数種の呼気マーカ物質を検出することができる。
 また、化学物質センシング素子10は、チャンバ11内に設けるのみに限られるものではなく、気体排出経路14に設けてもよい。気体排出経路14に化学物質センシング素子10を設けることにより、チャンバ11内に設けられた化学物質センシング素子10よりも、分子径の小さい呼気マーカ物質を検出することができる。
 上記のような化学物質センシング素子10は、半導体センサ、ナノ構造体センサ等を用いることができ、呼気マーカ物質の種類に応じて、半導体センサまたはナノ構造体センサのうちのいずれか一方もしくは両方を用いればよい。
 図3は、本発明に用いられる化学物質センシング素子の一例を示す模式図である。化学物質センシング素子10は、図3に示されるように、正極110と負極111とを有し、さらに正極110および負極111に接触するように配置されたセンシング部104と、正極110、負極111およびセンシング部104に接する絶縁体105と、定抵抗106とを有するものである。
 ここで、センシング部104とチャンバ11内に導入された呼気とを接触させる方法としては、たとえばボタン等を押すことにより、センシング部104とチャンバ11との間に設けられた窓がある一定の時間開くような構造にすること等が挙げられる。このように測定するときのみ、チャンバ11内の空気がセンシング部104に接触するような構造にすることにより、センシング部104の劣化を抑制することができる。
 センシング部104は、特定の呼気マーカ物質を検出するために設けられるものである。センシング部104は、主に金属酸化物からなり、空気中の酸素を吸着する性質をもつ。この際、吸着酸素はセンシング部104中の自由電子をトラップしており、この状態ではセンシング部104の抵抗値は高い。当該センシング部104に対して、呼気マーカ物質を含む検体ガス、たとえばCOを含む空気を接触させると、センシング部104の表面の酸素とCOが反応してCO2となり、吸着酸素がセンシング部104から離れる。つまり、センシング部104の表面の酸素が減少し、トラップされていた電子が解放されるため、これによりセンシング部104の抵抗値が減少する。この抵抗値の変動を、定抵抗106における電圧VRLの変化を測定することにより算出し、特定の呼気マーカ物質の有無および含有量を検出することができる。
 このような半導体センサは、アセトン、CO、炭素原子を含む有機ガス(たとえば、炭化水素ガス、アルコール等)、H2等の可燃性ガス等の呼気マーカ物質を検出するためのセンサ素子として好適に用いることができる。
 また、化学物質センシング素子10に用いられるナノ構造体センサは、センシング部104がナノスケールの導電性物質により構成されること、および、センサ温度制御手段および絶縁体を伴わないこと以外はすべて上記半導体センサの構造と同一にすることができ、たとえばナノチューブ、ナノワイヤ、フラーレン等のような構造体を用いることができる。
 そして、ナノスケールの導電性物質としては、後述するカーボンナノチューブの他に、カーボンナノファイバー等が好適に用いられる。カーボンナノチューブ等のナノスケールの導電性物質を、センシング部を構成する材料として用いることにより、小型、軽量で常温にて高感度な化学物質センシング素子10を実現することができる。
 カーボンナノチューブから構成されたセンシング部を備えるナノ構造体センサにおいて、当該センシング部104は、表面修飾を施したカーボンナノチューブの集合体108からなる。このセンシング部に対して、呼気マーカ物質を含む呼気を接触させると、センシング部の表面に呼気マーカ物質が吸着し、これによりナノ構造体センサ全体の抵抗値が変化する。この抵抗値の変動を、定抵抗における電圧VRLの変化を測定することにより算出し、呼気中の呼気マーカ物質の有無および含有量を明らかにすることができる。
 カーボンナノチューブから構成されるセンシング部の作製方法としては、フィルム状カーボンナノチューブを溶媒中に分散させた後、メンブレンフィルタなどでろ過して作製する方法、マイクロ波プラズマCVD装置などを用いて基板上にカーボンナノチューブを直接成長させる方法等がある。
 また、ナノ構造体センサのセンシング部が金属錯体により表面修飾されたカーボンナノチューブから構成されるものを用いることも有効である。カーボンナノチューブに金属錯体による表面修飾を施すことにより、特定の呼気マーカ物質に対する吸着選択性をさらに向上させることができ、これにより特定の呼気マーカ物質の検出精度をより向上させることができる。
 図4は、金属錯体により表面修飾されたカーボンナノチューブから構成されるセンシング部を備えたナノ構造体センサの一例を示す模式図である。本発明におけるナノ構造体センサは、図4に示されるように、正極110、負極111からなる2つの電極;当該2つの電極に接触するように配置された、呼気マーカ物質を検出する部位であるセンシング部104;および定抵抗106からなる。センシング部104は、金属錯体109により表面修飾されたカーボンナノチューブの集合体からなる。このセンシング部104に対して、呼気マーカ物質を含む検体ガスを接触させると、センシング部104の金属錯体109の一部に特定の呼気マーカ物質が選択的に吸着し、これによりナノ構造体センサ全体の抵抗値が変化する。この抵抗値の変動を、定抵抗106における電圧VRLの変化を測定することにより算出し、呼気中の呼気マーカ物質の有無および含有量を明らかにすることができる。
 上記の金属錯体は、特定の呼気マーカ物質を選択的に吸着するものが好ましい。すなわちたとえば、金属錯体としては、一酸化窒素を選択的に吸着するコバルト(II)フタロシアニン;一酸化炭素を選択的に吸着する鉄(II)フタロシアニン;ペンタンを吸着する銅(II)フタロシアニン;アセトンを選択的に吸着するマンガン(II)フタロシアニンなどを挙げることができる。
 センシング部104の作製方法としては、あらかじめカーボンナノチューブに金属錯体を付着、および含有させ、該ナノチューブを溶媒中に分散させた後、メンブレンフィルタなどでろ過して作製する方法の他、マイクロ波プラズマCVD装置などを用いて基板上にカーボンナノチューブを直接成長させた後、金属錯体を含む溶液をインクジェット等により噴霧して塗布する方法などがある。
 (呼気マーカ物質)
 本発明の化学物質センシング装置は、呼気に含まれる約200種以上の呼気マーカ物質のうちから、特定の呼気マーカ物質を検出するためのものである。生体情報を示す呼気マーカ物質としては、一酸化窒素、一酸化炭素、メチルメルカプタン、エタン、ペンタン、アセトン、アンモニア等を挙げることができる。上記の呼気マーカ物質の中でも、アセトンは、脂質の燃焼具合、糖尿病等を把握することができる。
 以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。
 <化学物質センシング装置>
≪検討1:導入分子篩膜および排出分子篩膜の効果≫
(実施例1)
 実施例1では、図1に示される化学物質センシング装置2を作製した。実施例1の化学物質センシング装置2は、チャンバ11内に導入分子篩膜16として厚み5μmのMFI膜(平均細孔径:0.56nm)を備え、排出分子篩膜17として厚み5μmのDDR膜(平均細孔径:0.44nm)を備えたものである。また、この化学物質センシング装置に用いられる化学物質センシング素子10のセンシング部には、アセトンと特異的に吸着するマンガンフタロシアニンを修飾したナノ構造体センサを用いた。
 まず、化学物質センシング装置2のチャンバ11に水分を40%含むN2ガスを4分間暴露した。そして、化学物質センシング素子10とチャンバ11とを隔てていた窓を開放し、化学物質センシング素子10の抵抗変化を1分間測定した。
 次に、アセトン15ppm、エタノール32ppm、メタノール27ppm、および酢酸5ppmを含む窒素ガスをベースガスとして、当該ベースガスに40%の水分を含むサンプルガスを250mL/分の流量で4分間、気体導入経路13から化学物質センシング装置2に導入した。そして、化学物質センシング素子10とチャンバ11とを隔てていた窓を開放して化学物質センシング素子10の抵抗変化を1分間測定した。
 なお、上記の化学物質センシング素子10の抵抗変化は、定電圧電源装置(製品名:デジタルマルチメータ(アジレント製))を用いて測定した。また、気体排出経路14から排出されたガスを採取し、質量分析法ガスクロマトグラフィ(GC-MS:Gas Chromatography‐Mass Spectroscopy 製品名:JMS-K9(JEOL製))を用いて当該ガスの分析を行なった。
 (比較例1)
 比較例1の化学物質センシング装置は、実施例1の化学物質センシング装置に備えられる、導入分子篩膜16および排出分子篩膜17を除いた他は、実施例1と同様の化学物質センシング装置を用いた。そして、比較例1の化学物質センシング装置に対しても、実施例1と同様の方法により抵抗変化を測定するとともに、気体排出経路14から排出されたガスの分析を行なった。
 図5(a)は、実施例1の化学物質センシング装置の気体排出経路から排出されたガスの質量分析法ガスクロマトグラフィの測定結果を示すグラフであり、図5(b)は、比較例1の化学物質センシング装置の気体排出経路から排出されたガスの質量分析法ガスクロマトグラフィの測定結果を示すグラフである。
 図5(a)および(b)のスペクトルを対比してみると、図5(b)のスペクトルは、図5(a)のスペクトルでは検出されなかったアセトンおよび酢酸のピークが検出された。この結果から、実施例1の化学物質センシング装置は、導入分子篩膜および排出分子篩膜を備えることにより、アセトンおよび酢酸はチャンバ内に留まったために、図5(a)のスペクトルでアセトンおよび酢酸のピークが検出されなかったものと考えられる。
 また、図5(a)および(b)のスペクトルにおいて、図5(a)のスペクトルの方が、より鋭くメタノールおよびエタノールのピークを検出した。このことから、実施例1の化学物質センシング装置は、比較例1の化学物質センシング装置よりもメタノールおよびエタノールを選択的に排除しているといえる。
 図6は、実施例1および比較例1の化学物質センシング装置に備えられる化学物質センシング素子の抵抗変化を示すグラフである。ここで、図6の横軸は時間(秒)を示し、縦軸は化学物質センシング素子の電気抵抗変化を示している。実施例1および比較例1の化学物質センシング素子の抵抗変化は、図6に示されるように、水分40%を含む窒素ガスを導入したときには差異が見られなかったのに対し、水分40%を含むサンプルガスを導入したときの実施例1の化学物質センシング素子は、比較例1の化学物質センシング素子よりも抵抗変化が大きかった。
 この理由は、実施例1の化学物質センシング装置に導入分子篩膜および排出分子篩膜が設けられていることにより、チャンバ内に測定対象のアセトンが濃縮されることとなり、実施例1のナノ構造体センサが、比較例1のそれよりもアセトンを選択的に吸着したことによるものと考えられる。
 また、本実施例および比較例の結果から、導入分子篩膜および排出分子篩膜に用いられるゼオライト膜の種類および組み合わせを代えることにより、アセトン以外のガスに関しても実施例1のアセトンと同様に、チャンバ内に留めることができるようになるものと考えられる。
 (実施例2)
 <化学物質センシングシステム>
 ≪検討2:中空糸の効果≫
 実施例2は、図1に示される化学物質センシングシステムを作製した。当該化学物質センシングシステム1は、実施例1の化学物質センシング装置2に対し、さらに化学物質センシング装置2に気体を導入するための気体導入経路13と、気体導入経路13からの気体の水分を吸着するための水分除去部12と、気体を排出するための気体排出経路14とを備えたものである。なお、水分除去部12には、1.0nmの間隔のらせん状の構造をした中空糸を設け、当該中空糸は、フッ素樹脂からなるものを用いた。
 このような実施例2の化学物質センシングシステムに対し、水分を85%含む窒素ガスと、水分を含まない窒素ガスとを交互に各1分ずつ、いずれも250mL/分の流量で導入し、これらの検体を化学物質センシング素子に接触させた。
 なお、上記の検体を導入している間は、化学物質センシング素子10とチャンバ11とを隔てている窓を開放し、呼気マーカ物質が化学物質センシング素子10に接触するようにした。このようにして化学物質センシング素子10の抵抗変化を確認した。なお、抵抗変化は、実施例1と同一の装置を用いて同様の方法により測定した。
 (比較例2)
 比較例2の化学物質センシングシステムは、実施例2の化学物質センシングシステムの水分除去部を除いたこと以外は、実施例2と同様の化学物質センシングシステムを用いた。また、比較例2の化学物質センシングシステムに導入する検体は、実施例2で用いた検体と同様のものを用い、同様の方法により抵抗変化を測定した。
 図7は、実施例2および比較例2に用いられる化学物質センシング素子における電気抵抗変化を示すグラフである。このグラフの横軸は検体を導入してからの時間(秒)を示しており、縦軸は化学物質センシング素子の抵抗変化を示している。
 実施例2に用いられる化学物質センシング素子は、水分を含まない窒素ガスを1分間導入した後に、85%の水分を含む窒素ガスを1分間導入しても、これらの間での化学物質センシング素子に検出される抵抗に変化は見られなかった。
 これに対し、比較例2に用いられる化学物質センシング素子は、水分を含まない窒素ガスを1分間導入した後に、85%の水分を含む窒素ガスを1分間導入した場合に、これらの間での抵抗変化が見られた。
 これは、比較例1の化学物質センシングシステムには、中空糸を有する水分除去部を有しないため、水分が除去されることなくチャンバ内に検体が導入されることとなり、水分を含まない窒素ガスを導入したときと、85%の水分を含む窒素ガスを導入したときとで、抵抗変化に差異が生じたものと考えられる。
 すなわち、実施例2の化学物質センシングシステムは、中空糸を有する水分除去部を設けることにより、水分を効率的に除去することができ、安定して呼気マーカ物質を測定できることが明らかとなった。
 ≪結果の表示≫
 図8は、本発明の化学物質センシングシステムと端末装置との接続関係を示す模式図である。本発明の化学物質センシングシステム1は、図8に示されるように、化学物質センシングシステム1を構成する化学物質センシング素子と、端末装置203とは通信ケーブル202を介して接続することにより、化学物質センシング素子で検出したデータを端末装置203に送信することができる。
 なお、化学物質センシング素子と、端末装置203との接続は、通信ケーブル202のような有線手段による電気的な接続のみに限られるものではなく、無線手段(たとえばBluetooth等)による通信により接続してもよい。このような通信手段により得られた測定値を基に健康状態を判断された結果が、端末装置203のディスプレイ201に表示されることとなる。
 図9は、本発明の化学物質センシングシステムと端末装置との接続関係を示す模式図である。本発明の化学物質センシングシステム1と接続する端末装置203は、図8に示されるようなノート型パソコンのみに限られるものではなく、結果を表示できるディスプレイを持つ電子機器であればどのようなものであってもよく、たとえば図9に示されるような携帯電話であってもよい。
 図10(a)および(b)は、化学物質センシング素子10が呼気マーカ物質を検出した結果を表示したディスプレイの模式図である。
 呼気マーカ物質の濃度は、予め既知の濃度で作成した特性値に対する検量線を用いて算出される。すなわち、当該特性値は(ピークトップのコンダクタンス-電気抵抗変化直前のコンダクタンス)/(電気抵抗変化直前のコンダクタンス)を百分率で表した値である。
 ディスプレイ201にはその算出したアセトン濃度を表示されるとともに、標準よりアセトン濃度が大きい値を示す場合、図10(a)に示されるように、糖尿病の可能性等の注意を促す表示を行なう。一方、標準よりアセトン濃度が小さな値を示す場合、図10(b)に示されるように、運動を促す表示を行なう。このようにして被験者は自分の体調を容易に知ることができる。
 今回開示された実施の形態および実施例はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 本発明により、被験者の疾患に関与する生体情報を検出でき、従来に無かった非侵襲、超小型、低消費電力、超高感度、高選択性のユーザーに対する使用時のストレスが少ない化学物質センシングシステムを提供することができ、医療予防社会の実現に向けた着実な進歩が確認された。
 1 化学物質センシングシステム、2 化学物質センシング装置、10 化学物質センシング素子、11 チャンバ、12 水分除去部、13 気体導入経路、14 気体排出経路、15 逆止弁、16 導入分子篩膜、17 排出分子篩膜、18 加熱装置、19 信号測定用導線、20 基材、21 気体排出口、104 センシング部、105 絶縁体、106 定抵抗、108 集合体、109 金属錯体、110 正極、111 負極、201 ディスプレイ、202 通信ケーブル、203 端末装置。

Claims (10)

  1.  導入分子篩膜(16)および排出分子篩膜(17)により3つの空間に分割されたチャンバ(11)と、
     前記導入分子篩膜(16)と前記排出分子篩膜(17)とにより挟まれる空間のチャンバ(11)に接する化学物質センシング素子(10)とを備える、化学物質センシング装置(2)。
  2.  前記導入分子篩膜(16)および前記排出分子篩膜(17)は、ゼオライトからなる、請求の範囲1に記載の化学物質センシング装置(2)。
  3.  前記導入分子篩膜(16)の平均細孔径は、前記排出分子篩膜(17)の平均細孔径よりも大きい、請求の範囲1に記載の化学物質センシング装置(2)。
  4.  前記導入分子篩膜(16)の外表面および前記排出分子篩膜(17)の外表面に、加熱装置(18)を備える、請求の範囲1に記載の化学物質センシング装置(2)。
  5.  前記化学物質センシング素子(10)は、ナノ構造体センサである、請求の範囲1に記載の化学物質センシング装置(2)。
  6.  前記ナノ構造体センサは、そのセンシング部(104)が金属錯体により表面修飾したカーボンナノチューブから構成される、請求の範囲5に記載の化学物質センシング装置(2)。
  7.  請求の範囲1に記載の化学物質センシング装置(2)と、
     前記化学物質センシング装置(2)に気体を導入するための気体導入経路(13)と、
     前記気体導入経路(13)と前記化学物質センシング装置(2)との間に配置され、かつ前記気体導入経路(13)からの気体の水分を吸着するための水分除去部(12)と、
     前記化学物質センシング装置(2)から気体を排出するための気体排出経路(14)とを備える、化学物質センシングシステム(1)。
  8.  請求の範囲1に記載の化学物質センシング装置(2)と、前記水分除去部(12)との間には、逆止弁(15)が設置され、前記化学物質センシング装置(2)と、前記気体排出経路(14)との間には、逆止弁(15)が設置される、請求の範囲7に記載の化学物質センシングシステム(1)。
  9.  前記水分除去部(12)は、中空糸を備える、請求の範囲7に記載の化学物質センシングシステム(1)。
  10.  前記中空糸は、フッ素樹脂からなる、請求の範囲9に記載の化学物質センシングシステム(1)。
PCT/JP2010/053201 2009-03-16 2010-03-01 化学物質センシング装置およびそれを備える化学物質センシングシステム WO2010106898A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011504798A JP4903911B2 (ja) 2009-03-16 2010-03-01 化学物質センシング装置およびそれを備える化学物質センシングシステム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009062697 2009-03-16
JP2009-062697 2009-03-16

Publications (1)

Publication Number Publication Date
WO2010106898A1 true WO2010106898A1 (ja) 2010-09-23

Family

ID=42739562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053201 WO2010106898A1 (ja) 2009-03-16 2010-03-01 化学物質センシング装置およびそれを備える化学物質センシングシステム

Country Status (2)

Country Link
JP (1) JP4903911B2 (ja)
WO (1) WO2010106898A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015515622A (ja) * 2012-03-23 2015-05-28 マサチューセッツ インスティテュート オブ テクノロジー エチレンセンサー
JP2016511456A (ja) * 2013-01-23 2016-04-14 ノキア テクノロジーズ オーユー タッチレスユーザインタフェースのためのハイブリッド入力装置
WO2018083130A1 (en) * 2016-11-01 2018-05-11 Eth Zurich Device and method for detecting gas
CN110669671A (zh) * 2019-09-04 2020-01-10 杭州师范大学 一种基于中空纤维膜的细胞代谢连续监测装置与方法
US11175268B2 (en) 2014-06-09 2021-11-16 Biometry Inc. Mini point of care gas chromatographic test strip and method to measure analytes
US11255840B2 (en) 2016-07-19 2022-02-22 Biometry Inc. Methods of and systems for measuring analytes using batch calibratable test strips
US11435340B2 (en) 2014-06-09 2022-09-06 Biometry Inc. Low cost test strip and method to measure analyte

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10115597A (ja) * 1996-10-15 1998-05-06 Matsushita Electric Ind Co Ltd ガスセンサ
JP2003505180A (ja) * 1999-08-02 2003-02-12 ヘルセテック インコーポレイテッド 呼吸ガス分析を用いる代謝熱量計

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10115597A (ja) * 1996-10-15 1998-05-06 Matsushita Electric Ind Co Ltd ガスセンサ
JP2003505180A (ja) * 1999-08-02 2003-02-12 ヘルセテック インコーポレイテッド 呼吸ガス分析を用いる代謝熱量計

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015515622A (ja) * 2012-03-23 2015-05-28 マサチューセッツ インスティテュート オブ テクノロジー エチレンセンサー
JP2016511456A (ja) * 2013-01-23 2016-04-14 ノキア テクノロジーズ オーユー タッチレスユーザインタフェースのためのハイブリッド入力装置
US11175268B2 (en) 2014-06-09 2021-11-16 Biometry Inc. Mini point of care gas chromatographic test strip and method to measure analytes
US11435340B2 (en) 2014-06-09 2022-09-06 Biometry Inc. Low cost test strip and method to measure analyte
US11747324B2 (en) 2014-06-09 2023-09-05 Biometry Inc. Low cost test strip and method to measure analyte
US11255840B2 (en) 2016-07-19 2022-02-22 Biometry Inc. Methods of and systems for measuring analytes using batch calibratable test strips
WO2018083130A1 (en) * 2016-11-01 2018-05-11 Eth Zurich Device and method for detecting gas
CN110669671A (zh) * 2019-09-04 2020-01-10 杭州师范大学 一种基于中空纤维膜的细胞代谢连续监测装置与方法
CN110669671B (zh) * 2019-09-04 2022-10-14 杭州师范大学 一种基于中空纤维膜的细胞代谢连续监测装置与方法

Also Published As

Publication number Publication date
JP4903911B2 (ja) 2012-03-28
JPWO2010106898A1 (ja) 2012-09-20

Similar Documents

Publication Publication Date Title
JP4903911B2 (ja) 化学物質センシング装置およびそれを備える化学物質センシングシステム
Moon et al. Chemiresistive electronic nose toward detection of biomarkers in exhaled breath
JP2012112651A (ja) 化学物質検出装置
US20100282245A1 (en) Detection of nitric oxide
Kuzmych et al. Carbon nanotube sensors for exhaled breath components
Adiguzel et al. Breath sensors for lung cancer diagnosis
Moon et al. All villi-like metal oxide nanostructures-based chemiresistive electronic nose for an exhaled breath analyzer
JP4744618B2 (ja) ガス成分検出装置
JP6749912B2 (ja) 検体を測定するための、ミニポイントオブケアのガスクロマトグラフィ検査ストリップ及び方法
Yang et al. Ultraviolet illumination effect on monolayer graphene-based resistive sensor for acetone detection
JP4926136B2 (ja) 呼気センシング装置
US20070281362A1 (en) Detection of No With a Semi-Conducting Compound and a Sensor and Device to Detect No
US9470675B2 (en) Sensor composition for acetone detection in breath
JP5160939B2 (ja) ガスセンサ装置
Lee et al. Room temperature monitoring of hydrogen peroxide vapor using platinum nanoparticles-decorated single-walled carbon nanotube networks
JP5062697B2 (ja) 化学物質センシング素子、ガス分析装置ならびに化学物質センシング素子を用いたエタノールの濃度を検出する方法
JP2010025719A (ja) 化学物質センシング素子、化学物質センシング装置、及び、化学物質センシング素子の製造方法
JP5062695B2 (ja) 化学物質センシング素子、ならびにこれを備えたガス分析装置および呼気分析装置、ならびに化学物質センシング素子を用いたアセトン濃度検出方法
JP2011163818A (ja) ガス分析装置
JP5535674B2 (ja) 呼気分析装置
US20210239665A1 (en) Mini point of care gas chromatographic test strip and method to measure analytes
KR101539560B1 (ko) 탄소나노튜브 폼, 이의 제조방법 및 이를 이용한 마이크로 전농축기 모듈
KR102106980B1 (ko) 호기 수소 분석 장치
Ahuja et al. Air-permeable redox mediated transcutaneous CO2 sensor
US20220082541A1 (en) Device and Method for Detecting an Analyte

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10753393

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011504798

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10753393

Country of ref document: EP

Kind code of ref document: A1