WO2014025130A1 - 다단 변속기 - Google Patents

다단 변속기 Download PDF

Info

Publication number
WO2014025130A1
WO2014025130A1 PCT/KR2013/004823 KR2013004823W WO2014025130A1 WO 2014025130 A1 WO2014025130 A1 WO 2014025130A1 KR 2013004823 W KR2013004823 W KR 2013004823W WO 2014025130 A1 WO2014025130 A1 WO 2014025130A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
ring
pole
planetary gear
shaft
Prior art date
Application number
PCT/KR2013/004823
Other languages
English (en)
French (fr)
Inventor
유혁
정태진
안성철
Original Assignee
(주)엠비아이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)엠비아이 filed Critical (주)엠비아이
Priority to US13/980,801 priority Critical patent/US9182024B2/en
Publication of WO2014025130A1 publication Critical patent/WO2014025130A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H55/00Elements with teeth or friction surfaces for conveying motion; Worms, pulleys or sheaves for gearing mechanisms
    • F16H55/02Toothed members; Worms
    • F16H55/30Chain-wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/04Combinations of toothed gearings only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M11/00Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels
    • B62M11/04Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels of changeable ratio
    • B62M11/14Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels of changeable ratio with planetary gears
    • B62M11/16Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels of changeable ratio with planetary gears built in, or adjacent to, the ground-wheel hub
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M9/00Transmissions characterised by use of an endless chain, belt, or the like
    • B62M9/02Transmissions characterised by use of an endless chain, belt, or the like of unchangeable ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/68Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings
    • F16H61/684Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive
    • F16H61/686Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for stepped gearings without interruption of drive with orbital gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/02Final output mechanisms therefor; Actuating means for the final output mechanisms
    • F16H63/08Multiple final output mechanisms being moved by a single common final actuating mechanism
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M11/00Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels
    • B62M11/04Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels of changeable ratio
    • B62M11/14Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels of changeable ratio with planetary gears
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M11/00Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels
    • B62M11/04Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels of changeable ratio
    • B62M11/14Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels of changeable ratio with planetary gears
    • B62M11/18Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels of changeable ratio with planetary gears with a plurality of planetary gear units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/003Transmissions for multiple ratios characterised by the number of forward speeds
    • F16H2200/0078Transmissions for multiple ratios characterised by the number of forward speeds the gear ratio comprising twelve or more forward speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/2002Transmissions using gears with orbital motion characterised by the number of sets of orbital gears
    • F16H2200/201Transmissions using gears with orbital motion characterised by the number of sets of orbital gears with three sets of orbital gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/2079Transmissions using gears with orbital motion using freewheel type mechanisms, e.g. freewheel clutches
    • F16H2200/2087Transmissions using gears with orbital motion using freewheel type mechanisms, e.g. freewheel clutches three freewheel mechanisms

Definitions

  • the present invention relates to a multi-stage transmission, in particular, to implement a compact transmission in more multi-stage by using a planetary gear set, and smooth for both the forward operation according to the acceleration operation as well as the reverse operation according to the deceleration operation using the forced return means.
  • the present invention relates to a device capable of improving the merchandise of a product and maximizing user convenience.
  • a wheel In general, a wheel is provided, a bicycle, a wheelchair, a cart, and the like, which receive a manpower or travel using various driving power such as electric power, are provided with a transmission for shifting the driving speed.
  • Such a transmission can be shifted in multiple stages from a high speed to a low speed according to a rider or a user's operation, so that the required torque or speed can be obtained according to the driving environment.
  • a planetary gear set composed of a sun gear, a planetary gear, a ring gear, and a carrier is provided in the hub shell to prevent the gears from being exposed to the outside while changing the speed in multiple stages through a compact configuration. to be.
  • the conventional multi-stage transmission using the planetary gear set has fewer shift stages than the complicated structure, and in particular, a smooth shift is not performed because the pawls that engage the inner circumferential surface of the sun gear to restrict rotation of the sun gear are not released. There was a technical problem that it was not working.
  • the present invention is to solve the above problems, it is possible to compactly configure the multi-stage transmission using the planetary gear set to improve the productability of the product, using the forced return means of the forward operation of the acceleration operation as well as deceleration It is to provide a multi-stage transmission to maximize the user's ease of use by making a smooth shift even in the reverse operation according to the operation.
  • the present invention includes a shaft fixed at both ends and a hub shell rotatably positioned on the outer circumference of the shaft to output a sprocket and a rotational force to receive a rotational force;
  • a transmission part including a planetary gear set and a one-way clutch including a sun gear, a planetary gear, a carrier, and a ring gear provided inside the hub shell, and shifting the rotational force input to the sprocket to output the hub shell;
  • In the multi-stage transmission including a control unit for controlling the shift by controlling the pole provided on the shaft in accordance with the operation of the shift lever to selectively limit the rotation of the sun gear;
  • By shifting the drive pole clutch in the axial direction of the shaft according to the rotation operation of the shift lever a shift is made by selectively transmitting rotational force through a drive pole between a rotating driver and the non-rotating drive pole clutch. Is achieved.
  • the first forced return means for selectively controlling the pawl in the engaged state to the forced release state; It is preferable that the second forced return means further comprises a drive pawl clutch and a rotation limiting ring to control the drive pawl in a forced release state.
  • the control unit controls the poles in such a way that one or more poles are stacked and rotated integrally in the axial direction of the shaft to selectively control one or more poles in an engaged state or a released state to shift gears. It is most desirable to control.
  • the present invention as described above can be configured in a compact gear by using a planetary gear set to improve the productability of the product, by using the forced return means for the forward operation of the acceleration operation as well as the reverse operation of the deceleration operation It is an invention that can maximize the ease of use of the user by making a smooth shift even.
  • FIG. 1 is a perspective view showing a multi-stage transmission of the present invention
  • FIG. 2 is a front view showing a multi-stage transmission of the present invention
  • FIG. 3 is a partially cutaway perspective view illustrating a multistage transmission of the present invention.
  • FIG. 4 is a front sectional view showing a multistage transmission of the present invention.
  • FIG. 5 is an exploded perspective view illustrating the hub shell of the multi-stage transmission of the present invention.
  • FIG. 6 is an exploded perspective view illustrating a third speed planetary gear set of the multi-stage transmission of the present invention.
  • FIG. 7 is an exploded perspective view illustrating a second speed planetary gear set of the multi-stage transmission of the present invention.
  • FIG. 8 is an exploded perspective view illustrating a sprocket of the multistage transmission of the present invention.
  • FIG. 9 is an exploded perspective view illustrating an exploded driver of the multi-stage transmission of the present invention.
  • FIG. 10 is an exploded perspective view illustrating an exploded drive pole clutch of the multi-stage transmission of the present invention.
  • FIG. 11 is an exploded perspective view illustrating a first speed planetary gear set of the multi-stage transmission of the present invention.
  • FIG. 12 is an exploded perspective view illustrating a pole of the multistage transmission of the present invention.
  • FIG. 13 is a perspective view showing a control unit of the multi-stage transmission of the present invention.
  • Fig. 14 is a view showing the engaged state of the drive poles in the multi-stage transmission of the present invention.
  • 15 is a view showing a release state of a drive pole in a multi-stage transmission of the present invention.
  • 16 is a diagram showing a reverse operation of the first forced return means in the multi-stage transmission of the present invention.
  • 17 is a view showing a forward operation of the first forced return means in the multi-stage transmission of the present invention.
  • FIG. 18 is a perspective view illustrating a pawl in a multistage transmission of the present invention.
  • 19 is a diagram showing control of a pole in the multi-stage transmission of the present invention.
  • 20 is an exploded perspective view showing the arrangement of springs provided in the first forced return means in the multistage transmission of the present invention
  • first speed carrier 413 first speed planetary gear
  • control unit 501 second speed first pole
  • cabling 531 outer cabling
  • drive unit 610 driver
  • plate ring 620 drive pole clutch
  • cover 750 forced return ring
  • FIG. 1 is a perspective view showing a multistage transmission of the present invention
  • Figure 2 is a front view showing a multistage transmission of the present invention.
  • FIG. 3 is a partially cutaway perspective view showing the multi-stage transmission of the present invention
  • FIG. 4 is a front sectional view showing the multi-stage transmission of the present invention.
  • FIG. 5 is an exploded perspective view illustrating an exploded hub shell of the multi-stage transmission of the present invention
  • FIG. 6 is an exploded perspective view illustrating a third speed planetary gear set of the multi-stage transmission of the present invention
  • FIG. 7 is an exploded perspective view of the multi-stage transmission of the present invention.
  • FIG. 8 is an exploded perspective view showing an exploded sprocket of the multi-stage transmission of the present invention
  • FIG. 9 is an exploded perspective view showing an exploded driver of the multi-stage transmission of the present invention.
  • FIG. 10 is an exploded perspective view showing an exploded drive pole clutch of the multi-stage transmission of the present invention
  • FIG. 11 is an exploded perspective view showing a first speed planetary gear set of the multi-stage transmission of the present invention.
  • FIG. 12 is an exploded perspective view showing the pole of the multi-stage transmission of the present invention
  • FIG. 13 is a perspective view showing a control unit of the multi-stage transmission of the present invention.
  • Fig. 14 is a view showing the engaged state of the drive poles in the multi-stage transmission of the present invention
  • Fig. 15 is a view showing the release state of the drive poles in the multi-stage transmission of the present invention.
  • FIG. 16 is a diagram showing a reverse operation of the first forced recovery means section in the multi-stage transmission of the present invention
  • FIG. 17 is a diagram showing a forward operation of the first forced recovery means section in the multi-stage transmission of the present invention.
  • Fig. 18 is a perspective view showing a pole in the multistage transmission of the present invention
  • Fig. 19 is a diagram showing control of a pole in the multistage transmission of the present invention
  • Fig. 20 is a first forced return in the multistage transmission of the present invention. It is an exploded perspective view which shows the arrangement of the spring provided in a means part.
  • the multi-stage transmission of the present invention implements a multi-stage shift from a planetary gear set by controlling a plurality of poles by stacking control rings, and in addition to the planetary gear set, a drive pole clutch and a drive pole are provided to form a shift stage composed of a planetary gear set. It can be implemented twice, in particular, a forced return means is provided to strongly release the pole that does not come out of strong engagement with the sun gear is a smooth feature that the shift is made smoothly.
  • the multi-stage transmission of the present invention includes a shaft 100 fixed at both ends, a sprocket 200 that is rotatably positioned on an outer circumference of the shaft 100, and receives a rotational force, and a hub shell 300 that outputs the rotational force;
  • the hub shell 300 includes a planetary gear set including a sun gear, a planetary gear, a carrier, and a ring gear and a one-way clutch provided in the hub shell 300 to shift the rotational force input to the sprocket 200.
  • the multi-stage transmission including a control unit 500 for controlling the shift by selectively controlling the rotation of the sun gear by controlling the pole provided in the shaft 100 in accordance with the operation of the shift lever;
  • the multi-stage transmission of the present invention is composed of a shaft 100, a sprocket 200, a hub shell 300, a transmission unit 400, and a controller 500.
  • the shaft 100 is rotatably fixed to the body of a scooter, a bicycle, a rickshaw or the like (hereinafter, referred to as a “driving device") that requires shifting by means of fastening means such as a fixing nut.
  • the shaft 100 is formed with a different diameter according to the part, in particular, the plurality of pole seats 101, 102, 103 formed in the center outer peripheral surface of the shaft 100 concave with a predetermined phase difference
  • the pole to be described later is located inside it.
  • Such a shaft 100 forms the skeleton of the present invention, and all of the components to be described below are provided on the outer circumference of the shaft 100 to be rotatable or non-rotable.
  • the sprocket 200 is configured to receive a rotational force such as an attractive force or electric force from the traveling device into the multi-stage transmission of the present invention, and is provided to be rotatable on one side of the shaft 100.
  • the sprocket 200 receives the driving force through a power transmission means such as a chain, for example.
  • the hub shell 300 is configured to output the driven force shifted at the outermost position of the shaft 100 to wheels of a traveling device.
  • the hub shell 300 is formed in a substantially cylindrical shape, while one side is closed while the other side is opened to insert various components therein through the open portion.
  • the hub shell 300 On the closed side of the hub shell 300 is provided a cone nut 902 and a bearing 904 coupled to the shaft 100, the hub shell 300 is rotatably supported independently from the shaft 100. .
  • the transmission unit 400 is positioned in the hub shell 300 and shifts the rotation input through the sprocket 200 in multiple stages, and then outputs the plurality of planetary gears through the hub shell 300.
  • three planetary gear sets that is, the first-speed planetary gear set 410, the second-speed planetary gear set 420, and the third-speed planetary gear set 430 are provided.
  • the first-speed planetary gear set 410 the first-speed planetary gear set 410
  • the second-speed planetary gear set 420 the second-speed planetary gear set 420
  • the third-speed planetary gear set 430 are provided.
  • the transmission part 400 is composed of a first speed planetary gear set 410, a second speed planetary gear set 420, and a third speed planetary gear set 430.
  • the rotational force transmitted to the first speed carrier 412 or the first speed ring gear 411 is transmitted to the second speed carrier 422 via the first speed planetary gear set 410 and the second speed carrier 422.
  • the rotational force transmitted to) is shifted into six stages through the second speed planetary gear set 420 and the third speed planetary gear set 430, and is output to the hub shell 300.
  • Each of the planetary gear sets includes a ring gear, a carrier, a planetary gear, and a sun gear, and the planetary gears are formed in two stages of large and small diameters having different diameters, and are rotatably supported by the carrier.
  • a ring gear is provided outside the carrier, and a sun gear is located inside the carrier.
  • the first speed planetary gear set 410 may include the first speed ring gear 411, the first speed carrier 412, the first speed planetary gear 413, and the first speed sun gear ( 414).
  • the first speed sun gear 414 has a coupling groove formed on its inner circumferential surface so that the rotation is not limited by the pole and is engaged with the outer circumferential surface of the shaft 100 to maintain a fixed state that does not always rotate.
  • the third speed planetary gear set 430 may include a third speed ring gear 431, a third speed carrier 432, a third speed planetary gear 433, and a third speed sun gear ( 434).
  • the second speed planetary gear set 420 is provided with two sun gears as shown in FIG. 7, the second speed ring gear 421, the second speed carrier 422, the second speed planetary gear 423, And a second first sun gear 424 and a second second second sun gear 425.
  • the outer circumferential surface of the second speed first sun gear 424 of the second speed planetary gear set 420 meshes with the large diameter side of the second speed planetary gear 423 having two stages, and the second speed The outer circumferential surface of the second sun gear 425 is engaged with the small diameter side of the second speed planetary gear 423.
  • the second speed first sun gear 424, the second speed second sun gear 425, and the third speed sun gear 434 are respectively set to the second speed on the inner gear formed on the inner circumferential surface thereof.
  • rotation of the sun gear is selectively limited by the engagement.
  • the shift ratio of each planetary gear set is changed according to whether the sun gears are rotatable.
  • the first speed carrier 412 of the first speed planetary gear set 410 and the second speed carrier 422 of the second speed planetary gearset 420 are directly connected to each other to rotate integrally;
  • the second speed ring gear 421 of the second speed planetary gear set 420 and the third speed carrier 432 of the third speed planetary gear set 430 are directly connected to each other to rotate integrally.
  • the driving force transmitted to the transmission unit 400 is transmitted to the third speed planetary gear set 430 from the first speed planetary gear set 410 via the second speed planetary gear set 420 and shifted to multiple stages. After being output through the hub shell 300.
  • a plurality of one-way clutches are provided in the shifting part 400, so that when the rotational speed of the component located inside the one-way clutch is faster than the rotational speed of the component located outside, The rotational force of the component is transmitted to the component located outside.
  • one-way clutch having such operation is provided with four as shown in FIG. 3.
  • a first circle is formed between the outer circumferential surface of the driver 610 of the drive unit 600 and the inner circumferential surface of the first speed ring gear 411 of the first speed planetary gear set 410 provided in the shifting unit 400.
  • a second clutch is provided between the outer circumferential surface of the second speed carrier 422 and the inner circumferential surface of the second speed ring gear 421 of the second speed planetary gear set 420 provided in the shifting part 400.
  • the wake clutch 920 is provided.
  • a third one-way clutch 930 is provided between an outer circumferential surface of the second speed ring gear 421 of the second speed planetary gear set 420 provided in the transmission part 400 and an inner circumferential surface of the hub shell 300.
  • a fourth one-way clutch 940 is provided between the outer circumferential surface of the third speed gear ring 431 of the third speed planetary gear set 430 provided in the transmission part 400 and the inner circumferential surface of the hub shell 300.
  • the finally shifted rotational force is output to the hub shell 300 only through the third one-way clutch 930 or the fourth one-way clutch 940.
  • control unit 500 that controls the shift of the transmission unit 400 includes three poles, that is, a second speed first pole 501, a second speed second pole 502, and a second pole as shown in FIG. 18.
  • the three-speed poles 503 are positioned in the pole portions 101, 102, 103 of the shaft 100, respectively, and these poles are positioned to be elastically erected by the ring springs.
  • control unit 500 controls one or more poles as one or more poles are stacked and rotated integrally in the axial direction of the shaft 100 as shown in FIG. 12. It is advisable to control the shift by selectively setting the gear to the engaged or released state.
  • each pole the control part and the engaging part are formed to protrude at different intervals, and as shown in FIG. 18, first, the second speed first pole 501 and the second speed second pole ( In the drawing, the control section is formed at a predetermined distance from the right end of the drawing, and the locking section is formed again from the control section.
  • control section and the engaging portion are adjacent to each other in the second speed first pole 501, whereas the control portion and the engaging portion are the second speed first pole 501 in the second speed second pole 502. It is a little far away from).
  • the third speed pole 503 has a control part formed at the right end and a locking part formed at the left end of the drawing, so that the control part and the locking part are farthest apart from each other.
  • control ring is located on the control unit formed on each pole, and the sun gear is positioned on the locking portion, respectively.
  • the second circumference of the second speed first pole 501, the second speed second pole 502, and the third speed pole 503 rotates in association with the rotation of the shift lever.
  • a speed control ring 510 and a third speed control ring 520 are provided along the axial direction of the shaft 100;
  • a groove is formed in the inner circumferential surface of the second speed control ring 510 so that the second speed first pole 501 and the second speed second pole 502 are rotated according to the rotation of the second speed control ring 510. This selectively exits into the groove;
  • a groove is formed in the inner circumferential surface of the third speed control ring 520 so that the third speed pole 503 selectively exits the groove according to the rotation of the third speed control ring 520.
  • the distance between the control section of the second speed first pole 501 and the second speed second pole 502 described above corresponds to the thickness of the third speed control ring 520. .
  • the engaging portion of the pole is raised.
  • the rotation of the sun gear is to be limited by engaging the inner gear formed on the inner peripheral surface of the corresponding sun gear.
  • the groove portion formed in the second speed control ring 510 is formed in a pair corresponding to the second speed first pole 501 and the second speed second pole 502 and the shaft 100.
  • a plurality of are formed based on the axial center of;
  • a plurality of grooves formed in the third speed control ring 520 are formed on the axis center of the shaft 100 in correspondence with the third speed pole 503.
  • the groove portion formed in the second speed control ring 510 is switched between the engagement and release state of the third speed pole 503 every 15 degrees of rotation of the third speed control ring 520, the second speed control The second speed first pole 501 and the second speed second pole 502 that enter the groove of the ring 510 are to be exited from the groove after 30 degrees rotation.
  • control unit 500 is connected to the cable is drawn out in accordance with the operation of the shift lever is connected to the cable 530 rotatably supported on the outer peripheral surface of the shaft (100);
  • a joint that is elastically transmitted to the spring 590 through the connection ring 541 connected to the cable 530 and the angle control ring 542 fitted and assembled to the connection ring 541 to operate integrally.
  • the engagement ring meshes with the joint ring 550 to rotate integrally and rotates the second speed control ring 510 and the third speed control ring 520 in combination with the third speed control ring 520. It is preferred to include 560.
  • the cable 530 is an outer cable 531 to which the cable is connected as shown in Figure 8 and the inner cable that is rotatably supported on the shaft 100 in engagement with the inner peripheral surface of the outer cable 531. Ring 532.
  • the operating force is transmitted to the joint ring 550 through the coupling ring 541 and the angle control ring 542 as shown in FIG. 11, in which the projection ring protrudes to form the angle control ring ( 542) to rotate integrally.
  • a spring 590 is connected between the angle control ring 542 and the joint ring 550 as shown in FIG. 20, so that the joint ring (from the angle control ring 542 through the spring 590). 550 is the operating force is transmitted.
  • the control state of 503 is shown in FIG. 19, which is summarized as follows.
  • Table 1 below also shows whether or not the one-way clutch transmits the rotational force for each pole operation.
  • the drive unit 600 for transmitting the rotational force input to the sprocket 200 to the transmission unit 400 is provided.
  • the driver 610 provided in the drive unit 600 is located on the open side of the hub shell 300 as shown in FIG. 9, but is provided with a cone nut 901 and a bearing 903 coupled to the shaft 100.
  • the driver 610 is rotatably supported from the shaft 100.
  • the hub shell 300 and the drive unit 600 are provided to be rotatable independently from each other by a bearing 905 positioned therebetween, and foreign matters are separated by the dust cover 310 shown in FIG. 8. Prevent intrusion
  • bearings 903, 904 and 905 exemplify ball bearings, but are not limited to those types such as sliding bearings.
  • the shift is made by selectively transmitting the rotational force through the drive pole 630 between the.
  • the rotational force input to the shifting unit 400 is shifted back to the second stage depending on whether the rotation of the drive pole 630 by the drive pole clutch 620 is limited. It is possible.
  • the drive pole clutch 620 is a non-rotational component that can only move along the axial direction of the shaft 100 through which a more compact configuration can realize a double speed stage.
  • the drive unit 600 is the first of the first speed planetary gear set 410 from the drive unit 600 in accordance with the engagement or release of the drive pole clutch 620 and the drive pole 630.
  • the rotational force to the speed carrier 412 or the first speed ring gear 411 is output in two stages can be output with a transmission ratio of 12 stages in total.
  • the joint ring 550 is formed with a predetermined section inclined contact surface 551;
  • a drive pole clutch 620 positioned outside the connection ring 541 and having an inclined surface 621 corresponding to the inclined contact surface 551 and having a one-way tooth 622 and a contact surface 623 formed on an outer circumferential surface thereof;
  • the drive pole clutch 620 meshes with the drive pole clutch 620 in the axial direction of the shaft 100, and an inner circumferential surface engages with the shaft 100, so that the drive pole clutch 620 is not rotatable.
  • Rotation limit ring 640 to move along;
  • the driver 610 is rotatably supported by the inside of the driver 610 to revolve integrally with the driver 610, the inner end of the drive pole clutch 620 in contact with the revolving contact, the outer end is
  • the drive pawl may not be engaged with the teeth formed on the inner circumferential surface of the first speed carrier 412 of the first speed planetary gear set 410 or the drive pole clutch 620 may move in an axial direction to an intermediate position.
  • the revolving contact of the driver 610 causes the inner end to repeatedly contact the end of the tooth or the valley of the tooth, forcing the outer end to force the first speed planet.
  • the inner end of the drive pole clutch as the drive pole clutch 620 is axially moved to the end position. If the contact surface 623 and the one-way tooth 622 of the latch 620 is out of engagement, the outer end is engaged with the tooth formed on the inner peripheral surface of the first speed carrier 412 of the first speed planetary gear set 410 and the driver. It is preferable to include a drive pole 630 for directly connecting the 610 and the first speed carrier 412 to integrally rotate.
  • the drive pole clutch 620 and the rotation limit ring 640 may have a function of the second forced return means.
  • Two inclined contact surfaces 551 formed on the joint ring 550 are formed with a phase difference of 180 degrees.
  • the inclined surface 621 is formed at one side of the drive pole clutch 620 located at the outer side of the connection ring 541, so that the joint ring 550 rotates so that the inclined contact surface 551 is the inclined surface ( 621, the drive pole clutch 620 moves to the right in the drawing as shown in FIG. 14.
  • the spring 580 is connected between the angle control ring 542 and the drive pole clutch 620 as shown in FIG.
  • the drive pawl clutch 620 meshes with the rotation limit ring 640, so that rotation is impossible.
  • a spring 570 is provided between the drive pole clutch 620 and the rotation limit ring 640 as shown in FIG. 20. To elastically space the gaps.
  • the drive pole clutch 620 is elastically supported by the spring 570 to move to the left in the drawing, and the return of the drive pole clutch 620 that has moved to the right is made by the spring 570. You lose.
  • the drive pole 630 is provided with an elastic body (not shown) to elastically support the drive pole 630 to rotate in one direction.
  • the drive pole 630 rotates together with the drive unit 600, the drive The inner end of the pawl 630 is in contact with the contact surface 623 of the drive pole clutch 620 as shown in FIG.
  • the rotational force transmitted through the driver 610-> first one-way clutch 910-> first speed ring gear 411-> first speed planetary gear 411-> first speed carrier 412 The drive force is transmitted to the first speed carrier 412 directly from the driver 610 through the drive pole 630 to transmit the rotational force at a higher speed, so that the drive unit 600 shifts itself by two speeds.
  • a total of 12 gears will be realized with 6 gears consisting of three planetary gear sets.
  • the shift is formed in the angle control ring 542 in a predetermined angular range so that the shift occurs after the shift lever is rotated by a predetermined angle, and the projection formed in the joint ring 550 is located in the groove. It becomes possible.
  • the inner side of the driver 610 is provided with a plate ring 611 which rotates integrally with a predetermined gap; And the drive pole (630) is rotatably supported by the plate ring (611).
  • the first forced return capable of selectively controlling the pawl in the engaged state in a forced release state by using the rotational force input to the sprocket 200 according to the rotation operation of the shift lever and the pawl engagement condition.
  • the first forced return means 700 is coupled to one surface of the plate ring 611 is rotated integrally and the forward rotating body 710 formed with a ratchet 711 on the inner peripheral surface; Tooth teeth formed on one outer circumferential surface are engaged with the large diameter side of the first speed planetary gear 413 consisting of two stages provided in the first speed planetary gear set 410, and the ratchet 721 is formed on the other inner circumferential surface.
  • a rotating body 720 An upper protrusion 731 and a lower protrusion 732 integrally protruding from the rear surface of the joint ring 550; A cover 740 protruding in an arc shape on an upper rear surface of the joint ring 550; Located in the side of the joint ring 550, the upper groove 751 and the lower groove 752 having a predetermined gap for receiving the upper protrusion 731 and the lower protrusion 732 is formed, the elastic adjustment bolt 753 and the compression spring 754 and the compression spring 754 receives the elastic force to the lower groove projection 755 close to a predetermined position by a transfer pin 756 to the center of the lower groove 752 A force return ring 750 for allowing the lower protrusion 732 to be elastically positioned and transmitting an operation force by being coupled to the engagement ring 560; Both sides of the forced return ring 750 are provided to be engaged with the ratchet 711 of the forward rotating body 710 and the ratchet 721 of the reverse rotating body 720,
  • the forward rotating body 710 always rotates in the forward direction as shown in FIG. 17, and the reverse rotating body 720 always rotates in the reverse direction as shown in FIG. ).
  • the forward pole 760 or the reverse pole 770 provided in the forced return ring 750 is released from the cover 740 of the joint ring 550 to be elastically opened by the elastic body, thereby being located outside thereof.
  • the rotational force is transmitted to the forced return ring 750, the shift is made by the shift lever operating force. It is possible to force shifts that were not performed.
  • the forced return ring 750 is located between the forward rotation body 710 and the reverse rotation body 720 so that it may be operated in the forward direction or reverse direction, when the shift operation, that is, accelerated operation in the forward direction As shown in FIG. 17, the forward pawl 760 meshes with the ratchet 711 of the forward rotation body 710.
  • the transfer pins 756 contacting the lower groove protrusion 755 as shown in FIG. 11 so that the lower protrusion 732 is located at the center from both ends are both sides.
  • the transfer pins 756 are elastically supported by the compression springs 754, respectively, and the compression springs 754 are again connected to the elastic adjustment bolts 753 to tighten the elastic adjustment bolts 753. By adjusting or loosening the elastic force of the compression spring 754 may be adjusted.
  • the first forced return means 700 can be positioned at the center of the joint ring 550.
  • gap retaining rings 810 and 820 are provided to maintain the axial gap with respect to the shaft 100 and rotate around the shaft 100, respectively, such as a third speed sun gear 434.
  • the first first sun gear 424, the second second second sun gear 425, and the third second sun gear 434 can be rotated in an unchanged position.
  • the drive pole 630 provided in the drive unit 600 only rotates in contact with the contact surface 623 of the drive pole clutch 620, the drive pole 630 to the rotational force of the drive unit 600 is the first speed It does not transfer directly to the first velocity carrier 412 of the planetary gear set 410.
  • the rotational force of the driver 610 is transmitted to the first speed ring gear 411 of the first speed planetary gear set 410 through the first one-way clutch 910 provided in the drive unit 600.
  • the first speed planetary gear 413 rotates about the fixed first speed sun gear 414
  • the second speed carrier of the first speed carrier 412 and the second speed planetary gear set 420 ( 422 rotates integrally.
  • the second speed carrier 422 is rotated. Is transmitted to the second speed ring gear 421 through the second one-way clutch 920.
  • the third speed carrier 432 of the third speed planetary gear set 430 rotates together with the second speed ring gear 421, but the third speed sun gear 434 is rotatable.
  • the planetary gear 433 is unable to transmit the rotational force.
  • the second speed control ring 510 and the third speed control ring 520 are rotated about 15 degrees.
  • the rotation of the third speed sun gear 434 is limited by engaging with the speed sun gear 434.
  • the rotational force of the second speed ring gear 421 is transmitted to the third speed carrier 432.
  • the third speed sun gear 434 is restricted by the third speed pole 503, the third speed is reduced.
  • the planetary gear 433 rotates to rotate the third speed ring gear 431 at a higher speed than the first stage.
  • the rotation of the third speed ring gear 431 is transmitted to the inner circumferential surface of the hub shell 300 through the fourth one-way clutch 940 and output is made.
  • the third one-way clutch 930 is To idle.
  • the third stage is operated by the shift lever, and as shown in FIG. 19, the second speed control ring 510 and the third speed control ring 520 are further rotated by about 15 degrees. ) Is engaged with the second first sun gear 424 to limit the rotation of the second first sun gear 424.
  • the second speed planetary gear having two stages is formed by the rotation of the second speed carrier 422.
  • the large diameter side of the gear 423 meshes with the second speed first sun gear 424 to rotate the second speed ring gear 421 at a higher speed than the second stage.
  • the third speed carrier 432 of the third speed planetary gear set 430 rotates together with the second speed ring gear 421, but the third speed sun gear 434 is rotatable.
  • the planetary gear 433 is unable to transmit the rotational force.
  • the joint ring 550 rotates 15 degrees counterclockwise while the forced return ring 750 does not rotate, so that the reverse pole 770 is removed from the cover 740 of the joint ring 550.
  • the gear is engaged with the ratchet 721 of the reverse rotation body 720 which rotates in the counterclockwise direction.
  • the joint ring 550 rotates 15 degrees clockwise while the forced return ring 750 does not rotate, so that the forward pole 760 is clocked from the cover 740 of the joint ring 550.
  • the gear is engaged with the ratchet 711 of the forward rotating body 710 rotating in the direction.
  • the fourth gear is operated by the shift lever, so that the second speed control ring 510 and the third speed control ring 520 are further rotated by about 15 degrees.
  • a third speed pole 503 meshing with the second speed first sun gear 424 and the third speed sun gear 434, respectively, and the second speed first sun gear 424 and the third speed sun gear 434. ) Is in a state of limiting rotation.
  • the rotational force of the second speed ring gear 421 is transmitted to the third speed carrier 432.
  • the third speed sun gear 434 is restricted by the third speed pole 503, the third speed is reduced.
  • the planetary gear 433 rotates to rotate the third speed ring gear 431 at a higher speed than the three stages.
  • the rotation of the third speed ring gear 431 is transmitted to the inner circumferential surface of the hub shell 300 through the fourth one-way clutch 940 and output is made.
  • the third one-way clutch 930 is To idle.
  • the smooth shift is not performed. If the second speed second pole 502 that is engaged with the second speed second sun gear 425 in the fifth step is not pulled out when the gear shifting from the fifth gear to the fourth gear does not come out smoothly, As described above, a smooth shift is made by the first forced return means 700, and the same description will be omitted since the same forced return operation is performed even in the following shift.
  • the fifth gear is operated by the shift lever, and as shown in FIG. 19, the second speed control ring 510 and the third speed control ring 520 are further rotated by about 15 degrees. ) Is engaged with the second speed second sun gear 425 to limit the rotation of the second speed second sun gear 425.
  • the second speed planetary gear having two stages is formed by the rotation of the second speed carrier 422.
  • the smaller diameter side of the gear 423 meshes with the second speed second sun gear 425 to rotate the second speed ring gear 421 at a higher speed than the fourth gear.
  • the third speed carrier 432 of the third speed planetary gear set 430 rotates together with the second speed ring gear 421, but the third speed sun gear 434 is rotatable.
  • the planetary gear 433 is unable to transmit the rotational force.
  • the sixth gear is operated by the shift lever, and the second speed control ring 510 and the third speed control ring 520 are further rotated by about 15 degrees.
  • a third speed pole 503 mesh with the second speed second sun gear 425 and the third speed sun gear 434, respectively, and the second speed second sun gear 425 and the third speed sun gear 434. ) Is in a state of limiting rotation.
  • the rotational force of the second speed ring gear 421 is transmitted to the third speed carrier 432.
  • the third speed sun gear 434 is restricted by the third speed pole 503, the third speed is reduced.
  • the planetary gear 433 rotates to rotate the third speed ring gear 431 at a higher speed than the three stages.
  • the rotation of the third speed ring gear 431 is transmitted to the inner circumferential surface of the hub shell 300 through the fourth one-way clutch 940 and output is made.
  • the third one-way clutch 930 is To idle.
  • the seventh stage is operated by the shift lever, and as shown in FIG. 19, no pole is engaged with the sun gear with the second speed control ring 510 and the third speed control ring 520 further rotated about 15 degrees. It is a state.
  • the inclined surface 621 of the drive pole clutch 620 is in contact with the inclined contact surface 551 in the joint ring 550, the rotation angle of which is gradually increased according to the operation of the shift lever, thereby driving the drive pole clutch 620. Is moved to the right in the drawing.
  • the drive pole 630 provided in the drive unit 600 is positioned where the one-way teeth 622 are formed through the contact surface 623 of the drive pole clutch 620 and rotated by a predetermined angle, thereby driving the drive pole 630.
  • An inner end portion of the inner one end is sandwiched between the one-way teeth 622, the outer end portion is engaged with the inner gear formed on the inner peripheral surface of the first speed carrier 412.
  • the drive pole 630 is transferred to the drive pawl 630 directly to the first speed carrier 412 of the first speed planetary gear set 410.
  • the rotational force of the driver 610 is transmitted to the first speed carrier 412 of the first speed planetary gear set 410 directly through the drive pole 630, and the first speed carrier 412 and the first speed carrier 412 are transmitted.
  • the second speed carrier 422 of the second speed planetary gear set 420 rotates integrally.
  • the second speed carrier 422 is rotated. Is transmitted to the second speed ring gear 421 through the second one-way clutch 920.
  • the third speed carrier 432 of the third speed planetary gear set 430 rotates together with the second speed ring gear 421, but the third speed sun gear 434 is rotatable.
  • the planetary gear 433 is unable to transmit the rotational force.
  • the inner end of the drive pole 630 and the drive pawl clutch 620 and the rotation limiting ring 640 corresponding to the second forced return means engage with the contact surface and the one-way tooth 622 of the drive pawl clutch 620.
  • the inner end surface is repeatedly contacted with the tip of the tooth or the valley of the tooth by the idle of the driver 610, the outer end is forced to the inner circumferential surface of the first speed carrier 412 of the first speed planetary gear set 410.
  • the drive pole 630 is forced to control.
  • the eighth to twelveth stages are additionally rotated in steps of about 15 degrees by the second speed control ring 510 and the third speed control ring 520 as shown in FIG. 19.
  • the multi-stage transmission of the present invention can be configured in a multi-stage transmission by using a plurality of planetary gear set to improve the productability of the product, the displacement along the axial direction of the shaft 100 according to the operation of the shift lever
  • By changing the transmission path of the rotational force through the generated configuration it is possible to double the speed change stage of the multi-stage implemented by the planetary gear set, especially in the forward as well as deceleration operation according to the acceleration operation by using the forced return means.
  • According to the reverse operation according to the smooth shift is made is an invention having an excellent advantage that can maximize the ease of use of the user.
  • the present invention as described above can be configured in a compact gear by using a planetary gear set to improve the productability of the product, by using the forced return means for the forward operation of the acceleration operation as well as the reverse operation of the deceleration operation It is an invention that can maximize the ease of use of the user by making a smooth shift even.

Abstract

본 발명은 다단 변속기에 관한 것으로서, 특히, 유성기어세트를 이용하여 콤팩트한 변속기를 보다 많은 다단으로 구현하고, 강제복귀수단을 이용하여 가속조작에 따른 정방향 조작은 물론 감속조작에 따른 역방향 조작에 대해서도 원활한 변속이 이루어지도록 하기 위한 장치에 관한 것으로서, 양단 고정된 샤프트(100)와, 상기 샤프트(100)의 외주에 회전 가능하게 위치하여 회전력을 입력받는 스프로켓(200) 및 회전력을 출력시키는 허브쉘(300)과; 상기 허브쉘(300)의 내부에 마련되는 태양기어, 유성기어, 캐리어, 링기어로 이루어진 유성기어세트와 원웨이클러치를 포함하여, 상기 스프로켓(200)으로 입력되는 회전력을 변속시켜 상기 허브쉘(300)로 출력시키는 변속부(400)와; 변속레버의 조작에 따라 상기 샤프트(100)에 마련된 폴을 컨트롤하여 상기 태양기어의 회전을 선택적으로 제한하여 변속을 제어하는 제어부(500)를 포함한 다단 변속기에 있어서; 상기 변속레버의 회전 조작에 따라 상기 샤프트(100)의 축방향으로 드라이브 폴 클러치(620)의 변위 발생에 의하여, 회전 불가능한 상기 드라이브 폴 클러치(620)와 회전하는 드라이브 폴(630)의 치합 또는 해제를 통해 추가적인 변속이 이루어지는 것으로 구성되어, 제품의 상품성을 향상시키고 사용자의 사용편의성을 극대화시킬 수 있도록 하는 것이다.

Description

다단 변속기
본 발명은 다단 변속기에 관한 것으로서 특히, 유성기어세트를 이용하여 콤팩트한 변속기를 보다 많은 다단으로 구현하고, 강제복귀수단을 이용하여 가속조작에 따른 정방향 조작은 물론 감속조작에 따른 역방향 조작에 대해서도 원활한 변속이 이루어지도록 하기 위한 장치로써, 제품의 상품성을 향상시키고 사용자의 사용편의성을 극대화시킬 수 있는 장치에 관한 것이다.
일반적으로 차륜이 마련되어져 인력을 전달받거나 혹은 전동력 등의 각종 구동력을 이용하여 주행하는 자전거, 휠체어, 손수레 등에는 주행 속도를 변속하기 위한 변속기가 마련된다.
이러한 변속기는 탑승자 혹은 사용자의 조작에 따라 고속으로부터 저속에 이르기까지 다단으로 변속을 실시하여, 주행 환경에 따라 요구되는 토크 또는 속도를 얻을 수 있는 것이다.
특히, 최근에는 태양기어, 유성기어, 링기어, 그리고 캐리어로 이루어진 유성기어세트를 허브쉘 내에 마련하여 콤팩트한 구성을 통해 다단으로 속도를 변속하는 동시에 기어가 외부로 노출되는 것 또한 방지하고 있는 실정이다.
그러나, 유성기어세트를 이용하는 종래의 다단 변속기는 복잡한 구조에 비해 변속단의 수가 적고, 특히, 변속 조작 시 태양기어의 내주면에 치합하여 상기 태양기어의 회전을 제한하는 폴이 해제되지 않아 원활한 변속이 이루어지지 않고 있다는 기술상의 문제점이 있었다.
본 발명은 상기의 문제점을 해소하기 위한 것으로, 유성기어세트를 이용하여 다단의 변속기를 콤팩트하게 구성할 수 있어 제품의 상품성을 향상시키고, 강제복귀수단을 이용하여 가속조작에 따른 정방향 조작은 물론 감속조작에 따른 역방향 조작에 대해서도 원활한 변속이 이루어지도록 함으로써 사용자의 사용편의성을 극대화시킬 수 있도록 하는 다단 변속기를 제공하고자 한다.
이러한 본 발명은 양단 고정된 샤프트와, 상기 샤프트의 외주에 회전 가능하게 위치하여 회전력을 입력받는 스프로켓 및 회전력을 출력시키는 허브쉘과; 상기 허브쉘의 내부에 마련되는 태양기어, 유성기어, 캐리어, 링기어로 이루어진 유성기어세트와 원웨이클러치를 포함하여, 상기 스프로켓으로 입력되는 회전력을 변속시켜 상기 허브쉘로 출력시키는 변속부와; 변속레버의 조작에 따라 상기 샤프트에 마련된 폴을 컨트롤하여 상기 태양기어의 회전을 선택적으로 제한하여 변속을 제어하는 제어부를 포함한 다단 변속기에 있어서; 상기 변속레버의 회전 조작에 따라 상기 샤프트의 축방향으로 드라이브 폴 클러치의 변위 발생에 의하여, 회전하는 드라이버와 회전 불가능한 상기 드라이브 폴 클러치 사이의 드라이브 폴을 매개로 하여 회전력을 선택적으로 전달함으로써 변속이 이루어짐으로써 달성된다.
이때, 상기 변속레버의 회전 조작 및 폴의 치합 조건에 따라 상기 스프로켓으로 입력되는 회전력을 이용하여, 치합 상태의 상기 폴을 선택적으로 강제 해제 상태로 제어 가능한 제1강제복귀수단부와; 드라이브 폴 클러치 및 회전제한링으로 이루어져 드라이브 폴을 선택적으로 강제 해제 상태로 제어 가능한 제2강제복귀수단부가 추가 구성되는 것이 바람직하다.
그리고, 상기 제어부에는 상기 폴을 컨트롤하는 제어링이 상기 샤프트의 축방향으로 한 개 또는 다수가 적층 되어 일체로 회전함에 따라 한 개 또는 다수의 폴을 선택적으로 치합 상태 또는 해제 상태로 컨트롤하여 변속을 제어하는 것이 가장 바람직하다.
이상과 같은 본 발명은 유성기어세트를 이용하여 다단의 변속기를 콤팩트하게 구성할 수 있어 제품의 상품성을 향상시키고, 강제복귀수단을 이용하여 가속조작에 따른 정방향 조작은 물론 감속조작에 따른 역방향 조작에 대해서도 원활한 변속이 이루어지도록 함으로써 사용자의 사용편의성을 극대화시킬 수 있는 발명인 것이다.
도 1은 본 발명의 다단 변속기를 도시하는 사시도,
도 2는 본 발명의 다단 변속기를 도시하는 정면도,
도 3은 본 발명의 다단 변속기를 도시하는 일부절결 사시도,
도 4는 본 발명의 다단 변속기를 도시하는 정단면도,
도 5는 본 발명의 다단 변속기의 허브쉘을 분해한 분해사시도,
도 6은 본 발명의 다단 변속기의 제3속 유성기어세트를 분해한 분해사시도,
도 7은 본 발명의 다단 변속기의 제2속 유성기어세트를 분해한 분해사시도,
도 8은 본 발명의 다단 변속기의 스프로켓을 분해한 분해사시도,
도 9는 본 발명의 다단 변속기의 드라이버를 분해한 분해사시도,
도 10은 본 발명의 다단 변속기의 드라이브 폴 클러치를 분해한 분해사시도,
도 11은 본 발명의 다단 변속기의 제1속 유성기어세트를 분해한 분해사시도,
도 12는 본 발명의 다단 변속기의 폴을 분해한 분해사시도,
도 13은 본 발명의 다단 변속기의 제어부를 도시하는 사시도,
도 14는 본 발명의 다단 변속기에 있어서 드라이브 폴의 치합상태를 도시하는 도,
도 15는 본 발명의 다단 변속기에 있어서 드라이브 폴의 해제상태를 도시하는 도,
도 16은 본 발명의 다단 변속기에 있어서 제1강제복귀수단부의 역방향 동작을 도시하는 도,
도 17은 본 발명의 다단 변속기에 있어서 제1강제복귀수단부의 정방향 동작을 도시하는 도,
도 18은 본 발명의 다단 변속기에 있어서 폴을 도시하는 사시도,
도 19는 본 발명의 다단 변속기에 있어서 폴의 제어를 도시하는 도,
도 20은 본 발명의 다단 변속기에 있어서 제1강제복귀수단부에 마련된 스프링의 배열을 도시하는 분해사시도.
[부호의 설명]
100 : 샤프트 101, 102, 103 : 폴자리부
200 : 스프로켓 300 : 허브쉘
310 : 먼지커버 400 : 변속부
410 : 제1속 유성기어세트 411 : 제1속 링기어
412 : 제1속 캐리어 413 : 제1속 유성기어
414 : 제1속 태양기어 420 : 제2속 유성기어세트
421 : 제2속 링기어 422 : 제2속 캐리어
423 : 제2속 유성기어 424 : 제2속 제1태양기어
425 : 제2속 제2태양기어 430 : 제3속 유성기어세트
431 : 제3속 링기어 432 : 제3속 캐리어
433 : 제3속 유성기어 434 : 제3속 태양기어
500 : 제어부 501 : 제2속 제1폴
502 : 제2속 제2폴 503 : 제3속폴
510 : 제2속 제어링 520 : 제3속 제어링
530 : 케이블링 531 : 외측 케이블링
532 : 내측 케이블링 541 : 연결링
542 : 각도 제어링 550 : 조인트 링
551 : 경사접촉면 560 : 치합링
600 : 드라이브부 610 : 드라이버
611 : 플레이트 링 620 : 드라이브 폴 클러치
621 : 경사면 622 : 일방향 치형
623 : 접촉면 630 : 드라이브 폴
640 : 회전제한링 700 : 제1강제복귀수단부
710 : 정방향 회전체 711 : 래칫
720 : 역방향 회전체 721 : 래칫
731 : 상측 돌부 732 : 하측 돌부
740 : 덮개 750 : 강제복귀링
751 : 상측 요홈 752 : 하측 요홈
753 : 탄성 조절 볼트 754 : 압축 스프링
755 : 하측 요홈 돌기 756 : 전달핀
760 : 정방향 폴 770 : 역방향 폴
810, 820 : 간극유지링 901, 902 : 콘 너트
903, 904, 905 : 베어링 910 : 제1원웨이클러치
920 : 제2원웨이클러치 930 : 제3원웨이클러치
940 : 제4원웨이클러치
도 1은 본 발명의 다단 변속기를 도시하는 사시도이며, 도 2는 본 발명의 다단 변속기를 도시하는 정면도이다.
그리고, 도 3은 본 발명의 다단 변속기를 도시하는 일부절결 사시도이고, 도 4는 본 발명의 다단 변속기를 도시하는 정단면도이다.
도 5는 본 발명의 다단 변속기의 허브쉘을 분해한 분해사시도이며, 도 6은 본 발명의 다단 변속기의 제3속 유성기어세트를 분해한 분해사시도이고, 도 7은 본 발명의 다단 변속기의 제2속 유성기어세트를 분해한 분해사시도이다.
또한, 도 8은 본 발명의 다단 변속기의 스프로켓을 분해한 분해사시도이며, 도 9는 본 발명의 다단 변속기의 드라이버를 분해한 분해사시도이다.
도 10은 본 발명의 다단 변속기의 드라이브 폴 클러치를 분해한 분해사시도이고, 도 11은 본 발명의 다단 변속기의 제1속 유성기어세트를 분해한 분해사시도이다.
그리고, 도 12는 본 발명의 다단 변속기의 폴을 분해한 분해사시도이며, 도 13은 본 발명의 다단 변속기의 제어부를 도시하는 사시도이다.
도 14는 본 발명의 다단 변속기에 있어서 드라이브 폴의 치합상태를 도시하는 도이고, 도 15는 본 발명의 다단 변속기에 있어서 드라이브 폴의 해제상태를 도시하는 도이다.
도 16은 본 발명의 다단 변속기에 있어서 제1강제복귀수단부의 역방향 동작을 도시하는 도이고, 도 17은 본 발명의 다단 변속기에 있어서 제1강제복귀수단부의 정방향 동작을 도시하는 도이다.
도 18은 본 발명의 다단 변속기에 있어서 폴을 도시하는 사시도이며, 도 19는 본 발명의 다단 변속기에 있어서 폴의 제어를 도시하는 도이고, 도 20은 본 발명의 다단 변속기에 있어서 제1강제복귀수단부에 마련된 스프링의 배열을 도시하는 분해사시도이다.
본 발명의 다단 변속기는 제어링이 적층 형성되어 다수의 폴을 제어함으로써 유성기어세트로부터 다단의 변속을 구현하며, 유성기어세트 이외에 드라이브 폴 클러치 및 드라이브 폴이 마련되어 유성기어세트에 의해 구성되는 변속 단수를 2배로 구현할 수도 있고, 특히 강제복귀수단부가 마련되어 태양기어에 강하게 맞물려 빠져 나오지 않는 폴을 강제로 해제시킬 수도 있어 보다 원활한 변속이 이루어지는 것을 그 기술상의 기본 특징으로 한다.
본 발명의 실시예를 첨부 도면을 참조하여 상세히 설명하면 다음과 같다.
본 발명의 다단 변속기는, 양단 고정된 샤프트(100)와, 상기 샤프트(100)의 외주에 회전 가능하게 위치하여 회전력을 입력받는 스프로켓(200) 및 회전력을 출력시키는 허브쉘(300)과; 상기 허브쉘(300)의 내부에 마련되는 태양기어, 유성기어, 캐리어, 링기어로 이루어진 유성기어세트와 원웨이클러치를 포함하여, 상기 스프로켓(200)으로 입력되는 회전력을 변속시켜 상기 허브쉘(300)로 출력시키는 변속부(400)와; 변속레버의 조작에 따라 상기 샤프트(100)에 마련된 폴을 컨트롤하여 상기 태양기어의 회전을 선택적으로 제한하여 변속을 제어하는 제어부(500)를 포함한 다단 변속기에 있어서; 상기 변속레버의 회전 조작에 따라 상기 샤프트(100)의 축방향으로 드라이브 폴 클러치(620)의 변위 발생에 의하여, 회전하는 드라이버(610)와 회전 불가능한 상기 드라이브 폴 클러치(620) 사이의 드라이브 폴(630)을 매개로 하여 회전력을 선택적으로 전달함으로써 변속이 이루어지는 것이다.
우선 본 발명의 다단 변속기는 도 1 내지 도 4에 도시된 바와 같이, 크게 샤프트(100), 스프로켓(200), 허브쉘(300), 변속부(400), 그리고 제어부(500)로 구성된다.
상기 샤프트(100)는 변속이 요구되는 스쿠터, 자전거, 인력거 등(이하 '주행장치'라 한다)의 몸체에 그 양단이 고정 너트 등의 체결수단에 의해 회전 불가능하게 고정 지지된다.
이때, 상기 샤프트(100)는 부위에 따라 각기 다른 직경으로 형성되며, 특히 상기 샤프트(100)의 중앙 외주면에는 다수의 폴자리부(101)(102)(103)가 소정 위상차를 두고 오목하게 형성되어 있어 이후에 설명할 폴이 그 내부에 위치하게 된다.
이러한 샤프트(100)는 본 발명의 뼈대를 이루는 것으로, 이하에서 설명할 구성요소들은 모두 상기 샤프트(100)의 외주에 회전 가능하게 혹은 회전 불가능하게 마련되는 것이다.
다음으로 스프로켓(200)은 주행장치로부터 인력 또는 전동력 등의 회전력을 본 발명의 다단 변속기에 입력받는 구성으로, 상기 샤프트(100)의 일측에 회전 가능하게 마련된다.
이에 따라, 상기 스프로켓(200)은 예를 들어 체인과 같은 동력전달수단을 통해 구동력을 입력받는다.
그리고 허브쉘(300)은 상기 샤프트(100)의 최외곽에 위치하여 변속된 종동력을 주행장치의 바퀴 등으로 출력하는 구성인 것이다.
이러한 허브쉘(300)은 대략 원통 형상으로 이루어진 것으로, 일측은 폐쇄된 반면 타측은 개방되어 이 개방부위를 통해 그 내부에 각종 구성요소를 삽입하여 조립할 수 있다.
상기 허브쉘(300)의 폐쇄된 측에는 상기 샤프트(100)에 결합한 콘 너트(902)와 베어링(904)이 마련되어, 상기 허브쉘(300)은 상기 샤프트(100)로부터 독립적으로 회전 가능하게 지지된다.
다음으로 변속부(400)는 상기 허브쉘(300) 내에 위치하여 상기 스프로켓(200)을 통해 입력되는 회전을 다단으로 변속한 후, 상기 허브쉘(300)을 통해 출력시키는 것으로, 다수의 유성기어세트와 다수의 원웨이클러치를 포함한다.
본 실시예에 있어서는 3개의 유성기어세트, 즉 제1속 유성기어세트(410), 제2속 유성기어세트(420), 그리고 제3속 유성기어세트(430)가 마련되는 것을 예로 들어 이하에서 설명한다.
즉, 상기 변속부(400)는 제1속 유성기어세트(410), 제2속 유성기어세트(420), 그리고 제3속 유성기어세트(430)로 구성되며, 드라이브부(600)로부터 제1속 캐리어(412) 또는 제1속 링기어(411)에 전달되어진 회전력을 상기 제1속 유성기어세트(410)를 거쳐서 제2속 캐리어(422)에 전달하고, 상기 제2속 캐리어(422)에 전달된 회전력은 상기 제2속 유성기어세트(420) 그리고 상기 제3속 유성기어세트(430)를 통해 6단으로 변속하여 상기 허브쉘(300)로 출력 가능한 것이다.
각각의 상기 유성기어세트는 링기어, 캐리어, 유성기어, 태양기어를 포함하는 것으로, 유성기어는 그 직경이 서로 다른 큰 직경과 작은 직경의 2단으로 형성되어 상기 캐리어에 자전 가능하게 지지되며, 상기 캐리어의 외측에는 링기어가 마련되고, 상기 캐리어의 내측에는 태양기어가 위치한다.
이에 따라, 링기어 또는 캐리어를 통해 회전력을 입력받아 유성기어를 거쳐 캐리어 또는 링기어로 회전력을 출력시킴으로써, 가속 또는 감속과 같은 변속이 이루어지는 것이다.
따라서, 상기 제1속 유성기어세트(410)는 도 11과 같이 제1속 링기어(411), 제1속 캐리어(412), 제1속 유성기어(413), 그리고 제1속 태양기어(414)로 이루어진다.
이때 상기 제1속 태양기어(414)는 그 내주면에 결합홈이 형성되어 있어 폴에 의해 회전이 제한되지 않고 상기 샤프트(100)의 외주면에 치합하고 있어 항상 회전하지 않는 고정 상태를 유지한다.
그리고, 상기 제3속 유성기어세트(430)는 도 6과 같이 제3속 링기어(431), 제3속 캐리어(432), 제3속 유성기어(433), 그리고 제3속 태양기어(434)로 이루어진다.
특히, 상기 제2속 유성기어세트(420)에는 도 7과 같이 2개의 태양기어가 마련되어, 제2속 링기어(421), 제2속 캐리어(422), 제2속 유성기어(423), 그리고 제2속 제1태양기어(424) 및 제2속 제2태양기어(425)로 이루어져 있다.
즉, 상기 제2속 유성기어세트(420)의 상기 제2속 제1태양기어(424) 외주면은 2단으로 이루어진 제2속 유성기어(423)의 큰 직경 측에 치합하고, 상기 제2속 제2태양기어(425)의 외주면은 상기 제2속 유성기어(423)의 작은 직경 측에 치합 하는 것이다.
이에 따라, 본 발명에 있어서 제2속 제1태양기어(424), 제2속 제2태양기어(425), 그리고 제3속 태양기어(434)는 그 내주면에 형성된 내기어에 각각 제2속 제1폴(501), 제2속 제2폴(502), 그리고 제3속폴(503)이 세워질 경우, 치합에 의해 태양기어의 회전이 선택적으로 제한되는 것이다.
이때, 상기 제2속 제1폴(501), 제2속 제2폴(502), 그리고 제3속폴(503)을 세우거나 눕히는 제어에 대해서는 이후에 상세히 설명하기로 한다.
따라서, 본 발명은 상기 태양기어들의 회전 가능 여부에 따라 각각의 유성기어세트의 변속비가 변화하여 변속이 이루어지는 것이다.
이때, 상기 제1속 유성기어세트(410)의 제1속 캐리어(412)와 상기 제2속 유성기어세트(420)의 제2속 캐리어(422)는 서로 직결되어 일체로 회전하며; 상기 제2속 유성기어세트(420)의 제2속 링기어(421)와 상기 제3속 유성기어세트(430)의 제3속 캐리어(432)는 서로 직결되어 일체로 회전한다.
이에 따라, 상기 변속부(400)에 전달된 구동력은 제1속 유성기어세트(410)로부터 제2속 유성기어세트(420)를 거쳐 제3속 유성기어세트(430)에 전달되면서 다단으로 변속된 후 허브쉘(300)을 통해 출력되는 것이다.
그리고, 상기 변속부(400) 내에는 다수의 원웨이클러치가 마련되어 있어, 상기 원웨이클러치의 내측에 위치하는 구성요소의 회전 속도가 외측에 위치하는 구성요소의 회전 속도보다 빠를 경우 내측에 위치하는 구성요소의 회전력을 외측에 위치하는 구성요소에 전달하게 된다.
반면에, 상기 원웨이클러치의 내측에 위치하는 구성요소의 회전 속도가 외측에 위치하는 구성요소의 회전 속도보다 느릴 경우 내측에 위치하는 구성요소의 회전력을 외측에 위치하는 구성요소에 전달하지 못하게 되는 것이다.
이와 같은 작동을 하는 원웨이클러치는 본 실시예에 있어서 도 3과 같이 4개가 마련된다.
즉, 이하에서 설명할 드라이브부(600)의 드라이버(610) 외주면과 상기 변속부(400)에 마련된 제1속 유성기어세트(410)의 제1속 링기어(411) 내주면 사이에 제1원웨이클러치(910)가 마련되며, 상기 변속부(400)에 마련된 제2속 유성기어세트(420)의 제2속 캐리어(422) 외주면과 제2속 링기어(421) 내주면 사이에 제2원웨이클러치(920)가 마련된다.
그리고, 상기 변속부(400)에 마련된 제2속 유성기어세트(420)의 제2속 링기어(421) 외주면과 상기 허브쉘(300)의 내주면 사이에 제3원웨이클러치(930)가 마련되고; 상기 변속부(400)에 마련된 제3속 유성기어세트(430)의 제3속 링기어(431) 외주면과 상기 허브쉘(300)의 내주면 사이에 제4원웨이클러치(940)가 마련된다.
이에 따라, 최종적으로 변속된 회전력은 오직 제3원웨이클러치(930) 또는 제4원웨이클러치(940)를 통해 허브쉘(300)로 출력되는 것이다.
마지막으로, 상기 변속부(400)의 변속을 제어하는 제어부(500)에는 도 18과 같이 3개의 폴, 즉 제2속 제1폴(501), 제2속 제2폴(502), 그리고 제3속폴(503)이 각각 상술한 샤프트(100)의 폴자리부(101)(102)(103) 내에 위치하게 되며, 이러한 폴들은 링스프링에 의하여 탄력적으로 세워지도록 위치한다.
특히 본 발명에 있어서 상기 제어부(500)에는 상기 폴을 컨트롤하는 제어링이 도 12와 같이 상기 샤프트(100)의 축방향으로 한 개 또는 다수가 적층 되어 일체로 회전함에 따라 한 개 또는 다수의 폴을 선택적으로 치합 상태 또는 해제 상태로 컨트롤하여 변속을 제어하는 것이 좋다.
즉, 각각의 폴에는 제어부위와 걸림부위가 서로 다른 간격을 두고 돌출 형성되어 있는 것으로, 도 18에 도시한 바와 같이 우선 상기 제2속 제1폴(501) 및 상기 제2속 제2폴(502)에는 도면상 우측 단부로부터 소정 거리 이격 되어 제어부위가 형성되어 있고, 이 제어부위로부터 이격 되어 다시 걸림부위가 형성되어 있다.
이때, 상기 제2속 제1폴(501)에 있어서 제어부위와 걸림부위가 인접한 반면, 상기 제2속 제2폴(502)에 있어서는 제어부위와 걸림부위가 상기 제2속 제1폴(501)에 비하여 다소 떨어져 있다.
그리고, 제3속폴(503)은 도면상 우측 단부에 제어부위가 형성되고 좌측 단부에 걸림부위가 형성되어, 제어부위와 걸림부위가 가장 멀리 떨어져 있다.
즉, 각각의 폴에 형성된 제어부위에는 제어링이 위치하는 것이며, 걸림부위에는 태양기어가 각각 위치하게 되는 것이다.
또한, 본 발명에 있어서 상기 제2속 제1폴(501), 제2속 제2폴(502), 그리고 제3속폴(503)의 외주에는 상기 변속레버의 회전에 따라 연동하여 회전하는 제2속 제어링(510) 및 제3속 제어링(520)이 상기 샤프트(100)의 축방향을 따라 적층 마련되되; 상기 제2속 제어링(510)의 내주면에는 홈부가 형성되어 상기 제2속 제어링(510)의 회전에 따라 상기 제2속 제1폴(501) 및 상기 제2속 제2폴(502)이 선택적으로 상기 홈부로 빠져 나오며; 상기 제3속 제어링(520)의 내주면에는 홈부가 형성되어 상기 제3속 제어링(520)의 회전에 따라 상기 제3속폴(503)이 선택적으로 상기 홈부로 빠져 나오는 것이 바람직하다.
즉, 상술한 제2속 제1폴(501)과 제2속 제2폴(502)의 제어부위가 도면상 우측 단부로부터 이격된 거리는 상기 제3속 제어링(520)의 두께에 해당하는 것이다.
이에 따라, 상기 제2속 제어링(510)과 상기 제3속 제어링(520)의 회전 각도에 따라 탄력적으로 세워지려 하는 폴의 제어부위가 홈부에 위치할 경우, 상기 폴의 걸림부위가 세워져 해당하는 태양기어의 내주면에 형성된 내기어에 치합하여 상기 태양기어의 회전을 제한하게 되는 것이다.
특히, 상기 제2속 제어링(510)에 형성되는 홈부는, 상기 제2속 제1폴(501) 및 상기 제2속 제2폴(502)에 대응하여 한 쌍으로 이루어져 상기 샤프트(100)의 축중심을 기준으로 다수 개 형성되며; 상기 제3속 제어링(520)에 형성되는 홈부는, 상기 제3속폴(503)에 대응하여 상기 샤프트(100)의 축중심을 기준으로 다수 개 형성된다.
이때, 상기 제2속 제어링(510)에 형성된 홈부는 상기 제3속 제어링(520)의 15도 회전마다 상기 제3속폴(503)의 치합 및 해제상태가 전환되며, 상기 제2속 제어링(510)의 홈부에 들어간 상기 제2속 제1폴(501) 및 상기 제2속 제2폴(502)은 30도 회전 후 홈부로부터 빠져 나오게 되는 것이다.
변속조작이 상술한 제2속 제어링(510)과 제3속 제어링(520)에 어떻게 전달되는지에 대하여 이하에서 살펴보기로 한다.
본 발명에 있어서, 상기 제어부(500)는 변속레버의 조작에 따라 인출되는 케이블이 연결되어 상기 샤프트(100)의 외주면에 회전 가능하게 지지되는 케이블링(530)과; 상기 케이블링(530)에 연결된 연결링(541) 및 상기 연결링(541)에 끼워맞춤 조립되어 일체로 동작하는 각도 제어링(542)을 통해 스프링(590)으로 탄성적으로 조작력을 전달받는 조인트 링(550)과; 상기 조인트 링(550)에 치합하여 일체로 회전하며, 상기 제3속 제어링(520)과 결합하여 상기 제2속 제어링(510) 및 상기 제3속 제어링(520)을 회전시키는 치합링(560)을 포함하는 것이 바람직하다.
이때, 상기 케이블링(530)은 도 8과 같이 케이블이 연결되는 외측 케이블링(531)과, 상기 외측 케이블링(531)의 내주면과 치합하여 상기 샤프트(100)에 회전 가능하게 지지되는 내측 케이블링(532)으로 이루어져 있다.
이후, 연결링(541) 및 각도 제어링(542)을 통해 도 11과 같이 조작력을 조인트 링(550)에 전달하며, 여기에서 상기 연결링(541)에는 돌기가 돌출 형성되어 상기 각도 제어링(542)에 치합하여 일체로 회전하는 것이다.
이때, 상기 각도 제어링(542)과 상기 조인트 링(550) 사이에는 도 20과 같이 스프링(590)이 연결되어 있어, 상기 각도 제어링(542)으로부터 상기 스프링(590)을 통해 상기 조인트 링(550)에 조작력이 전달되는 것이다.
상술한 제2속 제어링(510)과 제3속 제어링(520)의 제어 각도에 따라 상기 제2속 제1폴(501), 제2속 제2폴(502), 그리고 제3속폴(503)의 제어 상태는 도 19에 나타나 있으며 이를 도표로 정리하면 다음과 같다.
아래의 표 1에는 각각의 폴 작동여부에 따른 원웨이클러치의 회전력 전달 여부 또한 표시되어 있다.
표 1
단수 제2속 제1폴 제2속 제2폴 제3속폴 드라이브폴 원웨이클러치
1 X X X X 1-2-3
2 X X O X 1-2-4
3 O X X X 1-3
4 O X O X 1-4
5 X O X X 1-3
6 X O O X 1-4
7 X X X O 2-3
8 X X O O 2-4
9 O X X O 3
10 O X O O 4
11 X O X O 3
12 X O O O 4
추가적으로 본 발명에 있어서는 상기 스프로켓(200)으로 입력되는 회전력을 상기 변속부(400)에 전달하는 드라이브부(600)가 마련된다.
상기 드라이브부(600)에 마련된 드라이버(610)는 도 9와 같이 상기 허브쉘(300)의 개방된 측에 위치하되 상기 샤프트(100)에 결합한 콘 너트(901)와 베어링(903)이 마련되어, 상기 드라이버(610)는 상기 샤프트(100)로부터 회전 가능하게 지지된다.
이와 더불어, 상기 허브쉘(300)과 상기 드라이브부(600)는 그 사이에 위치하는 베어링(905)에 의해 상호 독립적으로 회전 가능하게 마련되며 도 8에 도시한 먼지커버(310)에 의해 이물질이 침입하는 것을 방지한다.
상술한 베어링(903)(904)(905)은 볼베어링을 예시하였지만, 미끄럼베어링 등 그 종류에 제한되지는 않는다.
특히, 본 발명에 있어서는 상기 변속레버의 회전 조작에 따라 상기 샤프트(100)의 축방향으로 드라이브 폴 클러치(620)의 변위 발생에 의하여, 회전하는 드라이버(610)와 회전 불가능한 상기 드라이브 폴 클러치(620) 사이의 드라이브 폴(630)을 매개로 하여 회전력을 선택적으로 전달함으로써 변속이 이루어지는 것이 바람직하다.
즉, 상술한 변속부(400)의 변속 이외에 상기 변속부(400)로 입력되는 회전력을 상기 드라이브 폴 클러치(620)에 의한 상기 드라이브 폴(630)의 회전 제한 여부에 따라 다시 2단으로 변속하는 것이 가능하다.
이때, 상기 드라이브 폴 클러치(620)는 회전 불가능하고 오직 상기 샤프트(100)의 축방향을 따라 이동 가능한 구성요소로 이를 통해 보다 콤팩트한 구성으로 2배의 변속 단수를 구현할 수 있게 된다.
이에 따라, 상기 드라이브부(600)는 상기 드라이브 폴 클러치(620)와 상기 드라이브 폴(630)의 치합 또는 해제에 따라 상기 드라이브부(600)로부터 상기 제1속 유성기어세트(410)의 제1속 캐리어(412) 또는 제1속 링기어(411)로 회전력을 선택적으로 전달하여 2단으로 출력되어 총 12단의 변속비로 출력이 가능하게 된다.
즉, 본 발명에 있어서, 상기 조인트 링(550)에는 일정 구간 경사접촉면(551)이 형성되며; 상기 연결링(541)의 외곽에 위치하되 상기 경사접촉면(551)에 대응하는 경사면(621)이 형성되고 외주면에 일방향 치형(622) 및 접촉면(623)이 형성된 드라이브 폴 클러치(620)와; 상기 샤프트(100)의 축방향으로 상기 드라이브 폴 클러치(620)와 치합하고 내주면이 상기 샤프트(100)와 치합하여, 상기 드라이브 폴 클러치(620)를 회전 불가능하게 상기 샤프트(100)의 축방향을 따라 이동 가능하게 하는 회전제한링(640)과; 상기 드라이버(610)의 내측에 일정 각도 자전 가능하게 지지되어 상기 드라이버(610)와 일체로 공전하며, 내측 단부가 상기 드라이브 폴 클러치(620)의 접촉면(623)에 접촉하여 공전하며, 외측 단부가 상기 제1속 유성기어세트(410)의 제1속 캐리어(412) 내주면에 형성된 치형에 치합되지 못하거나, 상기 드라이브 폴 클러치(620)가 중간 위치로 축방향 이동에 따라 내측 단부가 상기 드라이브 폴 클러치(620)의 접촉면 및 일방향 치형(622)에 치합될 때, 상기 드라이버(610)의 공전에 의해 내측 단부가 치형의 끝 또는 치형의 골에 반복 접촉되어 강제적으로 외측 단부가 상기 제1속 유성기어세트(410)의 제1속 캐리어(412) 내주면에 치합되지 않거나 치합되는 것을 반복하며, 상기 드라이브 폴 클러치(620)가 끝단 위치로 축방향 이동에 따라 내측 단부가 상기 드라이브 폴 클러치(620)의 접촉면(623) 및 일방향 치형(622)과 치합이 벗어나면 외측 단부가 상기 제1속 유성기어세트(410)의 제1속 캐리어(412) 내주면에 형성된 치형에 치합하여 상기 드라이버(610)와 상기 제1속 캐리어(412)를 직결시켜 일체로 회전하게 하는 드라이브 폴(630)을 포함하는 것이 바람직하다.
이에 따라, 상기 드라이브 폴 클러치(620) 및 회전제한링(640)은 제2강제복귀수단부의 기능을 가질 수도 있는 것이다.
상기 조인트 링(550)에 형성된 경사접촉면(551)은 180도의 위상차를 두고 2개가 형성되어 있다.
그리고 상기 연결링(541)의 외곽에 위치하는 드라이브 폴 클러치(620)는 그 일측에 상기 경사면(621)이 형성되어 있어, 상기 조인트 링(550)이 회전하여 경사접촉면(551)이 상기 경사면(621)에 접촉할 경우, 도 14와 같이 상기 드라이브 폴 클러치(620)가 도면상 우측으로 이동하게 되는 것이다.
이때, 상기 각도제어링(542)과 상기 드라이브 폴 클러치(620) 사이에는 도 20과 같이 스프링(580)이 연결되어 있다.
이러한 드라이브 폴 클러치(620)는 상기 회전제한링(640)과 치합하여, 회전은 불가능하며, 상기 드라이브 폴 클러치(620)와 상기 회전제한링(640) 사이에는 도 20과 같이 스프링(570)이 마련되어 상호 간극을 탄력적으로 이격시키게 된다.
즉, 상기 스프링(570)에 의해 상기 드라이브 폴 클러치(620)를 도면상 좌측으로 이동하도록 탄성 지지하고 있어, 우측으로 이동하였던 상기 드라이브 폴 클러치(620)의 복귀는 상기 스프링(570)에 의하여 이루어지게 된다.
그리고, 상기 드라이브 폴(630)에는 미도시한 탄성체가 마련되어 상기 드라이브 폴(630)이 일방향으로 회전하도록 탄성 지지하고 있어, 드라이브 폴(630)이 드라이브부(600)와 함께 회전할 경우, 상기 드라이브 폴(630)의 내측 단부는 도 15와 같이 상기 드라이브 폴 클러치(620)의 접촉면(623)에 접촉한 상태를 유지하게 된다.
하지만, 상기 드라이브 폴 클러치(620)의 이동에 따라 회전하고 있던 드라이브 폴(630)의 내측 단부가 도 14와 같이 일방향 치형(622) 사이에 들어가게 되면, 상기 드라이브 폴(630)이 회전하면서 그 외측 단부가 상기 제1속 캐리어(412)의 내주면에 형성된 내기어에 치합하게 됨으로써, 상기 드라이브 폴(630)에 의해 상기 드라이버(610)와 상기 제1속 캐리어(412)를 직결시켜 일체로 회전하게 한다.
따라서, 드라이버(610)->제1원웨이클러치(910)->제1속 링기어(411)->제1속 유성기어(411)->제1속 캐리어(412)를 통해 전달되던 회전력이 드라이버(610)로부터 드라이브 폴(630)을 통해 제1속 캐리어(412)에 직접 전달됨으로써 보다 고속으로 회전력을 전달하게 되어 상기 드라이브부(600)가 자체적으로 2단의 변속을 실시하게 됨으로써, 3개의 유성기어세트에 의해 구성되는 6단과 함께 총 12단의 변속단을 구현하게 되는 것이다.
여기에서 상술한 변속이 변속레버가 소정 각도 회전된 이후 발생할 수 있도록 상기 각도 제어링(542)에 홈부를 소정 각도 범위로 형성하고, 이 홈부 내에 상기 조인트 링(550)에 형성된 돌기가 위치하도록 하는 것으로 가능해진다.
이때, 상기 드라이버(610)의 내측에는 소정 간극을 두고 일체로 회전하는 플레이트링(611)이 마련되며; 상기 드라이브 폴(630)은 상기 플레이트 링(611)에 자전 가능하게 지지되는 것을 특징으로 하는 다단 변속기.
즉, 상술한 드라이브 폴(630)을 소정의 위치에 정위치 하도록 별도의 플레이트 링(611)을 마련하는 것도 가능하다.
특히, 본 발명에 있어서는 상기 변속레버의 회전 조작 및 폴의 치합 조건에 따라 상기 스프로켓(200)으로 입력되는 회전력을 이용하여, 치합 상태의 상기 폴을 선택적으로 강제 해제 상태로 제어 가능한 제1강제복귀수단부(700)와; 드라이브 폴 클러치(620) 및 회전제한링(640)으로 이루어져 드라이브 폴(630)을 선택적으로 강제 해제 상태로 제어 가능한 제2강제복귀수단부가 추가 구성되는 것이 가장 바람직하며, 이를 통해 보다 원활한 변속 조작이 가능해진다는 이점을 가지게 된다.
본 발명에 있어서 상기 제1강제복귀수단부(700)는 상기 플레이트 링(611)의 일면에 적층 결합하여 일체로 회전하며 내주면에 래칫(711)이 형성된 정방향 회전체(710)와; 일측 외주면에 형성된 치형이 상기 제1속 유성기어세트(410)에 마련된 2단으로 이루어진 제1속 유성기어(413)의 큰 직경 측에 치합하여 회전하며, 타측 내주면에 래칫(721)이 형성된 역방향 회전체(720)와; 상기 조인트 링(550)의 배면에 일체로 돌출 형성된 상측 돌부(731) 및 하측 돌부(732)와; 상기 조인트 링(550)의 상측 배면에 원호 형상으로 돌출 형성된 덮개(740)와; 상기 조인트 링(550)의 측면에 위치하되, 소정 간극을 갖고 상기 상측 돌부(731) 및 상기 하측 돌부(732)를 수용하는 상측 요홈(751) 및 하측 요홈(752)이 형성되며, 탄성 조절 볼트(753) 및 압축 스프링(754) 및 상기 압축 스프링(754)에 의해 탄성력을 받아 하측 요홈 돌기(755)에 일정 위치까지 밀착되는 전달핀(756)에 의해 상기 하측 요홈(752)의 가운데로 상기 하측 돌부(732)가 탄성적으로 위치되도록 하며, 상기 치합링(560)과 결합하여 조작력을 전달하는 강제 복귀링(750)과; 상기 강제 복귀링(750)의 양측에 상기 정방향 회전체(710)의 래칫(711)과 상기 역방향 회전체(720)의 래칫(721)에 각각 치합 가능하게 마련되되, 상기 덮개(740)에 의해 치합이 선택적으로 제한되는 정방향 폴(760) 및 역방향 폴(770)과; 상기 정방향 폴(760) 및 상기 역방향 폴(770)을 탄성적으로 일으켜 세우는 탄성체로 구성되는 것이 가장 바람직하다.
즉, 상기 강제복귀링(750)의 도면상 우측에는 도 17과 같이 항상 정방향으로 회전하는 정방향 회전체(710)를 두고, 도면상 좌측에는 도 16과 같이 항상 역방향으로 회전하는 역방향 회전체(720)를 둔다.
이러한 상태에서 변속조작 시 상기 조인트 링(550)이 회전했음에도 불구하고 해당 폴이 태양기어의 내주면에 형성된 내기어에 강하게 맞물려 빠져 나오지 못함으로써 변속이 이루어지지 않을 경우, 상기 조인트 링(550)과 상기 강제복귀링(750) 사이에는 도 11과 같은 상기 상측 요홈(751) 및 하측 요홈(752) 내에서 도 17에 도시한 상기 상측 돌부(731) 및 하측 돌부(732)와 유격이 형성되면서 소정의 위상차가 발생하게 된다.
이러한 경우 상기 강제복귀링(750)에 마련된 정방향 폴(760) 또는 역방향 폴(770)이 상기 조인트 링(550)의 덮개(740)로부터 해제되어 탄성체에 의해 탄력적으로 벌어지게 됨으로써, 그 외측에 위치하는 정방향 회전체(710) 또는 역방향 회전체(720)의 래칫(711)(722)에 치합하게 됨으로써, 변속되는 회전력이 상기 강제복귀링(750)에 전달됨으로써, 변속레버 조작력으로 변속이 이루어지지 않던 변속을 강제적으로 수행할 수 있게 된다.
이때, 상기 강제복귀링(750)은 정방향 조작될 수도 있고 역방향 조작 될 수도 있도록 상기 정방향 회전체(710)와 상기 역방향 회전체(720) 사이에 위치하여, 정방향으로 변속 조작, 즉 가속 조작될 경우 도 17과 같이 상기 정방향 폴(760)이 정방향 회전체(710)의 래칫(711)에 치합하게 된다.
반대로, 상기 변속조작이 역방향으로 이루어질 경우, 즉 감속 조작 시 상기 역방향 폴(770)이 도 16에 도시한 바와 같이 역방향 회전체(720)의 래칫(721)에 치합하게 되는 것이다.
여기에서, 상기 강제복귀링(750)의 하측 요홈(752)에는 양단으로부터 상기 하측 돌부(732)가 중앙에 위치하도록 도 11과 같이 하측 요홈 돌기(755)에 접촉하는 전달핀(756)이 양측에 마련되며, 이러한 전달핀(756)은 각각 압축 스프링(754)에 탄성 지지되고, 이러한 압축 스프링(754)은 다시 탄성 조절 볼트(753)에 연결되어 있어, 상기 탄성 조절 볼트(753)를 조여주거나 풀어줌에 따라 상기 압축 스프링(754)의 탄성력을 조절할 수도 있는 것이다.
이에 따라, 변속 조작 이외의 경우에는 상기 조인트 링(550)의 중앙에 상기 제1강제복귀수단부(700)가 위치하도록 하는 것이 가능해진다.
추가적으로, 상기 샤프트(100)에 고정되며, 상기 제2속 제1태양기어(424)와 상기 제2속 제2태양기어(425) 사이 및 상기 제2속 제2태양기어(425)와 상기 제3속 태양기어(434) 사이에 각각 위치하여 제2속 캐리어(422), 제3속 캐리어(432) 및 제2속 제1태양기어(424), 제2속 제2태양기어(425), 제3속 태양기어(434) 등 각각 상기 샤프트(100)에 대하여 축방향 간극을 유지하며 축 중심으로 회전되게 하는 간극유지링(810)(820)이 마련되는 것이 바람직하며, 이를 통해 상기 제2속 제1태양기어(424)와 상기 제2속 제2태양기어(425) 그리고 상기 제3속 태양기어(434) 흔들리지 않고 정위치에서 회전하는 것이 가능해진다.
이하, 도면을 참조하여 본 발명의 다단 변속기에 대한 작용을 1단으로부터 12단에 이르기까지 구분하여 설명하면 다음과 같다.
- 1단
1단은 변속레버의 조작이 없어 도 19에 도시한 바와 같이 어떠한 폴도 태양기어와 치합하지 않은 상태이다.
이러한 상태에서 스프로켓(200)을 통해 구동력이 전달되면 드라이버(610)가 회전하게 된다.
이때, 드라이브부(600)에 마련된 드라이브 폴(630)은 드라이브 폴 클러치(620)의 접촉면(623)에 닿아 회전할 뿐, 드라이브부(600)의 회전력을 상기 드라이브 폴(630)이 제1속 유성기어세트(410)의 제1속 캐리어(412)에 직접 전달하지는 못한다.
이에 따라, 상기 드라이브부(600)에 마련된 제1원웨이클러치(910)를 통해 상기 드라이버(610)의 회전력이 제1속 유성기어세트(410)의 제1속 링기어(411)에 전달되며, 고정된 제1속 태양기어(414)를 중심으로 제1속 유성기어(413)가 회전하게 됨으로써, 제1속 캐리어(412)와 제2속 유성기어세트(420)의 제2속 캐리어(422)가 일체로 회전한다.
이때, 상기 제2속 유성기어세트(420)에 마련된 제2속 제1태양기어(424) 및 제2속 제2태양기어(425) 모두 회전 가능한 상태이기 때문에 제2속 캐리어(422)의 회전은 제2원웨이클러치(920)를 통해 제2속 링기어(421)로 전달된다.
이에 따라, 제3속 유성기어세트(430)의 제3속 캐리어(432)가 상기 제2속 링기어(421)와 함께 회전하지만 제3속 태양기어(434)가 회전 가능한 상태이기 때문에 제3속 유성기어(433)는 회전력을 전달하지 못하게 된다.
따라서, 상기 제2속 링기어(421)의 회전력이 제3원웨이클러치(930)를 통하여 허브쉘(300)의 내주면에 전달되어 출력이 이루어지게 되는 것이다.
- 2단
2단은 변속레버의 조작으로 도 19에 도시한 바와 같이 제2속 제어링(510)과 제3속 제어링(520)이 약 15도 회전한 상태로 오직 제3속폴(503)이 제3속 태양기어(434)와 치합하여 상기 제3속 태양기어(434)의 회전을 제한하는 상태이다.
이는 스프로켓(200)->드라이버(610)->제1원웨이클러치(910)->제1속 링기어(411)->제1속 유성기어(413)->제1속 캐리어(412)->제2속 캐리어(422)->제2원웨이클러치(920)->제2속 링기어(421)로 회전력을 전달되는 과정은 1단과 동일하다.
이후, 상기 제2속 링기어(421)의 회전력은 제3속 캐리어(432)에 전달되며, 이때 제3속 태양기어(434)가 제3속폴(503)에 의해 회전이 제한되므로 제3속 유성기어(433)가 회전하여 제3속 링기어(431)를 1단에 비해 고속으로 회전시키게 된다.
따라서, 상기 제3속 링기어(431)의 회전은 제4원웨이클러치(940)를 통하여 허브쉘(300)의 내주면에 전달되어 출력이 이루어지게 되며, 이때 제3원웨이클러치(930)는 공회전하는 것이다.
- 3단
3단은 변속레버의 조작으로 도 19에 도시한 바와 같이 제2속 제어링(510)과 제3속 제어링(520)이 약 15도 추가 회전한 상태로 오직 제2속 제1폴(501)이 제2속 제1태양기어(424)와 치합하여 상기 제2속 제1태양기어(424)의 회전을 제한하는 상태이다.
이는 스프로켓(200)->드라이버(610)->제1원웨이클러치(910)->제1속 링기어(411)->제1속 유성기어(413)->제1속 캐리어(412)->제2속 캐리어(422)로 회전력을 전달되는 과정은 2단과 동일하다.
다만, 상기 제2속 유성기어세트(420)에 마련된 제2속 제1태양기어(424)만이 회전이 제한된 상태이기 때문에 제2속 캐리어(422)의 회전에 의해 2단으로 이루어진 제2속 유성기어(423)의 큰 직경 측이 상기 제2속 제1태양기어(424)에 치합하여 제2속 링기어(421)를 2단에 비해 고속으로 회전시키게 된다.
이 때에도, 제3속 유성기어세트(430)의 제3속 캐리어(432)가 상기 제2속 링기어(421)와 함께 회전하지만 제3속 태양기어(434)가 회전 가능한 상태이기 때문에 제3속 유성기어(433)는 회전력을 전달하지 못하게 된다.
따라서, 상기 제2속 링기어(421)의 회전력이 제3원웨이클러치(930)를 통하여 허브쉘(300)의 내주면에 전달되어 출력이 이루어지게 되는 것이다.
상술한 바와 같이 2단에서 3단으로의 변속 시 2단에서 제3속 태양기어(434)에 치합하고 있던 제3속폴(503)이 빠져 나오지 못하여 원활한 변속이 이루어지지 않았다고 가정해보자.
이러한 경우, 조인트 링(550)은 15도 반시계 방향으로 회전한 반면 강제복귀링(750)은 회전하지 않게 되며, 이에 따라 상기 조인트 링(550)의 덮개(740)로부터 역방향 폴(770)이 반시계 방향으로 회전하고 있는 역방향 회전체(720)의 래칫(721)에 치합하게 되는 것이다.
이에 따라, 상기 강제복귀링(750)에 반시계 방향으로 강한 회전력이 전달되면서 제3속 태양기어(434)의 내기어에 치합하고 있던 제3속폴(503)이 빠져 나오게 되어 3단으로 변속이 이루어지는 것이다.
이와 반대로 4단에서 3단으로의 변속 시 4단에서 제3속 태양기어(434)에 치합하고 있던 제3속폴(503)이 빠져 나오지 못하여 원활한 변속이 이루어지지 않았다고 가정해보자.
이러한 경우, 조인트 링(550)은 15도 시계방향으로 회전한 반면 강제복귀링(750)은 회전하지 않게 되며, 이에 따라 상기 조인트 링(550)의 덮개(740)로부터 정방향 폴(760)이 시계방향으로 회전하고 있는 정방향 회전체(710)의 래칫(711)에 치합하게 되는 것이다.
이에 따라, 상기 강제복귀링(750)에 시계방향으로 강한 회전력이 전달되면서 제3속 태양기어(434)의 내기어에 치합하고 있던 제3속폴(503)이 빠져 나오게 되어 3단으로 변속이 이루어지는 것이다.
- 4단
4단은 변속레버의 조작으로 도 19에 도시한 바와 같이 제2속 제어링(510)과 제3속 제어링(520)이 약 15도 추가 회전한 상태로 제2속 제1폴(501) 및 제3속폴(503)이 각각 제2속 제1태양기어(424) 및 제3속 태양기어(434)와 치합하여 상기 제2속 제1태양기어(424) 및 제3속 태양기어(434)의 회전을 제한하는 상태이다.
이는 스프로켓(200)->드라이버(610)->제1원웨이클러치(910)->제1속 링기어(411)->제1속 유성기어(413)->제1속 캐리어(412)->제2속 캐리어(422)->2단 제2속 유성기어(423)의 큰 직경측->제2속 링기어(421)로 회전력을 전달되는 과정은 3단과 동일하다.
이후, 상기 제2속 링기어(421)의 회전력은 제3속 캐리어(432)에 전달되며, 이때 제3속 태양기어(434)가 제3속폴(503)에 의해 회전이 제한되므로 제3속 유성기어(433)가 회전하여 제3속 링기어(431)를 3단에 비해 고속으로 회전시키게 된다.
따라서, 상기 제3속 링기어(431)의 회전은 제4원웨이클러치(940)를 통하여 허브쉘(300)의 내주면에 전달되어 출력이 이루어지게 되며, 이때 제3원웨이클러치(930)는 공회전하는 것이다.
상술한 바와 같이 3단에서 4단으로의 변속 시 3단에서 제2속 제1태양기어(424)에 치합하고 있던 제2속 제1폴(501)이 빠져 나오지 못하여 원활한 변속이 이루어지지 않을 경우, 또는 5단에서 4단으로의 변속 시 5단에서 제2속 제2태양기어(425)에 치합하고 있던 제2속 제2폴(502)이 빠져 나오지 못하여 원활한 변속이 이루어지지 않을 경우에는 앞서 설명한 바와 같이 제1강제복귀수단부(700)에 의하여 원활한 변속이 이루어지게 되며, 이하의 변속 시에도 동일한 강제 복귀 동작을 하므로 중복 설명은 생략하기로 한다.
- 5단
5단은 변속레버의 조작으로 도 19에 도시한 바와 같이 제2속 제어링(510)과 제3속 제어링(520)이 약 15도 추가 회전한 상태로 오직 제2속 제2폴(502)이 제2속 제2태양기어(425)와 치합하여 상기 제2속 제2태양기어(425)의 회전을 제한하는 상태이다.
이는 스프로켓(200)->드라이버(610)->제1원웨이클러치(910)->제1속 링기어(411)->제1속 유성기어(413)->제1속 캐리어(412)->제2속 캐리어(422)로 회전력을 전달되는 과정은 4단과 동일하다.
다만, 상기 제2속 유성기어세트(420)에 마련된 제2속 제2태양기어(425)의 회전이 제한된 상태이기 때문에 제2속 캐리어(422)의 회전에 의해 2단으로 이루어진 제2속 유성기어(423)의 작은 직경 측이 상기 제2속 제2태양기어(425)에 치합하여 제2속 링기어(421)를 4단에 비해 고속으로 회전시키게 된다.
이 때에도, 제3속 유성기어세트(430)의 제3속 캐리어(432)가 상기 제2속 링기어(421)와 함께 회전하지만 제3속 태양기어(434)가 회전 가능한 상태이기 때문에 제3속 유성기어(433)는 회전력을 전달하지 못하게 된다.
따라서, 상기 제2속 링기어(421)의 회전력이 제3원웨이클러치(930)를 통하여 허브쉘(300)의 내주면에 전달되어 출력이 이루어지게 되는 것이다.
- 6단
6단은 변속레버의 조작으로 도 19에 도시한 바와 같이 제2속 제어링(510)과 제3속 제어링(520)이 약 15도 추가 회전한 상태로 제2속 제2폴(502) 및 제3속폴(503)이 각각 제2속 제2태양기어(425) 및 제3속 태양기어(434)와 치합하여 상기 제2속 제2태양기어(425) 및 제3속 태양기어(434)의 회전을 제한하는 상태이다.
이는 스프로켓(200)->드라이버(610)->제1원웨이클러치(910)->제1속 링기어(411)->제1속 유성기어(413)->제1속 캐리어(412)->제2속 캐리어(422)->2단 제2속 유성기어(423)의 작은 직경측->제2속 링기어(421)로 회전력을 전달되는 과정은 5단과 동일하다.
이후, 상기 제2속 링기어(421)의 회전력은 제3속 캐리어(432)에 전달되며, 이때 제3속 태양기어(434)가 제3속폴(503)에 의해 회전이 제한되므로 제3속 유성기어(433)가 회전하여 제3속 링기어(431)를 3단에 비해 고속으로 회전시키게 된다.
따라서, 상기 제3속 링기어(431)의 회전은 제4원웨이클러치(940)를 통하여 허브쉘(300)의 내주면에 전달되어 출력이 이루어지게 되며, 이때 제3원웨이클러치(930)는 공회전하는 것이다.
- 7단
7단은 변속레버의 조작으로 도 19에 도시한 바와 같이 제2속 제어링(510)과 제3속 제어링(520)이 약 15도 추가 회전한 상태로 어떠한 폴도 태양기어와 치합하지 않은 상태이다.
그러나 이때, 변속레버의 조작에 따라 회전각이 점점 커지던 조인트 링(550)에서는 경사접촉면(551)에 드라이브 폴 클러치(620)의 경사면(621)이 접촉하게 됨으로써, 상기 드라이브 폴 클러치(620)가 도면상 우측으로 이동하게 된다.
이러한 상태에서 스프로켓(200)을 통해 구동력이 전달되면 드라이버(610)가 회전하게 된다.
이때, 드라이브부(600)에 마련된 드라이브 폴(630)은 드라이브 폴 클러치(620)의 접촉면(623)을 지나 일방향 치형(622)이 형성된 곳에 위치하여 소정 각도 회동하게 됨으로써, 상기 드라이브 폴(630)의 내측 단부는 상기 일방향 치형(622) 사이에 끼이게 되고, 그 외측 단부는 제1속 캐리어(412)의 내주면에 형성된 내기어에 치합하게 된다.
이에 따라, 드라이브부(600)의 회전력을 상기 드라이브 폴(630)이 제1속 유성기어세트(410)의 제1속 캐리어(412)에 직접 전달하게 되는 것으로 전환된다.
따라서, 상기 드라이버(610)의 회전력이 상기 드라이브 폴(630)을 통해 직접 제1속 유성기어세트(410)의 제1속 캐리어(412)에 전달되며, 상기 제1속 캐리어(412)와 제2속 유성기어세트(420)의 제2속 캐리어(422)가 일체로 회전한다.
이때, 상기 제2속 유성기어세트(420)에 마련된 제2속 제1태양기어(424) 및 제2속 제2태양기어(425) 모두 회전 가능한 상태이기 때문에 제2속 캐리어(422)의 회전은 제2원웨이클러치(920)를 통해 제2속 링기어(421)로 전달된다.
이에 따라, 제3속 유성기어세트(430)의 제3속 캐리어(432)가 상기 제2속 링기어(421)와 함께 회전하지만 제3속 태양기어(434)가 회전 가능한 상태이기 때문에 제3속 유성기어(433)는 회전력을 전달하지 못하게 된다.
따라서, 상기 제2속 링기어(421)의 회전력이 제3원웨이클러치(930)를 통하여 허브쉘(300)의 내주면에 전달되어 출력이 이루어지게 되는 것이다.
이때 제2강제복귀수단부에 해당하는 드라이브 폴 클러치(620) 및 회전제한링(640)은 드라이브 폴(630)의 내측 단부가 상기 드라이브 폴 클러치(620)의 접촉면 및 일방향 치형(622)에 치합될 때, 상기 드라이버(610)의 공전에 의해 내측 단부가 치형의 끝 또는 치형의 골에 반복 접촉되어 강제적으로 외측 단부가 상기 제1속 유성기어세트(410)의 제1속 캐리어(412) 내주면에 치합되지 않거나 치합되는 것을 반복하게 됨으로써, 상기 드라이브 폴(630)을 강제 제어하게 되는 것이다.
- 8단~12단
8단~12단은 변속레버의 조작으로 도 19에 도시한 바와 같이 제2속 제어링(510)과 제3속 제어링(520)이 약 15도씩 단계별로 추가 회전한 상태로, 이는 스프로켓(200)->드라이버(610)->드라이브 폴(630)->제1속 캐리어(412)->제2속 캐리어(422)->제2원웨이클러치(920)->제2속 링기어(421)로 회전력을 전달하는 과정을 제외하고는 2단~6단과 모두 동일하다.
따라서, 본 발명의 다단 변속기는 다수의 유성기어세트를 이용하여 다단의 변속기를 콤팩트하게 구성할 수 있어 제품의 상품성을 향상시키고, 변속레버의 조작에 따라 샤프트(100)의 축방향을 따라 변위가 발생하는 구성을 통해 회전력의 전달경로를 변경시킴으로써, 유성기어세트에 의해 구현되는 다단의 변속 단수를 2배로 확장시킬 수 있고, 특히 강제복귀수단을 이용하여 가속조작에 따른 정방향 조작은 물론 감속조작에 따른 역방향 조작에 대해서도 원활한 변속이 이루어지도록 함으로써 사용자의 사용편의성을 극대화시킬 수 있는 탁월한 이점을 지닌 발명인 것이다.
상기 실시예는 본 발명의 기술적 사상을 구체적으로 설명하기 위한 일례로서, 본 발명의 범위는 상기의 도면이나 실시예에 한정되지 않는다.
이상과 같은 본 발명은 유성기어세트를 이용하여 다단의 변속기를 콤팩트하게 구성할 수 있어 제품의 상품성을 향상시키고, 강제복귀수단을 이용하여 가속조작에 따른 정방향 조작은 물론 감속조작에 따른 역방향 조작에 대해서도 원활한 변속이 이루어지도록 함으로써 사용자의 사용편의성을 극대화시킬 수 있는 발명인 것이다.

Claims (11)

  1. 양단 고정된 샤프트(100)와, 상기 샤프트(100)의 외주에 회전 가능하게 위치하여 회전력을 입력받는 스프로켓(200) 및 회전력을 출력시키는 허브쉘(300)과;
    상기 허브쉘(300)의 내부에 마련되는 태양기어, 유성기어, 캐리어, 링기어로 이루어진 유성기어세트와 원웨이클러치를 포함하여, 상기 스프로켓(200)으로 입력되는 회전력을 변속시켜 상기 허브쉘(300)로 출력시키는 변속부(400)와;
    변속레버의 조작에 따라 상기 샤프트(100)에 마련된 폴을 컨트롤하여 상기 태양기어의 회전을 선택적으로 제한하여 변속을 제어하는 제어부(500)를 포함한 다단 변속기에 있어서;
    상기 변속레버의 회전 조작에 따라 상기 샤프트(100)의 축방향으로 드라이브 폴 클러치(620)의 변위 발생에 의하여, 회전하는 드라이버(610)와 회전 불가능한 상기 드라이브 폴 클러치(620) 사이의 드라이브 폴(630)을 매개로 하여 회전력을 선택적으로 전달함으로써 변속이 이루어지는 것을 특징으로 하는 다단 변속기.
  2. 양단 고정된 샤프트(100)와, 상기 샤프트(100)의 외주에 회전 가능하게 위치하여 회전력을 입력받는 스프로켓(200) 및 회전력을 출력시키는 허브쉘(300)과;
    상기 허브쉘(300)의 내부에 마련되는 태양기어, 유성기어, 캐리어, 링기어로 이루어진 유성기어세트와 원웨이클러치를 포함하여, 상기 스프로켓(200)으로 입력되는 회전력을 변속시켜 상기 허브쉘(300)로 출력시키는 변속부(400)와;
    변속레버의 조작에 따라 상기 샤프트(100)에 마련된 폴을 컨트롤하여 상기 태양기어의 회전을 선택적으로 제한하여 변속을 제어하는 제어부(500)를 포함한 다단 변속기에 있어서;
    상기 변속레버의 회전 조작 및 폴의 치합 조건에 따라 상기 스프로켓(200)으로 입력되는 회전력을 이용하여, 치합 상태의 상기 폴을 선택적으로 강제 해제 상태로 제어 가능한 제1강제복귀수단부(700)와; 드라이브 폴 클러치(620) 및 회전제한링(640)으로 이루어져 드라이브 폴(630)을 선택적으로 강제 해제 상태로 제어 가능한 제2강제복귀수단부가 추가 구성되는 것을 특징으로 하는 다단 변속기.
  3. 양단 고정된 샤프트(100)와, 상기 샤프트(100)의 외주에 회전 가능하게 위치하여 회전력을 입력받는 스프로켓(200) 및 회전력을 출력시키는 허브쉘(300)과;
    상기 허브쉘(300)의 내부에 마련되는 태양기어, 유성기어, 캐리어, 링기어로 이루어진 유성기어세트와 원웨이클러치를 포함하여, 상기 스프로켓(200)으로 입력되는 회전력을 변속시켜 상기 허브쉘(300)로 출력시키는 변속부(400)와;
    변속레버의 조작에 따라 상기 샤프트(100)에 마련된 폴을 컨트롤하여 상기 태양기어의 회전을 선택적으로 제한하여 변속을 제어하는 제어부(500)를 포함한 다단 변속기에 있어서;
    상기 제어부(500)에는 상기 폴을 컨트롤하는 제어링이 상기 샤프트(100)의 축방향으로 한 개 또는 다수가 적층 되어 일체로 회전함에 따라 한 개 또는 다수의 폴을 선택적으로 치합 상태 또는 해제 상태로 컨트롤하여 변속을 제어하는 것을 특징으로 하는 다단 변속기.
  4. 제 1항 내지 제 3항 중 어느 한 항에 있어서,
    상기 변속부(400)는 제1속 유성기어세트(410), 제2속 유성기어세트(420), 그리고 제3속 유성기어세트(430)로 구성되며, 드라이브부(600)로부터 제1속 캐리어(412) 또는 제1속 링기어(411)에 전달되어진 회전력을 상기 제1속 유성기어세트(410)를 거쳐서 제2속 캐리어(422)에 전달하고, 상기 제2속 캐리어(422)에 전달된 회전력은 상기 제2속 유성기어세트(420) 그리고 상기 제3속 유성기어세트(430)를 통해 6단으로 변속하여 상기 허브쉘(300)로 출력 가능한 것을 특징으로 하는 다단 변속기.
  5. 제 4항에 있어서,
    상기 드라이브부(600)는 상기 드라이브 폴 클러치(620)와 상기 드라이브 폴(630)의 치합 또는 해제에 따라 상기 드라이브부(600)로부터 상기 제1속 유성기어세트(410)의 제1속 캐리어(412) 또는 제1속 링기어(411)로 회전력을 선택적으로 전달하여 2단으로 출력되어 총 12단의 변속비로 출력이 가능한 것을 특징으로 하는 다단 변속기.
  6. 제 5항에 있어서,
    제2속 제1폴(501), 제2속 제2폴(502), 그리고 제3속폴(503)의 외주에는 상기 변속레버의 회전에 따라 연동하여 회전하는 제2속 제어링(510) 및 제3속 제어링(520)이 상기 샤프트(100)의 축방향을 따라 적층 마련되되;
    상기 제2속 제어링(510)의 내주면에는 홈부가 형성되어 상기 제2속 제어링(510)의 회전에 따라 상기 제2속 제1폴(501) 및 상기 제2속 제2폴(502)이 선택적으로 상기 홈부로 빠져 나오며;
    상기 제3속 제어링(520)의 내주면에는 홈부가 형성되어 상기 제3속 제어링(520)의 회전에 따라 상기 제3속폴(503)이 선택적으로 상기 홈부로 빠져 나오는 것을 특징으로 하는 다단 변속기.
  7. 제 6항에 있어서,
    상기 제2속 제어링(510)에 형성되는 홈부는, 상기 제2속 제1폴(501) 및 상기 제2속 제2폴(502)에 대응하여 한 쌍으로 이루어져 상기 샤프트(100)의 축중심을 기준으로 다수 개 형성되며;
    상기 제3속 제어링(520)에 형성되는 홈부는, 상기 제3속폴(503)에 대응하여 상기 샤프트(100)의 축중심을 기준으로 다수 개 형성되는 것을 특징으로 하는 다단 변속기.
  8. 제 7항에 있어서,
    상기 제어부(500)는
    변속레버의 조작에 따라 인출되는 케이블이 연결되어 상기 샤프트(100)의 외주면에 회전 가능하게 지지되는 케이블링(530)과;
    상기 케이블링(530)에 연결된 연결링(541) 및 상기 연결링(541)에 끼워맞춤 조립되어 일체로 동작하는 각도 제어링(542)을 통해 스프링(미도시)으로 탄성적으로 조작력을 전달받는 조인트 링(550)과;
    상기 조인트 링(550)에 치합하여 일체로 회전하며, 상기 제3속 제어링(520)과 결합하여 상기 제2속 제어링(510) 및 상기 제3속 제어링(520)을 회전시키는 치합링(560)을 포함하는 것을 특징으로 하는 다단 변속기.
  9. 제 8항에 있어서,
    상기 조인트 링(550)에는 일정 구간 경사접촉면(551)이 형성되며;
    상기 연결링(541)의 외곽에 위치하되 상기 경사접촉면(551)에 대응하는 경사면(621)이 형성되고 외주면에 일방향 치형(622) 및 접촉면(623)이 형성된 드라이브 폴 클러치(620)와;
    상기 샤프트(100)의 축방향으로 상기 드라이브 폴 클러치(620)와 치합하고 내주면이 상기 샤프트(100)와 치합하여, 상기 드라이브 폴 클러치(620)를 회전 불가능하게 상기 샤프트(100)의 축방향을 따라 이동 가능하게 하는 회전제한링(640)과;
    상기 드라이버(610)의 내측에 일정 각도 자전 가능하게 지지되어 상기 드라이버(610)와 일체로 공전하며, 내측 단부가 상기 드라이브 폴 클러치(620)의 접촉면(623)에 접촉하여 공전하며, 외측 단부가 상기 제1속 유성기어세트(410)의 제1속 캐리어(412) 내주면에 형성된 치형에 치합되지 못하거나, 상기 드라이브 폴 클러치(620)가 중간 위치로 축방향 이동에 따라 내측 단부가 상기 드라이브 폴 클러치(620)의 접촉면 및 일방향 치형(622)에 치합될 때, 상기 드라이버(610)의 공전에 의해 내측 단부가 치형의 끝 또는 치형의 골에 반복 접촉되어 강제적으로 외측 단부가 상기 제1속 유성기어세트(410)의 제1속 캐리어(412) 내주면에 치합되지 않거나 치합되는 것을 반복하며, 상기 드라이브 폴 클러치(620)가 끝단 위치로 축방향 이동에 따라 내측 단부가 상기 드라이브 폴 클러치(620)의 접촉면(623) 및 일방향 치형(622)과 치합이 벗어나면 외측 단부가 상기 제1속 유성기어세트(410)의 제1속 캐리어(412) 내주면에 형성된 치형에 치합하여 상기 드라이버(610)와 상기 제1속 캐리어(412)를 직결시켜 일체로 회전하게 하는 드라이브 폴(630)을 포함하는 것을 특징으로 하는 다단 변속기.
  10. 제 9항에 있어서,
    상기 제1강제복귀수단부(700)는,
    상기 플레이트 링(611)의 일면에 적층 결합하여 일체로 회전하며 내주면에 래칫(711)이 형성된 정방향 회전체(710)와;
    일측 외주면에 형성된 치형이 상기 제1속 유성기어세트(410)에 마련된 2단으로 이루어진 제1속 유성기어(413)의 큰 직경 측에 치합하여 회전하며, 타측 내주면에 래칫(721)이 형성된 역방향 회전체(720)와;
    상기 조인트 링(550)의 배면에 일체로 돌출 형성된 상측 돌부(731) 및 하측 돌부(732)와;
    상기 조인트 링(550)의 상측 배면에 원호 형상으로 돌출 형성된 덮개(740)와;
    상기 조인트 링(550)의 측면에 위치하되, 소정 간극을 갖고 상기 상측 돌부(731) 및 상기 하측 돌부(732)를 수용하는 상측 요홈(751) 및 하측 요홈(752)이 형성되며, 탄성 조절 볼트(753) 및 압축 스프링(754) 및 상기 압축 스프링(754)에 의해 탄성력을 받아 하측 요홈 돌기(755)에 일정 위치까지 밀착되는 전달핀(756)에 의해 상기 하측 요홈(752)의 가운데로 상기 하측 돌부(732)가 탄성적으로 위치되도록 하며, 상기 치합링(560)과 결합하여 조작력을 전달하는 강제 복귀링(750)과;
    상기 강제 복귀링(750)의 양측에 상기 정방향 회전체(710)의 래칫(711)과 상기 역방향 회전체(720)의 래칫(721)에 각각 치합 가능하게 마련되되, 상기 덮개(740)에 의해 치합이 선택적으로 제한되는 정방향 폴(760) 및 역방향 폴(770)과;
    상기 정방향 폴(760) 및 상기 역방향 폴(770)을 탄성적으로 일으켜 세우는 탄성체로 구성된 것을 특징으로 하는 다단 변속기.
  11. 제 10항에 있어서,
    상기 샤프트(100)에 고정되며, 상기 제2속 제1태양기어(424)와 상기 제2속 제2태양기어(425) 사이 및 상기 제2속 제2태양기어(425)와 상기 제3속 태양기어(434) 사이에 각각 위치하여 제2속 캐리어(422), 제3속 캐리어(432) 및 제2속 제1태양기어(424), 제2속 제2태양기어(425), 제3속 태양기어(434) 등 각각 상기 샤프트(100)에 대하여 축방향 간극을 유지하며 축 중심으로 회전되게 하는 간극유지링(810)(820)이 마련되는 것을 특징으로 하는 다단 변속기.
PCT/KR2013/004823 2012-08-09 2013-05-31 다단 변속기 WO2014025130A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/980,801 US9182024B2 (en) 2012-08-09 2013-05-31 Multi-stage transmission

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120087145A KR101422135B1 (ko) 2012-08-09 2012-08-09 다단 변속기
KR10-2012-0087145 2012-08-09

Publications (1)

Publication Number Publication Date
WO2014025130A1 true WO2014025130A1 (ko) 2014-02-13

Family

ID=50068321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/004823 WO2014025130A1 (ko) 2012-08-09 2013-05-31 다단 변속기

Country Status (4)

Country Link
US (1) US9182024B2 (ko)
KR (1) KR101422135B1 (ko)
TW (1) TW201418600A (ko)
WO (1) WO2014025130A1 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201514058A (zh) * 2013-10-14 2015-04-16 Chen zheng he 二輪載具結構(三)
CN106972693B (zh) * 2017-04-07 2024-04-05 黄善劲 一种中置电机和配置该中置电机的电动自行车
CN106985960B (zh) * 2017-05-11 2022-09-06 张家港川梭车业有限公司 一种双前轮直驱棘爪移动换挡变速装置
KR101817629B1 (ko) * 2017-11-23 2018-02-21 (주)엠비아이 변속 조작 조력장치 및 이를 구비한 허브 내장형 변속기
CN113247169B (zh) * 2021-06-11 2022-09-30 天津美派电动科技有限公司 一种开关式链轮驱动机构
NO347518B1 (en) * 2021-08-27 2023-12-11 Ca Tech Systems As Multiple multi-speed gear systems and gear cartridges with different gear ranges and method for manufacturing such

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100225752B1 (ko) * 1997-06-19 1999-10-15 마재열 자전거 허브의 역구동력 속도변환장치
EP1323626A2 (en) * 2001-12-27 2003-07-02 Shimano Inc. A multiple piece planet gear carrier for a bicycle hub transmission
KR100915378B1 (ko) * 2005-03-15 2009-09-03 자스트 주식회사 자전거의 속도변환장치
KR100950995B1 (ko) * 2008-03-21 2010-04-02 (주)엠비아이 역입력 간섭방지 기능을 갖는 모터용 변속기
JP2012025336A (ja) * 2010-07-27 2012-02-09 Mbi Co Ltd モータ及びペダリング兼用変速機及び変速方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1583774A (ko) * 1968-03-19 1969-12-05
US3608683A (en) * 1968-09-18 1971-09-28 Shimano Industrial Co Bicycle hub having a built-in three-stage speed change mechanism and equipped with a coaster brake
AT304279B (de) * 1969-07-10 1972-12-27 Fichtel & Sachs Ag Mehrgangübersetzungsnabe für Fahrräder
JP3423756B2 (ja) * 1993-12-16 2003-07-07 株式会社シマノ 自転車用動作装置の操作構造
US6607465B1 (en) 2000-03-10 2003-08-19 Shimano, Inc. Bicycle hub transmission with a guiding member for a sun gear
EP1947003B1 (en) * 2007-01-18 2010-12-08 Shimano Inc. Hub transmission for a bicycle and method for shifting such a hub transmission
EP2017175B1 (en) * 2007-07-18 2011-03-16 Shimano Inc. Hub transmission for a bicycle
KR101126123B1 (ko) * 2009-06-17 2012-03-29 (주)엠비아이 모터 및 페달링 겸용 변속방법
JP5405219B2 (ja) 2009-07-10 2014-02-05 株式会社シマノ 自転車用内装変速ハブ
KR100954300B1 (ko) 2010-02-09 2010-04-22 (주)엠비아이 자전거 속도변환 보조장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100225752B1 (ko) * 1997-06-19 1999-10-15 마재열 자전거 허브의 역구동력 속도변환장치
EP1323626A2 (en) * 2001-12-27 2003-07-02 Shimano Inc. A multiple piece planet gear carrier for a bicycle hub transmission
KR100915378B1 (ko) * 2005-03-15 2009-09-03 자스트 주식회사 자전거의 속도변환장치
KR100950995B1 (ko) * 2008-03-21 2010-04-02 (주)엠비아이 역입력 간섭방지 기능을 갖는 모터용 변속기
JP2012025336A (ja) * 2010-07-27 2012-02-09 Mbi Co Ltd モータ及びペダリング兼用変速機及び変速方法

Also Published As

Publication number Publication date
KR20140020527A (ko) 2014-02-19
US20150141196A1 (en) 2015-05-21
US9182024B2 (en) 2015-11-10
TW201418600A (zh) 2014-05-16
KR101422135B1 (ko) 2014-07-22

Similar Documents

Publication Publication Date Title
WO2014025130A1 (ko) 다단 변속기
WO2014123312A1 (ko) 허브 내장형 다단 변속기
WO2014123320A1 (ko) 허브 내장형 다단 변속기
CN100359207C (zh) 车辆用变速器
WO2019103288A1 (ko) 변속 조작 조력장치 및 이를 구비한 허브 내장형 변속기
WO2016148463A1 (ko) 로봇 암
WO2016108457A1 (ko) 고정변속단을 가지는 하이브리드 변속기
WO2010104320A2 (ko) 유성기어를 이용한 동력 전달 장치
WO2016099023A1 (ko) 치차 결합 방식의 조타 장치 및 이를 이용한 조타 방법
WO2013151402A1 (ko) 변속 장치
WO2010137881A2 (ko) 다단기어 변속장치
WO2019172582A1 (ko) 변속모터와 유성기어 메카니즘을 이용한 자전거용 변속장치
WO2018212595A1 (ko) 모터의 다단 변속기
WO2011102606A2 (ko) 자전거용 변속기
WO2014110905A1 (zh) 双向螺丝批
WO2011008014A2 (ko) 복합 구동 자전거
WO2011122787A2 (ko) 자전거용 변속장치
WO2011078546A2 (ko) 페달링 어시스트 변속기
WO2015102460A1 (ko) 휠체어
WO2016186353A1 (ko) 세탁기 구동장치 및 이를 구비한 세탁기
WO2019194390A1 (ko) 전기자동차용 변속 시스템
WO2021101263A1 (en) Planetary gear transmission device and robot having the same
WO2020204296A1 (ko) 전기 자동차용 건식 토크 컨버터 및 그 제어방법
CN107430316A (zh) 传动结构、跟焦器、跟焦器执行端及成像装置
WO2014046418A1 (ko) 변속 장치

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 13980801

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13828695

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 15/04/15)

122 Ep: pct application non-entry in european phase

Ref document number: 13828695

Country of ref document: EP

Kind code of ref document: A1