WO2010104258A1 - 기계식 에너지 저장 및 재활용 장치 - Google Patents

기계식 에너지 저장 및 재활용 장치 Download PDF

Info

Publication number
WO2010104258A1
WO2010104258A1 PCT/KR2009/005830 KR2009005830W WO2010104258A1 WO 2010104258 A1 WO2010104258 A1 WO 2010104258A1 KR 2009005830 W KR2009005830 W KR 2009005830W WO 2010104258 A1 WO2010104258 A1 WO 2010104258A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
gear
shaft
power storage
rack
Prior art date
Application number
PCT/KR2009/005830
Other languages
English (en)
French (fr)
Inventor
박민철
Original Assignee
Park Min Chul
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Park Min Chul filed Critical Park Min Chul
Publication of WO2010104258A1 publication Critical patent/WO2010104258A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M1/00Rider propulsion of wheeled vehicles
    • B62M1/10Rider propulsion of wheeled vehicles involving devices which enable the mechanical storing and releasing of energy occasionally, e.g. arrangement of flywheels
    • B62M1/105Rider propulsion of wheeled vehicles involving devices which enable the mechanical storing and releasing of energy occasionally, e.g. arrangement of flywheels using elastic elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H33/00Gearings based on repeated accumulation and delivery of energy
    • F16H33/02Rotary transmissions with mechanical accumulators, e.g. weights, springs, intermittently-connected flywheels

Definitions

  • the present invention relates to an energy storage and recycling device for storing and recycling the rotational energy disappeared by braking while driving a bicycle or a car, and in particular, converts the rotational energy disappeared during braking into elastic energy of a spring and accumulates. It relates to a mechanical energy storage and recycling device that can then be recycled upon acceleration.
  • the vehicle accelerates slowly at a stop state and reaches a constant speed.
  • a hazard or a stop signal such as a traffic light
  • the vehicle decelerates and stops.
  • the deceleration or stop is repeated according to the instruction of the traffic light. As the deceleration or stop is repeated, rotational energy is discarded and fuel consumption is increased.
  • Some hybrid vehicles use a method of charging a rechargeable battery by driving a generator using the rotational energy discarded during braking.
  • this method can be used only in a hybrid car or an electric vehicle that uses a motor as a driving source, but cannot be used in a general vehicle, and converts mechanical energy such as rotational energy into electrical energy and then converts it into mechanical energy. There is a problem of low efficiency.
  • the energy conversion efficiency is not high and the efficiency is very low when the energy conversion is performed twice.
  • the present invention has been made to solve the above-mentioned conventional problems, mechanical energy to reduce the energy consumption by converting the rotational energy discarded during deceleration or braking to the elastic energy of the spring to be stored and recycled upon acceleration Its purpose is to provide a storage and recycling device.
  • an object of the present invention is to provide a mechanical energy storage and recycling apparatus that can prevent the reduction of efficiency due to energy conversion by storing the rotational energy as mechanical energy itself without converting the rotational energy into electrical energy.
  • an object of the present invention is to provide a general mechanical energy storage and recycling device that can be used in a general automobile or bicycle that does not use a motor as a driving source by storing and recycling mechanical energy itself.
  • the present invention is applied to a non-powered driving means, such as a bicycle to store the elastic energy when running downhill, and when climbing uphill road mechanical energy to convert the elastic energy to the driving force to drive uphill with a small force
  • a non-powered driving means such as a bicycle to store the elastic energy when running downhill, and when climbing uphill road mechanical energy to convert the elastic energy to the driving force to drive uphill with a small force
  • the purpose is to provide an energy storage and recycling device.
  • the present invention is a mechanical energy storage and recycling device that is applied to a vehicle to store the elastic energy during deceleration and braking and then rotate the wheel using the elastic energy during acceleration to reduce fuel consumption and reduce environmental pollution at the same time
  • the purpose is to provide.
  • Mechanical energy storage and recycling device of the present invention for achieving the above object, by elastically deforming the power storage spring by using the rotational energy of the wheel disappears during braking, and the elastic energy of the power storage spring during acceleration of the wheel Characterized in that it is converted to rotational energy to recycle.
  • the mechanical power storage and recycling apparatus of the present invention interlocked with the rotating shaft of the wheel for drawing the rotational force from the rotating shaft when braking and providing the rotational force to the rotating shaft when acceleration;
  • a power storage unit for converting and storing the rotational force drawn through the power entry and exit into the elastic energy of the power storage spring or converting the elastic energy of the power storage spring into the rotational force and providing the rotational shaft to the rotation shaft through the power entry and exit;
  • a power transmission unit for transmitting power between the power entry and exit and the power storage unit;
  • a control unit controlling the operation of the power entry / exit unit and the power storage unit.
  • the power storage unit or the power transmission unit is further provided with an integrated clutch to block the reverse rotation of the power transmission unit when energy is stored in the power storage unit.
  • the integrated clutch is formed with a ratchet gear on the outer circumferential surface, the ratchet gear is restrained by a latch when the power is stored, the reverse rotation is blocked, the acceleration of the ratchet gear is characterized in that the release of the ratchet gear is released.
  • the rotational force of the braking screw to the second transmission shaft by using a second transmission shaft rotated by the brake and a brake screw and a bevel gear which is axially movable on the first transmission shaft and moved in the axial direction during braking.
  • the rotational force of the acceleration screw using the power take-out unit consisting of a first transmission unit for transmitting and an acceleration screw and a bevel gear axially moved to the second transmission shaft and moved in the axial direction during acceleration, It characterized in that it comprises a power providing unit consisting of a second transmission portion for transmitting coaxially.
  • the power transmission unit is characterized in that it is configured in a multi-stage structure so that the transmission speed changes according to the degree of braking and acceleration.
  • the power storage unit, the ring gear is rotated in conjunction with the third transmission shaft of the power transmission portion, the rotational force of the ring gear or the power storage spring provided on one side
  • the rack plate is moved back and forth by the elastic force, the rack catcher for holding the rack plate does not move in the state that the power storage spring is elastically deformed, and transmits the rotational force of the ring gear to the rack plate or the movement of the rack plate
  • a rack gear engaged with the main rack of the rack plate to be transferred to the ring gear, a storage starting member for initially moving the rack plate according to a signal of the control unit, and fixing of the rack plate according to a signal of the control unit It characterized in that it comprises an output starting member for releasing.
  • the storage starting member is operated by the control unit, the storage starting lever for advancing the rack plate, and installed above the rack plate to the storage starting Constrains the movement of the lever as well as the locking projection that is initially operated by the storage starting member, the output starting member is operated by the control unit to release the lock plate by the rack catcher It is done.
  • the rack plate is made of a multi-layer structure, each rack plate is provided with the power storage spring and the rack catcher, respectively, the power storage and elastic force in each rack plate
  • the interlocking means is provided to sequentially provide, the interlocking means is rotated by being engaged with the first auxiliary gear and the first auxiliary gear to be engaged with the auxiliary rack formed independently of the main rack on the upper rack plate.
  • a second auxiliary gear configured to be engaged with the maneuvering rack formed on the lower rack plate so that the main rack of the lower rack plate is engaged with the rack gear, and installed on the upper rack plate to block the rack catcher.
  • the uppermost rack of the rack plate corresponds to the length of the low elastic spring so that the rack gear can be engaged after the movement by the storage starting member is made.
  • the main rack is formed with a service distance.
  • the mechanical energy storage and recycling device of the present invention is installed in an automobile or an electric vehicle, the control unit is characterized in that the hydraulic device which is linked to the brake pedal or the accelerator pedal.
  • the mechanical energy storage and recycling apparatus of the present invention characterized in that the transmission member is installed in the power entry and exit so that the speed can be adjusted when the power is stored in the power storage unit or draws power.
  • the shifting member is selectively engaged with a plurality of clutch devices having different speed ratios according to the degree of deceleration or acceleration, so that the shift is made, the clutch device, the rotation shaft A first clutch shaft rotated in conjunction with the first clutch shaft, a second clutch shaft rotated in conjunction with the power transmission unit, a braking screw installed on the first clutch shaft so as to be axially movable, and rotatable on the first clutch shaft
  • a shifting drive gear that is installed so as to be axially movable on the second clutch shaft, a shifting gear that is rotatably installed on the second clutch shaft and engaged with the shifting gear, and the shifting drive
  • a clutch plate integrally formed on the gear and the shift driven gear, each of which has a clutch tooth formed on one side thereof, and a clutch plate that faces the clutch plate;
  • a clutch slide having a tooth pad formed therein and rotatably coupled to the first clutch shaft and the second clutch shaft, the clutch slide being axially movable, and the
  • the power transmission unit is provided with a shock absorber to alleviate the braking shock power is transmitted to the power storage unit through the shock absorber during braking, the acceleration at the time of Bypassing the shock absorber so that the output of the power storage unit is transmitted to the second clutch shaft, the shock absorber is interlocked with the brake belt with a lining protruding in a trapezoidal shape in the inner center, the power storage unit side A storage pulley that is rotated and coupled to the large diameter portion of the brake belt, a catch pulley that is coupled to the outside of the small diameter portion of the brake belt, and rotates in association with the power entry and exit side and is coupled to the lining inside the small diameter portion of the brake belt.
  • the braking pulley which is to be moved in the direction of the catch pulley It characterized in that it comprises a buffer screw.
  • the power storage unit, the rack plate provided with the power storage spring, and the rack catcher to hold the rack plate does not move in a state in which the power storage spring is elastically deformed
  • a rack gear engaged with the main rack of the rack plate a storage starting member for initially moving the rack plate according to a signal of the control unit, and an output for releasing the rack plate according to the signal of the control unit. It characterized in that it comprises a starting member.
  • the power storage spring the flexible portion that is elastically deformed between the flex portion and the flex portion is bent in a straight steel plate is alternately formed, both sides of the flexible portion
  • the flex part is bent in the opposite direction to be contracted or stretched, and a shaft hole into which the spring shaft is inserted is formed in the center of the flexible part so as not to bounce sideways in the shrinking process.
  • the flexible portion is formed with irregularities on both sides of the surface, characterized in that the adjacent flexible portions are coupled to the irregularities when the power storage spring is contracted.
  • the power storage unit the power storage spring is torsionally rotated by the power transmission unit to store the elastic energy and the one end fixed to the power storage spring
  • the spring for supporting the power storage spring A shaft
  • a spring fixing plate which is rotated in association with the power transmission unit and is installed at one end of the spring shaft to which the other end of the power storage spring is coupled
  • a bearing rotatably supporting the other end of the spring shaft
  • the control An input / output control member for starting the accumulation of elastic energy using the power storage spring or operating the power transmission unit by the elastic energy stored in the power storage spring according to a signal of an apparatus unit, and the elastic energy specified in the power storage spring.
  • Accumulated or the elastic energy of the power storage spring It is characterized in that it comprises a limit switch for completely blocking the transmission of power between the power transmission portion and the spring fixing plate.
  • the input and output control member, the storage shaft is provided on the other side of the spring fixing plate, the output gear and the storage gear installed on the storage shaft, and the storage gear and A one-way clutch integrally formed with a ratchet gear formed on an outer circumferential surface thereof, a movable shaft installed in parallel with the storage shaft and moved in the axial direction and rotated by the power transmission unit, and installed on the movable shaft by the output gear; A first moving gear that is rotated, a second moving gear installed on the movable shaft to rotate the storage gear, a control lever to move the movable shaft in an axial direction, and installed on the movable shaft to support the control lever.
  • a storage hydraulic device installed at the side to engage the second moving gear with the storage gear.
  • the power transmission unit, the rolling element of the transmission for adjusting the storage or output speed of energy in accordance with the vehicle speed or the degree of acceleration, and rotates in conjunction with the output shaft of the rolling element
  • the transmission means may include a fourth transmission shaft connected to each of the plurality of sprockets, a first gear axially movable on the fourth transmission shaft, and transmitting a rotational force to the sprocket during acceleration, and the first gear;
  • a braking screw that is integrally formed and axially moved, a second gear that is installed at the tip of the fourth transmission shaft and receives rotational force from the power storage unit, and a third gear that rotates in conjunction with the first gear;
  • a fifth motor shaft provided with a ratchet device and connected to the
  • the mechanical energy storage and recycling device of the present invention is installed on the bicycle, the control unit is a wire for transmitting the movement of the storage lever and the acceleration lever respectively installed on both sides of the handle of the bicycle to the power entry and exit or power storage unit. It features.
  • the mechanical power storage and recycling apparatus of the present invention converts the rotational energy discarded during braking into the elastic energy of the spring by using mechanical means, and then rotates the wheel by using the elastic energy of the spring during acceleration. There is an effect to improve.
  • the mechanical power storage and recycling apparatus of the present invention can reduce the fuel consumption when installed in an automobile or an electric vehicle, as well as to reduce the amount of pollutant emissions, thereby preventing economic pollution while obtaining economic benefits.
  • the mechanical power storage and recycling device of the present invention when installed on the bicycle to store the elastic energy in the spring on the downhill, so that when running uphill or tired when using the elastic energy of the spring, the convenience of the bicycle user There is an augmented effect.
  • FIG. 1 is a perspective view showing a mechanical power storage and recycling apparatus according to the present invention.
  • Figure 2 is a schematic diagram showing a mechanical power storage and recycling apparatus of the present invention.
  • FIG. 3 is a reference diagram for explaining the braking operation and acceleration operation of the main components of the present invention.
  • Figure 4 is a perspective view showing a power storage unit of the main components of the present invention.
  • Figure 5 is a schematic diagram showing the state before the power is stored in the power storage unit that is the main configuration of the present invention.
  • Figure 6 is a schematic diagram showing a state in which power is stored in the power storage unit that is the main configuration of the present invention.
  • Figure 7 is a reference diagram for explaining the movement of the rack plate in the power storage unit of the main component of the present invention.
  • FIG. 8 is a perspective view showing a mechanical power storage and recycling apparatus provided with a transmission member at a power inlet and outlet as another embodiment of the present invention.
  • FIG. 9 is a conceptual diagram of a clutch device which is a main component of the embodiment shown in FIG. 8;
  • FIG. 10 is a cross-sectional view of the embodiment shown in FIG.
  • FIG. 11 is a detailed view of a brake operating unit and an acceleration operating unit which are main components of the embodiment illustrated in FIG. 10;
  • FIG. 12 is a block diagram of a shock absorber, which is a main component of the embodiment shown in FIG. 8;
  • FIG. 13 is a sectional view of the shock absorber of FIG. 12; FIG.
  • FIG. 14 is a reference diagram showing another embodiment of the power storage unit which is a main component of the present invention.
  • 15 is a block diagram showing a special structure of the power storage spring which is a main component of the present invention.
  • FIG. 16 is a reference diagram illustrating a state in which the power storage spring of FIG. 15 is compressed.
  • 17 is a reference view showing a state of the power storage unit using the power storage spring of FIG.
  • FIG. 18 is a perspective view showing another embodiment of the power storage unit of the main component of the present invention.
  • 19 is a perspective view showing a transmission means of the power transmission unit of the main configuration of the present invention.
  • FIG. 20 is a reference diagram schematically showing a power storage unit of the present invention provided with the transmission means of FIG. 19.
  • 21 is a schematic view showing a bicycle to which the mechanical power storage and recycling apparatus of the present invention is applied.
  • clutch device 151 first clutch shaft
  • variable speed gear 157 clutch plate
  • slide arm 161 hinge axis
  • brake operating portion 163a electronic solenoid
  • acceleration operation section 164a electronic solenoid
  • auxiliary rack 222 mobile rack
  • the mechanical power storage and recycling apparatus uses the rotational energy of the wheel disappearing during braking to elastically deform the power storage spring, and then converts the elastic energy of the power storage spring to rotational energy of the wheel during acceleration to recycle. I did it.
  • a power storage unit 200 provided to the rotating shaft through; A power transmission unit 300 transmitting power between the power entry and exit unit 100 and the power storage unit 200; A control unit for controlling the operation of the power entry / exit unit 100 and the power storage unit 200; And an integrated clutch 450 that blocks the reverse rotation of the power transmission unit 300 when energy is stored in the power storage unit 200.
  • the integrated clutch 450 is a ratchet gear 451 is formed on the outer circumferential surface, when the power is stored in the power storage unit 200 to the latch 455 provided on the outside of the ratchet gear 451.
  • the ratchet gear 451 is constrained to block reverse rotation, and when the acceleration is accelerated, the ratchet gear 451 is released to rotate while being restrained.
  • the power entry and exit unit 100, the first transmission shaft 110 is rotated in conjunction with the rotation shaft 50 of the wheel, and the rotational force of the first transmission shaft 110 to the power transmission unit 300.
  • the second transmission shaft 120 which is transmitted or rotated by the power transmission unit 300 and the braking screw 131 which is installed to be axially movable on the first transmission shaft 110 and moved in the axial direction during braking
  • a power take-out unit 130 including a first transmission unit 132 which transmits the rotational force of the braking screw 131 to the second transmission shaft 120 by using a bevel gear, and the second transmission shaft 120.
  • the second electric field is transmitted to the first transmission shaft 110 by using the acceleration screw 141 and the bevel gear which is installed to be movable in the axial direction and is moved in the axial direction during acceleration. It includes a power supply unit 140 consisting of the eastern portion (142).
  • the braking screw 131 and the acceleration screw 141 is formed with a spiral groove (131a) (141a) formed on the outer circumferential surface to move in the axial direction during rotation, the spiral groove to rotate in place after moving a certain distance Cylindrical grooves 131b and 141b communicated with 131a and 141a.
  • the braking operation unit 410 and the acceleration operation unit 420 for operating the braking screw 131 and the acceleration screw 141 are protected by the guide blocks 411 and 421 and protrude during braking or acceleration.
  • one end of the first electric drive unit 132 constituting the power take-off unit 130 is coupled to the second electric shaft 120 by bevel gears 125 and 133b, and the other end thereof. It comprises a first auxiliary shaft 133 and the thrust bearing 134 installed at the end of the first auxiliary shaft 133 to be coupled to or separated by the bevel gears (131 ', 133a) to the braking screw 131. do.
  • the second transmission unit 142 constituting the power supply unit 140, the second auxiliary shaft 144, one end of which is coupled to the first transmission shaft 110 by bevel gears (115,144b), One end of the third auxiliary shaft 143 coupled to or separated by the bevel gears 141 'and 143a to the acceleration screw 141, and the other of the second auxiliary shaft 144 and the third auxiliary shaft 143.
  • Idle gears (144a, 143b) are respectively installed at the end and engaged with each other, and the thrust bearing 145 is provided at the end of the third auxiliary shaft (143).
  • the reason why the idler gears 144a and 143b are disposed between the second auxiliary shaft 144 and the third auxiliary shaft 143 is that when the power take-off and the power are supplied, the first transmission shaft 110 is in the same direction. It is intended to be rotated, and other embodiments are also provided with a turning means in the same manner.
  • the integrated clutch 450 is installed on the second transmission shaft 120 to perform the ratchet function when the brake screw 131 is operated so that the second transmission shaft 120 does not rotate in the reverse direction.
  • the ratchet function is released to restrain the restraint of the second electric shaft 120 automatically.
  • the power storage unit 200 is engaged with the electric gear 325 of the third transmission shaft 320 of the power transmission unit 300 to rotate.
  • the rack plate 212 that is moved back and forth by the rotational force of the ring gear 211 or the elastic force of the power storage spring 500 provided at one side, and the power storage spring 500 is elastically deformed.
  • the rack catcher 213 which holds the rack plate 212 so as not to move, and transmits the rotational force of the ring gear 211 to the rack plate 212 or the movement of the rack plate 212 to the ring gear
  • an output starting member 217 for releasing the rack plate 212 in response to a signal from the control unit.
  • the rack gear 215 rotates integrally with the electric gear 215a meshed with the ring gear 211, and the electric gear 215a may be any of the inner gear and the outer gear of the ring gear 211. Can be engaged.
  • the power transmission unit 300 is to transfer power between the second transmission shaft 120 and the third transmission shaft 320, the rolling element 310 of the multi-stage structure to shift according to the acceleration and deceleration speed. (330) and a shift actuator (not shown) for shift control. Therefore, when a rapid braking while driving at a high speed or when fast acceleration is required, the power is transmitted quickly, and in the opposite case, the power is transmitted slowly.
  • the storage starting member 216 is operated by the control unit to store the storage starting lever 216a for advancing the rack plate 212, and is installed on the upper side of the rack plate 212 and the storage starting.
  • the lever 216a is made of a locking protrusion 216b to be pushed, and the output starting member 217 is operated by the control unit to fix the rack plate 212 by the rack catcher 213. Release it.
  • the rack plate 212 may have the power storage unit 200 has a multi-layer structure.
  • the rack gear 215 and the rack catcher 213 are installed on each rack plate 212a, 212b, 212c, 212d, and 212e, and power storage and elastic force are sequentially provided between the rack plates.
  • Each rack plate 212 is to be provided with an interlock means.
  • the lower portion of the uppermost rack plate (212aa) after the movement by the storage starting member 216 is the main gear (s) with a predetermined service distance (s) so that the rack gear 215 can be engaged.
  • 214 is formed.
  • the power storage spring 500 installed in the uppermost rack plate 212a has a separate low elastic spring so that the uppermost rack plate 212a can be moved by the service distance s when the storage starting member 216 is operated.
  • 550 is formed in a structure that is elastically supported. At this time, the length of the low-elastic spring 550 uses the same as the above service distance (s).
  • the spring provided in the lowermost rack board 212e is made into the low elastic spring 550.
  • the lowermost rack plate 212e serves as an auxiliary part of the rack plate 212d immediately above the low elastic spring 550 in the extended state until power take-off occurs, and the output starting member 217 The catcher is caught by the catching protrusion 226 of the rack plate 212d.
  • the interlocking means rotates by being engaged with the first auxiliary gear 223 and the first auxiliary gear 223 that are engaged with the auxiliary rack 221 formed on the lower surface of the upper rack plate independently of the main rack 214.
  • a second auxiliary gear 224 that is engaged with the maneuvering rack 222 formed on the upper surface of the lower rack plate so that the main rack 214 of the lower rack plate is engaged with the rack gear 215, and the upper side.
  • a locking protrusion 226 installed on the rack plate to block the rack catcher 213 to fix the upper rack plate, and formed on an upper surface of the lower rack plate to fix the upper rack plate by the rack catcher 213. It consists of a release roller 225 for releasing.
  • the main rack 214 is formed in the longitudinal direction in the center of the lower surface of each rack plate
  • the auxiliary rack 221 is formed in a short length on the side of the main rack 214
  • the starting rack 222 Is formed in a short length on the upper side of each rack plate.
  • the length or installation position of the main rack 214, the auxiliary rack 221 and the starting rack 222 is appropriately arranged so that each rack plate can be interlocked.
  • the auxiliary rack 221 and the starting rack 222 is to allow the upper rack plate and the lower rack plate to be interlocked with each other, is installed on both sides of the main rack 214 and of the rack plate 212 It is preferable to provide two along the longitudinal direction.
  • the reason why the auxiliary racks 221 and the starting racks 222 are installed on both sides of the main rack 214 is to allow the rack plate 212 to be moved in a linear direction in a balanced state.
  • the auxiliary racks 221 and the starting racks 222 are installed in the longitudinal direction of the rack plate 212, two reasons, the rack gear 215 is engaged with the main rack 214 in the state The movement of the upper rack plate is transmitted to the lower rack plate by the front auxiliary rack 221 and the starting rack 222, and the rack gear 215 of the upper rack plate is separated from the main rack 214. Immediately before, the movement of the lower rack plate is reversely transferred to the upper rack plate by the auxiliary rack 221 and the starting rack 222 at the rear so that the upper rack plate is caught and fixed to the locking protrusion 226. will be.
  • the upper rack plate is expanded in the power storage spring 500 while moving in a linear direction by the main rack 214 engaged to the rack gear 215, the power storage spring 500 is fully inflated Afterwards, the rack gear 215 is separated from the main rack 214 to maintain the power storage spring 500 in an expanded state. At this time, before the rack gear 215 is separated from the main rack 214 is engaged with the auxiliary rack 221 to rotate the auxiliary rack 221, the auxiliary gear 221 through the auxiliary gear. Thus, the starting rack 222 of the lower rack plate engaged is rotated.
  • the lower rack plate is started and moved in a linear direction by the starting rack 222, and the main rack of the lower rack plate is engaged with the rack gear of the lower rack plate being rotated to engage the lower rack plate and the main rack.
  • the rack will move in a straight line.
  • the second auxiliary rack of the upper rack plate is connected to the second starting rack provided on the lower rack plate immediately before the rack gear 215 of the upper rack plate is separated from the main rack 214. It is interposed between them. Accordingly, even after the rack gear of the upper rack plate is separated from the main rack, the upper rack plate is moved to some extent by the second auxiliary rack.
  • the first transmission shaft 110 is always connected to the rotation shaft 50. Rotate in conjunction.
  • the arc-shaped protrusion 412 of the braking operation unit 410 is protruded and inserted into the grooves 131a and 131b of the braking screw 131. Therefore, the braking screw 131 installed on the first transmission shaft 110 that is rotated in conjunction with the rotary shaft 50 of the wheel is rotated and moved in the axial direction.
  • the braking operation unit 410 does not rotate, when the arc-shaped protrusion 412 of the braking operation unit 410 is inserted into the helical groove 131a formed on the outer circumferential surface of the braking screw 131, the braking operation unit 410 The screw 131 is moved in the axial direction at the same time as the rotation.
  • the braking screw 131 does not move in the axial direction and is independent of the braking operation unit 410. Is rotated.
  • the braking screw 131 moves in the axial direction, the braking screw 131 and the first auxiliary shaft 133 are coupled to the bevel gears 131 'and 133a. Therefore, the rotational force of the first transmission shaft 110 is transmitted to the second transmission shaft 120 through the braking screw 131 and the first auxiliary shaft 133, the rotation of the second transmission shaft 120 As a result, the ring gear 211 of the power storage unit 200 connected through the power transmission unit 300 is rotated.
  • the power transmission speed may be changed depending on the traveling speed or the acceleration level. I can regulate it. In other words, when braking during high-speed driving or when rapid acceleration is required, power transmission is performed quickly, otherwise power transmission is performed slowly.
  • the inner electric gear 215a meshed with the ring gear 211 is rotated.
  • the inner electric gear 215a may be rotated using a chain instead of the ring gear 211.
  • the rack gear 215 coupled to the inner electric gear 215a is rotated.
  • the storage starting member 216 is operated so that the elastic energy is stored in the power storage spring 500 installed on the rack plate 212.
  • the storage starting lever 216a is driven by the control unit during braking to push the locking protrusion 216b installed on the upper side of the rack plate 212, and thus the rack plate 212 moves forward to The main rack 214 is engaged with the rack gear 215.
  • the movement distance of the rack plate 212 by the storage starting lever 216a is called a service distance s, and the power storage spring 500 while the rack plate 212 is moved by the service distance s.
  • the power storage spring 500 Is not extended and only the low elastic spring 550 is stretched to elastically support the power storage spring 500.
  • the power storage spring 500 by extending the power storage spring 500 while advancing the rack plate 212 ( The elastic energy is accumulated in 500).
  • each rack plate 212a, 212b, 212c, and 212d is sequentially moved from the uppermost rack plate 212a to the second layer rack plate 212d.
  • the elastic energy is accumulated in the power storage spring 500 provided in the.
  • the rack plate 212a is illustrated by the main rack 214 engaged with the rack gear 215 after the uppermost rack plate 212a is moved by the service distance s by the storage starting lever 216a.
  • the first auxiliary gear 223 meshes with the auxiliary racks 221 provided on both sides of the main rack 214 immediately before the rack gear 215 is separated from the main rack 214.
  • the second auxiliary gear 224 engaged with the first auxiliary gear 223 is always engaged with the starting rack 222 of the fourth layer rack plate 212b, so that the fourth auxiliary rack 223 rotates. 212b is activated.
  • the fourth layer rack plate 212b is also advanced, and the main rack 214 and the rack gear 215 of the corresponding layer are engaged with each other, and the uppermost rack plate 212a and the fourth layer rack plate 212b are A significant distance will advance to the left in the drawing.
  • the rack gear 215 of the uppermost rack plate 212a is separated from the main rack 214.
  • the uppermost rack plate 212a is slightly further advanced in conjunction with the fourth layer rack plate 212b.
  • the second auxiliary gear 224 is rotated by the actuation rack 222 of the fourth layer rack plate 212b, and the first auxiliary gear 223 is rotated in reverse to thereby rotate the first auxiliary gear (
  • the uppermost rack plate 212a is further advanced by the auxiliary rack 221 engaged with the 223.
  • the uppermost rack plate 212a is stopped after the locking protrusion 226 of the corresponding layer passes through the rack catcher 213, and the locking protrusion 226 is caught by the rack catcher 213 so that the power storage spring is stopped. Unwinding in the reverse direction by the elastic force of 500 is prevented.
  • the lowermost rack plate 212e moves forward through the third layer rack plate 212c and the second layer rack plate 212d in order to be elastic to the power storage springs 500 installed on the respective rack plates 212. Energy is stored.
  • the lowermost rack plate 212e serves only as an auxiliary function to catch the locking protrusion 226 on the rack catcher 213 to fix the position of the second layer rack plate 212d.
  • the ring gear 211 is rotated while the rack plates 212 are sequentially moved by the elastic energy of the power storage spring 500. .
  • the output starting member 217 is activated to move the lowermost rack plate 212e to the right by the low elastic spring 550. Accordingly, the second layer rack plate 212d by the rack catcher 213 is released. That is, the rack catcher 213 is moved by the control unit to be released from the locking projection 226 to release the fixing of the second layer rack plate (212d), the second layer rack plate (212d) It can be moved by the power storage spring (500).
  • the arc-shaped protrusion 422 of the acceleration operation unit 420 is inserted into the grooves 141a and 141b of the acceleration screw 141, and the latch 455 of the integrated clutch 450 is separated from the ratchet gear 451. To allow the second electric shaft 120 to rotate.
  • the rolling element 310 of the second transmission shaft 120 is rotated by the rolling element 330 which is linked to the ring gear 211.
  • the acceleration screw 141 is moved in the axial direction so that the acceleration screw 141 and the third auxiliary shaft 144 is Bevel gears (141 ', 143a) are meshed and interlocked.
  • the arc-shaped protrusion 422 of the acceleration operation unit 420 is inserted into the circumferential groove 141b of the acceleration screw 141, the axial movement of the acceleration screw 141 is stopped and the acceleration screw ( 141 rotates together with the second electric shaft 120.
  • the second auxiliary shaft 144 is rotated in conjunction with the second transmission shaft 120, the second auxiliary shaft (144) is meshed with the idler gears (143b, 144a) to the third auxiliary shaft (144) 143 is rotated.
  • the second auxiliary shaft 143 is meshed with the first transmission shaft 110 by bevel gears 144b and 115, the first transmission shaft 110 is also connected to the second transmission shaft 120. It rotates in conjunction with the rotating shaft 50 of the wheel.
  • the mechanical power storage and recycling apparatus of the present invention stores the rotational energy discarded during braking as the elastic energy of the power storage spring 500 provided in the power storage unit 200, and then accelerates the power storage spring ( The elastic energy of 500) is converted into rotational energy again to rotate the wheels. Therefore, the consumption of additional energy consumed when accelerating after braking is reduced, thereby preventing economic and environmental pollution. In addition, since braking energy is converted into rotation energy of the power storage spring, the braking distance is shortened.
  • the tension spring is operated as the power storage spring 500, but the compression spring may be used instead of the tension spring by reversing the installation position of the spring.
  • the mechanical power storage and recycling apparatus of the present invention can be applied to bicycles, automobiles and electric vehicles, and can also be applied to mechanical devices that repeat acceleration and deceleration.
  • the control unit may be constituted by a braking hydraulic system linked to the brake pedal and an accelerated hydraulic system linked to the accelerator pedal of the vehicle.
  • the braking hydraulic system controls the power take-off action of the power entry and exit unit 100 by using a hydraulic pressure applied by a hydraulic valve operated according to a signal of a sensor for detecting the movement of the brake pedal, and the acceleration hydraulic pressure
  • the device controls the output action from the power storage unit 200 by using the hydraulic pressure applied by the hydraulic valve operated according to the signal of the sensor for detecting the movement of the accelerator pedal.
  • the power storage spring 500 may use a plate spring as shown in Figure 15, instead of the conventional coil spring to be used for multi-purpose, in this case, the power storage spring 500, the straight steel plate is bent
  • the flexible part 520 elastically deformed between the flex part 510 and the flex part 510 is alternately formed, and the flex part 510 at both ends of the flexible part 520 is bent in the opposite direction. Formed and contracted or stretched.
  • the shaft hole 525 in which the spring shaft 530 is inserted is formed in the center of the flexible part 520 so as not to bounce sideways in the shrinking process.
  • the flexible portions 520 may have irregularities 521 formed on both surfaces thereof, such that adjacent flexible portions 520 may be unevenly coupled to each other when the power storage spring 500 is contracted.
  • the power storage spring 500 is elongated as shown in FIG. 15 before the power is stored, and when the power is stored, adjacent flexible parts 520 are contracted in a concave-convex form as shown in FIG. 16. do.
  • the power storage spring 500 has a concave-convex 521 is formed on each side surface of the flexible portion 520 is flexible, and the flex portion 510 bent in opposite directions at both ends of the flexible portion 520, respectively. ) Has the property of maintaining high elasticity throughout the spring because of its high strength. In particular, since irregularities 521 are formed on both surfaces of the flexible part 520, and adjacent flexible parts 520 are unevenly coupled to each other during power storage, the spring effect is improved by shrinking so that there is no empty space in a predetermined space.
  • the transmission member may be installed between the power transmission unit 300 and the power storage unit 200 to adjust the speed when the power is stored in the power storage unit 200 or draw power.
  • the shifting actuator is operated in accordance with the operation of the shifting lever installed in the handle to operate the transmission chain installed in the multistage sprocket or the electric transmission installed in the multistage pulley. It is preferable to change the position of the belt so that the shift is made.
  • the shift actuator is operated according to the vehicle speed or acceleration degree, rather than directly operated by a shift lever, so that the transmission is installed in a multi-stage sprocket. It is preferable to change the position of the transmission belt installed in the chain or the multi-stage pulley so that the shift is made.
  • the shift member may be installed between the power entry and exit unit 100 and the power transmission unit 300, not the power transmission unit.
  • the shifting member may selectively engage a plurality of clutch devices 150 having different speed ratios according to the degree of deceleration or acceleration so that the shift is made.
  • the clutch device 150 used at this time the first clutch shaft 151 is rotated in conjunction with the rotary shaft 50 of the wheel, and the second clutch shaft 152 is rotated in conjunction with the power transmission unit 300.
  • a braking screw 153 installed on the first clutch shaft 151 so as to be axially movable and having a spiral groove 153a and a cylindrical groove 153b formed on an outer circumferential surface thereof, and rotating on the first clutch shaft 151.
  • a speed change gear 154 that is installed to be capable of being installed, an acceleration screw 155 that is axially movable on the second clutch shaft 152 and has a spiral groove 155a and a cylindrical groove 155b formed on an outer circumferential surface thereof And a shift driven gear 156 rotatably installed on the second shaft 152 and meshed with the shift driving gear 154, and integrally with the shift driving gear 154 and the shift driven gear 156, respectively.
  • a clutch plate 157 formed on one side and a clutch tooth 157 'formed thereon, and a clutch tee on a surface facing the clutch plate 157.
  • a clutch slide 159 having a clutch pad 158 (not shown) formed on the first clutch shaft 151 and the second clutch shaft 152 so as to be axially movable, and the first clutch A pair of slide arms 160 rotatably coupled to the shaft 151 and the clutch slide 159 of the second clutch shaft 152 and coupled to each other, respectively, and mounted on the slide arm 160, respectively.
  • the clutch device 150 is provided in plural in consideration of the gear ratio, and each clutch device 150 has an acceleration operation unit 164 and a braking screw for operating the acceleration screw 155 according to a signal or a vehicle speed of the control unit.
  • Braking operation unit 163 for operating the 153 is provided, respectively.
  • a braking oil supply pipe 165 and a movable oil supply pipe 166 for supplying hydraulic pressure to the hydraulic cylinders 163b and 164b are provided, and to transmit a signal of the control unit to the electromagnetic solenoids 163a and 164a.
  • Braking current line 167 and the movable current line 168 is provided for each.
  • the brake operating unit 163 When the vehicle is braked while driving, the brake operating unit 163 is operated by a signal of the control unit to move the brake screw 153 in the axial direction. That is, the electromagnetic solenoid 163a of the braking operation unit 163 is actuated by the signal generated by the control unit to apply hydraulic pressure to the hydraulic cylinder 163b, thereby arcing projection 163c of the hydraulic cylinder 163b. ) Is inserted into the grooves 153a and 153b of the braking screw 153 so that the braking screw 153 installed on the rotating first clutch shaft 151 moves in the axial direction.
  • the brake screw 153 pushes the clutch slide 159 while moving in the axial direction, whereby the clutch pad 158 of the clutch slide 159 is clutched to the clutch plate 157. Accordingly, the shift drive gear 154 integrally formed with the clutch plate 157 rotates in conjunction with the first clutch shaft 151 and the shift driven gear 156 installed on the second clutch shaft 152. Is rotated in engagement with the transmission drive gear 154.
  • the slide arm 160 coupled to the clutch slide 159 is moved about the hinge shaft 161.
  • the slide arm 160 of the second clutch shaft 152 also moves about the hinge shaft 161 and the clutch plate 157 and the clutch pad 158 of the second clutch shaft 152 are clutched.
  • the second clutch shaft 152 coupled with the shifting gear 156 engaged with the shifting drive gear 154 also rotates to transmit rotational force to the power transmission unit 300.
  • the rotational force of the second clutch shaft 152 is transmitted to the first clutch shaft 151. do.
  • the acceleration screw 155 is moved in the axial direction by the acceleration operation unit 164 operated by the signal of the control unit during acceleration, and the acceleration screw 155 is the clutch slide 159 of the second clutch shaft 152. ),
  • the clutch slide 159 is moved in the axial direction.
  • the clutch slide 159 of the first clutch shaft 151 is also moved in the axial direction by the action of the slide arm 160 to which the clutch slide 159 is coupled, according to the movement of the clutch slide 159.
  • the clutch pad 158 is clutched to the clutch plate 157. Accordingly, the transmission drive gear 154 integrally formed with the clutch plate 157 and the transmission follower gear 156 rotate together to transmit the rotational force of the second clutch shaft 152 to the first clutch shaft 151. do.
  • control unit may apply the operation signal to the braking operation unit 163 or the acceleration operation unit 164 provided in each of the plurality of clutch units 150 to engage the clutch in the clutch unit 150 having an appropriate speed ratio.
  • the power transmission speed between the power entry and exit unit 100 and the power transmission unit 200 is adjusted by using a method of transmitting power.
  • the power transmission unit 300 may further include a shock absorber 350 installed on the power transmission path during braking to mitigate a braking impact.
  • the shock absorber 350, the brake belt 351 is provided with a lining 352 protruding in a trapezoidal shape in the inner center, and rotated in conjunction with the power storage unit side coupled to the large diameter portion of the brake belt 351
  • Storage unit pulley (353), the catch pulley (354) coupled to the outer diameter of the small diameter portion of the brake belt 351, and linked to the power entry and exit side is rotated in line with the small diameter portion of the brake belt 351
  • the shock absorbing screw 357 is opposed to the braking screw 153 or the movable screw 155, while the shock absorbing screw 357 is fixed without moving in the axial direction, and the upper and lower arcing protrusions and the upper and lower hydraulic cylinders are braking pulleys 355. And moved to the left in the drawing along with the axis has a structure to store the power in the power storage unit 200.
  • the shock absorber is operated during braking to mitigate the impact of braking, and does not operate during acceleration. This will be described in detail as follows.
  • the braking pulley 355 is moved in the direction of the catch pulley 354 by the shock absorbing screw 357 to be in contact with the lining 352 formed inside the brake belt 351. Therefore, tension is applied to the brake belt 351 to which the storage pulley 353 is coupled to one side and is taut.
  • the braking pulley 355 is interlocked with the second clutch shaft 152. Will rotate. Accordingly, the rotational force of the brake pulley 355 is transmitted to the storage pulley 353 through the brake belt 351, and the storage shaft 358 coupled to the shaft of the storage pulley 353 by a bevel gear.
  • the ring gear 211 of the power storage unit 200 As it rotates, the ring gear 211 of the power storage unit 200 is rotated. Therefore, elastic energy is stored in the power storage spring 500 as the ring gear 211 rotates. At this time, a slight slip occurs between the braking pulley 355 and the lining 352 of the brake belt 351 to alleviate the shock and vibration generated in the process of transmitting power due to braking.
  • the ring gear 211 of the power storage unit 200 is rotated by the elastic energy of the power storage spring 500, the storage shaft 358 is linked to the ring gear 211. And rotate. At this time, the rotational force of the storage shaft 358 is transmitted to the second clutch shaft 152 through the transmission member due to the acceleration screw 359 installed in the storage shaft 358, the buffer screw 357 is operated Therefore, even when the storage pulley 353 is rotated, power is not transmitted to the braking pulley 355.
  • the power storage unit 200 has a power storage spring having a multi-stage structure and a movement of the rack plate in the reverse order of the first embodiment. can do. That is, the power storage unit 200, the rack plate 282 is provided with a power storage spring 500, so that the rack plate 282 does not move in a state in which the power storage spring 500 is elastically deformed.
  • the rack plate 282 has a multi-layer structure, each rack plate 282 is provided with the rack gear 285 and the rack catcher 283, and each rack plate 282 is powered An interlock means is provided to sequentially perform storage and provision of an elastic force.
  • the interlocking means is engaged with the first auxiliary gear 291 and the first auxiliary gear 291 to be engaged with the auxiliary rack 292 formed independently of the main rack 284 on the upper rack plate, and the other layer is rotated.
  • a second auxiliary gear 293 that is engaged with the actuating rack 294 formed on the rack plate so that the main rack 284 of the other layer rack plate is engaged with the rack gear 285; and an upper surface of the other layer rack plate.
  • a release protrusion 295 formed on the rack catcher 283, and a release roller 296 formed on the other layer rack plate to release the rack plate 282 from the rack catcher 283. .
  • the rack plate 282 of the multi-layered structure positions the positions of the main rack 284, the auxiliary rack 292 and the starting rack 294 so that the movement direction of the entire rack plate is the same during power storage or power output.
  • the power storage spring 500, the first auxiliary gear 291, and the second auxiliary gear 293 may be positioned on the opposite side where the main rack 284 is not installed.
  • the storage starting member 286 is positioned on the lowermost rack plate so that power can be stored from the lower layer, and the output starting member 287 is positioned on the uppermost rack plate. It was made possible.
  • the process of storing or outputting power in the power storage unit of the first embodiment described above is largely similar, and thus a detailed description thereof will be omitted.
  • the rack plate 282 of the multi-layer structure is the position of the main rack 284, the auxiliary rack 292 and the starting rack 294 so that the movement direction of the entire rack plate is the same during power storage or power output.
  • the power storage spring 500, the first auxiliary gear 291, and the second auxiliary gear 293 may be positioned on the opposite side where the main rack 284 is not installed. In this case, since the distance between the rack plate 282 can be reduced, there is an advantage that can reduce the size of the power storage unit 200.
  • the power storage unit 200 is a torsional power storage spring using a torsion action without using the power storage spring 500 of the type as a means for storing the elastic energy, as shown in FIG. 500 ') may be used.
  • the power storage unit 200 is torsionally rotated by the power transmission unit 300 to store elastic energy and a power storage spring 500 ′ having one end fixed thereto, A spring shaft 251 supporting the power storage spring 500 'and rotated in association with the power transmission unit 300 and installed at one end of the spring shaft 251 to provide the power storage spring 500'.
  • the input / output control member may include a storage shaft 261 provided on the other side of the spring fixing plate 252, an output gear 262 and a storage gear 263 provided on the storage shaft 261, and One-way clutch 264 formed integrally with the storage gear 263 and the ratchet gear is formed on the outer circumferential surface thereof, and installed in parallel with the storage shaft 261 and moved in the axial direction and rotated by the power transmission unit 300.
  • a second moving gear 267 for rotating the shaft a control lever 268 for moving the movable shaft 265 in the axial direction, and a guide installed on the movable shaft 265 to support the control lever 268. 269, the catcher 270 engaged with the ratchet gear of the one-way clutch 264, and the output lever for operating the control lever 268; A hydraulic oil pressure device 271 and a storage oil pressure device 272 installed on one side of the movable shaft 265 to engage the second moving gear 267 with the storage gear 263.
  • the power storage unit 200 is provided with a plurality, the input and output control unit is controlled in accordance with the signal of the limit switch 255 installed in each power storage unit 200 to store the elastic energy and output the energy in sequence Configure to lose.
  • the power transmission unit 300 for transmitting power between the plurality of power storage unit 200 and the power entry and exit unit 100, the transmission of the energy control or output speed to adjust the speed depending on the vehicle speed or acceleration degree
  • the movable shaft 330 is provided on the cylindrical gear 336 ′ provided on the shafts of the plurality of chain gears 336 that rotate in linkage with the third transmission shaft 320 of the rolling element 330.
  • the electric gears 265 'installed in the 265 are respectively engaged.
  • the movable shaft 265 is rotated by the power transmission unit 300, and the second moving gear 267 is moved in the axial direction by the storage hydraulic device 272 to be provided in the storage shaft 261. It is meshed with the storage gear 263. Accordingly, the spring fixing plate 252 installed in the storage shaft 261 rotates to rotate the power storage spring 500 'to allow elastic energy to be stored. In this case, the spring shaft 251 penetrating the power storage spring 500 'supports the power storage spring 500' not to be separated. In addition, the limit switch 255 stops the operation of the storage hydraulic device 272 at the moment the elastic energy is stored in the power storage spring (500 ') to block the transmission of power from the power transmission unit (300).
  • the catcher 270 of the one-way clutch 264 installed in the storage shaft 261 prevents the storage shaft 261 from rotating in the opposite direction by the elastic energy of the power storage spring 500 '. If a plurality of power storage units 200 are installed, power may be sequentially stored in each of the power storage units 200 according to a signal of the limit switch 255.
  • the catcher 270 of the one-way clutch 264 is pulled out of the ratchet gear so that the storage shaft 261 is elastic of the power storage spring 500 '. It can be rotated by energy.
  • the output hydraulic device 271 is operated to move the movable shaft 265 in the direction of the output gear 262 through the control lever 268, whereby the first movable gear 266 of the movable shaft 265 is operated. Is fitted to the output gear 262 of the storage shaft 261.
  • the cylindrical gear 336 'engaged with the electric gear 265' of the movable shaft 265 is rotated while the movable shaft 265 is rotated in association with the storage shaft 261, and the cylindrical gear is rotated.
  • the rotation force is transmitted to the power transmission unit 300 through the chain gear 336 which is integrally rotated with the 336 '.
  • the power transmission unit 300 for transmitting power or outputting power to the power storage unit 200 having the power storage spring 500 ' may be configured as follows.
  • the power transmission unit 300 as shown in Figs. 19 and 20, the rolling element 340 as a transmission for adjusting the storage or output speed of energy in accordance with the vehicle speed or the degree of acceleration, and the rolling element It is provided with a transmission means for transmitting the rotational force of the sprocket 342a rotated in conjunction with the output shaft of the 340 to the power storage unit 200 or the output of the power storage unit 200 to the sprocket 342a.
  • the transmission means the first shaft 342 connected to each of the plurality of sprockets 342a, and is installed to be movable in the axial direction on the first shaft 342 and transmits the rotational force to the sprocket 342a during acceleration
  • the power storage unit 200 is installed at the front end of the first gear 342b, the braking screw 345 which is formed integrally with the first gear 342b and moves in the axial direction, and the first shaft 342.
  • a second shaft 342c receiving rotational force from the second shaft; a third gear 344a and a ratchet device 346 rotated in association with the first gear 342b; 344, a fourth gear 344b installed axially on the second shaft 344 and engaged with the second gear 342c during acceleration, and integrally with the fourth gear 344b.
  • the braking operation unit 348 and the acceleration operation unit 349 using an electromagnetic solenoid operated according to the signal of the control unit, arc-shaped projection of the hydraulic cylinder operated by the hydraulic pressure applied by the electromagnetic solenoid. Is inserted into the groove of the brake screw 345 or the acceleration screw 347 to move the brake screw 345 or the acceleration screw 347 in the axial direction.
  • the power storage unit 200 may be provided in plural so that the storage of the elastic energy and the output of the energy may be performed in sequence, and the transmission means may be installed in each of the plurality of power storage units 200. At this time, in order to store the elastic energy and the output of the elastic energy in each power storage unit 200 in order to control each of the braking operation unit 348 and the acceleration operation unit 349 directly from the control unit. .
  • the storage and output of power in the power transmission portion of the above structure is made as follows.
  • the first shaft 342 connected to the sprocket 342a of the power transmission unit 300 is constantly rotated, and during braking, the braking screw 345 is moved in the axial direction by the braking operation unit 348. That is, the braking instantaneous control unit applies a signal to the electromagnetic solenoid of the brake operation unit 348, the hydraulic cylinder is operated by the hydraulic pressure applied in accordance with the operation of the electromagnetic solenoid arc-shaped projection is the brake screw 345 ) Is inserted into the groove.
  • the first gear 342b integrally formed with the brake screw 345 is moved in the axial direction and is engaged with the third gear 344a of the second shaft 344. Accordingly, elastic energy is stored in the power storage spring 500 ′ of the power storage unit 200 while the second shaft 344 rotates. At this time, the plurality of power storage unit 200 to sequentially control the electronic solenoid of the braking operation unit 348 corresponding to each of the power storage unit 200 so that the power is sequentially stored.
  • the acceleration operation unit 349 When outputting energy from the power storage unit 200 during acceleration, the acceleration operation unit 349 may be operated through the control unit and release of the ratchet device 346 may be released.
  • the control unit applies a signal to the electromagnetic solenoid of the acceleration operation unit 349, the hydraulic cylinder to which the hydraulic pressure is applied by the electromagnetic solenoid is operated to insert the arc-shaped protrusion into the groove of the acceleration screw 347.
  • the second shaft 344 is rotated by the power storage spring 500 'of the power storage unit 200, and the acceleration screw 347 is
  • the fourth gear 344b integrally formed on the second shaft 344 is moved in the axial direction and is engaged with the second gear 342c of the first shaft 342.
  • the first shaft 342 is rotated in conjunction with the second shaft 344, the rotational force of the first shaft 342 is transmitted to the power transmission unit 300 through the sprocket 342a.
  • the plurality of power storage unit 200 by sequentially controlling the electromagnetic solenoid of each of the acceleration operation unit 349, and outputs the elastic energy of each of the power storage unit 200 in order to recycle.
  • the mechanical power storage and recycling apparatus of the present invention to install the power entry and exit unit 100 and the power transmission unit 300 in the rear wheel 702 and the front wheel (
  • the power storage unit 200 is installed in the empty space 706 of the frame 705 connecting the 701 and the rear wheel 702.
  • the control unit is provided with storage levers 711 and acceleration levers 712 on both sides of the handle 710 of the bicycle, respectively, and the power entry / exit unit using a wire 715a connected to the storage lever 711.
  • the braking operation unit 410 of the (100) and the storage starting member 216 of the power storage unit 200 is operated, and using the wire 715b connected to the acceleration lever 712, the power transmission unit ( The acceleration operation unit 420 of 300 and the output starting member 217 of the power storage unit 200 are operated.
  • the mechanical power storage and recycling apparatus of the present invention when driving downhill, the power is stored in the power storage unit 200 by pulling the storage lever 711 and passing or going uphill. By pulling the acceleration lever 712 in the state it is possible to travel with a small force by using the energy stored in the power storage unit 200.
  • the mechanical power storage and recycling apparatus of the present invention can reduce fuel and reduce emissions of pollutants in automobiles or electric cars, the mechanical power storage and recycling apparatus can contribute to the development of the automobile industry according to the global trend of regulating carbon dioxide emissions.
  • the mechanical power storage and recycling apparatus of the present invention can convert a bicycle moving only by a manpower into a power bicycle, which can contribute to the development of bicycle-related industries.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Abstract

본 발명은 자전거나 자동차 등을 운전중 제동할 때 사라지는 회전에너지를 스프링의 탄성에너지로 변환시켜 축적한 후 가속시 재활용할 수 있도록 한 기계식 에너지 저장 및 재활용 장치에 관한 것으로서, 바퀴의 회전축에 연동되며 제동시에는 회전축으로부터 회전력을 인출하고 가속시에는 회전축으로 회전력을 제공하는 동력입출부(100)와; 인출된 회전력을 동력저장스프링(500)의 탄성에너지로 전환시켜 저장하거나 동력저장스프링(500)의 탄성에너지를 회전력으로 전환시켜 동력입출부(100)를 통해 회전축에 제공하는 동력저장부(200)와; 동력입출부(100)와 동력저장부(200) 사이에서 동력을 전달하는 동력전달부(300)와; 동력입출부(100) 및 동력저장부(200)의 작동을 제어하는 제어장치부;를 포함하는 것을 특징으로 한다.

Description

기계식 에너지 저장 및 재활용 장치
본 발명은 자전거나 자동차 등을 운전하는 과정에서 제동에 의해 사라지는 회전에너지를 저장하여 재활용할 수 있도록 하는 에너지 저장 및 재활용 장치에 관한 것으로서, 특히 제동시 사라지는 회전에너지를 스프링의 탄성에너지로 변환시켜 축적한 후 가속시 재활용할 수 있도록 한 기계식 에너지 저장 및 재활용 장치에 관한 것이다.
일반적으로 자전거나 자동차를 운행하는 경우 정지 상태에서 천천히 가속한 후 일정 속도에 이르면 정속으로 주행하게 되고, 위험 요인이 발견되거나 신호등의 정지 신호를 발견한 경우 감속 및 정지하게 된다. 특히, 자동차를 이용하여 복잡한 시가지를 주행하는 경우에는 신호등의 지시에 따라 감속 또는 정지를 반복하게 되며, 이처럼 감속 또는 정지를 반복함에 따라 회전에너지가 버려지게 되어 연료 소모가 증가하게 된다.
이에 따라 제동시 버려지는 회전에너지를 저장하여 재활용하는 방안이 연구되고 있으며, 일부 하이브리드 자동차에서는 제동시 버려지는 회전에너지를 이용하여 발전기를 구동시킴으로써 충전식 배터리를 충전시키는 방법을 사용하기도 한다.
그러나, 이러한 방식은 모터를 구동원으로 하는 하이브리드 자동차나 전기 자동차에서만 제한적으로 사용할 수 있을 뿐 일반적인 자동차에서는 사용할 수 없고, 회전에너지와 같은 기계적 에너지를 전기 에너지로 전환시켰다가 다시 기계적 에너지로 변환시키는 방식이어서 효율이 낮은 문제점이 있다.
즉, 발전기를 이용하여 기계적 에너지를 전기 에너지로 전환하거나 모터를 이용하여 전기 에너지를 기계적 에너지로 전환하는 경우 에너지 전환 효율이 높지 않으며 에너지 전환을 2번 실시하게 되면 그 효율이 매우 낮아지게 되는 것이다.
본 발명은 상기한 종래 문제점을 해결하기 위하여 안출된 것으로서, 감속 또는 제동시 버려지는 회전에너지를 스프링의 탄성에너지로 변환시켜 저장한 후 가속시 재활용할 수 있도록 함으로써 에너지 소비를 줄일 수 있도록 한 기계식 에너지 저장 및 재활용 장치를 제공하는데 그 목적이 있다.
또, 본 발명은 회전에너지를 전기적 에너지로 변환시키지 않고 기계적 에너지 자체로 저장함으로써 에너지 전환에 따른 효율 저하를 방지할 수 있는 기계식 에너지 저장 및 재활용 장치를 제공하는데 그 목적이 있다.
또한, 본 발명은 기계적 에너지 자체를 저장하여 재활용하도록 함으로써 모터를 구동원으로 사용하지 않는 일반적인 자동차나 자전거 등에서도 사용할 수 있는 범용성의 기계식 에너지 저장 및 재활용 장치를 제공하는데 목적이 있다.
또, 본 발명은 자전거와 같은 비동력식 운행수단에 적용하여 내리막길을 달릴 때 탄성에너지를 저장한 후 오르막길을 오를 때 이 탄성에너지를 구동력으로 전환함으로써 적은 힘으로 오르막길을 주행할 수 있도록 한 기계식 에너지 저장 및 재활용 장치를 제공하는데 목적이 있다.
또한, 본 발명은 자동차에 적용되어 감속 및 제동시 탄성에너지를 저장한 후 가속시 탄성에너지를 이용하여 바퀴를 회전시킴으로써 연료 소모를 줄임과 동시에 환경 오염을 줄일 수 있도록 한 기계식 에너지 저장 및 재활용 장치를 제공하는데 목적이 있다.
상기한 목적을 달성하기 위한 본 발명의 기계식 에너지 저장 및 재활용 장치는, 제동시 사라지는 바퀴의 회전 에너지를 이용하여 동력저장스프링을 탄성 변형시킨 후, 가속시 상기 동력저장스프링의 탄성에너지를 상기 바퀴의 회전 에너지로 변환시켜 재활용하도록 한 것을 특징으로 한다.
또, 본 발명의 기계식 동력 저장 및 재활용 장치는, 바퀴의 회전축에 연동되며 제동시에는 상기 회전축으로부터 회전력을 인출하고 가속시에는 상기 회전축으로 회전력을 제공하는 동력입출부와; 상기 동력입출부를 통해 인출된 회전력을 동력저장스프링의 탄성에너지로 전환시켜 저장하거나 상기 동력저장스프링의 탄성에너지를 회전력으로 전환시켜 상기 동력입출부를 통해 상기 회전축에 제공하는 동력저장부와; 상기 동력입출부와 상기 동력저장부 사이에서 동력을 전달하는 동력전달부와; 상기 동력입출부 및 동력저장부의 작동을 제어하는 제어장치부;를 포함하는 것을 특징으로 한다.
또한, 본 발명의 기계식 동력 저장 및 재활용 장치에 따르면, 상기 동력저장부 또는 상기 동력전달부에 설치되어 상기 동력저장부에 에너지가 저장될 때 상기 동력전달부의 역방향 회전을 차단하는 통합 클러치를 더 포함하고, 상기 통합클러치는 외주면에 래칫기어가 형성되어, 동력 저장시에는 래치에 의해 상기 래칫기어가 구속되어 역방향 회전이 차단되고, 가속시에는 상기 래칫기어의 구속이 해제되도록 하는 것을 특징으로 한다.
또, 본 발명의 기계식 동력 저장 및 재활용 장치에 따르면, 상기 동력입출부는, 상기 회전축에 연동되어 회전되는 제1전동축과, 상기 제1전동축의 회전력을 상기 동력전달부로 전달하거나 상기 동력전달부에 의해 회전되는 제2전동축과, 상기 제1전동축에 축방향 이동 가능하게 설치되어 제동시 축 방향으로 이동되는 제동스크류 및 베벨기어를 이용하여 상기 제동스크류의 회전력을 상기 제2전동축으로 전달하는 제1전동부로 이루어진 동력인출부와, 상기 제2전동축에 축방향 이동 가능하게 설치되고 가속시 축방향으로 이동되는 가속스크류 및 베벨기어를 이용하여 상기 가속스크류의 회전력을 상기 제1전동축으로 전달하는 제2전동부로 이루어진 동력제공부를 포함하는 것을 특징으로 한다.
또한, 본 발명의 기계식 동력 저장 및 재활용 장치에 따르면, 상기 동력전달부는, 제동 및 가속 정도에 따라 전동 속도가 변화되도록 다단구조로 구성된 것을 특징으로 한다.
또, 본 발명의 기계식 에너지 저장 및 재활용 장치에 따르면, 상기 동력저장부는, 상기 동력전달부의 제3전동축에 연동되어 회전되는 링 기어와, 상기 링 기어의 회전력 또는 일측에 구비된 동력저장스프링의 탄성력에 의해 전후 이동되는 래크판과, 상기 동력저장스프링이 탄성 변형된 상태에서 상기 래크판이 움직이지 않도록 잡아주는 래크캐처와, 상기 링 기어의 회전력을 상기 래크판으로 전달하거나 상기 래크판의 움직임을 상기 링 기어로 전달하도록 상기 래크판의 메인래크에 치합되는 래크기어와, 상기 제어장치부의 신호에 따라 상기 래크판을 초기 이동시키는 저장 스타팅부재와, 상기 제어장치부의 신호에 따라 상기 래크판의 고정을 해제시키는 출력 스타팅부재를 포함하는 것을 특징으로 한다.
또한, 본 발명의 기계식 에너지 저장 및 재활용 장치에 따르면, 상기 저장 스타팅부재는, 상기 제어장치부에 의해 작동되어 상기 래크판을 전진시키는 저장 스타팅레버와, 상기 래크판의 상측에 설치되어 상기 저장 스타팅레버의 움직임을 제한함과 아울러 상기 저장 스타팅 부재에 의해 초기 작동되는 걸림돌기로 이루어지고, 상기 출력 스타팅부재는 상기 제어장치부에 의해 작동되어 상기 래크캐처에 의한 상기 래크판의 고정을 해제하는 것을 특징으로 한다.
또, 본 발명의 기계식 에너지 저장 및 재활용 장치에 따르면, 상기 래크판은 다층 구조로 이루어지고, 각 래크판에는 상기 동력저장스프링 및 래크캐처가 각각 설치됨과 아울러, 각각의 래크판에서 동력 저장 및 탄성력의 제공이 차례로 이루어지도록 하는 연동수단이 구비되며, 상기 연동수단은, 상측 래크판에 상기 메인래크와는 독립적으로 형성된 보조래크에 치합되는 제1보조기어와, 상기 제1보조기어에 치합되어 회전되며 하측 래크판에 형성된 기동래크에 치합되어 상기 하측 래크판의 메인래크가 상기 래크기어에 치합되도록 하는 제2보조기어와, 상기 상측 래크판에 설치되고 상기 래크캐처를 막아 상기 상측 래크판을 고정하는 걸림돌기와, 상기 하측 래크판에 형성되어 상기 래크캐처에 의한 상기 상측 래크판의 고정을 해제하는 해제롤러를 포함하는 것을 특징으로 한다.
또한, 본 발명의 기계식 에너지 저장 및 재활용 장치에 따르면, 상기 래크판 중 상기 최상층 래크판에는 상기 저장 스타팅부재에 의한 이동이 이루어진 이후에 상기 래크기어가 치합될 수 있도록 저탄성 스프링의 길이에 상당하는 서비스거리를 두고 메인래크가 형성된 것을 특징으로 한다.
또, 본 발명의 기계식 에너지 저장 및 재활용 장치는, 자동차 또는 전동차에 설치되고, 상기 제어장치부는 브레이크 페달 또는 가속 페달에 연동되는 유압장치인 것을 특징으로 한다.
또한, 본 발명의 기계식 에너지 저장 및 재활용 장치에 따르면, 상기 동력저장부에 동력을 저장하거나 동력을 인출할 때 그 속도를 조절할 수 있도록 상기 동력입출부에 변속부재가 설치된 것을 특징으로 한다.
또, 본 발명의 기계식 에너지 저장 및 재활용 장치에 따르면, 상기 변속부재는, 변속비가 다른 복수개의 클러치 장치를 감속 또는 가속 정도에 따라 선택적으로 치합시켜 변속이 이루어지도록 하며, 상기 클러치 장치는, 상기 회전축에 연동되어 회전되는 제1클러치축과, 상기 동력전달부에 연동되어 회전되는 제2클러치축과, 상기 제1클러치축에 축방향 이동 가능하게 설치된 제동스크류와, 상기 제1클러치축에 회전가능하게 설치되는 변속구동기어와, 상기 제2클러치축에 축방향 이동 가능하게 설치된 가속스크류와, 상기 제2클러치축에 회전가능하게 설치되어 상기 변속구동기어에 치합되는 변속종동기어와, 상기 변속구동기어 및 변속종동기어에 각각 일체로 형성되고 일측면에 클러치 티스가 형성된 클러치판과, 상기 클러치판과 마주보는 면에 클러치 티스가 형성된 클러치 패드를 구비하고 상기 제1클러치축과 제2클러치축에 각각 축방향 이동 가능하게 설치되는 클러치 슬라이드와, 상기 제1클러치축과 제2클러치축의 클러치 슬라이에 각각 회전가능하게 결합되며 단부가 서로 결합된 한 쌍의 슬라이드 아암과, 상기 슬라이드 아암에 각각 설치되어 상기 슬라이드 아암의 회동 중심이 되는 힌지축을 포함하는 것을 특징으로 한다.
또한, 본 발명의 기계식 에너지 저장 및 재활용 장치에 따르면, 상기 동력전달부는, 제동 충격을 완화시키는 완충장치를 구비하여 제동시에는 상기 완충장치를 통해 상기 동력저장부로 동력이 전달되고, 가속시에는 상기 완충장치를 바이패스하여 상기 동력저장부의 출력이 상기 제2클러치축으로 전달되도록 하며, 상기 완충장치는, 내측 중앙에 사다리꼴 형상으로 돌출된 라이닝이 구비된 브레이크 벨트와, 상기 동력저장부측에 연동되어 회전되며 상기 브레이크 벨트의 대경부에 결합되는 저장부 풀리와, 상기 브레이크 벨트의 소경부 외측에 결합되는 캐치풀리와, 상기 동력입출부측에 연동되어 회전되며 상기 브레이크 벨트의 소경부 내측에서 라이닝에 결합되는 제동풀리와, 고속에서 급제동시 상기 제동풀리를 상기 캐치풀리 방향으로 이동시키는 완충스크류를 포함하는 것을 특징으로 한다.
또, 본 발명의 기계식 에너지 저장 및 재활용 장치에 따르면, 상기 동력저장부의 출력이 상기 제2클러치축으로 전달될 때 상기 제2클러치축의 회전방향이 제동시의 회전방향과 동일하도록 회전방향을 바꾸어주는 회전방향 전환수단이 더 구비된 것을 특징으로 한다.
또한, 본 발명의 기계식 에너지 저장 및 재활용 장치에 따르면, 상기 동력저장부는, 상기 동력저장스프링이 구비된 래크판과, 상기 동력저장스프링이 탄성 변형된 상태에서 상기 래크판이 움직이지 않도록 잡아주는 래크캐처와, 상기 래크판의 메인래크에 치합되는 래크기어와, 상기 제어장치부의 신호에 따라 상기 래크판을 초기 이동시키는 저장 스타팅부재와, 상기 제어장치부의 신호에 따라 상기 래크판의 고정을 해제시키는 출력 스타팅부재를 포함하는 것을 특징으로 한다.
또, 본 발명의 기계식 동력 저장 및 재활용 장치에 따르면, 상기 동력저장스프링은, 직선의 강철판이 절곡되는 플렉스부와 상기 플렉스부 사이에서 탄성 변형되는 플렉시블부가 교대로 형성됨과 아울러, 상기 플렉시블부 양측의 플렉스부가 반대 방향으로 절곡되어 수축 또는 신장되며, 상기 플렉시블부 중앙에 용수철축이 삽입되는 축공이 형성되어 수축 과정에서 옆으로 튀지 않도록 한 것을 특징으로 한다.
또한, 본 발명의 기계식 동력 저장 및 재활용 장치에 따르면, 상기 플렉시블부는 양측 표면에 각각 요철이 형성되어, 상기 동력저장스프링이 수축될 때 인접한 플렉시블부끼리 요철 결합되는 것을 특징으로 한다.
또, 본 발명의 기계식 에너지 및 재활용 장치에 따르면, 상기 동력저장부는, 상기 동력전달부에 의해 비틀림 회전되어 탄성에너지를 저장하며 일측 단부가 고정된 동력저장스프링과, 상기 동력저장스프링을 지지하는 스프링 샤프트와, 상기 동력전달부에 연동되어 회전되며 상기 스프링 샤프트의 일단에 설치되어 상기 동력저장스프링의 타측 단부가 결합되는 스프링 고정판과, 상기 스프링 샤프트의 타단을 회전 가능하게 지지하는 베어링과, 상기 제어장치부의 신호에 따라 상기 동력저장스프링을 이용한 탄성에너지의 축적이 시작되도록 하거나 상기 동력저장스프링에 저장된 탄성에너지에 의해 상기 동력전달부가 작동되도록 하는 입출력 제어부재와, 상기 동력저장스프링에 정해진 탄성에너지가 축적되거나 상기 동력저장스프링의 탄성에너지가 완전히 소모되면 상기 동력전달부와 상기 스프링 고정판 사이의 동력 전달을 차단하는 리미트 스위치를 포함하는 것을 특징으로 한다.
또한, 본 발명의 기계식 에너지 저장 및 재활용 장치에 따르면, 상기 입출력 제어부재는, 상기 스프링 고정판의 타측면에 설치되는 저장축과, 상기 저장축에 설치되는 출력기어 및 저장기어와, 상기 저장기어와 일체로 형성되며 외주면에 래칫기어가 형성된 일방향 클러치와, 상기 저장축과 평행하게 설치되어 축방향으로 이동되며 상기 동력전달부에 의해 회전되는 가동축과, 상기 가동축에 설치되어 상기 출력기어에 의해 회전되는 제1이동기어와, 상기 가동축에 설치되어 상기 저장기어를 회전시키는 제2이동기어와, 상기 가동축을 축방향으로 이동시키는 제어레버와, 상기 가동축에 설치되어 상기 제어레버를 지지하는 가이드와, 상기 일방향 클러치의 래칫기어에 치합되는 캐처와, 상기 제어레버를 작동시키는 출력용 유압장치와, 상기 가동축의 일측에 설치되어 상기 제2이동기어를 상기 저장기어에 치합시키는 저장용 유압장치를 포함하는 것을 특징으로 한다.
또, 본 발명의 기계식 에너지 저장 및 재활용 장치에 따르면, 상기 동력전달부는, 차속 또는 가속 정도에 따라 에너지의 저장 또는 출력 속도를 조절하는 변속장치의 전동체와, 상기 전동체의 출력축에 연동되어 회전되는 복수의 스프로켓과, 상기 스프로켓의 회전력을 상기 동력저장부로 전달하거나 상기 동력저장부의 출력을 상기 스프로켓으로 전달하는 전동수단을 구비하고; 상기 전동수단은, 복수의 스프로켓 각각에 연결된 제4전동축과, 상기 제4전동축에 축방향으로 이동 가능하게 설치되며 가속시 상기 스프로켓으로 회전력을 전달하는 제1기어와, 상기 제1기어와 일체로 형성되어 축방향 이동되는 제동스크류와, 상기 제4전동축의 선단에 설치되어 상기 동력저장부로부터의 회전력을 전달받는 제2기어와, 상기 제1기어에 연동되어 회전되는 제3기어 및 래칫장치가 구비되고 상기 동력저장부가 연결된 제5전동축과, 상기 제5전동축에 축방향으로 이동 가능하게 설치되며 가속시 상기 제2기어에 치합되는 제4기어와, 상기 제4기어와 일체로 형성되어 축방향 이동되는 가속스크류와, 상기 제어장치부의 신호에 따라 상기 제동스크류를 축방향 이동시키는 제동작동부와, 상기 제어장치부의 신호에 따라 상기 가속스크류를 축방향 이동시키는 가속작동부를 포함하는 것을 특징으로 한다.
또, 본 발명의 기계식 에너지 저장 및 재활용 장치는, 자전거에 설치되고, 상기 제어장치부는 자전거의 핸들 양측에 각각 설치된 저장레버 및 가속레버의 움직임을 상기 동력입출부 또는 동력저장부로 전달하는 와이어인 것을 특징으로 한다.
본 발명의 기계식 동력 저장 및 재활용 장치는 제동시 버려지는 회전에너지를 기계적인 수단을 이용하여 스프링의 탄성에너지로 변환시켜 저장한 후 가속시 스프링의 탄성에너지를 이용하여 바퀴를 회전시키게 되므로, 에너지 효율을 향상시킬 수 있는 효과가 있다.
또, 본 발명의 기계식 동력저장 및 재활용 장치는 자동차나 전동차 등에 설치될 경우 연료 소비량을 줄일 수 있음은 물론 오염 물질의 배출량을 감소시켜 환경오염을 방지하면서도 경제적 이익을 얻을 수 있는 효과가 있다.
또한, 본 발명의 기계식 동력저장 및 재활용 장치는 자전거에 설치될 경우 내리막길에서 스프링에 탄성에너지를 저장한 후 오르막길이나 지쳤을 때 스프링의 탄성에너지를 이용하여 주행할 수 있도록 하므로, 자전거 이용자의 편의성이 증대되는 효과가 있다.
도 1은 본 발명에 의한 기계식 동력 저장 및 재활용 장치가 도시된 사시도.
도 2는 본 발명의 기계식 동력 저장 및 재활용 장치를 개략적으로 나타낸 구성도.
도 3은 본 발명의 요부 구성인 제동작동부 및 가속작동부의 설명을 위한 참고도.
도 4는 본 발명의 요부 구성인 동력저장부가 도시된 사시도.
도 5는 본 발명의 요부 구성인 동력저장부에서 동력이 저장되기 전의 모습을 개략적으로 나타낸 구성도.
6은 본 발명의 요부 구성인 동력저장부에서 동력이 저장된 상태를 개략적으로 나타낸 구성도.
도 7은 본 발명의 요부 구성인 동력저장부에서 래크판의 움직임을 설명하기 위한 참고도.
도 8은 본 발명의 다른 실시 예로서 동력입출부에 변속부재가 구비된 기계식 동력저장 및 재활용 장치가 도시된 사시도.
도 9는 도 8에 도시된 실시 예의 요부 구성인 클러치 장치의 개념도.
도 10은 도 8에 도시된 실시 예의 단면도.
도 11은 도 10에 도시된 실시 예의 요부 구성인 제동작동부 및 가속작동부의 상세도.
도 12는 도 8에 도시된 실시 예의 요부 구성인 완충장치의 구성도.
도 13은 도 12의 완충장치의 단면도.
도 14는 본 발명의 요부 구성인 동력저장부의 다른 실시 예가 도시된 참고도.
도 15는 본 발명의 요부 구성인 동력저장스프링의 특수한 구조가 도시된 구성도.
도 16은 도 15의 동력저장스프링이 압축된 모습이 도시된 참고도.
도 17은 도 15의 동력저장스프링을 이용한 동력저장부의 모습이 도시된 참고도.
도 18은 본 발명의 요부 구성인 동력저장부의 다른 실시 예가 도시된 사시도.
도 19는 본 발명의 요부 구성인 동력전달부의 전동수단을 나타낸 사시도.
도 20는 도 19의 전동수단이 구비된 본 발명의 동력저장부를 개략적으로 나타낸 참고도.
도 21은 본 발명의 기계식 동력 저장 및 재활용 장치가 적용된 자전거를 개략적으로 나타낸 구성도.
<도면의 주요 부분에 대한 부호의 설명>
100: 동력입출부 110: 제1전동축
120: 제2전동축 130: 동력인출부
131: 제동스크류 132: 제1전동부
140: 동력제공부 141: 가속스크류
150: 클러치 장치 151: 제1클러치축
152: 제2클러치축 153: 제동스크류
154: 변속구동기어 155: 가속스크류
156: 변속종동기어 157: 클러치판
158: 클러치 패드 159: 클러치 슬라이드
160: 슬라이드 아암 161: 힌지축
163: 제동작동부 163a: 전자 솔레노이드
163b: 유압실린더 163c: 호형 돌기
164: 가속작동부 164a: 전자 솔레노이드
164b: 유압실린더 164c: 호형 돌기
165: 제동오일 공급관 166: 가동오일 공급관
167: 제동전류선 168: 가동전류선
200: 동력저장부 211: 링 기어
212: 래크판 213: 래크캐처
214: 메인래크 215: 래크기어
216: 저장 스타팅부재 217: 출력 스타팅부재
221: 보조래크 222: 기동래크
225: 해제롤러 226: 걸림돌기
300: 동력전달부 310, 330, 340: 전동체
320: 제3전동축 350: 완충장치
450: 통합클러치 455: 래치
500, 500': 동력저장스프링 510: 플렉스부
520: 플렉시블부 530: 용수철축
본 발명에 의한 기계식 동력 저장 및 재활용 장치는, 제동시 사라지는 바퀴의 회전 에너지를 이용하여 동력저장스프링을 탄성 변형시킨 후, 가속시 상기 동력저장스프링의 탄성에너지를 상기 바퀴의 회전 에너지로 변환시켜 재활용하도록 한 것이다.
구체적으로 본 발명에 의한 기계식 동력 저장 및 재활용 장치를 다양하게 구성한 실시 예를 도면을 참조하여 설명하면 다음과 같다.
<제1의 실시예>
본 발명에 의한 기계식 동력 저장 및 재활용 장치는, 도 1과 도 2에 도시된 바와 같이, 바퀴의 회전축(50)에 연동되며 제동시에는 상기 회전축(50)으로부터 회전력을 인출하고 가속시에는 상기 회전축(50)으로 회전력을 제공하는 동력입출부(100)와; 상기 동력입출부(100)를 통해 인출된 회전력을 동력저장스프링(500)의 탄성에너지로 전환시켜 저장하거나 상기 동력저장스프링(500)의 탄성에너지를 회전력으로 전환시켜 상기 동력입출부(100)를 통해 상기 회전축에 제공하는 동력저장부(200)와; 상기 동력입출부(100)와 상기 동력저장부(200) 사이에서 동력을 전달하는 동력전달부(300)와; 상기 동력입출부(100) 및 동력저장부(200)의 작동을 제어하는 제어장치부와; 상기 동력저장부(200)에 에너지가 저장될 때 상기 동력전달부(300)의 역방향 회전을 차단하는 통합 클러치(450);를 포함하여 이루어진다.
여기서, 상기 통합클러치(450)는 외주면에 래칫기어(451)가 형성된 것으로, 상기 동력저장부(200)에 동력을 저장하는 경우에는 상기 래칫기어(451)의 외측에 설치되는 래치(455)에 의해 상기 래칫기어(451)가 구속되어 역방향 회전이 차단되고, 가속시에는 상기 래칫기어(451)의 구속이 해제되어 회전되도록 구성된다.
그리고, 상기 동력입출부(100)는, 바퀴의 회전축(50)에 연동되어 회전되는 제1전동축(110)과, 상기 제1전동축(110)의 회전력을 상기 동력전달부(300)로 전달하거나 상기 동력전달부(300)에 의해 회전되는 제2전동축(120)과, 상기 제1전동축(110)에 축방향 이동 가능하게 설치되어 제동시 축 방향으로 이동되는 제동스크류(131) 및 베벨기어를 이용하여 상기 제동스크류(131)의 회전력을 상기 제2전동축(120)으로 전달하는 제1전동부(132)로 이루어진 동력인출부(130)와, 상기 제2전동축(120)에 축방향 이동 가능하게 설치되고 가속시 축방향으로 이동되는 가속스크류(141) 및 베벨기어를 이용하여 상기 가속스크류(141)의 회전력을 상기 제1전동축(110)으로 전달하는 제2전동부(142)로 이루어진 동력제공부(140)를 포함한다.
상기 제동스크류(131) 및 가속스크류(141)는, 회전시 축방향으로 이동되도록 외주면에 형성된 나선형 홈(131a)(141a)이 형성된 것으로, 일정 거리를 이동한 후에는 제자리에서 회전하도록 상기 나선형 홈(131a)(141a)에 연통되는 원주형 홈(131b)(141b)을 구비한다. 그리고, 상기 제동스크류(131) 및 가속스크류(141)를 작동시키기 위한 제동작동부(410) 및 가속작동부(420)는 가이드블록(411)(421)에 의해 보호되며 제동시 또는 가속시 돌출되어 상기 나선형 홈(131a)(141a)에 삽입되어 상기 제동스크류(131) 및 가속스크류(141)가 축방향으로 이동되도록 하거나 상기 원주형 홈(131b)(141b)에 삽입되어 상기 제동스크류(131) 및 가속스크류(141)가 자유롭게 회전되도록 하는 호형 돌기(412)(422)와, 상기 가이드블록(411)(421)에 설치되어 상기 호형 돌기(412)(422)를 탄발시키는 리턴스프링(413)(423)으로 이루어진다. 이후에 기재되는 다른 스크류 및 작동부들 역시 동일 또는 유사한 구조로 형성되므로, 그들에 대한 구체적인 설명은 생략하기로 한다.
상기 동력인출부(130)를 구성하는 상기 제1전동부(132)는 도 3에 도시된 바와 같이, 일단부가 상기 제2전동축(120)에 베벨기어(125,133b)로 결합되고 타단부는 상기 제동스크류(131)에 베벨기어(131',133a)로 결합되거나 분리되도록 하는 제1보조축(133) 및 상기 제1보조축(133)의 단부에 설치된 트러스트 베어링(134)을 포함하여 구성된다. 그리고, 상기 동력제공부(140)를 구성하는 제2전동부(142)는, 일단부가 상기 제1전동축(110)에 베벨기어(115,144b)로 결합된 제2보조축(144)과, 일측 단부가 상기 가속스크류(141)에 베벨기어(141',143a)로 결합되거나 분리되는 제3보조축(143)과, 상기 제2보조축(144)과 제3보조축(143)의 타단부에 각각 설치되어 서로 치합되는 아이들기어(144a,143b)와, 상기 제3보조축(143)의 단부에 설치된 트러스트 베어링(145)을 포함하여 구성된다. 여기서, 상기 제2보조축(144)과 제3보조축(143) 사이에 아이들기어(144a,143b)를 둔 이유는 동력인출시와 동력제공시 상기 제1전동축(110)이 같은 방향으로 회전되도록 하기 위한 것으로, 여타의 다른 실시 예에서도 마찬가지 방식의 방향전환수단이 구비된다.
그리고, 상기 통합클러치(450)는 상기 제2전동축(120)에 설치되어 상기 제동스크류(131)가 작동될 경우에는 래칫기능을 수행하여 상기 제2전동축(120)이 역방향으로 회전되지 않도록 구속하고, 상기 가속스크류(141)가 작동될 경우에는 래칫 기능을 해제하여 상기 제2전동축(120)의 구속이 자동으로 해제되도록 한다.
한편, 상기 동력저장부(200)는 도 4와 도 5에 도시된 바와 같이, 상기 동력전달부(300)의 제3전동축(320)의 전동기어(325)에 치합되어 회전되는 링 기어(211)와, 상기 링 기어(211)의 회전력 또는 일측에 구비된 동력저장스프링(500)의 탄성력에 의해 전후 이동되는 래크판(212)과, 상기 동력저장스프링(500)이 탄성 변형된 상태에서 상기 래크판(212)이 움직이지 않도록 잡아주는 래크캐처(213)와, 상기 링 기어(211)의 회전력을 상기 래크판(212)으로 전달하거나 상기 래크판(212)의 움직임을 상기 링 기어(211)로 전달하도록 상기 래크판(212)의 메인래크(214)에 치합되는 래크기어(215)와, 상기 제어장치부의 신호에 따라 상기 래크판(212)을 초기 이동시키는 저장 스타팅부재(216)와, 상기 제어장치부의 신호에 따라 상기 래크판(212)의 고정을 해제시키는 출력 스타팅부재(217)를 포함하여 이루어진다.
상기 래크기어(215)는 상기 링 기어(211)에 치합된 전동기어(215a)와 일체로 회전하며, 상기 전동기어(215a)는 상기 링 기어(211)의 내측기어 또는 외측기어 중 어디라도 치합될 수 있다.
또한, 상기 동력전달부(300)는 상기 제2전동축(120)과 제3전동축(320) 사이에서 동력을 전달하는 것으로서, 가감속 속도에 따라 변속할 수 있도록 다단 구조의 전동체(310)(330)로 형성됨과 아울러 변속제어를 위한 변속 액츄에이터(도시 생략)를 구비한다. 따라서, 빠른 속도로 주행 중에 급제동하는 경우 또는 빠른 가속이 요구되는 경우에는 동력이 빨리 전달되도록 하고, 반대의 경우에는 동력이 천천히 전달되도록 하는 것이다. 이때, 상기 제2전동축(120)과 제3전동축(320) 사이의 동력전달 구조는, 체인 전동을 위한 스프로켓 구조, 벨트 전동을 위한 풀리 구조 또는 아이들 기어를 개재한 기어 전동을 위한 기어 구조 중 어느 것이라도 무방하다.
그리고, 상기 저장 스타팅부재(216)는, 상기 제어장치부에 의해 작동되어 상기 래크판(212)을 전진시키는 저장 스타팅레버(216a)와, 상기 래크판(212)의 상측에 설치되어 상기 저장 스타팅레버(216a)가 밀어주게 되는 걸림돌기(216b)로 이루어지며, 상기 출력 스타팅부재(217)는 상기 제어장치부에 의해 작동되어 상기 래크캐처(213)에 의한 상기 래크판(212)의 고정을 해제한다.
한편, 상기 래크판(212)을 다수 적층하여 상기 동력저장부(200)가 다층 구조를 갖도록 할 수 있다. 이 경우 각 래크판(212a, 212b, 212c, 212d, 212e)에는 상기 래크기어(215) 및 래크캐처(213)가 각각 설치됨과 아울러, 각 래크판 사이에서 동력 저장 및 탄성력의 제공이 차례로 이루어지도록 각각의 래크판(212)에는 연동수단이 구비되어야 한다.
특히, 상기 최상층 래크판(212a)의 하부에는 상기 저장 스타팅부재(216)에 의한 이동이 이루어진 이후에 상기 래크기어(215)가 치합될 수 있도록 소정의 서비스거리(s)를 두고 메인래크(214)가 형성된다. 이를 위하여 상기 최상층 래크판(212a)에 설치된 동력저장스프링(500)은 상기 저장 스타팅부재(216)의 작동시 상기 최상층 래크판(212a)이 서비스거리(s)만큼 이동할 수 있도록 별도의 저탄성 스프링(550)에 의해 탄성 지지되는 구조로 형성된다. 이때, 상기 저탄성 스프링(550)의 길이는 상기한 서비스거리(s)와 동일한 것을 사용한다. 또한, 최하층 래크판(212e)에 설치되는 스프링을 저탄성 스프링(550)으로 한다. 따라서, 상기 최하층 래크판(212e)은 동력인출이 이루어지기까지는 상기 저탄성 스프링(550)이 확장된 상태로 바로 위쪽의 래크판(212d)의 보조 역할을 하며, 상기 출력 스타팅부재(217)의 캐처가 상기 래크판(212d)의 걸림돌기(226)에 걸리게 된다.
상기 연동수단은, 상측 래크판의 하면에 상기 메인래크(214)와는 독립적으로 형성된 보조래크(221)에 치합되는 제1보조기어(223)와, 상기 제1보조기어(223)에 치합되어 회전되며 하측 래크판의 상면에 형성된 기동래크(222)에 치합되어 상기 하측 래크판의 메인래크(214)가 상기 래크기어(215)에 치합되도록 하는 제2보조기어(224)와, 상기 상측 래크판에 설치되어 상기 래크캐처(213)를 막아 상기 상측 래크판을 고정하는 걸림돌기(226)와, 상기 하측 래크판의 상면에 형성되어 상기 래크캐처(213)에 의한 상기 상측 래크판의 고정을 해제하는 해제롤러(225)로 구성된다.
여기서, 상기 메인래크(214)는 각 래크판의 하면 중앙에 길이 방향으로 형성되며, 상기 보조래크(221)는 상기 메인래크(214)의 측부에 짧은 길이로 형성되고, 상기 기동래크(222)는 각 래크판의 상면 측부에 짧은 길이로 형성된다. 상기 메인래크(214)와 보조래크(221) 및 기동래크(222)의 길이나 설치 위치는 각 래크판이 연동될 수 있도록 적절하게 배치한다.
특히, 상기 보조래크(221)와 기동래크(222)는 상측 래크판과 하측 래크판이 서로 연동될 수 있도록 하는 것으로서, 상기 메인래크(214)의 양측에 설치됨과 아울러 상기 래크판(212)의 길이 방향을 따라 2개씩 설치되는 것이 바람직하다. 상기 보조래크(221)와 기동래크(222)를 상기 메인래크(214)의 양측에 각각 설치하는 이유는 상기 래크판(212)이 균형을 이룬 상태로 직선 방향으로 이동되도록 하기 위한 것이다. 또 상기 보조래크(221)와 기동래크(222)를 상기 래크판(212)의 길이 방향으로 2개씩 설치하는 이유는, 상기 메인래크(214)에 래크기어(215)가 치합된 상태에서 앞쪽의 보조래크(221) 및 기동래크(222)에 의해 상측 래크판의 움직임이 하측 래크판으로 전달되도록 하고, 상기 메인래크(214)로부터 상기 상측 래크판의 래크기어(215)가 이탈되기 직전에 뒤쪽의 보조래크(221) 및 기동래크(222)에 의해 상기 하측 래크판의 움직임이 역으로 상측 래크판으로 전달되어 상기 상측 래크판이 상기 걸림돌기(226)에 걸려 고정되도록 하기 위한 것이다.
이에 따라 상기 상측 래크판은 래크기어(215)에 치합된 메인래크(214)에 의해 직선 방향으로 움직이면서 상기 동력저장스프링(500)을 팽창시키게 되며, 상기 동력저장스프링(500)이 완전히 팽창된 후에는 상기 래크기어(215)가 상기 메인래크(214)로부터 이탈되어 상기 동력저장스프링(500)은 팽창된 상태를 유지하게 된다. 이때, 상기 래크기어(215)가 상기 메인래크(214)로부터 이탈되기 전에 보조래크(221)에 치합되어 상기 보조래크(221)를 회전시키게 되며, 상기 보조래크(221)에 보조기어를 개재하여 치합된 하측 래크판의 기동래크(222)가 회전하게 된다. 따라서, 상기 기동래크(222)에 의해 상기 하측 래크판이 기동되어 직선 방향으로 이동되고, 회전중인 상기 하측 래크판의 래크기어에 상기 하측 래크판의 메인래크가 치합되어 상기 하측 래크판과 메인래크가 직선 이동하게 된다.
이후, 상기 상측 래크판의 래크기어(215)가 메인래크(214)로부터 이탈되기 직전에 상기 하측 래크판에 구비된 제2 기동래크에 상기 상측 래크판의 제2 보조래크가 보조기어를 개재하여 치합된다. 이에 따라 상기 상측 래크판의 래크기어가 메인래크로부터 이탈된 이후에도 상기 제2보조래크에 의해 상기 상측 래크판이 어느 정도 더 이동하게 된다.
결국, 상기 상측 래크판의 래크기어가 메인래크로부터 이탈된 후에는 상기 하측 래크판으로부터 역방향으로 동력이 전달되며, 그로 인해 상기 상측 래크판이 약간 더 이동하여 걸림돌기(226)가 래크캐처(213)에 걸리게 됨으로써 위치가 고정되며, 상기 메인래크와 래크기어는 약간 이격된 상태를 유지하면서 대기하게 된다.
상기와 같이 구성된 본 발명의 기계식 동력 저장 및 재활용 장치는, 제동시 바퀴의 회전에너지를 이용하여 동력저장스프링을 신장시킨 후, 가속시 신장된 동력저장스프링이 복원되면서 발생하는 기계적 에너지를 이용하여 바퀴를 회전시키게 된다.
주행시에는 바퀴의 회전축(50)에 설치된 전동기어(55)와 제1전동축(110)의 전동기어(111)가 치합되어 있으므로, 상기 제1전동축(110)은 항상 상기 회전축(50)에 연동하여 회전한다. 이 상태에서 제동하게 되면, 제동작동부(410)의 호형 돌기(412)가 돌출되어 제동스크류(131)의 홈(131a, 131b)에 삽입된다. 따라서, 바퀴의 회전축(50)에 연동되어 회전되는 제1전동축(110)에 설치된 제동스크류(131)가 회전되면서 축방향으로 이동된다. 즉, 상기 제동작동부(410)는 회전하지 않기 때문에, 상기 제동작동부(410)의 호형 돌기(412)가 상기 제동스크류(131)의 외주면에 형성된 나선형 홈(131a)에 삽입되면, 상기 제동스크류(131)가 회전과 동시에 축방향으로 이동된다. 물론, 상기 호형 돌기(412)가 상기 나선형 홈(131a)을 지나 원주형 홈(131b)에 삽입되면 상기 제동스크류(131)는 축방향으로는 움직이지 않고 상기 제동작동부(410)와 무관하게 회전된다.
상기 제동스크류(131)의 축방향 이동에 따라 상기 제동스크류(131)와 제1보조축(133)이 베벨기어(131',133a)로 결합된다. 따라서, 상기 제1전동축(110)의 회전력이 상기 제동스크류(131)와 제1보조축(133)을 통해 제2전동축(120)으로 전달되며, 상기 제2전동축(120)의 회전에 따라 동력전달부(300)를 개재하여 연결된 동력저장부(200)의 링 기어(211)가 회전된다.
이때, 상기 제2전동축(120)의 전동체(310) 및 제3전동축(320)의 전동체(330)가 모두 다단 구조로 형성되어 있으므로, 주행 속도 또는 가속 정도에 따라 동력 전달 속도를 조절할 수 있다. 즉, 고속주행중에 제동하는 경우 또는 급가속이 필요한 경우에는 동력 전달이 빠르게 이루어지도록 하고, 그렇지 않은 경우에는 동력 전달이 천천히 이루어지도록 하는 것이다.
상기 링 기어(211)가 회전되면 상기 링 기어(211)에 치합된 내측 전동기어(215a)가 회전된다. 이때, 상기 링 기어(211)를 사용하는 대신 체인을 이용하여 상기 내측 전동기어(215a)를 회전시킬 수도 있다. 상기 내측 전동기어(215a)의 회전에 따라 상기 내측 전동기어(215a)에 축으로 연결된 래크기어(215)가 회전하게 된다. 이와 동시에 저장 스타팅부재(216)가 작동되어 래크판(212)에 설치된 동력저장스프링(500)에 탄성에너지가 저장되도록 한다.
즉, 제동시 제어장치부에 의해 저장 스타팅레버(216a)가 구동되어 상기 래크판(212)의 상측에 설치된 걸림돌기(216b)를 밀게 되고, 그에 따라 상기 래크판(212)이 전진하여 하면의 메인래크(214)가 상기 래크기어(215)에 치합된다.
이때, 상기 저장 스타팅레버(216a)에 의한 상기 래크판(212)의 이동거리를 서비스 거리(s)라 하며, 상기 래크판(212)이 서비스 거리(s)만큼 이동하는 동안에는 동력저장스프링(500)이 신장되지 않고 저탄성 스프링(550)만이 늘어나면서 상기 동력저장스프링(500)을 탄성 지지하게 된다. 이후, 상기 래크판(212)의 메인래크(214)가 상기 래크기어(215)에 치합됨에 따라 상기 래크판(212)이 전진하면서 상기 동력저장스프링(500)을 신장시킴으로써 상기 동력저장스프링(500)에 탄성에너지가 축적되도록 한다. 이때, 상기 래크판(212)이 다수 적층되어 다층 구조를 형성하고 있으므로, 최상층 래크판(212a)부터 제2층 래크판(212d)까지 차례로 전진하면서 각 래크판(212a, 212b, 212c, 212d)에 구비된 동력저장스프링(500)에 탄성에너지를 축적하게 된다.
즉, 상기 저장 스타팅레버(216a)에 의해 최상층 래크판(212a)이 서비스 거리(s)만큼 이동한 후 래크기어(215)와 치합된 메인래크(214)에 의해 래크판(212a)이 도면상 좌측으로 전진하고, 상기 래크기어(215)가 메인래크(214)로부터 이탈되기 직전에 상기 메인래크(214)의 양측에 각각 설치된 보조래크(221)에 제1보조기어(223)가 치합되어 회전함과 아울러 상기 제1보조기어(223)에 치합된 제2보조기어(224)는 제4층 래크판(212b)의 기동래크(222)에 항상 치합되어 있으므로 상기 제4층 래크판(212b)이 기동된다.
따라서, 상기 제4층 래크판(212b) 역시 전진하여 해당층의 메인래크(214)와 래크기어(215)가 치합되고, 상기 최상층 래크판(212a)과 제4층 래크판(212b)은 상당한 거리를 두고 도면상 좌측으로 전진하게 된다. 상기 제4층 래크판(212b)에서 메인래크(214)와 래크기어(215)가 치합되면 상기 최상층 래크판(212a)의 래크기어(215)가 메인래크(214)로부터 분리되지만, 상기 최상층 래크판(212a)은 상기 제4층 래크판(212b)에 연동되어 약간 더 전진한다. 즉, 상기 제4층 래크판(212b)의 기동래크(222)에 의해 상기 제2보조기어(224)가 회전하면서 역으로 제1보조기어(223)를 회전시킴으로써, 상기 제1보조기어(223)에 치합된 보조래크(221)에 의해 상기 최상층 래크판(212a)은 더 전진하게 되는 것이다. 상기 최상층 래크판(212a)은, 해당층의 걸림돌기(226)가 래크캐처(213)를 지난 후 멈추게 되며, 상기 래크캐처(213)에 상기 걸림돌기(226)가 걸려짐으로써 상기 동력저장스프링(500)의 탄성력에 의해 역방향으로 풀려져 버리는 것이 방지된다.
이상의 과정이 반복되면서 제3층 래크판(212c)과 제2층 래크판(212d)을 거쳐 최하층 래크판(212e)이 차례로 전진하면서 각 래크판(212)에 설치된 동력저장스프링(500)에 탄성에너지가 저장된다. 이때, 상기 최하층 래크판(212e)은 제2층 래크판(212d)의 위치를 고정하기 위하여 래크캐처(213)에 걸림돌기(226)가 걸리게 하는 보조 역할만 수행한다. 물론, 가속시에는 상기한 동력이 저장되는 순서의 역순으로 진행되며 상기 동력저장스프링(500)의 탄성에너지에 의해 상기한 각 래크판(212)이 차례로 이동하면서 상기 링 기어(211)가 회전된다.
이와 같이 상기 동력저장스프링(500)에 탄성에너지가 저장된 상태에서 가속을 하게 되면, 출력 스타팅부재(217)가 작동되어 최하층 래크판(212e)이 저탄성 스프링(550)에 의해 우측으로 이동하게 되고, 그에 따라 상기 래크캐처(213)에 의한 제2층 래크판(212d)의 고정이 해제된다. 즉, 상기 래크캐처(213)가 제어장치부에 의해 움직여 상기 걸림돌기(226)로부터 이탈됨으로써 상기 제2층 래크판(212d)의 고정을 해제하게 되고, 상기 제2층 래크판(212d)은 상기 동력저장스프링(500)에 의해 이동될 수 있게 된다. 이와 동시에 가속작동부(420)의 호형 돌기(422)가 가속스크류(141)의 홈(141a, 141b)에 삽입되며, 상기 통합형 클러치(450)의 래치(455)가 래칫기어(451)로부터 이탈되어 상기 제2전동축(120)이 회전될 수 있도록 한다.
마찬가지 방식으로 상기한 각 래크판(212)에 구비된 래크캐처(213)가 상기 걸림돌기(226)로부터 이탈되면 신장되어 있던 상기 동력저장스프링(500)이 복원되면서 상기한 각 래크판(212)을 후퇴시키게 된다. 상기 래크판(212)의 후퇴에 따라 상기 래크판(212)의 메인래크(214)에 래크기어(215)가 치합되어 회전하게 되고, 상기 래크기어(215)의 회전에 따라 상기 링 기어(211)가 회전된다. 이러한 상기 동력저장부(200)로부터의 출력은 역순으로 상기 제2층 래크판(212d)으로부터 차례로 최상층 래크판(212a)까지 진행되며, 각 래크판(212)에 설치된 해제롤러(225)가 래크캐처(213)를 움직여 각각의 걸림돌기(226)에서 이탈시킴으로써 각 래크판(212)이 차례로 연동되어 움직이게 된다.
그리고, 상기 링 기어(211)에 연동되어 회전되는 전동체(330)에 의해 제2전동축(120)의 전동체(310)가 회전된다. 이때, 가속작동부(420)의 작동으로 상기 가속스크류(141)의 회전이 저지되므로, 상기 가속스크류(141)가 축방향으로 이동하여 상기 가속스크류(141)와 제3보조축(144)이 베벨기어(141',143a)로 치합되어 연동된다. 이때, 상기 가속작동부(420)의 호형 돌기(422)가 상기 가속스크류(141)의 원주형 홈(141b)에 삽입되므로, 상기 가속스크류(141)의 축방향 이동은 정지되고 상기 가속스크류(141)는 상기 제2전동축(120)과 함께 회전하게 된다. 따라서, 상기 제3보조축(144)이 상기 제2전동축(120)에 연동되어 회전하게 되고, 상기 제3보조축(144)에 아이들기어(143b,144a)로 치합된 제2보조축(143)이 회전된다. 이때, 상기 제2보조축(143)이 상기 제1전동축(110)에 베벨기어(144b,115)로 치합되어 있으므로, 상기 제1전동축(110) 역시 상기 제2전동축(120)에 연동되어 회전되면서 바퀴의 회전축(50)을 회전시키게 된다.
이와 같이, 본 발명의 기계식 동력 저장 및 재활용 장치는 제동시 버려지는 회전에너지를 동력저장부(200)에 구비된 동력저장스프링(500)의 탄성에너지로 저장한 후, 가속시 상기 동력저장스프링(500)의 탄성에너지를 다시 회전에너지로 변환시켜 바퀴를 회전시키게 된다. 따라서, 제동 후 가속할 때 추가로 소모되는 에너지의 소비량이 감소하여 경제적이면서도 환경 오염이 방지된다. 또한, 제동시 회전에너지가 동력저장스프링의 회전에너지로 전환되므로, 제동거리가 짧아지는 효과가 있다.
이상에서는 상기 동력저장스프링(500)으로 인장 스프링을 작용한 상태로 설명하였으나, 스프링의 설치 위치를 반대로 함으로써 인장 스프링 대신 압축 스프링을 사용하도록 할 수 있다.
그리고, 상기한 본 발명의 기계식 동력 저장 및 재활용 장치는 자전거나 자동차 및 전동차에 적용이 가능하며, 가속과 감속을 반복하는 기계장치에도 적용이 가능하다.
또, 본 발명의 기계식 동력 저장 및 재활용 장치를 자동차나 전동차 등에 적용하는 경우에는, 상기 제어장치부를 브레이크 페달에 연동되는 제동 유압장치 및 자동차의 가속 페달에 연동되는 가속 유압장치로 구성할 수 있다. 이 경우 상기 제동 유압장치는 상기 브레이크 페달의 움직임을 감지하는 센서의 신호에 따라 작동되는 유압밸브에 의해 인가되는 유압을 이용하여 상기 동력입출부(100)의 동력 인출작용을 제어하고, 상기 가속 유압장치는 상기 가속 페달의 움직임을 감지하는 센서의 신호에 따라 작동되는 유압밸브에 의해 인가되는 유압을 이용하여 상기 동력저장부(200)로부터의 출력 작용을 제어하게 된다.
한편, 상기 동력저장스프링(500)은 다목적으로 사용할 수 있도록 통상의 코일형 스프링 대신, 도 15와 같이 판형 스프링을 사용할 수도 있다, 이 경우 상기 동력저장스프링(500)은, 직선의 강철판이 절곡되는 플렉스부(510)와 상기 플렉스부(510) 사이에서 탄성 변형되는 플렉시블부(520)가 교대로 형성됨과 아울러, 상기 플렉시블부(520) 양단의 플렉스부(510)가 반대 방향으로 절곡된 구조로 형성되어 수축 또는 신장된다.
이때, 상기 플렉시블부(520) 중앙에 용수철축(530)이 삽입되는 축공(525)이 형성되어 수축 과정에서 옆으로 튀지 않도록 한다. 그리고, 상기 플렉시블부(520)는 양측 표면에는 각각 요철(521)이 형성되어, 상기 동력저장스프링(500)이 수축될 때 인접한 플렉시블부(520)끼리 요철 결합되도록 하는 것이 바람직하다.
상기 동력저장스프링(500)은 동력이 저장되기 전에는 도 15에 도시된 바와 같이 신장된 형태로 되어 있으며, 동력이 저장되는 경우에는 도 16과 같이 인접한 플렉시블부(520)끼리 요철 결합된 형태로 수축된다.
상기 동력저장스프링(500)은 상기 플렉시블부(520)의 양측 표면에 각각 요철(521)이 형성되어 있어 유연성이 있고, 상기 플렉시블부(520) 양단에서 각각 반대 방향으로 절곡된 상기 플렉스부(510)는 강도가 높기 때문에, 스프링 전체에 걸쳐 고른 탄성을 유지하는 특성이 있다. 특히, 상기 플렉시블부(520)의 양측 표면에 각각 요철(521)이 형성되어 동력저장시 인접한 플렉시블부(520)끼리 요철 결합되므로, 일정한 공간 내에서 빈 공간이 없도록 수축되어 스프링 효과가 향상된다.
<제2의 실시예>
한편, 상기 동력저장부(200)에 동력을 저장하거나 동력을 인출할 때 그 속도를 조절할 수 있도록 상기 동력전달부(300)와 상기 동력저장부(200) 사이에 변속부재를 설치할 수도 있다.
상기 변속부재를 포함하는 본 발명의 기계식 동력저장 및 재활용 장치가 자전거에 설치되는 경우에는, 핸들에 설치되는 변속 레버의 조작에 따라 변속 액츄에이터가 작동되어 다단 스프로켓에 설치된 전동체인 또는 다단 풀리에 설치된 전동벨트의 위치를 변경함으로써 변속이 이루어지도록 하는 것이 바람직하다. 그리고, 상기 변속부재를 포함하는 본 발명의 기계식 동력저장 및 재활용 장치가 자동차 또는 전동차에 설치되는 경우에는 변속레버로 직접 조작하기보다는, 차속 또는 가속 정도에 따라 변속 액츄에이터가 작동되어 다단 스프로켓에 설치된 전동체인 또는 다단 풀리에 설치된 전동벨트의 위치를 변경함으로써 변속이 이루어지도록 하는 것이 바람직하다.
또, 변속부재는 상기 동력전달부가 아닌 상기 동력입출부(100)와 상기 동력전달부(300) 사이에 설치될 수도 있다. 이때, 상기 변속부재는 변속비가 다른 복수개의 클러치 장치(150)를 감속 또는 가속 정도에 따라 선택적으로 치합시켜 변속이 이루어지도록 하는 것이 바람직하다.
이때 사용되는 상기 클러치 장치(150)는, 바퀴의 회전축(50)에 연동되어 회전되는 제1클러치축(151)과, 상기 동력전달부(300)에 연동되어 회전되는 제2클러치축(152)과, 상기 제1클러치축(151)에 축방향 이동 가능하게 설치고 외주면에 나선형 홈(153a) 및 원주형 홈(153b)이 형성된 제동스크류(153)와, 상기 제1클러치축(151)에 회전가능하게 설치되는 변속구동기어(154)와, 상기 제2클러치축(152)에 축방향 이동 가능하게 설치되고 외주면에 나선형 홈(155a) 및 원주형 홈(155b)이 형성된 가속스크류(155)와, 상기 제2축(152)에 회전가능하게 설치되어 상기 변속구동기어(154)에 치합되는 변속종동기어(156)와, 상기 변속구동기어(154) 및 변속종동기어(156)에 각각 일체로 형성되고 일측면에 클러치 티스(157')가 형성된 클러치판(157)과, 상기 클러치판(157)과 마주보는 면에 클러치 티스(도시 생략)가 형성된 클러치 패드(158)를 구비하고 상기 제1클러치축(151)과 제2클러치축(152)에 각각 축방향 이동 가능하게 설치되는 클러치 슬라이드(159)와, 상기 제1클러치축(151)과 제2클러치축(152)의 클러치 슬라이드(159)를 각각 회전가능하게 결합되며 단부가 서로 결합된 한 쌍의 슬라이드 아암(160)과, 상기 슬라이드 아암(160)에 각각 설치되어 상기 슬라이드 아암(160)의 이동 중심이 되는 힌지축(161) 및 상기 클러치 슬라이드를초기 위치로 복귀시키는 복원스프링(162)를 포함하여 이루어진다.
상기 클러치 장치(150)는 변속비를 고려하여 복수개 설치되고, 각 클러치 장치(150)에는 상기 제어장치부의 신호 또는 차속에 따라 상기 가속스크류(155)를 작동시키는 가속작동부(164) 및 제동스크류(153)를 작동시키는 제동작동부(163)가 각각 구비된다. 상기 제동작동부(163) 및 가속작동부(164)는, 상기 제어장치부의 신호에 따라 유압실린더(163b,164b)에 유압을 인가하는 전자 솔레노이드(163a,164a)와, 상기 유압실린더(163b,164b)에 구비되어 상기 제동스크류(153) 또는 가속스크류(155)의 홈에 삽입되는 호형 돌기(163c,164c)로 구성된다. 이를 위하여 상기 유압실린더(163b,164b)에 유압을 공급하기 위한 제동오일 공급관(165) 및 가동오일 공급관(166)이 구비되고, 상기 전자 솔레노이드(163a,164a)에 상기 제어장치부의 신호를 전달하기 위한 제동전류선(167) 및 가동전류선(168)이 각각 구비된다.
상기한 변속부재에서는 제동시 동력입출부에 연동되는 제1축으로부터 동력전달부에 연동되는 제2축으로 동력이 전달되고, 가속시에는 제2축으로부터 제1축으로 동력이 전달되며, 차속 또는 가속 정도에 따라 동력입출부와 동력전달부 사이의 동력전달 속도를 조절한다.
동력전달부(300)에 연동되는 제2클러치축(152)으로부터 동력저장부(200)로 동력을 전달하거나 상기 동력저장부(200)로부터 상기 제2클러치축(152)으로 동력이 전달되는 과정은 앞의 실시 예와 유사하므로 이에 대한 설명은 생략하고, 동력입출부(100)에 연동되는 상기 제1클러치축(151)과 상기 제2클러치축(152) 사이의 동력 전달 과정만을 설명한다.
주행 도중 제동하게 되면 제어장치부의 신호에 의해 제동작동부(163)가 작동되어 제동스크류(153)를 축방향으로 이동시키게 된다. 즉, 상기 제어장치부에서 발생한 신호에 의해 제동작동부(163)의 전자 솔레노이드(163a)가 작동되어 유압실린더(163b)에 유압을 인가하고, 그로 인하여 상기 유압실린더(163b)의 호형 돌기(163c)가 상기 제동스크류(153)의 홈(153a, 153b)에 삽입됨으로써 회전중인 상기 제1클러치축(151)에 설치된 상기 제동스크류(153)가 축방향으로 이동하게 한다.
상기 제동스크류(153)는 축방향으로 이동하면서 클러치 슬라이드(159)를 밀게 되고, 그로 인하여 상기 클러치 슬라이드(159)의 클러치 패드(158)가 클러치판(157)에 클러치 결합된다. 따라서, 상기 클러치판(157)과 일체로 형성된 변속구동기어(154)가 상기 제1클러치축(151)에 연동되어 회전하게 되며, 상기 제2클러치축(152)에 설치된 변속종동기어(156)가 상기 변속구동기어(154)와 맞물려 회전된다.
한편, 상기 제1클러치축(151)의 클러치 슬라이드(159)가 축방향으로 이동될 때, 상기 클러치 슬라이드(159)에 결합된 슬라이드 아암(160)이 힌지축(161)을 중심으로 이동하게 되고, 그로 인하여 상기 제2클러치축(152)의 슬라이드 아암(160) 역시 힌지축(161)을 중심으로 이동하면서 상기 제2클러치축(152)의 클러치판(157)과 클러치 패드(158)가 클러치 결합되도록 한다. 따라서, 상기 변속구동기어(154)와 맞물린 변속종동기어(156)가 결합된 상기 제2클러치축(152) 역시 회전하면서 상기 동력전달부(300)로 회전력을 전달한다.
가속시에는 상기 제2클러치축(152)이 회전되고 상기 제1클러치축(151)은 저속회전 상태에 있으므로, 상기 제2클러치축(152)의 회전력이 상기 제1클러치축(151)으로 전달된다. 가속시 제어장치부의 신호에 의해 작동된 가속작동부(164)에 의해 가속스크류(155)가 축방향으로 이동되고, 상기 가속스크류(155)가 상기 제2클러치축(152)의 클러치 슬라이드(159)를 밀어 상기 클러치 슬라이드(159)가 축방향으로 이동되도록 한다. 이때, 상기 클러치 슬라이드(159)가 결합된 슬라이드 아암(160)의 작용으로 상기 제1클러치축(151)의 클러치 슬라이드(159) 역시 축방향으로 이동되며, 상기 클러치 슬라이드(159)의 이동에 따라 상기 클러치 패드(158)가 상기 클러치판(157)과 클러치 결합되도록 한다. 따라서, 상기 클러치판(157)과 일체로 형성된 변속구동기어(154)와 변속종동기어(156)가 맞물려 회전하면서 상기 제2클러치축(152)의 회전력을 제1클러치축(151)으로 전달하게 된다.
이때, 제어장치부에서는 복수개의 상기 클러치 장치(150)에 각각 구비된 제동작동부(163) 또는 가속작동부(164)에 작동 신호를 인가하여 적절한 변속비를 가진 클러치 장치(150)에서 클러치 결합이 일어나 동력이 전달되도록 하는 방법을 이용하여 동력입출부(100)와 동력전달부(200) 사이의 동력전달속도를 조절한다.
한편, 상기 동력전달부(300)는, 제동시의 동력전달경로상에 설치되어 제동 충격을 완화시키는 완충장치(350)를 더 구비할 수 있다. 상기 완충장치(350)는, 내측 중앙에 사다리꼴 형상으로 돌출된 라이닝(352)이 구비된 브레이크 벨트(351)와, 상기 동력저장부측에 연동되어 회전되며 상기 브레이크 벨트(351)의 대경부에 결합되는 저장부 풀리(353)와, 상기 브레이크 벨트(351)의 소경부 외측에 결합되는 캐치풀리(354)와, 상기 동력입출부측에 연동되어 회전되며 상기 브레이크 벨트(351)의 소경부 내측에서 라이닝(352)에 결합되는 제동풀리(355)와, 변속비가 큰 상태에서 제동시 상기 제동풀리(355)를 상기 캐치풀리(354) 방향으로 이동시키는 완충스크류(357)로 구성된다.
상기 완충스크류(357)는, 상기 제동스크류(153)나 가동스크류(155)와는 반대로 상기 완충스크류(357)는 축방향으로 이동하지 않고 고정되어 있으면서 상하의 호형돌기와 상하의 유압실린더가 제동풀리(355) 및 그 축과 함께 도면상 좌측으로 이동되어 상기 동력저장부(200)에 동력이 저장되도록 하는 구조로 되어 있다.
상기한 완충장치는 제동시 작동되어 제동에 따른 충격을 완화시키며, 가속시에는 작동되지 않는다. 이를 구체적으로 설명하면 다음과 같다.
제동시 완충스크류(357)에 의해 제동풀리(355)가 캐치풀리(354) 방향으로 이동되어 브레이크 벨트(351)의 내측에 형성된 라이닝(352)에 접하게 된다. 따라서, 일측에 저장부 풀리(353)가 결합된 상기 브레이크 벨트(351)에 장력이 인가되어 팽팽하게 된다. 이때, 상기 클러치 장치(150)의 제2클러치축(152)과 상기 제동풀리(355)의 축이 베벨기어로 치합되므로, 상기 제동풀리(355)가 상기 제2클러치축(152)에 연동하여 회전하게 된다. 이에 따라 상기 브레이크 벨트(351)를 통해 상기 제동풀리(355)의 회전력이 상기 저장부 풀리(353)로 전달되고, 상기 저장부 풀리(353)의 축에 베벨기어로 결합된 저장축(358)이 회전되면서 동력저장부(200)의 링 기어(211)를 회전시키게 된다. 따라서, 상기 링 기어(211)의 회전에 따라 동력저장스프링(500)에 탄성에너지가 저장된다. 이때, 상기 제동풀리(355)와 상기 브레이크 벨트(351)의 라이닝(352) 사이에서 약간의 슬립이 일어나게 되어 제동에 따른 동력이 전달되는 과정에서 발생하는 충격과 진동을 완화시킨다.
한편, 가속시에는 상기 동력저장부(200)의 링 기어(211)가 상기 동력저장스프링(500)의 탄성에너지에 의해 회전하게 되고, 상기 저장축(358)이 상기 링 기어(211)에 연동되어 회전하게 된다. 이때, 상기 저장축(358)에 설치된 가속스크류(359)로 인해 상기 저장축(358)의 회전력이 전동부재를 통해 상기 제2클러치축(152)으로 전달되며, 상기 완충스크류(357)는 작동되지 않으므로 상기 저장부 풀리(353)가 회전되더라도 상기 제동풀리(355)로는 동력전달이 이루어지지 않는다.
이상에서 가속시 작동되는 가속스크류(359)의 작동에 대한 구체적인 설명은 생략하였으며, 이는 이들의 작동과정이 앞에서 설명한 다른 스크류들과 동일하기 때문이다.
한편, 제2의 실시예에서는 상기 동력저장부(200)를 도 14에 도시된 바와 같이 다단 구조의 동력저장스프링과 래크판의 이동순서를 상기한 제1의 실시예와는 반대의 순서로 구성할 수 있다. 즉, 상기 동력저장부(200)는, 동력저장스프링(500)이 구비된 래크판(282)과, 상기 동력저장스프링(500)이 탄성 변형된 상태에서 상기 래크판(282)이 움직이지 않도록 잡아주는 래크캐처(283)와, 상기 래크판(282)의 메인래크(284)에 치합되는 래크기어(285)와, 상기 제어장치부의 신호에 따라 상기 래크판(282)을 초기 이동시키는 저장 스타팅부재(286)와, 상기 제어장치부의 신호에 따라 상기 래크판(282)의 고정을 해제시키는 출력 스타팅부재(287)를 포함하여 구성될 수도 있다.
이때, 상기 래크판(282)은 다층 구조로 이루어지고, 각 래크판(282)에는 상기 래크기어(285) 및 래크캐처(283)가 각각 설치됨과 아울러, 각각의 래크판(282)에는 동력 저장 및 탄성력의 제공이 차례로 이루어지도록 하는 연동수단이 구비된다.
상기 연동수단은, 상측 래크판에 상기 메인래크(284)와는 독립적으로 형성된 보조래크(292)에 치합되는 제1보조기어(291)와, 상기 제1보조기어(291)에 치합되어 회전되며 타층 래크판에 형성된 기동래크(294)에 치합되어 타층 래크판의 메인래크(284)가 상기 래크기어(285)에 치합되도록 하는 제2보조기어(293)와, 타층 래크판의 상면에 구비되어 상기 래크캐처(283)에 걸리게 되는 걸림돌기(295)와, 타층 래크판에 형성되어 상기 래크캐처(283)에 의한 상기 래크판(282)의 고정을 해제하는 해제롤러(296)를 포함한다.
그리고, 상기 다층구조의 래크판(282)은 동력저장시 또는 동력출력시 래크판 전체의 이동방향이 동일하도록 상기 메인래크(284)와 보조래크(292) 및 기동래크(294)의 위치를 설정함과 아울러 상기 메인래크(284)가 설치되지 않은 반대면 측에 상기 동력저장스프링(500)과 제1보조기어(291) 및 제2보조기어(293)가 위치되도록 한다. 도 14에 도시된 다층구조의 래크판(282)은 하층에서부터 동력이 저장될 수 있도록 최하층 래크판에 상기 저장 스타팅부재(286)가 위치되고, 최상층 래크판에 상기 출력 스타팅부재(287)가 위치되도록 한 것이다.
상기 동력저장부 역시 앞에서 설명한 제1의 실시예의 동력저장부에서 동력이 저장되는 과정이나 출력되는 과정은 대동소이하므로 이에 대한 구체적인 설명은 생략한다.
여기서, 상기 다층구조의 래크판(282)은 동력저장시 또는 동력출력시 래크판 전체의 이동방향이 동일하도록 상기 메인래크(284)와 보조래크(292) 및 기동래크(294)의 위치를 설정함과 아울러 상기 메인래크(284)가 설치되지 않은 반대면 측에 상기 동력저장스프링(500)과 제1보조기어(291) 및 제2보조기어(293)가 위치되도록 할 수도 있다. 이 경우 상기 래크판(282) 사이의 간격을 줄일 수 있으므로, 상기 동력저장부(200)의 크기를 줄일 수 있는 장점이 있다.
<제3의 실시예>
또, 상기 동력저장부(200)는 도 18에 도시된 바와 같이, 탄성에너지를 저장하는 수단으로 상기한 형식의 동력저장스프링(500)을 사용하지 않고 비틀림 작용을 이용하는 토션 방식의 동력저장스프링(500')을 사용할 수도 있다.
이 경우 상기 동력저장부(200)는, 도 18에 도시된 바와 같이, 상기 동력전달부(300)에 의해 비틀림 회전되어 탄성에너지를 저장하며 일측 단부가 고정된 동력저장스프링(500')과, 상기 동력저장스프링(500')을 지지하는 스프링 샤프트(251)와, 상기 동력전달부(300)에 연동되어 회전되며 상기 스프링 샤프트(251)의 일단에 설치되어 상기 동력저장스프링(500')의 타측 단부가 결합되는 스프링 고정판(252)과, 상기 스프링 샤프트(252)의 타단을 회전 가능하게 지지하는 베어링(253)과, 상기 제어장치부의 신호에 따라 상기 동력저장스프링(500')을 이용한 탄성에너지의 축적이 시작되도록 하거나 상기 동력저장스프링(500')에 저장된 탄성에너지에 의해 상기 동력전달부(300)가 작동되도록 하는 입출력 제어부재와, 상기 동력저장스프링(500')에 정해진 탄성에너지가 축적되거나 상기 동력저장스프링(500')의 탄성에너지가 완전히 소모되면 상기 동력전달부(300)와 상기 스프링 고정판(252) 사이의 동력 전달을 차단하는 리미트 스위치(255)를 포함하여 이루어진다.
여기서, 상기 입출력 제어부재는, 상기 스프링 고정판(252)의 타측면에 설치되는 저장축(261)과, 상기 저장축(261)에 설치되는 출력기어(262) 및 저장기어(263)와, 상기 저장기어(263)와 일체로 형성되며 외주면에 래칫기어가 형성된 일방향 클러치(264)와, 상기 저장축(261)과 평행하게 설치되어 축방향으로 이동되며 상기 동력전달부(300)에 의해 회전되는 가동축(265)과, 상기 가동축(265)에 설치되어 상기 출력기어(262)에 의해 회전되는 제1이동기어(266)와, 상기 가동축(265)에 설치되어 상기 저장기어(263)를 회전시키는 제2이동기어(267)와, 상기 가동축(265)을 축방향으로 이동시키는 제어레버(268)와, 상기 가동축(265)에 설치되어 상기 제어레버(268)를 지지하는 가이드(269)와, 상기 일방향 클러치(264)의 래칫기어에 치합되는 캐처(270)와, 상기 제어레버(268)를 작동시키는 출력용 유압장치(271)와, 상기 가동축(265)의 일측에 설치되어 상기 제2이동기어(267)를 상기 저장기어(263)에 치합시키는 저장용 유압장치(272)로 이루어진다.
이때, 상기 동력저장부(200)는 복수개 구비되고, 각 동력저장부(200)에 설치된 리미트 스위치(255)의 신호에 따라 상기 입출력 제어부재가 제어되어 탄성에너지의 저장 및 에너지의 출력이 차례로 이루어지도록 구성한다. 그리고, 상기 복수의 동력저장부(200)와 동력입출부(100) 사이에서 동력을 전달하는 동력전달부(300)는, 차속 또는 가속 정도에 따라 에너지의 저장 또는 출력 속도를 조절하는 변속장치의 전동체(330)를 구비하며, 상기 전동체(330)의 제3전동축(320)에 연동되어 회전하는 복수의 체인기어(336)의 축에 설치된 원통기어(336')에 상기 가동축(265)에 설치된 전동기어(265')가 각각 치합되도록 한다.
상기와 같이 구성된 동력저장부에서의 동력을 저장하거나 출력하는 과정은 다음과 같다.
동력 저장시에는 동력전달부(300)에 의해 가동축(265)이 회전되고, 저장용 유압장치(272)에 의해 제2이동기어(267)가 축방향으로 이동되어 저장축(261)에 구비된 저장기어(263)에 치합된다. 따라서, 상기 저장축(261)에 설치된 스프링 고정판(252)이 회전하면서 동력저장스프링(500')을 비틀림 회전시켜 탄성에너지가 저장되도록 한다. 이때, 상기 동력저장스프링(500')을 관통하고 있는 스프링 샤프트(251)는 상기 동력저장스프링(500')이 이탈되지 않도록 지지한다. 그리고, 리미트 스위치(255)는 상기 동력저장스프링(500')에 정해진 탄성에너지가 축적되는 순간 상기 저장용 유압장치(272)의 작동을 중지시켜 상기 동력전달부(300)로부터의 동력 전달을 차단하며, 상기 저장축(261)에 설치된 일방향 클러치(264)의 캐처(270)가 상기 동력저장스프링(500')의 탄성에너지에 의해 상기 저장축(261)이 역방향으로 회전되는 것을 방지하게 된다. 만약, 상기 동력저장부(200)가 복수개 설치된 경우에는 상기 리미트 스위치(255)의 신호에 따라 각 동력저장부(200)에 동력이 차례로 저장되도록 할 수 있다.
한편, 상기 동력저장부(200)로부터의 출력이 필요한 경우에는 상기 일방향 클러치(264)의 캐처(270)가 래칫기어로부터 빠져나와 상기 저장축(261)이 상기 동력저장스프링(500')의 탄성에너지에 의해 회전될 수 있도록 한다. 이 상태에서 출력용 유압장치(271)가 작동되어 제어레버(268)를 통해 상기 가동축(265)을 출력기어(262) 방향으로 이동시킴으로써, 상기 가동축(265)의 제1이동기어(266)가 상기 저장축(261)의 출력기어(262)에 치합되도록 한다. 이에 따라 상기 저장축(261)에 연동되어 상기 가동축(265)이 회전하면서 상기 가동축(265)의 전동기어(265')에 치합된 원통기어(336')를 회전시키게 되고, 상기 원통기어(336')와 일체로 회전되는 체인기어(336)를 통해 상기 동력전달부(300)로 회전력을 전달하게 된다.
<제4의 실시 예>
또한, 상기 동력저장스프링(500')을 구비한 동력저장부(200)로 동력을 전달하거나 동력을 출력하기 위한 동력전달부(300)는 다음과 같이 구성될 수 있다.
즉, 상기 동력전달부(300)는, 도 19와 도 20에 도시된 바와 같이, 차속 또는 가속 정도에 따라 에너지의 저장 또는 출력 속도를 조절하는 변속장치로서의 전동체(340)와, 상기 전동체(340)의 출력축에 연동되어 회전되는 스프로켓(342a)의 회전력을 상기 동력저장부(200)로 전달하거나 상기 동력저장부(200)의 출력을 상기 스프로켓(342a)으로 전달하는 전동수단을 구비하고; 상기 전동수단은, 복수의 스프로켓(342a) 각각에 연결된 제1축(342)과, 상기 제1축(342)에 축방향으로 이동 가능하게 설치되며 가속시 상기 스프로켓(342a)으로 회전력을 전달하는 제1기어(342b)와, 상기 제1기어(342b)와 일체로 형성되어 축방향 이동되는 제동스크류(345)와, 상기 제1축(342)의 선단에 설치되어 상기 동력저장부(200)로부터의 회전력을 전달받는 제2기어(342c)와, 상기 제1기어(342b)에 연동되어 회전되는 제3기어(344a) 및 래칫장치(346)가 구비되고 상기 동력저장부가 연결된 제2축(344)과, 상기 제2축(344)에 축방향으로 이동 가능하게 설치되며 가속시 상기 제2기어(342c)에 치합되는 제4기어(344b)와, 상기 제4기어(344b)와 일체로 형성되는 가속스크류(347)와, 상기 제어장치부의 신호에 따라 상기 제동스크류(345)를 축방향 이동시키는 제동작동부(348)와, 상기 제어장치부의 신호에 따라 상기 가속스크류(347)를 축방향 이동시키는 가속작동부(349)로 구성된다.
여기서, 상기 제동작동부(348) 및 가속작동부(349)는, 상기 제어장치부의 신호에 따라 작동되는 전자 솔레노이드를 이용한 것으로, 상기 전자 솔레노이드에 의해 인가되는 유압에 의해 작동되는 유압실린더의 호형 돌기가 상기 제동스크류(345) 또는 가속스크류(347)의 홈에 삽입되어 상기 제동스크류(345) 또는 가속스크류(347)를 축방향으로 이동시키게 된다.
이 경우에도 상기 동력저장부(200)는 복수개 구비되어 탄성에너지의 저장 및 에너지의 출력이 차례로 이루어지도록 할 수 있으며, 상기 전동수단은 복수개의 동력저장부(200)에 각각 하나씩 설치된다. 이때, 각 동력저장부(200)에서 탄성에너지의 저장 및 탄성에너지의 출력이 차례로 이루어지도록 하기 위하여 각각의 제동작동부(348) 및 가속작동부(349)를 상기 제어장치부에서 직접적으로 제어한다.
상기한 구조의 동력전달부에서의 동력의 저장 및 출력은 다음과 같이 이루어진다.
주행중에는 동력전달부(300)의 스프로켓(342a)에 연결된 제1축(342)이 상시 회전되고, 제동시에는 제동작동부(348)에 의해 제동스크류(345)가 축방향으로 이동된다. 즉, 제동 순간 제어장치부에서 상기 제동작동부(348)의 전자 솔레노이드에 신호를 인가하게 되고, 상기 전자 솔레노이드의 작동에 따라 인가된 유압에 의해 유압실린더가 작동되어 호형 돌기가 상기 제동스크류(345)의 홈에 삽입된다.
이에 따라 상기 제동스크류(345)와 일체로 형성된 제1기어(342b)가 축방향으로 이동되어 제2축(344)의 제3기어(344a)에 치합된다. 따라서, 상기 제2축(344)이 회전하면서 상기 동력저장부(200)의 동력저장스프링(500')에 탄성에너지가 저장된다. 이때, 복수개의 동력저장부(200)에 대하여는 각 동력저장부(200)에 대응되는 제동작동부(348)의 전자 솔레노이드를 순차 제어하여 차례차례 동력이 저장되도록 한다.
가속시 상기 동력저장부(200)로부터 에너지를 출력하고자 하는 경우에는, 제어장치부를 통해 가속작동부(349)를 작동시킴과 아울러 래칫장치(346)의 구속을 해제시키면 된다. 상기 제어장치부에서 상기 가속작동부(349)의 전자 솔레노이드에 신호를 인가하면, 상기 전자 솔레노이드에 의해 유압이 인가된 유압실린더가 작동되어 호형 돌기가 가속스크류(347)의 홈에 삽입된다.
이 상태에서 상기 래칫장치(346)의 구속에 해제되면 상기 동력저장부(200)의 동력저장스프링(500')에 의해 상기 제2축(344)이 회전하게 되고, 상기 가속스크류(347)와 일체로 형성되어 상기 제2축(344)에 설치된 제4기어(344b)가 축방향으로 이동되어 상기 제1축(342)의 제2기어(342c)에 치합된다. 따라서, 상기 제1축(342)이 제2축(344)에 연동되어 회전하게 되고, 상기 제1축(342)의 회전력이 스프로켓(342a)을 통해 동력전달부(300)로 전달된다. 이때, 복수개의 동력저장부(200)에 대하여는 각 가속작동부(349)의 전자 솔레노이드를 순차 제어하는 방식으로, 각 동력저장부(200)의 탄성에너지를 차례차례 출력하여 재활용한다.
<제5의 실시예>
한편, 본 발명의 기계식 동력 저장 및 재활용 장치를 자전거에 적용하는 경우에는, 도 21에 도시된 바와 같이, 뒷바퀴(702)에 동력입출부(100) 및 동력전달부(300)를 설치하고 앞바퀴(701)와 뒷바퀴(702)를 연결하는 프레임(705)의 빈 공간(706)에 동력저장부(200)를 설치한다. 그리고, 상기 제어장치부로는 자전거의 핸들(710) 양측에 저장레버(711)와 가속레버(712)를 각각 설치하여, 상기 저장레버(711)에 연결된 와이어(715a)를 이용하여 상기 동력입출부(100)의 제동작동부(410) 및 상기 동력저장부(200)의 저장 스타팅부재(216)가 작동되도록 하고, 상기 가속레버(712)에 연결된 와이어(715b)를 이용하여 상기 동력전달부(300)의 가속작동부(420) 및 상기 동력저장부(200)의 출력 스타팅부재(217)가 작동되도록 한다.
이와 같이 자전거에 본 발명의 기계식 동력 저장 및 재활용 장치를 적용하게 되면, 내리막길을 달릴 때 상기 저장레버(711)를 잡아당겨 상기 동력저장부(200)에 동력을 저장한 후 오르막길을 지나거나 지친 상태에서 상기 가속레버(712)를 잡아당김으로써 상기 동력저장부(200)에 저장된 에너지를 이용하여 작은 힘으로도 주행할 수 있게 된다.
본 발명의 기계식 동력 저장 및 재활용 장치는 자동차나 전동차 등에서 연료를 절감함과 아울러 오염 물질의 배출량을 감소시킬 수 있으므로, 이산화탄소 배출량을 규제하는 세계적 추세에 따라 자동차 산업 등의 발전에 이바지할 수 있다.
또한, 본 발명의 기계식 동력 저장 및 재활용 장치는 인력에 의해서만 움직이는 자전거를 동력자전거로 변환시킬 수 있으므로 자전거 관련 산업의 발전에 이바지할 수 있다.

Claims (21)

  1. 제동시 사라지는 바퀴의 회전 에너지를 이용하여 동력저장스프링을 탄성 변형시킨 후, 가속시 상기 동력저장스프링의 탄성에너지를 상기 바퀴의 회전 에너지로 변환시켜 재활용하도록 한 것을 특징으로 하는 기계식 동력 저장 및 재활용 장치.
  2. 바퀴의 회전축에 연동되며 제동시에는 상기 회전축으로부터 회전력을 인출하고 가속시에는 상기 회전축으로 회전력을 제공하는 동력입출부(100)와;
    상기 동력입출부(100)를 통해 인출된 회전력을 동력저장스프링(500)의 탄성에너지로 전환시켜 저장하거나 상기 동력저장스프링(500)의 탄성에너지를 회전력으로 전환시켜 상기 동력입출부(100)를 통해 상기 회전축에 제공하는 동력저장부(200)와;
    상기 동력입출부(100)와 상기 동력저장부(200) 사이에서 동력을 전달하는 동력전달부(300)와;
    상기 동력입출부(100) 및 동력저장부(200)의 작동을 제어하는 제어장치부;를 포함하는 것을 특징으로 하는 기계식 동력 저장 및 재활용 장치.
  3. 제2항에 있어서,
    상기 동력저장부(200) 또는 상기 동력전달부(300)에 설치되어 상기 동력저장부(200)에 에너지가 저장될 때 상기 동력전달부(300)의 역방향 회전을 차단하는 통합 클러치(450)를 더 포함하고,
    상기 통합클러치(450)는 외주면에 래칫기어(451)가 형성되어, 동력 저장시에는 래치(455)에 의해 상기 래칫기어(451)가 구속되어 역방향 회전이 차단되고, 가속시에는 상기 래칫기어(451)의 구속이 해제되도록 하는 것을 특징으로 하는 기계식 동력 저장 및 재활용 장치.
  4. 제3항에 있어서,
    상기 동력입출부(100)는, 바퀴의 회전축(50)에 연동되어 회전되는 제1전동축(110)과, 상기 제1전동축(110)의 회전력을 상기 동력전달부(300)로 전달하거나 상기 동력전달부(300)에 의해 회전되는 제2전동축(120)과, 상기 제1전동축(110)에 축방향 이동 가능하게 설치되어 제동시 축 방향으로 이동되는 제동스크류(131) 및 베벨기어를 이용하여 상기 제동스크류(131)의 회전력을 상기 제2전동축(120)으로 전달하는 제1전동부(132)로 이루어진 동력인출부(130)와, 상기 제2전동축(120)에 축방향 이동 가능하게 설치되고 가속시 축방향으로 이동되는 가속스크류(141) 및 베벨기어를 이용하여 상기 가속스크류(141)의 회전력을 상기 제1전동축(110)으로 전달하는 제2전동부(142)로 이루어진 동력제공부(140)를 포함하는 것을 특징으로 하는 기계식 동력 저장 및 재활용 장치.
  5. 제2항에 있어서,
    상기 동력전달부(300)는, 제동 및 가속 정도에 따라 전동 속도가 변화되도록 다단구조로 구성된 것을 특징으로 하는 기계식 에너지 저장 및 재활용 장치.
  6. 제2항에 있어서,
    상기 동력저장부(200)는, 상기 동력전달부(300)의 제3전동축(320)에 연동되어 회전되는 링 기어(211)와, 상기 링 기어(211)의 회전력 또는 일측에 구비된 동력저장스프링(500)의 탄성력에 의해 전후 이동되는 래크판(212)과, 상기 동력저장스프링(500)이 탄성 변형된 상태에서 상기 래크판(212)이 움직이지 않도록 잡아주는 래크캐처(213)와, 상기 링 기어(211)의 회전력을 상기 래크판(212)으로 전달하거나 상기 래크판(212)의 움직임을 상기 링 기어(211)로 전달하도록 상기 래크판(212)의 메인래크(214)에 치합되는 래크기어(215)와, 상기 제어장치부의 신호에 따라 상기 래크판(212)을 초기 이동시키는 저장 스타팅부재(216)와, 상기 제어장치부의 신호에 따라 상기 래크판(212)의 고정을 해제시키는 출력 스타팅부재(217)를 포함하는 것을 특징으로 하는 기계식 에너지 저장 및 재활용 장치.
  7. 제6항에 있어서,
    상기 저장 스타팅부재(216)는, 상기 제어장치부에 의해 작동되어 상기 래크판(212)을 전진시키는 저장 스타팅레버(216a)와, 상기 래크판(212)의 상측에 설치되어 상기 저장 스타팅레버(216a)의 움직임을 제한함과 아울러 상기 저장 스타팅레버(126a)에 의해 초기 작동되는 걸림돌기(216b)로 이루어지고,
    상기 출력 스타팅부재(217)는 상기 제어장치부에 의해 작동되어 상기 래크캐처(213)에 의한 상기 래크판(212)의 고정을 해제하는 것을 특징으로 하는 기계식 에너지 저장 및 재활용 장치.
  8. 제7항에 있어서,
    상기 래크판(212)은 다층 구조로 이루어지고,
    각 래크판(212)에는 상기 동력저장스프링(500) 및 래크캐처(213)가 각각 설치됨과 아울러, 각각의 래크판(212)에서 동력 저장 및 탄성력의 제공이 차례로 이루어지도록 하는 연동수단이 구비되며,
    상기 연동수단은, 상측 래크판에 상기 메인래크(214)와는 독립적으로 형성된 보조래크(221)에 치합되는 제1보조기어(223)와, 상기 제1보조기어(223)에 치합되어 회전되며 하측 래크판에 형성된 기동래크(222)에 치합되어 상기 하측 래크판의 메인래크(214)가 상기 래크기어(215)에 치합되도록 하는 제2보조기어(224)와, 상기 상측 래크판에 설치되어 상기 래크캐처(213)를 막아 상기 상측 래크판을 고정하는 걸림돌기(226)와, 상기 하측 래크판에 형성되어 상기 래크캐처(213)에 의한 상기 상측 래크판의 고정을 해제하는 해제롤러(225)를 포함하는 것을 특징으로 하는 기계식 에너지 저장 및 재활용 장치.
  9. 제8항에 있어서,
    상기 래크판(212) 중 최상층 래크판(212a)에는 상기 저장 스타팅부재(216)에 의한 이동이 이루어진 이후에 상기 래크기어(215)가 치합될 수 있도록 저탄성 스프링(550)의 길이에 상당하는 서비스거리(s)를 두고 메인래크(214)가 형성된 것을 특징으로 하는 기계식 에너지 저장 및 재활용 장치.
  10. 제2항에 있어서,
    상기 장치는 자동차 또는 전동차에 설치되고, 상기 제어장치부는 브레이크 페달 또는 가속 페달에 연동되는 유압장치인 것을 특징으로 하는 기계식 에너지 및 재활용 장치.
  11. 제2항에 있어서,
    상기 동력저장부(200)에 동력을 저장하거나 동력을 인출할 때 그 속도를 조절할 수 있도록 상기 동력입출부(100)에 변속부재가 설치된 것을 특징으로 하는 기계식 에너지 저장 및 재활용 장치.
  12. 제11항에 있어서,
    상기 변속부재는, 변속비가 다른 복수개의 클러치 장치(150)를 감속 또는 가속 정도에 따라 선택적으로 치합시켜 변속이 이루어지도록 하며,
    상기 클러치 장치(150)는, 상기 회전축(50)에 연동되어 회전되는 제1클러치축(151)과, 상기 동력전달부(300)에 연동되어 회전되는 제2클러치축(152)과, 상기 제1클러치축(151)에 축방향 이동 가능하게 설치된 제동스크류(153)와, 상기 제1클러치축(151)에 회전가능하게 설치되는 변속구동기어(154)와, 상기 제2클러치축(152)에 축방향 이동 가능하게 설치된 가속스크류(155)와, 상기 제2클러치축(152)에 회전가능하게 설치되어 상기 변속구동기어(154)에 치합되는 변속종동기어(156)와, 상기 변속구동기어(154) 및 변속종동기어(156)에 각각 일체로 형성되고 일측면에 클러치 티스(157')가 형성된 클러치판(157)과, 상기 클러치판(157)과 마주보는 면에 클러치 티스가 형성된 클러치 패드(158)를 구비하고 상기 제1클러치축(151)과 제2클러치축(152)에 각각 축방향 이동 가능하게 설치되는 클러치 슬라이드(159)와, 상기 제1클러치축(151)과 제2클러치축(152)의 클러치 슬라이드(159)에 각각 회전가능하게 결합되며 단부가 서로 결합된 한 쌍의 슬라이드 아암(160)과, 상기 슬라이드 아암(160)에 각각 설치되어 상기 슬라이드 아암(160)의 회동 중심이 되는 힌지축(161)을 포함하는 것을 특징으로 하는 기계식 에너지 저장 및 재활용 장치.
  13. 제12항에 있어서,
    상기 동력전달부(300)는, 제동 충격을 완화시키는 완충장치(350)를 구비하여 제동시에는 상기 완충장치(350)를 통해 상기 동력저장부(200)로 동력이 전달되고, 가속시에는 상기 완충장치(350)를 바이패스하여 상기 동력저장부(200)의 출력이 상기 제2클러치축(152)으로 전달되도록 하며,
    상기 완충장치(350)는, 내측 중앙에 사다리꼴 형상으로 돌출된 라이닝(352)이 구비된 브레이크 벨트(351)와, 상기 동력저장부측에 연동되어 회전되며 상기 브레이크 벨트(351)의 대경부에 결합되는 저장부 풀리(353)와, 상기 브레이크 벨트(351)의 소경부 외측에 결합되는 캐치풀리(354)와, 상기 동력입출부측에 연동되어 회전되며 상기 브레이크 벨트(351)의 소경부 내측에서 라이닝(352)에 결합되는 제동풀리(355)와, 고속에서 급제동시 상기 제동풀리(355)를 상기 캐치풀리(354) 방향으로 이동시키는 완충스크류(357)를 포함하는 것을 특징으로 하는 기계식 에너지 저장 및 재활용 장치.
  14. 제13항에 있어서,
    상기 동력저장부(200)의 출력이 상기 제2클러치축(152)으로 전달될 때 상기 제2클러치축(152)의 회전방향이 제동시의 회전방향과 동일하도록 회전방향을 바꾸어주는 회전방향 전환수단이 더 구비된 것을 특징으로 하는 기계식 에너지 저장 및 재활용 장치.
  15. 제2항에 있어서,
    상기 동력저장부(200)는, 상기 동력저장스프링(500)이 구비된 래크판(282)과, 상기 동력저장스프링(500)이 탄성 변형된 상태에서 상기 래크판(282)이 움직이지 않도록 잡아주는 래크캐처(283)와, 상기 래크판(282)의 메인래크(284)에 치합되는 래크기어(285)와, 상기 제어장치부의 신호에 따라 상기 래크판(282)을 초기 이동시키는 저장 스타팅부재(286)와, 상기 제어장치부의 신호에 따라 상기 래크판(282)의 고정을 해제시키는 출력 스타팅부재(287)를 포함하는 것을 특징으로 하는 기계식 에너지 저장 및 재활용 장치.
  16. 제2항에 있어서,
    상기 동력저장스프링(500)은, 직선의 강철판이 절곡되는 플렉스부(510)와 상기 플렉스부(510) 사이에서 탄성 변형되는 플렉시블부(520)가 교대로 형성됨과 아울러,
    상기 플렉시블부(520) 양측의 플렉스부(510)가 반대 방향으로 절곡되어 수축 또는 신장되며,
    상기 플렉시블부(520) 중앙에 용수철축(530)이 삽입되는 축공(525)이 형성되어 수축 과정에서 옆으로 튀지 않도록 한 것을 특징으로 하는 기계식 에너지 저장 및 재활용 장치.
  17. 제16항에 있어서,
    상기 플렉시블부(520)는 양측 표면에 각각 요철(521)이 형성되어, 상기 동력저장스프링(500)이 수축될 때 인접한 플렉시블부(520)끼리 요철 결합되는 것을 특징으로 하는 기계식 에너지 저장 및 재활용 장치.
  18. 제2항에 있어서,
    상기 동력저장부(200)는, 상기 동력전달부(300)에 의해 비틀림 회전되어 탄성에너지를 저장하며 일측 단부가 고정된 동력저장스프링(500')과, 상기 동력저장스프링(500')을 지지하는 스프링 샤프트(251)와, 상기 동력전달부(300)에 연동되어 회전되며 상기 스프링 샤프트(251)의 일단에 설치되어 상기 동력저장스프링(500')의 타측 단부가 결합되는 스프링 고정판(252)과, 상기 스프링 샤프트(252)의 타단을 회전 가능하게 지지하는 베어링(253)과, 상기 제어장치부의 신호에 따라 상기 동력저장스프링(500')을 이용한 탄성에너지의 축적이 시작되도록 하거나 상기 동력저장스프링(500')에 저장된 탄성에너지에 의해 상기 동력전달부(300)가 작동되도록 하는 입출력 제어부재와, 상기 동력저장스프링(500')에 정해진 탄성에너지가 축적되거나 상기 동력저장스프링(500')의 탄성에너지가 완전히 소모되면 상기 동력전달부(300)와 상기 스프링 고정판(252) 사이의 동력 전달을 차단하는 리미트 스위치(255)를 포함하는 것을 특징으로 하는 기계식 에너지 저장 및 재활용 장치.
  19. 제18항에 있어서,
    상기 입출력 제어부재는, 상기 스프링 고정판(252)의 타측면에 설치되는 저장축(261)과, 상기 저장축(261)에 설치되는 출력기어(262) 및 저장기어(263)와, 상기 저장기어(263)와 일체로 형성되며 외주면에 래칫기어가 형성된 일방향 클러치(264)와, 상기 저장축(261)과 평행하게 설치되어 축방향으로 이동되며 상기 동력전달부(300)에 의해 회전되는 가동축(265)과, 상기 가동축(265)에 설치되어 상기 출력기어(262)에 의해 회전되는 제1이동기어(266)와, 상기 가동축(265)에 설치되어 상기 저장기어(263)를 회전시키는 제2이동기어(267)와, 상기 가동축(265)을 축방향으로 이동시키는 제어레버(268)와, 상기 가동축(265)에 설치되어 상기 제어레버(268)를 지지하는 가이드(269)와, 상기 일방향 클러치(264)의 래칫기어에 치합되는 캐처(270)와, 상기 제어레버(268)를 작동시키는 출력용 유압장치(271)와, 상기 가동축(265)의 일측에 설치되어 상기 제2이동기어(267)를 상기 저장기어(263)에 치합시키는 저장용 유압장치(272)를 포함하는 것을 특징으로 하는 기계식 에너지 저장 및 재활용 장치.
  20. 제18항 또는 제19항에 있어서,
    상기 동력전달부(300)는, 차속 또는 가속 정도에 따라 에너지의 저장 또는 출력 속도를 조절하는 변속장치의 전동체(340)와, 상기 전동체(340)의 출력축(341)에 연동되어 회전되는 복수의 스프로켓(342a)과, 상기 스프로켓(342a)의 회전력을 상기 동력저장부(200)로 전달하거나 상기 동력저장부(200)의 출력을 상기 스프로켓(342a)으로 전달하는 전동수단을 구비하고;
    상기 전동수단은, 복수의 스프로켓(342a) 각각에 연결된 제4전동축(342)과, 상기 제4전동축(342)에 축방향으로 이동 가능하게 설치되며 가속시 상기 스프로켓(342a)으로 회전력을 전달하는 제1기어(342b)와, 상기 제1기어(342b)와 일체로 형성되어 축방향 이동되는 제동스크류(345)와, 상기 제4전동축(342)의 선단에 설치되어 상기 동력저장부(200)로부터의 회전력을 전달받는 제2기어(342c)와, 상기 제1기어(342b)에 연동되어 회전되는 제3기어(344a) 및 래칫장치(346)가 구비되고 상기 동력저장부가 연결된 제5전동축(344)과, 상기 제5전동축(344)에 축방향으로 이동 가능하게 설치되며 가속시 상기 제2기어(342c)에 치합되는 제4기어(344b)와, 상기 제4기어(344b)와 일체로 형성되어 축방향 이동되는 가속스크류(347)와, 상기 제어장치부의 신호에 따라 상기 제동스크류(345)를 축방향 이동시키는 제동작동부(348)와, 상기 제어장치부의 신호에 따라 상기 가속스크류(347)를 축방향 이동시키는 가속작동부(349)를 포함하는 것을 특징으로 하는 기계식 에너지 저장 및 재활용 장치.
  21. 제2항에 있어서,
    상기 장치는 자전거에 설치되고, 상기 제어장치부는 자전거의 핸들(710) 양측에 각각 설치된 저장레버(711) 및 가속레버(712)의 움직임을 상기 동력입출부(100) 또는 동력저장부(200)로 전달하는 와이어(715)인 것을 특징으로 하는 기계식 에너지 저장 및 재활용 장치.
PCT/KR2009/005830 2009-03-11 2009-10-12 기계식 에너지 저장 및 재활용 장치 WO2010104258A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20090021392 2009-03-11
KR10-2009-0021392 2009-03-11
KR20090043307 2009-05-15
KR10-2009-0043307 2009-05-15

Publications (1)

Publication Number Publication Date
WO2010104258A1 true WO2010104258A1 (ko) 2010-09-16

Family

ID=42728521

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/005830 WO2010104258A1 (ko) 2009-03-11 2009-10-12 기계식 에너지 저장 및 재활용 장치

Country Status (1)

Country Link
WO (1) WO2010104258A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108468624A (zh) * 2018-05-30 2018-08-31 福州小神龙表业技术研发有限公司 车辆的储能装置及其工作方法
CN110043607A (zh) * 2019-04-25 2019-07-23 东莞力嘉塑料制品有限公司 一种分控联动式双输出齿轮箱
CN112849170A (zh) * 2021-02-19 2021-05-28 安徽万航轨道交通装备有限公司 一种铁路机车火车头油电混合驱动装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4047441A (en) * 1976-02-02 1977-09-13 The Boeing Company Mechanical counterbalance assembly
US4519485A (en) * 1981-03-21 1985-05-28 Leyland Vehicle Limited Driveline for regenerative braking
EP0418442A1 (en) * 1986-04-30 1991-03-27 John Theodore Wagner Transmissions having variable -inertia flywheels
US20060102138A1 (en) * 2004-11-08 2006-05-18 Ford Global Technologies, Llc Systems and methods for controlled shutdown and direct start for internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4047441A (en) * 1976-02-02 1977-09-13 The Boeing Company Mechanical counterbalance assembly
US4519485A (en) * 1981-03-21 1985-05-28 Leyland Vehicle Limited Driveline for regenerative braking
EP0418442A1 (en) * 1986-04-30 1991-03-27 John Theodore Wagner Transmissions having variable -inertia flywheels
US20060102138A1 (en) * 2004-11-08 2006-05-18 Ford Global Technologies, Llc Systems and methods for controlled shutdown and direct start for internal combustion engine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108468624A (zh) * 2018-05-30 2018-08-31 福州小神龙表业技术研发有限公司 车辆的储能装置及其工作方法
CN108468624B (zh) * 2018-05-30 2023-11-17 曾光震 车辆的储能装置及其工作方法
CN110043607A (zh) * 2019-04-25 2019-07-23 东莞力嘉塑料制品有限公司 一种分控联动式双输出齿轮箱
CN110043607B (zh) * 2019-04-25 2023-11-14 东莞力嘉塑料制品有限公司 一种分控联动式双输出齿轮箱
CN112849170A (zh) * 2021-02-19 2021-05-28 安徽万航轨道交通装备有限公司 一种铁路机车火车头油电混合驱动装置
CN112849170B (zh) * 2021-02-19 2024-01-05 安徽万航轨道交通装备有限公司 一种铁路机车火车头油电混合驱动装置

Similar Documents

Publication Publication Date Title
WO2010104258A1 (ko) 기계식 에너지 저장 및 재활용 장치
WO2016108457A1 (ko) 고정변속단을 가지는 하이브리드 변속기
EP2519436A2 (en) Folding type bicycle
WO2018212595A1 (ko) 모터의 다단 변속기
WO2011090244A1 (ko) 전기자동차의 발전제어시스템
WO2010134732A2 (ko) 다단 자동 변속기
WO2014116062A1 (ko) 트롤리
WO2020050692A1 (ko) 송전용 지중케이블 와인딩장치 및 그를 포함하는 송전용 지중케이블 설치시스템
ITRM20000405A1 (it) Sistema di azionamento di veicolo.
WO2014123320A1 (ko) 허브 내장형 다단 변속기
WO2009096754A2 (ko) 태양 위치 추적 장치
WO2015122704A1 (ko) 삼각휠 구동 장치
WO2011122787A2 (ko) 자전거용 변속장치
WO2017095162A1 (ko) 자동 구동 전환장치
WO2015046838A1 (ko) 오토바이용 후진장치
KR101023431B1 (ko) 변속가능한 직결구동식 트랜스미션
WO2019194390A1 (ko) 전기자동차용 변속 시스템
WO2011030994A1 (ko) 무한궤도차량, 수륙양용 무한궤도, 무한궤도용 트랙슈, 방향 조작이 가능한 수동형 무한궤도차량
WO2015147516A1 (ko) 지중 케이블의 기계화 포설장비 및 공법에 이용되는 레일
WO2012141545A2 (ko) 용적형 제동장치
EP3504141A1 (en) Stapling apparatus and image forming apparatus including the same
CN100408882C (zh) 具有启动功能不踩离合器调档的变速器
WO2015030490A1 (ko) 브레이크 장치 및 방법과 이를 이용하는 차량
WO2018190573A1 (en) Vehicle door handle assembly
WO2018236097A1 (en) DEVICE FOR MOVING HEADREST

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09841571

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09841571

Country of ref document: EP

Kind code of ref document: A1