WO2019194390A1 - 전기자동차용 변속 시스템 - Google Patents

전기자동차용 변속 시스템 Download PDF

Info

Publication number
WO2019194390A1
WO2019194390A1 PCT/KR2018/014951 KR2018014951W WO2019194390A1 WO 2019194390 A1 WO2019194390 A1 WO 2019194390A1 KR 2018014951 W KR2018014951 W KR 2018014951W WO 2019194390 A1 WO2019194390 A1 WO 2019194390A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
ring gear
shift
planetary gear
speed
Prior art date
Application number
PCT/KR2018/014951
Other languages
English (en)
French (fr)
Inventor
최윤용
Original Assignee
드라이브텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180038164A external-priority patent/KR20190115301A/ko
Priority claimed from KR1020180060948A external-priority patent/KR20190135667A/ko
Application filed by 드라이브텍 주식회사 filed Critical 드라이브텍 주식회사
Priority to CN201890001612.4U priority Critical patent/CN214743084U/zh
Publication of WO2019194390A1 publication Critical patent/WO2019194390A1/ko
Priority to US17/060,617 priority patent/US11674567B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/02Final output mechanisms therefor; Actuating means for the final output mechanisms
    • F16H63/08Multiple final output mechanisms being moved by a single common final actuating mechanism
    • F16H63/10Multiple final output mechanisms being moved by a single common final actuating mechanism the final actuating mechanism having a series of independent ways of movement, each way of movement being associated with only one final output mechanism
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/72Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously
    • F16H3/724Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously using external powered electric machines
    • F16H3/725Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion with a secondary drive, e.g. regulating motor, in order to vary speed continuously using external powered electric machines with means to change ratio in the mechanical gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/20Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially using gears that can be moved out of gear
    • F16H3/40Gearings for reversal only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H3/46Gearings having only two central gears, connected by orbital gears
    • F16H3/48Gearings having only two central gears, connected by orbital gears with single orbital gears or pairs of rigidly-connected orbital gears
    • F16H3/52Gearings having only two central gears, connected by orbital gears with single orbital gears or pairs of rigidly-connected orbital gears comprising orbital spur gears
    • F16H3/54Gearings having only two central gears, connected by orbital gears with single orbital gears or pairs of rigidly-connected orbital gears comprising orbital spur gears one of the central gears being internally toothed and the other externally toothed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/26Generation or transmission of movements for final actuating mechanisms
    • F16H61/28Generation or transmission of movements for final actuating mechanisms with at least one movement of the final actuating mechanism being caused by a non-mechanical force, e.g. power-assisted
    • F16H61/32Electric motors actuators or related electrical control means therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/02Final output mechanisms therefor; Actuating means for the final output mechanisms
    • F16H63/30Constructional features of the final output mechanisms
    • F16H63/302Final output mechanisms for reversing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/02Final output mechanisms therefor; Actuating means for the final output mechanisms
    • F16H63/30Constructional features of the final output mechanisms
    • F16H63/304Constructional features of the final output mechanisms the final output mechanisms comprising elements moved by electrical or magnetic force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K2001/001Arrangement or mounting of electrical propulsion units one motor mounted on a propulsion axle for rotating right and left wheels of this axle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2200/00Type of vehicle
    • B60Y2200/90Vehicles comprising electric prime movers
    • B60Y2200/91Electric vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/0021Transmissions for multiple ratios specially adapted for electric vehicles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/003Transmissions for multiple ratios characterised by the number of forward speeds
    • F16H2200/0034Transmissions for multiple ratios characterised by the number of forward speeds the gear ratios comprising two forward speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/2002Transmissions using gears with orbital motion characterised by the number of sets of orbital gears
    • F16H2200/2005Transmissions using gears with orbital motion characterised by the number of sets of orbital gears with one sets of orbital gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/203Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes
    • F16H2200/2035Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes with two engaging means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/203Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes
    • F16H2200/2066Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes using one freewheel mechanism
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/2079Transmissions using gears with orbital motion using freewheel type mechanisms, e.g. freewheel clutches
    • F16H2200/2082Transmissions using gears with orbital motion using freewheel type mechanisms, e.g. freewheel clutches one freewheel mechanisms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a shift system for an electric vehicle, and more particularly, to a shift system for an electric vehicle that can be controlled by a planetary gear system.
  • the electric vehicle refers to a vehicle driven by using an electric motor, and is understood as a vehicle having a concept of transferring electricity to a vehicle by accumulating electricity such as a hybrid vehicle, a fuel cell vehicle, an electric battery vehicle, and driving the motor through the vehicle. Can be.
  • a driving method using such a motor includes a reducer that reduces the rotational speed of the motor to match the traveling speed of the vehicle.
  • the reducer adds a gear having a separate reduction ratio formed between the input shaft side gear connected to the input shaft of the motor and the output shaft connected to the wheel so that the rotational speed of the input shaft of the motor is decelerated to the output shaft.
  • the conventional two-speed transmission for an electric vehicle adopts a gear train type reduction gear, and the driving force of the motor is generated as the first speed driving force and the second speed driving force through the speed reducer.
  • the conventional two-speed transmission for an electric vehicle implements the backward of the electric vehicle by driving the motor back.
  • the conventional two-speed transmission for an electric vehicle adopts a gear train type reducer structure.
  • the gear train method of simply adding one more gear train acts as a barrier to the production cost and optimization performance of the conventional two-speed transmission for electric vehicles.
  • the present invention for solving the problems as described above is a first embodiment, by adopting a planetary gear reducer to implement a single-speed, two-speed or reverse shift, while increasing the fuel efficiency of the electric vehicle electric vehicle In order to reduce the production cost of the vehicle, a shifting system for an electric vehicle capable of reverse control is proposed.
  • a large vehicle such as a heavy-duty vehicle, a truck or a bus, which requires a large output
  • a sports vehicle requiring a high speed and vehicle center balance and high rotational inertia may be implemented as an electric vehicle.
  • a longitudinal shift system for an electric vehicle is proposed.
  • a transmission system for an electric vehicle the power source providing power;
  • An input shaft installed to receive rotational force from the power source;
  • a ring gear carrier connected to the input shaft and rotating according to the rotation of the input shaft;
  • a ring gear connected to the ring gear carrier and rotating according to the rotation of the ring gear carrier;
  • Planetary gears installed and engaged with the inner ring gear;
  • a planetary gear carrier connected to the planetary gear and rotating according to the rotation of the planetary gear;
  • An output shaft connected to the planetary gear carrier and rotating together with the planetary gear carrier;
  • the sun gear is fixed to the rotation of the sun gear,
  • the input shaft receives the one-way rotational power of the power source is rotated in one direction,
  • the non-fixed ring gear carrier rotates in one direction, and the ring gear rotates in one direction
  • Planetary gears in which planetary gears rotate in a direction different from
  • a transmission system for an electric vehicle the power source providing power;
  • An input shaft installed to receive rotational force from the power source;
  • a sun gear rotated in axial connection with the input shaft;
  • Planetary gears installed in engagement with the outside of the sun gear;
  • a planetary gear carrier for supporting the planetary gear rotatably on an input shaft;
  • An output shaft connected to the planetary gear carrier;
  • a ring gear installed outside the planetary gear carrier and engaged with the planetary gear;
  • a rotation controller allowing only one direction rotation of the ring gear;
  • a forward shifting unit fixedly coupled to the input shaft to rotate together with the sun gear, and coupled to or released from a planetary gear carrier to adjust forward shifting;
  • a reverse shift unit rotatably coupled to the output shaft and coupled to or released from a ring gear carrier to adjust reverse shift; And controlling the forward shifting unit to be non-coupled to the planetary gear carrier when the first gear is shifted
  • the shift system for an electric vehicle by adopting a planetary gear reducer to implement forward and reverse shifts, it is possible to reduce the production cost of the electric vehicle while increasing the fuel efficiency of the electric vehicle. Will be.
  • the transmission system for the electric vehicle capable of controlling the reverse according to the second embodiment of the present invention by adopting a planetary gear reducer to implement the forward and reverse shifts, while increasing the fuel efficiency of the electric vehicle, The production cost can be reduced.
  • the longitudinal shift electric vehicle transmission system has a longitudinal drive force transmission system, FF (FRONT MOTOR FRONT DRIVE, front wheel drive), FR (FRONT MOTOR REAR DRIVE, rear wheel drive) Type, four wheel drive (FOUR WHEEL DRIVE) and the like can be used as a power transmission system of electric vehicles.
  • FF FRONT MOTOR FRONT DRIVE, front wheel drive
  • FR FRONT MOTOR REAR DRIVE, rear wheel drive
  • four wheel drive FOUR WHEEL DRIVE
  • FIG. 1 is a configuration of a transmission system for an electric vehicle according to a first embodiment of the present invention, a diagram showing a first shift operation state and a reverse shift operation state through the first shift.
  • FIG. 2 is a view showing a two-speed operation state and a reverse shift operation state through the two-speed operation of the transmission system for an electric vehicle according to the first embodiment of the present invention.
  • FIG. 3 is a configuration of a shift system for an electric vehicle capable of controlling reverse according to a second embodiment of the present invention, and is a view showing a first speed shift operation state.
  • FIG. 4 is a view showing a two-speed operation state of the transmission system for an electric vehicle according to a second embodiment of the present invention.
  • FIG. 5 is a view showing a reverse shift operation state of the shift system for an electric vehicle according to a second embodiment of the present invention.
  • FIG. 6 is a diagram illustrating a transmission system for an electric vehicle according to a third embodiment of the present invention.
  • FIG. 1 is a view showing the configuration of a transmission system for an electric vehicle according to a first embodiment of the present invention.
  • the transmission system for an electric vehicle includes a power source 100 for providing power, an input shaft 102 and an input shaft 102 installed to receive rotational force from the power source 100.
  • a ring gear carrier 104 connected to the ring gear carrier, a ring gear 106 connected to the ring gear carrier 104, a planetary gear 108 that is installed and engaged with the inside of the ring gear 106, and a planetary gear connected to the planetary gear 108 Gear gear 112, an output shaft 114 that is shaft-connected to the planetary gear carrier 112, the sun gear that is installed in engagement with the inner gear 108 to rotate and the output shaft 114 is rotatably connected to the output shaft 114 ( 110, fixed to the rotation of the sun gear 110 in combination with the sun gear 110 so that one-way rotational force of the power source 100 is the input shaft 102, ring gear carrier 104, the rotation is fixed, ring gear 106 , The planetary gear 108, the rotation is decelerated through the fixed
  • Ring gear carrier 104, ring gear 106, planetary gear 108, planetary gear carrier 112 and output shaft 114 is one body of the power source 100 transmitted to the input shaft 102 It includes a two-speed transmission unit 300 is transmitted to the output shaft 114 to the two-speed transmission in a state that the direction is not changed while the direction rotation force is not decelerated.
  • the power source 100 that provides power to the electric vehicle may be an electric motor operated by supply of electricity. However, in the first embodiment of the present invention, the power source 100 may use an electric motor and another power device at the same time.
  • the input shaft 102 is rotated by the operation of the electric motor to rotate the ring gear carrier 104.
  • the ring gear carrier 104 may be directly connected to the input shaft 102 that receives the rotational force of the power source 100 or through another link member.
  • the ring gear 106 is connected to the ring gear carrier 104 and rotates according to the rotation of the ring gear carrier 104.
  • the planetary gear 108 rotates by being engaged with the inner side of the ring gear 106.
  • the planetary gear 108 meshed with the outer side of the sun gear 110 may be spaced apart at set intervals, and may be installed in the outer side of the sun gear 110.
  • the planetary gear 108 engages with the outside of the sun gear and rotates at the same time, and rotates along the outside of the sun gear 110.
  • the rotating direction and the rotating direction are different from each other.
  • the planetary gear carrier 112 is connected to the planetary gear 108 and rotates according to the rotation of the planetary gear 108.
  • the planetary gear carrier 112 may be directly connected to the planetary gear 108 or may be connected through another link member.
  • the output shaft 114 is connected to the planetary gear carrier 112 and rotates together with the planetary gear carrier 112. In this case, the output shaft 114 may be directly connected to the planetary gear carrier 112 or may be connected through another link member.
  • the sun gear 110 is meshed with the inner gear 108 to be installed and rotated, and the output shaft 114 is rotatably connected to the output shaft 114.
  • the sun gear 110 may be connected to the output shaft 114 by a rotating means such as a bearing.
  • the first gear shift unit 200 is coupled to the sun gear 110 to fix the rotation of the sun gear 110 and to perform the first gear shift in a state in which the rotation of the sun gear 110 is fixed.
  • the input shaft 102 that receives the one-way rotational force of the power source 100 rotates in one direction and the ring gear carrier 104 whose rotation is not fixed thereto rotates in one direction.
  • the ring gear 106 connected to the ring gear carrier 104 rotates in one direction.
  • the planetary gear 108 rotates in a direction different from one direction. Due to the rotation, the rotational speed of the ring gear 106 is reduced in one direction, and the planetary gear 108 is rotated in one direction along the sun gear 110 in which the rotation is fixed. Idle.
  • the decelerating rotational force of one direction is transmitted to the planetary gear carrier 112 of which rotation is not fixed, and the output shaft 114 connected to the planetary gear carrier 112 rotates in one of the decelerated directions, thereby making one-speed shift. .
  • the first gear shift unit 200 is configured such that the first gear shifter 200 has a sleeve guide 202 fixed to the sun gear 110, a fixed sleeve guide 204 spaced apart from the sleeve guide 202, and a fixed sleeve guide ( A one-stage sleeve 206 that is slidably moved on the 204 to engage or disengage the sleeve guide 202, a one-stage shift fork 208 rotatably connected to the one-stage sleeve 206, and one stage
  • the shift fork 208 includes a first speed fork drive shaft 210 connected to the first speed fork 208 to linearly move, and a first speed actuator motor 212 for rotating the first speed fork drive shaft 210. do.
  • the first speed fork drive shaft 210 and the first speed fork 208 which are rotated by the rotational force of the first speed actuator motor 212, may be fastened by a ball screw method or a trapezoidal screw coupling method. Accordingly, the first speed change fork 208 may linearly move along the rotating first speed change fork drive shaft 210.
  • the ball screw method can be used for a shift system of an electric vehicle requiring precision shifting
  • the trapezoidal screw coupling method can be used for a shift system of an electric vehicle requiring a high power shift.
  • the one-stage shift sleeve 206 is slidably installed on the outside of each of the sleeve guide 202 and the fixed sleeve guide 204.
  • the one-stage sleeve 206 is toothed on the inner side, and each of the sleeve guide 202 and the fixed sleeve guide 204 is toothed on the outer side. Accordingly, the first speed shift sleeve 206 allows the first speed shift fork 208 to move linearly with the first speed fork drive shaft 210 so that the sleeve guide 202 and the fixed sleeve guide 204 are engaged or disengaged. .
  • the rotation of the sun gear 110 is fixed when the sleeve guide 202 and the fixed sleeve guide 204 are coupled, and the sun gear 110 can be rotated when the sleeve guide 202 and the fixed sleeve guide 204 are disengaged. .
  • the sleeve guide 202 and the fixed sleeve guide 204 is coupled by a single speed sleeve 206, a dog type or a synchro type method may be used as the coupling method.
  • the two-speed transmission unit 300 is coupled to the ring gear carrier 104 and the planetary gear carrier 112, the input shaft 102, ring gear carrier 104, ring gear 106, planetary gear 108
  • the planetary gear carrier 112 and the output shaft 114 to be one body, so that the one-way rotational force of the power source 100 transmitted to the input shaft 102 is not decelerated, the output shaft 114 is not changed as it is By transmitting to, two-speed is made.
  • the input shaft 102 is connected to the input shaft 102.
  • the rotational force in one direction of the transmitted power source 100 is transmitted to the planetary gear 108 without being decelerated.
  • the planetary gear 108 is engaged with the non-fixed sun gear 110 to rotate in one direction, and the one-way rotational force of the planetary gear 108 is not switched to the output shaft 114 through the planetary gear carrier 112. As it is delivered as it is, two shifts are achieved.
  • the two-speed transmission unit 300 is a two-stage transmission hub 302 fixed to the planetary gear carrier 112, a two-stage shifting on the two-speed hub 302 is coupled to or released from the ring gear carrier 104
  • the two-speed fork 306 rotatably connected to the single-speed sleeve 304, the two-speed sleeve 304, and the two-speed fork 306 are connected to the two-speed fork 306 for linear movement. It includes a two-speed fork drive shaft 308, a two-speed actuator motor 310 for rotating the two-speed fork drive shaft 308.
  • the two-speed fork driving shaft 308 and the two-speed fork 306, which are rotated by the rotational force of the two-speed actuator motor 310, may be fastened by a ball screw method or a trapezoidal screw coupling method. Accordingly, the two-speed fork 306 can move linearly along the rotating two-speed fork drive shaft 308.
  • the two-speed hub 302 is installed in the rear spaced apart from the ring gear carrier 104 is fixedly connected to the planetary gear carrier 112.
  • the two-speed sleeve 304 is provided to be slideable on the outside of the two-speed hub (302).
  • the two-speed sleeve 304 is toothed on the inside, the two-speed hub 302 and the ring gear carrier 104 is toothed on the outside, respectively. Accordingly, the two-stage shift sleeve 304 moves the two-speed fork 306 linearly to the two-speed fork drive shaft 308, thereby allowing the two-speed hub and the ring gear carrier 104 to be engaged or disengaged.
  • the two-speed hub 302 and the ring gear carrier 104 is coupled by a two-speed sleeve 304, a dog type or a synchro type method may be used as the coupling method.
  • the shift system for an electric vehicle may further include a shift control unit 500.
  • the shift control unit 500 controls the first gear shift unit 200 when the first gear is shifted so that the sun gear 110 and the first gear shift unit 200 are coupled to fix the rotation of the sun gear 110 while simultaneously shifting the second gear.
  • the unit 300 is controlled so that the ring gear carrier 104 and the planetary gear carrier 112 are uncoupled.
  • the shift control unit 500 controls the two-speed shift unit 300 to couple the ring gear carrier 104 and the planetary gear carrier 112 during the two-speed shift, the input shaft 102, the ring gear carrier 104, The ring gear 106, the planetary gear 108, the planetary gear carrier 112 and the output shaft 114 to be a single body and controls the first gear 200, the sun gear 110 and the first gear ( The non-coupling of the 200 makes the rotation of the sun gear 110 unfixed.
  • the shift control unit 500 controls the first gear shift unit 200 in a reverse shift, so that the sun gear 110 and the first gear shift unit 200 are coupled to each other to fix the rotation of the sun gear 110.
  • the power source 100 is controlled so that the rotational force in the other direction of the power source 100 is input shaft. And to 102.
  • the shift control unit 500 controls the two-speed shift unit 300 to couple the ring gear carrier 104 and the planetary gear carrier 112 to the input shaft 102 and the ring gear carrier.
  • the 104, the ring gear 106, the planetary gear 108, the planetary gear carrier 112, and the output shaft 114 become one body, and at the same time, the first gear 200 is controlled to control the sun gear 110.
  • the first gear shift unit 200 are coupled to each other, thereby controlling the power source 100 to transmit rotational force in the other direction of the power source 100 to the input shaft 102.
  • the shift system for an electric vehicle uses a two-stage actuator motor of a one-speed actuator motor 212 and a two-speed actuator motor 310 to perform one-stage, two-stage or reverse shift. In order to achieve the linear movement of the first shift sleeve 206 and the second shift sleeve 304.
  • one actuator motor includes two drive shafts, that is, a first speed change fork drive shaft 210 and a two speed change fork drive shaft 308, wherein the one actuator motor has a single speed change according to the control of the shift control part 500.
  • the first-speed fork 208 on the first-speed fork drive shaft 210 and the second-speed fork 306 on the second-speed fork drive shaft 308 are linearly moved.
  • the shift control unit 500 controls the first gear shift unit 200 when the first gear is shifted, thereby fixing the rotation of the sun gear 110 by combining the first gear shift unit 200 and the sun gear 110.
  • the two-speed transmission unit 300 is controlled to release the coupling of the ring gear carrier 104 and the planetary gear carrier 112 to allow the ring gear carrier 104 and the planetary gear carrier 112 to rotate.
  • the 1st speed actuator motor 212 rotates the 1st speed change fork drive shaft 210 so that the 1st speed change fork 208 moves linearly in the 1st speed change fork drive shaft 210.
  • the first speed shift sleeve 206 rotatably connected to the first speed change fork 208 is moved from the fixed sleeve guide 204 to the sleeve guide 202 so that the fixed sleeve guide 204 and the sleeve guide 202 are moved.
  • the sun gear 110 connected to the sleeve guide 202 is fixed to the fixed sleeve guide 204, so that the rotation of the sun gear 110 is fixed.
  • the two-speed actuator motor 310 is not driven so that the two-speed fork driving shaft 308 does not rotate, so that the two-speed fork 306 is the two-speed fork driving shaft ( At 308, no linear movement is made.
  • the two-speed sleeve 304 rotatably connected to the two-speed fork does not slide in the two-speed hub 302.
  • the planetary gear carrier 112 and the ring gear carrier 104 connected to the two-speed hub 302 are not coupled. Accordingly, the rotation of the ring gear carrier 104 and the planetary gear carrier 112 is not fixed.
  • the shift control unit 500 controls the power source 100 to rotate in one direction (A).
  • the one-way rotational force of the power source 100 is transmitted to the input shaft 102 in a state in which the rotation of the sun gear 110 is fixed so that the input shaft 102 rotates in one direction (A).
  • the ring gear carrier 104 whose rotation is unfixed rotates in one direction A, thereby causing the ring gear 106 connected to the ring gear carrier 104 to rotate in one direction A.
  • FIG. As the ring gear 106 rotates in one direction A, the planetary gear 108 rotates in a direction B different from the one direction A.
  • the rotational force of the reduced one direction (A) is transmitted to the planetary gear carrier 112 of which rotation is unfixed, and the output shaft 114 connected to the planetary gear carrier 112 rotates in the reduced one direction (A) 1.
  • the shift is made.
  • the shift control unit 500 controls the two-speed shift unit 300 to couple the ring gear carrier 104 and the planetary gear carrier 112 to the input shaft 102 and the ring gear during the two-speed shift.
  • the carrier 104, the ring gear 106, the planetary gear 108, the planetary gear carrier 112 and the output shaft 114 to be a single body, and at the same time control the first gear shifting section 200 to shift the gear
  • the part 200 and the sun gear 110 are not coupled so that the rotation of the sun gear 110 is not fixed.
  • the two-speed actuator motor 310 rotates the two-speed fork driving shaft 308 so that the two-speed fork 306 moves linearly from the two-speed fork driving shaft 308.
  • the two-speed sleeve 304 rotatably connected to the two-speed fork 306 is moved from the two-speed hub 302 to the ring gear carrier 104 to the ring gear carrier 104 and the two-speed hub.
  • the planetary gear carrier 112 fixed to 302 is coupled.
  • the input shaft 102, the ring gear carrier 104, the ring gear 106, the planetary gear 108, the planetary gear carrier 112, and the output shaft 114 become one body.
  • the single speed actuator motor 212 is not driven so that the first speed fork driving shaft 210 does not rotate, and the first speed fork 208 is the first speed fork driving shaft ( Do not move linearly at 210).
  • the first speed change sleeve 206 rotatably connected to the first speed change fork does not slide in the fixed sleeve guide 204.
  • the fixed sleeve guide 204 and the sun gear 110 connected to the sleeve guide 202 do not engage.
  • the rotation of the sun gear 110 is not fixed.
  • the shift control unit 500 controls the power source 100 to rotate in one direction (A).
  • the input shaft 102, the ring gear carrier 104, the ring gear 106, the planetary gear 108, the planetary gear carrier 112, and the output shaft 114 form one body, they are transmitted to the input shaft 102.
  • the one-way rotational force of the power source 100 is transmitted to the output shaft 114 as it is, without changing the rotational direction without deceleration, thereby making two-speed shifts.
  • the input shaft 102, the ring gear carrier 104, the ring gear 106, the planetary gear 108, the planetary gear carrier 112 and the output shaft 114 become one body, they are transmitted to the input shaft 102.
  • the rotational force in one direction A of the power source 100 is transmitted to the planetary gear 108 without being decelerated.
  • the planetary gear 108 is engaged with the non-fixed sun gear 110 to rotate in one direction A, and the one-way rotational force of the planetary gear 108 is diverted to the output shaft 114 through the planetary gear carrier 112. As it is, it is delivered as it is, two-speed is achieved.
  • the rotational force of the power source 100 is transmitted to the input shaft 102 in a direction B different from the one direction A, which is the rotational force direction of the power source 100, during the first speed shift or the second speed shift for the electric vehicle forward. Pass it.
  • the reverse shift may be performed through the first speed shift or the reverse shift through the second speed shift.
  • the shift control unit 500 controls the first gear shift unit 200 when the reverse shift is performed through the first gear shift, thereby combining the first gear shift unit 200 and the sun gear 110 to fix the rotation of the sun gear 110 and simultaneously.
  • the two-speed transmission unit 300 is controlled to release the coupling of the ring gear carrier 104 and the planetary gear carrier 112 to allow the ring gear carrier 104 and the planetary gear carrier 112 to rotate.
  • the 1st speed actuator motor 212 rotates the 1st speed change fork drive shaft 210 so that the 1st speed change fork 208 moves linearly in the 1st speed change fork drive shaft 210.
  • the first speed shift sleeve 206 rotatably connected to the first speed change fork 208 is moved from the fixed sleeve guide 204 to the sleeve guide 202 so that the buckle sleeve guide and the sleeve guide 202 are coupled to each other. .
  • the sun gear 110 connected to the sleeve guide 202 is fixed to the fixed sleeve guide 204, so that the rotation of the sun gear 110 is fixed.
  • the two-speed actuator motor 310 is not driven so that the two-speed fork driving shaft 308 does not rotate, so that the two-speed fork 306 is the two-speed fork driving shaft ( At 308, no linear movement is made.
  • the two-speed sleeve 304 rotatably connected to the two-speed fork 306 does not slide in the two-speed hub 302.
  • the planetary gear carrier 112 and the ring gear carrier 104 connected to the two-speed hub 302 are not coupled. Accordingly, the rotation of the ring gear carrier 104 and the planetary gear carrier 112 is not fixed.
  • the shift control unit 500 controls the power source 100 to rotate in another direction B, which is the one direction A. Accordingly, the rotation direction of the power source 100 is transmitted to the input shaft 102 while the rotation of the sun gear 110 is fixed so that the input shaft 102 rotates in the other direction. As a result, the ring gear carrier 104 whose rotation is not fixed rotates in the other direction B, which causes the ring gear 106 connected to the ring gear carrier 104 to rotate in the other direction B. As the ring gear 106 rotates in the other direction B, the planetary gear 108 rotates in one direction A instead of the other direction B. As shown in FIG.
  • the shift control unit 500 controls the two-speed shift unit 300 when the reverse shift is performed through two-speed shifting to couple the ring gear carrier 104 and the planetary gear carrier 112 to the input shaft 102 and the ring gear carrier ( 104, the ring gear 106, the planetary gear 108, the planetary gear carrier 112 and the output shaft 114 to be a single body, and at the same time to control the first gear (200), the first gear ( 200 and the sun gear 110 is not coupled so that the rotation of the sun gear 110 is not fixed.
  • the two-speed actuator motor 310 rotates the two-speed fork driving shaft 308 so that the two-speed fork 306 moves linearly from the two-speed fork driving shaft 308.
  • the two-speed sleeve 304 rotatably connected to the two-speed fork 306 is moved from the two-speed hub 302 to the ring gear carrier 104 to the ring gear carrier 104 and the two-speed hub.
  • the planetary gear carrier 112 fixed to 302 is coupled.
  • the input shaft 102, the ring gear carrier 104, the ring gear 106, the planetary gear 108, the planetary gear carrier 112, and the output shaft 114 become one body.
  • the single speed actuator motor 212 is not driven so that the first speed fork driving shaft 210 does not rotate, and the first speed fork 208 is the first speed fork driving shaft ( Do not move linearly at 210).
  • the first speed change sleeve 206 rotatably connected to the first speed change fork does not slide in the fixed sleeve guide 204.
  • the fixed sleeve guide 204 and the sun gear 110 connected to the sleeve guide 202 do not engage.
  • the rotation of the sun gear 110 is not fixed.
  • the shift control unit 500 controls the power source 100 to rotate in a direction B other than the one direction A.
  • the input shaft 102, the ring gear carrier 104, the ring gear 106, the planetary gear 108, the planetary gear carrier 112, and the output shaft 114 form one body, they are transmitted to the input shaft 102.
  • the other direction rotational force of the power source 100 is transmitted to the output shaft 114 as it is, without changing the rotation direction without deceleration, thereby making the reverse shift.
  • One direction A and the other direction B illustrated in FIGS. 1 and 2 represent opposite directions to each other, but are not limited thereto. That is, assuming that one direction A shown in FIGS. 1 and 2 is clockwise, the other direction B becomes counterclockwise, and assuming that one direction A is counterclockwise, the other direction B is different. Becomes clockwise.
  • FIG. 3 is a view showing the configuration of a transmission system capable of reverse control according to a second embodiment of the present invention.
  • the transmission system for an electric vehicle includes a power source 100 for providing power, an input shaft 102 installed to receive rotational force from the power source 100, and an input shaft 102.
  • the planetary gear carrier 112, the planetary gear 108, the planetary gear 108 is installed in engagement with the outer side of the sun gear 110, the planetary gear 108 is rotatably supported on the input shaft 102,
  • the output shaft 114 connected to the planetary gear carrier 112, the ring gear 106 and the ring gear 106 which are installed on the outer side of the planetary gear carrier 112 and meshed with the planetary gear 108 are connected at the output shaft 114.
  • Ring gear carrier 104 rotatably supporting, one way clutch 140 allowing only one direction rotation of ring gear 106, fixedly coupled to input shaft 102 together with sun gear 110
  • Forward shifting unit that rotates and is coupled to or released from the planetary gear carrier 112 to adjust the forward shift ( 122, a reverse shift unit 130 rotatably coupled to the output shaft 114 and coupled to or released from the ring gear carrier 104 to adjust the reverse shift.
  • the forward shifting unit 122 and the planetary gear carrier 112 is in an uncoupled state, and the reverse transmission unit 130 and the ring gear carrier 104 are in an uncoupled state, the one-way clutch 140 operates in an operating state.
  • the rotation of the ring gear 106 is fixed by preventing the rotation of the ring gear 106 in one direction and another direction.
  • the one-way clutch 140 operates in an inoperative state. Allow one-way rotation of the ring gear 106.
  • the one-way clutch 140 operates in an inoperative state so that the ring Allow one direction rotation of the gear 106.
  • the rotation of the ring gear 106 is fixed by the combination of the reverse shift unit 130 and the ring gear carrier 104.
  • the power source 100 for providing power to the electric vehicle may be an electric motor operated by supply of electricity. However, in the second embodiment of the present invention, the power source 100 may use an electric motor and another power device at the same time.
  • the input shaft 102 is rotated by the operation of the electric motor to rotate the sun gear 110.
  • the sun gear 110 may be directly connected to the input shaft 102 that receives the rotational force of the power source 100, or may be connected through another link member.
  • the planetary gear 108 meshed with the outer side of the sun gear 110 may be spaced apart at set intervals, and may be installed in the outer side of the sun gear 110.
  • the planetary gear 108 engages with the outer side of the sun gear 110 and rotates at the same time as it rotates along the outer side of the sun gear 110.
  • the planetary gear carrier 112 fixed to the planetary gear 108 and rotatably connected to the input shaft 102 is rotated by the rotation of the planetary gear 108.
  • the planetary gear carrier 112 is rotatably connected to the input shaft 102, and the output shaft 114 is fixedly connected to the rotation center. Accordingly, the output shaft 114 fixedly connected to the planetary gear carrier 112 rotates simultaneously with the rotation of the planetary gear carrier 112.
  • the planetary gear carrier 112 may be connected to the input shaft 102 by a rotating means such as a bearing.
  • the ring gear 106 is installed outside the planetary gear carrier 112, and teeth are formed along the inner side of the ring gear 106.
  • the planetary gear 108 is engaged with the ring gear 106. As the sun gear 110 rotates, the planetary gear 108 rotates and moves along the ring gear 106.
  • the ring gear 106 is connected with the one-way clutch 140 to allow only one direction rotation of the ring gear 106.
  • the one-way clutch 140 operates when the forward shifting portion 122 is uncoupled to the planetary gear carrier 112 and the reverse shifting portion 130 is not coupled to the ring gear carrier 104 to perform the first gear shift. It acts in a state to allow only one direction rotation of the ring gear 106, thereby preventing the rotation of the ring gear 106 in the other direction to fix the ring gear 106.
  • the one-way clutch 140 operates in an operating state to counterclockwise the rotation of the ring gear 106. Allows rotation, but prevents clockwise rotation of ring gear 106 to secure ring gear 106.
  • the one-way clutch 140 illustrated in FIG. 3 is indicated by a black triangle.
  • the one-way clutch 140 is coupled to the forward gear 122 and the planetary gear carrier 112 and at the same time the reverse gear 130 is not coupled to the ring gear carrier 104 and two-speed When the forward shifting portion 122 is uncoupled to the planetary gear carrier 112 and the reverse shifting portion 130 is coupled to the ring gear carrier 104 to perform reverse shifting, the ring gear ( Allow one-way rotation of 106).
  • the one-way clutch 140 illustrated in FIGS. 4 and 5 is indicated by a white triangle.
  • the one-way clutch 140 may be a sprag clutch having a plurality of cams that allow one-way rotation of the ring gear 106 between the inner and outer rings.
  • the one-way clutch 140 has a structure that prevents the clockwise rotation of the ring gear 106 between the inner ring and the outer ring, that is, the structure that allows the counterclockwise rotation of the ring gear 106. It may be a sprag clutch with multiple cams.
  • the forward shifting unit 122 is slidably moved from the forward shift hub 116 and the forward shift hub 116 fixedly connected to the input shaft 102 to receive the rotational force of the power source 100, thereby being coupled to the planetary gear carrier 112 or the like.
  • a forward shift sleeve 118, a forward shift fork 120 rotatably connected to the forward shift sleeve 118, and a forward shift fork 120 connected to the forward shift fork 120 to linearly move are released.
  • the forward shifting fork driving shaft 134 and the forward shifting fork 120 that are rotated by the rotational force of the forward shifting actuator motor 132 may be fastened by a ball screw method or a trapezoidal screw coupling method. Accordingly, the forward shift fork 120 may move linearly along the forward shift fork drive shaft 134.
  • the ball screw method can be used for a shift system of an electric vehicle requiring precision shifting
  • the trapezoidal screw coupling method can be used for a shift system of an electric vehicle requiring a high power shift.
  • the forward shifting hub 116 is installed at the front spaced apart from the planetary gear carrier 112 and fixedly connected to the input shaft 102, and rotates together with the sun gear 110 by the rotation of the input shaft 102.
  • the forward shift sleeve 118 is installed to be slidably movable on the outside of the forward shift hub 116.
  • the forward shift sleeve 118 is toothed on the inside, the forward shift hub 116 and the planetary gear carrier 112 is toothed on the outside. Accordingly, the forward shift sleeve 118 linearly moves the forward shift fork 120 to the forward shift fork drive shaft 134 such that the forward shift hub 116 and the planetary gear carrier 112 are engaged or released.
  • the forward shifting hub 116 and the planetary gear carrier 112 is coupled by the forward shifting sleeve 118, a dog type or a synchro type can be used as the coupling method.
  • the reverse gear 130 is slidably moved from the reverse gear hub 124 and the reverse gear hub 124 which are fixedly connected to the planetary gear carrier 112 and rotatably connected to the rotating output shaft 114.
  • a reverse shift sleeve 126 coupled to or disengaged from the 104, a reverse shift fork 128 rotatably connected to the reverse shift sleeve 126, and a reverse shift fork 128 may be linearly moved.
  • a reverse shift actuator motor 138 for rotating the reverse shift fork drive shaft 136 and the reverse shift fork drive shaft 136.
  • the reverse shift fork drive shaft 136 and the reverse shift fork 128 that are rotated by the rotational force of the reverse shift actuator motor 138 may be fastened by a ball screw method or a trapezoidal screw coupling method. Accordingly, the reverse shift fork 128 can linearly move along the rotating reverse shift fork drive shaft 136.
  • the ball screw method can be used for the transmission system of the electric vehicle requiring a precise shift
  • the trapezoidal screw coupling method can be used for the transmission system of the electric vehicle requiring a high power shift.
  • the reverse shift hub 124 is installed at a rear side separated from the ring gear carrier 104 and rotatably connected to the output shaft 114. At this time, the reverse shift hub 124 may be connected to the output shaft 114 by a rotating means such as a bearing.
  • the reverse shift sleeve 126 is installed to be slidably movable on the outside of the reverse shift hub 124.
  • the reverse shift sleeve 126 is toothed on the inside, the reverse shift hub 124 and the ring gear carrier 104 is toothed on the outside. Accordingly, the reverse shift sleeve 126 linearly moves the reverse shift fork 128 to the reverse shift fork drive shaft 136, so that the reverse shift hub 124 and the ring gear carrier 104 are engaged or disengaged.
  • the reverse shift hub 124 and the ring gear carrier 104 is coupled by the reverse shift sleeve 126, the dog type or synchro type can be used as the coupling method.
  • the reverse shift sleeve 126 are implemented.
  • one actuator motor is used to straighten the forward shift sleeve 118 and the reverse shift sleeve 126.
  • the move can be implemented.
  • one actuator motor has two drive shafts, that is, a forward shift fork drive shaft 134 and a reverse shift fork drive shaft 136, and the single actuator motor is shifted forward, that is, by one speed, under the control of the shift control unit 500.
  • the forward shift fork 120 on the forward shift fork drive shaft 134 and the reverse shift fork 128 on the reverse shift fork drive shaft 136 are linearly moved at the time of the second shift and the reverse shift.
  • the linear shift of the forward shift sleeve 118 connected to the forward shift fork 120 is performed and the linear shift of the reverse shift sleeve 126 connected to the reverse shift fork 128 is performed to shift forward (single speed or two speeds). Shift) or reverse shift.
  • the shift system for an electric vehicle may further include a shift control unit 500.
  • the shift control unit 500 controls the forward shift unit 122 to be non-coupled to the planetary gear carrier 112 and the reverse shift unit 130 to be non-coupled to the ring gear carrier 104 when the first gear shift is performed.
  • the shift control unit 500 maintains a neutral state in which the forward shift sleeve 118 of the forward shift unit 122 is not coupled to the planetary gear carrier 112 during the first shift, and the reverse shift unit 130.
  • the reverse shift sleeve 126 of the control to maintain a neutral state that is not coupled to the ring gear carrier (104).
  • the one-way clutch 140 may be in an operating state (one-way clutch 140 is indicated by a black triangle), as shown in FIG.
  • the shift control unit 500 controls the forward shift unit 122 to be coupled to the planetary gear carrier 112 and the reverse shift unit 130 to be uncoupled to the ring gear carrier during two shifts. .
  • the shift control unit 500 allows the forward shifting sleeve 118 of the forward shifting unit 122 to be coupled to the planetary gear carrier 112 and the reverse shifting sleeve 126 of the reverse shifting unit 130 during two shifts. Control to maintain a neutral state that is uncoupled to the ring gear carrier 104.
  • the one-way clutch 140 may be in an inoperative state (one-way clutch 140 is indicated by a white triangle), as shown in FIG.
  • the shift control unit 500 controls the forward shift unit 122 to be uncoupled to the planetary gear carrier 112 and the reverse shift unit 130 to be coupled to the ring gear carrier 104 when the reverse shift is performed. .
  • the shift control unit 500 maintains a neutral state in which the forward shift sleeve 118 of the forward shift unit 122 is not coupled to the planetary gear carrier 112 when the shift is reversed, and the reverse shift unit 130 Control the reverse shift sleeve of the coupling to the ring gear carrier (104).
  • the one-way clutch 140 may be in an inoperative state (one-way clutch 140 is indicated by a white triangle), as shown in FIG.
  • the shift control unit 500 controls the forward gear 122 to be uncoupled to the planetary gear carrier 112 when the first gear is shifted, and the reverse gear 130 is connected to the ring gear carrier 104. Control to be uncoupled.
  • the shift control unit 500 maintains a neutral state in which the forward shift sleeve 118 of the forward shift unit 122 is not coupled to the planetary gear carrier 112 during the first shift, and the reverse shift unit 130.
  • the reverse shift sleeve of the control to maintain a neutral state that is not coupled to the ring gear carrier (104).
  • the sun gear 110 rotates clockwise along with the input shaft 102.
  • the planetary gear 108 meshed with the sun gear 110 rotates counterclockwise.
  • the ring gear 106 engaged with the planetary gear 108 attempts to rotate clockwise with respect to the counterclockwise rotation of the planetary gear 108.
  • the one-way clutch 140 having a structure that prevents the rotation of the ring gear 106 in the clockwise direction, that is, a structure that allows the rotation of the ring gear 106 in the counterclockwise direction, acts as an operating state and the ring Interfering with the clockwise rotation of the gear 106 prevents the rotation of the ring gear 106.
  • the revolution speed of the planetary gear 108 is decelerated due to the rotation of the planetary gear 108 in the counterclockwise direction. It is slower than the rotation speed of the sun gear (110).
  • the planetary gear carrier 112 fixed to the planetary gear 108 rotates clockwise at the same speed as the revolution speed of the reduced planetary gear 108 and is slower than the rotational speed of the sun gear 110.
  • the shift control unit 500 controls the forward shift unit 122 to be coupled to the planetary gear carrier 112 when the second gear is shifted, and the reverse shift unit 130 is connected to the ring gear carrier 104. Control to be uncoupled.
  • the shift control unit 500 allows the forward shifting sleeve 118 of the forward shifting unit 122 to be coupled to the planetary gear carrier 112 and the reverse shifting sleeve 126 of the reverse shifting unit 130 during two shifts. Control to maintain a neutral state that is uncoupled to the ring gear carrier 104.
  • the forward shift sleeve 118 is moved to combine the forward shift hub 116 and the planetary gear carrier 112, thereby the input shaft 102, sun gear 110, forward shift hub ( 116, the forward shift sleeve 118, the planetary gear carrier 112 and the planetary gear 108 is a body.
  • the ring gear 106 engaged with the planetary gear 108 that rotates clockwise and coupled to the one-way clutch 140 to allow counterclockwise rotation rotates counterclockwise. Accordingly, the rotation speed of the output shaft 114 fixedly connected to the planetary gear carrier 112 that rotates clockwise with the planetary gear 108 is not decelerated, and two-speed shifting of the electric vehicle is achieved.
  • the shift control unit 500 controls the forward shift unit 122 to be uncoupled to the planetary gear carrier 112 during the reverse shift, and the reverse shift unit 130 is connected to the ring gear carrier 104. Control to be combined.
  • the shift control unit 500 maintains a neutral state in which the forward shift sleeve 118 of the forward shift unit 122 is not coupled to the planetary gear carrier 112 when the shift is reversed, and the reverse shift unit 130
  • the reverse shift sleeve 126 is controlled to be coupled to the ring gear carrier 104.
  • the sun gear 110 rotates counterclockwise together with the input shaft 102.
  • the planetary gear 108 engaged with the sun gear 110 rotates clockwise.
  • the ring gear 106 engaged with the planetary gear 108 attempts to rotate counterclockwise with respect to the clockwise rotation of the planetary gear 108.
  • the one-way clutch 140 operates in a non-operating state allowing the counterclockwise direction of the ring gear 106, but the ring gear 106 is fixed by engagement of the reverse shift sleeve and the ring gear carrier 104. . This prevents counterclockwise rotation of the ring gear 106.
  • the revolution speed of the planetary gear 108 is decelerated due to the clockwise rotation of the planetary gear 108 and the sun gear is rotated. It is slower than the rotation speed of 110.
  • the planetary gear carrier 112 fixed to the planetary gear 108 rotates counterclockwise at the same speed as the rotational speed of the reduced planetary gear 108 and is slower than the rotational speed of the sun gear 110.
  • the rotation speed of the output shaft 114 fixedly connected to the rotation center of the planetary gear carrier 112 is clockwise of the planet gear 108. Due to the rotation, the decelerating speed of the planetary gear 108 is the same as, and lower than the rotational speed of the sun gear 110, the rear shift of the electric vehicle is to be made.
  • the rotational restraint of the ring gear 106 has been described as an example of being restrained by the one-way clutch 140.
  • the rotation restraint of the ring gear 106 may be made by a rotation control unit including a brake system (not shown) or an actuator. That is, the brake system or the actuator may allow only one direction rotation of the ring gear 106, such as the one-way clutch 140, but the control of the ring gear 106 under the control of the shift control unit 500 shown in FIGS. 3 to 5. Only one direction rotation can be allowed.
  • the one-way clutch 140 may be replaced with a brake system or an actuator to control the rotation of the ring gear 106 at the first shift, the second shift, and the reverse shift. .
  • the shift control unit 500 controls the forward shift unit 122 to be uncoupled to the planetary gear carrier 112 and the reverse shift unit 130 to be uncoupled to the ring gear carrier 104 and rotates.
  • the control unit controls the ring gear 106 to rotate in a direction different from the one direction of the ring gear 106 to prevent the rotation of the ring gear 106 from interfering with the rotation of the ring gear 106.
  • the rotation can be fixed.
  • the shift control unit 500 controls the forward shift unit 122 to be coupled to the planetary gear carrier 112, and controls the reverse shift unit 130 to be non-coupled to the ring gear carrier 104 and the rotation control unit. By controlling the control unit so that the rotation control unit does not contact the ring gear 106, the rotation of the ring gear 106 to rotate in one direction of the ring gear 106 may be allowed.
  • the shift control unit 500 controls the forward shift unit 122 to be uncoupled to the planetary gear carrier 112 and controls the reverse shift unit 130 to be coupled to the ring gear carrier 104 and controls the rotation control unit.
  • the rotation controller does not contact the ring gear 106
  • the rotation of the ring gear 106 to rotate in one direction of the ring gear 106 may be allowed.
  • the rotation of the ring gear 106 may be fixed by the combination of the reverse shift unit 130 and the ring gear carrier 104.
  • the driving force transmission method of the electric vehicle is divided into transverse type and longitudinal type.
  • the electric vehicle of the transverse drive force transmission method has a structure in which an input shaft 102 that receives power from a driving source (motor) and an output shaft 114 that is rotated by receiving power of a driving source are arranged in parallel so as to be connected to the input shaft 102.
  • the shift system for an electric vehicle according to the first and second embodiments of the present invention is a lateral drive force transmission method, and may be applied as a longitudinal drive force transmission method in some embodiments.
  • the shift system for an electric vehicle according to the third embodiment of the present invention is an exemplary embodiment in which the shift system for the electric vehicle according to the first and second embodiments of the present invention is applied by a longitudinal driving power transmission method, and various embodiments.
  • As a transmission system for an electric vehicle according to the first and second embodiments of the present invention can be applied in a longitudinal drive power transmission method.
  • the transmission system for an electric vehicle according to the third embodiment of the present invention further includes a transmission 10 installed between the power source 100 and the input shaft 102 to shift the rotational speed of the power source 100. It may include.
  • any one of the transmission system for an electric vehicle according to the first embodiment and the second embodiment of the present invention can be applied as the transmission 10, through which the first embodiment of the present invention of the transverse drive force transmission system and The transmission system for an electric vehicle according to the second embodiment may be converted into a longitudinal driving force transmission method. Transmission and reversal of the transmission system for an electric vehicle according to the third embodiment of the present invention may be possible through a first speed shift, a second speed shift, and a reverse shift of the transmission 10.
  • the input shaft 102 installed to receive rotational force from the power source 100 is disposed perpendicular to the input shaft 102 and is connected to the differential device 70.
  • the driven gear 52 may be a bevel gear, a spiral gear, or a hypoid gear.
  • the transmission system for an electric vehicle includes an input shaft 102 connected to an electric motor M, which is a power source 100, and is disposed perpendicular to the input shaft 102.
  • Is connected to the differential device 70 has a structure including the output shaft (114a, 114b) for outputting the power of the electric motor (M) to the drive wheels (80, 82) through a gear shift.
  • the power of the power source 100 input through the input shaft 102 is output shaft 114a disposed perpendicular to the input shaft 102 through a gear shifting process. And 114b) to rotate the driving wheels 80 and 82.
  • the transmission system for an electric vehicle has a longitudinal driving force transmission system, and has electric power of FF (FRONT MOTOR FRONT DRIVE) and FR (FRONT MOTOR REAR DRIVE). It can be used as a power transmission system of an automobile. In addition, it can be used as a power transmission system of an electric vehicle of a four wheel drive.
  • FF FRONT MOTOR FRONT DRIVE
  • FR FRONT MOTOR REAR DRIVE
  • the transmission system for an electric vehicle according to the third embodiment of the present invention can be used for a large vehicle such as a heavy-duty vehicle, a bus, a truck, etc., which require a large output.
  • the transmission system for electric vehicles according to the third embodiment of the present invention has a longitudinal driving force transmission system, a large speed vehicle, such as a heavy equipment vehicle, a truck or a bus, which requires a large output, and a high speed and vehicle center balance And a power transmission system suitable for a sports vehicle requiring high rotational inertia.
  • the transmission system for an electric vehicle may further include a parking brake device in order to prevent a risk of collision due to rolling while improving convenience of a driver when stopping or starting. Can be.
  • the parking brake device may be implemented as an electromagnetic brake or a mechanical parking brake that restrains or releases the rotation of the input shaft 102.
  • the electromagnetic brake may be installed on the input shaft 102 between the power source 100 and the transmission 10.
  • the mechanical parking brake may be installed at the other end of the input shaft 102 opposite to one end of the input shaft 102 on which the power source 100 is installed.
  • synchronizer hub 64 synchronizer sleeve
  • sleeve guide 204 fixed sleeve guide

Abstract

본 발명은 유성기어 방식의 감속기를 채택하여서 1단 변속, 2단 변속 또는 후진 변속을 구현함으로써, 전기자동차의 연비효율을 증가하면서도 전기자동차의 생산비용을 절감할 수 있도록 하고, 또한, 유성기어 방식의 감속기를 채택하여서 전진 및 후진 변속을 구현함으로써, 전기자동차의 연비효율을 증가하면서도 전기자동차의 생산비용을 절감할 수 있도록 하는 전기자동차용 변속 시스템에 관한 것이다.

Description

전기자동차용 변속 시스템
본 발명은 전기자동차용 변속 시스템에 관한 것으로, 더욱 자세하게는 유성기어 방식으로 제어가 가능한 전기자동차용 변속 시스템에 관한 것이다.
세계적인 고유가 및 규제로 연비향상 및 친환경은 차량개발의 핵심 항목이 되었다. 이에 선진 자동차 메이커들은 연비향상 및 친환경 위한 기술개발에 총력을 기울이고 있다.
이 중 대표적인 예로 전기자동차를 들 수 있다. 이하에서 전기자동차란, 전기모터를 이용하여 구동되는 자동차를 나타내는 것으로서, 하이브리드 자동차, 연료전지 자동차, 전기배터리 자동차 등 전기를 축적하고 이를 통해 모터를 구동하여 차량에 구동력을 전달하는 개념의 차량으로 이해될 수 있다.
일반적으로 이러한 모터를 이용한 구동방식은 모터의 회전속도를 차량의 주행속도에 맞도록 감속시켜주는 감속기를 구비한다. 감속기는 모터의 입력축에 연결된 입력축 측 기어와 차륜과 연결되는 출력축 사이에 별도의 감속비가 형성 되는 기어를 더 둠으로써 모터의 입력축의 회전속도가 출력축으로 감속된 상태로 출력되도록 한다.
즉 종래 전기자동차용 2단 변속기는 기어열 방식의 감속기를 채택하고 있으며, 모터의 구동력을 이러한 감속기를 통해서 1단 변속 구동력 및 2단 변속 구동력으로 발생한다.
한편, 종래 전기자동차용 2단 변속기는 모터를 역구동함으로써 전기 자동차의 후진을 구현하고 있다.
하지만, 종래 전기자동차용 2단 변속기는 기어열 방식의 감속기 구조를 채택하고 있다.
즉 기어열 방식의 감속기 구조를 채택하고 있으므로, 종래 전기자동차용 2단 변속기의 크기가 커지게 되고 무게가 증가하게 된다.
이로 인하여 기어열 방식의 감속기 구조를 채택한 전기자동차의 연비효율이 저하된다는 문제가 발생한다.
이러한 연비효율 저하에 더하여, 단순히 기어열을 하나 더 추가하는 기어열 방식을 채택하고 있어서 종래 전기자동차용 2단 변속기의 생산비용측면이나 최적화 성능설계 등에 장애요인으로 작용한다.
상술한 바와 같은 문제점을 해결하기 위한 본 발명은 제1실시예로, 유성기어 방식의 감속기를 채택하여서 1단 변속, 2단 변속 또는 후진 변속을 구현함으로써, 전기자동차의 연비효율을 증가하면서도 전기자동차의 생산비용을 절감할 수 있도록 한, 후진 제어가 가능한 전기자동차용 변속 시스템이 제안된다.
또한, 본 발명은 제2실시예로, 유성기어 방식의 감속기를 채택하여서 전진 및 후진 변속을 구현함으로써, 전기자동차의 연비효율을 증가하면서도 전기자동차의 생산비용을 절감할 수 있도록 한, 후진 제어가 가능한 전기자동차용 변속 시스템이 제안된다.
또한, 본 발명은 제3실시예로, 큰 출력이 필요한 중장비 차량, 화물차 또는 버스 등과 같은 대형차량과, 빠른 속도와 차량 중심 균형 및 높은 회전 관성을 요구하는 스포츠 차량 등을 전기 자동차로 구현 가능하도록 한 종치형의 전기자동차용 변속 시스템이 제안된다.
본 발명이 해결하고자 하는 과제들은 이상에서 언급된 과제로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
상술한 과제를 해결하기 위한 본 발명의 일 실시예에 따른 전기자동차용 변속 시스템은, 동력을 제공하는 동력원; 상기 동력원으로부터 회전력을 전달받도록 설치된 입력축; 상기 입력축에 연결되어 입력축의 회전에 따라 회전하는 링기어 캐리어; 상기 링기어 캐리어에 연결되어 링기어 캐리어의 회전에 따라 회전하는 링기어; 상기 링기어의 내측에 맞물려 설치되어 회전하는 유성기어; 상기 유성기어에 연결되어 유성기어 회전에 따라 회전하는 유성기어 캐리어; 상기 유성기어 캐리어에 연결되어 유성기어 캐리어와 같이 회전하는 출력축; 상기 유성기어의 내측에 맞물려 설치되어 회전하고 상기 출력축이 회전가능 하게 상기 출력축과 연결되는 선기어; 및 선기어와 결합하여 선기어의 회전을 고정하며 동력원의 일 방향 회전력을 전달받은 입력축이 일 방향으로 회전하고 이에 회전이 비고정된 링기어 캐리어가 일방향으로 회전하며 이로 인해 링기어가 일 방향 회전을 하며 링기어의 일 방향 회전에 따라 유성기어가 일 방향과 다른 방향으로 자전하면서 상기 회전이 고정된 선기어를 따라 일 방향으로 속도가 감속되어 공전하고 감속된 일 방향의 회전력이 회전이 비고정된 유성기어 캐리어 전달되어 출력축이 감속된 일 방향으로 회전하면서 1단 변속이 이루어지도록 하는 1단 변속부를 포함한다.
상술한 과제를 해결하기 위한 본 발명의 다른 실시예에 따른 전기자동차용 변속 시스템은, 동력을 제공하는 동력원; 상기 동력원으로부터 회전력을 전달받도록 설치된 입력축; 상기 입력축에 축 연결되어 회전되는 선기어; 상기 선기어의 외측에 맞물려 설치되는 유성기어; 상기 유성기어가 입력축에서 회전 가능하게 지지하는 유성기어 캐리어; 상기 유성기어 캐리어에 연결되는 출력축; 상기 유성기어 캐리어의 외측에 설치되며 유성기어에 치합되는 링기어; 상기 링기어가 출력축에서 회전 가능하게 지지하는 링기어 캐리어; 상기 링기어의 일 방향 회전만을 허용하는 회전 제어부; 상기 입력축에 고정 결합되어 선기어와 함께 회전하며, 유성기어 캐리어에 결합 또는 해제되어 전진 변속을 조절하는 전진 변속부; 상기 출력축에 회전 가능하게 결합되며 링기어 캐리어에 결합 또는 해제되어 후진 변속을 조절하는 후진 변속부; 및 1단 변속시, 상기 전진 변속부가 상기 유성기어 캐리어에 비결합 되도록 제어하고 상기 후진 변속부가 상기 링기어 캐리어에 비결합 되도록 제어하며, 후진 변속시, 상기 전진 변속부가 상기 유성기어 캐리어에 비결합되도록 제어하고 상기 후진 변속부가 상기 링기어 캐리어에 결합되도록 제어하는 변속 제어부를 포함한다.
본 발명의 제1실시예에 따른 전기자동차용 변속 시스템에 따르면, 유성기어 방식의 감속기를 채택하여서 전진 및 후진 변속을 구현함으로써, 전기자동차의 연비효율을 증가하면서도 전기자동차의 생산비용을 절감할 수 있게 된다.
또한, 본 발명의 제2실시예에 따른 후진 제어가 가능한 전기자동차용 변속 시스템에 따르면, 유성기어 방식의 감속기를 채택하여서 전진 및 후진 변속을 구현함으로써, 전기자동차의 연비효율을 증가하면서도 전기자동차의 생산비용을 절감할 수 있게 된다.
또한, 본 발명의 제3실시예에 따른 종치형의 전기자동차용 변속 시스템은, 종치형 구동력 전달 방식을 가져서, FF(FRONT MOTOR FRONT DRIVE, 전륜구동), FR(FRONT MOTOR REAR DRIVE, 후륜 구동) 타입, 4륜 구동(FOUR WHEEL DRIVE) 등의 전기 자동차의 동력 전달 시스템으로 이용될 수 있다.
본 발명의 효과들은 이상에서 언급된 효과로 제한되지 않으며, 언급되지 않은 또 다른 효과들은 아래의 기재로부터 통상의 기술자에게 명확하게 이해될 수 있을 것이다.
도 1은 본 발명의 제1실시예에 따른 전기자동차용 변속 시스템의 구성으로, 1단 변속 동작 상태 및 1단 변속을 통한 후진 변속 동작 상태를 나타낸 도면이다.
도 2는 본 발명의 제1실시예에 따른 전기자동차용 변속 시스템의 2단 변속 동작 상태 및 2단 변속 동작을 통한 후진 변속 동작 상태를 나타낸 도면이다.
도 3은 본 발명의 제2실시예에 따른 후진 제어가 가능한 전기자동차용 변속 시스템의 구성으로, 1단 변속 동작 상태를 나타낸 도면이다.
도 4는 본 발명의 제2실시예에 따른 전기자동차용 변속 시스템의 2단 변속 동작 상태를 나타낸 도면이다.
도 5는 본 발명의 제2실시예에 따른 전기자동차용 변속 시스템의 후진 변속 동작 상태를 나타낸 도면이다.
도 6은 본 발명의 제3실시예에 따른 전기자동차용 변속 시스템을 예시한 도면이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시예들에 제한되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술 분야의 통상의 기술자에게 본 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
본 명세서에서 사용된 용어는 실시예들을 설명하기 위한 것이며 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다(comprises)" 및/또는 "포함하는(comprising)"은 언급된 구성요소 외에 하나 이상의 다른 구성요소의 존재 또는 추가를 배제하지 않는다. 명세서 전체에 걸쳐 동일한 도면 부호는 동일한 구성 요소를 지칭하며, "및/또는"은 언급된 구성요소들의 각각 및 하나 이상의 모든 조합을 포함한다. 비록 "제1", "제2" 등이 다양한 구성요소들을 서술하기 위해서 사용되나, 이들 구성요소들은 이들 용어에 의해 제한되지 않음은 물론이다. 이들 용어들은 단지 하나의 구성요소를 다른 구성요소와 구별하기 위하여 사용하는 것이다. 따라서, 이하에서 언급되는 제1 구성요소는 본 발명의 기술적 사상 내에서 제2 구성요소일 수도 있음은 물론이다.
다른 정의가 없다면, 본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야의 통상의 기술자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또한, 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않는 한 이상적으로 또는 과도하게 해석되지 않는다.
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 상세하게 설명하며, 우선 도 1 및 도 2를 참조하여 본 발명의 제1실시예에 따른 전기자동차용 변속 시스템을 설명한다.
도 1은 본 발명의 제1실시예에 따른 전기자동차용 변속 시스템의 구성을 나타낸 도면이다.
도 1을 참조하면, 본 발명의 제1실시예에 따른 전기자동차용 변속 시스템은, 동력을 제공하는 동력원(100), 동력원(100)으로부터 회전력을 전달받도록 설치된 입력축(102), 입력축(102)에 연결된 링기어 캐리어(104), 링기어 캐리어(104)에 연결된 링기어(106), 링기어(106)의 내측에 맞물려 설치되어 회전하는 유성기어(108), 유성기어(108)에 연결된 유성기어 캐리어(112), 유성기어 캐리어(112)에 축 연결된 출력축(114), 유성기어(108)의 내측에 맞물려 설치되어 회전하고 출력축(114)이 회전가능하게 출력축(114)과 연결되는 선기어(110), 선기어(110)와 결합하여 선기어(110)의 회전을 고정하여서 동력원(100)의 일 방향 회전력이 입력축(102), 회전이 비고정된 링기어 캐리어(104), 링기어(106), 유성기어(108), 회전이 비고정된 유성기어 캐리어(112)를 통해 감속되어 출력축(114)에 전달되어 출력축(114)이 일 방향으로 회전되도록 하여서 1단 변속이 이루어지도록 하는 1단 변속부(200)와, 링기어 캐리어(104)와 유성기어 캐리어(112)를 결합하여, 입력축(102), 링기어 캐리어(104), 링기어(106), 유성기어(108), 유성기어 캐리어(112) 및 출력축(114)이 하나의 몸체가 되게 하여 입력축(102)에 전달된 동력원(100)의 일 방향 회전력이 감속되지 않으면서 방향이 바뀌지 않은 상태로, 출력축(114)에 전달되어 2단 변속이 이루어지도록 하는 2단 변속부(300)를 포함한다.
전기자동차에 동력을 제공하는 동력원(100)은 전기의 공급으로 동작되는 전기모터일 수 있다. 그러나 본 발명의 제1실시예에서는 동력원(100)은 전기모터와 다른 동력장치를 동시에 사용할 수도 있다. 전기모터의 동작으로 입력축(102)이 회전되어 링기어 캐리어(104)를 회전시킨다.
링기어 캐리어(104)는 동력원(100)의 회전력을 전달받는 입력축(102)에 직접 연결되거나 또는 다른 링크부재를 통해 연결될 수 있다.
링기어(106)는 링기어 캐리어(104)에 연결되어 링기어 캐리어(104)의 회전에 따라 회전을 한다.
유성기어(108)는 링기어(106)의 내측에 맞물려 설치되어 회전한다.
이때, 선기어(110)의 외측과 치합되는 유성기어(108)는 설정된 간격으로 이격되어 선기어(110)의 외측에 복수로 설치될 수 있다. 유성기어(108)는 선 기어의 외측에 맞물려서 자전을 하는 동시에 선기어(110)의 외측을 따라 이동하는 공전을 한다. 자전 방향과 공전 방향은 서로 상이하다.
유성기어 캐리어(112)는 유성기어(108)에 연결되어 유성기어(108) 회전에 따라 회전한다. 이때 유성기어 캐리어(112)은 유성기어(108)에 직접 연결될 수도 있거나 또는 다른 링크부재를 통해 연결될 수 있다.
출력축(114)은 유성기어 캐리어(112)에 연결되어 유성기어 캐리어(112)와 같이 회전한다. 이때 출력축(114)은 유성기어 캐리어(112)에 직접 연결되거나 또는 다른 링크부재를 통해 연결될 수 있다.
선기어(110)는 유성기어(108)의 내측에 맞물려 설치되어 회전하고 출력축(114)이 회전가능하게 출력축(114)과 연결된다.
이때, 선기어(110)는 베어링 등과 같은 회전수단으로 출력축(114)과 연결될 수 있다.
1단 변속부(200)는 선기어(110)와 결합하여 선기어(110)의 회전을 고정하고, 선기어(110)의 회전이 고정된 상태에서 1단 변속이 이루어지도록 한다.
즉 선기어(110)의 회전이 고정된 상태에서 동력원(100)의 일 방향 회전력을 전달받은 입력축(102)이 일 방향으로 회전하고 이에 회전이 비고정된 링기어 캐리어(104)가 일 방향으로 회전하고 이로 인해 링기어 캐리어(104)에 연결된 링기어(106)가 일 방향으로 회전한다. 이에 링기어(106)의 일 방향 회전에 따라 유성기어(108)는 일 방향과 다른 방향으로 자전하게 된다. 이 자전으로 인하여 상기 링기어(106)의 일 방향 회전속도의 감속이 이루어지게 되며, 이 감속된 일 방향 회전속도로 유성기어(108)는 상기 회전이 고정된 선기어(110)를 따라 일 방향으로 공전한다. 상기 감속된 일 방향의 회전력이 회전이 비고정된 유성기어 캐리어(112)에 전달되고, 유성기어 캐리어(112)에 연결된 출력축(114)이 감속된 일 방향으로 회전하면서 1단 변속이 이루어지게 된다.
이러한 1단 변속이 이루어지게 하는 1단 변속부(200)는 선기어(110)에 고정 연결된 슬리브 가이드(202), 슬리브 가이드(202)와 이격되어 설치되는 고정 슬리브 가이드(204), 고정 슬리브 가이드(204) 상에서 슬라이딩 이동되어 슬리브 가이드(202)에 결합 또는 결합해제되는 1단변속 슬리브(206), 1단변속 슬리브(206)와 회전가능하게 연결되어 있는 1단변속 포크(208)와, 1단변속 포크(208)가 직선 이동 가능하게 1단변속 포크(208)와 연결된 1단변속 포크 구동축(210)과, 1단 변속 포크 구동축(210)을 회전시키는 1단변속 액추에이터 모터(212)를 포함한다.
1단변속 액추에이터 모터(212)의 회전력을 전달받아 회전하는 1단변 속 포크 구동축(210)과 1단변속 포크(208)는 볼스크류 방식 또는 사다리꼴 나사 결합방식으로 체결될 수 있다. 이에 따라 1단변속 포크(208)는 회전하는 1단변속 포크 구동축(210)을 따라 직선 이동할 수 있게 된다. 볼스크류 방식은 정밀 변속을 필요로 하는 전기자동차의 변속 시스템에 사용될 수 있으며, 사다리꼴 나사 결합방식은 고출력 변속을 필요로 하는 전기자동차의 변속 시스템에 사용될 수 있다.
1단변속 슬리브(206)는 슬리브 가이드(202) 및 고정 슬리브 가이드(204) 각각의 외측에 슬라이드 이동 가능하게 설치된다.
1단변속 슬리브(206)는 내측에 치형이 형성되고, 슬리브 가이드(202) 및 고정 슬리브 가이드(204) 각각은 외측에 치형이 형성된다. 이에 따라 1단 변속 슬리브(206)는 1단변속 포크(208)가 1단변속 포크 구동축(210)에 직선 이동함으로써, 슬리브 가이드(202)와 고정 슬리브 가이드(204)가 결합 또는 결합 해제되도록 한다. 슬리브 가이드(202)와 고정 슬리브 가이드(204)의 결합시 선기어(110)의 회전이 고정되며 슬리브 가이드(202)와 고정 슬리브 가이드(204)의 결합 해제시 선기어(110)의 회전이 가능하게 된다.
이때, 슬리브 가이드(202)와 고정 슬리브 가이드(204)는 1단변속 슬리브(206)에 의해서 결합되는데, 그 결합방식으로 도그 타입 또는 싱크로 타입 방식이 이용될 수 있다.
한편, 2단 변속부(300)는 링기어 캐리어(104)와 유성기어 캐리어(112)를 결합하여, 입력축(102), 링기어 캐리어(104), 링기어(106), 유성기어(108), 유성기어 캐리어(112) 및 출력축(114)이 하나의 몸체가 되게 하여 입력축(102)에 전달된 동력원(100)의 일 방향 회전력이 감속되지 않은 상태로 회전방향이 바뀌지 않고서 그대로 출력축(114)에 전달됨으로써, 2단 변속이 이루어지게 한다.
이때, 입력축(102), 링기어 캐리어(104), 링기어(106), 유성기어(108), 유성기어 캐리어(112) 및 출력축(114)이 하나의 몸체가 되는 경우, 입력축(102)에 전달된 동력원(100)의 일 방향으로의 회전력이 감속되지 않은 상태로 유성기어(108)에 전달된다. 유성기어(108)가 회전이 비고정된 선기어(110)와 맞물려서 일 방향으로 회전하고 유성기어(108)의 일 방향 회전력이 유성기어 캐리어(112)를 통해 출력축(114)에 방향이 전환되지 않고서 그대로 전달되면서 2단 변속이 이루어지게 된다.
이러한 2단 변속부(300)는 유성기어 캐리어(112)에 고정된 2단변속 허브(302), 2단변속 허브(302) 상에서 슬라이딩 이동되어 링기어 캐리어(104)에 결합 또는 결합 해제되는 2단변속 슬리브(304), 2단변속 슬리브(304)와 회전가능하게 연결되어 있는 2단 변속 포크(306), 2단 변속 포크(306)가 직선 이동 가능하게 2단 변속 포크(306)와 연결된 2단변속 포크 구동축(308), 2단변속 포크 구동축(308)을 회전시키는 2단변속 액추에이터 모터(310)를 포함한다.
2단변속 액추에이터 모터(310)의 회전력을 전달받아 회전하는 2단변속 포크 구동축(308)과 2단변속 포크(306)는 볼스크류 방식 또는 사다리꼴 나사 결합방식으로 체결될 수 있다. 이에 따라 2단변속 포크(306)는 회전하는 2단변속 포크 구동축(308)을 따라 직선 이동할 수 있게 된다.
2단변속 허브(302)는 링기어 캐리어(104)와 이격된 후방에 설치되어 유성기어 캐리어(112)에 고정 연결된다.
2단변속 슬리브(304)는 2단변속 허브(302)의 외측에 슬라이드 이동 가능하게 설치된다.
2단변속 슬리브(304)는 내측에 치형이 형성되고, 2단변속 허브(302) 및 링기어 캐리어(104)는 각각 외측에 치형이 형성된다. 이에 따라 2단변속 슬리브(304)는 2단변속 포크(306)가 2단변속 포크 구동축(308)에 직선 이동함으로써, 2단 변속 허브와 링기어 캐리어(104)가 결합 또는 결합 해제되도록 한다.
이때, 2단변속 허브(302) 및 링기어 캐리어(104)는 2단변속 슬리브(304)에 의해서 결합되는데, 그 결합방식으로 도그 타입 또는 싱크로 타입 방식이 이용될 수 있다.
본 발명의 제1실시예에 따른 전기자동차용 변속 시스템은, 변속 제어부(500)를 더 포함할 수 있다.
변속 제어부(500)는 1단 변속시, 1단 변속부(200)를 제어하여 선기어(110)와 1단 변속부(200)가 결합되게 하여 선기어(110)의 회전을 고정하며 동시에 2단 변속부(300)를 제어하여 링기어 캐리어(104)와 유성기어 캐리어(112)가 비 결합되도록 한다.
변속 제어부(500)는 2단 변속시, 2단 변속부(300)를 제어하여 링기어 캐리어(104)와 유성기어 캐리어(112)를 결합하여, 입력축(102), 링기어 캐리어(104), 링기어(106), 유성기어(108), 유성기어 캐리어(112) 및 출력축(114)이 하나의 몸체가 되게 하며 1단 변속부(200)를 제어하여 선기어(110)와 1단 변속부(200)를 비결합되도록 하여서 선기어(110)의 회전이 비고정되도록 한다.
한편 변속 제어부(500)는 후진 변속시, 일 실시예로 1단 변속부(200)를 제어하여 선기어(110)와 1단 변속부(200)가 결합되도록 하여 선기어(110)의 회전을 고정하며 동시에 2단 변속부(300)를 제어하여 링기어 캐리어(104)와 유성기어 캐리어(112)를 비결합되도록 한 상태에서, 동력원(100)을 제어하여 동력원(100)의 다른 방향의 회전력이 입력축(102)에 전달되게 할 수 있다.
다른 실시예로, 후진 변속시, 변속 제어부(500)는 2단 변속부(300)를 제어하여 링기어 캐리어(104)와 유성기어 캐리어(112)를 결합하여, 입력축(102), 링기어 캐리어(104), 링기어(106), 유성기어(108), 유성기어 캐리어(112) 및 출력축(114)이 하나의 몸체가 되게 하며, 이와 동시에 1단 변속부(200)를 제어하여 선기어(110)와 1단 변속부(200)를 비결합되도록 한 상태에서, 동력원(100)을 제어하여 동력원(100)의 다른 방향의 회전력이 입력축(102)에 전달되게 할 수 있다.
본 발명의 제1실시예에 따른 전기자동차용 변속 시스템은, 1단변속 액추에이터 모터(212)와 2단변속 액추에이터 모터(310)의 2개의 액추에이터 모터를 이용하여 1단, 2단 또는 후진 변속을 위해 1단변속 슬리브(206)와 2단변속 슬리브(304)의 직선 이동을 구현하였다.
이에 국한되지 않고서, 1단변속 액추에이터 모터(212)와 2단변속 액추에이터 모터(310)의 2개의 액추에이터 모터 대신에, 하나의 액추에이터 모터를 이용하여 1단변속 슬리브(206)와 2단변속 슬리브(304)의 직선 이동을 구현할 수 있다.
즉 하나의 액추에이터 모터에 2개의 구동축 즉 1단변속 포크 구동축(210)과 2단변속 포크 구동축(308)을 구비하고, 상기 하나의 액추에이터 모터는 변속 제어부(500)의 제어에 따라 1단 변속, 2단 변속 또는 후진 변속시에 1단변속 포크 구동축(210) 상에서의 1단변속 포크(208)와 2단변속 포크 구동축(308) 상에서의 2단변속 포크(306)를 직선 이동시킨다.
이에 따라 1단변속 포크(208)에 연결된 1단변속 슬리브(206)의 직선 이동이 이루어지고 2단변속 포크(306)에 연결된 2단변속 슬리브(304)의 직선 이동이 이루어져서 1단 변속, 2단 변속 또는 후진변속이 이루어지게 된다.
이러한 본 발명의 제1실시예에 따른 전기자동차용 변속 시스템의 동작 즉 1단 변속, 2단 변속 및 후진 변속 동작에 대해서 살펴보기로 한다.
먼저 1단 변속 동작에 대해서 도 1을 참조하여 살펴보기로 한다.
도 1을 참조하면, 변속 제어부(500)는 1단 변속시, 1단 변속부(200)를 제어하여 1단 변속부(200)와 선기어(110)를 결합하여 선기어(110)의 회전을 고정하고 동시에 2단 변속부(300)를 제어하여 링기어 캐리어(104)와 유성기어 캐리어(112)의 결합을 해제하여서 링기어 캐리어(104)와 유성기어 캐리어(112)가 회전 가능하게 해준다.
즉 변속 제어부(500)의 제어에 따라 1단변속 액추에이터 모터(212)는 1단변속 포크 구동축(210)을 회전시켜서 1단변속 포크(208)가 1단변속 포크 구동축(210)에서 직선 이동하게 되고, 1단변속 포크(208)와 회전 가능하게 연결된 1단변속 슬리브(206)가 고정 슬리브 가이드(204)에서 슬리브 가이드(202)로 이동하여 고정 슬리브 가이드(204)와 슬리브 가이드(202)가 결합된다. 이로 인하여 슬리브 가이드(202)에 연결된 선기어(110)가 고정 슬리브 가이드(204)에 고정되어, 결국 선기어(110)의 회전이 고정된다.
그리고 변속 제어부(500)의 제어에 따라 2단변속 액추에이터 모터(310)는 구동하지 않아서 2단변속 포크 구동축(308)이 회전하지 않게 되어, 2단변속 포크(306)가 2단변속 포크 구동축(308)에서 직선 이동을 하지 않는다. 결국 2단 변속 포크에 회전 가능하게 연결된 2단변속 슬리브(304)는 2단변속 허브(302)에서 슬라이딩 이동하지 않는다. 2단변속 허브(302)에 연결된 유성기어 캐리어(112)와 링기어 캐리어(104)는 결합하지 않는다. 이에 따라 링기어 캐리어(104)와 유성기어 캐리어(112)의 회전이 고정되지 않는다.
이러한 상태에서 변속 제어부(500)는 동력원(100)이 일 방향(A)으로 회전하도록 제어한다. 이에 동력원(100)의 일 방향 회전력이 선기어(110)의 회전이 고정된 상태에서 입력축(102)으로 전달되어 입력축(102)이 일 방향(A)으로 회전하게 된다.
이에 회전이 비고정된 링기어 캐리어(104)가 일 방향(A)으로 회전하고 이로 인해 링기어 캐리어(104)에 연결된 링기어(106)가 일 방향(A)으로 회전한다. 링기어(106)의 일 방향(A) 회전에 따라 유성기어(108)는 일 방향(A)과 다른 방향(B)으로 자전하게 된다. 이 자전으로 인하여 상기 링기어(106)의 일 방향 회전속도의 감속이 이루어지게 되며, 이 감속된 일 방향 회전속도로 유성기어(108)는 상기 회전이 고정된 선기어(110)를 따라 일 방향(A)으로 공전한다. 상기 감속된 일 방향(A)의 회전력이 회전이 비고정된 유성기어 캐리어(112)에 전달되고, 유성기어 캐리어(112)에 연결된 출력축(114)이 감속된 일 방향(A)으로 회전하면서 1단 변속이 이루어지게 된다.
이제 2단 변속 동작을 도 2를 참조하여 살펴보기로 한다.
도 2를 참조하면, 변속 제어부(500)는 2단 변속시, 2단 변속부(300)를 제어하여 링기어 캐리어(104)와 유성기어 캐리어(112)를 결합하여 입력축(102), 링기어 캐리어(104), 링기어(106), 유성기어(108), 유성기어 캐리어(112) 및 출력축(114)이 하나의 몸체가 되게 하고, 동시에 1단 변속부(200)를 제어하여 1단 변속부(200)와 선기어(110)가 결합되지 않도록 하여 선기어(110)의 회전이 고정되지 않도록 한다
즉 변속 제어부(500)의 제어에 따라 2단변속 액추에이터 모터(310)는 2단변속 포크 구동축(308)을 회전시켜서 2단변속 포크(306)가 2단변속 포크 구동축(308)에서 직선 이동하게 되고, 2단변속 포크(306)와 회전 가능하게 연결된 2단변속 슬리브(304)가 2단변속 허브(302)에서 링기어 캐리어(104)로 이동하여 링기어 캐리어(104)와 2단변속 허브(302)에 고정된 유성기어 캐리어(112)가 결합된다. 이로 인하여 입력축(102), 링기어 캐리어(104), 링기어(106), 유성기어(108), 유성기어 캐리어(112) 및 출력축(114)이 하나의 몸체가 된다.
그리고 변속 제어부(500)의 제어에 따라 1단변속 액추에이터 모터(212)는 구동하지 않아서 1단변속 포크 구동축(210)이 회전하지 않게 되어, 1단변속 포크(208)가 1단변속 포크 구동축(210)에서 직선 이동을 하지 않는다. 결국 1단 변속 포크에 회전 가능하게 연결된 1단변속 슬리브(206)는 고정 슬리브 가이드(204)에서 슬라이딩 이동하지 않는다. 이로 인하여 고정 슬리브 가이드(204)와 슬리브 가이드(202)에 연결된 선기어(110)는 결합하지 않게 된다. 결국 선기어(110)의 회전이 고정되지 않는다.
이러한 상태에서 변속 제어부(500)는 동력원(100)이 일 방향(A)으로 회전하도록 제어한다.
입력축(102), 링기어 캐리어(104), 링기어(106), 유성기어(108), 유성기어 캐리어(112) 및 출력축(114)이 하나의 몸체를 이루므로, 입력축(102)에 전달된 동력원(100)의 일 방향 회전력이 감속되지 않은 상태로 회전방향이 바뀌지 않고서 그대로 출력축(114)에 전달됨으로써, 2단 변속이 이루어지게 한다.
즉 입력축(102), 링기어 캐리어(104), 링기어(106), 유성기어(108), 유성기어 캐리어(112) 및 출력축(114)이 하나의 몸체가 되는 경우, 입력축(102)에 전달된 동력원(100)의 일 방향(A)으로의 회전력이 감속되지 않은 상태로 유성기어(108)에 전달된다. 유성기어(108)가 회전이 비고정된 선기어(110)와 맞물려서 일방향(A)으로 회전하고 유성기어(108)의 일 방향 회전력이 유성기어 캐리어(112)를 통해 출력축(114)에 방향이 전환되지 않고서 그대로 전달되면서 2단 변속이 이루어지게 된다.
마지막으로 후진 변속 동작에 대해서 살펴보기로 한다.
후진 변속 동작은 전기자동차의 전진을 위한 1단 변속 또는 2단 변속시 동력원(100)의 회전력 방향인 일 방향(A)과 다른 방향(B)으로 동력원(100)의 회전력을 입력축(102)에 전달하면 된다.
즉 1단 변속을 통해 후진 변속을 수행하거나 또는 2단 변속을 통해 후진 변속을 수행할 수 있다.
먼저 1단 변속을 통해 후진 변속하는 과정에 대해서 살펴보기로 한다.
변속 제어부(500)는 1단 변속을 통해 후진 변속시, 1단 변속부(200)를 제어하여 1단 변속부(200)와 선기어(110)를 결합하여 선기어(110)의 회전을 고정하고 동시에 2단 변속부(300)를 제어하여 링기어 캐리어(104)와 유성기어 캐리어(112)의 결합을 해제하여서 링기어 캐리어(104)와 유성기어 캐리어(112)가 회전 가능하게 해준다.
즉 변속 제어부(500)의 제어에 따라 1단변속 액추에이터 모터(212)는 1단변속 포크 구동축(210)을 회전시켜서 1단변속 포크(208)가 1단변속 포크 구동축(210)에서 직선 이동하게 되고, 1단변속 포크(208)와 회전 가능하게 연결된 1단변속 슬리브(206)가 고정 슬리브 가이드(204)에서 슬리브 가이드(202)로 이동하여 브고정 슬리 가이드와 슬리브 가이드(202)가 결합된다. 이로 인하여 슬리브 가이드(202)에 연결된 선기어(110)가 고정 슬리브 가이드(204)에 고정되어, 결국 선기어(110)의 회전이 고정된다.
그리고 변속 제어부(500)의 제어에 따라 2단변속 액추에이터 모터(310)는 구동하지 않아서 2단변속 포크 구동축(308)이 회전하지 않게 되어, 2단변속 포크(306)가 2단변속 포크 구동축(308)에서 직선 이동을 하지 않는다. 결국 2단변 속 포크(306)에 회전 가능하게 연결된 2단변속 슬리브(304)는 2단변속 허브(302)에서 슬라이딩 이동하지 않는다. 2단변속 허브(302)에 연결된 유성기어 캐리어(112)와 링기어 캐리어(104)는 결합하지 않는다. 이에 따라 링기어 캐리어(104)와 유성기어 캐리어(112)의 회전이 고정되지 않는다.
이러한 상태에서 변속 제어부(500)는 동력원(100)이 상기 일 방향(A)인 아니 다른 방향(B)으로 회전하도록 제어한다. 이에 동력원(100)의 다른 방향 회전력이 선기어(110)의 회전이 고정된 상태에서 입력축(102)으로 전달되어 입력축(102)이 다른 방향으로 회전하게 된다. 이에 회전이 비고정된 링기어 캐리어(104)가 다른 방향(B)으로 회전하고 이로 인해 링기어 캐리어(104)에 연결된 링기어(106)가 다른 방향(B)으로 회전한다. 링기어(106)의 다른 방향(B) 회전에 따라 유성기어(108)는 다른 방향(B)이 아닌 일 방향(A)으로 자전하게 된다. 이 자전으로 인하여 상기 링기어(106)의 다른 방향 회전속도의 감속이 이루어지게 되며, 이 감속된 다른 방향 회전속도로 유성기어(108)는 상기 회전이 고정된 선기어(110)를 따라 다른 방향(B)으로 공전한다. 상기 감속된 다른 방향(B)의 회전력이 회전이 비고정된 유성기어 캐리어(112)에 전달되고, 유성기어 캐리어(112)에 연결된 출력축(114)이 감속된 다른 방향(B)으로 회전하면서 후진 변속이 이루어지게 된다.
이제 2단 변속 동작을 통해 후진 변속이 이루어지는 과정에 대해서 살펴보기로 한다.
변속 제어부(500)는 2단 변속을 통해 후진 변속시, 2단 변속부(300)를 제어하여 링기어 캐리어(104)와 유성기어 캐리어(112)를 결합하여 입력축(102), 링기어 캐리어(104), 링기어(106), 유성기어(108), 유성기어 캐리어(112) 및 출력축(114)이 하나의 몸체가 되게 하고, 동시에 1단 변속부(200)를 제어하여 1단 변속부(200)와 선기어(110)가 결합되지 않도록 하여 선기어(110)의 회전이 고정되지 않도록 한다
즉 변속 제어부(500)의 제어에 따라 2단변속 액추에이터 모터(310)는 2단변속 포크 구동축(308)을 회전시켜서 2단변속 포크(306)가 2단변속 포크 구동축(308)에서 직선 이동하게 되고, 2단변속 포크(306)와 회전 가능하게 연결된 2단변속 슬리브(304)가 2단변속 허브(302)에서 링기어 캐리어(104)로 이동하여 링기어 캐리어(104)와 2단변속 허브(302)에 고정된 유성기어 캐리어(112)가 결합된다. 이로 인하여 입력축(102), 링기어 캐리어(104), 링기어(106), 유성기어(108), 유성기어 캐리어(112) 및 출력축(114)이 하나의 몸체가 된다.
그리고 변속 제어부(500)의 제어에 따라 1단변속 액추에이터 모터(212)는 구동하지 않아서 1단변속 포크 구동축(210)이 회전하지 않게 되어, 1단변속 포크(208)가 1단변속 포크 구동축(210)에서 직선 이동을 하지 않는다. 결국 1단 변속 포크에 회전 가능하게 연결된 1단변속 슬리브(206)는 고정 슬리브 가이드(204)에서 슬라이딩 이동하지 않는다. 이로 인하여 고정 슬리브 가이드(204)와 슬리브 가이드(202)에 연결된 선기어(110)는 결합하지 않게 된다. 결국 선기어(110)의 회전이 고정되지 않는다.
이러한 상태에서 변속 제어부(500)는 동력원(100)이 상기 일 방향(A)이 아닌 다른 방향(B)으로 회전하도록 제어한다.
입력축(102), 링기어 캐리어(104), 링기어(106), 유성기어(108), 유성기어 캐리어(112) 및 출력축(114)이 하나의 몸체를 이루므로, 입력축(102)에 전달된 동력원(100)의 다른 방향 회전력이 감속되지 않은 상태로 회전방향이 바뀌지 않고서 그대로 출력축(114)에 전달됨으로써, 후진 변속이 이루어지게 한다.
즉 입력축(102), 링기어 캐리어(104), 링기어(106), 유성기어(108), 유성기어 캐리어(112) 및 출력축(114)이 하나의 몸체가 되는 경우, 입력축(102)에 전달된 동력원(100)의 다른 방향(B)으로의 회전력이 감속되지 않은 상태로 유성기어(108)에 전달된다. 유성기어(108)가 회전이 비고정된 선기어(110)와 맞물려서 다른 방향(B)으로 회전하고 유성기어(108)의 다른 방향 회전력이 유성기어 캐리어(112)를 통해 출력축(114)에 방향이 전환되지 않고서 그대로 전달되면서 후진 변속이 이루어지게 된다.
도 1 및 도 2에서 도시된 일 방향(A) 및 다른 방향(B)은 서로 반대 방향을 나타내며, 하나의 예시에 불과하며 이에 한정되지 않는다. 즉 도 1 및 도 2에서 도시된 일 방향(A)이 시계방향이라고 가정하면 다른 방향(B)은 반시계 방향이 되며, 만약 일 방향(A)이 반시계 방향이라고 가정하면 다른 방향(B)은 시계 방향이 된다.
이제까지 본 발명에 대하여 제1실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다.
그러므로 개시된 제1실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 따라서 본 발명의 범위는 전술한 제1실시예에 한정되지 않고 특허청구범위에 기재된 내용 및 그와 동등한 범위 내에 있는 다양한 실시 형태가 포함되도록 해석되어야 할 것이다.
이하, 도 3 내지 도 5를 참조하여, 본 발명의 제2실시예에 따른 전기자동차용 변속 시스템을 설명한다.
도 3은 본 발명의 제2실시예에 따른 후진 제어가 가능한 전기자동차용 변속 시스템의 구성을 나타낸 도면이다.
도 3을 참조하면, 본 발명의 제2실시예에 따른 전기자동차용 변속 시스템은, 동력을 제공하는 동력원(100), 동력원(100)으로부터 회전력을 전달받도록 설치된 입력축(102), 입력축(102)에 축 연결되어 회전되는 선기어(110), 선기어(110)의 외측에 맞물려 설치되는 유성기어(108), 유성기어(108)가 입력축(102)에서 회전 가능하게 지지하는 유성기어 캐리어(112), 유성기어 캐리어(112)에 연결되는 출력축(114), 유성기어 캐리어(112)의 외측에 설치되며 유성기어(108)에 치합되는 링기어(106), 링기어(106)가 출력축(114)에서 회전 가능하게 지지하는 링기어 캐리어(104), 링기어(106)의 일 방향 회전만을 허용하는 원웨이 클러치(140)(One Way clutch), 입력축(102)에 고정 결합되어 선기어(110)와 함께 회전하며 유성기어 캐리어(112)에 결합 또는 해제되어 전진 변속을 조절하는 전진 변속부(122), 출력축(114)에 회전 가능하게 결합되며 링기어 캐리어(104)에 결합 또는 해제되어 후진 변속을 조절하는 후진 변속부(130)를 포함한다.
이때, 전진 변속부(122)와 유성기어 캐리어(112)가 비결합상태이고 후진 변속부(130)와 링기어 캐리어(104)가 비결합상태에서, 원웨이 클러치(140)는 작동상태로 작용하여 링기어(106)의 일 방향과 다른 방향으로의 회전을 방해하여 링기어(106)의 회전을 고정한다.
그리고 전진 변속부(122)와 유성기어 캐리어(112)가 결합상태이고 후진 변속부(130)와 링기어 캐리어(104)가 비결합상태에서, 원웨이 클러치(140)는 비작동상태로 작용하여 링기어(106)의 일 방향 회전을 허용한다.
전진 변속부(122)와 유성기어 캐리어(112)가 비결합상태이고 후진 변속부(130)와 링기어 캐리어(104)가 결합상태에서, 원웨이 클러치(140)는 비작동상태로 작용하여 링기어(106)의 일 방향 회전을 허용한다. 하지만, 후진 변속부(130)와 링기어 캐리어(104)의 결합으로 링기어(106)의 회전이 고정된다.
전기자동차에 동력을 제공하는 동력원(100)은 전기의 공급으로 동작되는 전기모터일 수 있다. 그러나 본 발명의 제2실시예에서는 동력원(100)은 전기모터와 다른 동력장치를 동시에 사용할 수도 있다. 전기모터의 동작으로 입력축(102)이 회전되어 선기어(110)를 회전시킨다.
선기어(110)는 동력원(100)의 회전력을 전달받는 입력축(102)에 직접 연결될 수도 있고, 다른 링크부재를 통해 연결될 수도 있다.
선기어(110)의 외측과 치합되는 유성기어(108)는 설정된 간격으로 이격되어 선기어(110)의 외측에 복수로 설치될 수 있다. 유성기어(108)는 선기어(110)의 외측에 맞물려서 회전하는 자전을 하는 동시에 선기어(110)의 외측을 따라 이동하는 공전을 한다.
이러한 유성기어(108)에 고정되고 입력축(102)에 회전 가능하게 연결된 유성기어 캐리어(112)는 유성기어(108)의 회전으로 회전하게 된다.
유성기어 캐리어(112)는 입력축(102)에 회전 가능하게 연결되고, 회전 중심에 출력축(114)이 고정 연결된다. 이에 따라 유성기어 캐리어(112)에 고정 연결된 출력축(114)은 유성기어 캐리어(112)의 회전에 따라 동시에 회전한다. 이때, 유성기어 캐리어(112)는 베어링 등과 같은 회전수단으로 입력축(102)에 연결될 수 있다.
유성기어 캐리어(112)의 외측에 링기어(106)가 설치되며, 링기어(106)의 내측을 따라 치형이 형성된다. 링기어(106)의 내측에 유성기어(108)가 치합된다. 선기어(110)의 회전으로 유성기어(108)가 회전하면서 링기어(106)를 따라 이동된다.
링기어(106)는 링기어(106)의 일 방향 회전만을 허용하는 원웨이 클러치(140)와 연결된다.
원웨이 클러치(140)는 전진 변속부(122)가 유성기어 캐리어(112)에 비결합되고 후진 변속부(130)가 링기어 캐리어(104)에 비결합되어 1단 변속이 이루어지는 경우에, 작동상태로 작용하여 링기어(106)의 일 방향 회전만을 허용하므로 링기어(106)의 다른 방향 회전을 방해하여 링기어(106)를 고정한다.
예를 들어, 1단 변속이 이루어지고 동력원(100)의 회전력을 전달받은 회전축이 시계방향으로 회전하는 경우, 원웨이 클러치(140)는 작동상태로 작용하여 반시계방향으로 링기어(106)의 회전을 허용하지만, 링기어(106)의 시계방향 회전을 방해하여 링기어(106)를 고정한다.
이와 같이 원웨이 클러치(140)가 작동 상태인 경우, 도 3에 도시된 원웨이 클러치(140)는 검정색 삼각형으로 표시된다.
한편, 원웨이 클러치(140)는 전진 변속부(122)와 유성기어 캐리어(112)에 결합되며 동시에 후진 변속부(130)가 링기어 캐리어(104)에 비결합되어 2단 변속이 이루어지는 경우와, 전진 변속부(122)가 유성기어 캐리어(112)에 비결합되고 후진 변속부(130)가 링기어 캐리어(104)에 결합되어 후진 변속이 이루어지는 경우에, 비작동 상태로 작용하여 링기어(106)의 일 방향 회전을 허용한다.
이때, 원웨이 클러치(140)가 비작동 상태인 경우, 도 4 및 도 5에 도시된 원웨이 클러치(140)는 흰색 삼각형으로 표시된다.
이러한 원웨이 클러치(140)는 내륜과 외륜 사이에 링기어(106)의 일방향 회전을 허용하는 다수의 캠이 구비된 스프래그 클래치(sprag clutch)일 수 있다. 본 발명의 제2실시예에서 원웨이 클러치(140)는 내륜과 외륜 사이에 링기어(106)의 시계방향 회전을 방해하는 구조, 즉 링기어(106)의 반시계방향 회전을 허용하는 구조의 다수의 캠이 구비된 스프래그 클래치일 수 있다.
전진 변속부(122)는 동력원(100)의 회전력을 전달받는 입력축(102)에 고정 연결되는 전진변속 허브(116), 전진변속 허브(116)에서 슬라이딩 이동되어 유성기어 캐리어(112)에 결합 또는 해제되는 전진변속 슬리브(118), 전진변속 슬리브(118)와 회전가능하게 연결되어 있는 전진변속 포크(120), 전진변속 포크(120)가 직선 이동 가능하게 전진변속 포크(120)와 연결된 전진변속 포크 구동축(134), 전진변속 포크 구동축(134)을 회전시키는 전진변속 액추에이터 모터(132)를 포함한다.
이때, 전진변속 액추에이터 모터(132)의 회전력을 전달받아 회전하는 전진변속 포크 구동축(134)과 전진변속 포크(120)는 볼스크류 방식 또는 사다리꼴 나사 결합방식으로 체결될 수 있다. 이에 따라 전진변속 포크(120)는 회전하는 전진변속 포크 구동축(134)을 따라 직선 이동할 수 있게 된다. 볼스크류 방식은 정밀 변속을 필요로 하는 전기자동차의 변속 시스템에 사용될 수 있으며, 사다리꼴 나사 결합방식은 고출력 변속을 필요로 하는 전기자동차의 변속 시스템에 사용될 수 있다.
전진변속 허브(116)는 유성기어 캐리어(112)와 이격된 전방에 설치되어 입력축(102)에 고정 연결되며, 입력축(102)의 회전으로 선기어(110)와 같이 회전한다.
전진변속 슬리브(118)는 전진변속 허브(116)의 외측에 슬라이드 이동 가능하게 설치된다.
전진변속 슬리브(118)는 내측에 치형이 형성되고, 전진변속 허브(116) 및 유성기어 캐리어(112)는 외측에 치형이 형성된다. 이에 따라 전진변속 슬리브(118)는 전진변속 포크(120)가 전진변속 포크 구동축(134)에 직선 이동함으로써, 전진변속 허브(116)와 유성기어 캐리어(112)가 결합 또는 결합 해제되도록 한다.
이때, 전진변속 허브(116) 및 유성기어 캐리어(112)는 전진변속 슬리브(118)에 의해서 결합되는데, 그 결합방식으로 도그 타입 또는 싱크로 타입 방식이 이용될 수 있다.
후진 변속부(130)는 유성기어 캐리어(112)에 고정 연결되어 회전하는 출력축(114)에 회전 가능하게 연결되는 후진변속 허브(124), 후진변속 허브(124)에서 슬라이딩 이동되어 링기어 캐리어(104)에 결합 또는 결합 해제되는 후진변속 슬리브(126), 후진변속 슬리브(126)와 회전가능하게 연결되어 있는 후진변속 포크(128), 후진변속 포크(128)가 직선 이동 가능하게 후진변속 포크(128)와 연결된 후진변속 포크 구동축(136), 후진변속 포크 구동축(136)을 회전시키는 후진변속 액추에이터 모터(138)를 포함한다.
이때, 후진변속 액추에이터 모터(138)의 회전력을 전달받아 회전하는 후진변속 포크 구동축(136)과 후진변속 포크(128)는 볼스크류 방식 또는 사다리꼴 나사 결합방식으로 체결될 수 있다. 이에 따라 후진변속 포크(128)는 회전하는 후진변속 포크 구동축(136)을 따라 직선 이동할 수 있게 된다. 볼스크류 방식은 정밀 변속을 필요한 전기자동차의 변속시스템에 사용될 수 있으며, 사다리꼴 나사 결합방식은 고출력 변속을 필요로 하는 전기자동차의 변속시스템에 사용될 수 있다.
후진변속 허브(124)는 링기어 캐리어(104)와 이격된 후방에 설치되어 출력축(114)에 회전가능하게 연결된다. 이때, 후진변속 허브(124)는 베어링 등과 같은 회전수단으로 출력축(114)에 연결될 수 있다.
후진변속 슬리브(126)는 후진변속 허브(124)의 외측에 슬라이드 이동 가능하게 설치된다.
후진변속 슬리브(126)는 내측에 치형이 형성되고, 후진변속 허브(124) 및 링기어 캐리어(104)는 외측에 치형이 형성된다. 이에 따라 후진변속 슬리브(126)는 후진변속 포크(128)가 후진변속 포크 구동축(136)에 직선 이동함으로써, 후진변속 허브(124)와 링기어 캐리어(104)가 결합 또는 결합 해제되도록 한다.
이때, 후진변속 허브(124) 및 링기어 캐리어(104)는 후진변속 슬리브(126)에 의해서 결합되는데, 그 결합방식으로 도그 타입 또는 싱크로 타입 방식이 이용될 수 있다.
본 발명의 제2실시예에 따른 전기자동차용 변속 시스템은, 전진변속 액추에이터 모터(132)와 후진변속 액추에이터 모터(138)의 2개의 액추에이터 모터를 이용하여 전진 또는 후진 변속을 위해 전진변속 슬리브(118)와 후진변속 슬리브(126)의 직선 이동을 구현하였다.
이에 국한되지 않고서, 전진변속 액추에이터 모터(132)와 후진변속 액추에이터 모터(138)의 2개의 액추에이터 모터 대신에, 하나의 액추에이터 모터를 이용하여 전진변속 슬리브(118)와 후진변속 슬리브(126)의 직선 이동을 구현할 수 있다.
즉 하나의 액추에이터 모터에 2개의 구동축 즉 전진변속 포크 구동축(134)과 후진변속 포크 구동축(136)을 구비하고, 상기 하나의 액추에이터 모터는 변속 제어부(500)의 제어에 따라 전진 변속 즉 1단 변속 또는 2단 변속시와 후진 변속시에 전진변속 포크 구동축(134) 상에서의 전진변속 포크(120)와 후진변속 포크 구동축(136) 상에서의 후진변속 포크(128)를 직선 이동시킨다.
이에 따라 전진변속 포크(120)에 연결된 전진변속 슬리브(118)의 직선 이동이 이루어지고 후진변속 포크(128)에 연결된 후진변속 슬리브(126)의 직선 이동이 이루어져서 전진변속(1단 변속 또는 2단 변속) 또는 후진변속이 이루어지게 된다.
본 발명의 제2실시예에 따른 전기자동차용 변속 시스템은, 변속 제어부(500)를 더 포함할 수 있다.
변속 제어부(500)는 1단 변속시, 전진 변속부(122)가 유성기어 캐리어(112)에 비결합 되도록 제어하고 후진 변속부(130)가 링기어 캐리어(104)에 비결합 되도록 제어한다.
구체적으로 변속 제어부(500)는 1단 변속시, 전진 변속부(122)의 전진 변속 슬리브(118)가 유성기어 캐리어(112)에 비결합되는 중립상태를 유지하도록 하며, 후진 변속부(130)의 후진 변속 슬리브(126)가 링기어 캐리어(104)에 비결합되는 중립상태를 유지하도록 제어를 한다.
이때, 1단 변속시, 원웨이 클러치(140)는 도 3에 도시된 바와 같이 작동 상태(원웨이 클러치(140)가 검정색 삼각형으로 표시됨)일 수 있다.
그리고 변속 제어부(500)는, 2단 변속시, 전진 변속부(122)가 유성기어 캐리어(112)에 결합되도록 제어하고 후진 변속부(130)가 링기어 캐리어(104)에 비결합 되도록 제어한다.
구체적으로 변속 제어부(500)는 2단 변속시, 전진 변속부(122)의 전진 변속 슬리브(118)가 유성기어 캐리어(112)에 결합되게 하며 후진 변속부(130)의 후진 변속 슬리브(126)가 링기어 캐리어(104)에 비결합되는 중립상태를 유지하도록 제어를 한다.
이때, 2단 변속시, 원웨이 클러치(140)는 도 4에 도시된 바와 같이 비작동상태(원웨이 클러치(140)가 흰색 삼각형으로 표시됨)일 수 있다.
마지막으로 변속 제어부(500)는, 후진 변속시, 전진 변속부(122)가 유성기어 캐리어(112)에 비결합되도록 제어하고 후진 변속부(130)가 링기어 캐리어(104)에 결합되도록 제어한다.
구체적으로 변속 제어부(500)는, 후진 변속시, 전진 변속부(122)의 전진 변속 슬리브(118)가 유성기어 캐리어(112)에 비결합되는 중립상태를 유지하도록 하며, 후진 변속부(130)의 후진 변속 슬리브가 링기어 캐리어(104)에 결합되게 제어한다.
이때, 후진 변속시, 원웨이 클러치(140)는 도 5에 도시된 바와 같이 비작동태(원웨이 클러치(140)가 흰색 삼각형으로 표시됨)일 수 있다.
이러한 본 발명의 제2실시예에 따른 후진 제어가 가능한 전기자동차용 변속 시스템의 동작 즉 1단 변속, 2단 변속 및 후진 변속 동작에 대해서 살펴보기로 한다.
먼저 1단 변속 동작에 대해서 도 3을 참조하여 살펴보기로 한다.
도 3을 참조하면, 변속 제어부(500)는 1단 변속시, 전진 변속부(122)가 유성기어 캐리어(112)에 비결합 되도록 제어하고 후진 변속부(130)가 링기어 캐리어(104)에 비결합 되도록 제어한다.
구체적으로 변속 제어부(500)는 1단 변속시, 전진 변속부(122)의 전진 변속 슬리브(118)가 유성기어 캐리어(112)에 비결합되는 중립상태를 유지하도록 하며, 후진 변속부(130)의 후진 변속 슬리브가 링기어 캐리어(104)에 비결합되는 중립상태를 유지하도록 제어를 한다.
이 상태에서, 동력원(100)의 동작으로 입력축(102)이 시계방향으로 회전하면, 입력축(102)과 함께 선기어(110)는 시계방향으로 회전한다. 선기어(110)에 맞물려 있는 유성기어(108)는 반시계 방향으로 자전한다. 유성기어(108)에 맞물려 있는 링기어(106)는 유성기어(108)의 반시계 방향의 자전운동에 대해서 시계방향으로 회전하려고 한다. 하지만, 링기어(106)의 시계방향으로의 회전을 방해하는 구조, 즉 링기어(106)의 반시계방향의 회전을 허용하는 구조를 가진 원웨이 클러치(140)가, 작동상태로 작용하여 링기어(106)의 시계방향 회전을 방해하여 링기어(106)의 회전이 이루어지지 않게 한다.
이와 같이 작동상태에서 원웨이 클러치(140)에 의해서 시계방향으로 링기어(106)의 회전이 고정되므로, 링기어(106)와 치합된 유성기어(108)는 반시계방향으로 자전하면서 링기어(106)를 따라 시계방향으로 공전운동을 한다. 유성기어(108)에 고정된 유성기어 캐리어(112)도 유성기어(108)의 공전 방향과 같은 방향(시계 방향)으로 회전한다.
유성기어(108)가 반시계방향으로 자전하면서 링기어(106)를 따라 시계방향으로 공전하므로, 유성기어(108)의 공전속도는 유성기어(108)의 반시계방향으로의 자전으로 인해서 감속되어 선기어(110)의 회전속도보다 느리게 된다. 유성기어(108)에 고정된 유성기어 캐리어(112)는 감속된 유성기어(108)의 공전방향 회전속도와 같은 속도로 시계방향으로 회전하며, 선기어(110)의 회전속도보다 느리게 된다.
즉 링기어(106)의 회전이 구속된 상태에서 선기어(110)를 구동하면, 유성기어 캐리어(112)의 회전 중심에 고정 연결된 출력축(114)의 회전속도는 유성기어(108)의 반시계방향의 자전으로 인하여 감속된 유성기어(108)의 공전속도와 같게 되며, 선기어(110)의 회전속도보다 느리게 되어, 전기자동차의 1단 변속이 이루어지게 되는 것이다.
이제 2단 변속 동작에 대해서 살펴보기로 한다.
도 4를 참조하면, 변속 제어부(500)는, 2단 변속시, 전진 변속부(122)가 유성기어 캐리어(112)에 결합되도록 제어하고 후진 변속부(130)가 링기어 캐리어(104)에 비결합 되도록 제어한다. 구체적으로 변속 제어부(500)는 2단 변속시, 전진 변속부(122)의 전진 변속 슬리브(118)가 유성기어 캐리어(112)에 결합되게 하며 후진 변속부(130)의 후진 변속 슬리브(126)가 링기어 캐리어(104)에 비결합되는 중립상태를 유지하도록 제어를 한다.
변속 제어부(500)의 제어에 따라, 전진변속 슬리브(118)가 이동되어 전진변속 허브(116)와 유성기어 캐리어(112)가 결합됨으로써, 입력축(102), 선기어(110), 전진변속 허브(116), 전진변속 슬리브(118), 유성기어 캐리어(112) 및 유성기어(108)는 한 몸체가 된다.
이러한 상태에서, 동력원(100)이 동작되어 입력축(102)이 시계방향으로 회전하면, 입력축(102), 선기어(110), 전진변속 허브(116), 전진변속 슬리브(118), 유성기어 캐리어(112) 및 유성기어(108)는 모두 시계방향으로 회전한다.
즉 시계방향으로 회전하는 선기어(110)에 맞물려 있는 유성기어(108) 및 유성기어 캐리어(112)는 선기어(110)의 회전속도와 같은 속도로 시계방향으로 회전한다. 이러한 상태에서 시계방향으로 회전하는 유성기어(108)에 맞물려 있고 반시계방향의 회전을 허용하는 원웨이 클러치(140)에 결합된 링기어(106)는 반시계방향으로 회전한다. 이에 따라 유성기어(108)와 함께 시계방향으로 회전하는 유성기어 캐리어(112)에 고정 연결된 출력축(114)의 회전속도는 감속되지 않고, 전기자동차의 2단 변속이 이루어지게 되는 것이다.
마지막으로, 후진 변속 동작에 대해서 살펴보기로 한다.
도 5를 참조하면, 변속 제어부(500)는, 후진 변속시, 전진 변속부(122)가 유성기어 캐리어(112)에 비결합되도록 제어하고 후진 변속부(130)가 링기어 캐리어(104)에 결합되도록 제어한다.
구체적으로 변속 제어부(500)는, 후진 변속시, 전진 변속부(122)의 전진 변속 슬리브(118)가 유성기어 캐리어(112)에 비결합되는 중립상태를 유지하도록 하며, 후진 변속부(130)의 후진 변속 슬리브(126)가 링기어 캐리어(104)에 결합되게 제어한다.
동력원(100)의 동작으로 입력축(102)이 반시계 방향으로 회전하면, 입력축(102)과 함께 선기어(110)는 반시계 방향으로 회전한다. 선기어(110)에 치합되어 있는 유성기어(108)는 시계 방향으로 자전한다.
유성기어(108)에 맞물려 있는 링기어(106)는 유성기어(108)의 시계 방향의 자전에 대해서 반시계방향으로 회전하려고 한다. 이에 대해서 원웨이 클러치(140)는 링기어(106)의 반시계 방향을 허용하는 비작동상태로 동작하지만, 링기어(106)는 후진 변속 슬리브와 링기어 캐리어(104)의 결합에 의해서 고정된다. 이로 인하여 링기어(106)의 반시계방향 회전이 이루어지지 않게 된다.
이렇게 링기어(106)가 고정된 상태에서, 링기어(106)와 맞물려 있는 유성기어(108)는 시계방향으로 자전하면서 링기어(106)를 따라 반시계방향으로 공전한다. 유성기어(108)에 고정된 유성기어 캐리어(112)도 유성기어(108)의 공전 방향과 같은 방향(반시계 방향)으로 회전한다.
유성기어(108)가 시계방향으로 자전하면서 링기어(106)를 따라 반시계방향으로 공전하므로, 유성기어(108)의 공전속도는 유성기어(108)의 시계방향으로의 자전으로 인해서 감속되어 선기어(110)의 회전속도보다 느리게 된다. 유성기어(108)에 고정된 유성기어 캐리어(112)는 감속된 유성기어(108)의 공전방향 회전속도와 같은 속도로 반시계방향으로 회전하며, 선기어(110)의 회전속도보다 느리게 된다.
즉 링기어(106)의 회전이 구속된 상태에서 선기어(110)를 구동하면, 유성기어 캐리어(112)의 회전 중심에 고정 연결된 출력축(114)의 회전속도는 유성기어(108)의 시계방향의 자전으로 인하여 감속된 유성기어(108)의 공전속도와 같게 되며, 선기어(110)의 회전속도보다 느리게 되어, 전기자동차의 후단 변속이 이루어지게 되는 것이다.
도 3 내지 도 5에서 링기어(106)의 회전 구속이 원웨이 클러치(140)에 의해서 구속되는 것을 예시로 들어서 설명이 되었다. 링기어(106)의 회전 구속은 원웨이 클러치(140) 이외에도 브레이크 시스템(미도시) 또는 액추에이터 등을 포함하는 회전 제어부에 의해서도 이루어질 수 있다. 즉 브레이크 시스템 또는 액추에이터는 원웨이 클러치(140)와 같이 링기어(106)의 일 방향 회전만을 허용할 수 있는데, 도 3 내지 도 5에 개시된 변속 제어부(500)의 제어하에 링기어(106)의 일 방향 회전만을 허용할 수 있다.
다시 말해서, 도 3 내지 도 5의 구성에서 원웨이 클러치(140)를 브레이크 시스템 또는 액추에이터로 대체하여 1단 변속시, 2단 변속시 및 후진 변속시 링기어(106)의 회전을 제어할 수 있다.
1단 변속시, 변속 제어부(500)는 전진 변속부(122)가 유성기어 캐리어(112)에 비결합 되도록 제어하고 후진 변속부(130)가 링기어 캐리어(104)에 비결합 되도록 제어하고 회전 제어부를 제어하여 링기어(106)의 일 방향과 다른 방향으로 회전하려는 링기어(106)에 회전 제어부가 접촉하여 링기어(106)의 다른 방향으로의 회전을 방해함으로써 상기 링기어(106)의 회전을 고정할 수 있다.
2단 변속시, 변속 제어부(500)는 전진 변속부(122)가 유성기어 캐리어(112)에 결합되도록 제어하고 후진 변속부(130)가 링기어 캐리어(104)에 비결합 되도록 제어하며 회전 제어부를 제어하여 회전 제어부가 링기어(106)에 접촉하지 않도록 함으로써 링기어(106)의 일 방향으로 회전하려는 링기어(106)의 회전을 허용할 수 있다.
후진 변속시, 변속 제어부(500)는 전진 변속부(122)가 유성기어 캐리어(112)에 비결합되도록 제어하고 후진 변속부(130)가 링기어 캐리어(104)에 결합되도록 제어하며 회전 제어부를 제어하여 회전 제어부가 링기어(106)에 접촉하지 않도록 함으로써 링기어(106)의 일 방향으로 회전하려는 링기어(106)의 회전을 허용할 수 있다. 하지만 후진 변속시 링기어(106)의 일 방향 회전이 허용되지만 후진 변속부(130)와 링기어 캐리어(104)의 결합으로 링기어(106)의 회전이 고정될 수 있다.
도 3 내지 도 5에서 원웨이 클러치(140)가 회전 제어부로 대체되고 나머지 구성은 동일하므로 이에 대한 동작설명은 생략하기로 한다.
이제까지 본 발명에 대하여 제2실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 제2실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 따라서 본 발명의 범위는 전술한 제2실시예에 한정되지 않고 특허청구범위에 기재된 내용 및 그와 동등한 범위 내에 있는 다양한 실시 형태가 포함되도록 해석되어야 할 것이다.
이하, 도 6을 참조하여, 본 발명의 제3실시예에 따른 전기자동차용 변속 시스템을 설명한다.
전기 자동차의 구동력 전달방식은 횡치형(Transverse type)과 종치형(Longitudinal type)으로 나뉜다. 횡치형 구동력 전달방식의 전기 자동차는 구동원(모터)으로부터 동력을 전달받는 입력축(102)과 상기 입력축(102)과 연결되도록 마련되어 구동원의 동력을 전달받아 회전되는 출력축(114)이 평행하게 배치된 구조를 갖는다.
본 발명의 제1실시예 및 제2실시예에 따른 전기자동차용 변속 시스템은 횡치형 구동력 전달방식인데, 몇몇 실시예에서 종치형 구동력 전달방식으로 적용될 수도 있다. 본 발명의 제3실시예에 따른 전기자동차용 변속 시스템은 본 발명의 제1실시예 및 제2실시예에 따른 전기자동차용 변속 시스템이 종치형 구동력 전동방식으로 적용되는 예시적인 것이며, 다양한 실시예로 본 발명의 제1실시예 및 제2실시예에 따른 전기자동차용 변속 시스템은 종치형 구동력 전동방식으로 적용될 수 있다.
한편, 본 발명의 제3실시예에 따른 전기자동차용 변속 시스템은, 상기 동력원(100)과 상기 입력축(102) 사이에 설치되어 상기 동력원(100)의 회전속도를 변속하는 변속기(10)를 더 포함할 수 있다. 여기서, 변속기(10)로서 본 발명의 제1실시예 및 제2실시예에 따른 전기자동차용 변속 시스템 중 어느 하나가 적용될 수 있으며, 이를 통해 횡치형 구동력 전달방식의 본 발명의 제1실시예 및 제2실시예에 따른 전기자동차용 변속 시스템을 종치형 구동력 전달방식으로 전환시킬 수 있다. 변속기(10)의 1단 변속, 2단 변속, 후진 변속 등을 통해 본 발명의 제3실시예에 따른 전기자동차용 변속 시스템의 변속 및 후진이 가능할 수 있다.
본 발명의 제3실시예에 따른 전기자동차용 변속 시스템은, 동력원(100)으로부터 회전력을 전달받도록 설치된 입력축(102), 상기 입력축(102)에 수직하게 배치되고, 차동장치(70)와 연결되는 출력축(114a, 114b), 상기 입력축(102)에 자유회전 가능하게 설치된 구동기어(50), 상기 구동기어(50)와 치합되고, 상기 차동장치(70)에 고정 설치되며, 상기 차동장치(70)를 회전시켜 상기 출력축(114a, 114b)에 연결된 상기 구동륜(80, 82)을 회전시키는 피동기어(52) 를 포함한다.
여기서, 피동기어(52)는, 베벨 기어(bevel gear), 스파이럴 기어(spiral gear) 또는 하이포이드 기어(hypoid gear)일 수 있다.
도 6을 참조하면, 본 발명의 제3실시예에 따른 전기자동차용 변속 시스템은, 동력원(100)인 전기 모터(M)에 연결된 입력축(102)과, 상기 입력축(102)에 수직하게 배치되고 차동장치(70)에 연결되어 기어변속을 통해서 전기 모터(M)의 동력을 구동륜(80, 82)으로 출력하는 출력축(114a, 114b)을 포함된 구조를 갖는다.
즉 본 발명의 제3실시예에 따른 전기자동차용 변속 시스템은, 입력축(102)을 통해서 입력된 동력원(100)의 동력이 기어 변속 과정을 통해서 상기 입력축(102)과 수직하게 배치된 출력축(114a, 114b)에 전달되어 구동륜(80, 82)을 회전시키는 구조를 갖는다.
다시 말해서 본 발명의 제3실시예에 따른 전기자동차용 변속 시스템은, 종치형 구동력 전달 방식을 가져서, FF(FRONT MOTOR FRONT DRIVE, 전륜구동), FR(FRONT MOTOR REAR DRIVE, 후륜 구동) 타입의 전기 자동차의 동력 전달 시스템으로 이용될 수 있다. 이외에도 9륜 구동(FOUR WHEEL DRIVE)의 전기 자동차의 동력 전달 시스템으로 이용될 수도 있다.
이에 따라 본 발명의 제3실시예에 따른 전기자동차용 변속 시스템은, 큰 출력을 필요로 하는 중장비 차량, 버스, 트럭 등과 같은 대형차량 등에 이용될 수 있다.
결국, 본 발명의 제3실시예에 따른 전기자동차용 변속시스템은, 종치형 구동력 전달 방식을 가지므로, 큰 출력을 필요로 하는 중장비차량, 화물차 또는 버스 등과 같은 대형차량과 빠른 속도와 차량 중심 균형 및 높은 회전 관성을 요구하는 스포츠 차량 등에 적합한 동력 전달 시스템의 역할을 수행할 수 있게 되는 것이다.
나아가, 본 발명의 제3실시예에 따른 전기자동차용 변속 시스템은, 정차시 또는 출발시에 운전자의 편의성을 향상시키면서, 밀림에 따른 충돌 위험을 미연에 방지하기 위해서, 파킹 브레이크 장치를 더 구비할 수 있다.
상기 파킹 브레이크 장치는, 상기 입력축(102)의 회전을 구속 또는 구속해제하는 전자브레이크 또는 기계식 파킹 브레이크로 구현될 수 있다.
상기 전자브레이크는 동력원(100)과 변속기(10) 사이의 입력축(102)에 설치될 수 있다.
상기 기계식 파킹 브레이크는 상기 동력원(100)이 설치된 입력축(102)의 일단의 반대편인 입력축(102)의 타단에 설치될 수 있다.
이제까지 본 발명에 대하여 제3실시예들을 중심으로 살펴보았다. 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 제3실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 따라서 본 발명의 범위는 전술한 제3실시예에 한정되지 않고 특허청구범위에 기재된 내용 및 그와 동등한 범위 내에 있는 다양한 실시 형태가 포함되도록 해석되어야 할 것이다.
* 부호의 설명
10: 변속기 40: 1단구동기어
42: 1단피동기어 45: 제1클러치기어
50: 2단구동기어 52: 2단피동기어
55: 제2클러치기어 60: 싱크로나이저부
62: 싱크로나이저 허브 64: 싱크로나이저 슬리브
70: 차동장치 80, 82: 구동륜
100: 동력원 102: 입력축
104: 링기어 캐리어 106: 링기어
108: 유성기어 110: 선기어
112: 유성기어 캐리어 114, 114a, 114b: 출력축
116: 전진변속 허브 118: 전진변속 슬리브
120: 전진변속 포크 122: 전진 변속부
124: 후진변속 허브 126: 후진변속 슬리브
128: 후진변속 포크 130: 후진 변속부
132: 전진변속 액추에이터 모터 134: 전진변속 포크 구동축
136: 후진변속 포크 구동축 138: 후진변속 액추에이터 모터
140: 원웨이 클러치 200: 1단 변속부
202: 슬리브 가이드 204: 고정 슬리브 가이드
206: 1단변속 슬리브 208: 1단변속 포크
210: 1단변속 포크 구동축 212: 1단변속 액추에이터 모터
300: 2단 변속부 302: 2단변속 허브
304: 2단변속 슬리브 306: 2단변속 포크
308: 2단변속 포크 구동축 310: 2단변속 액추에이터 모터
500: 변속 제어부

Claims (15)

  1. 동력을 제공하는 동력원;
    상기 동력원으로부터 회전력을 전달받도록 설치된 입력축;
    상기 입력축에 연결되어 입력축의 회전에 따라 회전하는 링기어 캐리어;
    상기 링기어 캐리어에 연결되어 링기어 캐리어의 회전에 따라 회전하는 링기어;
    상기 링기어의 내측에 맞물려 설치되어 회전하는 유성기어;
    상기 유성기어에 연결되어 유성기어 회전에 따라 회전하는 유성기어 캐리어;
    상기 유성기어 캐리어에 연결되어 유성기어 캐리어와 같이 회전하는 출력축;
    상기 유성기어의 내측에 맞물려 설치되어 회전하고 상기 출력축이 회전가능 하게 상기 출력축과 연결되는 선기어; 및
    선기어와 결합하여 선기어의 회전을 고정하며 동력원의 일 방향 회전력을 전달받은 입력축이 일 방향으로 회전하고 이에 회전이 비고정된 링기어 캐리어가 일방향으로 회전하며 이로 인해 링기어가 일 방향 회전을 하며 링기어의 일 방향 회전에 따라 유성기어가 일 방향과 다른 방향으로 자전하면서 상기 회전이 고정된 선기어를 따라 일 방향으로 속도가 감속되어 공전하고 감속된 일 방향의 회전력이 회전이 비고정된 유성기어 캐리어 전달되어 출력축이 감속된 일 방향으로 회전하면서 1단 변속이 이루어지도록 하는 1단 변속부를 포함하는, 전기자동차용 변속시스템.
  2. 제1항에 있어서,
    링기어 캐리어와 유성기어 캐리어를 결합하여, 입력축, 링기어 캐리어, 링기어, 유성기어, 유성기어 캐리어 및 출력축이 하나의 몸체가 되게 하여 상기 입력축에 전달된 동력원의 일 방향으로의 회전력이 감속되지 않은 상태로, 유성기어에 전달되어 유성기어가 회전이 비고정된 선기어와 맞물려서 일 방향으로 회전하고 유성기어의 일 방향 회전력이 유성기어 캐리어를 통해 출력축에 전달되면서 2단 변속이 이루어지도록 하는 2단 변속부
    를 더 포함하는, 전기자동차용 변속시스템.
  3. 제2항에 있어서,
    1단 변속시, 1단 변속부를 제어하여 선기어와 1단 변속부가 결합하여 선기어의 회전을 고정하며 동시에 2단 변속부를 제어하여 링기어 캐리어와 유성기어 캐리어를 비결합하며,
    2단 변속시, 2단 변속부를 제어하여 링기어 캐리어와 유성기어 캐리어를 결합하여, 입력축, 링기어 캐리어, 링기어, 유성기어, 유성기어 캐리어 및 출력축이 하나의 몸체가 되게 하며 1단 변속부를 제어하여 선기어와 1단 변속부를 비결합되도록 하는 변속 제어부를 더 포함하는, 전기자동차용 변속시스템.
  4. 제3항에 있어서,
    상기 변속 제어부는,
    후진 변속시, 1단 변속부를 제어하여 선기어와 1단 변속부가 결합하여 선기어의 회전을 고정하며 동시에 2단 변속부를 제어하여 링기어 캐리어와 유성기어 캐리어를 비결합한 상태에서 동력원을 제어하여 동력원의 다른 방향의 회전력이 입력축에 전달되게 하거나, 또는 2단 변속부를 제어하여 링기어 캐리어와 유성기어 캐리어를 결합하여, 입력축, 링기어 캐리어, 링기어, 유성기어, 유성기어 캐리어 및 출력축이 하나의 몸체가 되게 하며 1단 변속부를 제어하여 선기어와 1단 변속부를 비결합되도록 한 상태에서 동력원을 제어하여 동력원의 다른 방향의 회전력이 입력축에 전달되게 하는, 전기자동차용 변속 시스템.
  5. 제1항에 있어서,
    상기 1단 변속부는,
    선기어에 고정 연결된 슬리브 가이드;
    상기 슬리브 가이드와 이격되어 설치되는 고정 슬리브 가이드;
    고정 슬리브 가이드 상에서 슬라이딩 이동되어 슬리브 가이드에 결합 또는 결합해제되는 1단변속 슬리브;
    1단변속 슬리브와 회전가능하게 연결되어 있는 1단변속 포크;
    1단변속 포크가 직선 이동 가능하게 1단변속 포크와 연결된 1단변속 포크 구동축; 및
    1단변속 포크 구동축을 회전시키는 1단변속 액추에이터 모터를 포함하는, 전기자동차용 변속 시스템.
  6. 제2항에 있어서,
    상기 2단 변속부는,
    유성기어 캐리어에 고정된 2단변속 허브;
    2단변속 허브 상에서 슬라이딩 이동되어 링기어 캐리어에 결합 또는 결합 해제되는 2단변속 슬리브;
    2단변속 슬리브와 회전가능하게 연결되어 있는 2단 변속 포크;
    2단 변속 포크가 직선 이동 가능하게 2단변속 포크와 연결된 2단변속 포크 구동축; 및
    2단변속 포크 구동축을 회전시키는 2단변속 액추에이터 모터를 포함하는, 전기자동차용 변속 시스템.
  7. 동력을 제공하는 동력원;
    상기 동력원으로부터 회전력을 전달받도록 설치된 입력축;
    상기 입력축에 축 연결되어 회전되는 선기어;
    상기 선기어의 외측에 맞물려 설치되는 유성기어;
    상기 유성기어가 입력축에서 회전 가능하게 지지하는 유성기어 캐리어;
    상기 유성기어 캐리어에 연결되는 출력축;
    상기 유성기어 캐리어의 외측에 설치되며 유성기어에 치합되는 링기어;
    상기 링기어가 출력축에서 회전 가능하게 지지하는 링기어 캐리어;
    상기 링기어의 일 방향 회전만을 허용하는 회전 제어부;
    상기 입력축에 고정 결합되어 선기어와 함께 회전하며, 유성기어 캐리어에 결합 또는 해제되어 전진 변속을 조절하는 전진 변속부;
    상기 출력축에 회전 가능하게 결합되며 링기어 캐리어에 결합 또는 해제되어 후진 변속을 조절하는 후진 변속부; 및
    1단 변속시, 상기 전진 변속부가 상기 유성기어 캐리어에 비결합 되도록 제어하고 상기 후진 변속부가 상기 링기어 캐리어에 비결합 되도록 제어하며, 후진 변속시, 상기 전진 변속부가 상기 유성기어 캐리어에 비결합되도록 제어하고 상기 후진 변속부가 상기 링기어 캐리어에 결합되도록 제어하는 변속 제어부를 포함하는, 전기자동차용 변속 시스템.
  8. 제7항에 있어서,
    상기 변속 제어부는,
    2단 변속시, 상기 전진 변속부가 상기 유성기어 캐리어에 결합되도록 제어하고 상기 후진 변속부가 상기 링기어 캐리어에 비결합 되도록 제어하는, 전기자동차용 변속 시스템.
  9. 제7항에 있어서,
    상기 1단 변속시, 상기 회전 제어부는 상기 링기어의 일 방향과 다른 방향으로 회전하려는 링기어 대해서 상기 회전 제어부가 작동상태로 작용하여 상기 링기어의 다른 방향으로의 회전을 방해하여 상기 링기어의 회전을 고정하는, 전기자동차용 변속 시스템.
  10. 제8항에 있어서,
    상기 2단 변속시, 상기 회전 제어부는 상기 링 기어의 일 방향으로 회전하려는 링기어에 대해서 비작동상태로 작용하여 상기 링기어의 일 방향으로의 회전을 허용하는, 전기자동차용 변속 시스템.
  11. 제7항에 있어서,
    상기 후진 변속시, 상기 회전 제어부와 유성기어 캐리어가 비결합상태이고 상기 후진 변속부와 링기어 캐리어가 결합상태에서, 상기 일 방향으로 회전하려는 링기어에 대해서 회전 제어부가 비작동상태로 작용하여 링기어의 일 방향 회전이 허용되지만, 상기 후진 변속부와 링기어 캐리어의 결합으로 링기어의 회전이 고정되는, 전기자동차용 변속 시스템.
  12. 제8항에 있어서,
    상기 변속 제어부는,
    1단 변속시, 상기 회전 제어부를 제어하여 상기 링기어의 일 방향과 다른 방향으로 회전하려는 링기어 대해서 상기 링기어의 다른 방향으로의 회전을 방해하여 상기 링기어의 회전을 고정하도록 하며,
    2단 변속시, 상기 회전 제어부를 제어하여 상기 링기어의 일 방향으로 회전하려는 링기어의 회전을 허용하며,
    후진 변속시, 상기 회전 제어부를 제어하여 상기 링기어의 일 방향으로 회전하려는 링기어의 회전을 허용하고,
    상기 후진 변속시 상기 링기어의 일 방향 회전이 허용되지만 상기 후진 변속부와 링기어 캐리어의 결합으로 링기어의 회전이 고정되는, 전기자동차용 변속 시스템.
  13. 제7항에 있어서,
    상기 전진 변속부는,
    상기 동력원의 회전력을 전달받는 상기 입력축에 고정 연결되는 전진변속 허브;
    상기 전진변속 허브에서 슬라이딩 이동되어 상기 유성기어 캐리어에 결합 또는 해제되는 전진변속 슬리브;
    상기 전진변속 슬리브와 회전가능하게 연결되어 있는 전진변속 포크;
    상기 전진변속 포크가 직선 이동 가능하게 상기 전진변속 포크와 연결된 전진변속 포크 구동축; 및
    상기 전진변속 포크 구동축을 회전시키는 전진변속 액추에이터 모터를 포함하는, 전기자동차용 변속 시스템.
  14. 제7항에 있어서,
    상기 후진 변속부는 상기 유성기어 캐리어에 고정 연결되어 회전하는 상기 출력축에 회전 가능하게 연결되는 후진변속 허브;
    상기 후진변속 허브에서 슬라이딩 이동되어 상기 링기어 캐리어에 결합 또는 결합 해제되는 후진변속 슬리브; 상기 후진변속 슬리브와 회전가능하게 연결되어 있는 후진변속 포크; 상기 후진변속 포크가 직선 이동 가능하게 상기 후진변속 포크와 연결된 후진변속 포크 구동축; 및
    상기 후진변속 포크 구동축을 회전시키는 후진변속 액추에이터 모터를 포함하는, 전기자동차용 변속 시스템.
  15. 제7항에 있어서,
    상기 회전 제어부는 원웨이 클러치인, 전기자동차용 변속 시스템.
PCT/KR2018/014951 2018-04-02 2018-11-29 전기자동차용 변속 시스템 WO2019194390A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201890001612.4U CN214743084U (zh) 2018-04-02 2018-11-29 电动汽车用变速系统
US17/060,617 US11674567B2 (en) 2018-04-02 2020-10-01 Electric vehicle transmission system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR1020180038164A KR20190115301A (ko) 2018-04-02 2018-04-02 후진 제어가 가능한 전기자동차용 변속 시스템
KR10-2018-0038164 2018-04-02
KR10-2018-0060948 2018-05-29
KR1020180060948A KR20190135667A (ko) 2018-05-29 2018-05-29 전기자동차용 변속 시스템

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/060,617 Continuation US11674567B2 (en) 2018-04-02 2020-10-01 Electric vehicle transmission system

Publications (1)

Publication Number Publication Date
WO2019194390A1 true WO2019194390A1 (ko) 2019-10-10

Family

ID=68101054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/014951 WO2019194390A1 (ko) 2018-04-02 2018-11-29 전기자동차용 변속 시스템

Country Status (3)

Country Link
US (1) US11674567B2 (ko)
CN (1) CN214743084U (ko)
WO (1) WO2019194390A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111336225A (zh) * 2020-03-12 2020-06-26 吉林大学 一种三联行星齿轮式轮内两挡自动变速机构及其换挡控制方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113942389B (zh) * 2021-11-19 2023-04-28 一汽解放汽车有限公司 一种电驱动桥和车辆

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120055335A (ko) * 2010-11-23 2012-05-31 (주)브이이엔에스 전기 자동차용 변속기 및 전기 자동차
US20130130856A1 (en) * 2010-05-14 2013-05-23 Beijing Zhi Ke Investment And Management Co., Ltd. Electric vehicle driving system
US20140148292A1 (en) * 2012-11-26 2014-05-29 Hyundai Motor Company Power transmission system of hybrid electric vehicle
KR101400877B1 (ko) * 2013-12-10 2014-05-29 최형진 자동차용 2단 동력전달장치 및 이를 이용한 다단 동력전달장치
KR20170012829A (ko) * 2015-07-24 2017-02-03 디와이 주식회사 전기 자동차용 변속기

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03117752A (ja) 1989-09-30 1991-05-20 Aisin Seiki Co Ltd オートマチックトランスアクスル
JP3736386B2 (ja) 2001-05-14 2006-01-18 日産自動車株式会社 自動変速機の伝動機構
EP2208914B1 (en) * 2001-05-14 2011-11-23 Nissan Motor Co., Ltd. Auxiliary Transmission
KR101282691B1 (ko) 2011-07-28 2013-07-05 현대자동차주식회사 전기자동차용 2단 변속기
AT513352B1 (de) * 2012-08-24 2015-06-15 Avl List Gmbh Antriebsstrang für ein Fahrzeug
KR101873790B1 (ko) 2016-03-16 2018-07-03 자동차부품연구원 전기자동차용 2단 변속장치
WO2019098218A1 (ja) * 2017-11-17 2019-05-23 アイシン・エィ・ダブリュ株式会社 車両用駆動装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130130856A1 (en) * 2010-05-14 2013-05-23 Beijing Zhi Ke Investment And Management Co., Ltd. Electric vehicle driving system
KR20120055335A (ko) * 2010-11-23 2012-05-31 (주)브이이엔에스 전기 자동차용 변속기 및 전기 자동차
US20140148292A1 (en) * 2012-11-26 2014-05-29 Hyundai Motor Company Power transmission system of hybrid electric vehicle
KR101400877B1 (ko) * 2013-12-10 2014-05-29 최형진 자동차용 2단 동력전달장치 및 이를 이용한 다단 동력전달장치
KR20170012829A (ko) * 2015-07-24 2017-02-03 디와이 주식회사 전기 자동차용 변속기

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111336225A (zh) * 2020-03-12 2020-06-26 吉林大学 一种三联行星齿轮式轮内两挡自动变速机构及其换挡控制方法
CN111336225B (zh) * 2020-03-12 2023-11-14 吉林大学 一种三联行星齿轮式轮内两挡自动变速机构及其换挡控制方法

Also Published As

Publication number Publication date
US20210071741A1 (en) 2021-03-11
CN214743084U (zh) 2021-11-16
US11674567B2 (en) 2023-06-13

Similar Documents

Publication Publication Date Title
WO2016108457A1 (ko) 고정변속단을 가지는 하이브리드 변속기
CN100359207C (zh) 车辆用变速器
WO2019194390A1 (ko) 전기자동차용 변속 시스템
WO2014025130A1 (ko) 다단 변속기
WO2014123320A1 (ko) 허브 내장형 다단 변속기
WO2016148463A1 (ko) 로봇 암
WO2018212595A1 (ko) 모터의 다단 변속기
WO2017095162A1 (ko) 자동 구동 전환장치
US3115048A (en) Trans-axle
US11181174B2 (en) Powertrain for electric vehicle
WO2013151402A1 (ko) 변속 장치
WO2015046838A1 (ko) 오토바이용 후진장치
WO2009088232A2 (ko) 유성기어세트 및 이를 이용한 동력 전달 장치
WO2014081198A1 (ko) 듀얼클러치 변속장치
WO2022034977A1 (ko) 변속부를 내장한 전기 모터
WO2017073993A1 (ko) 무단 변속기
US11697339B2 (en) Vehicle drive apparatus
WO2017171472A1 (ko) 농업용 작업차량의 변속장치
WO2016108299A1 (ko) 무단 변속장치
US20190168603A1 (en) A vehicle driveline system
WO2020204296A1 (ko) 전기 자동차용 건식 토크 컨버터 및 그 제어방법
WO2018043866A2 (ko) 2단 변속장치
WO2015012656A1 (ko) 차량용 변속장치
WO2013058508A2 (ko) 변속장치
WO2020060043A1 (ko) 농업용 작업차량의 변속장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18913875

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18913875

Country of ref document: EP

Kind code of ref document: A1