WO2010105501A1 - 组合式三腔混合反应釜及其方法 - Google Patents

组合式三腔混合反应釜及其方法 Download PDF

Info

Publication number
WO2010105501A1
WO2010105501A1 PCT/CN2010/000313 CN2010000313W WO2010105501A1 WO 2010105501 A1 WO2010105501 A1 WO 2010105501A1 CN 2010000313 W CN2010000313 W CN 2010000313W WO 2010105501 A1 WO2010105501 A1 WO 2010105501A1
Authority
WO
WIPO (PCT)
Prior art keywords
cavity
rotating shaft
agitating
chamber
stirring
Prior art date
Application number
PCT/CN2010/000313
Other languages
English (en)
French (fr)
Inventor
刘�英
Original Assignee
上海亦晨信息科技发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海亦晨信息科技发展有限公司 filed Critical 上海亦晨信息科技发展有限公司
Publication of WO2010105501A1 publication Critical patent/WO2010105501A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/18Stationary reactors having moving elements inside
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/60Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis
    • B01F27/70Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis with paddles, blades or arms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F27/00Mixers with rotary stirring devices in fixed receptacles; Kneaders
    • B01F27/60Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis
    • B01F27/70Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis with paddles, blades or arms
    • B01F27/701Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis with paddles, blades or arms comprising two or more shafts, e.g. in consecutive mixing chambers
    • B01F27/702Mixers with rotary stirring devices in fixed receptacles; Kneaders with stirrers rotating about a horizontal or inclined axis with paddles, blades or arms comprising two or more shafts, e.g. in consecutive mixing chambers with intermeshing paddles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F33/00Other mixers; Mixing plants; Combinations of mixers
    • B01F33/80Mixing plants; Combinations of mixers
    • B01F33/82Combinations of dissimilar mixers
    • B01F33/821Combinations of dissimilar mixers with consecutive receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/18Details relating to the spatial orientation of the reactor
    • B01J2219/182Details relating to the spatial orientation of the reactor horizontal

Definitions

  • the invention relates to a mixed reaction kettle, in particular to a combined three-chamber mixed reaction kettle, belonging to the field of mechanical mixing equipment.
  • the invention also relates to a mixing process for mixing using a combined three-chamber mixing reactor. Background technique
  • a stirring mixing device and a stirring mixing method comprising a substantially cylindrical mixing vessel having a stirring blade inside, a powder and a liquid entering the mixing vessel through different inlets, and then stirring the blade Mix with stirring.
  • a compartment is formed between the agitating blades to separate the powder and the liquid into a plurality of groups for mixing.
  • the group mixing cannot be performed well, and a large amount of mixture is accumulated on the inner wall of the mixing container. Stir well. And the device is not suitable for powder and high viscosity solid-liquid mixture Mix.
  • a mixing apparatus which comprises a barrel filled with liquid at the bottom, a vertical conduit inserted into the liquid and having rotating blades inside, from which the solid powder passes from above The portion of the added conduit having a liquid is mixed with the liquid under the action of the stirring blade, and then dispersed into the tub outside the conduit for further mixing with the liquid.
  • the apparatus is suitable for dispersing a small amount of solid powder into a large amount of liquid, and the resulting solid-liquid mixture cannot have a high viscosity, which would otherwise block the catheter.
  • the powder is diverge from the top of the mixing container, and then the liquid sprayed around the container during the falling process is mutually mixing.
  • this mixing method can disperse and mix the powder and the liquid to a certain extent to avoid the generation of the powder, then not all the falling powder can be mixed with the sprayed liquid, and the unmixed powder and liquid fall to At the bottom of the mixing container, it is still impossible to mix and mix.
  • the solid-liquid mixture having a high viscosity cannot be sprayed from the periphery of the container, so the apparatus is not suitable for the mixing of the powder with the high-viscosity solid-liquid mixture.
  • Chinese Patent Application No. 200410084721.1 discloses a vertical solid-liquid mixing device and a mixing method, the device comprising a set of baffles disposed along the inner wall of the mixing container, dividing the mixing container into a plurality of hollow mixing chambers, and then utilizing the mixing container A central set of mixing blades agitates the powder and liquid in each mixing chamber for mixing.
  • the materials fed from the top of the mixing vessel will accumulate in a large number of stirring chambers in the upper part, resulting in uneven distribution of materials in each mixing chamber, and if the mixture of powder and liquid has At higher viscosities, the mixture will also clog the mixing vessel due to the presence of individual baffles and mixing chambers.
  • the addition of the inlet to a single powder results in the material being uniformly distributed in all directions in the cross section of the mixing vessel.
  • Chinese Patent No. 200610011506.8 and European Patent No. 06113920.0 disclose two static mixing devices, respectively, which utilize the splitting of the materials to carry out the mixing, however the above device is not suitable for the mixing of the powder with the high viscosity solid-liquid mixture.
  • Chinese Patent No. 200410090534.4 discloses a horizontal mixing device having a stirring blade therein, in which the powder and the liquid are respectively injected into the apparatus from the top and bottom of one side of the horizontal mixing device, and then the blades are used for stirring and mixing.
  • a horizontal mixing device having a stirring blade therein, in which the powder and the liquid are respectively injected into the apparatus from the top and bottom of one side of the horizontal mixing device, and then the blades are used for stirring and mixing.
  • such a device cannot solve the problem of simultaneously requiring the addition of liquid and solid powder to a solid-liquid mixture having a ruthenium viscosity while avoiding the generation of a powder mass between the added liquid and the solid powder.
  • An object of the present invention is to provide a combined three-chamber mixed reaction kettle, which can uniformly mix a solid-liquid mixture with a solid powder, a liquid, an additive, etc. according to a certain ratio, and is particularly suitable for a solid-liquid mixture with high viscosity. Evenly mixed with solid powders, liquids, and additives.
  • Another object of the present invention is to provide a mixing method for mixing by using a combined three-chamber mixing reactor, by which a solid-liquid mixture and a solid powder, a liquid, an additive, etc. can be uniformly mixed at a certain ratio, in particular It is suitable for the uniform mixing of solid and liquid mixtures with high viscosity and solid powders, liquids and additives.
  • the combined three-chamber mixing reaction kettle disclosed by the invention comprises a feeding system, a first cavity shell, a second cavity shell, a third cavity shell, an outer shell shell, a first rotating shaft, a second rotating shaft and a third rotating shaft , a first agitation system, a second agitation system, a third agitation system, a material transfer system, and a discharge system.
  • the first chamber shell and the second chamber shell are two hollow cylindrical structures intersecting, the third chamber shell is located at the bottom of the first chamber shell and the second chamber shell, and passes through the material transfer system and both Interconnected, the axes of the three cavities are parallel to each other and are located inside the outer casing.
  • a first cavity is formed inside the first cavity
  • a second cavity is formed inside the second cavity
  • a third cavity is formed inside the third cavity, the first cavity and the second cavity
  • the body and the third cavity are in communication with each other.
  • the first rotating shaft is located inside the first cavity and passes through the center of the circle.
  • the first agitation system is coupled to the first shaft and rotates therewith.
  • the first agitation system is a set of impellers connected to the first rotating shaft, and each of the impellers comprises 2 to 4 blades including a stirring plate and a scraping plate, and the spacing angles between the blades are equal.
  • One end of the stirring plate is connected to the rotating shaft, and the other end is connected with a scraping plate which is tangent to the inner wall of the first cavity and leaves a safety gap of 2 mm to 20 mm.
  • the agitating plate has a fan-shaped structure with a center angle of 10° to 45°, an inner diameter equal to an outer diameter of the rotating shaft, and an outer diameter which is a difference between an inner diameter of the first cavity and a thickness of the scraping plate.
  • the scraping plate is a fan-shaped structure whose center angle is equal to the center angle of the agitating plate to which it is connected, the inner diameter of which is equal to the outer diameter of the agitating plate, and the outer diameter of which is equal to the inner diameter of the first cavity.
  • the scraping plate is in the same plane as the vertical plane, and the agitating plate forms an angle of 0° to 45° with the vertical plane and the scraping plate, preferably 30°.
  • the agitating plate of each impeller of the first agitating system and the agitating plate of the adjacent impeller are interlaced at an angle of 0° to 45°.
  • the intervals between the sets of impellers of the first agitation system are equal.
  • the second rotating shaft is located inside the second cavity and passes through the center of the circle.
  • the second stirring system is connected to the second On the shaft, and then rotate.
  • the second agitation system is a set of impellers connected to the second rotating shaft, and each of the impellers comprises 2 to 4 blades including a stirring plate and a scraping plate, and the spacing angles between the blades are equal.
  • One end of the stirring plate is connected to the rotating shaft, and the other end is connected with a scraping plate which is tangent to the inner wall of the second cavity and leaves a safety gap of 2 mm to 20 mm.
  • the agitating plate has a fan-shaped structure with a center angle of 10° to 45°, an inner diameter equal to an outer diameter of the rotating shaft, and an outer diameter which is a difference between the inner diameter of the second cavity and the thickness of the scraping plate.
  • the scraping plate is a fan-shaped structure whose center angle is equal to the center angle of the agitating plate to which it is connected, the inner diameter of which is equal to the outer diameter of the agitating plate, and the outer diameter of which is equal to the inner diameter of the second cavity.
  • the scraping plate is in the same plane as the vertical plane, and the agitating plate forms an angle of 0° to 45° with the vertical plane and the scraping plate, preferably 30°.
  • the agitating plate of each impeller of the second agitating system and the agitating plate of the adjacent impeller are interlaced at an angle of 0° to 45°.
  • the intervals between the sets of impellers of the second agitation system are equal.
  • the third rotating shaft is located inside the third cavity and passes through the center of the circle.
  • the third agitation system is coupled to the third shaft and rotates therewith.
  • the third agitation system is a set of impellers connected to a third rotating shaft, each impeller includes a rotating shaft, a scraper plate and a rotating device, one end of the rotating shaft is connected to the rotating shaft, and the other A scraper plate is connected to one end, and the scraper plate is tangent to the inner wall of the third cavity shell, and a safety gap of 2 mm to 20 mm is left.
  • the rotating shaft of the third stirring system is centered around the third rotating shaft, and the rotating device is sleeved on the rotating shaft and rotates around it as a center.
  • the rotating device is a ring-shaped deformed body structure in which an empty inner circle is used to pass the rotating shaft, and a concave-convex gear is arranged on the outer circumference of the ring, thereby forming an impeller structure and stirring.
  • the rotating shaft is a cylindrical structure whose vertical cross section is approximately rectangular, the outer diameter of which is equal to the inner diameter of the rotating device, and one side of the approximately rectangular cross section is in contact with the third rotating shaft, and the length of the rotating shaft It is the difference between the inner diameter of the third cavity shell and the thickness of the scraper plate and the radius of the third rotating shaft.
  • the rotating shaft and the scraping plate are in the same plane as the vertical plane.
  • the intervals between the sets of impellers of the third agitation system are equal.
  • the impeller of the first agitation system is alternately arranged with the impeller of the second agitation system, and an impeller of a second agitation system is distributed between the impellers of two adjacent first agitation systems, and the first agitator system impeller With the second mixing system
  • the pitch of the impeller is equal to the spacing of the other first agitating system impeller and the second agitating system impeller.
  • a scraper plate on any one of the blades of the second agitating system is tangent to a side of the first rotating shaft adjacent to the second rotating shaft, and is left
  • the first chamber shell and the second chamber shell have the same radius.
  • the diameter of the third chamber shell is the sum of the first chamber shell radius, the first shaft radius and the second chamber shell diameter.
  • the first rotating shaft and the second rotating shaft are relatively rotated.
  • the rotation speed ratio of the first rotating shaft, the second rotating shaft and the third rotating shaft is 2.2: 2.2: 1 ⁇ 4.6: 4.6: 1.
  • the rotation speed ratio of the third rotating shaft and the rotating device is 1: 1 ⁇ 1: 2.2.
  • the outer casing and the first casing further include a first door therethrough and passing therethrough such that the first cavity is exposed when the first door is opened.
  • the outer and second chamber shells further include a second chamber door therethrough and through which the second chamber is exposed when the second chamber door is opened.
  • the outer and third chamber shells further include a third chamber door therethrough and passing therethrough such that when the third chamber door is opened, the third chamber is exposed.
  • the feed system comprises a solid feed port, a liquid feed port, a first additive feed port, and a second additive feed port.
  • the solid feed port and the liquid feed port are disposed adjacent to the top surface of the outer casing, and respectively penetrate the outer casing and the first cavity and the second cavity, and communicate with each other.
  • the first cavity and the second cavity are described.
  • the first additive inlet and the second additive inlet are disposed on a top surface of the outer casing, and penetrate the outer casing and the first cavity to communicate with the first cavity .
  • the material conveying system is disposed on the outer casing and penetrates the outer casing, the first cavity shell, the second cavity shell and the third cavity shell, and communicates with the first cavity, the second cavity and the third cavity body.
  • the discharge system is disposed on a bottom surface of the outer casing and penetrates the outer casing and the third cavity to communicate with the third cavity.
  • the invention discloses a mixing method for mixing by using a combined three-chamber mixed reaction kettle, comprising the following steps: Step 1: inputting premixed material into the first cavity from the inlet of the premixed material at the bottom of the outer casing and the first The two cavities are evenly distributed inside the first cavity and the second cavity under the rotary stirring of the first agitation system and the second agitation system.
  • Step 2 The solid powder is fed into the first cavity from the solid feed port, and the solid powder is sufficiently uniformly mixed with the premixed material under the rotary stirring of the first stirring system.
  • Step 3 Simultaneously, a gas, a liquid or a gas-liquid mixture is introduced into the second cavity from the liquid inlet, and the gas, liquid or gas-liquid mixture is premixed under the rotary stirring of the second stirring system. The material is mixed well and evenly.
  • Step 4 Under the relative rotational agitation of the first agitation system and the second agitation system, the premixed material mixed with the solid powder and the premixed material mixed with the gas, liquid or gas-liquid mixture are sufficiently uniformly mixed to obtain a mixed material.
  • the mixture is transferred to the rear of the first cavity and the second cavity by the agitating plates of the impellers of the first agitation system and the second agitation system.
  • the scraper plates of the impellers of the first agitating system and the second agitating system and the materials adhered to the inner walls of the first chamber casing and the inner wall of the second chamber casing are respectively scraped off to be mixed again.
  • Step 5 inputting the additive from the first additive inlet into the first cavity and the second cavity, and the additive and the mixture are uniformly mixed under the rotary stirring of the first stirring system and the second stirring system to obtain Mixture containing additives.
  • the additive-containing mixture is transferred to the rear of the first cavity and the second cavity by the agitating plates of the impellers of the first agitation system and the second agitation system.
  • the scraper plates of the impellers of the first agitating system and the second agitating system and the materials adhered to the inner walls of the first chamber casing and the inner wall of the second chamber casing are respectively scraped off to be mixed again.
  • Step 6 inputting an additive from the second additive inlet into the first cavity and the second cavity, and the additive and the mixture are fully mixed under the rotary stirring of the first stirring system and the second stirring system. A mixture is obtained.
  • the mixture is transferred to the rear of the first cavity and the second cavity by the agitating plates of the impellers of the first agitation system and the second agitation system.
  • the scraper plates of the impellers of the first agitating system and the second agitating system and the materials adhered to the inner walls of the first chamber casing and the inner wall of the second chamber casing are respectively scraped off to be mixed again.
  • Step 7 The mixture is transferred to the third chamber through the material transfer system by means of agitating plates and rotating agitation of each impeller of the first agitation system and the second agitation system.
  • Step 8 The mixture is fed from the material transfer system into the third chamber, and the mixture is further uniformly mixed under the agitation of the third agitation system and its rotating device to obtain a thoroughly mixed mixture.
  • the well-mixed mixture is transferred to the rear of the third chamber by the rotation of the impellers of the third agitation system.
  • the scraper plate of each impeller of the third agitation system scrapes off the material adhering to the inner wall of the third cavity shell to be mixed again.
  • Step 9 The mixture is output through the discharge system by means of rotary agitation of the rotating means of each impeller of the third agitation system and gravity.
  • the premixed material is input from the premixed material inlet at the bottom of the outer casing, and is uniformly distributed inside the first cavity and the second cavity under the agitation of the first agitation system and the second agitation system.
  • solid powder and liquid are simultaneously added from the solid feed port and the liquid feed port into the first cavity and the second cavity, and the solid powder is uniformly mixed inside the first cavity and the premixed material, and the liquid is in the second cavity.
  • In-body and premixed materials are evenly mixed to avoid adding Secondary agglomeration due to mixing between the added solid powder and the liquid.
  • the first mixing system and the second stirring system that are relatively rotated, the premixed material to which the solid powder is added and the premixed material to which the liquid is added are mixed again, and the mixing at this time is equivalent to the solidity with a slightly higher viscosity and density.
  • the liquid mixture is mixed with the same solid-liquid mixture having a lower viscosity and a lower density, and the mixing at this time is very easy to carry out and is easily mixed uniformly.
  • the additive is then input to the mixture through the first additive feed port and the second additive feed port. At this time, due to the presence of two cavities, the input additive is dispersed into two groups under the driving of the stirring system, and each group of internal additives is dispersed.
  • the essence of the invention is that the two chambers and the two stirring systems are present, so that the materials inside the chamber are randomly divided into two groups by the groups of impellers, each group is self-mixed, and then the two groups are again paired. The rotating impellers are driven to mix with each other. This multiple random grouping and remixing allows the components inside the material to reach a uniformly distributed state by multiple random groupings and random mixing.
  • the impellers of each group of the stirring system are staggered at a certain angle, which is more convenient for the random grouping and random mixing.
  • the agitating plates of the impeller blades are at an angle to the vertical surface, so that the mixture having a high viscosity is transported from one end of the inside of the mixing device to the other end.
  • the invention utilizes multiple random groupings and random mixing to effectively avoid various problems existing in the mixing process of the mash viscosity solid-liquid mixture and the solid powder, liquid, additive, etc., and can be fast, continuous and stable. Mixing high-viscosity solid-liquid mixture, solid powder, liquid, and additive in a certain ratio.
  • Figure 1 is a side elevational view showing the overall structure of a combined three-chamber mixing reactor of the present invention.
  • Figure 2 is a cross-sectional view of the combined three-chamber mixing reactor of the present invention taken along line A-A' of Figure 1.
  • Figure 3a is a cross-sectional view of the combined three-chamber mixing reactor of the present invention taken along line BB' of Figure 1.
  • Figure 3b is a cross-sectional view of a modified apparatus of the combined three-chamber mixing reactor of the present invention taken along line BB' of Figure 1.
  • Figure 4 is a cross-sectional view of the combined three-chamber mixing reactor of the present invention taken along line C-C' of Figure 1.
  • Figure 5 is a cross-sectional view of the combined three-chamber mixing reactor of the present invention taken along line DD' of Figure 1.
  • Figure 6 is a cross-sectional view of the combined three-chamber mixing reactor of the present invention taken along line E-E' of Figure 1.
  • Figure 7 is a side view of a stirring plate, a scraper plate, and a rotating device of the combined three-chamber mixing reactor of the present invention.
  • 8a, 8b, 8c, 8d are inter-pulse intersections of a group of adjacent impellers of the combined three-chamber mixing reactor of the present invention Schematic diagram of the wrong angle relationship. detailed description
  • Embodiment 1 the technical solution of the invention is specifically as follows.
  • a combined three-chamber mixing reactor comprises the following parts:
  • a combined three-chamber mixing reactor comprises a feeding system 201, a first chamber shell 202, a second chamber shell 203, a third chamber shell 207, an outer casing 204, a first rotating shaft 501, a second rotating shaft 502, and a A three-turn shaft 503, a first agitation system 6, a second agitation system 7, a third agitation system 8, a material transfer system 200, and a discharge system 209.
  • the first cavity shell 202 and the second cavity shell 203 are two hollow cylindrical structures intersecting each other, and the third cavity shell 207 is located at the bottom of the first cavity shell 202 and the second cavity shell 203, and passes through
  • the material system 200 is connected to the two phases 5, the axes of the three cavities being parallel to each other and located inside the outer casing 204.
  • a first cavity 205 is formed inside the first cavity shell 202, a second cavity 206 is formed inside the second cavity shell 203, and a third cavity 208 is formed inside the third cavity shell 207.
  • the cavity 205, the second cavity 206, and the third cavity 208 are in communication with each other.
  • the first rotating shaft 501 is located inside the first cavity 205 and passes through the center of the circle.
  • the first agitating system 6 is coupled to the first rotating shaft 501 and rotates therewith.
  • the first stirring system 6 is a set of impellers connected to the first rotating shaft 501, and each of the impellers comprises 2 to 4 blades including a stirring plate 602 and a scraping plate 603, and the spacing angle between the blades e is equal.
  • One end of the stirring plate 602 is connected to the rotating shaft 501, and the other end is connected with a scraping plate 603 which is tangential to the inner wall of the first cavity 202 and has a safety gap of 2 mm to 20 mm.
  • the agitating plate 602 has a fan-shaped structure with a central angle d of 10° to 45°, an inner diameter equal to the outer diameter of the rotating shaft 501, and an outer diameter which is a difference between the inner diameter of the first cavity 202 and the thickness of the scraping plate 603.
  • the scraper plate 603 is a fan-shaped structure whose center angle is equal to the center angle of the agitating plate 602 to which it is connected, and has an inner diameter equal to the outer diameter of the agitating plate 602, and an outer diameter equal to the inner diameter of the first cavity shell 202.
  • the second rotating shaft 502 is located inside the second cavity 206 and passes through the center of the circle.
  • the second agitation system 7 is coupled to the second shaft 502 and rotates therewith.
  • the second stirring system 7 is a set of impellers connected to the second rotating shaft 502.
  • Each of the impellers comprises 2 to 4 blades including a stirring plate 702 and a scraping plate 703, and the spacing angle between the blades. e' is equal.
  • One end of the agitating plate 702 is connected to the rotating shaft 502, and the other end is connected with a scraper plate 703 which is tangent to the inner wall of the second cavity shell 203 and has a safety gap of 2 mm to 20 mm.
  • the agitating plate 702 has a fan-shaped structure with a central angle d' of 10° to 45°, an inner diameter equal to the outer diameter of the rotating shaft 502, and an outer diameter which is a difference between the inner diameter of the second cavity 203 and the thickness of the scraping plate 703.
  • the scraper plate 703 is a fan-shaped structure whose center angle is equal to the center angle of the agitating plate 702 to which it is connected, the inner diameter of which is equal to the outer diameter of the agitating plate 702, and the outer diameter of which is equal to the inner diameter of the second cavity shell 203.
  • the third rotating shaft 503 is located inside the third cavity 208 and passes through the center of the circle.
  • the third agitation system 8 is coupled to the third shaft 503 and rotates therewith.
  • the third stirring system 8 is a set of impellers connected to the third rotating shaft 503.
  • Each of the impellers includes a rotating shaft 801, a scraper plate 802 and a rotating device 803.
  • One end of the rotating shaft 801 It is connected to the rotating shaft 503, and the other end is connected with a scraper plate 802 which is tangent to the inner wall of the third cavity shell 207 and has a safety gap of 2 mm to 20 mm.
  • the rotating shaft 801 of the third stirring system 8 is centered around the third rotating shaft 503, and the rotating device 803 is sleeved on the rotating shaft 801 and rotates around it as a center.
  • the rotating device 803 is an annular deformable body structure in which an empty inner circle is used to pass through the rotating shaft 801, and a concave-convex gear is disposed on the outer circumference of the ring to form an impeller structure for agitating.
  • the rotating shaft 801 is a cylindrical structure whose vertical cross section is approximately rectangular, the outer diameter of which is equal to the inner diameter of the rotating device 803, and one side of the approximately rectangular cross section is in contact with the third rotating shaft 503, the rotating shaft
  • the length of the 801 is the difference between the inner diameter of the third cavity 207 and the thickness of the scraper plate 802 and the radius of the third rotating shaft 503.
  • the rotating shaft 801 and the scraper plate 802 are in the same plane as the vertical plane.
  • the stagger angle f between each of the agitating plates of the first agitating system 6 and the agitating plates of the adjacent impellers is zero. ⁇ 45°.
  • the angle f between the agitating plates of each of the impellers of the second agitating system 7 and the agitating plates of the adjacent impellers is 0° to 45°. .
  • the scraping plate 603 is in the same plane as the vertical plane and extends along the inner wall of the first cavity shell 202.
  • the angle g between the agitating plate 602 and the vertical plane and the scraping plate 603 is 0° ⁇ 45°. .
  • the scraping plate 703 is in the same plane as the vertical plane and extends along the inner wall of the second cavity 203, and the angle g' between the agitating plate 702 and the vertical plane and the scraping plate 703 is 0° to 45. °.
  • the rotating device 803 is a hollow gear-shaped rotating impeller in which the hollow portion is circular and is rotated by the rotating shaft 801 and centered on the rotating shaft 801.
  • the rotating shaft 801 is rotated about the second rotating shaft 503
  • the rotating device 803 that drives the upper rotating shaft 803 is also rotated about the second rotating shaft 503. Therefore, the rotating device 803 further rotates around the second rotating shaft 503 while rotating itself around the rotating shaft 801.
  • the first cavity 205 and the second cavity 206 are divided into a plurality of chambers, and the side walls of each of the chambers are respectively provided with a first cavity door 2020 and a second cavity door 2030.
  • the intervals between the sets of impellers of the first agitation system 6 are equal, such as the spacing between the impeller 60011, the impeller 60012, and the impeller 60013.
  • intervals between the sets of impellers of the second agitation system 7 are equal, as the spacing between the impeller 70011 and the impeller 70012 is equal.
  • the intervals between the sets of impellers of the third agitation system 8 are equal, such as the spacing between the impeller 80011 and the impeller 80012.
  • the impeller of the first agitation system 6 is staggered with the impeller of the second agitation system 7.
  • An impeller of a second agitating system 7 is distributed between the impellers of two adjacent first agitating systems 6, and the distance between the impeller of the first agitating system 6 and the impeller of the second agitating system 7 and another first agitating system
  • the distance between the impeller 6 and the impeller of the second agitation system 7 is equal.
  • the impeller 70011 is distributed between the adjacent impeller 60011 and the impeller 60012
  • the spacing between the impeller 60011 and the impeller 70011 is equal to the spacing between the impeller 70011 and the impeller 60012
  • the impeller adjacent 70011 and the impeller 70012 are distributed.
  • the impeller 60012 and the spacing between the impeller 70011 and the impeller 60012 are equal to the spacing between the impeller 60012 and the impeller 70012.
  • the scraper plate on either of the blades of the second agitating system 7 is tangent to the side of the first rotating shaft 501 adjacent to the second rotating shaft 502, and a safety gap of 2 mm to 20 mm is left.
  • Each of the impellers of the third agitation system 8 has a rotating structure including a rotating shaft 801, a scraper plate 802, and a rotating device 803, or two sets of rotating structures on the same straight line.
  • Figure 6 shows a third agitation system 8 of a different construction.
  • the impeller Both 80011 and 80012 contain only one set of rotating structures, and the two overlap each other.
  • the impellers 8002 Within the cavity 2042, there is a set of impellers 8002, the impellers 80021, 80022 and 80023 of which each contain only one set of rotating structures, and the adjacent two sets of rotating structures are interlaced by 180°, such as between the impellers 80021 and 80022, 80022 and 80023. between.
  • impellers 8003 Within the cavity 2043, there is a set of impellers 8003, the impellers 80031 and 80032 of which each comprise two sets of rotating structures, the impellers 80031 and 80032 overlap each other, and the two sets of rotating structures between each impeller are in the same straight line.
  • the outer casing 204 and the first casing 202 further include a first door 2020 located therethrough and passing therethrough such that upon opening the first door 2020, the first cavity 205 is exposed.
  • the outer and outer chambers 204, 203 further include a second chamber door 2030 therethrough and through which the second chamber 206 is exposed when the second chamber door 2030 is opened.
  • the outer and outer chambers 204, 207 further include a third chamber door 2070 therethrough and through which the third chamber 208 is exposed when the third chamber door 2070 is opened.
  • the feed system 201 includes a solid feed port 2011, a liquid feed port 2012, a first additive feed port 2013, and a second additive feed port 2014.
  • the solid feed port 2011 and the liquid feed port 2012 are disposed adjacent to the top surface of the outer casing 204 and penetrate the outer casing 204 and the first cavity casing 202, respectively.
  • the cavity 203 communicates with the first cavity 205 and the second cavity 206.
  • the first additive inlet port 2013 and the second additive inlet port 2014 are disposed on the top surface of the outer casing 204, and penetrate the outer casing 204 and the first cavity casing 202, and communicate with each other.
  • the first cavity 205 is described.
  • the material transfer system 200 is disposed on the outer casing 204 and penetrates the outer casing 204, the first cavity casing 202, the second cavity casing 203 and the third cavity casing 207, and communicates with the first cavity 205, Two cavity 206 and third cavity 208.
  • the discharge system 209 is disposed on the bottom surface of the outer casing 204 and penetrates the outer casing 204 and the third cavity 207 to communicate with the third cavity 208.
  • the first chamber shell 202 and the second chamber shell 203 have the same radius.
  • the diameter of the third chamber casing 207 is the sum of the radius of the first chamber casing 202, the radius of the first shaft 501, and the diameter of the second chamber shell 203.
  • the first rotating shaft 501 and the second rotating shaft 502 are relatively rotated.
  • the rotation speed ratio of the first rotating shaft 501, the second rotating shaft 502, and the third rotating shaft 503 is 2.2: 2.2: 1 to 4.6: 4.6: 1.
  • the rotation ratio of the third rotating shaft 503 and the rotating device 803 is 1: 1 to 1: 2.2.
  • the invention discloses a mixing method for mixing and mixing a three-chamber mixed reaction kettle, comprising the following steps: According to FIG. 1 and FIG. 2:
  • Step 1 Importing the premixed material from the premixed material inlet at the bottom of the outer casing 204 into the first cavity 205 and the second cavity 206, and rotating the stirring action of the first mixing system 6 and the second stirring system 7 Lower, evenly distributed A cavity 205 and a second cavity 206 are internal.
  • Step 2 The solid powder is fed into the first cavity 205 from the solid feed port 2011, and the solid powder is sufficiently uniformly mixed with the premixed material under the rotary stirring of the first agitation system 6.
  • Step 3 Simultaneously, a gas, liquid or gas-liquid mixture is introduced from the liquid feed port 2012 into the interior of the second chamber 206, and the gas, liquid or gas-liquid mixture is under the rotary stirring of the second stirring system 7. Mix well with the premixed material.
  • Step 4 under the relative rotational agitation of the first agitation system 6 and the second agitation system 7, the premixed material mixed with the solid powder and the premixed material mixed with the gas, liquid or gas-liquid mixture are sufficiently uniformly mixed to obtain a mixture. material.
  • the mixture is transferred to the rear of the first chamber 206 and the second chamber 207 by the agitating plates 602 and 702 of the impellers of the first agitating system 6 and the second agitating system 7.
  • the scraper plates 603 and 703 of the impellers of the first agitating system 6 and the second agitating system 7 respectively scrape the material adhering to the inner wall of the first chamber casing 202 and the inner wall of the second chamber casing 203 to be mixed again.
  • Step 5 inputting an additive from the first additive feed port 2013 into the first cavity 206 and the second cavity 207, under the rotary agitation of the first agitation system 6 and the second agitation system 7, the additive and the mixture The mixture was sufficiently uniformly mixed to obtain a mixture containing the additive.
  • the additive-containing mixture is transferred to the rear of the first chamber 206 and the second chamber 207 by the agitating plates 602 and 702 of the impellers of the first agitating system 6 and the second agitating system 7.
  • the scraper plates 603 and 703 of the impellers of the first agitating system 6 and the second agitating system 7 respectively scrape the material adhering to the inner wall of the first chamber casing 202 and the inner wall of the second chamber casing 203 to be mixed again.
  • Step 6 inputting an additive from the second additive feed port 2014 into the first cavity 206 and the second cavity 207, under the rotary stirring of the first agitation system 6 and the second agitation system 7, the additive and the mixture Mix well and uniformly to obtain a mixture.
  • the mixture is transferred to the rear of the first chamber 206 and the second chamber 207 by the agitating plates 602 and 702 of the impellers of the first agitating system 6 and the second agitating system 7.
  • the scraper plates 603 and 703 of the impellers of the first agitating system 6 and the second agitating system 7 respectively scrape the material adhering to the inner wall of the first chamber casing 202 and the inner wall of the second chamber casing 203 to be mixed again.
  • Step 7 Rotation of the agitating plates 602 and 702 of each impeller by means of the first agitation system 6 and the second agitation system 7 The mixture is transferred to the third chamber 208 by the transfer system 200 by agitation and gravity.
  • Step 8 The mixture is fed from the material transfer system 200 into the third chamber 208. Under the rotary agitation of the third agitation system 8 and its rotating device 803, the mixture is further homogenized to obtain a thoroughly mixed mixture.
  • the well-mixed mixture is transferred to the rear of the third chamber 208 by the rotating means 803 of each impeller of the third agitation system 8.
  • the third agitating system 8 scraper plate 802 of each impeller scrapes off the material adhering to the inner wall of the third chamber casing 207 to be mixed again.
  • Step 9 The mixture is output through the discharge system 209 by means of the rotary agitation of the rotating device 803 of each of the impellers 8 and the action of gravity.
  • the first cavity 205 and the second cavity 206 are filled with a solid-liquid mixture.
  • solid powder is fed from the solid feed port 2011, and the solid powder is subjected to the rotary agitation of the first set of impellers 6001 of the first agitation system 6
  • the solid-liquid mixture is thoroughly dispersed and mixed.
  • liquid is supplied from the liquid feed port 2012, and the liquid is sufficiently dispersed and mixed with the solid-liquid mixture under the rotary agitation of the first group of impellers 7001 of the second agitation system 7.
  • the first batch of solid-liquid mixture is transported backward by the impeller 60011, the second batch of solid-liquid mixture is transported backward by the impeller 70011, and then the first batch of solid liquid mixed with the solid powder is mixed due to the impeller 60011 and the impeller 70011 being reversed.
  • the mixture and the second batch of solid-liquid mixture mixed with the liquid are mixed for the first time, the added solid powder and the liquid are mixed with each other and distributed in the solid-liquid mixture, and then the solid-liquid mixture is randomly divided into two batches, and respectively
  • the impeller 60012 and the impeller 70012 are agitated, and the content of the solid powder added to the first batch of the solid-liquid mixture stirred by the impeller 60012 is decreased, and the content of the added liquid is increased, and is added to the second batch of the solid-liquid mixture stirred by the impeller 70012.
  • the content of the solid powder is increased and the content of the added liquid is decreased, and then, under the counter-rotation of the impeller 60012 and the impeller 70012, the two batches of the solid-liquid mixture are mixed again, so that the added solid powder and the liquid accompany the solid-liquid mixture.
  • the mixing was mixed for the second time and then again randomly divided into two batches.
  • the solid-liquid mixture is then transported backward by the first set of impellers 6001 and 7001 to the second set of chambers, from which the additive is fed from the first additive feed port 2013, and the solid-liquid mixture mixed with the additive is in the second set of impellers 6002. with Under the action of 7002, multiple random mixing and random separation were performed in the manner previously described to uniformly distribute the additives.
  • the resulting solid-liquid mixture is then transported back to the third chamber by the second impeller group 6002 and 7002 to intermix with the additive input from the second additive feed port 2014.
  • the solid-liquid mixture obtained by mixing continues in the subsequent several chambers, under the action of the stirring systems 6 and 7, multiple random mixing and random separation and stirring, so that the added solid-liquid powder, liquid, additives, etc. are evenly distributed. Distribution, get the mixture, and output.
  • the third chamber 208 serves primarily as a storage mixture and is slowly agitated to increase the residence time of the mixture so that the various possible reactions within the mixture are allowed to react for a sufficient period of time, such as crosslinking, emulsification, and the like.
  • the rotating device 803 is a hollow gear-shaped rotating impeller in which a hollow portion is circular, and is rotated by the rotating shaft 801 and centered on the rotating shaft 801.
  • the rotating shaft 801 is rotated at the center of the third rotating shaft 503
  • the rotating device 803 that drives the upper rotating shaft 803 is also rotated about the third rotating shaft 503.
  • the solid rotating device 803 further rotates around the third rotating shaft 503 while rotating itself around the rotating shaft 801. Therefore, the rotating device 803 can not only move the material axially along the third rotating shaft 503, but also make the material move circularly inside the third cavity 208 with the third rotating shaft 503 as a center.
  • the rotating device 803 also provides a full range of material movements.
  • Embodiment 2 is a hollow gear-shaped rotating impeller in which a hollow portion is circular, and is rotated by the rotating shaft 801 and centered on the rotating shaft 801.
  • the scraper plate 603 is tangent to the inner wall of the first chamber casing 202 and has a safety clearance of 3 mm.
  • the center angle d of the agitating plate 602 is 14°.
  • the angle f between the agitating plates of each impeller and the agitating plates of the adjacent impellers is 7°.
  • the angle g between the agitating plate 602 and the vertical plane and the scraper plate 603 is 4°.
  • the scraper plate 703 is tangent to the inner wall of the second chamber casing 203 and has a safety clearance of 3 mm.
  • the center angle d' of the agitating plate 702 is 14°.
  • the angle f between the agitating plates of each impeller and the agitating plates of the adjacent impellers is 7°.
  • the angle ga between the agitating plate 702 and the vertical plane and the scraper plate 703 is 4°.
  • the scraper plate 803 is tangent to the inner wall of the second chamber casing 207 and has a safety clearance of 3 mm.
  • the scraper plate on either of the blades of any of the impellers of the second agitation system 7 is tangent to the side of the first rotating shaft 501 adjacent to the second rotating shaft 502, leaving a safety clearance of 3 mm.
  • the rotational speed ratio of the first rotating shaft 501, the second rotating shaft 502, and the third rotating shaft 503 is 2.4: 2.4:1.
  • the rotation ratio of the third rotating shaft 503 and the rotating device 803 is 1:1.2.
  • the following first technical system is used to improve the first stirring system 6 described in the following technical parameters:
  • the scraper plate 603 is tangent to the inner wall of the first chamber casing 202 and leaves a safety gap of 5 mm.
  • the center angle d of the agitating plate 602 is 17°.
  • the angle f between the agitating plates of each impeller and the agitating plates of the adjacent impellers is 8°.
  • the angle g between the agitating plate 602 and the vertical plane and the scraper plate 603 is 8°.
  • the scraper plate 703 is tangent to the inner wall of the second chamber casing 203 and has a safety clearance of 5 mm.
  • the center angle d' of the agitating plate 702 is 17°.
  • the angle f between the agitating plates of each impeller and the agitating plates of the adjacent impellers is 8°.
  • the angle between the agitating plate 702 and the vertical plane and the scraper plate 703 is 8°.
  • the scraper plate 803 is tangent to the inner wall of the second chamber casing 207 and has a safety clearance of 5 mm.
  • the scraper plate on either of the blades of any of the impellers of the second agitation system 7 is tangent to the side of the first rotating shaft 501 near the 502, and a safety clearance of 5 mm is left.
  • the rotation ratio of the first rotating shaft 501, the second rotating shaft 502, and the third rotating shaft 503 is 2.6: 2.6:1.
  • the rotation ratio of the third rotating shaft 503 and the rotating device 803 is 1: 1.3.
  • the first agitating system 6 - the scraper plate 603 is tangent to the inner wall of the first chamber casing 202 and leaves a safety gap of 7 mm.
  • the center angle d of the agitating plate 602 is 20°.
  • the angle f between the agitating plates of each impeller and the agitating plates of the adjacent impellers is 10°.
  • the angle g between the agitating plate 602 and the vertical plane and the scraper plate 603 is 12°.
  • the scraper plate 703 is tangent to the inner wall of the second chamber casing 203 and leaves a safety gap of 7 mm.
  • the center angle d' of the stirring plate 702 is 20°.
  • the angle between the agitating plates of each impeller and the agitating plates of the adjacent impellers is 10°.
  • the angle g' between the agitating plate 702 and the vertical plane and the scraper plate 703 is 12°.
  • the scraper plate 803 is tangent to the inner wall of the second chamber casing 207 and leaves a safety gap of 7 mm.
  • the scraper plate on either of the blades of any of the impellers of the second agitating system 7 is tangent to the side of the first rotating shaft 501 adjacent to the second rotating shaft 502, and a safety gap of 7 mm is left.
  • the rotational speed ratio of the first rotating shaft 501, the second rotating shaft 502, and the third rotating shaft 503 is 2.8: 2.8:1.
  • the rotation ratio of the third rotating shaft 503 and the rotating device 803 is 1:1.4.
  • the scraper plate 603 is tangential to the inner wall of the first chamber casing 202 and leaves a 9 mm safety gap.
  • the center angle d of the agitating plate 602 is 23°.
  • the angle f between the agitating plates of each impeller and the agitating plates of the adjacent impellers is 11 °.
  • the angle g between the agitating plate 602 and the vertical plane and the scraper plate 603 is 16°.
  • the scraper plate 703 is tangent to the inner wall of the second chamber casing 203 and leaves a safety gap of 9 mm.
  • the center angle d' of the agitating plate 702 is 23°.
  • the angle f between the agitating plates of each impeller and the agitating plates of the adjacent impellers is 1 .
  • the angle ga between the agitating plate 702 and the vertical plane and the scraper plate 703 is 16°.
  • the scraper plate 803 is tangent to the inner wall of the second chamber casing 207 and leaves a safety gap of 9 mm.
  • the scraper plate on either of the blades of any of the impellers of the second agitating system 7 is tangent to the side of the first rotating shaft 501 adjacent to the second rotating shaft 502, and a safety gap of 9 mm is left.
  • the rotation speed ratio of the first rotating shaft 501, the second rotating shaft 502, and the third rotating shaft 503 is 3.0: 3.0:1.
  • the rotation ratio of the third rotating shaft 503 and the rotating device 803 is 1:1.5.
  • Example 6 The rotation ratio of the third rotating shaft 503 and the rotating device 803 is 1:1.5.
  • the scraper plate 603 is tangent to the inner wall of the first chamber casing 202 and leaves a safety gap of 11 mm.
  • the center angle d of the agitating plate 602 is 26. .
  • the angle f between the agitating plates of each impeller and the agitating plates of the adjacent impellers is 13°.
  • the angle g between the agitating plate 602 and the vertical plane and the scraper plate 603 is 20°.
  • the scraper plate 703 is tangent to the inner wall of the second chamber casing 203 and has a safety gap of 11 mm.
  • the center angle d' of the stirring plate 702 is 26°.
  • the angle f between the agitating plates of each impeller and the agitating plates of the adjacent impellers is 13°.
  • the angle between the agitating plate 702 and the vertical plane and the scraper plate 703 is 20°.
  • the scraper plate 803 is tangent to the inner wall of the second chamber casing 207 and has a safety clearance of 11 mm.
  • the scraper plate on either of the blades of any of the impellers of the second agitation system 7 is tangent to the side of the first shaft 501 adjacent to the second shaft 502, leaving a safety clearance of 11 mm.
  • the rotational speed ratio of the first rotating shaft 501, the second rotating shaft 502 and the third rotating shaft 503 is 3.2: 3.2:1.
  • the rotation ratio of the third rotating shaft 503 and the rotating device 803 is 1:1.6.
  • Example 7 The rotation ratio of the third rotating shaft 503 and the rotating device 803 is 1:1.6.
  • the scraper plate 603 is tangent to the inner wall of the first chamber casing 202 and leaves a safety gap of 12 mm.
  • the center angle d of the agitating plate 602 is 29°.
  • the angle f between the agitating plates of each impeller and the agitating plates of the adjacent impellers is 14°.
  • the angle g between the agitating plate 602 and the vertical plane and the scraper plate 603 is 24°.
  • the scraper plate 703 is tangent to the inner wall of the second chamber casing 203 and has a safety gap of 12 mm.
  • the center angle d' of the agitating plate 702 is 29°.
  • the angle f between the agitating plates of each impeller and the agitating plates of the adjacent impellers is 14°.
  • the angle ga between the agitating plate 702 and the vertical plane and the scraper plate 703 is 24°.
  • the scraper plate 803 is tangent to the inner wall of the second chamber casing 207 and leaves a safety gap of 12 mm.
  • the scraper plate on either of the blades of any of the impellers of the second agitating system 7 is tangent to the side of the first rotating shaft 501 adjacent to the second rotating shaft 502, and a safety gap of 12 mm is left. .
  • the rotational speed ratio of the first rotating shaft 501, the second rotating shaft 502, and the third rotating shaft 503 is 3.4: 3.4:1.
  • the rotation ratio of the third rotating shaft 503 and the rotating device 803 is 1 : 1.7.
  • the scraper plate 603 is tangent to the inner wall of the first chamber casing 202 and leaves a safety gap of 13 mm.
  • the center angle d of the agitating plate 602 is 32°.
  • the angle f between the agitating plates of each impeller and the agitating plates of the adjacent impellers is 16°.
  • the angle g between the agitating plate 602 and the vertical plane and the scraper plate 603 is 28°.
  • the scraper plate 703 is tangent to the inner wall of the second chamber casing 203 and has a safety gap of 13 mm.
  • the center angle d' of the stirring plate 702 is 32°.
  • the angle f between the agitating plates of each impeller and the agitating plates of the adjacent impellers is 16°.
  • the angle g' between the agitating plate 702 and the vertical plane and the scraper plate 703 is 28°.
  • the scraper plate 803 is tangent to the inner wall of the second chamber casing 207 and has a safety gap of 13 mm.
  • the scraper plate on either of the blades of any of the impellers of the second agitating system 7 is tangent to the side of the first rotating shaft 501 adjacent to the second rotating shaft 502, and a safety gap of 13 mm is left.
  • the rotational speed ratio of the first rotating shaft 501, the second rotating shaft 502, and the third rotating shaft 503 is 3.6: 3.6:1.
  • the rotation ratio of the third rotating shaft 503 and the rotating device 803 is 1: 1.8.
  • Example 9 The rotation ratio of the third rotating shaft 503 and the rotating device 803 is 1: 1.8.
  • the scraper plate 603 is tangent to the inner wall of the first chamber casing 202 and leaves a safety gap of 15 mm.
  • the center angle d of the agitating plate 602 is 35°.
  • the angle f between the agitating plates of each impeller and the agitating plates of the adjacent impellers is 17°.
  • the angle g between the agitating plate 602 and the vertical plane and the scraper plate 603 is 32°.
  • the scraper plate 703 is tangent to the inner wall of the second chamber casing 203, and a safety gap of 15 mm is left.
  • the center angle d' of the stirring plate 702 is 35°.
  • the angle f between the agitating plates of each impeller and the agitating plates of the adjacent impellers is 17°.
  • the angle ga between the agitating plate 702 and the vertical plane and the scraper plate 703 is 32°.
  • the scraper plate 803 is tangent to the inner wall of the second chamber casing 207 and has a safety clearance of 15 mm.
  • the scraper plate on either of the blades of any of the impellers of the second agitating system 7 is tangent to the side of the first rotating shaft 501 adjacent to the second rotating shaft 502, leaving a safety clearance of 15 mm.
  • the rotational speed ratio of the first rotating shaft 501, the second rotating shaft 502, and the third rotating shaft 503 is 3.8: 3.8:1.
  • the scraper plate 603 is tangent to the inner wall of the first chamber casing 202 and leaves a safety gap of 17 mm.
  • the center angle d of the agitating plate 602 is 38°.
  • the angle f between the agitating plates of each impeller and the agitating plates of the adjacent impellers is 19°.
  • the angle g between the agitating plate 602 and the vertical plane and the scraper plate 603 is 36°.
  • the scraper plate 703 is tangent to the inner wall of the second chamber casing 203 and leaves a safety gap of 17 mm.
  • the center angle d' of the stirring plate 702 is 38°.
  • the angle f between the agitating plates of each impeller and the agitating plates of the adjacent impellers is 19°.
  • the angle g' between the agitating plate 702 and the vertical plane and the scraper plate 703 is 36°.
  • the scraper plate 803 is tangent to the inner wall of the second chamber casing 207 and leaves a safety gap of 17 mm.
  • the scraper plate on either of the blades of any of the impellers of the second agitation system 7 is tangent to the side of the first rotating shaft 501 adjacent to the second rotating shaft 502, leaving a safety clearance of 17 mm.
  • the rotational speed ratio of the first rotating shaft 501, the second rotating shaft 502, and the third rotating shaft 503 is 4.0: 4.0:1.
  • Embodiment 11 - Embodiment 1 is improved by the following technical parameters:
  • the scraper plate 603 is tangential to the inner wall of the first chamber casing 202 and leaves a safety gap of 19 mm.
  • the center angle d of the stirring plate 602 is 41 °.
  • the angle f between the agitating plates of each impeller and the agitating plates of the adjacent impellers is 20°.
  • the angle g between the agitating plate 602 and the vertical plane and the scraper plate 603 is 40°.
  • the scraper plate 703 is tangent to the inner wall of the second chamber casing 203 and leaves a safety gap of 19 mm.
  • the center angle d' of the stirring plate 702 is 41 ° 0
  • the angle f between the agitating plates of each impeller and the agitating plates of the adjacent impellers is 20°.
  • the angle between the agitating plate 702 and the vertical plane and the scraper plate 703 is 40°.
  • the scraper plate 803 is tangent to the inner wall of the second chamber casing 207 and leaves a safety gap of 19 mm.
  • the scraper plate on either of the blades of any of the impellers of the second agitating system 7 is tangent to the side of the first rotating shaft 501 adjacent to the second rotating shaft 502, and leaves a safety gap of 19 mm.
  • the rotational speed ratio of the first rotating shaft 501, the second rotating shaft 502, and the third rotating shaft 503 is 4.2: 4.2:1.
  • the rotation ratio of the third rotating shaft 503 and the rotating device 803 is 1:2.1. Preferred embodiment:
  • the first embodiment is used to improve the first embodiment:
  • the scraper plate 603 is tangent to the inner wall of the first chamber casing 202 and leaves a 6 mm safety gap.
  • the center angle d of the agitating plate 602 is 30°.
  • the angle f between the agitating plates of each impeller and the agitating plates of the adjacent impellers is 15°.
  • the angle g between the agitating plate 602 and the vertical plane and the scraper plate 603 is 10°.
  • the scraper plate 703 is tangent to the inner wall of the second chamber casing 203 and leaves a safety gap of 6 mm.
  • the center angle d' of the agitating plate 702 is 30°.
  • the angle f between the agitating plates of each impeller and the agitating plates of the adjacent impellers is 15°.
  • the angle ga between the agitating plate 702 and the vertical plane and the scraper plate 703 is 10°.
  • the scraper plate 803 is tangent to the inner wall of the second chamber casing 207 and leaves a 6 mm safety gap.
  • the scraper plate on either of the blades of any of the impellers of the second agitating system 7 is tangent to the side of the first rotating shaft 501 adjacent to the second rotating shaft 502, and a safety gap of 6 mm is left.
  • the rotational speed ratio of the first rotating shaft 501, the second rotating shaft 502, and the third rotating shaft 503 is 3.5:3.5:1.
  • the ratio of the rotation speed of the third rotating shaft 503 and the rotating device 803 is 1:1.8.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Mixers Of The Rotary Stirring Type (AREA)

Description

说 明 书 组合式三腔混合反应釜及其方法 技术领域
本发明涉及一种混合反应釜, 特别涉及一种组合式三腔混合反应釜, 属于机械混合 设备领域。
本发明还涉及一种采用组合式三腔混合反应釜进行混合的混合方法。 背景技术
在复原米加工过程中,需要将谷物的固体粉末和水等液体进行均匀混合,得到粘度高 的固液混合物,而上述固液混合物中,又需要进一步均匀添加各种固体和 /或液体添加剂。 而上述各种物料需要均匀分布在所得固液混合物中,以使得制得的复原米的各物质含量符 合标准。
然而由于谷物的固体粉末与水混合后得到的固液混合物的粘度高,其后进一步添加的 各种液体、 固体粉末、添加剂等, 难以均匀的分布在其中。尤其是固体粉末与粘度髙的固 液混合物的混合过程中, 会产生固体粉末的二次凝聚颗粒, 即, 粉团, 该粉团外部是粉末 与高粘度固液混合物的混合物,而内部则是没有混合的固体粉末。并且即便在混合过程中 进行搅拌,在相当长的时间内,仍会混合不均勾,而已经产生的二次凝聚再次分散到混合 物中十分困难。同时,如果需要同时向粘度高的固液混合物中添加液体和固体粉末,添加 的液体和固体粉末之间由于混合也会带来二次凝聚问题。
如果采用少量的液体、固体粉末、添加剂和粘度高的固液混合物进行搅拌混合,虽然 可以得到较为均匀的混合物,但是混合的速度较慢,所得混合物较少,无法满足大批量的 工业化生产的需要。
基于日本专利申请 278598/202、 21188/2003、 185502/2003 的中国专利申请
03164908.4中, 公开了一种搅拌混合装置及搅拌混合方法, 该装置包括一个近似圆筒状 的混合容器,其内部具有搅拌叶片,粉体和液体通过不同的入口进入混合容器,然后在搅 拌叶片的搅拌下,进行混合。搅拌叶片之间形成了分隔室,从而将粉体和液体分隔成若干 组进行混合,然而在实际混合过程中,无法良好的进行分组混合, 并且混合容器的内壁上 会存积又大量混合物,无法被均匀搅拌。并且该装置不适用于粉体与高粘度固液混合物的 混合。
PCT国际申请 PCT/US2003/011426中, 公开了一种混合设备, 该设备包括一个底 部充满液体的桶,一个插入液体中并且内部具有旋转叶片的竖直导管,固体粉末从该竖直 导管从上至下的添加之导管中具有液体的部分,并在搅拌叶片的作用下,和液体进行混合, 然后再分散到导管外侧的桶中和液体进行进一步的混合。然而该设备适用于将少量的固体 粉末分散到大量的液体中, 并且所得固液混合物不能具有较高粘度, 否则将会堵塞导管。
基于日本专利的中国专利申请 03122966.2中,公开了一种粉体和液体的混合装置及 其方法,该装置中粉体从混合容器的顶部发散落下,然后在下落过程中与容器四周喷射的 液体相互混合。虽然这种混合方法可以在一定程度上让粉体和液体进行分散混合,避免粉 团产生,然后并不是所有下落的粉体都可以和喷射的液体进行混合,未混合的粉体和液体 落到混合容器的底部,仍不能进行均勾混合。 同时,具有高粘度的固液混合物无法从容器 四周喷射, 故该装置不适用于粉体与高粘度固液混合物的混合。
中国专利申请 200410084721.1 中, 公开了一种立式固液混合装置及混合方法, 该 装置包含一组沿着混合容器内壁设置的挡板,将混合容器划分成若干中空的搅拌室,然后 利用混合容器中央的一组搅拌叶片搅拌各搅拌室内的粉体和液体进行混合。然而 于水平 中空的搅拌室的存在, 从混合容器顶部投料的各物料将会大量积攒在上部的几个搅拌室 内,而导致各个搅拌室内物料分布的不均,同时如果粉体和液体的混合物具有较高粘度的 话,该混合物也将因各个挡板及搅拌室的存在而阻塞混合容器。同时单一的粉体添加入口, 会导致物料在混合容器的横截面上不能沿各个方向均匀分布。
同时中国专利 200610011506.8和欧洲专利 ΕΡ06113920.0分别公开了两种静态混合 装置,利用各物料的分流,进行混合,然而上述装置不适用于粉体与高粘度固液混合物的 混合。
同时中国专利 200410090534.4中, 公开了一种内部具有搅拌叶片的卧式混合设备, 粉体和液体分别从卧式混合设备的一侧的顶部和底部注入装置中,然后利用叶片进行搅拌 混合。 然而这种装置无法解决需要同时向具有髙粘度的固液混合物中添加液体和固体粉 末, 并同时避免添加的液体和固体粉末之间产生粉团的问题。
除上述外, 中国专利 200510009386.3、 200510042674.9、 200510129550.4、 200510103613.9等也都公开了多种混合装置,然而上述装置仍旧未能解决粘度髙的固液 混合物和液体、 固体粉末、 添加剂等按一定配比进行均匀混合的技术问题。 发明内容
本发明的一个目的在于提供一种组合式三腔混合反应釜,通过该装置可以将固液混合 物和固体粉末、液体、添加剂等按一定配比进行均匀混合,特别适用于粘度高的固液混合 物和固体粉末、 液体、 添加剂的均匀混合。
本发明的另一目的在于提供一种采用组合式三腔混合反应釜进行混合的混合方法,通 过该方法可以将固液混合物和固体粉末、液体、添加剂等按一定配比进行均勾混合,特别 适用于粘度高的固液混合物和固体粉末、 液体、 添加剂的均匀混合。
本发明所公开的一种组合式三腔混合反应釜包含进料系统、第一腔壳、第二腔壳、第 三腔壳、 外层壳体、第一转轴、 第二转轴、第三转轴、第一搅拌系统、第二搅拌系统、第 三搅拌系统、 传料系统和出料系统。
所述的第一腔壳和第二腔壳是相交的两个中空圆筒结构,所述的第三腔壳位于第一腔 壳、第二腔壳的底部, 并通过传料系统与两者相互连接, 三个腔体的轴心相互平行, 并位 于外层壳体的内部。所述的第一腔壳内部形成有第一腔体,第二腔壳内部形成有第二腔体, 第三腔壳内部形成有第三腔体, 所述的第一腔体、 第二腔体和第三腔体相互连通。
所述的第一转轴位于第一腔体内部,并通过其圆心。所述的第一搅拌系统连接在第一 转轴上, 并随之转动。
所述的第一搅拌系统是一组连接在第一转轴上的叶轮, 所述的每一个叶轮包含 2〜4 片包含有搅拌板和刮料板的叶片,叶片间的间隔角相等。所述的搅拌板的一端连接在转轴 上, 另一端连接有刮料板, 该刮料板与第一腔壳的内壁相切, 并留有 2mm〜20mm的安 全间隙。
所述的搅拌板为扇形结构, 其圆心角度为 10°〜45°, 其内径与转轴外径相等, 其外 径为第一腔壳内径与刮料板厚度之差。
所述的刮料板为扇形结构,其圆心角度与其所连接的搅拌板的圆心角度相等,其内径 与搅拌板外径相等, 其外径与第一腔壳内径相等。
所述的刮料板与竖直平面处于同一平面, 所述的搅拌板与竖直平面和刮料板成 0°〜 45°夹角, 优选 30°夹角。
所述的第一搅拌系统的每一个叶轮的搅拌板与其相邻叶轮的搅拌板之间交错 0°〜 45°夹角。
所述第一搅拌系统的各组叶轮之间的间隔相等。
所述的第二转轴位于第二腔体内部,并通过其圆心。所述的第二搅拌系统连接在第二 转轴上, 并随之转动。
所述的第二搅拌系统是一组连接在第二转轴上的叶轮, 所述的每一个叶轮包含 2〜4 片包含有搅拌板和刮料板的叶片,叶片间的间隔角相等。所述的搅拌板的一端连接在转轴 上, 另一端连接有刮料板, 该刮料板与第二腔壳的内壁相切, 并留有 2mm〜20mm的安 全间隙。
所述的搅拌板为扇形结构, 其圆心角度为 10°〜45°, 其内径与转轴外径相等, 其外 径为第二腔壳内径与刮料板厚度之差。
所述的刮料板为扇形结构,其圆心角度与其所连接的搅拌板的圆心角度相等,其内径 与搅拌板外径相等, 其外径与第二腔壳内径相等。
所述的刮料板与竖直平面处于同一平面, 所述的搅拌板与竖直平面和刮料板成 0°〜 45°夹角, 优选 30°夹角。
所述的第二搅拌系统的每一个叶轮的搅拌板与其相邻叶轮的搅拌板之间交错 0°〜 45°夹角。
所述第二搅拌系统的各组叶轮之间的间隔相等。
所述的第三转轴位于第三腔体内部,并通过其圆心。所述的第三搅拌系统连接在第三 转轴上, 并随之转动。
所述的第三搅拌系统是一组连接在第三转轴上的叶轮,所述的每一个叶轮包含有旋转 轴、刮料板和旋转装置, 所述的旋转轴的一端连接在转轴上, 另一端连接有刮料板, 该刮 料板与第三腔壳的内壁相切, 并留有 2mm〜20mm的安全间隙。
所述的第三搅拌系统的旋转轴以第三转轴为圆心,围绕其旋转,所述的旋转装置套在 旋转轴上, 并以其为圆心, 围绕其旋转。
所述旋转装置是一个圆环变形体结构,其中空的内部圆用于通过旋转轴,其环外侧的 圆周上设有凹凸齿轮, 从而形成叶轮结构, 起到搅拌作用。
所述的旋转轴是一个竖直横截面为近似长方形的圆柱结构,其外径与旋转装 ΐ内径相 等,所述近似长方形的横截面的一边与第三转轴相接,所述旋转轴的长度为第三腔壳内径 与刮料板厚度、 第三转轴半径之差。
所述的旋转轴、 刮料板与竖直平面处于同一平面。
所述第三搅拌系统的各组叶轮之间的间隔相等。
所述第一搅拌系统的叶轮与第二搅拌系统的叶轮交错排布,任两组相邻的第一搅拌系 统的叶轮之间分布有一组第二搅拌系统的叶轮,并且该第一搅拌系统叶轮与第二搅拌系统 叶轮的间距和另一第一搅拌系统叶轮与该第二搅拌系统叶轮的间距相等。所述第二搅拌系 统的任一叶轮的任一叶片上的刮料板并与第一转轴靠近第二转轴的一侧相切, 并留有
2mm~20mm的安全间隙。
所述第一腔壳和第二腔壳的半径相等。所述第三腔壳的直径为第一腔壳半径、第一转轴半 径和第二腔壳直径之和。所述第一转轴和第二转轴做相对转动。所述第一转轴、第二转轴、 第三转轴的转速比为 2.2: 2.2: 1〜4.6: 4.6: 1。所述第三转轴和旋转装置的转速比为 1: 1〜1: 2.2。
所述外层壳体和第一腔壳进一步包括位于其上并穿过其中的第一腔门,以使得打开所 述第一腔门时,暴露出第一腔体。所述外层壳体和第二腔壳进一步包括位于其上并穿过其 中的第二腔门, 以使得打开所述第二腔门时,暴露出第二腔体。所述外层壳体和第三腔壳 进一步包括位于其上并穿过其中的第三腔门,以使得打开所述第三腔门时,暴露出第三腔 体。
所述的进料系统包含固体进料口、液体进料口、第一添加剂进料口、第二添加剂进料 口。所述的固体进料口和液体进料口相邻地设置在所述外层壳体顶面上,并分别穿透所述 外层壳体和第一腔壳、第二腔壳,连通所述第一腔体和第二腔体。所述的第一添加剂进料 口、第二添加剂进料口设置在所述外层壳体顶面上,并穿透所述外层壳体和第一腔壳,连 通所述第一腔体。所述的传料系统设置在外层壳体上, 并穿透外层壳体、第一腔壳、第二 腔壳和第三腔壳,连通第一腔体、第二腔体和第三腔体。所述的出料系统设置在所述外层 壳体底面上, 并穿透所述外层壳体和第三腔壳, 连通所述第三腔体。
本发明公幵的一种采用组合式三腔混合反应釜进行混合的混合方法, 包含以下步骤: 步骤 1 : 从外层壳体底部的预混物料进口输入预混物料进入第一腔体和第二腔体, 并 在第一搅拌系统和第二搅拌系统的旋转搅拌作用下, 均匀分布在第一腔体和第二腔体内 部。
步骤 2:从所述的固体进料口输入固体粉末进入第一腔体内部,在第一搅拌系统的旋 转搅拌作用下, 所述固体粉末与预混物料充分均匀混合。
步骤 3: 同时, 从所述液体进料口输入气体、 液体或气液混合物进入第二腔体内部, 在第二搅拌系统的旋转搅拌作用下,所述气体、液体或气液混合物与预混物料充分均匀混 合。
步骤 4:在第一搅拌系统和第二搅拌系统的相对旋转搅拌作用下, 混合有固体粉末的 预混物料和混合有气体、 液体或气液混合物的预混物料充分均匀混合, 得到混合物料。 所述的混合物料在第一搅拌系统和第二搅拌系统的各叶轮的搅拌板和的作用下,向第 一腔体和第二腔体后部传输。
第一搅拌系统和第二搅拌系统的各叶轮的刮料板和分别将第一腔壳内壁、第二腔壳内 壁上粘附的物料刮除, 以再次进行混合。
步骤 5: 从第一添加剂进料口输入添加剂进入第一腔体和第二腔体,在第一搅拌系统 和第二搅拌系统的旋转搅拌作用下,所述添加剂和混合物料充分均匀混合,得到含有添加 剂的混合物料。
所述的含有添加剂的混合物料在第一搅拌系统和第二搅拌系统的各叶轮的搅拌板和 的作用下, 向第一腔体和第二腔体后部传输。
' 第一搅拌系统和第二搅拌系统的各叶轮的刮料板和分别将第一腔壳内壁、第二腔壳内 壁上粘附的物料刮除, 以再次进行混合。
步骤 6: 从第二添加剂进料口输入添加剂进入第一腔体和第二腔体,在第一搅拌系统 和第二搅拌系统的旋转搅拌作用下, 所述添加剂和混合物料充分均勾混合, 得到混合物。
所述的混合物在第一搅拌系统和第二搅拌系统的各叶轮的搅拌板和的作用下,向第一 腔体和第二腔体后部传输。
第一搅拌系统和第二搅拌系统的各叶轮的刮料板和分别将第一腔壳内壁、第二腔壳内 壁上粘附的物料刮除, 以再次进行混合。
步骤 7:借助第一搅拌系统和第二搅拌系统的各叶轮的搅拌板和的旋转搅拌以及重力 作用, 所述的混合物通过传料系统传输至第三腔体。
步骤 8: 从传料系统输入混合物进入第三腔体,在第三搅拌系统及其旋转装置的旋转 搅拌作用下, 所述混合物进行进一步的均匀混合, 得到充分混合的混合物。
所述的充分混合的混合物在第三搅拌系统各叶轮的旋转装置的作用下,向第三腔体后 部传输。
第三搅拌系统各叶轮的刮料板将第三腔壳内壁上粘附的物料刮除, 以再次进行混合。
步骤 9:借助第三搅拌系统各叶轮的旋转装置的旋转搅拌以及重力作用,所述的混合 物通过出料系统输出。
利用上述装置及方法,从外层壳体底部的预混物料进口输入预混物料,在第一搅拌系 统和第二搅拌系统的搅拌下,均匀分布在第一腔体和第二腔体内部。此时同时从固体进料 口和液体进料口添加固体粉末和液体进入第一腔体和第二腔体,固体粉末在第一腔体内部 和预混物料进行均匀混合,液体在第二腔体内部和预混物料进行均匀混合,从而避免了添 加的固体粉末和液体之间由于混合而带来的二次凝聚。之后相对转动的第一搅拌系统和第 二搅拌系统,将添加有固体粉末的预混物料和添加有液体的预混物料进行再次的混合,此 时的混合相当于将粘度、密度稍高的固液混合物和粘度、密度稍低的同种固液混合物进行 混合,此时的混合非常容易进行并且容易混合均匀。随后通过第一添加剂进料口和第二添 加剂进料口向混合物输入添加剂,此时由于存在两个腔体,输入的添加剂在搅拌系统的带 动下被分散成两组,每组内部添加剂进行分散混合,然后两组之间在搅拌系统的带动下进 行再次分散混合,通过两个腔体和两个搅拌系统的设置,一次输入的物料可以进行多次的 分散和混合, 从而达到充分均匀混合的目的并避免二次凝聚现象, 即粉团现象。综上, 本 发明的实质是借助两个腔体和两个搅拌系统的存在,使得腔体内部的物料不时的被各组叶 轮随机分成两组,每组自行进行混合,然后两组再次被对转的叶轮带动相互混合,这种多 次的随机分组和再混合使得物料内部的各成分通过多次的随机分组和随机混合而达到均 匀分布的状态。
同时搅拌系统的各组叶轮之间交错有一定的角度,更加便于所述的随机分组和随机混 合的进行。同时各叶轮叶片的搅拌板与竖直面成一定的角度,便于粘度高的混合物从混合 装置内部的一端传输向另一端。
通过上述装置和方法,本发明利用多次的随机分组和随机混合有效的避免了嵩粘度固 液混合物和固体粉末、 液体、 添加剂等的混合过程中存在的各种问题, 可以快速、 持续、 稳定的以一定配比对高粘度固液混合物、 固体粉末、 液体、 添加剂进行均勾的混合。 附图说明
图 1是本发明的组合式三腔混合反应釜的整体结构侧视图。
图 2是本发明的组合式三腔混合反应釜沿图 1的 A-A'的横截面视图。
图 3a是本发明的组合式三腔混合反应釜沿图 1的 B-B'的横截面视图。
图 3b是本发明的组合式三腔混合反应釜的一个改良设备沿图 1 的 B-B'的横截面视 图。
图 4是本发明的组合式三腔混合反应釜沿图 1的 C-C'的横截面视图。
图 5是本发明的组合式三腔混合反应釜沿图 1的 D-D'的横截面视图。
图 6是本发明的组合式三腔混合反应釜沿图 1的 E-E'的横截面视图。
图 7是本发明的组合式三腔混合反应釜的搅拌板和刮料板、 旋转装置的侧视图。 图 8a、 8b、 8c、 8d是本发明的组合式三腔混合反应釜的一组相邻叶轮的各叶轮间交 错角度关系的示意图。 具体实施方式
根据本发明的权利要求和发明内容所公开的内容, 本发明的技术方案具体如下所述。 实施例一:
一种组合式三腔混合反应釜包括如下部分:
根据图 1、 图 2和图 4:
一种组合式三腔混合反应釜包含进料系统 201、第一腔壳 202、第二腔壳 203、第三 腔壳 207、 外层壳体 204、 第一转轴 501、 第二转轴 502、 第三转轴 503、 第一搅拌系统 6、 第二搅拌系统 7、 第三搅拌系统 8、 传料系统 200和出料系统 209。
所述的第一腔壳 202和第二腔壳 203是相交的两个中空圆筒结构, 所述的第三腔壳 207位于第一腔壳 202、 第二腔壳 203的底部, 并通过传料系统 200与两者相 5连接, 三个腔体的轴心相互平行, 并位于外层壳体 204的内部。
所述的第一腔壳 202内部形成有第一腔体 205, 第二腔壳 203内部形成有第二腔体 206, 第三腔壳 207内部形成有第三腔体 208, 所述的第一腔体 205、第二腔体 206和第 三腔体 208相互连通。
根据图 2和图 4:
所述的第一转轴 501位于第一腔体 205内部, 并通过其圆心。 所述的第一搅拌系统 6连接在第一转轴 501上, 并随之转动。
所述的第一搅拌系统 6是一组连接在第一转轴 501上的叶轮, 所述的每一个叶轮包 含 2~4片包含有搅拌板 602和刮料板 603的叶片, 叶片间的间隔角 e相等。 所述的搅 拌板 602的一端连接在转轴 501上, 另一端连接有刮料板 603, 该刮料板 603与第一腔 壳 202的内壁相切, 并留有 2mm〜20mm的安全间隙。
所述的搅拌板 602为扇形结构, 其圆心角 d为 10°〜45°, 其内径与转轴 501外径相 等, 其外径为第一腔壳 202内径与刮料板 603厚度之差。
所述的刮料板 603为扇形结构, 其圆心角度与其所连接的搅拌板 602的圆心角度相 等, 其内径与搅拌板 602外径相等, 其外径与第一腔壳 202内径相等。
根据图 2和图 4:
所述的第二转轴 502位于第二腔体 206内部, 并通过其圆心。 所述的第二搅拌系统 7连接在第二转轴 502上, 并随之转动。
所述的第二搅拌系统 7是一组连接在第二转轴 502上的叶轮, 所述的每一个叶轮包 含 2〜4片包含有搅拌板 702和刮料板 703的叶片,叶片间的间隔角 e'相等。所述的搅拌 板 702的一端连接在转轴 502上, 另一端连接有刮料板 703, 该刮料板 703与第二腔壳 203的内壁相切, 并留有 2mm〜20mm的安全间隙。
所述的搅拌板 702为扇形结构, 其圆心角 d'为 10°〜45°, 其内径与转轴 502外径相 等, 其外径为第二腔壳 203内径与刮料板 703厚度之差。
所述的刮料板 703为扇形结构, 其圆心角度与其所连接的搅拌板 702的圆心角度相 等, 其内径与搅拌板 702外径相等, 其外径与第二腔壳 203内径相等。
根据图 3a、 图 3b和图 4:
所述的第三转轴 503位于第三腔体 208内部, 并通过其圆心。 所述的第三搅拌系统 8连接在第三转轴 503上, 并随之转动。
所述的第三搅拌系统 8是一组连接在第三转轴 503上的叶轮, 所述的每一个叶轮包 含有旋转轴 801、刮料板 802和旋转装置 803,所述的旋转轴 801的一端连接在转轴 503 上,另一端连接有刮料板 802,该刮料板 802与第三腔壳 207的内壁相切,并留有 2mm〜 20mm的安全间隙。
所述的第三搅拌系统 8的旋转轴 801以第三转轴 503为圆心, 围绕其旋转, 所述的 旋转装置 803套在旋转轴 801上, 并以其为圆心, 围绕其旋转。
所述旋转装置 803是一个圆环变形体结构, 其中空的内部圆用于通过旋转轴 801, 其环外侧的圆周上设有凹凸齿轮, 从而形成叶轮结构, 起到搅拌作用。
所述的旋转轴 801 是一个竖直横截面为近似长方形的圆柱结构, 其外径与旋转装置 803内径相等, 所述近似长方形的横截面的一边与第三转轴 503相接, 所述旋转轴 801 的长度为第三腔壳 207内径与刮料板 802厚度、 第三转轴 503半径之差。
所述的旋转轴 801、 刮料板 802与竖直平面处于同一平面。
根据图 2和图 8a、 8b、 8c、 8d:
所述的第一搅拌系统 6的每一个叶轮的搅拌板与其相邻叶轮的搅拌板之间交错夹角 f 为 0。〜45°。
所述的第二搅拌系统 7的每一个叶轮的搅拌板与其相邻叶轮的搅拌板之间交错夹角 f 为 0°〜45。。
根据图 7: 所述的刮料板 603与竖直平面处于同一平面并沿第一腔壳 202内壁延伸, 所述的搅 拌板 602与竖直平面和刮料板 603间的夹角 g为 0°〜45°。
所述的刮料板 703与竖直平面处于同一平面并沿第二腔壳 203内壁延伸, 所述的搅 拌板 702与竖直平面和刮料板 703间的夹角 g'为 0°〜45°。
所述的旋转装置 803是一个中空的齿轮状的旋转叶轮, 其中的中空部分为圆形, 用 于通过旋转轴 801并以该旋转轴 801为轴心进行旋转。当旋转轴 801以第二转轴 503为 圆心旋转时, 带动其上连接的旋转装置 803也以第二转轴 503为圆心旋转。 故旋转装置 803在自身围绕旋转轴 801进行转动的同时, 还进一步的围绕第二转轴 503旋转。
根据图 4、 图 5和图 6:
所述第一腔体 205和第二腔体 206划分成多个腔室, 每一腔室的侧壁分别设有第一 腔门 2020和第二腔门 2030。
所述第一搅拌系统 6的各组叶轮之间的间隔相等, 如叶轮 60011、 叶轮 60012和叶 轮 60013之间的间隔相等。
所述第二搅拌系统 7的各组叶轮之间的间隔相等, 如叶轮 70011和叶轮 70012之间 的间隔相等。
所述第三搅拌系统 8的各组叶轮之间的间隔相等, 如叶轮 80011和叶轮 80012之间 的间隔相等。
所述第一搅拌系统 6的叶轮与第二搅拌系统 7的叶轮交错排布。 任两组相邻的第一 搅拌系统 6的叶轮之间分布有一组第二搅拌系统 7的叶轮, 并且该第一搅拌系统 6叶轮 与第二搅拌系统 7叶轮的间距和另一第一搅拌系统 6叶轮与该第二搅拌系统 7叶轮的间 距相等。 如相邻的叶轮 60011和叶轮 60012之间分布有叶轮 70011, 并且叶轮 60011和 叶轮 70011之间的间距与叶轮 70011和叶轮 60012之间的间距相等, 叶轮相邻的 70011 和叶轮 70012之间分布有叶轮 60012,并且叶轮 70011和叶轮 60012之间的间距与叶轮 60012和叶轮 70012之间的间距相等。
所述第二搅拌系统 7的任一叶轮的任一叶片上的刮料板并与第一转轴 501靠近第二 转轴 502的一侧相切, 并留有 2mm〜20mm的安全间隙。
根据图 3a、 图 3b和图 6:
所述第三搅拌系统 8的每个叶轮有一套包含旋转轴 801、刮料板 802和旋转装置 803 的旋转结构, 或有处于同一直线上的两套旋转结构。
图 6展示了不同结构的第三搅拌系统 8。 在腔 2041 内, 是一组叶轮 8001 , 其叶轮 80011和 80012都只包含有一套旋转结构, 并且两者之间相互重叠。在腔 2042内, 是一 组叶轮 8002, 其叶轮 80021、 80022和 80023都只包含有一套旋转结构, 相邻的两套旋 转结构之间交错 180°, 如叶轮 80021和 80022之间、 80022和 80023之间。 在腔 2043 内,是一组叶轮 8003,其叶轮 80031和 80032都包含两套旋转结构,叶轮 80031和 80032 相互重叠, 每个叶轮间的两套旋转结构处于同一直线上。
根据图 1至图 6:
所述外层壳体 204 和第一腔壳 202 进一步包括位于其上并穿过其中的第一腔门 2020, 以使得打开所述第一腔门 2020时, 暴露出第一腔体 205。 所述外层壳体 204和 第二腔壳 203进一步包括位于其上并穿过其中的第二腔门 2030, 以使得打开所述第二腔 门 2030时,暴露出第二腔体 206。所述外层壳体 204和第三腔壳 207进一步包括位于其 上并穿过其中的第三腔门 2070,以使得打开所述第三腔门 2070时,暴露出第三腔体 208。
所述的进料系统 201包含固体进料口 2011、 液体进料口 2012、 第一添加剂进料口 2013、 第二添加剂进料口 2014。 所述的固体进料口 2011和液体进料口 2012相邻地设 置在所述外层壳体 204顶面上, 并分别穿透所述外层壳体 204和第一腔壳 202、 第二腔 壳 203, 连通所述第一腔体 205和第二腔体 206。 所述的第一添加剂进料口 2013、 第二 添加剂进料口 2014设置在所述外层壳体 204顶面上, 并穿透所述外层壳体 204和第一 腔壳 202, 连通所述第一腔体 205。 所述的传料系统 200设置在外层壳体 204上, 并穿 透外层壳体 204、第一腔壳 202、第二腔壳 203和第三腔壳 207, 连通第一腔体 205、第 二腔体 206和第三腔体 208。 所述的出料系统 209设置在所述外层壳体 204底面上, 并 穿透所述外层壳体 204和第三腔壳 207, 连通所述第三腔体 208。
根据图 4:
所述第一腔壳 202和第二腔壳 203的半径相等。 所述第三腔壳 207的直径为第一腔 壳 202半径、 第一转轴 501半径和第二腔壳 203直径之和。
所述第一转轴 501和第二转轴 502做相对转动。 所述第一转轴 501、 第二转轴 502、 第 三转轴 503的转速比为 2.2: 2.2: 1〜4.6: 4.6: 1。 所述第三转轴 503和旋转装置 803 的转速比为 1 : 1〜1: 2.2。
本发明公开的一种釆用组合式三腔混合反应釜进行混合的混合方法, 包含以下步骤: 根据图 1和图 2:
步骤 1: 从外层壳体 204底部的预混物料进口输入预混物料进入第一腔体 205和第 二腔体 206, 并在第一搅泮系统 6和第二搅拌系统 7的旋转搅拌作用下, 均匀分布在第 一腔体 205和第二腔体 206内部。
步骤 2: 从所述的固体进料口 2011输入固体粉末进入第一腔体 205内部, 在第一搅 拌系统 6的旋转搅拌作用下, 所述固体粉末与预混物料充分均匀混合。
步骤 3: 同时, 从所述液体进料口 2012输入气体、 液体或气液混合物进入第二腔体 206内部,在第二搅拌系统 7的旋转搅拌作用下,所述气体、液体或气液混合物与预混物 料充分均匀混合。
根据图 2和图 5:
步骤 4:在第一搅拌系统 6和第二搅拌系统 7的相对旋转搅拌作用下,混合有固体粉 末的预混物料和混合有气体、液体或气液混合物的预混物料充分均匀混合,得到混合物料。
所述的混合物料在第一搅拌系统 6和第二搅拌系统 7的各叶轮的搅拌板 602和 702 的作用下, 向第一腔体 206和第二腔体 207后部传输。
第一搅拌系统 6和第二搅拌系统 7的各叶轮的刮料板 603和 703分别将第一腔壳 202 内壁、 第二腔壳 203内壁上粘附的物料刮除, 以再次进行混合。
根据图 1和图 2
步骤 5: 从第一添加剂进料口 2013输入添加剂进入第一腔体 206和第二腔体 207, 在第一搅拌系统 6和第二搅拌系统 7的旋转搅拌作用下, 所述添加剂和混合物料充分均 匀混合, 得到含有添加剂的混合物料。
所述的含有添加剂的混合物料在第一搅拌系统 6和第二搅拌系统 7的各叶轮的搅拌 板 602和 702的作用下, 向第一腔体 206和第二腔体 207后部传输。
第一搅拌系统 6和第二搅拌系统 7的各叶轮的刮料板 603和 703分别将第一腔壳 202 内壁、 第二腔壳 203内壁上粘附的物料刮除, 以再次进行混合。
步骤 6: 从第二添加剂进料口 2014输入添加剂进入第一腔体 206和第二腔体 207, 在第一搅拌系统 6和第二搅拌系统 7的旋转搅拌作用下, 所述添加剂和混合物料充分均 匀混合, 得到混合物。
所述的混合物在第一搅拌系统 6和第二搅拌系统 7的各叶轮的搅拌板 602和 702的 作用下, 向第一腔体 206和第二腔体 207后部传输。
第一搅拌系统 6和第二搅拌系统 7的各叶轮的刮料板 603和 703分别将第一腔壳 202 内壁、 第二腔壳 203内壁上粘附的物料刮除, 以再次进行混合。
根据图 1、 图 4和图 5:
步骤 7: 借助第一搅拌系统 6和第二搅拌系统 7的各叶轮的搅拌板 602和 702的旋 转搅拌以及重力作用, 所述的混合物通过传料系统 200传输至第三腔体 208。
根据图 1、 图 3、 图 4和图 6:
步骤 8:从传料系统 200输入混合物进入第三腔体 208,在第三搅拌系统 8及其旋转 装置 803的旋转搅拌作用下, 所述混合物进行进一步的均勾混合, 得到充分混合的混合 物。
所述的充分混合的混合物在第三搅拌系统 8各叶轮的旋转装置 803的作用下, 向第 三腔体 208后部传输。
第三搅拌系统 8各叶轮的刮料板 802将第三腔壳 207内壁上粘附的物料刮除, 以再次进 行混合。
步骤 9: 借助第三搅姅系统 8各叶轮的旋转装置 803的旋转搅拌以及重力作用, 所 述的混合物通过出料系统 209输出。
根据图 5和图 6,需要指出的是上述物料添加、分散和混合过程具体是按照如下所述 的方式进行的:
在第一腔体 205和第二腔体 206内填充有固液混合物。 在第一腔体 205和第二腔体 206的第一组腔室中, 从固体进料口 2011输入固体粉末, 固体粉末在第一搅拌系统 6的 第一组叶轮 6001的旋转搅拌作用下与固液混合物进行充分分散混合。 同时, 从液体进料 口 2012输入液体, 液体在第二搅拌系统 7的第一组叶轮 7001的旋转搅拌作用下与固液 混合物进行充分分散混合。 第一批固液混合物在叶轮 60011 作用下向后传输、 第二批固 液混合物在叶轮 70011作用下向后传输, 然后由于叶轮 60011和叶轮 70011对转, 混合 有固体粉末的第一批固液混合物和混合有液体的第二批固液混合物进行第一次相互混合, 添加的固体粉末和液体相互混合并且分布在固液混合物中,然后上述固液混合物又被随机 分成两批, 并分别被叶轮 60012和叶轮 70012搅拌,被叶轮 60012搅拌的第一批固液混 合物中添加进的固体粉末的含量减少而添加进的液体的含量增加, 被叶轮 70012搅拌的 第二批固液混合物中添加进的固体粉末的含量增加而添加进的液体的含量减少,然后在叶 轮 60012和叶轮 70012的对转作用下, 两批固液混合物又被混合, 使得添加的固体粉末 和液体随着固液混合物的混合进行第二次的相互混合,然后再次被随机分成两批。通过上 述若干次的随机混合和随机分开,添加的固体粉末和液体均匀的分布在固液混合物中,并 且固体粉末和液体之间也充分均匀混合。
随后上述固液混合物被第一组叶轮 6001和 7001向后传输至第二组腔室, 自此, 从 第一添加剂进料口 2013输入添加剂, 混有添加剂的固液混合物在第二组叶轮 6002和 7002作用下, 以前所述的方式进行多次的随机混合和随机分开,以使得添加剂均匀分布。 随后所得固液混合物被第二叶轮组 6002和 7002向后传输至第三腔室, 以与从第二添加 剂进料口 2014输入的添加剂相互混合。混合所得的固液混合物继续在随后的若干腔室中, 在搅拌系统 6和 7的作用下, 进行多次的随机混合和随机分开以及搅拌, 使得添加进的 固液粉末、 液体、 添加剂等均匀分布, 得到混合物, 并输出。
第三腔体 208主要起到储存混合物, 并缓慢搅拌, 增加混合物滞留时间, 以使得混 合物内部的可能的各种反应有足够的时间进行、 如交联、 乳化等等反应。
其中, 旋转装置 803是一个中空的齿轮状的旋转叶轮, 其中的中空部分为圆形, 用 于通过旋转轴 801并以该旋转轴 801为轴心进行旋转。当旋转轴 801以第三转轴 503为 圆心旋转时, 带动其上连接的旋转装置 803也以第三转轴 503为圆心旋转。 固旋转装置 803在自身围绕旋转轴 801进行转动的同时, 还进一步的围绕第三转轴 503旋转。 故该 旋转装置 803不仅可以使得物料沿第三转轴 503轴向运动, 还可以使得物料在第三腔体 208内部以第三转轴 503为圆心做圆周运动。 旋转装置 803而且带来全方位的各种物料 运动。 实施例二:
采用以下技术参数改进实施例一:
所述的第一搅拌系统 6中:
刮料板 603与第一腔壳 202的内壁相切, 并留有 3mm的安全间隙。
搅拌板 602的其圆心角 d为 14°。
每一个叶轮的搅拌板与其相邻叶轮的搅拌板之间交错夹角 f为 7°。
搅拌板 602与竖直平面和刮料板 603间的夹角 g为 4°。
所述的第二搅拌系统 7中:
刮料板 703与第二腔壳 203的内壁相切, 并留有 3mm的安全间隙。
搅拌板 702的圆心角 d'为 14°。
每一个叶轮的搅拌板与其相邻叶轮的搅拌板之间交错夹角 f为 7°。
搅拌板 702与竖直平面和刮料板 703间的夹角 g'为 4°。
刮料板 803与第二腔壳 207的内壁相切, 并留有 3mm的安全间隙。
第二搅拌系统 7的任一叶轮的任一叶片上的刮料板并与第一转轴 501靠近第二转轴 502的一侧相切, 并留有 3mm的安全间隙。 第一转轴 501、 第二转轴 502和第三转轴 503的转速比为 2.4: 2.4: 1。 第三转轴 503和旋转装置 803的转速比为 1: 1.2。 实施例三:
采用以下技术参数改进实施例一. - 所述的第一搅拌系统 6中:
刮料板 603与第一腔壳 202的内壁相切, 并留有 5mm的安全间隙。
搅拌板 602的其圆心角 d为 17°。
每一个叶轮的搅拌板与其相邻叶轮的搅拌板之间交错夹角 f为 8°。
搅拌板 602与竖直平面和刮料板 603间的夹角 g为 8°。
所述的第二搅拌系统 7中:
刮料板 703与第二腔壳 203的内壁相切, 并留有 5mm的安全间隙。
搅拌板 702的圆心角 d'为 17°。
每一个叶轮的搅拌板与其相邻叶轮的搅拌板之间交错夹角 f为 8°。
搅拌板 702与竖直平面和刮料板 703间的夹角 g'为 8°。
刮料板 803与第二腔壳 207的内壁相切, 并留有 5mm的安全间隙。
第二搅拌系统 7的任一叶轮的任一叶片上的刮料板并与第一转轴 501靠近第 502的一侧相切, 并留有 5mm的安全间隙。
第一转轴 501、 第二转轴 502和第三转轴 503的转速比为 2.6: 2.6: 1。 第三转轴 503和旋转装置 803的转速比为 1 : 1.3。 实施例四:
采用以下技术参数改进实施例一:
所述的第一搅拌系统 6中- 刮料板 603与第一腔壳 202的内壁相切, 并留有 7mm的安全间隙。
搅拌板 602的其圆心角 d为 20°。
每一个叶轮的搅拌板与其相邻叶轮的搅拌板之间交错夹角 f为 10°。
搅拌板 602与竖直平面和刮料板 603间的夹角 g为 12°。
所述的第二搅拌系统 7中:
刮料板 703与第二腔壳 203的内壁相切, 并留有 7mm的安全间隙。 搅拌板 702的圆心角 d'为 20°。
每一个叶轮的搅拌板与其相邻叶轮的搅拌板之间交错夹角 ΐ为 10°。
搅拌板 702与竖直平面和刮料板 703间的夹角 g'为 12°。
刮料板 803与第二腔壳 207的内壁相切, 并留有 7mm的安全间隙。
第二搅拌系统 7的任一叶轮的任一叶片上的刮料板并与第一转轴 501靠近第二转轴 502的一侧相切, 并留有 7mm的安全间隙。
第一转轴 501、 第二转轴 502和第三转轴 503的转速比为 2.8: 2.8: 1。 第三转轴 503和旋转装置 803的转速比为 1 : 1.4。 实施例五:
采用以下技术参数改进实施例一:
所述的第一搅拌系统 6中:
刮料板 603与第一腔壳 202的内壁相切, 并留有 9mm的安全间隙。
搅拌板 602的其圆心角 d为 23°。
每一个叶轮的搅拌板与其相邻叶轮的搅拌板之间交错夹角 f为 11 °。
搅拌板 602与竖直平面和刮料板 603间的夹角 g为 16°。
所述的第二搅拌系统 7中:
刮料板 703与第二腔壳 203的内壁相切, 并留有 9mm的安全间隙。
搅拌板 702的圆心角 d'为 23°。
每一个叶轮的搅拌板与其相邻叶轮的搅拌板之间交错夹角 f为 1 。
搅拌板 702与竖直平面和刮料板 703间的夹角 g'为 16°。
刮料板 803与第二腔壳 207的内壁相切, 并留有 9mm的安全间隙。
第二搅拌系统 7的任一叶轮的任一叶片上的刮料板并与第一转轴 501靠近第二转轴 502的一侧相切, 并留有 9mm的安全间隙。
第一转轴 501、 第二转轴 502和第三转轴 503的转速比为 3.0: 3.0: 1。
第三转轴 503和旋转装置 803的转速比为 1 : 1.5。 实施例六:
采用以下技术参数改进实施例一:
所述的第一搅拌系统 6中: 刮料板 603与第一腔壳 202的内壁相切, 并留有 11 mm的安全间隙。 搅拌板 602的其圆心角 d为 26。。
每一个叶轮的搅拌板与其相邻叶轮的搅拌板之间交错夹角 f为 13°。
搅拌板 602与竖直平面和刮料板 603间的夹角 g为 20°。
所述的第二搅拌系统 7中:
刮料板 703与第二腔壳 203的内壁相切, 并留有 11 mm的安全间隙。
搅拌板 702的圆心角 d'为 26°。
每一个叶轮的搅拌板与其相邻叶轮的搅拌板之间交错夹角 f为 13°。
搅拌板 702与竖直平面和刮料板 703间的夹角 g'为 20°。
刮料板 803与第二腔壳 207的内壁相切, 并留有 11 mm的安全间隙。
第二搅拌系统 7的任一叶轮的任一叶片上的刮料板并与第一转轴 501靠近第二转轴 502的一侧相切, 并留有 11 mm的安全间隙。
第一转轴 501、 第二转轴 502和第三转轴 503的转速比为 3.2: 3.2: 1。
第三转轴 503和旋转装置 803的转速比为 1 : 1.6。 实施例七:
采用以下技术参数改进实施例一:
所述的第一搅拌系统 6中:
刮料板 603与第一腔壳 202的内壁相切, 并留有 12mm的安全间隙。
搅拌板 602的其圆心角 d为 29°。
每一个叶轮的搅拌板与其相邻叶轮的搅拌板之间交错夹角 f为 14°。
搅拌板 602与竖直平面和刮料板 603间的夹角 g为 24°。
所述的第二搅拌系统 7中:
刮料板 703与第二腔壳 203的内壁相切, 并留有 12mm的安全间隙。
搅拌板 702的圆心角 d'为 29°。
每一个叶轮的搅拌板与其相邻叶轮的搅拌板之间交错夹角 f为 14°。
搅拌板 702与竖直平面和刮料板 703间的夹角 g'为 24°。
刮料板 803与第二腔壳 207的内壁相切, 并留有 12mm的安全间隙。
第二搅拌系统 7的任一叶轮的任一叶片上的刮料板并与第一转轴 501靠近第二转轴 502的一侧相切, 并留有 12mm的安全间隙。. 第一转轴 501、 第二转轴 502和第三转轴 503的转速比为 3.4: 3.4: 1。
第三转轴 503和旋转装置 803的转速比为 1 : 1.7。 实施例八:
采用以下技术参数改进实施例一:
所述的第一搅拌系统 6中:
刮料板 603与第一腔壳 202的内壁相切, 并留有 13mm的安全间隙。
搅拌板 602的其圆心角 d为 32°。
每一个叶轮的搅拌板与其相邻叶轮的搅拌板之间交错夹角 f为 16°。
搅拌板 602与竖直平面和刮料板 603间的夹角 g为 28°。
所述的第二搅拌系统 7中:
刮料板 703与第二腔壳 203的内壁相切, 并留有 13mm的安全间隙。
搅拌板 702的圆心角 d'为 32°。
每一个叶轮的搅拌板与其相邻叶轮的搅拌板之间交错夹角 f为 16°。
搅拌板 702与竖直平面和刮料板 703间的夹角 g'为 28°。
刮料板 803与第二腔壳 207的内壁相切, 并留有 13mm的安全间隙。
第二搅拌系统 7的任一叶轮的任一叶片上的刮料板并与第一转轴 501靠近第二转轴 502的一侧相切, 并留有 13mm的安全间隙。
第一转轴 501、 第二转轴 502和第三转轴 503的转速比为 3.6: 3.6: 1。
第三转轴 503和旋转装置 803的转速比为 1 : 1.8。 实施例九:
采用以下技术参数改进实施例一:
所述的第一搅拌系统 6中:
刮料板 603与第一腔壳 202的内壁相切, 并留有 15mm的安全间隙。
搅拌板 602的其圆心角 d为 35°。
每一个叶轮的搅拌板与其相邻叶轮的搅拌板之间交错夹角 f为 17°。
搅拌板 602与竖直平面和刮料板 603间的夹角 g为 32°。
所述的第二搅拌系统 7中: ' 刮料板 703与第二腔壳 203的内壁相切, 并留有 15mm的安全间隙。 搅拌板 702的圆心角 d'为 35°。
每一个叶轮的搅拌板与其相邻叶轮的搅拌板之间交错夹角 f为 17°。
搅拌板 702与竖直平面和刮料板 703间的夹角 g'为 32°。
刮料板 803与第二腔壳 207的内壁相切, 并留有 15mm的安全间隙。
第二搅拌系统 7的任一叶轮的任一叶片上的刮料板并与第一转轴 501靠近第二转轴 502的一侧相切, 并留有 15mm的安全间隙。
第一转轴 501、 第二转轴 502和第三转轴 503的转速比为 3.8: 3.8: 1。
第三转轴 503和旋转装置 803的转速比为 1: 1.9。 实施例十:
采用以下技术参数改进实施例一:
所述的第一搅拌系统 6中:
刮料板 603与第一腔壳 202的内壁相切, 并留有 17mm的安全间隙。
搅拌板 602的其圆心角 d为 38°。
每一个叶轮的搅拌板与其相邻叶轮的搅拌板之间交错夹角 f为 19°。
搅拌板 602与竖直平面和刮料板 603间的夹角 g为 36°。
所述的第二搅拌系统 7中:
刮料板 703与第二腔壳 203的内壁相切, 并留有 17mm的安全间隙。
搅拌板 702的圆心角 d'为 38°。
每一个叶轮的搅拌板与其相邻叶轮的搅拌板之间交错夹角 f为 19°。
搅拌板 702与竖直平面和刮料板 703间的夹角 g'为 36°。
刮料板 803与第二腔壳 207的内壁相切, 并留有 17mm的安全间隙。
第二搅拌系统 7的任一叶轮的任一叶片上的刮料板并与第一转轴 501靠近第二转轴 502的一侧相切, 并留有 17mm的安全间隙。
第一转轴 501、 第二转轴 502和第三转轴 503的转速比为 4.0: 4.0: 1。
第三转轴 503和旋转装置 803的转速比为 1: 2.0。 实施例十一- 采用以下技术参数改进实施例一:
所述的第一搅拌系统 6中: 刮料板 603与第一腔壳 202的内壁相切, 并留有 19mm的安全间隙。 搅拌板 602的其圆心角 d为 41 °。
每一个叶轮的搅拌板与其相邻叶轮的搅拌板之间交错夹角 f为 20°。
搅拌板 602与竖直平面和刮料板 603间的夹角 g为 40°。
所述的第二搅拌系统 7中:
刮料板 703与第二腔壳 203的内壁相切, 并留有 19mm的安全间隙。
搅拌板 702的圆心角 d'为 41 °0
每一个叶轮的搅拌板与其相邻叶轮的搅拌板之间交错夹角 f为 20°。
搅拌板 702与竖直平面和刮料板 703间的夹角 g'为 40°。
刮料板 803与第二腔壳 207的内壁相切, 并留有 19mm的安全间隙。
第二搅拌系统 7的任一叶轮的任一叶片上的刮料板并与第一转轴 501靠近第二转轴 502的一侧相切, 并留有 19mm的安全间隙。
第一转轴 501、 第二转轴 502和第三转轴 503的转速比为 4.2: 4.2: 1。
第三转轴 503和旋转装置 803的转速比为 1: 2.1。 优选实施例:
根据上述实施例, 采用以下技术参数改进实施例一:
所述的第一搅拌系统 6中:
刮料板 603与第一腔壳 202的内壁相切, 并留有 6mm的安全间隙。
搅拌板 602的其圆心角 d为 30°。
每一个叶轮的搅拌板与其相邻叶轮的搅拌板之间交错夹角 f为 15°。
搅拌板 602与竖直平面和刮料板 603间的夹角 g为 10°。
所述的第二搅拌系统 7中:
刮料板 703与第二腔壳 203的内壁相切, 并留有 6mm的安全间隙。
搅拌板 702的圆心角 d'为 30°。
每一个叶轮的搅拌板与其相邻叶轮的搅拌板之间交错夹角 f为 15°。
搅拌板 702与竖直平面和刮料板 703间的夹角 g'为 10°。
刮料板 803与第二腔壳 207的内壁相切, 并留有 6mm的安全间隙。
第二搅拌系统 7的任一叶轮的任一叶片上的刮料板并与第一转轴 501靠近第二转轴 502的一侧相切, 并留有 6mm的安全间隙。 第一转轴 501、 第二转轴 502和第三转轴 503的转速比为 3.5: 3.5: 1。
第三转轴 503和旋转装置 803的转速比为 1: 1.8ο 上述内容为本发明的具体实施例的例举,对于其中未详尽描述的设备和结构,应当理 解为采取本领域已有的通用设备及通用方法来予以实施。

Claims

权 利 要 求 书
1、 一种组合式三腔混合反应釜, 其特征在于, 包含进料系统 (201 )、 第一腔壳 ,(202)、 第二腔壳(203)、第三腔壳(207)、外层壳体(204)、第一转轴(501 )、第二转轴(502)、 第三转轴 (503)、 第一搅拌系统(6)、 第二搅拌系统 (7)、 第三搅拌系统(8)、 传料系 统 (200)和出料系统 (209);
所述的第一腔壳 (202)和第二腔壳(203) 是相交的两个中空圆筒结构, 所述的第三腔 壳(207)位于第一腔壳 (202)、 第二腔壳(203) 的底部, 并通过传料系统(200)与 两者相互连接, 三个腔体的轴心相互平行, 并位于外层壳体(204) 的内部, 三者内部分 别形成有相互连通的第一腔体(205)、 第二腔体(206) 和第三腔体(208);
所述的第一转轴 (501 )、 第二转轴 (502)和第三转轴 (503)相应的分别位于第一腔体 (205)、 第二腔体(206)和第三腔体(208)的内部, 并相应的分别通过其各自的圆心; 所述的第一搅拌系统 (6)、 第二搅拌系统 (7) 和第三搅拌系统 (8)相应的分别连接在 第一转轴 (501 )、 第二转轴 (502)和第三转轴(503) 上, 并相应的分别随之转动; 所述的第一搅拌系统 (6)是一组连接在第一转轴 (501 )上的叶轮, 所述的每一个叶轮 包含 2〜4片包含有搅拌片 (602)和刮料板 (603) 的叶片, 叶片间的间隔角相等; 所述的第二搅拌系统 (7) 是一组连接在第二转轴 (502)上的叶轮, 所述的每一个叶轮 包含 2〜4片包含有搅拌板 (702)和刮料板(703) 的叶片, 叶片间的间隔角相等; 所述的第三搅拌系统 (8) 是一组连接在第三转轴 (503) 上的叶轮, 所述的每一个叶轮 包含有旋转轴 (801 )、 刮料板(802)和具有凹凸齿轮的旋转装置 (803)。
2、如权利要求 1所述的一种组合式三腔混合反应釜, 其特征在于, 所述旋转装置(803) 是一个圆环变形体结构, 其中空的内部圆用于通过旋转轴 (801 ), 其环外侧的圆周上设 有凹凸齿轮, 从而形成叶轮结构, 起到搅拌作用;
所述的第三搅拌系统(8) 的旋转轴(801 ) 以第三转轴(503)为圆心, 围绕其旋转, 所 述的旋转装置 (803)套在旋转轴 (801 ) 上, 并以其为圆心, 围绕其旋转。
3、 如权利要求 2所述的一种组合式三腔混合反应釜, 其特征在于, 所述的旋转轴(801 ) 的一端连接在转轴 (503) 上, 另一端连接有刮料板 (802), 该刮料板 (802) 与第三腔 壳(207) 的内壁相切, 并留有 2mm〜20mm的安全间隙; 所述的旋转轴 (801 ) 是一个竖直横截面为近似长方形的圆柱结构, 其外径与旋转装置 (803) 内径相等, 所述近似长方形的横截面的一边与第三转轴 (503)相接, 所述旋转 轴(801 ) 的长度为第三腔壳(207) 内径与刮料板(802)厚度、 第三转轴'(503)半径 之差。
4、如权利要求 3所述的一种组合式三腔混合反应釜, 其特征在于, 所述的搅拌片(602) 的一端连接在转轴 (501 )上, 另一端连接有刮料板 (603), 该刮料板 (603) 与第一腔 壳(202) 的内壁相切, 并留有 2mm〜20mm的安全间隙;
所述的第一搅拌系统(6)的每一个叶轮的搅拌片与其相邻叶轮的搅拌片之间交错 0°〜45° 夹角;
所述的搅拌片 (702) 的一端连接在转轴 (502) 上, 另一端连接有刮料板(703), 该刮 料板(703)与第二腔壳 (203) 的内壁相切, 并留有 2mm〜20mm的安全间隙; 所述的第二搅拌系统(7)的每一个叶轮的搅拌片与其相邻叶轮的搅拌片之间交错 0°〜45° 夹角。
5、如权利要求 4所述的一种组合式三腔混合反应釜, 其特征在于, 所述的搅拌片(602) 为扇形结构, 其内径与转轴 (501 )外径相等, 其外径为第一腔壳 (202) 内径与刮料板
(603)厚度之差;
所述的扇形搅拌片 (602) 的圆心角度为 10°〜45°;
所述的刮料板 (603) 为扇形结构, 其内径与搅拌片 (602) 外径相等, 其外径与第一腔 壳(202) 内径相等;
所述刮料板(603) 与其所连接的搅拌片 (602) 的圆心角度相等;
所述的搅拌片 (702) 为扇形结构, 其内径与转轴 (502)外径相等, 其外径为第二腔壳 (203) 内径与刮料板(703)厚度之差;
所述的扇形搅拌片 (702) 的圆心角度为 10°〜45°;
所述的刮料板 (703) 为扇形结构, 其内径与搅拌片 (702)外径相等, 其外径与第二腔 壳(203) 内径相等;
所述刮料板(703) 与其所连接的搅拌片 (702) 的圆心角度相等。 6、如权利要求 5所述的一种组合式三腔混合反应釜, 其特征在于, 所述的刮料板(603) 与竖直平面处于同一平面, 所述的搅拌片(602)与竖直平面和刮料板(603)成 0°〜45° 夹角, 优选 30°夹角;
所述的刮料板 (703) 与竖直平面处于同一平面, 所述的搅拌片 (702) 与竖直平面和刮 料板 (703)成 0°〜45°夹角, 优选 30°夹角;
所述的旋转轴 (801 )、 刮料板(802)与竖直平面处于同一平面。
7、如权利要求 6所述的一种组合式三腔混合反应釜,其特征在于,所述第一搅拌系统(6) 的各组叶轮之间的间隔相等;
所述第二搅拌系统 (7) 的各组叶轮之间的间隔相等;
所述第三搅拌系统 (8) 的各组叶轮之间的间隔相等;
所述第一搅拌系统 (6) 的叶轮与第二搅拌系统 (7) 的叶轮交错排布, 任两组相邻的第 一搅拌系统 (6) 的叶轮之间分布有一组第二搅拌系统 (7) 的叶轮, 并且该第一搅拌系 统(6)叶轮与第二搅拌系统(7) 叶轮的间距和另一第一搅拌系统(6) 叶轮与该第二搅 拌系统(7) 叶轮的间距相等;
所述第二搅拌系统 (7) 的任一叶轮的任一叶片上的刮料板并与第一转轴 (501 )靠近第 二转轴 (502) 的一侧相切, 并留有 2mm〜20mm的安全间隙。
8、如权利要求 7所述的一种组合式三腔混合反应釜, 其特征在于, 所述第一腔壳(202) 和第二腔壳(203) 的半径相等;
所述第三腔壳 (207) 的直径为第一腔壳 (202)半径、 第一转轴 (501 ) 半径和第二腔 壳(203)直径之和;
所述第一转轴 (501 )和第二转轴 (502)做相对转动;
所述第一转轴 (501 )、第二转轴 (502)、第三转轴 (503)的转速比为 2.2: 2.2: 1〜4.6: 4.6: 1;
所述第三转轴 (503)和旋转装置 (803) 的转速比为 1 : 1〜1: 2.2。
9、如权利要求 8所述的一种组合式三腔混合反应釜, 其特征在于, 所述外层壳体(204) 和第一腔壳(202)进一步包括位于其上并穿过其中的第一腔门 (2020), 以使得打开所 述第一腔门 (2020) 时, 暴露出第一腔体(205);
所述外层壳体 (204) 和第二腔壳 (203)进一步包括位于其上并穿过其中的第二腔门 (2030), 以使得打开所述第二腔门 (2030) 时, 暴露出第二腔体(206); 所述外层壳体 (204) 和第三腔壳 (207) 进一步包括位于其上并穿过其中的第三腔门
(2070), 以使得打开所述第三腔门 (2070) 时, 暴露出第三腔体(208);
所述的进料系统(201 )包含固体进料口 (2011 )、 液体进料口 (2012)、 第一添加剂进 料口 (2013)、 第二添加剂进料口 (2014);
所述的固体进料口 (2011 )和液体进料口 (2012)相邻地设置在所述外层壳体 (204) 顶面上, 并分别穿透所述外层壳体 (204)和第一腔壳 (202)、 第二腔壳 (203), 连通 所述第一腔体(205)和第二腔体(206);
所述的第一添加剂进料口(2013)、第二添加剂进料口(2014)设置在所述外层壳伴(204) 顶面上, 并穿透所述外层壳体 (204)和第一腔壳(202), 连通所述第一腔体(205); 所述的传料系统(200) 设置在外层壳体 (204)上, 并穿透外层壳体(204)、 第一腔壳 (202)、 第二腔壳(203)和第三腔壳(207), 连通第一腔体 (205)、 第二腔体(206) 和第三腔体 (208);
所述的出料系统(209)设置在所述外层壳体(204)底面上,并穿透所述外层壳体(204) 和第三腔壳 (207), 连通所述第三腔体(208)。
10、 一种采用如权利要求 9所述的组合式三腔混合反应釜进行混合的混合方法, 其特征 在于, 包含以下步骤:
步骤 1 : 从外层壳体 (204)底部的预混物料进口输入预混物料进入第一腔体 (205)和 第二腔体(206), 并在第一搅拌系统(6)和第二搅拌系统 (7) 的旋转搅拌作用下, 均 匀分布在第一腔体(205) 和第二 (206) 内部;
步骤 2: 从所述的固体进料口 (2011 )输入固体粉末进入第一腔体(205) 内部, 在第一 搅拌系统 (6) 的旋转搅拌作用下, 所述固体粉末与预混物料充分均匀混合;
步骤 3: 同时, 从所述液体进料口 (2012)输入气体、 液体或气液混合物进入第二腔体 ( 206) 内部, 在第二搅拌系统 (7) 的旋转搅拌作用下, 所述气体、 液体或气液混合物 与预混物料充分均匀混合;
步骤 4: 在第一搅拌系统(6)和第二搅拌系统(7)的相对旋转搅拌作用下, 混合有固体 粉末的预混物料和混合有气体、液体或气液混合物的预混物料充分均匀混合,得到混合物 料;
所述的混合物料在第一搅拌系统(6)和第二搅拌系统(7) 的各叶轮的搅拌板(602)和 (702) 的作用下, 向第一腔体(206)和第二腔体(207)后部传输;
第一搅拌系统 (6)和第二搅拌系统 (7) 的各叶轮的刮料板 (603)和 (703)分别将第 一腔壳 (202) 内壁、 第二腔壳(203) 内壁上粘附的物料刮除, 以再次进行混合; 步骤 5:从第一添加剂进料口(2013)输入添加剂进入第一腔体(206)和第二腔体(207), 在第一搅拌系统 (6)和第二搅拌系统(7) 的旋转搅拌作用下, 所述添加剂和混合物料 充分均匀混合, 得到含有添加剂的混合物料;
所述的含有添加剂的混合物料在第一搅拌系统 (6)和第二搅拌系统 (7) 的各叶轮的搅 拌板(602)和 (702) 的作用下, 向第一腔体 (206)和第二腔体(207)后部传输; 第一搅拌系统 (6) 和第二搅拌系统 (7) 的各叶轮的刮料板(603) 和 (703)分别将第 一腔壳(202) 内壁、 第二腔壳(203) 内壁上粘附的物料刮除, 以再次进行混合; 步骤 6:从第二添加剂进料口(2014)输入添加剂进入第一腔体(206)和第二腔体(207), 在第一搅拌系统 (6)和第二搅拌系统 (7) 的旋转搅拌作用下, 所述添加剂和混合物料 充分均匀混合, 得到混合物;
所述的混合物在第一搅拌系统(6)和第二搅拌系统(7)的各叶轮的搅拌板(602)和(702) 的作用下, 向第一腔体(206)和第二腔体 (207)后部传输;
第一搅拌系统 (6)和第二搅拌系统 (7) 的各叶轮的刮料板 (603)和 (703)分别将第 一腔壳 (202) 内壁、 第二腔壳 (203) 内壁上粘附的物料刮除, 以再次进行混合; 步骤 7:借助第一搅拌系统(6)和第二搅拌系统(7)的各叶轮的搅拌板(602)和(702) 的旋转搅拌以及重力作用, 所述的混合物通过传料系统 (200)传输至第三腔体 (208); 步骤 8: 从传料系统 (200)输入混合物进入第三腔体 (208), 在第三搅拌系统.(8)及 其旋转装置(803) 的旋转搅拌作用下, 所述混合物进行进一步的均匀混合, 得到充分混 合的混合物;
所述的充分混合的混合物在第三搅拌系统 (8)各叶轮的旋转装置 (803) 的作用下, 向 第三腔体(208)后部传输;
第三搅拌系统 (8) 各叶轮的刮料板 (802)将第三腔壳(207) 内壁上粘附的物料刮除, 以再次进行混合;
步骤 9: 借助第三搅拌系统 (8)各叶轮的旋转装置 (803) 的旋转搅拌以及重力作用, 所述的混合物通过出料系统 (209)输出。
PCT/CN2010/000313 2009-03-19 2010-03-15 组合式三腔混合反应釜及其方法 WO2010105501A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200910047814.X 2009-03-19
CN200910047814A CN101837273A (zh) 2009-03-19 2009-03-19 组合式三腔混合反应釜及其方法

Publications (1)

Publication Number Publication Date
WO2010105501A1 true WO2010105501A1 (zh) 2010-09-23

Family

ID=42739169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/000313 WO2010105501A1 (zh) 2009-03-19 2010-03-15 组合式三腔混合反应釜及其方法

Country Status (2)

Country Link
CN (1) CN101837273A (zh)
WO (1) WO2010105501A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109016210A (zh) * 2018-08-02 2018-12-18 安徽海蚨祥橡胶有限公司 一种用于橡塑制品生产的高分子材料混料搅拌设备
CN114455640A (zh) * 2022-02-17 2022-05-10 合肥融捷金属科技有限公司 一种宽分布高倍率四氧化三钴制备工艺和设备
CN115260471A (zh) * 2022-08-30 2022-11-01 江苏冠军科技集团股份有限公司 一种高闪点高固分低VOCs醇酸防护涂料
CN115475599A (zh) * 2021-08-02 2022-12-16 青岛海尔施特劳斯水设备有限公司 矿化炭棒制作设备以及矿化炭棒制作方法
CN115999431A (zh) * 2023-03-24 2023-04-25 杭州安耐特实业有限公司 一种刹车片原料混料机
CN116354498A (zh) * 2023-02-21 2023-06-30 哈尔滨工业大学水资源国家工程研究中心有限公司 一种可调节生物量的完全混合式厌氧生物膜反应器

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101972624A (zh) * 2010-11-09 2011-02-16 南京协和助剂有限公司 组合搅拌反应釜
CN102911533A (zh) * 2012-10-18 2013-02-06 高邮市镇宇粉体设备有限公司 粉体表面连续改性机
KR20180009734A (ko) * 2015-01-15 2018-01-29 크롭 에스.피.에이. 콘 소시오 유니코 유체 제품을 위한 교반 장치를 갖는 컨테이너
CN107362722B (zh) * 2017-07-28 2023-03-24 佛山市恒力泰机械有限公司 立式双轴搅拌机叶片动态补偿结构及运行方法
CN108837764A (zh) * 2018-09-06 2018-11-20 黔东南民生食品有限公司 混合装置
CN113790625B (zh) * 2021-09-06 2024-02-13 无锡米尔环保科技有限公司 一种二氧化氯发生器的稳定换热系统及其基材制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61234917A (ja) * 1985-04-10 1986-10-20 Mitsubishi Heavy Ind Ltd 表面更新性を有する横型反応器
CN1051682A (zh) * 1989-11-02 1991-05-29 住友重机械工业株式会社 粘性液体处理装置
US5669710A (en) * 1994-12-05 1997-09-23 Bayer Aktiengesellschaft Completely self-cleaning mixer/reactor
CN1452509A (zh) * 2000-05-05 2003-10-29 安曼加工股份公司 双轴强制搅拌机,此双轴强制搅拌机的应用和一种双轴强制搅拌机的运行方法
CN2917765Y (zh) * 2006-07-20 2007-07-04 淮安富华饲料机械有限公司 双轴桨叶式高效混合机
CN201371045Y (zh) * 2008-12-31 2009-12-30 上海亦晨信息科技发展有限公司 一种三腔卧式混合装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61234917A (ja) * 1985-04-10 1986-10-20 Mitsubishi Heavy Ind Ltd 表面更新性を有する横型反応器
CN1051682A (zh) * 1989-11-02 1991-05-29 住友重机械工业株式会社 粘性液体处理装置
US5669710A (en) * 1994-12-05 1997-09-23 Bayer Aktiengesellschaft Completely self-cleaning mixer/reactor
CN1452509A (zh) * 2000-05-05 2003-10-29 安曼加工股份公司 双轴强制搅拌机,此双轴强制搅拌机的应用和一种双轴强制搅拌机的运行方法
CN2917765Y (zh) * 2006-07-20 2007-07-04 淮安富华饲料机械有限公司 双轴桨叶式高效混合机
CN201371045Y (zh) * 2008-12-31 2009-12-30 上海亦晨信息科技发展有限公司 一种三腔卧式混合装置

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109016210A (zh) * 2018-08-02 2018-12-18 安徽海蚨祥橡胶有限公司 一种用于橡塑制品生产的高分子材料混料搅拌设备
CN115475599A (zh) * 2021-08-02 2022-12-16 青岛海尔施特劳斯水设备有限公司 矿化炭棒制作设备以及矿化炭棒制作方法
CN114455640A (zh) * 2022-02-17 2022-05-10 合肥融捷金属科技有限公司 一种宽分布高倍率四氧化三钴制备工艺和设备
CN114455640B (zh) * 2022-02-17 2023-08-15 合肥融捷金属科技有限公司 一种宽分布高倍率四氧化三钴制备工艺和设备
CN115260471A (zh) * 2022-08-30 2022-11-01 江苏冠军科技集团股份有限公司 一种高闪点高固分低VOCs醇酸防护涂料
CN115260471B (zh) * 2022-08-30 2023-09-15 江苏冠军科技集团股份有限公司 一种高闪点高固分低VOCs醇酸防护涂料
CN116354498A (zh) * 2023-02-21 2023-06-30 哈尔滨工业大学水资源国家工程研究中心有限公司 一种可调节生物量的完全混合式厌氧生物膜反应器
CN116354498B (zh) * 2023-02-21 2024-01-30 哈尔滨工业大学水资源国家工程研究中心有限公司 一种可调节生物量的完全混合式厌氧生物膜反应器
CN115999431A (zh) * 2023-03-24 2023-04-25 杭州安耐特实业有限公司 一种刹车片原料混料机
CN115999431B (zh) * 2023-03-24 2023-06-13 杭州安耐特实业有限公司 一种刹车片原料混料机

Also Published As

Publication number Publication date
CN101837273A (zh) 2010-09-22

Similar Documents

Publication Publication Date Title
WO2010105501A1 (zh) 组合式三腔混合反应釜及其方法
CN207507463U (zh) 反应釜
CN104785140A (zh) 一种适用于加工膏状物的医用及化工用粉碎搅拌机
CN211329377U (zh) 一种乳化沥青反应釜
CN202921312U (zh) 反应釜的自吸式搅拌器
CN104492299B (zh) 一种粉体混合分散机
CN111249989A (zh) 一种高粘度物料快速混合装置
JP2005131578A (ja) 撹拌混合装置
CN101844049A (zh) 多向三级混合装置及其方法
CN214765105U (zh) 一种包衣缓释剂加工用混料装置
WO2010105502A1 (zh) 搅拌推进式卧式预混装置及其方法
CN212068634U (zh) 一种高粘度物料快速混合装置
CN201371045Y (zh) 一种三腔卧式混合装置
CN212632536U (zh) 一种预混料式涂料搅拌装置
CN211415830U (zh) 一种用于塑料颗粒生产搅拌机
WO2010116812A1 (ja) 溶解ポンプにおける分離装置
CN214514233U (zh) 一种液粉混合用制药装置
CN106140009A (zh) 一种连续造粒机
CN101837274A (zh) 多向搅拌式两腔混合反应箱及其方法
CN201558679U (zh) 具有多向叶轮的三级卧式混合装置
RU2433858C1 (ru) Аппарат для усреднения жидких дисперсий
CN206560817U (zh) 一种双向立体搅拌的搅拌釜
CN101862616A (zh) 分散式两级混合装置及其方法
CN201537467U (zh) 交错组合式卧式固液预混罐
CN214287716U (zh) 搅拌装置及搅拌设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10753068

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10753068

Country of ref document: EP

Kind code of ref document: A1