WO2010105502A1 - 搅拌推进式卧式预混装置及其方法 - Google Patents

搅拌推进式卧式预混装置及其方法 Download PDF

Info

Publication number
WO2010105502A1
WO2010105502A1 PCT/CN2010/000314 CN2010000314W WO2010105502A1 WO 2010105502 A1 WO2010105502 A1 WO 2010105502A1 CN 2010000314 W CN2010000314 W CN 2010000314W WO 2010105502 A1 WO2010105502 A1 WO 2010105502A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
mixing
gas
feed port
horizontal
Prior art date
Application number
PCT/CN2010/000314
Other languages
English (en)
French (fr)
Inventor
刘�英
Original Assignee
上海亦晨信息科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海亦晨信息科技发展有限公司 filed Critical 上海亦晨信息科技发展有限公司
Publication of WO2010105502A1 publication Critical patent/WO2010105502A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F23/00Mixing according to the phases to be mixed, e.g. dispersing or emulsifying
    • B01F23/50Mixing liquids with solids
    • B01F23/53Mixing liquids with solids using driven stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/60Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis
    • B01F27/70Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis with paddles, blades or arms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/40Mixers using gas or liquid agitation, e.g. with air supply tubes
    • B01F33/402Mixers using gas or liquid agitation, e.g. with air supply tubes comprising supplementary stirring elements
    • B01F33/4021Mixers using gas or liquid agitation, e.g. with air supply tubes comprising supplementary stirring elements the gas being introduced through the shaft of the stirring element

Definitions

  • the invention relates to a horizontal premixing device, in particular to a stirring and pushing horizontal premixing device, belonging to the field of mechanical mixing equipment. '
  • the invention also relates to a premixing method for mixing using a stirred push type horizontal premixing device. Background technique
  • the solid powder particles of the grain are fine, insoluble in water, and once mixed with water, they become a mixture of high viscosity.
  • the liquid is added to the solid powder for mixing, the solid powder is added to the liquid for mixing, and the liquid and the solid powder are simultaneously added and mixed, not only a part of the solid powder and the liquid are formed into a dough, but the remaining The solid powder of the grain and the liquid cannot be mixed, and also produce secondary agglomerated particles of the solid powder in the liquid, that is, the powder group, the outside of the powder is a mixture of powder and water, and the inside is a solid which is not mixed. powder.
  • a stirring mixing device and a stirring mixing method comprising a substantially cylindrical mixing vessel having a stirring blade inside, a powder and a liquid entering the mixing vessel through different inlets, and then stirring the blade Mix with stirring.
  • a partition chamber is formed between the stirring blades to separate the powder and the liquid into a plurality of groups for mixing.
  • the group mixing cannot be performed well, and a large amount of the mixture is accumulated on the inner wall of the mixing container. Stir well.
  • a mixing apparatus which comprises a barrel filled with liquid at the bottom, a vertical conduit inserted into the liquid and having rotating blades inside, from which the solid powder passes from above The portion of the added conduit having a liquid is mixed with the liquid under the action of the stirring blade, and then dispersed into the tub outside the conduit for further mixing with the liquid.
  • the apparatus is suitable for dispersing a small amount of solid powder into a large amount of liquid, and the resulting solid-liquid mixture cannot have a high viscosity, which would otherwise block the catheter.
  • the powder is diverge from the top of the mixing container, and then the liquid sprayed around the container during the falling process is mutually mixing.
  • this mixing method can disperse and mix the powder and the liquid to a certain extent to avoid the generation of the powder, then not all the falling powder can be mixed with the sprayed liquid, and the unmixed powder and liquid fall to At the bottom of the mixing vessel, uniform mixing is still not possible.
  • the material amount and mixing ratio of the powder and the liquid are difficult to control.
  • Chinese Patent Application No. 200410084721.1 discloses a vertical solid-liquid mixing device and a mixing method, the device comprising a set of baffles disposed along the inner wall of the mixing container, dividing the mixing container into a plurality of hollow mixing chambers, and then utilizing the mixing container A central set of mixing blades agitates the powder and liquid in each mixing chamber for mixing.
  • the materials fed from the top of the mixing vessel will accumulate in a large number of stirring chambers in the upper part, resulting in uneven distribution of materials in each mixing chamber, and if the mixture of powder and liquid has At higher viscosities, the mixture will also clog the mixing vessel due to the presence of individual baffles and mixing chambers.
  • the addition of the inlet to a single powder results in the material being uniformly distributed in all directions in the cross section of the mixing vessel.
  • Chinese Patent No. 200610011506,8 and European Patent No. EP06113920.0 respectively disclose two kinds of static mixing devices, which use the splitting of the materials to carry out the mixing, however, the above device is not suitable for the mixing of the powder and the liquid with higher viscosity after mixing.
  • a horizontal mixing device having a stirring blade therein in which the powder and the liquid are respectively injected into the device from the top and bottom of one side of the horizontal mixing device, and then the blades are used for stirring and mixing.
  • a horizontal mixing device can solve the problem that the powder and the liquid fall too fast under the action of gravity, resulting in uneven distribution of materials in the mixing device, it is still difficult to solve the problem of uniform mixing of the powder and the liquid.
  • An object of the present invention is to provide a stirring push type horizontal premixing device, by which the solid powder and the liquid can be uniformly mixed according to a certain ratio, and is particularly suitable for uniform mixing of the solid powder and the liquid with high viscosity after mixing. .
  • Another object of the present invention is to provide a premixing method for mixing by using a stirring push type horizontal premixing device, by which the solid powder and the liquid can be uniformly mixed according to a certain ratio, and is particularly suitable for high viscosity after mixing.
  • the solid powder and the liquid are both mixed.
  • a horizontal premixing device disclosed by the present invention comprises a mixing system, a stirring separation system inside the mixing system, a rolling gas injection system, a propulsion system and a storage system, a feeding system at the feeding end of the mixing system, and a bottom portion. Discharge system at the discharge end.
  • the mixing system is a cylindrical horizontal mixing reaction kettle formed by a casing having a horizontal rotating shaft located at a center of the casing, the rotating shaft driving the stirring separation system connected thereto to rotate , mixing of solid-liquid materials.
  • the agitation separation system is a set of impellers connected to the rotating shaft and rotating therewith, each of the impellers comprising
  • blades including a partition plate and a scraper plate, and the interval angle between the blades is equal.
  • One end of the partition plate is connected to the rotating shaft, and the other end is connected with a scraping plate.
  • the scraper plate is tangential to the inner wall of the casing and has a safety clearance of 2 mm to 20 mm.
  • the partitioning plate is a fan-shaped structure having a center angle of 20° to 60°, the inner diameter of which is equal to the outer diameter of the rotating shaft, and the outer diameter of which is the difference between the inner diameter of the horizontal mixing reactor shell and the thickness of the scraping plate 1022.
  • the scraper plate has a fan-shaped structure, the inner diameter of which is equal to the outer diameter of the partition plate, and the outer diameter of the scraper plate is equal to the inner diameter of the horizontal mixed reaction vessel shell.
  • the scraper plate is equal in angle to the center of the partition plate to which it is attached.
  • the scraping plate further includes, in addition to the fan-shaped structure, a tip structure extending from the non-arc side of the fan-shaped structure along the inner wall of the horizontal mixing reactor shell, and the width is gradually reduced and terminated. On the inner wall of the housing.
  • the partitioning plate forms an angle of 0° to 30° with the vertical surface, preferably an angle of 20°.
  • the fan-shaped structure of the scraper plate is in the same plane as the partition plate.
  • the separator plate and the scraper plate are equal in thickness or gradually decreasing from one side to the other side.
  • a separate mixing chamber is formed between each two adjacent impellers whereby the horizontal mixing reactor is divided into a plurality of interconnected mixing chambers that are interconnected by the set of impellers.
  • the dividing plate of each of the impellers is interlaced with the dividing plate of the adjacent impeller by an angle of 0° to 45°.
  • the propulsion system consists of a set of propellers located on the underside of the interior of the casing and one at the bottom of each propeller and Connected push rods.
  • the pusher further includes a pusher piece and a support bar.
  • the pusher piece is a side-arc cone structure having an elliptical bottom surface having a front side and a back side.
  • the front side is the bottom surface ellipse of the cone for propelling the material forward with the support of the push rod.
  • the opposite side is the cone of the cone, which has less resistance to the material.
  • the upper end of the support rod is connected to the bottom of the pusher piece, and the lower end is connected to the push rod.
  • the front and back sides of the pusher sheet respectively face the discharge end and the feed end of the housing.
  • the advancing piece is at an angle of plus or minus 0° to 35° with respect to the radial direction of the circular cross section of the housing.
  • the bottom of the housing is provided with a thickened layer, and the inner surface thereof is further provided with a semi-circular recess extending along the length of the housing.
  • the pusher bar is a semi-circular rod located in the recess, the two ends of which are respectively passed out from the feeding end and the discharging end of the housing.
  • the pusher bar and the recess are shaped to each other such that the top surface of the pusher bar and the inner surface of the housing slidably engage to form a complete cylindrical inner cavity.
  • the pushers are vertically connected by their respective support rods and are equally spaced on the push rod.
  • the horizontal premixing device comprises 1 to 2 propulsion systems. Each of the thrusters is located between each two adjacent impellers such that the thrusters are alternately distributed with the impellers.
  • the high pressure gas injection system has a rotating shaft.
  • the shaft is a hollow shaft having a cylindrical shaft cavity that includes a shaft housing and an axial cavity surrounded by the shaft housing.
  • the shaft cavity has an opening for allowing a gas having a certain pressure to discharge outward in one direction.
  • a shaft cavity region between each two adjacent impellers has a plurality of said openings, the number of the openings being an integral multiple of the number of partition plates on one impeller, and the openings are distributed in the shaft cavity to which the partition plate is connected On the area.
  • the feed system connects the mixing system and the high pressure gas injection system and delivers solid materials and liquid materials thereto.
  • the feed system includes a solid feed port on the rotating shaft, a gas liquid feed port on the housing, and an additive feed port.
  • the gas-liquid feed port is located on the casing and communicates with the interior of the horizontal mixing reactor to transport the gas material therein.
  • the number of gas-liquid feed ports is equal to the number of partition plates on the impeller, and each gas-liquid feed port is interlaced with a corresponding partition plate on the impeller adjacent to the feed port by 0° to 45°. angle.
  • the solid feed port is located on the rotating shaft and communicates with the shaft cavity.
  • the additive feed port is located on the rotating shaft and communicates with the shaft cavity.
  • the discharge system connects the storage system at the bottom of the mixing system and outputs the mixed material therefrom.
  • the storage system has a storage chamber having the same number of partition plates on the impeller adjacent thereto, and each storage chamber has a corresponding one.
  • the discharge port, the respective discharge ports constitute the discharge system.
  • the invention discloses a premixing method for mixing by using a horizontal premixing device, which comprises the following steps: Step 1: input a gas, a liquid or a gas-liquid mixture into each of the inlets of the gas-liquid feed inlet into the lying The inside of the reaction kettle was mixed.
  • each gas-liquid feed port of the gas-liquid feed port is equal to the number of partition plates on the impeller, and each gas-liquid feed port is interlaced with 0° between the corresponding partition plates on the impeller adjacent to the feed port. ⁇ 45 ° angle. Therefore, the gas, liquid or gas-liquid mixture input from each feed port flows on the partition plate and the scraper plate adjacent to the feed port, and sequentially along the respective partition plates and the scraper plate. The lower flow passes through the respective partition plates and the scraper plates so that the hooks are distributed in the respective separate mixing chambers.
  • Step 2 The high-pressure gas mixed with the solid powder is introduced into the shaft cavity from each of the feed ports of the solid feed port, and then ejected outward through the opening in the shaft casing.
  • the number of the set of openings is an integral multiple of the number of partition plates on one impeller, and the openings are distributed in the shaft cavity to which the partition plate is connected On the area. Therefore, the high-pressure gas mixed with the solid powder can be sprayed on the respective liquid or solid-liquid mixture flowing on the respective partition plates through the respective openings, thereby being uniformly distributed in the respective divided mixing chambers.
  • Step 3 A high-pressure gas mixed with an additive such as a solid powder, a liquid droplet, a gas, and the like is introduced into each of the inlets of the additive inlet into the shaft cavity, and then ejected outward through the opening in the shaft casing.
  • an additive such as a solid powder, a liquid droplet, a gas, and the like
  • the number of the set of openings is an integral multiple of the number of partition plates on one impeller, and the openings are distributed in the shaft cavity to which the partition plate is connected On the area. Therefore, a high-pressure gas mixed with an additive such as a solid powder, a liquid droplet, a gas or the like can be sprayed through the respective openings onto the liquid or solid-liquid mixture flowing on each of the respective partition plates, thereby being uniformly distributed in the respective divided mixing chambers.
  • Step 4 The rotating shaft drives a group of impellers connected thereto to rotate around the rotating shaft, and the mixture of the mixed solid powder and the liquid is stirred by the partition plate on each impeller to fully mix and utilize each scraping plate. The material adhering to the inner wall of the casing is scraped off so that the above materials are stirred and mixed again.
  • Step 5 The mixed solid powder, the mixture of the liquid and the additive are successively flowed down the respective partition plates to the next separated mixing chamber, and stirring and mixing are continued.
  • the pusher rod of the propulsion system moves back and forth in the recess of the inner surface of the bottom of the housing, thereby causing the pushers connected thereto to move back and forth.
  • Step 6 The mixture in the last stage of the mixing chamber adjacent to the storage chamber flows into the corresponding storage chamber 106 along the respective partition plates, and then is output to the outside through the corresponding discharge ports 105.
  • each of the storage chambers 106 has a discharge port 105 correspondingly, a plurality of batches of the mixture can be simultaneously output from the mixed reaction kettle to perform the same or respectively. Different further processing.
  • a plurality of batches of gas-liquid materials are simultaneously input from the respective gas-liquid feed ports 1042, and flow down along respective corresponding partition plates and scraping plates on the impeller group and uniformly distributed in the respective divided mixing chambers.
  • a high-pressure gas containing solid powder and/or an additive is ejected from each opening 1033 on the rotary shaft 103, so that the solid powder and/or the additive are sprayed on the respective partition plates.
  • This method of dispersing and mixing effectively avoids the phenomenon of secondary agglomerated particles in the mixing process caused by local solid powder concentration and uneven liquid distribution, that is, powder cluster phenomenon.
  • the liquid is gradually input and left along the partition plate, and the solid powder continues to be sprayed, for a part of the liquid, starting from the input mixed reaction tank, it is gradually mixed with several batches of solid powder, that is, equivalent to a certain amount of liquid.
  • the present invention can directly and simultaneously input the solid-liquid mixture in batches to simultaneously perform further processing on a plurality of production lines without requiring an additional device to split the mixture.
  • the partition plates of adjacent impellers are staggered at an angle such that the liquid and the mixture can slowly flow along the partition plate to the next compartment, so that the solid-liquid contact time increases, and the partition plate and the plane become certain.
  • the included angle facilitates the flow and transport of a high viscosity solid-liquid mixture.
  • the propulsion system also promotes the forward movement of the mixture with a certain viscosity.
  • the invention utilizes multiple dispersions to effectively avoid various problems existing in the mixing process of the solid powder and the liquid, and can quickly, continuously and stably align the liquid, the solid powder and the additive with a certain ratio. mixing.
  • DRAWINGS BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a view showing the entire structure of a horizontal premixing apparatus of the present invention.
  • Figure 2 is a partial detail view of the horizontal premixing device of the present invention.
  • Figure 3a is a longitudinal cross-sectional view of the horizontal premixing apparatus of the present invention taken along line A1-A1' of Figure 2 .
  • Figure 3b is a longitudinal cross-sectional view of the horizontal premixing apparatus of the present invention taken along line A2-A2' of Figure 2;
  • Figure 3c is a longitudinal cross-sectional view of the horizontal premixing apparatus of the present invention taken along line A3-A3' of Figure 2 ⁇ .
  • Figure 3d is a longitudinal cross-sectional view of the horizontal premixing apparatus of the present invention taken along line A4-A4' of Figure 2 .
  • Figure 3e is an illustration of the impeller of Figure 3a and its side view of the present invention.
  • Figure 4 is a view showing the overall configuration of a high pressure gas injection system of the present invention.
  • Figure 5 is a partial detail view of the high pressure gas injection system of the present invention.
  • Figure 6 is a longitudinal cross-sectional view of the horizontal premixing apparatus of the present invention taken along line BB' of Figure 2 .
  • Figure 7 is a longitudinal cross-sectional view of the horizontal premixing apparatus of the present invention taken along line CC' of Figure 2 .
  • Figure 8a is an overall schematic view of the propulsion system of the present invention.
  • Figure 8b is a schematic view showing the structure of the propulsion system of the present invention.
  • Figure 8c is a longitudinal cross-sectional view of a horizontal premixing apparatus having a propulsion system of the present invention.
  • Figure 8d is a longitudinal cross-sectional view of a horizontal premixing device of the present invention having two propulsion systems.
  • Figure 8e is a schematic view of the structure of the pusher of the present invention (front view).
  • Figure 8f is a schematic structural view (side view) of the pusher of the present invention.
  • Figure 9a is an overall schematic view of a first embodiment of the propulsion system of the present invention.
  • Figure 9b is an overall schematic view of a second embodiment of the propulsion system of the present invention.
  • Figure 9c is an overall schematic view of a third embodiment of the propulsion system of the present invention. detailed description
  • Embodiment 1 - A horizontal premixing device includes the following parts:
  • a horizontal premixing apparatus includes a mixing system 1010, an agitation separation system 1020 located within the mixing system 1010, a high pressure gas injection system 1030, a propulsion system 100 and a storage system 1060, a feed system 1040 at the top of the mixing system 1010, and a bottom Discharge system 1050.
  • the mixing system 1010 is a cylindrical horizontal mixing reaction vessel formed by a casing 101 having a horizontal rotating shaft 103 at the center of the casing 101, and the rotating shaft 103 drives the upper connecting portion thereof.
  • the agitation separation system 1020 rotates to mix the solid-liquid materials.
  • the feed system 1040 connects the mixing system 1010 and the high pressure gas injection system 1030 and delivers solid and liquid materials thereto.
  • the feed system 1040 includes a solid feed port 1041 on the rotating shaft 103, a gas-liquid feed port 1041 on the housing 101, and an additive feed port 1043.
  • the agitation separation system 1020 is a set of impellers coupled to the rotating shaft 103 and rotating therewith, each of the impellers 102 comprising 2 to 6 blades including a partitioning plate 1021 and a scraping plate 1022.
  • One end of the partitioning plate 1021 is connected to the rotating shaft 103, and the other end is connected with a scraping plate 1022.
  • the scraper plate 1022 is tangential to the inner wall of the casing 101 and has a safety gap of 2 mm to 20 mm.
  • the inner diameter of the partitioning plate 1021 is equal to the outer diameter of the rotating shaft 103, and the outer diameter is the difference between the inner diameter of the horizontal mixing reactor shell 101 and the thickness of the scraping plate 1022.
  • the inner diameter of the scraper plate 1022 is equal to the outer diameter of the partition plate 1021, and the outer diameter is equal to the inner diameter of the horizontal mixing reactor housing 101.
  • a separate mixing chamber is formed between each two adjacent impellers to divide the horizontal mixing reactor into a plurality of interconnected mixing chambers 109 that are interconnected by the set of impellers.
  • FIG. 2 cross-sectional views are taken along A1-A1', A2-A2', A3-A3', A4-A4', respectively, to obtain Figs. 3a, 3b, 3c, 3d.
  • the spacing angle b between the blades of the impeller 102 is equal
  • the partitioning plate 1021 is a fan-shaped structure having a central angle a of 20° to 60°.
  • the scraper plate 1022 has a sector structure and is equal to the center angle of the partition plate 1021 to which it is attached.
  • the scraper plate 1022 further includes, in addition to the sector structure 1023, a tip structure 1024 extending from the non-arc side of the sector structure along the inner wall of the horizontal mixing reactor housing 101.
  • the dividing plate of each of the impellers is interlaced with the dividing plate of the adjacent impeller by an angle of 0° to 45°.
  • the bottom surface a'b' of the partitioning plate 1021 is at an angle of 0° to 30° with the vertical surface b'c'.
  • the fan-shaped structure of the scraper plate is in the same plane as the partition plate.
  • the partition plate 1021 and the scraper plate 1022 are equal in thickness or gradually decrease from the aa'-side bb'-side.
  • the tip structure 1024 extends from the non-arc side of the sector structure along the inner wall of the horizontal mixing reactor housing 101, and the width gradually decreases from bb' and terminates on the inner wall c of the housing 101.
  • the high pressure gas injection system 1030 has a rotating shaft 103.
  • the rotating shaft 103 is a hollow rotating shaft having a cylindrical shaft cavity, and includes a shaft housing 1032 and an axial cavity 1031 surrounded by the shaft.
  • the shaft chamber 1031 has an opening 1033 for allowing a gas having a certain pressure to be discharged unidirectionally outward.
  • a region of the shaft cavity 1031 between each two adjacent impellers has a plurality of said openings 1033.
  • the number of the openings is an integral multiple of the number of partition plates on one impeller, and the openings 1033 are distributed in the shaft cavity 1031.
  • the solid feed port 1041 is located on the rotating shaft 103 and communicates with the shaft cavity 1031.
  • High pressure gas mixed with solid powder is introduced into the shaft chamber 1031 from the respective feed ports of the solid feed port 1041, and then ejected outward through the opening 1033 in the shaft casing 1032.
  • the number of the group openings is an integral multiple of the number of partition plates on one impeller, and the openings 1033 are distributed in the shaft cavity 1031. It is connected to the area where the partition plate 1021 is attached. Therefore, after the high-pressure gas mixed with the solid powder enters the shaft cavity 1031, it spreads to the periphery, a part is ejected through the opening 1033, and a part of the impingement is blown on the inner wall 10322 of the shaft cavity and then ejected through the opening 1033.
  • the high-pressure gas mixed with the solid powder passes through the mouth 1033 and is sprayed to the periphery to fall on the liquid or solid-liquid mixture flowing on each of the respective partition plates, so that the hooks are distributed in the respective divided mixing chambers.
  • the additive inlet port 1043 is located on the rotating shaft 103 and communicates with the shaft cavity 1031.
  • the high pressure gas mixed with the additive is introduced into the shaft chamber 1031 from the respective inlets of the additive inlet 1041, and then ejected outwardly through the opening 1033 in the shaft housing 1032.
  • the high-pressure gas mixed with the additive After entering the shaft cavity 1031, the high-pressure gas mixed with the additive is scattered to the periphery, a part is ejected through the opening 1033, and a part is impinged on the inner wall 10322 of the shaft cavity and then ejected through the opening 1033.
  • the above-mentioned high-pressure gas mixed with the additive passes through the opening 1033 and is sprayed to the periphery to be scattered, and falls on the liquid or solid-liquid mixture flowing on each of the respective partition plates, thereby being uniformly distributed in the respective divided mixing chambers.
  • the propulsion system 100 includes a plurality of propellers 1000 located on the underside of the interior of the casing and a propulsion rod 1005 located at the bottom of each propeller 100 and coupled thereto.
  • the pusher 100 further includes a pusher piece 1001 and a support bar 1002.
  • the propulsion piece 1001 is A side upside is an elliptical cone structure having a front side 1003 and a back side 1004.
  • the front surface 1003 is a bottom surface ellipse of the cone for propelling the material forward by the support rod 1002 and the push rod 1005.
  • the opposite side 1004 is a tapered surface of the cone with less resistance to the material.
  • the upper end of the support rod 1002 is connected to the bottom of the pusher piece 1001, and the lower end is connected to the push rod 1005.
  • Each of the thrusters 100 is located between each two adjacent impellers such that the thrusters 100 are interleaved with the impellers.
  • the front side 1003 and the reverse side 1004 of the pusher sheet 1001 face the discharge end and the feed end of the housing, respectively.
  • the advancing piece 1001 may be at an angle of plus or minus 0° to 35° with respect to the radial direction of the cross-section circle of the housing in the following two ways:
  • All the propulsion sheets 1001 are at the same angle to the radial direction of the cross-section circle of the casing, between plus and minus 0° to 35°, as shown in Fig. 9b.
  • the second type the propulsion piece 1001 is divided into two groups, and each of the propulsion pieces 1001 in the first group forms an equal angle with the radial direction of the cross-section circle of the casing, and the range is between minus 0° and 35°, Each of the propulsion sheets 1001 of the two groups forms an equal angle with the radial direction of the cross-sectional circle of the casing, ranging from plus to 0° to 35°, and the first group of propulsion sheets 1001 and the second group of propulsion sheets 1001 are inter-phased. , as shown in Figure 9c.
  • the bottom of the housing 101 is provided with a thickened layer 1012, and an inner surface thereof is further provided with a semi-circular recess 1005 extending along the length of the housing 101.
  • the push rod 1005 is a semi-circular rod located in the groove 1005, and its two ends are respectively pierced from the feeding end and the discharging end of the casing 101.
  • the joint of the pusher rod 1005 through the casing 101 is sealed by a sealing technique such as a gasket which is common in the art.
  • the pusher bar 1005 and the recess 1005 are shaped to match such that the top surface of the pusher bar 1005 and the inner surface of the housing 101 are slidably engaged to form a complete cylindrical inner cavity.
  • the pushers 100 are vertically connected by their respective support rods 1002 and are equally spaced on the push rod 1005.
  • the horizontal premixing device comprises 1 to 2 propulsion systems 100.
  • the gas-liquid feed port 1042 is located on the casing 101 and communicates with the interior of the horizontal mixing reactor to transfer the gas-liquid material therein.
  • the number of gas-liquid feed ports 1042 is equal to the number of partition plates on the impeller, and each The gas-liquid feed port 1042 is interlaced with the corresponding partition plate on the impeller 10201 adjacent to the feed port by an angle of 0° to 45°. Therefore, the gas, liquid or gas-liquid mixture input from each gas-liquid feed port 1042 flows into the interior of the horizontal mixing reactor and falls on the partition plate and the scraper plate adjacent to and corresponding to the feed port. And then flow along the partition plate and the tongue I], and sequentially flow down the respective partition plates and the scraper plate through the corresponding partition plates and the scraper plates, thereby uniformly distributing the respective partitions. Mixing room.
  • the discharge system 1050 connects the storage system 1060 at the bottom of the mixing system 1010 and outputs the mixed material therefrom.
  • the storage system 1060 has a storage chamber 106 having the same number of partition plates on the impeller 10202 adjacent thereto, and each of the storage chambers 106 has a discharge port 105 correspondingly, and each of the discharge ports 105 is composed of The discharge system 1050.
  • a premixing method using a horizontal premixing device for mixing includes the following steps - according to Fig. 1, Fig. 2, Fig. 7:
  • Step 1 Input gas, liquid or gas-liquid mixture from the respective feed ports of the gas-liquid feed port 1042 into the interior of the horizontal mixing reactor.
  • the number of feed ports of the gas-liquid feed port 1042 is equal to the number of partition plates on the impeller, and between each gas-liquid feed port 1042 and a corresponding partition plate on the impeller 10201 adjacent to the feed port. Interlaced 0 ° ⁇ 45 ° angle. Therefore, the gas, liquid or gas-liquid mixture input from each feed port flows on the partition plate and the scraper plate adjacent to the feed port, and sequentially along the respective partition plates and the scraper plate. The lower flow passes through the respective partition plates and the scraper plates so as to be evenly distributed in the respective divided mixing chambers.
  • Step 2 The high-pressure gas mixed with the solid powder is fed into the shaft chamber 1031 from the respective feed ports of the solid feed port 1041, and then ejected outward through the opening 1033 of the shaft housing 1032.
  • the number of the group of openings is an integral multiple of the number of partition plates on one impeller, and the openings 1033 are distributed in the shaft cavity 1031.
  • Step 3 input high-pressure gas mixed with additives such as solid powder, liquid droplets, gas and the like into the shaft cavity 1031 from the respective feed ports of the additive feed port 1043, and then go out through the opening 1033 on the shaft housing 1032. Spraying. Since the shaft cavity 1031 region between each two adjacent impellers has a plurality of said openings 1033, the number of the group of openings is an integral multiple of the number of partition plates on one impeller, and the openings 1033 are distributed in the shaft cavity 1031. There is a region on the partition plate 1021.
  • a high-pressure gas mixed with an additive such as a solid powder, a liquid droplet, a gas or the like can be sprayed through the respective openings 1033 onto the liquid or solid-liquid mixture flowing on each of the respective partition plates, thereby being uniformly distributed in the respective divided mixing chambers.
  • Step 4 The rotating shaft 103 drives a group of impellers connected thereto to rotate with the rotating shaft 103 as a center, and the mixture of the mixed solid powder and the liquid is stirred by the partitioning plate 1021 on each impeller 102 to be fully mixed and utilized.
  • Each of the scraper plates 1022 scrapes off the material adhering to the inner wall of the casing 101 so that the above materials are stirred and mixed again.
  • Step 5 The mixed solid powder, the mixture of the liquid and the additive are successively flowed down the respective partition plates 1021 to the next-stage divided mixing chamber, and stirring and mixing are continued.
  • partitioning plate 1021 forms an angle of 0 to 30 with respect to the vertical surface, the mixed solid powder, the mixture of the liquid and the additive is allowed to flow to the lower first partitioning plate 1021.
  • the propulsion rod 1005 of the propulsion system 1000 is moved back and forth in the groove 1012 of the inner surface of the bottom portion of the casing 101 by the external motor, thereby driving the propellers 100 connected thereto to move back and forth.
  • each pusher 100 advances the mixture forward.
  • the reverse side 1004 of each pusher 100 splits the mixture to avoid bringing the mixture back in the opposite direction.
  • Step 6 The mixture in the last stage separation mixing chamber adjacent to the storage chamber 106 flows into the corresponding storage chamber 106 along the respective partition plates, and then is output outward through the corresponding discharge ports 105.
  • Embodiment 2 Since the number of the storage chambers 106 is equal to the number of the partition plates, and each of the storage chambers 106 has a discharge port 105 correspondingly, a plurality of batches of the mixture can be simultaneously output from the mixed reaction kettle to perform the same or respectively. Different further processing.
  • Embodiment 2 is the same or respectively.
  • the scraper plate 1022 is tangential to the inner wall of the housing 101 and has a 3 mm safety clearance.
  • the partitioning plate 1021 is a fan-shaped structure having a central angle a of 22°.
  • the dividing plate of each of the impellers is interlaced with the dividing plate of the adjacent impeller by an angle of 11 °.
  • the bottom surface a'b' of the partitioning plate 1021 is at an angle of 2° to the vertical surface b'c'.
  • the region of the shaft cavity 1031 between each two adjacent impellers has a plurality of said openings 1033 which are one-fold the number of partitions on one impeller.
  • the angle formed between the pusher piece 1001 and the radial direction of the circular cross section of the housing is:
  • the first group has an angle of minus 5° and the second group has an angle of 5°.
  • Each of the gas-liquid feed ports 1042 is interlaced with an angle of 11 ° between the respective partition plates on the impeller 10201 adjacent to the feed port.
  • the scraper plate 1022 is tangential to the inner wall of the housing 101 and has a 5 mm safety clearance.
  • the partitioning plate 1021 is a fan-shaped structure having a central angle a of 26°.
  • the partition plate of each of the impellers is interlaced with the partition plate of the adjacent impeller by an angle of 13°.
  • the bottom surface a'b' of the partitioning plate 1021 is at an angle of 5° to the vertical surface b'c'.
  • the region of the shaft cavity 1031 between each two adjacent impellers has a plurality of said openings 1033 which are one-fold the number of partitions on one impeller.
  • the angle formed between the pusher piece 1001 and the radial direction of the circular cross section of the housing is:
  • the first group has an angle of minus 10° and the second group has a positive angle of 10°.
  • Embodiment 4 The structure and method of the horizontal premixing apparatus according to the first embodiment are improved by the following technical parameters - the scraping plate 1022 is tangential to the inner wall of the casing 101 and has a safety clearance of 7 mm.
  • the partitioning plate 1021 is a fan-shaped structure having a central angle a of 30°.
  • the dividing plate of each of the impellers is interlaced with the dividing plate of the adjacent impeller by an angle of 15°.
  • the bottom surface a'b' of the partitioning plate 1021 is at an angle of 8 to the vertical surface b'c'.
  • the region of the shaft cavity 1031 between each two adjacent impellers has a plurality of said openings 1033 which are twice the number of partitions on one impeller.
  • the angle formed between the pusher piece 1001 and the radial direction of the circular cross section of the housing is:
  • the first group has an angle of minus 15° and the second group has an angle of plus 15°.
  • Each of the gas-liquid feed ports 1042 is interlaced at an angle of 15° with a corresponding partition plate on the impeller 10201 adjacent to the feed port.
  • the scraper plate 1022 is tangential to the inner wall of the housing 101 and leaves a 9 mm safety gap.
  • the partitioning plate 1021 is a fan-shaped structure having a central angle a of 34°.
  • the partition plate of each of the impellers is interlaced with the partition plate of the adjacent impeller by an angle of 17°.
  • the bottom surface a'b' of the partitioning plate 1021 is at an angle of 1 ⁇ to the vertical surface b'c'.
  • the region of the shaft cavity 1031 between each two adjacent impellers has a plurality of said openings 1033 which are twice the number of partitions on one impeller.
  • the angle formed between the pusher piece 1001 and the radial direction of the circular cross section of the housing is:
  • the first group has an angle of minus 17.5° and the second group has a positive angle of 17.5°.
  • Each of the gas-liquid feed ports 1042 is interlaced with an angle of 17° between the respective partition plates on the impeller 10201 adjacent to the feed port.
  • Example 6
  • the scraper plate 1022 is tangential to the inner wall of the housing 101 and leaves a safety gap of 11 mm.
  • the partition plate 1021 is a sector structure having a central angle a of 38°.
  • the dividing plate of each of the impellers is interlaced with the dividing plate of the adjacent impeller by an angle of 19°.
  • the bottom surface a'b' of the partitioning plate 1021 is at an angle of 14° to the vertical surface b'c'.
  • the region of the shaft cavity 1031 between each two adjacent impellers has a plurality of said openings 1033 which are four times the number of partitions on one impeller.
  • the angle formed between the pusher piece 1001 and the radial direction of the circular cross section of the housing is:
  • the angle of the first group is minus 20°, and the angle of the second group is plus 20°.
  • Each of the gas-liquid feed ports 1042 is interlaced at an angle of 19° with a corresponding partition plate on the impeller 10201 adjacent to the feed port.
  • Example 7
  • the scraper plate 1022 is tangential to the inner wall of the housing 101 and has a 12 mm safety clearance.
  • the partitioning plate 1021 is a fan-shaped structure having a central angle a of 42°.
  • the dividing plate of each impeller is interlaced with the dividing plate of the adjacent impeller.
  • the bottom surface a'b' of the partitioning plate 1021 is at an angle of 17° to the vertical surface b'c'.
  • the region of the shaft cavity 1031 between each two adjacent impellers has a plurality of said openings 1033 which are four times the number of partitions on one impeller.
  • the angle formed between the pusher piece 1001 and the radial direction of the circular cross section of the housing is:
  • the angle of the first group is minus 22.5°, and the angle of the second group is positive 22.5°.
  • Each of the gas-liquid feed ports 1042 is interlaced with a corresponding partition plate on the impeller 10201 adjacent to the feed port.
  • Example 8
  • the scraper plate 1022 is tangential to the inner wall of the housing 101 and leaves a 13 mm safety gap.
  • the partitioning plate 1021 is a fan-shaped structure having a central angle a of 46°.
  • the partition plates of each of the impellers are interlaced with an angle of 18° between the partition plates of the adjacent impellers.
  • the bottom surface a'b' of the partitioning plate 1021 is at an angle of 20° to the vertical surface b'c'.
  • the region of the shaft cavity 1031 between each two adjacent impellers has a plurality of said openings 1033 which are seven times the number of partitions on one impeller.
  • the angle formed between the pusher piece 1001 and the radial direction of the circular cross section of the housing is:
  • the angle of the first group is minus 25°, and the angle of the second group is positive 25°.
  • Each of the gas-liquid feed ports 1042 is interlaced with an angle of 18° between the respective partition plates on the impeller 10201 adjacent to the feed port.
  • Example 9 :
  • the scraper plate 1022 is tangential to the inner wall of the housing 101 and leaves a 15 mm safety gap.
  • the partitioning plate 1021 is a fan-shaped structure having a central angle a of 50°.
  • the dividing plate of each of the impellers is interlaced with the dividing plate of the adjacent impeller by an angle of 14°.
  • the bottom surface a'b' of the partitioning plate 1021 is at an angle of 23° to the vertical surface b'c'.
  • the region of the shaft cavity 1031 between each two adjacent impellers has a plurality of said openings 1033 which are seven times the number of partitions on one impeller.
  • the angle formed between the pusher piece 1001 and the radial direction of the circular cross section of the housing is:
  • the angle of the first group is minus 27.5°, and the angle of the second group is positive 27.5°.
  • Each of the gas-liquid feed ports 1042 is at an angle of 14° to the corresponding partition plate on the impeller 10201 adjacent to the feed port.
  • Example 10
  • the scraper plate 1022 is tangential to the inner wall of the housing 101 and leaves a 17 mm safety gap.
  • the partitioning plate 1021 is a fan-shaped structure having a central angle a of 54°.
  • the dividing plate of each of the impellers is interlaced with the dividing plate of the adjacent impeller by an angle of 10°.
  • the bottom surface a'b' of the partitioning plate 1021 is at an angle of 26° to the vertical surface b'c'.
  • a region of the shaft cavity 1031 between each two adjacent impellers has a set of said openings 1033, the number of the set of openings being one 11 times the number of partitions on the impeller.
  • the angle formed between the pusher piece 1001 and the radial direction of the circular cross section of the housing is:
  • the angle of the first group is minus 30°, and the angle of the second group is positive 30°.
  • Each of the gas-liquid feed ports 1042 is staggered 10 between a respective partition plate on the impeller 10201 adjacent the feed port. Angle.
  • Example 11
  • the scraper plate 1022 is tangential to the inner wall of the housing 101 and leaves a 19 mm safety gap.
  • the partitioning plate 1021 is a fan-shaped structure having a central angle a of 58°.
  • the dividing plate of each of the impellers is interlaced with the dividing plate of the adjacent impeller by an angle of 6°.
  • the bottom surface a'b' of the partitioning plate 1021 is at an angle of 29° to the vertical surface b'c'.
  • the region of the shaft cavity 1031 between each two adjacent impellers has a plurality of said openings 1033 which are 11 times the number of partitions on one impeller.
  • the angle formed between the pusher piece 1001 and the radial direction of the circular cross section of the housing is:
  • Each of the gas-liquid feed ports 1042 is interleaved at an angle of 6° with a corresponding partition plate on the impeller 10201 adjacent to the feed port.
  • the scraper plate 1022 is tangential to the inner wall of the housing 101 and leaves a 6 mm safety gap.
  • the partitioning plate 1021 is a fan-shaped structure having a central angle a of 35°.
  • the dividing plate of each of the impellers is interlaced with the dividing plate of the adjacent impeller by an angle of 15°.
  • the bottom surface a'b' of the partitioning plate 1021 is at an angle of 18° to the horizontal plane b'c'.
  • the region of the shaft cavity 1031 between each two adjacent impellers has a plurality of said openings 1033 which are six times the number of partitions on one impeller.
  • the gas-liquid feed port 1042 is interleaved with a corresponding partition plate on the impeller 10201 adjacent to the feed port. 15 ° angle.

Description

说 明 书 搅拌推进式卧式预混装置及其方法 技术领域
本发明涉及一种卧式预混装置, 特别涉及一种搅拌推进式卧式预混装置, 属于机械 混合设备领域。 '
本发明还涉及一种采用搅拌推进式卧式预混装置进行混合的预混方法。 背景技术
在复原米加工过程中,需要将谷物的固体粉末和水等液体进行均匀混合,得到粘度高 的固液混合物, 而上述固液混合物中, 又需要进一步均匀添加各种固体和 /或液体添加剂。 而上述各种物料需要均匀分布在所得固液混合物中,以使得制得的复原米的各物质含量符 合标准。
然而由于谷物的固体粉末颗粒较细、不能溶于水,且一旦与水混合,就会变成粘度高 的混合物。在生产中,将液体添加到固体粉末中进行混合、将固体粉末添加到液体中进行 混合、将液体和固体粉末同时添加进行混合时,不仅会产生部分固体粉末和液体粘成团状, 而剩余的谷物固体粉末和液体无法混合的情况,而且还会在液体中产生固体粉末的二次凝 聚颗粒, 即, 粉团, 该粉团外部是粉末与水的混合物, 而内部则是没有混合的固体粉末。 并且即便在混合过程中进行搅拌,在相当长的时间内,仍会混合不均勾,而已经产生的二 次凝聚再次分散到液体中十分困难。如果固体粉末和液体混合得到的固液混合物的粘度高 时, 上述现象更加显著, 均匀混合难度更大。
如果采用少量的固体粉末和液体进行搅拌混合, 虽然可以得到较为均匀的固液混合 物, 但是混合的速度较慢, 所得混合物较少, 无法满足大批量的工业化生产的需要。
基于日本专利申请 278598/202、 21188/2003 , 185502/2003 的中国专利申请
03164908.4中, 公开了一种搅拌混合装置及搅拌混合方法, 该装置包括一个近似圆筒状 的混合容器,其内部具有搅拌叶片,粉体和液体通过不同的入口进入混合容器,然后在搅 拌叶片的搅拌下,进行混合。搅拌叶片之间形成了分隔室,从而将粉体和液体分隔成若干 组进行混合,然而在实际混合过程中,无法良好的进行分组混合, 并且混合容器的内壁上 会存积又大量混合物, 无法被均匀搅拌。 PCT国际申请 PCT/US2003/011426中, 公开了一种混合设备, 该设备包括一个底 部充满液体的桶,一个插入液体中并且内部具有旋转叶片的竖直导管,固体粉末从该竖直 导管从上至下的添加之导管中具有液体的部分,并在搅拌叶片的作用下,和液体进行混合, 然后再分散到导管外侧的桶中和液体进行进一步的混合。然而该设备适用于将少量的固体 粉末分散到大量的液体中, 并且所得固液混合物不能具有较高粘度, 否则将会堵塞导管。
基于日本专利的中国专利申请 03122966.2中,公开了一种粉体和液体的混合装置及 其方法,该装置中粉体从混合容器的顶部发散落下,然后在下落过程中与容器四周喷射的 液体相互混合。虽然这种混合方法可以在一定程度上让粉体和液体进行分散混合,避免粉 团产生,然后并不是所有下落的粉体都可以和喷射的液体进行混合,未混合的粉体和液体 落到混合容器的底部, 仍不能进行均匀混合。 同时, 在该混合过程中,粉体和液体的物料 量、 混合配比都难以控制。
中国专利申请 200410084721.1 中, 公开了一种立式固液混合装置及混合方法, 该 装置包含一组沿着混合容器内壁设置的挡板,将混合容器划分成若干中空的搅拌室,然后 利用混合容器中央的一组搅拌叶片搅拌各搅拌室内的粉体和液体进行混合。然而由于水平 中空的搅拌室的存在, 从混合容器顶部投料的各物料将会大量积攒在上部的几个搅拌室 内,而导致各个搅拌室内物料分布的不均,同时如果粉体和液体的混合物具有较高粘度的 话,该混合物也将因各个挡板及搅拌室的存在而阻塞混合容器。同时单一的粉体添加入口, 会导致物料在混合容器的横截面上不能沿各个方向均匀分布。
同时中国专利 200610011506,8和欧洲专利 EP06113920.0分别公开了两种静态混合 装置,利用各物料的分流,进行混合,然而上述装置不适用于混合后粘度较高的粉体和液 体的混合。
同时中国专利 200410090534.4中, 公开了一种内部具有搅拌叶片的卧式混合装置, 粉体和液体分别从卧式混合装置的一侧的顶部和底部注入装置中,然后利用叶片进行搅拌 混合。虽然这种卧式混合装置可以解决在重力作用下,粉体及液体下落过快而导致混合装 置内物料分布不均的情况, 然而仍 I日难以解决粉体和液体均匀混合的问题。
除上述外, 中国专利 200510009386.3、 200510042674.9、 200510129550.4、 200510103613.9等也都公开了多种混合装置,然而上述装置仍旧未能解决混合后粘度高 的固体粉末和液体按一定配比进行均匀混合的技术问题。 发明内容 本发明的一个目的在于提供一种搅拌推进式卧式预混装置,通过该装置可以将固体粉 末和液体按一定配比进行均匀混合,特别适用于混合后粘度高的固体粉末和液体的均匀混 合。
本发明的另一目的在于提供一种采用搅拌推进式卧式预混装置进行混合的预混方法, 通过该方法可以将固体粉末和液体按一定配比进行均匀混合,特别适用于混合后粘度高的 固体粉末和液体的均勾混合。
本发明所公开的一种卧式预混装置包含混合系统、 位于混合系统内部的搅拌分隔系 统、髙压气体喷射系统、推进系统和存料系统、位于混合系统顶部进料端的进料系统以及 底部出料端的出料系统。
所述的混合系统是由壳体形成的圆筒状卧式混合反应釜,该卧式混合反应釜具有一个 位于壳体圆心的水平的转轴,所述的转轴带动其上连接的搅拌分隔系统转动,进行固液物 料的混合。
所述的搅拌分隔系统是一组连接在转轴并随之转动的叶轮, 所述的每一个叶轮包含
2〜6片包含有分隔板和刮料板的叶片, 叶片间的间隔角相等。
所述的分隔板的一端连接在转轴上, 另一端连接有刮料板。
所述的刮料板与壳体的内壁相切, 并留有 2mm〜20mm的安全间隙。
所述的分隔板为圆心角度为 20°〜60°的扇形结构, 其内径与转轴外径相等, 其外径 为卧式混合反应釜壳体内径与刮料板 1022厚度之差。
所述的刮料板为扇形结构,其内径与分隔板的外径相等,其外径与卧式混合反应釜壳 体的内径相等。 所述刮料板与其所连接的分隔板的圆心角度相等。
所述的刮料板除了扇形结构之外,还进一步包括一个尖端结构,该尖端结构从扇形结 构的非弧形一侧,沿着卧式混合反应釜壳体的内壁延伸,宽度逐渐缩小并终止在壳体内壁 上。
所述的分隔板与竖直面成 0°〜30°夹角, 优选为 20°夹角。 所述的刮料板的扇形结构 与分隔板处于同一平面。
所述的分隔板和刮料板的各处厚度相等或从一侧向另一侧逐渐递减。
每两个相邻的叶轮之间形成一个分隔混合室,从而通过该组叶轮将卧式混合反应釜划 分成一组相互连通的分隔混合室。
所述的每一个叶轮的分隔板与其相邻叶轮的分隔板之间交错 0°〜45°夹角。 ' 所述推进系统包含一组位于壳体内部底面的推进器和一个位于各推进器底部并与其 相连的推进杆。 所述的推进器进一步包含推进片和支撑杆。
所述的推进片是一个侧立的底面为椭圆的圆锥体结构,具有一个正面和一个反面。所 述的正面是圆锥体的底面椭圆,用于在支撑许和推进杆的带动下,将物料向前推进。所述 的反面是圆锥体的锥面, 对物料具有较小的阻力。
所述的支撑杆上端连接在推进片的底部,下端连接在推进杆上。所述推进片的正面和 反面分别面对壳体的出料端和进料端。
所述推进片与壳体横截面圆的径向成正负 0°〜35°夹角。
所述壳体的底部设有加厚层,其内表面上进一步设有一个沿着壳体长度延伸的半圆形 凹槽。
所述推进杆是一个位于所述凹槽内的半圆形杆,其两端分别从壳体的进料端和出料端 穿出。所述推进杆和凹槽形状适配,从而使得推进杆的顶表面和壳体的内表面滑动衔接形 成一个完整的圆柱形内腔。
所述各推进器通过其各自的支撑杆垂直连接并等间距的分布在推进杆上。所述卧式预 混装置包含 1〜2个推进系统。 所述的各推进器分别位于每两个相邻的叶轮之间, 从而使 得所述各推进器与各叶轮交错分布。
所述的高压气体喷射系统具有一个转轴。所述的转轴是一个具有圆柱形轴腔的中空转 轴,其包含轴壳以及由其所围成的轴腔。所述的轴腔上具有允许具有一定压力的气体单向 向外排放的开口。
每两个相邻叶轮间的轴腔区域具有一组所述开口,该组开口的数量为一个叶轮上的分 隔板数量的整倍数, 并且所述开口分布在轴腔连接有分隔板的区域上。
所述的进料系统连接混合系统和高压气体喷射系统,并向其中输送固体物料和液体物 料。所述的进料系统包含位于转轴上的固体进料口、位于壳体上的气液进料口和添加剂进 料口。
所述的气液进料口位于壳体上,并与卧式混合反应釜内部相互连通, 以向其中传输气 液物料。所述的气液进料口的数量与叶轮上的分隔板数量相等,并且每个气液进料口与临 近进料口的叶轮上的相应分隔板之间交错 0°~45°夹角。
.所述的固体进料口位于转轴上, 并与轴腔相互连通。
所述的添加剂进料口位于转轴上, 并与轴腔相互连通。
所述的出料系统连接位于混合系统底部的存料系统,并从其中输出混合物料。所述的 存料系统具有与其相邻的叶轮上分隔板数量相等的存料室,每个存料室相应的具有一个出 料口, 所述的各个出料口组成所述的出料系统。
本发明公开的一种采用卧式预混装置进行混合的预混方法, 包括如下步骤: 步骤 1 :从所述的气液进料口的各个进料口输入气体、液体或气液混合物进入卧式混 合反应釜内部。
由于所述的气液进料口的进料口数量与叶轮上的分隔板数量相等,并且每个气液进料 口与临近进料口的叶轮上的相应分隔板之间交错 0°〜45°夹角。故从各个进料口输入的气 体、液体或气液混合物在与该进料口相邻且相对应的分隔板与刮料板上流动,并依次沿着 各个分隔板和刮料板向下流经相对应地各个分隔板和刮料板,从而均勾的分布在各个分隔 混合室。
步骤 2: 从所述的固体进料口的各个进料口输入混合有固体粉末的高压气体进入轴 腔, 然后通过轴壳上的开口向外单向喷射。
由于每两个相邻叶轮间的轴腔区域具有一组所述开口,该组开口的数量为一个叶轮上 的分隔板数量的整倍数,并且所述开口分布在轴腔连接有分隔板的区域上。故混合有固体 粉末的高压气体可以通过各个开口喷射在各个相应分隔板上流动的液体或固液混合物上, 从而均匀的分布在各个分隔混合室。
步骤 3: 从所述的添加剂进料口的各个进料口输入混合有固体粉末、液体液滴、气体 等添加剂的高压气体进入轴腔, 然后通过轴壳上的开口向外单向喷射。
由于每两个相邻叶轮间的轴腔区域具有一组所述开口,该组开口的数量为一个叶轮上 的分隔板数量的整倍数,并且所述开口分布在轴腔连接有分隔板的区域上。故混合有固体 粉末、液体液滴、气体等添加剂的高压气体可以通过各个开口喷射在各个相应分隔板上流 动的液体或固液混合物上, 从而均匀的分布在各个分隔混合室。
步骤 4: 转轴带动其上连接的一组叶轮以转轴为圆心进行旋转, 利用各个叶轮上的 分隔板对混合着的固体粉末和液体的混合物进行搅拌, 以充分混合, 同时利用各个刮料 板将粘附在壳体内壁上的物料刮除, 以使得上述物料再次进行搅拌混合。
步骤 5:经过混合的固体粉末、液体与添加剂的混合物沿着各个分隔板逐级流下至下 一层分隔混合室, 继续进行搅拌混合。
所述推进系统的推进杆在壳体底部内表面的凹槽中前后移动,从而带动其上连接的各 推进器前后移动。
在推进杆向前移动的时候, 各推进器的正面将混合物向前推进。
在推进杆向后移动的时候,各推进器的反面将混合物分流,以避免将混合物反向带回。 步骤 6:与存料室相邻的最后一级分隔混合室内的混合物沿着各个分隔板流入相应的 存料室 106, 然后通过相应的出料口 105向外输出。
由于存料室 106的数量和分隔板数量相等, 而且每个存料室 106相应的具有一个出 料口 105,所以从所述混合反应釜中可同时输出多批混合物, 以分别进行相同或不同的进 一步加工。
利用上述装置及方法, 从各个气液进料口 1042同时输入多批气液物料, 并分别沿着 叶轮组上的各个相应的分隔板和刮料板流下并均匀分布在各个分隔混合室内。同时从转轴 103上的各个开口 1033喷出含有固体粉末和 /或添加剂的高压气体, 以使得固体粉末和 / 或添加剂均勾喷射在各个分隔板上。通过上述操作,液体物料被分散成多批, 固体粉末和 /或添加剂被分散的喷射出与各批液体物料相互混合, 从而使得液体、 固体粉末、 添加剂 以分散的方式进行相互混合。这种分散混合的方式,有效的避免了局部固体粉末集中、液 体分布不均等所带来的混合过程中的二次凝聚颗粒现象,即粉团现象。同时由于液体逐渐 输入并沿分隔板留下,而固体粉末持续喷射,故对于一部分液体而言, 从输入混合反应釜 开始,逐渐与若干批固体粉末混合,也就是相当于将一定量的液体先和少量的固体粉末混 合, 以避免固体粉末过于集中而导致的混合不均勾,然后向所得均匀混合物中再添加少量 固体粉末混合, 同样也避免了混合不均匀, 这样, 逐渐的添加多批少量固体粉末, 带最初 输入的一定量的液体从第一级分隔板流下至最后一级分隔板时,已经均匀的混有大量的固 体粉末, 得到均匀的固液混合物。上述方法实质上是将大量液体、大量固体粉末、大量添 加剂在混合反应釜中利用本发明特有的结构进行了多重分散, 以使得液体、固体粉末、添 加剂以分散的、少量的形式进行充分的、逐渐的均匀混合, 同时也避免了少量、逐渐混合 用时较长且无法大批量化生产的缺点。除此之外,本发明可以直接同时分批输入固液混合 物,以同时供多条生产线进行进一步加工,而不需要额外的装置对混合物进行分流。同时, 各相邻叶轮的分隔板之间交错一定角度可以使得液体及混合物可以缓慢沿着分隔板流向 下一个分隔室, 以使得固液接触时间增长,而分隔板与平面成一定的夹角有利于粘度高的 固液混合物的流动和传输。 同时推进系统也促进了具有一定粘稠度的混合物向前移动。
通过上述装置和方法,本发明利用多重分散有效的避免了固体粉末和液体混合过程中 存在的各种问题, 可以快速、持续、稳定的以一定配比对液体、 固体粉末、添加剂进行均 勾的混合。 附图说明 图 1是本发明的卧式预混装置的整体结构视图。
图 2是本发明的卧式预混装置的局部细节视图。
图 3a是本发明的卧式预混装置沿图 2的 A1-A1 '的纵截面视图。
图 3b是本发明的卧式预混装置沿图 2的 A2-A2'的纵截面视图。
图 3c是本发明的卧式预混装置沿图 2·的 A3-A3'的纵截面视图。
图 3d是本发明的卧式预混装置沿图 2的 A4-A4'的纵截面视图。
图 3e是本发明的如图 3a所示的叶轮及其侧视图。
图 4是本发明的高压气体喷射系统的整体结构视图。
图 5是本发明的高压气体喷射系统的局部细节视图。
图 6是本发明的卧式预混装置沿图 2的 B-B'的纵截面视图。
图 7是本发明的卧式预混装置沿图 2的 C-C'的纵截面视图。
图 8a是本发明的推进系统的整体示意图。
图 8b是本发明的推进系统的结构示意图。
图 8c是本发明的具有 1个推进系统的卧式预混装置的纵截面视图。
图 8d是本发明的具有 2个推进系统的卧式预混装置的纵截面视图。
图 8e是本发明的推进器的结构示意图 (正视)。
图 8f是本发明的推进器的结构示意图 (侧视)。
图 9a是本发明的推进系统的第一个实施例的整体示意图。
图 9b是本发明的推进系统的第二个实施例的整体示意图。
图 9c是本发明的推进系统的第三个实施例的整体示意图。 具体实施方式
根据本发明的权利要求和发明内容所公开的内容, 本发明的技术方案具体如下所述。 实施例一- 一种卧式预混装置包括如下部分:
根据图 1 :
一种卧式预混装置包含混合系统 1010、 位于混合系统 1010 内部的搅拌分隔系统 1020、 高压气体喷射系统 1030、 推进系统 100和存料系统 1060、 位于混合系统 1010 顶部的进料系统 1040以及底部的出料系统 1050。 所述的混合系统 1010是由壳体 101形成的圆筒状卧式混合反应釜,该卧式混合反应 釜具有一个位于壳体 101圆心的水平的转轴 103, 所述的转轴 103带动其上连接的搅拌 分隔系统 1020转动, 进行固液物料的混合。
根据图 2:
所述的进料系统 1040连接混合系统 1010和高压气体喷射系统 1030,并向其中输送 固体物料和液体物料。 所述的进料系统 1040包含位于转轴 103上的固体进料口 1041、 位于壳体 101上的气液进料口 1041和添加剂进料口 1043。
所述的搅拌分隔系统 1020是一组连接在转轴 103并随之转动的叶轮,所述的每一个 叶轮 102包含 2〜6片包含有分隔板 1021和刮料板 1022的叶片。
所述的分隔板 1021的一端连接在转轴 103上, 另一端连接有刮料板 1022。
所述的刮料板 1022与壳体 101的内壁相切, 并留有 2mm〜20mm的安全间隙。 所述的分隔板 1021 的内径与转轴 103外径相等, 外径为卧式混合反应釜壳体 101 内径与刮料板 1022厚度之差。
所述的刮料板 1022的内径与分隔板 1021的外径相等, 外径与卧式混合反应釜壳体 101的内径相等。
每两个相邻的叶轮之间形成一个分隔混合室,从而通过该组叶轮将卧式混合反应釜划 分成一组相互连通的分隔混合室 109。
图 2中, 分别沿 A1-A1'、 A2-A2'、 A3-A3'、 A4-A4'做横截面视图从而得到图 3a、 3b、 3c、 3d。
根据图 3a:
所述的叶轮 102的各个叶片间的间隔角 b相等
所述的分隔板 1021为扇形结构, 其圆心角度 a为 20°〜60°。
所述的刮料板 1022为扇形结构, 并与其所连接的分隔板 1021的圆心角度相等。 所述的刮料板 1022除了扇形结构 1023之外,还进一步包括一个尖端结构 1024,该 尖端结构 1024从扇形结构的非弧形一侧, 沿着卧式混合反应釜壳体 101的内壁延伸。
根据图 3a、 3b、 3c、 3d:
所述的每一个叶轮的分隔板与其相邻叶轮的分隔板之间交错 0°〜45°夹角。
根据图 3e:
所述的分隔板 1021的底面 a'b'与竖直面 b'c'成 0°〜30°夹角。所述的刮料板的扇形结 构与分隔板处于同一平面。 所述的分隔板 1021和刮料板 1022的各处厚度相等或从 aa'—侧向 bb'—侧逐渐递减。 所述的尖端结构 1024从扇形结构的非弧形一侧,沿着卧式混合反应釜壳体 101的内 壁延伸, 宽度从 bb'逐渐缩小并终止在壳体 101内壁 c上。
根据图 4、 图 5、 图 6:
所述的高压气体喷射系统 1030具有一个转轴 103。所述的转轴 103是一个具有圆柱 形轴腔的中空转轴, 其包含轴壳 1032 以及由其所围成的轴腔 1031。 所述的轴腔 1031 上具有允许具有一定压力的气体单向向外排放的开口 1033。
每两个相邻叶轮间的轴腔 1031区域具有一组所述开口 1033, 该组开口的数量为一 个叶轮上的分隔板数量的整倍数, 并且所述开口 1033 分布在轴腔 1031 连接有分隔板 1021的区域上。
所述的固体进料口 1041位于转轴 103上, 并与轴腔 1031相互连通。
从所述的固体进料口 1041 的各个进料口输入混合有固体粉末的高压气体进入轴腔 1031, 然后通过轴壳 1032上的开口 1033向外单向喷射。
由于每两个相邻叶轮间的轴腔 1031 区域具有一组所述幵口 1033, 该组开口的数量 为一个叶轮上的分隔板数量的整倍数, 并且所述开口 1033分布在轴腔 1031连接有分隔 板 1021的区域上。 故混合有固体粉末的高压气体在进入轴腔 1031后, 向四周散开, 一 部分通过开口 1033喷出, 一部分冲击在轴腔内壁 10322然后在通过开口 1033喷出。上 述混合有固体粉末的高压气体穿过幵口 1033后向四周喷射散开,落在各个相应分隔板上 流动的液体或固液混合物上, 从而均勾的分布在各个分隔混合室。
所述的添加剂进料口 1043位于转轴 103上, 并与轴腔 1031相互连通。
从所述的添加剂进料口 1041 的各个进料口输入混合有添加剂的高压气体进入轴腔 1031, 然后通过轴壳 1032上的开口 1033向外单向喷射。
混合有添加剂的高压气体在进入轴腔 1031后, 向四周散开, 一部分通过开口 1033 喷出, 一部分冲击在轴腔内壁 10322然后在通过开口 1033喷出。 上述混合有^加剂的 高压气体穿过开口 1033后向四周喷射散开,落在各个相应分隔板上流动的液体或固液混 合物上, 从而均匀的分布在各个分隔混合室。
根据图 1、 图 8a〜8f:
所述推进系统 100包含一组位于壳体内部底面的推进器 1000和一个位于各推进器 100底部并与其相连的推进杆 1005。
所述的推进器 100进一步包含推进片 1001和支撑杆 1002。 所述的推进片 1001是 一个侧立的底面为椭圆的圆锥体结构, 具有一个正面 1003和一个反面 1004。 所述的正 面 1003是圆锥体的底面椭圆, 用于在支撑杆 1002和推进杆 1005的带动下, 将物料向 前推进。所述的反面 1004是圆锥体的锥面,对物料具有较小的阻力。所述的支撑杆 1002 上端连接在推进片 1001的底部, 下端连接在推进杆 1005上。
根据图 1 :
所述的各推进器 100分别位于每两个相邻的叶轮之间, 从而使得所述各推进器 100 与各叶轮交错分布。
根据图 9a〜9c:
所述推进片 1001的正面 1003和反面 1004分别面对壳体的出料端和进料端。 所述 推进片 1001可以按照以下 2种方式与壳体横截面圆的径向成正负 0°〜35°夹角:
第一种: 所有推进片 1001与壳体横截面圆的径向所成夹角相等, 在正负 0°〜35°之 间, 如图 9b所示。
第二种: 所述推进片 1001分成两组, 第一组中每个推进片 1001与壳体横截面圆的 径向之间形成相等夹角, 范围在负 0°〜35°之间, 第二组中每个推进片 1001与壳体横截 面圆的径向之间形成相等夹角, 范围在正 0°〜35°之间, 第一组推进片 1001和第二组推 进片 1001相间分布, 如图 9c所示。
根据图 1、 图 8a〜8f:
所述壳体 101的底部设有加厚层 1012,其内表面上进一步设有一个沿着壳体 101长 度延伸的半圆形凹槽 1005。
所述推进杆 1005是一个位于所述凹槽 1005内的半圆形杆, 其两端分别从壳体 101 的进料端和出料端穿出。在推进杆 1005穿出壳体 101的衔接部位釆用本领域通用的密封 垫圈等密封技术加以密封。
所述推进杆 1005和凹槽 1005形状适配,从而使得推进杆 1005的顶表面和壳体 101 的内表面滑动衔接形成一个完整的圆柱形内腔。
所述各推进器 100通过其各自的支撑杆 1002垂直连接并等间距的分布在推进杆 1005上。
所述卧式预混装置包含 1〜2个推进系统 100。
根据图 5、 图 7:
所述的气液进料口 1042位于壳体 101上,并与卧式混合反应釜内部相互连通, 以向 其中传输气液物料。所述的气液进料口 1042的数量与叶轮上的分隔板数量相等, 并且每 个气液进料口 1042与临近进料口的叶轮 10201上的相应分隔板之间交错 0°〜45°夹角。 故从各个气液进料口 1042输入的气体、液体或气液混合物流入卧式混合反应釜内部, 并落在与在与该进料口相邻且相对应的分隔板与刮料板上,然后沿着该分隔板与舌 I]料板流 动,并依次沿着各个分隔板和刮料板向下流经相对应地各个分隔板和刮料板,从而均匀的 分布在各个分隔混合室。
根据图 1 :
所述的出料系统 1050连接位于混合系统 1010底部的存料系统 1060,并从其中输出 混合物料。 所述的存料系统 1060具有与其相邻的叶轮 10202上分隔板数量相等的存料 室 106, 每个存料室 106相应的具有一个出料口 105, 所述的各个出料口 105组成所述 的出料系统 1050。
一种采用卧式预混装置进行混合的预混方法包括如下步骤- 根据图 1、 图 2、 图 7:
步骤 1 : 从所述的气液进料口 1042的各个进料口输入气体、 液体或气液混合物进入 卧式混合反应釜内部。
由于所述的气液进料口 1042的进料口数量与叶轮上的分隔板数量相等,并且每个气 液进料口 1042与临近进料口的叶轮 10201上的相应分隔板之间交错 0°〜45°夹角。故从 各个进料口输入的气体、液体或气液混合物在与该进料口相邻且相对应的分隔板与刮料板 上流动,并依次沿着各个分隔板和刮料板向下流经相对应地各个分隔板和刮料板,从而均 匀的分布在各个分隔混合室。
根据图 2、 图 4、 图 3、 图 5、 图 7:
步骤 2: 从所述的固体进料口 1041的各个进料口输入混合有固体粉末的高压气体进 入轴腔 1031, 然后通过轴壳 1032上的开口 1033向外单向喷射。
由于每两个相邻叶轮间的轴腔 1031 区域具有一组所述开口 1033, 该组开口的数量 为一个叶轮上的分隔板数量的整倍数, 并且所述开口 1033分布在轴腔 1031连接有分隔 板 1021的区域上。 故混合有固体粉末的高压气体可以通过各个开口 1033喷射在各个相 应分隔板上流动的液体或固液混合物上, 从而均匀的分布在各个分隔混合室。
根据图 2、 图 4、 图 3、 图 5、 图 7:
步骤 3:从所述的添加剂进料口 1043的各个进料口输入混合有固体粉末、液体液滴、 气体等添加剂的高压气体进入轴腔 1031,然后通过轴壳 1032上的开口 1033向外单向喷 射。 由于每两个相邻叶轮间的轴腔 1031 区域具有一组所述开口 1033, 该组开口的数量 为一个叶轮上的分隔板数量的整倍数, 并且所述开口 1033分布在轴腔 1031连接有分隔 板 1021的区域上。 故混合有固体粉末、液体液滴、气体等添加剂的高压气体可以通过各 个开口 1033喷射在各个相应分隔板上流动的液体或固液混合物上,从而均匀的分布在各 个分隔混合室。
根据图 1、 图 2、 图 3a、 3e:
步骤 4: 转轴 103带动其上连接的一组叶轮以转轴 103为圆心进行旋转, 利用各个 叶轮 102上的分隔板 1021对混合着的固体粉末和液体的混合物进行搅拌,以充分混合, 同时利用各个刮料板 1022将粘附在壳体 101内壁上的物料刮除, 以使得上述物料再次 进行搅拌混合。
根据图 1、 图 2、 图 3a、 3b、 3c、 3d、 3e:
步骤 5: 经过混合的固体粉末、 液体与添加剂的混合物沿着各个分隔板 1021逐级流 下至下一层分隔混合室, 继续进行搅拌混合。
由于所述的每一个叶轮的分隔板与其相邻叶轮的分隔板之间交错 0°〜45°夹角,经过 混合的固体粉末、 液体与添加剂的混合物沿着图 3a的分隔板 1021 依次逐级落至图 3b 的分隔板 1021上、 图 3c的分隔板 1021上、 图 3d的分隔板 1021上。
由于分隔板 1021与竖直面成 0°〜30°夹角, 便于上述混合的固体粉末、 液体与添加 剂的混合物流向下一级分隔板 1021。
根据图 1、 图 8a〜8f、 图 9a〜9c:
所述推进系统 1000的推进杆 1005在外界电机带动下在壳体 101底部内表面的凹槽 1012中前后移动, 从而带动其上连接的各推进器 100前后移动。
在推进杆 1005向前移动的时候, 各推进器 100的正面 1003将混合物向前推进。 在推进杆 1005向后移动的时候, 各推进器 100的反面 1004将混合物分流, 以避免 将混合物反向带回。
根据图 1 :
步骤 6:与存料室 106相邻的最后一级分隔混合室内的混合物沿着各个分隔板流入相 应的存料室 106, 然后通过相应的出料口 105向外输出。
由于存料室 106的数量和分隔板数量相等, 而且每个存料室 106相应的具有一个出 料口 105,所以从所述混合反应釜中可同时输出多批混合物, 以分别进行相同或不同的进 一步加工。 实施例二:
采用以下技术参数改进如实施例一所述的卧式预混装置的结构及方法:
所述的刮料板 1022与壳体 101的内壁相切, 并留有 3mm的安全间隙。
所述的分隔板 1021为扇形结构, 其圆心角度 a为 22°。
所述的每一个叶轮的分隔板与其相邻叶轮的分隔板之间交错 11 °夹角。
所述的分隔板 1021的底面 a'b'与竖直面 b'c'成 2°夹角。
每两个相邻叶轮间的轴腔 1031 区域具有一组所述开口 1033, 该组开口的数量为一 个叶轮上的分隔板数量的 1倍。
所述推进片 1001与壳体横截面圆的径向之间所形成的夹角为:
第一种: 正 5°或负 5°。
第二种: 第一组的夹角为负 5°, 第二组的夹角为 5°。
所述的每个气液进料口 1042与临近进料口的叶轮 10201上的相应分隔板之间交错 11 °夹角。 实施例三:
采用以下技术参数改进如实施例一所述的卧式预混装置的结构及方法:
所述的刮料板 1022与壳体 101的内壁相切, 并留有 5mm的安全间隙。
所述的分隔板 1021为扇形结构, 其圆心角度 a为 26°。
所述的每一个叶轮的分隔板与其相邻叶轮的分隔板之间交错 13°夹角。
所述的分隔板 1021的底面 a'b'与竖直面 b'c'成 5°夹角。
每两个相邻叶轮间的轴腔 1031 区域具有一组所述开口 1033, 该组开口的数量为一 个叶轮上的分隔板数量的 1倍。
所述推进片 1001与壳体横截面圆的径向之间所形成的夹角为:
第一种: 正 10°或负 10°。
第二种: 第一组的夹角为负 10°, 第二组的夹角为正 10°。
所述的每个气液进料口 1042与临近进料口的叶轮 10201上的相应分隔板之间交错 13°夹角。 实施例四: 采用以下技术参数改进如实施例一所述的卧式预混装置的结构及方法- 所述的刮料板 1022与壳体 101的内壁相切, 并留有 7mm的安全间隙。
所述的分隔板 1021为扇形结构, 其圆心角度 a为 30°。
所述的每一个叶轮的分隔板与其相邻叶轮的分隔板之间交错 15°夹角。
所述的分隔板 1021的底面 a'b'与竖直面 b'c'成 8°夹角。
每两个相邻叶轮间的轴腔 1031 区域具有一组所述开口 1033, 该组开口的数量为一 个叶轮上的分隔板数量的 2倍。
所述推进片 1001与壳体横截面圆的径向之间所形成的夹角为:
第一种: 正 15°或负 15°。
第二种: 第一组的夹角为负 15°, 第二组的夹角为正 15°。
所述的每个气液进料口 1042与临近进料口的叶轮 10201 上的相应分隔板之间交错 15°夹角。 实施例五:
采用以下技术参数改进如实施例一所述的卧式预混装置的结构及方法:
所述的刮料板 1022与壳体 101的内壁相切, 并留有 9mm的安全间隙。
所述的分隔板 1021为扇形结构, 其圆心角度 a为 34°。
所述的每一个叶轮的分隔板与其相邻叶轮的分隔板之间交错 17°夹角。
所述的分隔板 1021的底面 a'b'与竖直面 b'c'成 1Γ夹角。
每两个相邻叶轮间的轴腔 1031 区域具有一组所述开口 1033, 该组开口的数量为一 个叶轮上的分隔板数量的 2倍。
所述推进片 1001与壳体横截面圆的径向之间所形成的夹角为:
第一种: 正 17.5°或负 17.5°。
第二种: 第一组的夹角为负 17.5°, 第二组的夹角为正 17.5°。
所述的每个气液进料口 1042与临近进料口的叶轮 10201上的相应分隔板之间交错 17°夹角。 实施例六:
采用以下技术参数改进如实施例一所述的卧式预混装置的结构及方法:
所述的刮料板 1022与壳体 101的内壁相切, 并留有 11mm的安全间隙。 所述的分隔板 1021为扇形结构, 其圆心角度 a为 38°。
所述的每一个叶轮的分隔板与其相邻叶轮的分隔板之间交错 19°夹角。
所述的分隔板 1021的底面 a'b'与竖直面 b'c'成 14°夹角。
每两个相邻叶轮间的轴腔 1031 区域具有一组所述开口 1033, 该组开口的数量为一 个叶轮上的分隔板数量的 4倍。
所述推进片 1001与壳体横截面圆的径向之间所形成的夹角为:
第一种: 正 20°或负 20°。
第二种: 第一组的夹角为负 20°, 第二组的夹角为正 20°。
所述的每个气液进料口 1042与临近进料口的叶轮 10201上的相应分隔板之间交错 19°夹角。 实施例七:
采用以下技术参数改进如实施例一所述的卧式预混装置的结构及方法:
所述的刮料板 1022与壳体 101的内壁相切, 并留有 12mm的安全间隙。
所述的分隔板 1021为扇形结构, 其圆心角度 a为 42°。
所述的每一个叶轮的分隔板与其相邻叶轮的分隔板之间交错 2Γ夹角。
所述的分隔板 1021的底面 a'b'与竖直面 b'c'成 17°夹角。
每两个相邻叶轮间的轴腔 1031 区域具有一组所述开口 1033, 该组开口的数量为一 个叶轮上的分隔板数量的 4倍。
所述推进片 1001与壳体横截面圆的径向之间所形成的夹角为:
第一种: 正 22.5°或负 22.5°。
第二种: 第一组的夹角为负 22.5°, 第二组的夹角为正 22.5°。
所述的每个气液进料口 1042与临近进料口的叶轮 10201上的相应分隔板之间交错 2 夹角。 实施例八:
采用以下技术参数改进如实施例一所述的卧式预混装置的结构及方法:
所述的刮料板 1022与壳体 101的内壁相切, 并留有 13mm的安全间隙。
所述的分隔板 1021为扇形结构, 其圆心角度 a为 46°。
所述的每一个叶轮的分隔板与其相邻叶轮的分隔板之间交错 18°夹角。 所述的分隔板 1021的底面 a'b'与竖直面 b'c'成 20°夹角。
每两个相邻叶轮间的轴腔 1031 区域具有一组所述开口 1033, 该组开口的数量为一 个叶轮上的分隔板数量的 7倍。
所述推进片 1001与壳体横截面圆的径向之间所形成的夹角为:
第一种: 正 25°或负 25°。
第二种: 第一组的夹角为负 25°, 第二组的夹角为正 25°。
所述的每个气液进料口 1042与临近进料口的叶轮 10201上的相应分隔板之间交错 18°夹角。 实施例九:
采用以下技术参数改进如实施例一所述的卧式预混装置的结构及方法:
所述的刮料板 1022与壳体 101的内壁相切, 并留有 15mm的安全间隙。
所述的分隔板 1021为扇形结构, 其圆心角度 a为 50°。
所述的每一个叶轮的分隔板与其相邻叶轮的分隔板之间交错 14°夹角。
所述的分隔板 1021的底面 a'b'与竖直面 b'c'成 23°夹角。
每两个相邻叶轮间的轴腔 1031 区域具有一组所述开口 1033, 该组开口的数量为一 个叶轮上的分隔板数量的 7倍。
所述推进片 1001与壳体横截面圆的径向之间所形成的夹角为:
第一种: 正 27.5°或负 27.5°。
第二种: 第一组的夹角为负 27.5°, 第二组的夹角为正 27.5°。
所述的每个气液进料口 1042与临近进料口的叶轮 10201上的相应分隔板之间交错 14°夹角。 实施例十:
采用以下技术参数改进如实施例一所述的卧式预混装置的结构及方法:
所述的刮料板 1022与壳体 101的内壁相切, 并留有 17mm的安全间隙。
所述的分隔板 1021为扇形结构, 其圆心角度 a为 54°。
所述的每一个叶轮的分隔板与其相邻叶轮的分隔板之间交错 10°夹角。
所述的分隔板 1021的底面 a'b'与竖直面 b'c'成 26°夹角。
每两个相邻叶轮间的轴腔 1031区域具有一组所述开口 1033, 该组开口的数量为一 个叶轮上的分隔板数量的 11倍。
所述推进片 1001与壳体横截面圆的径向之间所形成的夹角为:
第一种: 正 30°或负 30°。
第二种: 第一组的夹角为负 30°, 第二组的夹角为正 30°。
所述的每个气液进料口 1042与临近进料口的叶轮 10201上的相应分隔板之间交错 10。夹角。 实施例十一:
采用以下技术参数改进如实施例一所述的卧式预混装置的结构及方法:
所述的刮料板 1022与壳体 101的内壁相切, 并留有 19mm的安全间隙。
所述的分隔板 1021为扇形结构, 其圆心角度 a为 58°。
所述的每一个叶轮的分隔板与其相邻叶轮的分隔板之间交错 6°夹角。 . 所述的分隔板 1021的底面 a'b'与竖直面 b'c'成 29°夹角。
每两个相邻叶轮间的轴腔 1031 区域具有一组所述开口 1033, 该组开口的数量为一 个叶轮上的分隔板数量的 11倍。
所述推进片 1001与壳体横截面圆的径向之间所形成的夹角为:
第一种: 正 35°或负 35°。 ' 第二种: 第一组的夹角为负 35°, 第二组的夹角为正 35°。
所述的每个气液进料口 1042与临近进料口的叶轮 10201上的相应分隔板之间交错 6°夹角。 优选实施例:
在以上各个实施例的实验基础上, 采用以下技术参数改进实施例一:
所述的刮料板 1022与壳体 101的内壁相切, 并留有 6mm的安全间隙。
所述的分隔板 1021为扇形结构, 其圆心角度 a为 35°。
所述的每一个叶轮的分隔板与其相邻叶轮的分隔板之间交错 15°夹角。
所述的分隔板 1021的底面 a'b'与水平面 b'c'成 18°夹角。
每两个相邻叶轮间的轴腔 1031区域具有一组所述开口 1033, 该组开口的数量为一 个叶轮上的分隔板数量的 6倍。
所述的每个气液进料口 1042与临近进料口的叶轮 10201上的相应分隔板之间交错 15°夹角。 上述内容为本发明的具体实施例的例举,对于其中未详尽描述的设备和结构,应当理 解为采取本领域已有的通用设备及通用方法来予以实施。

Claims

1、 一种搅拌推进式卧式预混装置, 其特征在于, 包含混合系统 (1010)、 位于混合系统 ( 1010) 内部的搅拌分隔系统 (1020)、 高压气体喷射系统 (1030)、 推进系统 (100) 和存料系统 (1060)、 位于混合系统 (1010)进料端的进料系统 (1040) 以及出料端的 出料系统 (1050);
所述的混合系统(1010)是由壳权体(101 )形成的圆筒状卧式混合反应釜, 用于进行固液 物料的混合;
所述的高压气体喷射系统 (1030) 具有一个位于壳体 (101 ) 圆心的水平转轴 (103), 所述的转轴(103) 带动其上连接的搅拌分隔系统 (1020)转动;
所述的推进系统 (100) 是位于壳体内部底面的一组推进器 (1000);
所述的进料系统(1040)连接混合系统 (1010)和高书压气体喷射系统 (1030), 并向其 中输送固体物料和液体物料;
所述的出料系统 (1050) 连接位于混合系统 (1010) 出料端的存料系统 (1060), 并从 其中输出混合物料。
2、 如权利要求 1所述的卧式预混装置, 其特征在于, 所述推进系统 (100)包含一组位 于壳体内部底面的推进器 (1000)和一个位于各推进器(100)底部并与其相连的推进杆
( 1005); ' 所述的推进器(100)进一步包含推进片 (1001 )和支撑杆 (1002);
所述的推进片 (1001 ) 是一个侧立的底面为椭圆的圆锥体结构, 具有一个正面(1003) 和一个反面(1004);
所述的正面(1003)是圆锥体的底面椭圆, 用于在支撑杆(1002)和推进杆(1005) 的 带动下, 将物料向前推进;
所述的反面(1004)是圆锥体的锥面, 对物料具有较小的阻力;
所述的支撑杆 (1002)上端连接在推进片 (1001 ) 的底部, 下端连接在推进杆 (1005) 上;
所述推进片 (1001 ) 的正面 (1003)和反面 (1004)分别面对壳体的出料端和进料端; 所述推进片 (1001 ) 与壳体横截面圆的径向成正负 0°〜35°夹角。 3、 如权利要求 2所述的卧式预混装置, 其特征在于,
所述壳体(101 )的底部设有加厚层(1012),其内表面上进一步设有一个沿着壳体(101 ) 长度延伸的半圆形凹槽(1005);
所述推进杆 ( 1005)是一个位于所述凹槽( 1005 )内的半圆形杆,其两端分别从壳体(101 ) 的进料端和出料端穿出;
所述推进杆(1005)和凹槽(1005)形状适配, 从而使得推进杆(1005) 的顶表面和壳 体 (101 ) 的内表面滑动衔接形成一个完整的圆柱形内腔;
所述各推进器 (100)通过其各自的支撑杆 (1002) 垂直连接并等间距的分布在推进杆 ( 1005)上;
所述卧式预混装置包含 1〜2个推进系统 (100)。
4、 如权利要求 3所述的卧式预混装置, 其特征在于, 所述的搅拌分隔系统(1020)是一 组连接在转轴(103)并随之转动的叶轮, 所述的每一个叶轮(102)包含 2〜6片包含有 分隔板 (1021 )和刮料片 (1022) 的叶片, 叶片间的间隔角相等;
所述的分隔板(1021 ) 的一端连接在转轴 (103)上, 另一端连接有刮料片 (1022); 所述的刮料片 (1022) 与壳体 (101 ) 的内壁相切, 并留有 2mm〜20mm的安全间隙; 每两个相邻的叶轮之间形成一个分隔混合室,从而通过该组叶轮将卧式混合反应釜划分成 一组相互连通的分隔混合室 (109);
所述的每一个叶轮的分隔板与其相邻叶轮的分隔板之间交错 0°〜45°夹角;
所述的分隔板 (1021 )和刮料片 (1022) 的各处厚度相等或从一侧向另一侧逐渐递减; 所述的各推进器(100)分别位于每两个相邻的叶轮之间, 从而使得所述各推进器(100) 与各叶轮交错分布。
5、如权利要求 4所述的卧式预混装置,其特征在于,所述的分隔板(1021 )为扇形结构, 其内径与转轴( 103 )外径相等,其外径为卧式混合反应釜壳体( 101 )内径与刮料片( 1022 ) 厚度之差;
所述的扇形分隔板 (1021 ) 的圆心角度为 20°〜60°;
所述的分隔板(1021 )与竖直面成 0°〜30°夹角, 优选为 20°夹角。 6、如权利要求 5所述的卧式预混装置,其特征在于,所述的刮料片(1022)为扇形结构, 其内径与分隔板(1021 )的外径相等,其外径与卧式混合反应釜壳体(101 )的内径相等; 所述刮料片 (1022) 与其所连接的分隔板(1021 ) 的圆心角度相等;
所述的刮料片的扇形结构与分隔板处于同一平面;
所述的刮料片 (1022) 除了扇形结构之外, 还进一步包括一个尖端结构, 该尖端结构从 扇形结构的非弧形一侧, 沿着卧式混合反应釜壳体(101 ) 的内壁延伸, 宽度逐渐缩小并 终止在壳体 (101 ) 内壁上。
7、 如权利要求 6所述的卧式预混装置, 其特征在于, 所述的高压气体喷射系统(1030) 的转轴(103)是一个具有圆柱形轴腔的中空转轴, 其包含轴壳(1032) 以及由其所围成 的轴腔 ( 1031 );
所述的轴腔 (1031 ) 上具有允许具有一定压力的气体单向向外排放的开口 (1033); 每两个相邻叶轮间的轴腔(1031 )区域具有一组所述开口 (1033), 该组开口的数量为一 个叶轮上的分隔板数量的整倍数, 并且所述开口 (1033)分布在轴腔 (1031 )连接有分 隔板(1021 ) 的区域上。
8、如权利要求 7所述的卧式预混装置, 其特征在于, 所述的进料系统(1040)包含位于 转轴 (103) 上的固体进料口 (1041 )、 位于壳体 (101 )上的气液进料口 (1041 ) 和添 加剂进料口 (1043);
所述的气液进料口 (1042)位于壳体(101 )上, 并与卧式混合反应釜内部相互连通, 以 向其中传输气液物料;
所述的气液进料口 ( 1042) 的数量与叶轮上的分隔板数量相等, 并且每个气液进料口 ( 1042) 与临近进料口的叶轮(10201 ) 上的相应分隔板之间交错 0°〜45°夹角; 所述的气液进料口 (1042)输入气体、 液体或气液混合物进入卧式混合反应釜内部, 并 在与该进料口相邻且相对应的分隔板与刮料片上流动,并依次沿着各个分隔板和刮料片流 经相对应地各个分隔板和刮料片;
所述的固体进料口 (1041 )位于转轴 (103) 上, 并与轴腔 (1031 ) 相互连通, 以使得 混合有固体粉末的高压气体从固体进料口 (1041 )输入并进入轴腔(1031 ), 然后通过轴 壳(1032)上的开口 (1033) 向外单向喷射, 喷射在分隔板上流动的液体或固液混合物 上, 以充分混合均匀;
所述的添加剂进料口 (1043)位于转轴 (103) 上, 并与轴腔 (1031 ) 相互连通, 以使 得混合有固体粉末、 液体液滴、 气体等添加剂的高压气体从添加剂进料口 (1043)输入 并进入轴腔 (1031 ), 然后通过轴壳(1032)上的开口 (1033) 向外单向喷射, 喷射在 分隔板上流动的液体或固液混合物上, 以充分混合均匀。 9、如权利要求 8所述的卧式预混装置, 其特征在于, 所述的存料系统(1060)具有与其 相邻的叶轮(10202) 上分隔板数量相等的存料室(106), 每个存料室(106)相应的具 有一个出料口 (105), 所述的各个出料口 (105) 组成所述的出料系统 (1050);
所述叶轮(10202)的各分隔板上的混合物料流入相应的存料室(106), 然后通过相应的 出料口 ( 105) 向外输出。
10、 一种采用如权利要求 9所述的卧式预混装置进行混合的预混方法, 其特征在于, 包 括如下步骤:
步骤 1 : 从所述的气液进料口 (1042) 的各个进料口输入气体、 液体或气液混合物 进入卧式混合反应釜内部;
由于所述的气液进料口 (1042) 的进料口数量与叶轮上的分隔板数量相等, 并且每 个气液进料口 (1042)与临近进料口的叶轮(10201 )上的相应分隔板之间交错 0°〜45° 夹角,故从各个进料口输入的气体、液体或气液混合物在与该进料口相邻且相对应的分隔 板与刮料板上流动,并依次沿着各个分隔板和刮料板向下流经相对应地各个分隔板和刮料 板, 从而均匀的分布在各个分隔混合室;
步骤 2: 从所述的固体进料口 (1041 ) 的各个进料口输入混合有固体粉末的高压气 体进入轴腔(1031 ), 然后通过轴壳(1032)上的开口 (1033) 向外单向喷射;
由于每两个相邻叶轮间的轴腔(1031 )区域具有一组所述开口 (1033), 该组开口的 数量为一个叶轮上的分隔板数量的整倍数, 并且所述开口 (1033) 分布在轴腔 (1031 ) 连接有分隔板( 1021 )的区域上,故混合有固体粉末的高压气体可以通过各个开口( 1033 ) 喷射在各个相应分隔板上流动的液体或固液混合物上, 从而均匀的分布在各个分隔混合 室;
步骤 3: 从所述的添加剂进料口 (1043) 的各个进料口输入混合有固体粉末、 液体 液滴、气体等添加剂的高压气体进入轴腔( 1031 ),然后通过轴壳( 1032 )上的开口( 1033 ) 向外单向喷射;
由于每两个相邻叶轮间的轴腔(1031 )区域具有一组所述开口 (1033), 该组开口的 数量为一个叶轮上的分隔板数量的整倍数, 并且所述开口 (1033) 分布在轴腔 (1031 ) 连接有分隔板 (1021 ) 的区域上, 故混合有固体粉末、 液体液滴、 气体等添加剂的高压 气体可以通过各个开口 (1033) 喷射在各个相应分隔板上流动的液体或固液混合物上, 从而均匀的分布在各个分隔混合室;
步骤 4: 转轴(103)带动其上连接的一组叶轮以转轴(103) 为圆心进行旋转, 利 用各个叶轮(102)上的分隔板(1021 )对混合着的固体粉末和液体的混合物进行搅拌, 以充分混合, 同时利用各个刮料板(1022)将粘附在壳体 (101 ) 内壁上的物料刮除, 以使得上述物料再次进行搅拌混合;
步骤 5: 经过混合的固体粉末、 液体与添加剂的混合物沿着各个分隔板(1021 )逐 级流下至下一层分隔混合室, 继续进行搅拌混合;
所述推进系统(1000) 的推进杆(1005)在壳体(101 )底部内表面的凹槽(1012) 中前后移动, 从而带动其上连接的各推进器(100)前后移动;
在推进杆 (1005) 向前移动的时候, 各推进器 (100) 的正面 (1003)将混合物向 前推进;
在推进杆 (1005) 向后移动的时候, 各推进器(100) 的反面 (1004)将混合物分 流, 以避免将混合物反向带回;
步骤 6: 与存料室 (106) 相邻的最后一级分隔混合室内的混合物沿着各个分隔板流 入相应的存料室 (106), 然后通过相应的出料口 (105) 向外输出;
由于存料室(106) 的数量和分隔板数量相等, 而且每个存料室(106)相应的具有 一个出料口 (105), 所以从所述混合反应釜中可同时输出多批混合物, 以分别进行相同 或不同的进一步加工。
PCT/CN2010/000314 2009-03-18 2010-03-15 搅拌推进式卧式预混装置及其方法 WO2010105502A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910047735A CN101837258A (zh) 2009-03-18 2009-03-18 搅拌推进式卧式预混装置及其方法
CN200910047735.9 2009-03-18

Publications (1)

Publication Number Publication Date
WO2010105502A1 true WO2010105502A1 (zh) 2010-09-23

Family

ID=42739170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/000314 WO2010105502A1 (zh) 2009-03-18 2010-03-15 搅拌推进式卧式预混装置及其方法

Country Status (2)

Country Link
CN (1) CN101837258A (zh)
WO (1) WO2010105502A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110722161A (zh) * 2019-12-10 2020-01-24 南方科技大学 一种基于多粉体的金属纤维高通量制备装置及利用其制备金属纤维的方法
CN111411225A (zh) * 2020-04-29 2020-07-14 沈阳工业大学 一种红土镍矿浸出与镍分离方法
CN113069980A (zh) * 2021-04-05 2021-07-06 王振涛 一种液体悬浮混合装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3226861A1 (de) * 1982-07-17 1984-01-19 Fritz Loedige Ringmischer zum vermischen von fluessigkeit mit aus strukturierten teilchen bestehendem mischgut
CH654490A5 (en) * 1981-12-22 1986-02-28 Bachofen Willy A Ag Process for preparing a dispersion or suspension, and appliance for carrying out the process
CN1118715A (zh) * 1994-02-03 1996-03-20 玉川机械株式会社 卧式搅拌机
CN1781590A (zh) * 2004-12-01 2006-06-07 煤炭科学研究总院 一种立式固液混合装置及混合方法
CN1986040A (zh) * 2006-12-07 2007-06-27 上海化工研究院 一种卧式固液混合装置
CN2925590Y (zh) * 2006-06-16 2007-07-25 天华化工机械及自动化研究设计院 聚丙烯犁式连续混料器
CN201070577Y (zh) * 2007-06-14 2008-06-11 福建南方路面机械有限公司 具有可调整的搅拌单元的强制式搅拌机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH654490A5 (en) * 1981-12-22 1986-02-28 Bachofen Willy A Ag Process for preparing a dispersion or suspension, and appliance for carrying out the process
DE3226861A1 (de) * 1982-07-17 1984-01-19 Fritz Loedige Ringmischer zum vermischen von fluessigkeit mit aus strukturierten teilchen bestehendem mischgut
CN1118715A (zh) * 1994-02-03 1996-03-20 玉川机械株式会社 卧式搅拌机
CN1781590A (zh) * 2004-12-01 2006-06-07 煤炭科学研究总院 一种立式固液混合装置及混合方法
CN2925590Y (zh) * 2006-06-16 2007-07-25 天华化工机械及自动化研究设计院 聚丙烯犁式连续混料器
CN1986040A (zh) * 2006-12-07 2007-06-27 上海化工研究院 一种卧式固液混合装置
CN201070577Y (zh) * 2007-06-14 2008-06-11 福建南方路面机械有限公司 具有可调整的搅拌单元的强制式搅拌机

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110722161A (zh) * 2019-12-10 2020-01-24 南方科技大学 一种基于多粉体的金属纤维高通量制备装置及利用其制备金属纤维的方法
CN110722161B (zh) * 2019-12-10 2023-11-14 南方科技大学 一种基于多粉体的金属纤维高通量制备装置及利用其制备金属纤维的方法
CN111411225A (zh) * 2020-04-29 2020-07-14 沈阳工业大学 一种红土镍矿浸出与镍分离方法
CN111411225B (zh) * 2020-04-29 2022-06-24 沈阳工业大学 一种红土镍矿浸出与镍分离方法
CN113069980A (zh) * 2021-04-05 2021-07-06 王振涛 一种液体悬浮混合装置

Also Published As

Publication number Publication date
CN101837258A (zh) 2010-09-22

Similar Documents

Publication Publication Date Title
WO2010105501A1 (zh) 组合式三腔混合反应釜及其方法
CN101402025B (zh) 一种卧式螺旋固液混合装置
CN211612398U (zh) 一种大单体混合搅拌设备
CN202921312U (zh) 反应釜的自吸式搅拌器
WO2010105502A1 (zh) 搅拌推进式卧式预混装置及其方法
CN207085917U (zh) 一种便于充分混合的化工生产反应装置
CN201375884Y (zh) 一种卧式固液混合装置
CN111249989A (zh) 一种高粘度物料快速混合装置
CN206215211U (zh) 一种便于充分混合的树脂生产用反应釜
CN101844049A (zh) 多向三级混合装置及其方法
CN201537467U (zh) 交错组合式卧式固液预混罐
CN201596478U (zh) 搅拌推进式卧式预混装置
CN201558679U (zh) 具有多向叶轮的三级卧式混合装置
CN202826052U (zh) 一种固体混凝土外加剂搅拌设备
CN101844046A (zh) 具有卧式预混装置的两级混合装置及其方法
CN101862614A (zh) 具有多向叶轮的三级卧式混合装置及方法
CN216024548U (zh) 一种酱料生产用配料预混合装置
CN101837260A (zh) 具有交错塔板的塔式预混装置及其方法
CN201371045Y (zh) 一种三腔卧式混合装置
CN212068634U (zh) 一种高粘度物料快速混合装置
CN205658354U (zh) 一种饮料生产用调配罐
CN101837259A (zh) 交错组合式卧式固液预混罐及其方法
CN109718734A (zh) 连续反应器及连续多相反应的方法
CN201579007U (zh) 具有卧式预混装置的两级混合装置
CN201586501U (zh) 具有预混塔的双重搅拌式两级混合装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10753069

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10753069

Country of ref document: EP

Kind code of ref document: A1