WO2011078546A2 - 페달링 어시스트 변속기 - Google Patents

페달링 어시스트 변속기 Download PDF

Info

Publication number
WO2011078546A2
WO2011078546A2 PCT/KR2010/009145 KR2010009145W WO2011078546A2 WO 2011078546 A2 WO2011078546 A2 WO 2011078546A2 KR 2010009145 W KR2010009145 W KR 2010009145W WO 2011078546 A2 WO2011078546 A2 WO 2011078546A2
Authority
WO
WIPO (PCT)
Prior art keywords
force
gear
unit
ring
pole
Prior art date
Application number
PCT/KR2010/009145
Other languages
English (en)
French (fr)
Other versions
WO2011078546A3 (ko
Inventor
정태진
유혁
안성철
Original Assignee
(주)엠비아이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)엠비아이 filed Critical (주)엠비아이
Publication of WO2011078546A2 publication Critical patent/WO2011078546A2/ko
Publication of WO2011078546A3 publication Critical patent/WO2011078546A3/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M6/00Rider propulsion of wheeled vehicles with additional source of power, e.g. combustion engine or electric motor
    • B62M6/40Rider propelled cycles with auxiliary electric motor
    • B62M6/60Rider propelled cycles with auxiliary electric motor power-driven at axle parts
    • B62M6/65Rider propelled cycles with auxiliary electric motor power-driven at axle parts with axle and driving shaft arranged coaxially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M11/00Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels
    • B62M11/04Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels of changeable ratio
    • B62M11/14Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels of changeable ratio with planetary gears
    • B62M11/16Transmissions characterised by the use of interengaging toothed wheels or frictionally-engaging wheels of changeable ratio with planetary gears built in, or adjacent to, the ground-wheel hub
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M6/00Rider propulsion of wheeled vehicles with additional source of power, e.g. combustion engine or electric motor
    • B62M6/40Rider propelled cycles with auxiliary electric motor
    • B62M6/45Control or actuating devices therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M9/00Transmissions characterised by use of an endless chain, belt, or the like
    • B62M9/04Transmissions characterised by use of an endless chain, belt, or the like of changeable ratio
    • B62M9/06Transmissions characterised by use of an endless chain, belt, or the like of changeable ratio using a single chain, belt, or the like
    • B62M9/10Transmissions characterised by use of an endless chain, belt, or the like of changeable ratio using a single chain, belt, or the like involving different-sized wheels, e.g. rear sprocket chain wheels selectively engaged by the chain, belt, or the like
    • B62M9/12Transmissions characterised by use of an endless chain, belt, or the like of changeable ratio using a single chain, belt, or the like involving different-sized wheels, e.g. rear sprocket chain wheels selectively engaged by the chain, belt, or the like the chain, belt, or the like being laterally shiftable, e.g. using a rear derailleur
    • B62M9/121Rear derailleurs
    • B62M9/123Rear derailleurs changing gears automatically

Definitions

  • the present invention relates to a pedaling assist transmission. More particularly, the present invention relates to a device for actively controlling a motor driving force that senses a pedaling force applied to a pedal and drives a motor according to the pedaling power. The present invention relates to a device that can easily perform acceleration through a motor by pedaling without using it, and also, by using a multi-stage planetary gear, also adopts a multi-stage shift gear within itself to obtain proper torque and speed according to driving conditions.
  • a bicycle In general, a bicycle is a vehicle for driving by rotating a wheel by rolling a pedal by an occupant's manpower.
  • an electric bicycle has been developed in which a battery that can be charged by a manpower and a motor that rotates according to a power supply are added.
  • the electric bicycle can variably control the running speed of the bicycle from low speed to high speed by variably controlling the rotation speed of the motor according to the acceleration operation.
  • the occupant of the electric bicycle operates a separate acceleration operation means to increase or decrease the rotational speed of the motor, and pedaling by the foot to obtain a desired driving speed.
  • the control must be controlled.
  • the present invention is to solve the above problems, in the transmission for selectively outputting a faster rotation of the input power and the manpower can be actively increased the electric power according to the pedaling force applied to the pedals, According to the will, it is not only possible to easily accelerate the motor by pedaling without additional operation, but also to make the multi-stage shifting through the multi-stage planetary gear inside itself so that appropriate torque and speed can be obtained according to the driving conditions. To provide a pedaling assist transmission.
  • the present invention is a fixed shaft fixed to the vehicle body frame; A hub shell rotatably supported on an outer circumference of the fixed shaft to output a driven force; An electric power driving unit driven by the rotation of the motor; A manpower driving unit which receives and drives the pedaling driving force of the occupant; A selective output unit provided between the electric force driving unit and the manpower driving unit and the hub shell to selectively transmit any one of the electric power driving unit and the manpower driving unit to rotate at a high speed to the hub shell; A torque sensor detecting a driving force input from the outside to the attraction driving unit; It is achieved by configuring a control unit for controlling the rotational speed of the motor in accordance with the driving force detected from the torque sensor.
  • the electric power drive unit the reduction gear meshing with the outer circumference of the rotating shaft of the motor; It is preferable that an electric force reduction unit made of an inner gear which is engaged with the outer circumference of the reduction gear and transmits rotational force to the selection output unit is provided.
  • the manpower drive unit the sprocket for receiving the pedaling driving force of the occupant and rotates; A carrier rotating integrally with the sprocket; Planetary gears rotatably supported by the carrier; A sun gear meshing with an inner circumference of the planetary gear;
  • the outer peripheral of the planetary gear and the outer periphery may be provided with a manpower acceleration consisting of a ring gear for transmitting a rotational force to the selection output,
  • the manpower drive unit the sprocket for receiving the pedaling driving force of the occupant to rotate; A ring gear rotating integrally with the sprocket; A planetary gear meshing with an inner circumference of the ring gear; A sun gear meshing with an inner circumference of the planetary gear;
  • a manpower reduction unit may be provided that includes a carrier for rotatably supporting the planetary gear and transmitting rotational force to the selection output unit.
  • the torque sensor is preferably located between the sun gear and the fixed shaft.
  • a shift carrier for selectively receiving any one of the electric power driving unit or the manpower driving unit to rotate at high speed to rotate, and a shift supported by the shift carrier rotatably A planetary gear, a gearshift ring gear that is engaged with the outer circumference of the shifting planetary gear to transmit rotational force to the hub shell, a shifting sun gear that engages with the inner circumference of the shifting planetary gear, and a rotation of the shift carrier gear.
  • a shift control unit is further configured to selectively restrict rotation of the shift sun gear.
  • the shift planetary gear is composed of one or two or more stages of the multi-speed planetary gear, it is preferable that one or more gears corresponding to the number of stages of the multi-speed planetary gear.
  • the shift control unit may include: a pawl selectively engaged with a ratchet tooth formed on an inner circumferential surface of each of the shift sun gears; A pole control ring having a pressing piece to control the protrusion of the pole according to rotation; It is appropriate to include a lever ring which is connected to the pole control ring and rotates when the shifting cable is pulled out.
  • the shift control unit further includes a forced return means for easily shifting even when the vehicle is driven by the electric power drive unit or the manpower drive unit.
  • the forced return means is achieved by arranging a sliding ring next to the pole control ring and mounting a forced return pole contacting the outer circumferential surface of the sliding ring and the pole control ring to be connected to the inner side of the ring gear. desirable.
  • the present invention can actively increase the electric power according to the pedaling force applied by the occupant to the pedal in a transmission for selectively shifting and outputting a faster rotation among the input electric force and the manpower, so as to separately operate according to the will of the occupant.
  • the multi-stage shifting through the multi-stage planetary gear is also made in itself, so that the proper torque and speed can be obtained according to the driving conditions.
  • FIG. 1 is a cross-sectional view showing a first embodiment of a pedaling assist transmission of the present invention
  • FIG. 2 is a cross-sectional view showing a second embodiment of the pedaling assist transmission of the present invention
  • FIG. 3 is a sectional view showing a third embodiment of a pedaling assist transmission of the present invention.
  • FIG. 4 is an enlarged view of a portion A in FIG. 3;
  • FIG. 5 is an exploded perspective view of a speed change unit and a shift control unit in a third embodiment of a pedaling assist transmission of the present invention
  • FIG. 6 is a perspective view of a transmission part and a shift control part in a third embodiment of a pedaling assist transmission of the present invention.
  • FIG. 7 to 11 are cross-sectional views showing examples of the operation of the shift control unit and the forced return means in the third embodiment of the pedaling assist transmission of the present invention.
  • Fig. 1 is a sectional view showing a first embodiment of a pedaling assist transmission of the present invention
  • Fig. 2 is a sectional view showing a second embodiment of a pedaling assist transmission of the present invention.
  • FIG. 3 is a sectional view showing a third embodiment of the pedaling assist transmission of the present invention
  • FIG. 4 is an enlarged view of portion A in FIG.
  • FIG. 5 is an exploded perspective view of a transmission unit and a shift control unit in a third embodiment of the pedaling assist transmission of the present invention
  • FIG. 6 is a transmission part and a third embodiment in the pedaling assist transmission of the present invention.
  • FIG. 7 to 11 are cross sectional views showing examples of the operation of the shift control unit and the forced return means in the third embodiment of the pedaling assist transmission of the present invention.
  • the pedaling assist transmission of the present invention is provided with the electric force driving unit 300 and the manpower driving unit 400 on the fixed shaft 100, the torque sensor 600 is provided in the manpower driving unit 400 to drive the pedaling of the occupant
  • the controller controls the rotation of the motor 310 provided in the electric power driving unit 300 according to the value detected by the torque sensor 600, so that the selective output unit 500 controls the electric power driving unit 300 and the attraction force.
  • the pedaling assist transmission of the present invention is classified into two types according to acceleration or deceleration in the attraction driving unit 400.
  • the case of acceleration will be described below as a first embodiment, and the case of deceleration is a second embodiment. This will be described below.
  • the acceleration is carried out in the manpower driving unit 400 below.
  • the shifting unit 700 and the shift control unit 800 are added to the first embodiment to be described in the third embodiment below, and the speed change is performed in the second embodiment in which the deceleration is performed in the attraction driving unit 400. Description of the embodiment of the addition of the unit 700 and the shift control unit 800 will be omitted overlapping.
  • the fixed shaft 100 is fixedly supported at both ends of the body frame which is the body of the bicycle so as not to rotate. It serves as a central skeleton, which is divided into both sides as shown in the drawing, on the left side of the electric power side fixed shaft 110 in the drawing is located on the outer circumference of the electric power driving unit 300, the right side of the drawing At the outer side of the attraction side fixed shaft 120, the attraction force driving unit 400 will be described below.
  • the hub shell 200 is a component that outputs a driven force, for example, by transferring the driven force output by being positioned in the center of the driving wheel of the bicycle to the driving wheel, the bicycle is advanced by the rotation of the driving wheel. .
  • the hub shell 200 is rotatably supported on the outer circumference of the fixed shaft 100 through a plurality of bearings, etc. Therein, the electric force driving unit 300, the manpower driving unit 400, and the selective output unit 500. ) Is built-in.
  • the electric power drive unit 300 includes a motor 310 for linearly varying the rotational speed of the rotating shaft 311 according to the control of the power supply.
  • the motor 310 is a BLDC motor (blushless DC motor) It is preferable to use the electric force of the motor 310 as a drive source.
  • the manpower drive unit 400 is a manpower, for example, the driving force of the pedaling force applied to the pedals of the bicycle, the sprocket or belt pulley so that the rotational force can be input through a power transmission means such as a chain or a belt.
  • a power transmission means such as a chain or a belt.
  • the selective output unit 500 is provided between the electric force driving unit 300 and the attraction force driving unit 400 and the hub shell 200 described above, and the electric power driving unit 300 using the rotational force of the motor 310 as a driving source.
  • the selective output unit 500 transmits only the output of the electric power drive unit 300 to the hub shell 200 and the output of the manpower drive unit 400.
  • the selective output unit 500 transmits only the output of the attraction driving unit 400 to the hub shell 200 and the electric power. It is to slide the output rotation of the drive unit 300.
  • the torque sensor 600 is provided in the attraction driving unit 400, and has a disk shape having a hole formed in the center thereof, and one side thereof is fixed to a fixed portion, for example, the fixed shaft 100. It is fixed to the component of, the other side is provided on the rotating portion, for example, the manpower driving unit 400 is fixed on a predetermined component to rotate in conjunction with the pedaling of the occupant, the torque sensor 600 After detecting the driving force input from the outside is to output it as an electrical signal in proportion to the magnitude of the detected driving force.
  • control unit which is not shown, is connected to the motor 310 of the torque sensor 600 and the electric power driving unit 300, and according to the pedaling driving force of the occupant detected by the torque sensor 600 of the motor 310.
  • the rotation speed is proportionally controlled.
  • control of the control unit performs an appropriate calibration (calibration) with respect to the driving force of the manpower driving unit 400 detected by the torque sensor 600, the driving force through the electric power driving unit 300 through the manpower driving unit 400 It is controlled to be almost equal to the driving force.
  • the electric power driving unit 300 assists the pedaling driving force applied by the occupant to proceed with the bicycle, so that the acceleration can be performed more easily.
  • the above-mentioned driving force ratio can be changed according to the choice of the occupant.
  • the electric power drive unit 300 includes a reduction gear 321 engaged with an outer circumference of the rotating shaft 311 of the motor 310; It is preferable that the electric power reduction unit 320 including the inner gear 322 which is engaged with the outer circumference of the reduction gear 321 and transmits the rotational force to the selection output unit 500 is provided.
  • the electric power drive unit 300 it is also possible to transmit the rotational speed of the above-described rotation shaft 311 of the motor 310 to the selective output unit 500 as it is without a separate shift.
  • the reduction gear 321 is centered on one side of the rotation shaft 311 of the motor 310 to allow the reduction gear 321 to engage with the outer circumference of the rotation shaft 311.
  • the inner gear 322 is again engaged with the outer circumference of the reduction gear 321 to obtain a predetermined reduction ratio.
  • the driving force of the rotation shaft 311 of the motor 310 is decelerated through the reduction gear 321 and the inner gear 322, and then transmitted to the selection output unit 500 to obtain a larger torque.
  • a tooth is formed on one inner circumferential surface of the inner gear 322 to engage with the outer circumference of the reduction gear 321, and the other outer circumferential surface of the inner gear 322 is connected to the inner circumference of the selection output unit 500.
  • the electric power reduction unit 320 is added only in the case of a motor requiring a reduction ratio according to the type of the motor 310, and in the case of a motor 310 that does not require a separate reduction ratio, the rotation shaft of the motor 310 is provided. Of course, it is also possible to directly input 311 to the selection output unit 500 without deceleration.
  • the manpower drive unit 400 the sprocket 411 for receiving the pedaling driving force of the occupant to rotate;
  • a carrier 412 rotating integrally with the sprocket 411;
  • a planetary gear 413 rotatably supported by the carrier 412;
  • a sun gear 414 meshing with an inner circumference of the planetary gear 413;
  • a manpower acceleration unit 410 made of a ring gear 415 which meshes with the outer circumference of the planetary gear 413 and whose outer circumference transmits rotational force to the selective output unit 500.
  • a manpower acceleration unit 410 composed of a sprocket 411, a carrier 412, a planetary gear 413, and a sun gear 414 is provided in the manpower driving unit 400 to provide a driving force input by the pedaling of the occupant. It can be accelerated.
  • the sprocket 411 in the manpower acceleration unit 410 is connected to the power transmission means such as a chain is rotated to receive the pedaling driving force of the occupant, the carrier 412 is fixed to the sprocket 411 integrally The sprocket 411 and the carrier 412 rotate together at the same rotation speed.
  • one or more planetary gears 413 are rotatably supported by the carrier 412 such that the planetary gear 413 revolves about the fixed shaft 100 as the carrier 412 rotates.
  • the sun gear 414 is located inside the planetary gear 413 so that the inner circumference of the planetary gear 413 is engaged with the outer circumference of the sun gear 414.
  • the planetary gear 413 rotates the outer circumference of the sun gear 414 faster than the rotation speed of the carrier 412 when the carrier 412 is rotated. Will be.
  • a ring gear 415 is positioned outside the planetary gear 413 such that an outer circumference of the planetary gear 413 is engaged with an inner circumference of the ring gear 415, and an outer circumferential surface of the ring gear 415 is formed. It is connected to the selection output unit 500.
  • the attraction acceleration unit 410 is to accelerate the pedaling driving force of the occupant input to the attraction driving unit 400 is to be transmitted to the selection output unit 500.
  • the attraction acceleration unit 410 is described above. It is provided to install a torque sensor 600.
  • the torque sensor 600 is located between the sun gear 414 and the fixed shaft 100.
  • the torque sensor 600 has one side fixed to the fixed shaft 100, the other side is connected to the component to be rotated in the attraction driving unit 400, the component is said It is set as the sun gear 414.
  • the torque sensor 600 is to detect the rotational force that the sun gear 414 is about to rotate.
  • the attraction acceleration unit 410 accelerates, but substantially corresponds to the configuration for installing the torque sensor 600.
  • both the electric power driving unit 300 and the manpower driving unit 400 are in a stopped state.
  • the pedal force is input to the driving force of the manpower driving unit 400 through the sprocket 411 via a power transmission means such as a chain.
  • the pedaling driving force input to the attraction driving unit 400 rotates the carrier 412 integral with the sprocket 411, and thus the planetary gear 413 rotatably supported by the carrier 412 is a sun gear ( 414) is orbiting around.
  • the planetary gear 413 rotates the ring gear 415 located on the outside faster, and the ring gear 415 transmits the rotational force to the selection output unit 500.
  • the selective output unit 500 is the hub shell 200 only instantaneously the rotational force transmitted through the attractive force unit 400.
  • the hub shell 200 is to output the driven force.
  • the torque sensor 600 provided in the attraction driving unit 400 detects a pedaling driving force acting on the sun gear 414 and transmits an electrical signal to a controller (not shown). Done.
  • control unit proportionally applies an appropriate power to the motor 310 provided in the electric power driving unit 300 in proportion to the torque detected by the torque sensor 600, after which the rotary shaft ( 311) is rotated.
  • the output of the electric power driving unit 300 is transmitted to the selection output unit 500 through the reduction gear 321 and the inner gear 322, thereby allowing the selection output unit to be rotated.
  • the output through the manpower driving unit 400 and the output through the electric power driving unit 300 is simultaneously transmitted to the 500, after which the selective output unit 500 outputs any one of the hubs that rotates faster. It is to be output through the shell (200).
  • the torque detected by the torque sensor 600 also increases, so that the output to the electric power driving unit 300 is supported by the control unit, and the electric power driving unit 300 is supported. If the output speed is faster through the torque detected by the torque sensor 600 is reduced by that the output speed of the electric power drive unit 300 is reduced by that much.
  • the driving force transmitted to the selection output unit 500 through the attraction driving unit 400 and the driving force transmitted to the selection output unit 500 through the electric power driving unit 300 are maintained at approximately 50:50,
  • the bike occupant may be driven at an initial acceleration or hill road without applying great force through the driving force of the motor 310, and then the constant speed driving may be easily performed.
  • the above-mentioned driving force ratio can be changed according to the choice of the occupant.
  • the second embodiment of the pedaling assist transmission of the present invention is the same as the first embodiment described above, except that the manpower reduction unit 420 is provided instead of the manpower acceleration unit 410 in the manpower driving unit 400 is different. have.
  • the attraction driving unit 400 includes: a sprocket 421 which receives and rotates the pedaling driving force of the occupant; A ring gear 425 which rotates integrally with the sprocket 421; A planetary gear 423 meshing with an inner circumference of the ring gear 425; A sun gear 424 meshing with an inner circumference of the planetary gear 423; A gravity reduction unit 420 is provided, which is configured to support the planetary gear 423 rotatably and at the same time transmit a rotational force to the selection output unit 500.
  • a manpower deceleration part 420 formed of a sprocket 421, a carrier 422, a planetary gear 423, and a sun gear 424 is provided in the manpower driving part 400 to provide a driving force input by the pedaling of the occupant. It is possible to slow down.
  • the sprocket 421 in the manpower deceleration unit 420 is connected to the power transmission means such as a chain is rotated to receive the pedaling driving force of the occupant, the ring gear 425 is integral to this sprocket 421. As it is fixed, the sprocket 421 and the ring gear 425 is rotated together at the same rotational speed.
  • one or more planetary gears 423 are positioned inside the ring gear 425 such that an inner circumference of the ring gear 425 is engaged with an outer circumference of the planetary gear 423.
  • the planetary gear 423 rotates according to the rotation.
  • the carrier 422 is rotatably supporting the planetary gear 423, the sun gear 424 is located inside the planetary gear 423, the inner circumference of the planetary gear 423 is the sun The outer periphery of the gear 424 is engaged.
  • the planetary gear 423 revolves around the fixed shaft 100 according to the rotation of the planetary gear 423.
  • the carrier 422 rotates the outer circumference of the sun gear 424 slower than the rotation speed of the planet gear 423 when the planetary gear 423 rotates. It is done.
  • the carrier 422 for rotatably supporting the planetary gear 423 extends outward so that its outer circumferential surface is connected to the selection output unit 500.
  • the manpower reduction unit 420 is to reduce the pedaling driving force of the occupant input to the manpower driving unit 400 to be transmitted to the selection output unit 500.
  • the manpower reduction unit 420 is provided in the manpower driving unit 400, and only after the pedaling driving force of the occupant is decelerated is transmitted to the selection output unit 500.
  • the overlapping detailed description of the construction and operation of the second embodiment will be omitted.
  • the third embodiment of the pedaling assist transmission of the present invention is the same as the first embodiment described above, except that the transmission unit 700 and the shift control unit (B) between the selective output unit 500 and the hub shell 200.
  • the difference is that 800 is additionally provided.
  • the electric force reduction unit 320 is placed in the electric force driving unit 300 to decelerate and output the rotational force of the motor 310, and in the manpower driving unit 400, the attraction acceleration unit of the first embodiment ( It was described that the 410 to accelerate the pedaling driving force of the occupant or to reduce the output of the pedaling driving force of the occupant by placing the manpower reduction unit 420 of the second embodiment.
  • the shift lever 840 separately provided to the outside of the hub shell 200 is primarily shifted as the occupant controls the driving condition.
  • the pedaling driving force of the occupant or the rotational force by the motor 310 can be shifted to the secondary output.
  • the third embodiment of the pedaling assist transmission of the present invention between the selective output unit 500 and the hub shell 200, the electric power drive unit 300 or the A shift carrier 710 that receives and selectively receives any one of the manpower driving units 400 that rotate at high speed, a shift planetary gear 720 rotatably supported by the shift carrier 710, and the shift A transmission ring gear 730 that is engaged with the outer circumference of the planetary gear 720 and transmits a rotational force to the hub shell 200, and a transmission sun gear 740 that is engaged with the inner circumference of the transmission planetary gear 720;
  • the shift control unit 800 selectively restrains the rotation of the shifting sun gear 740.
  • one side (left side in the drawing) of the transmission carrier 710 may receive the driving force of the electric power driving unit 300 through the selection output unit 500a, and the other side (right side in the drawing) is the attraction driving unit ( The driving force of 400 may be transmitted through the selection output unit 500b.
  • the shift carrier 710 is rotated by receiving a driving force transmitted at high speed among the two selective output units 500a and 500b, and the shift carrier 710 is rotated on the outer circumference of the fixed shaft 100.
  • one or more shifting planetary gears 720 are rotatably supported by the shifting carrier 710.
  • the shift planetary gear 720 may rotate on the shift carrier 710 and revolve as the shift carrier 710 rotates.
  • a shift ring gear 730 is provided at an outer side of the shift carrier 710, and a gear is formed at an inner circumferential surface of the shift ring gear 730 to engage with an outer circumference of the shift planetary gear 720.
  • the shift ring gear 730 is connected to the hub shell 200 again to be output through the hub shell 200 according to the rotation of the shift ring gear 730.
  • an output pole 731 is provided between the shifting ring gear 730 and the hub shell 200, and the output pole 731 is mounted in an oblique direction to the hub shell from the shifting ring gear 730. Rotation force can be transmitted to the 200, but the rotational force reversely input from the hub shell 200 in the reverse direction to the variable speed ring gear 730 serves to make a futile.
  • a shift sun gear 740 is provided inside the shift carrier 710, and the shift sun gear 740 meshes with an inner circumference of the shift planetary gear 720, thereby shifting the sun gear 740. It is to be able to idle or transmit the transmission planetary gear 720 depending on whether the restraint, that is, rotatable.
  • a clutch means 750 is further added between the shift carrier 710 and the shift ring gear 730, and the clutch means 750 is the shift ring gear 730 directly from the shift carrier 710. And a faster rotation speed is transmitted from the shift carrier 710 to the shift ring gear 730 through the shift planetary gear 720. It is impossible to transfer the rotational force directly from the carrier 710 to the shift ring gear 730.
  • the clutch means 750 may directly transmit rotational force to the shift ring gear 730 without shifting from the shift carrier 710, and if the shift planetary gear 720 is shifted from the shift carrier 710.
  • the clutch 750 is prevented from transmitting the rotational force directly from the transmission carrier 710 to the transmission ring gear 730. It is also possible to apply a normal one-way clutch or the like.
  • the shift control unit 800 is located inside the shift unit 700 and controls the shift of the shift unit 700 according to the shift lever 840 of the occupant.
  • the shifting planetary gear 720 described above is controlled to be idle or transmit a rotational force.
  • variable speed planetary gear 720 is composed of one or more two-speed multi-speed planetary gear 720 as shown, and the variable speed sun gear ( One or more 740 may be provided to correspond to the number of stages of the multi-speed planetary gear 720.
  • the gearboxes of the above-described shifting planetary gear may be divided into low speed and high speed only in two stages depending on whether the shifting planetary gear 720 is restrained.
  • the shift is made, the shift planetary gear 720 may be a two-stage or more multi-speed planetary gear 720.
  • the transmission planetary gear 720 is composed of a first stage 720a of a large diameter and a second stage 720b of a small diameter.
  • the outer circumference of the first stage 720a of the shifting planetary gear 720 meshes with a gear formed on the inner circumferential surface of the shifting ring gear 730, but the outer circumference of the second stage 720b is different from that of a separate component. It will not match.
  • shifting sun gears 740 (hereinafter, referred to as a first shifting sun gear 740a and a second shifting sun gear 740b) having different diameters are provided inside the shifting planetary gear 720.
  • One shifting sun gear 740a engages inside the first stage 720a of the shifting planetary gear 720
  • the second shifting sun gear 740b is inside the second step 720b of the shifting planetary gear 720. It is to be matched with.
  • the shift control unit 800 that controls the shift of the shifting unit 700 described above includes a pawl selectively engaged with the ratchet teeth 741a and 741b formed on the inner circumferential surface of each of the shifting sun gears 740a and 740b. 811 and 812; Push piece (821a) (821b) is formed and the pole control ring (820) for controlling the protrusion of the pole (811) (812) in accordance with the rotation; It is preferable to include a lever control ring 830 connected to the pole control ring 820 and rotates as the transmission cable 850 is drawn out.
  • poles 811 and 812 (hereinafter, referred to as first poles 811 and second poles 812) for controlling the first variable speed sun gear 740a and the second variable speed sun gear 740b, respectively.
  • the first pole 811 and the second pole 812 are provided by the pole control ring 820, respectively, so that the inner circumferential surfaces of the first variable speed sun gear 740a and the second variable speed sun gear 740b are provided. It is selectively engaged with the ratchet teeth 741a and 741b respectively formed in the teeth.
  • first pole 811 and the second pole 812 extend in the axial direction with respect to the fixed shaft 100, and on one side of the control unit controlled by the pole control ring 820 and the other On the side, a fitting portion for engaging the ratchet teeth 741a and 741b is divided.
  • control section of the first pole 811 and the second pole 812 does not have to be the same shape as the engagement portion, it does not need to be a circular cross-section in all except the control portion and the engagement portion.
  • pressing pieces 821a and 821b protruding a predetermined section from the inner circumferential surface of the pole control ring 820 to control the first pole 811 and the second pole 812, respectively.
  • the first pole 811 or the second pole 812 is a ratchet tooth 741a of the first variable speed sun gear 740a or the second variable speed sun gear 740b ( 741b)
  • the first pole 811 and the second pole 812 is the first variable speed sun gear 740a or the second variable speed sun gear (in a section without the pressing pieces 821a and 821b).
  • the first gearshift sun gear 740a or the second gearshift sun gear 740b is restrained by being engaged with the ratchet teeth 741a and 741b of the 740b.
  • a lever control ring 830 is connected to the pole control ring 820, and the pole control ring 820 rotates integrally with the rotation of the lever ring 830, and the user has a lever ring 830.
  • the shifting cable 850 is drawn out according to the operation of the shift lever 840, so that the lever ring 830 is rotated as the shifting cable 850 is pulled out.
  • the shifting unit 700 and the shift control unit 800 As described above, the driving force from the electric force driving unit 300 or the manpower driving unit 400 is transmitted through the shift carrier 710 to the clutch means 750 or the multi-speed planetary gear.
  • the gear is shifted by the gear 720 and is output to the shift ring gear 730 and the hub shell 200.
  • the clutch means 750 rotates the shift ring gear 730 faster when the shifting planetary gear 720 rotates quickly, so that the driving force is rotated without transmission.
  • the second pole 812 The difference between the speed ratios connected by?), That is, the direction in which the first variable speed sun gear 740a is not caught by the first pole 811 by the first stage 720a and the second stage 720b in the shifting planetary gear 720. It is rotated to be able to disable the function of the first pole 811.
  • the first pole 811 and the second pole 812 are shift levers as described above.
  • the first pole 811 and the second pole 812 are controlled by the pole control ring 820 which is connected to the 840 and rotates, respectively, and the first variable speed sun gear 740a and the second variable speed sun gear 740b.
  • the case may not be released in a state in which the ratchet teeth (741a) (741b) formed on the inner circumferential surface of the strong hanging, so that a special configuration was further provided.
  • the shift control unit 800 is preferably provided with a forced return means 900 to make the shift easily even in the state of driving by the electric power drive unit 300 or the manpower drive unit 400.
  • the shift control unit 800 has a lever ring 830 connected to the shift lever 840 by a shift cable 850 coupled to the attraction side fixed shaft 120 to rotate at a predetermined angle, and the rotation is coaxial.
  • the pole control ring 820 is rotated within a predetermined angle to the upper pole control ring 820 to raise or lower the first pole 811 or the second pole 812 mounted on the coaxial.
  • poles 811 and 812 This causes the poles 811 and 812 to be elastically erected by the pole spring 810 so that the poles 811 and 812 are not ratcheted by the pole control ring 820 so that the poles 811 and 812 are ratcheted 741a. 741b and possible to stand elastically possible.
  • the basic position of the pole control ring 820 is in a state of being laid down by pressing the first pole 811 and the second pole 812, the lever control ring while rotating the lever 830 in one direction
  • the 820 is rotated together to stand up by releasing the pressing of the first pole 811.
  • the pole control ring 820 continues to rotate so that not only the first pole 811 but also the second pole 812 are released to stand.
  • a spring fixing ring 910 is provided between the lever ring 830 and the pole control ring 820. It is fixedly coupled to the (120), the return springs 921, 922 to both sides of the fixing ring 910 is connected to each lever ring 830 and the pole control ring 820.
  • the first return spring 921 returns the lever ring 830
  • the second return spring 922 returns the pole control ring 820.
  • the first pole 811 and the second pole 812 are connected to the ratchet teeth 741a and 741b of the first shifting sun gear 740a and the second shifting sun gear 740b.
  • the elastic restoring force of the second return spring 922 may not press the first pole 811 or the second pole 812, which may cause a problem in shifting.
  • the driving force of the manpower driving unit 400 as well as the driving force of the electric power driving unit 300 are transmitted to the transmission unit 700, so that the first pole 811 and the second pole 812 even when the bicycle is in flat driving.
  • the ratchet teeth 741a and 741b of the shifting sun gears 740a and 740b can be strongly penetrated, so that the first pole 811 and the second pole 812 can be released only by pressing with great force.
  • Forced return means 900 is disposed by the sliding ring 930 next to the pole control ring 820, the forced return pole contacting the outer circumferential surface of the sliding ring 930 and the pole control ring 820 ( 940 is achieved by mounting so as to be connected to the inner side of the ring gear 415.
  • the ring gear 415 is rotated by the sprocket 411 is provided in the manpower driving unit 400 receives the pedaling driving force of the occupant, this rotational force through the forced return pole 940 pole control ring 820 It will be forced to the side.
  • the ratchet groove 825 is formed on the outer circumferential surface of the pole control ring 820 so that the forced return pole 940 is constrained, and on the outer circumferential surface of the sliding ring 930, the forced return pole 940 is not gently constrained.
  • a true sliding groove 935 is formed.
  • the locking jaw 957 of the rotary ring 950 and the locking jaw 937 of the sliding ring 930 coupled to the pole control ring 820 are integrally rotated so that the first control arm 961 of the transmission ring 960 is provided.
  • the sliding groove 935 is positioned in front of the ratchet groove 825 of the pole control ring 820 when aligned in a line by the force return pole 940 is the ratchet groove 825 of the pole control ring 820. It is set to slide in the sliding groove 935 without being constrained to.
  • the sliding ring 930 is the play groove ( The sliding groove 935 is positioned behind the ratchet groove 825 of the pole control ring 820 while rotating by the space of the extension piece 822 in the 931 and the pole control ring 820.
  • the driving force of the attraction driver 400 is transmitted to the pole control ring 820 to forcibly control the first pole 811 and the second pole 812.
  • the pole control ring 820 is provided with pressing pieces 821a and 821b for pressing the first pole 811 or the second pole 812 on one side thereof, and selectively pressing the first pole 811.
  • the pressing piece 821a and the pressing piece 821b for selectively pressing the second pole 812 are alternately formed, and the protruding extension piece 822 is formed on the other side.
  • a grooved groove 931 On the inner side of the sliding ring 930 is formed a grooved groove 931, the groove is broken so that the extension piece 822 penetrates with a constant rotational clearance. At this time, the clearance groove 931 is formed wider than the width of the extension piece 822.
  • the position of the play groove 931 is the push piece 821a (pole) 811, 812 is raised so that the pole control ring 820 controls the first pole 811 or the second pole 812 (
  • the forced return pole 940 is the ratchet groove 825 of the pawl control ring 820 when the sliding groove 935 of the sliding ring 930 is contacted.
  • a rotary ring 950 inserted into the end of the extension piece 822 to substantially rotate the pole control ring 820 is provided next to the sliding ring 930, and next to the rotary ring 950
  • the rotating ring 950 is provided with a fixing ring 910 is connected to the second return spring 922.
  • the transmission ring 960 for rotating only in one direction is mounted.
  • the transmission ring 960 is connected to the fixed ring 910 by a first return spring 921, and protruding first control arm 961 and second control arm (both sides) of the transmission ring 960. 962 is integrally formed.
  • the first control arm 961 rotates in conjunction with the lever ring 830 connected to the shift lever and the shift cable 850, and the second control arm 962 protrudes in the rotating ring 950.
  • 957 and the locking projection 937 protruding in the sliding ring 930 are extended to abut only in one direction at the same time.
  • the right shaft bearing support 970 is fixed to the attraction side fixed shaft 120 and is coupled by the carrier 412 and the bearing to support the carrier 412.
  • FIG. 7 to 11 are cross sectional views showing an operation example of the shift control unit and the forced return means in the third embodiment of the pedaling assist transmission of the present invention
  • FIG. 7 is a view showing a state of the high speed mode
  • FIG. 9 is a diagram showing a state of forced return in the high speed mode of FIG. 7
  • FIG. 10 is a diagram of a medium speed mode showing a state after a forced return.
  • the first return spring 921 is tensioned to generate a restoring force of the transmission ring 960, and the rotation ring 950 rotates to the second return.
  • the spring 922 is tensioned to generate a restoring force of the rotation ring 950.
  • the rotation of the rotary ring 950 rotates the pole control ring 820 counterclockwise in the drawing through the extension piece 822 coupled to the rotary ring 950 to one side of the pole control ring 820.
  • the pressing piece 821a formed at the first side frees the first pole 811 so that the first pole 811 is erected by the elastic force of the pole spring 810, and thus the first pole 811 is formed. Since the pawl 811 restrains the first transmission sun gear 740a to the attraction side fixed shaft 120, the pawl 811 is converted from the low speed mode to the medium speed mode.
  • the pole control ring 820 is further rotated counterclockwise on the drawing in the same form as the operation of converting from low speed to medium speed as shown in FIG. 7. 812 is converted to a high speed mode.
  • the pressing pieces 821a and 821b press the first pole 811 or the second pole 812 while the rotation ring 950 and the pole control ring 820 are restored by the restoring force of the second return spring 922. It shifts to a lower gear.
  • this state is a state as shown in FIG. 10, and this state is a medium speed mode.
  • the second control arm 962 of the transmission ring 960 rotates clockwise in the drawing to the position of the medium speed state and thus the locking step 937 of the sliding ring 930 is performed.
  • the engaging portion of the second pole 812 is strongly engaged with the ratchet teeth 741b of the second variable speed sun gear 740b, so that the second pressing piece of the pole control ring 820 is engaged.
  • the slip groove 935 is ratchet groove 825 of the pole control ring 820.
  • the latching jaw 937 of the sliding ring 930 which has been advanced earlier, becomes free, and the sliding groove 935 is a ring gear that rotates by the play of the pedal, such as the clearance between the clearance groove 931 and the extension piece 822, that is, by driving of a pedal.
  • the transmission ring 960 returns and the second control arm 962 falls from the locking jaws 957 and 937 in the rotation ring 950 and the sliding ring 930. 950 is fitted to the extension piece 822 of the pole control ring 820 so that it does not return with the pole control ring 820.
  • the sliding ring 930 has a wider clearance gap 931 into which the extension piece 822 of the pole control ring 820 is inserted. It is returned by the length difference of the width of 931.
  • the forced return pole 940 causes friction, but the second control arm rotates. In a state without 962, the friction force of the forced return pole 940 is more powerful and will be returned.
  • the forced return pole 940 is connected to the ratchet groove 825 of the pole control ring 820 while the driving force of the pedal is applied to the forced return pole 940 mounted to the ring gear 415. It is transmitted to the pole control ring 820 is forcibly rotated to the selected gear stage the pole control ring 820.
  • the forced return pole 940 forcibly rotates the pole control ring 820 as shown in FIG. 10 and again encounters the sliding ring 930 bound by the second control arm 962 located at the next shift stage.
  • the pole control ring 820 has a locking jaw 937 of the sliding ring 930 and the locking jaw 957 of the rotary ring 950 are aligned in a row to form a second control arm ( Until it is constrained by 962.
  • the ring gear 415 always rotates in a state where the ratchet groove 825 and the forced return pole 940 of the pole control ring 820 are connected to each other.
  • contact support parts 742a and 742b are formed on the other side of the first transmission sun gear 740a and one side of the second transmission sun gear 740b, respectively, as shown in FIG. It performs a role that is stably supported on the shaft without rattling up and down or left and right.
  • the above-described transmission has a three-speed transmission stage by applying a two-speed planetary gear 720, but it is configured by increasing or decreasing a transmission stage such as four or two speeds, or repeatedly adding the same three speeds, or It will be appreciated that can be easily added repeatedly by mixing with other four speeds, two speeds, and the like.
  • the pedaling assist transmission of the present invention may obtain the desired torque by providing the electric power reduction unit 320 in the electric power driving unit 300 and appropriately decelerating and outputting the motor according to the type of the motor 310. It is also possible to accelerate or decelerate the pedaling input of the occupant by having a manpower acceleration unit 410 or a manpower reduction unit 420 in the).
  • the torque sensor 600 may be disposed between the sun gear 414 of the attraction accelerator 410 or the sun gear 424 of the attraction reduction unit 420 and the fixed shaft 100. It is also possible to more accurately detect the pedaling driving force of the occupant input through the 400.
  • the rotation output from the manpower driving unit 400 or the electric power driving unit 300 may be shifted once again to the gear shifting stage desired by the occupant through the transmission unit 700 and the shift control unit 800. It is also possible to perform an appropriate shift depending on the driving conditions of the bicycle.
  • the shift control unit 800 has a forced return means 900 to prevent the shift is not made smoothly when shifting to a low shift stage.
  • the pedaling assist transmission of the present invention basically detects the pedaling driving force of the occupant input through the attraction driving unit 400 and thereby controls the rotation speed of the motor 310 of the electric power driving unit 300, thereby attracting the attraction driving unit (
  • By controlling the output through the 400 and the output through the electric power drive unit 300 to approximately 50:50 is an invention having an excellent advantage that the occupant can easily accelerate the bicycle even with less pedaling driving force.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Structure Of Transmissions (AREA)
  • Retarders (AREA)
  • Mechanical Control Devices (AREA)

Abstract

본 발명은 페달링 어시스트 변속기에 관한 것으로서, 특히, 탑승자가 페달에 가하는 답력을 감지하여 이 답력에 따라 모터를 구동시키는 모터 구동력을 능동적으로 제어하기 위한 장치에 관한 것으로서, 차체프레임에 고정되는 고정축(100)과; 상기 고정축(100)의 외주에 회전 가능하게 지지되어 종동력을 출력시키는 허브쉘(200)과; 모터(310)의 회전으로 구동하는 전동력구동부(300)와; 탑승자의 페달링 구동력을 입력받아 구동하는 인력구동부(400)와; 상기 전동력구동부(300) 및 인력구동부(400)와 상기 허브쉘(200) 사이에 마련되어 상기 전동력구동부(300)와 상기 인력구동부(400) 중 고속으로 회전하는 어느 하나의 출력을 선택적으로 상기 허브쉘(200)에 전달하는 선택출력부(500)와; 외부로부터 상기 인력구동부(400)에 입력되는 구동력을 검출하는 토크센서(600)와; 상기 토크센서(600)로부터 검출된 구동력에 따라 상기 모터(310)의 회전 속도를 제어하는 제어부(미도시)로 구성되어, 탑승자의 의지에 따라 별도의 조작 없이도 페달링에 의해 모터를 통한 가속을 손쉽게 실시할 수 있을 뿐 아니라, 그 내부에서 다단 유성기어를 통한 다단 변속 또한 자체적으로 이루어져 주행 여건에 따라 적절한 토크와 속도를 얻을 수 있도록 하는 것이다.

Description

페달링 어시스트 변속기
본 발명은 페달링 어시스트 변속기에 관한 것으로서 특히, 탑승자가 페달에 가하는 답력을 감지하여 이 답력에 따라 모터를 구동시키는 모터 구동력을 능동적으로 제어하기 위한 장치에 관한 것으로써, 탑승자의 의지에 따라 별도의 조작 없이도 페달링에 의해 모터를 통한 가속을 손쉽게 실시할 수 있을 뿐 아니라, 그 내부에서 다단 유성기어를 통한 다단 변속 또한 자체적으로 이루어져 주행 여건에 따라 적절한 토크와 속도를 얻을 수 있는 장치에 관한 것이다.
일반적으로 자전거는 탑승자의 인력에 의해 페달을 구르는 것으로 바퀴를 회전시켜 주행하는 운송수단이다.
이와 같이 인력에 의해 주행 가능한 자전거에 충전 가능한 배터리와 전원 공급에 따라 회전하는 모터를 추가 구성한 전동식 자전거가 개발되고 있다.
전동식 자전거는 가속 조작에 따라 모터의 회전속도를 가변 제어함으로써, 저속에서 고속까지 자전거의 주행 속도를 다양하게 제어할 수 있는 것이다.
그러나, 단순히 모터의 회전력을 자전거의 구동원으로 이용할 경우 주행 환경에 따른 적절한 구동 토크를 얻기 어렵기 때문에 변속기를 부가해야 하며, 최근 들어 전동식 자전거의 허브 내에 변속기와 모터를 함께 내장한 구조가 개발되고 있는 실정이다.
상술한 바와 같은 종래의 변속기에는 모터에 의한 전동력(電動力)과 탑승자의 인력(人力), 즉 전동식 자전거의 페달에 가하는 답력(이하 페달링(pedaling)이라 한다)이 각각 입력되면, 입력된 전동력과 인력 중 더 빠르게 회전하는 어느 하나만이 출력되는 것으로, 이들은 서로 독립적으로 구동하게 되는 것이다.
이에 따라, 전동식 자전거의 탑승자는 별도의 가속조작수단을 조작하여 모터의 회전속도를 가감시키는 동시에, 발로는 페달링을 실시함으로써, 탑승자가 원하는 주행 속도를 얻고 있는 실정으로, 탑승자는 전동력과 인력을 이원적으로 제어해야 한다는 기술적인 문제점이 있었다.
본 발명은 상기의 문제점을 해소하기 위한 것으로, 입력되는 전동력과 인력 중 더 빠른 회전을 선택적으로 변속 출력시키는 변속기에 있어서 탑승자가 페달에 가하는 답력에 따라 전동력을 능동적으로 증속시킬 수 있음으로써, 탑승자의 의지에 따라 별도의 조작 없이도 페달링에 의해 모터를 통한 가속을 손쉽게 실시할 수 있을 뿐 아니라, 그 내부에서 다단 유성기어를 통한 다단 변속 또한 자체적으로 이루어져 주행 여건에 따라 적절한 토크와 속도를 얻을 수 있도록 하는 페달링 어시스트 변속기를 제공하고자 한다.
이러한 본 발명은 차체프레임에 고정되는 고정축과; 상기 고정축의 외주에 회전 가능하게 지지되어 종동력을 출력시키는 허브쉘과; 모터의 회전으로 구동하는 전동력구동부와; 탑승자의 페달링 구동력을 입력받아 구동하는 인력구동부와; 상기 전동력구동부 및 인력구동부와 상기 허브쉘 사이에 마련되어 상기 전동력구동부와 상기 인력구동부 중 고속으로 회전하는 어느 하나의 출력을 선택적으로 상기 허브쉘에 전달하는 선택출력부와; 외부로부터 상기 인력구동부에 입력되는 구동력을 검출하는 토크센서와; 상기 토크센서로부터 검출된 구동력에 따라 상기 모터의 회전 속도를 제어하는 제어부로 구성함으로써 달성된다.
이때, 상기 전동력구동부에는, 상기 모터의 회전축 외주에 치합하는 감속기어와; 상기 감속기어의 외주에 치합하여 상기 선택출력부에 회전력을 전달하는 내기어로 이루어진 전동력감속부가 마련되는 것이 바람직하다.
그리고, 상기 인력구동부에는, 탑승자의 페달링 구동력을 입력받아 회전하는 스프라켓과; 상기 스프라켓과 일체를 이루어 회전하는 캐리어와; 상기 캐리어에 회전 가능하게 지지되는 유성기어와; 상기 유성기어의 내주에 치합하는 태양기어와; 상기 유성기어의 외주에 치합하는 동시에 그 외주가 상기 선택출력부에 회전력을 전달하는 링기어로 이루어진 인력가속부가 마련될 수도 있고,
상기 인력구동부에는, 탑승자의 페달링 구동력을 입력받아 회전하는 스프라켓과; 상기 스프라켓과 일체를 이루어 회전하는 링기어와; 상기 링기어의 내주에 치합하는 유성기어와; 상기 유성기어의 내주에 치합하는 태양기어와; 상기 유성기어를 회전 가능하게 지지하는 동시에 상기 선택출력부에 회전력을 전달하는 캐리어로 이루어진 인력감속부가 마련될 수도 있다.
이때, 상기 태양기어와 상기 고정축 사이에 상기 토크센서가 위치하는 것이 바람직하다.
또한, 상기 선택출력부와 상기 허브쉘 사이에는, 상기 전동력구동부 또는 상기 인력구동부 중 고속으로 회전하는 어느 하나의 출력을 선택적으로 전달받아 회전하는 변속 캐리어와, 상기 변속 캐리어에 자전 가능하게 지지되는 변속 유성기어와, 상기 변속 유성기어의 외주에 치합하여 상기 허브쉘에 회전력을 전달하는 변속 링기어와, 상기 변속 유성기어의 내주에 치합하는 변속 태양기어와, 상기 변속 캐리어의 회전을 상기 변속 링기어에 선택적으로 전달하는 클러치수단으로 이루어진 변속부와; 상기 변속 태양기어의 회전을 선택적으로 구속하는 변속제어부가 추가 구성되는 것이 양호하다.
이때, 상기 변속 유성기어는 1단 또는 2단 이상의 다단 변속 유성기어로 이루어지고, 상기 변속 태양기어는 상기 다단 변속 유성기어의 단수에 대응하여 한 개 또는 다수 개 마련되는 것이 바람직하다.
그리고, 상기 변속제어부는 각각의 상기 변속 태양기어 내주면에 형성된 래칫톱니에 선택적으로 치합하는 폴과; 누름편이 형성되어 회전에 따라 상기 폴의 돌출을 각각 제어하는 폴 제어링과; 상기 폴 제어링에 연결되어 변속케이블의 인출에 따라 회전하는 레버링을 포함하는 것이 적절하다.
여기에서, 상기 변속제어부에는 상기 전동력구동부 또는 상기 인력구동부에 의해 주행 중인 상태에서도 쉽게 변속이 이루어지도록 하는 강제복귀수단이 더 마련된 것이 가장 바람직하다.
마지막으로, 상기 강제복귀수단은, 상기 폴 제어링의 옆에 미끄럼링을 배치하고, 이 미끄럼링과 폴 제어링의 외주면과 맞닿는 강제복귀폴을 링기어의 내측과 접속되도록 장착하여 달성되는 것이 가장 바람직하다.
이상과 같은 본 발명은 입력되는 전동력과 인력 중 더 빠른 회전을 선택적으로 변속 출력시키는 변속기에 있어서 탑승자가 페달에 가하는 답력에 따라 전동력을 능동적으로 증속시킬 수 있음으로써, 탑승자의 의지에 따라 별도의 조작 없이도 페달링에 의해 모터를 통한 가속을 손쉽게 실시할 수 있을 뿐 아니라, 그 내부에서 다단 유성기어를 통한 다단 변속 또한 자체적으로 이루어져 주행 여건에 따라 적절한 토크와 속도를 얻을 수 있는 발명인 것이다.
도 1은 본 발명의 페달링 어시스트 변속기에 대한 제1실시예를 도시하는 단면도,
도 2는 본 발명의 페달링 어시스트 변속기에 대한 제2실시예를 도시하는 단면도,
도 3은 본 발명의 페달링 어시스트 변속기에 대한 제3실시예를 도시하는 단면도,
도 4는 도 3에 있어서 A부분에 대한 확대도,
도 5는 본 발명의 페달링 어시스트 변속기에 대한 제3실시예에 있어서 변속부 및 변속제어부에 대한 분해사시도,
도 6은 본 발명의 페달링 어시스트 변속기에 대한 제3실시예에 있어서 변속부 및 변속제어부에 대한 사시도,
도 7 내지 도 11은 본 발명의 페달링 어시스트 변속기에 대한 제3실시예에 있어서 변속제어부 및 강제복귀수단의 작동예를 도시하는 횡단면도.
도 1은 본 발명의 페달링 어시스트 변속기에 대한 제1실시예를 도시하는 단면도이며, 도 2는 본 발명의 페달링 어시스트 변속기에 대한 제2실시예를 도시하는 단면도이다.
그리고, 도 3은 본 발명의 페달링 어시스트 변속기에 대한 제3실시예를 도시하는 단면도이고, 도 4는 도 3에 있어서 A부분에 대한 확대도이다.
또한, 도 5는 본 발명의 페달링 어시스트 변속기에 대한 제3실시예에 있어서 변속부 및 변속제어부에 대한 분해사시도이고, 도 6은 본 발명의 페달링 어시스트 변속기에 대한 제3실시예에 있어서 변속부 및 변속제어부에 대한 사시도이다.
또한, 도 7 내지 도 11은 본 발명의 페달링 어시스트 변속기에 대한 제3실시예에 있어서 변속제어부 및 강제복귀수단의 작동예를 도시하는 횡단면도이다.
본 발명의 페달링 어시스트 변속기는 고정축(100) 상에 전동력구동부(300)와 인력구동부(400)가 마련되되, 탑승자의 페달링을 구동력으로 하는 상기 인력구동부(400)에 토크센서(600)가 마련되어, 이 토크센서(600)를 통해 검출한 값에 따라 제어부가 상기 전동력구동부(300)에 마련된 모터(310)의 회전을 제어하여, 선택출력부(500)가 상기 전동력구동부(300)와 상기 인력구동부(400) 중 고속으로 회전하는 어느 하나를 허브쉘(200)로 출력시킬 수 있음으로써, 탑승자가 페달에 가하는 답력과 함께 모터(310)의 회전력을 보조받아 적은 힘으로도 원하는 토크나 속도를 손쉽게 얻을 수 있는 것을 그 기술상의 기본 특징으로 한다.
본 발명의 페달링 어시스트 변속기는 상기 인력구동부(400) 내에서의 가속 또는 감속 여부에 따라 두 가지로 분류되어, 가속의 경우를 제1실시예로 이하에서 설명하고, 감속의 경우를 제2실시예로 이하에서 설명한다.
또한, 탑승자의 변속레버(840) 조작에 따라 변속을 실시하는 변속부(700) 및 변속제어부(800)의 유무에 따라 다시 두 가지로 분류되는데, 이하에서는 상기 인력구동부(400)에서 가속이 실시되는 제1실시예에 상기 변속부(700) 및 변속제어부(800)가 부가된 것을 이하에서 제3실시예로 설명하고, 상기 인력구동부(400)에서 감속이 실시되는 제2실시예에 상기 변속부(700) 및 변속제어부(800)가 부가된 것의 실시예에 대한 설명은 중복되는 것으로 생략한다.
이하, 본 발명의 실시예를 첨부 도면을 참조하여 상세히 설명하면 다음과 같다.
- 제1실시예
우선, 도 1에 도시한 바와 같이 인력구동부(400)에서 가속이 수행되는 본 발명의 제1실시예에 있어서, 고정축(100)은 자전거의 몸체인 차체프레임에 그 양단이 회전 불가능하게 고정 지지되어 중심 뼈대 역할을 하는 것으로, 도시한 바와 같이 양측으로 구분되어, 도면상 좌측의 전동력측 고정축(110)에는 그 외주에 이하에서 설명할 전동력구동부(300)가 위치하게 되며, 도면상 우측의 인력측 고정축(120)에는 그 외주에 이하에서 설명할 인력구동부(400)가 위치하게 되는 것이다.
그리고, 허브쉘(200)은 종동력을 출력시키는 구성요소로, 예를 들어 자전거의 구동륜 중앙에 위치하여 출력되는 종동력을 구동륜에 전달하게 됨으로써, 이 구동륜의 회전에 의해 자전거가 전진하게 되는 것이다.
이러한 상기 허브쉘(200)은 상기 고정축(100)의 외주에 다수의 베어링 등을 통해 회전 가능하게 지지되며, 그 내부에 전동력구동부(300), 인력구동부(400), 그리고 선택출력부(500)가 내장되어 있다.
다음으로 전동력구동부(300)는 전원 공급의 제어에 따라 회전축(311)의 회전속도를 선형적으로 가변 시키는 모터(310)를 포함하는 것으로, 이 모터(310)는 BLDC모터(blushless DC motor)가 바람직하며, 상기 모터(310)의 전동력(電動力)을 구동원으로 하는 것이다.
또한, 인력구동부(400)는 인력(人力), 예를 들어 자전거의 탑승자가 페달에 가하는 답력을 구동원으로 하는 것으로, 체인 또는 벨트 등의 동력전달수단을 통해 회전력을 입력받을 수 있도록 스프라켓 또는 벨트풀리가 마련되며, 도면에는 스프라켓이 적용된 것을 예시하였다.
그리고, 선택출력부(500)는 상기 전동력구동부(300) 및 상기 인력구동부(400)와 상술한 허브쉘(200) 사이에 마련된 것으로, 모터(310)의 회전력을 구동원으로 하는 상기 전동력구동부(300)와 탑승자의 페달링을 구동원으로 하는 상기 인력구동부(400) 중 고속으로 전달되어 회전하는 어느 하나의 출력을 상기 허브쉘(200)에 선택적으로 전달하는 구성요소로서, 일방향클러치나 동력차단폴 등으로 이루어지는 것이 가능하다.
이에 따라, 상기 전동력구동부(300)의 출력 회전이 더 빠른 경우 상기 선택출력부(500)는 상기 전동력구동부(300)의 출력만을 상기 허브쉘(200)에 전달하고 상기 인력구동부(400)의 출력 회전을 미끄러지게 하며, 이와 반대로, 상기 인력구동부(400)의 출력 회전이 더 빠른 경우 상기 선택출력부(500)는 상기 인력구동부(400)의 출력만을 상기 허브쉘(200)에 전달하고 상기 전동력구동부(300)의 출력 회전을 미끄러지게 하는 것이다.
그리고, 토크센서(600)는 상기 인력구동부(400) 내에 마련되는 것으로, 대략 중앙에 원공이 형성된 원반형상으로 이루어져 그 일측면은 고정부위, 예를 들어 상기 고정축(100)에 고정되어 있는 소정의 구성요소에 고정되고, 그 타측면은 회전부위, 예를 들어 상기 인력구동부(400)에 마련되어 탑승자의 페달링에 의해 연동하여 회전하려는 소정의 구성요소 상에 고정되어 있어, 상기 토크센서(600)는 외부로부터 입력되는 구동력을 검출한 후 검출된 구동력의 크기에 비례하여 이를 전기적 신호로 출력시키게 되는 것이다.
마지막으로 미도시한 제어부는 상기 토크센서(600)와 상기 전동력구동부(300)의 모터(310)에 접속되어, 상기 토크센서(600)에서 검출된 탑승자의 페달링 구동력에 따라 상기 모터(310)의 회전속도를 비례적으로 제어하게 된다.
이때, 상기 제어부의 제어는 상기 토크센서(600)에서 검출된 인력구동부(400)의 구동력에 대하여 적절한 캘리브레이션(calibration)을 실시하여 상기 전동력구동부(300)를 통한 구동력이 인력구동부(400)를 통한 구동력과 거의 동일하게 되도록 제어하게 된다.
이를 통해, 탑승자의 페달링 구동력이 검출될 경우 그에 상응하는 구동력이 전동력구동부(300)를 통해 상기 선택출력부(500)로 전달됨으로써, 대략 인력구동부(400)와 전동력구동부(300)의 구동력 비율이 50:50으로 제어함으로써, 탑승자가 자전거의 진행을 위해 가하는 페달링 구동력을 상기 전동력구동부(300)가 보조하게 되어, 보다 손쉽게 가속을 실시할 수 있게 되는 것이다.
여기에서, 상기의 구동력 비율은 탑승자의 선택에 따라 변경하는 것도 가능하다.
특히, 본 발명의 페달링 어시스트 변속기에 있어서 상기 전동력구동부(300)에는, 상기 모터(310)의 회전축(311) 외주에 치합하는 감속기어(321)와; 상기 감속기어(321)의 외주에 치합하여 상기 선택출력부(500)에 회전력을 전달하는 내기어(322)로 이루어진 전동력감속부(320)가 마련되는 것이 바람직하다.
즉, 전동력구동부(300)에 있어서 상술한 모터(310) 회전축(311)의 회전속도를 별도의 변속 없이 그대로 상기 선택출력부(500)에 전달하는 것도 가능하지만, 본 발명에 있어서 바람직하게는 도 1에 도시한 바와 같이 상기 모터(310) 회전축(311)의 일측에 감속기어(321)의 회전중심을 두어, 상기 회전축(311)의 외주에 상기 감속기어(321)가 치합하도록 하는 동시에, 상기 감속기어(321)의 외주에 다시 내기어(322)를 치합시켜 소정의 감속비를 얻을 수 있도록 하는 것이다.
이를 통해, 모터(310) 회전축(311)의 구동력은 감속기어(321) 및 내기어(322)를 통해 감속된 후, 상기 선택출력부(500)에 전달되어 보다 큰 토크를 얻는 것이 가능하다.
이때, 상기 내기어(322)의 일측 내주면에는 치형이 형성되어 상기 감속기어(321)의 외주와 치합하고, 상기 내기어(322)의 타측 외주면이 상기 선택출력부(500)의 내주에 연결되는 것이다.
이와 같은 전동력감속부(320)는 상기 모터(310)의 종류에 따라 감속비가 필요한 모터의 경우에 한해 추가하는 것으로, 별도의 감속비가 필요 없는 모터(310)의 경우에는 상기 모터(310)의 회전축(311)을 감속 없이 상기 선택출력부(500)에 직접 입력시키는 것도 물론 가능하다.
특히, 본 발명의 페달링 어시스트 변속기에 대한 제1실시예에 있어서는, 상기 인력구동부(400)에, 탑승자의 페달링 구동력을 입력받아 회전하는 스프라켓(411)과; 상기 스프라켓(411)과 일체를 이루어 회전하는 캐리어(412)와; 상기 캐리어(412)에 회전 가능하게 지지되는 유성기어(413)와; 상기 유성기어(413)의 내주에 치합하는 태양기어(414)와; 상기 유성기어(413)의 외주에 치합하는 동시에 그 외주가 상기 선택출력부(500)에 회전력을 전달하는 링기어(415)로 이루어진 인력가속부(410)가 마련되는 것이 가능하다.
즉, 상기 인력구동부(400) 내에 스프라켓(411), 캐리어(412), 유성기어(413), 그리고 태양기어(414)로 이루어진 인력가속부(410)가 마련되어 탑승자의 페달링에 의해 입력되는 구동력을 가속시킬 수 있는 것이다.
우선, 상기 인력가속부(410)에 있어서 스프라켓(411)은 체인과 같은 동력전달수단이 연결되어 탑승자의 페달링 구동력을 전달받아 회전하게 되며, 이 스프라켓(411)에는 캐리어(412)가 일체로 고정되어 있어, 상기 스프라켓(411)과 캐리어(412)는 동일 회전속도로 함께 회전하게 된다.
이때, 상기 캐리어(412)에는 하나 이상의 유성기어(413)가 회전 가능하게 지지되어 있어 상기 캐리어(412)의 회전에 따라 상기 유성기어(413)가 상기 고정축(100)을 중심으로 공전하게 되는 것이다.
이와 함께, 상기 유성기어(413)의 내측에는 태양기어(414)가 위치하여 상기 유성기어(413)의 내주가 상기 태양기어(414)의 외주에 치합하게 된다.
이에 따라, 상기 태양기어(414)가 고정된 상태에서는 상기 캐리어(412)의 회전 시 상기 유성기어(413)가 상기 캐리어(412)의 회전속도 보다 빠르게 상기 태양기어(414)의 외주를 회전하게 되는 것이다.
그리고, 상기 유성기어(413)의 외측에는 링기어(415)가 위치하여 상기 유성기어(413)의 외주가 상기 링기어(415)의 내주에 치합하게 되며, 상기 링기어(415)의 외주면이 상기 선택출력부(500)에 연결되는 것이다.
이를 통해, 상기 인력가속부(410)는 상기 인력구동부(400)로 입력되는 탑승자의 페달링 구동력을 가속시켜 상기 선택출력부(500)에 전달하게 되는 것이다.
여기에서 유의할 점은 상기 인력가속부(410)에 의해 상기 인력구동부(400)로 입력되는 탑승자의 페달링이 가속되어 출력되는 것은 사실이지만 이는 부차적인 것으로, 실질적으로 상기 인력가속부(410)는 상술한 토크센서(600)를 설치하기 위해 마련된 것이다.
즉, 본 발명의 페달링 어시스트 변속기에 대한 제1실시예에 있어서 상기 태양기어(414)와 상기 고정축(100) 사이에 상기 토크센서(600)가 위치하는 것이 바람직하다.
위에서 상술한 바와 같이, 상기 토크센서(600)는 그 일측이 고정축(100)에 고정 설치되고, 그 타측에 상기 인력구동부(400)에 있어서 회전하려는 구성요소가 연결되되, 그 구성요소를 상기 태양기어(414)로 하는 것이다.
이를 통해, 상기 토크센서(600)는 상기 태양기어(414)가 회전하려고 하는 회전력을 검출하게 되는 것이다.
따라서, 상기 인력가속부(410)는 가속을 실시하지만, 실질적으로는 토크센서(600)를 설치하기 위한 구성에 해당하는 것이다.
상기와 같이 구성된 본 발명의 페달링 어시스트 변속기에 대한 제1실시예의 작동을 설명하면 다음과 같다.
우선, 자전거의 정지 상태에서는 전동력구동부(300)와 인력구동부(400) 모두 정지된 상태이다.
이후, 탑승자가 자전거를 진행시키기 위해 페달에 답력을 가하면 그 답력은 체인과 같은 동력전달수단을 거쳐 스프라켓(411)을 통해 인력구동부(400)의 구동력으로 입력된다.
상기 인력구동부(400)에 입력된 페달링 구동력은 스프라켓(411)과 일체를 이루는 캐리어(412)를 회전시키며, 이에 따라 상기 캐리어(412)에 회전 가능하게 지지된 유성기어(413)가 태양기어(414)를 중심으로 공전하게 된다.
이때, 상기 유성기어(413)가 그 외측에 위치한 링기어(415)를 더 빠르게 회전시키며, 상기 링기어(415)는 그 회전력을 선택출력부(500)에 전달하게 된다.
이러한 경우, 아직까지 전동력구동부(300)를 통한 선택출력부(500)로의 출력이 없기 때문에, 상기 선택출력부(500)는 인력구동부(400)를 통해 전달된 회전력만을 순간적으로 허브쉘(200)로 전달하며, 상기 허브쉘(200)은 종동력을 출력시키게 된다.
이러한 인력구동부(400)를 통한 출력이 시작된 직후, 상기 인력구동부(400)에 마련된 토크센서(600)가 상기 태양기어(414)에 작용하는 페달링 구동력을 검출하여 미도시한 제어부에 전기적 신호를 송출하게 된다.
이에 따라, 상기 제어부는 상기 토크센서(600)에서 검출한 토크에 따라 비례적으로 상기 전동력구동부(300)에 마련된 모터(310)에 적절한 전원을 인가하게 되며, 이후 상기 모터(310)의 회전축(311)이 회전하게 된다.
이후, 상기 회전축(311)이 회전함에 따라 감속기어(321) 및 내기어(322)를 통해 상기 전동력구동부(300)를 통한 출력이 상기 선택출력부(500)에 전달되게 됨으로써, 상기 선택출력부(500)에는 인력구동부(400)를 통한 출력과 상기 전동력구동부(300)를 통한 출력이 동시에 전달되며, 이후, 상기 선택출력부(500)는 둘 중 더 빠르게 회전하는 어느 하나의 출력을 상기 허브쉘(200)을 통해 출력시키게 되는 것이다.
이때, 상기 인력구동부(400)를 통한 출력 속도가 더 빠른 경우에는 토크센서(600)에서 검출하는 토크도 커지기 때문에 제어부를 통해 상기 전동력구동부(300)로의 출력이 뒷받침되며, 상기 전동력구동부(300)를 통한 출력 속도가 더 빠른 경우에는 상기 토크센서(600)에서 검출하는 토크가 감소하여 그 만큼 상기 전동력구동부(300)의 출력 속도가 저감되는 것이다.
따라서, 상기 인력구동부(400)를 통해 상기 선택출력부(500)에 전달되는 구동력과 상기 전동력구동부(300)를 통해 상기 선택출력부(500)에 전달되는 구동력은 대략 50:50으로 유지됨으로써, 자전거 탑승자는 모터(310)의 구동력을 통해 큰 힘을 들이지 않고도 초기 가속이나 언덕길에서 주행이 가능하며, 이후 정속 주행 또한 손쉽게 실시할 수 있는 것이다.
여기에서, 상기의 구동력 비율은 탑승자의 선택에 따라 변경하는 것도 가능하다.
- 제2실시예
본 발명의 페달링 어시스트 변속기에 대한 제2실시예는 위에서 설명한 제1실시예와 모두 동일하며, 단지 상기 인력구동부(400)에 인력가속부(410) 대신 인력감속부(420)가 마련된 것에 차이가 있다.
즉, 본 발명의 제2실시예에 있어서 상기 인력구동부(400)에는, 탑승자의 페달링 구동력을 입력받아 회전하는 스프라켓(421)과; 상기 스프라켓(421)과 일체를 이루어 회전하는 링기어(425)와; 상기 링기어(425)의 내주에 치합하는 유성기어(423)와; 상기 유성기어(423)의 내주에 치합하는 태양기어(424)와; 상기 유성기어(423)를 회전 가능하게 지지하는 동시에 상기 선택출력부(500)에 회전력을 전달하는 캐리어(422)로 이루어진 인력감속부(420)가 마련된다.
즉, 상기 인력구동부(400) 내에 스프라켓(421), 캐리어(422), 유성기어(423), 그리고 태양기어(424)로 이루어진 인력감속부(420)가 마련되어 탑승자의 페달링에 의해 입력되는 구동력을 감속시키는 것이 가능하다.
우선, 상기 인력감속부(420)에 있어서 스프라켓(421)은 체인과 같은 동력전달수단이 연결되어 탑승자의 페달링 구동력을 전달받아 회전하게 되며, 이 스프라켓(421)에는 링기어(425)가 일체로 고정되어 있어, 상기 스프라켓(421)과 링기어(425)는 동일 회전속도로 함께 회전하게 된다.
이때, 상기 링기어(425)의 내측에는 하나 이상의 유성기어(423)가 위치하여 상기 링기어(425)의 내주가 상기 유성기어(423)의 외주에 치합하게 되어, 상기 링기어(425)의 회전에 따라 상기 유성기어(423)가 회전하게 된다.
이와 함께, 캐리어(422)는 상기 유성기어(423)를 회전 가능하게 지지하고 있고, 상기 유성기어(423)의 내측에는 태양기어(424)가 위치하여 상기 유성기어(423)의 내주가 상기 태양기어(424)의 외주에 치합하게 된다.
따라서, 상기 유성기어(423)의 자전에 따라 상기 유성기어(423)가 상기 고정축(100)을 중심으로 공전하게 되는 것이다.
이에 따라, 상기 태양기어(424)가 고정된 상태에서는 상기 유성기어(423)의 회전 시 상기 캐리어(422)는 상기 유성기어(423)의 회전속도 보다 느리게 상기 태양기어(424)의 외주를 회전하게 되는 것이다.
이때, 상기 유성기어(423)를 회전 가능하게 지지하는 캐리어(422)는 외측으로 연장되어 그 외주면이 상기 선택출력부(500)에 연결되는 것이다.
이를 통해, 상기 인력감속부(420)는 상기 인력구동부(400)로 입력되는 탑승자의 페달링 구동력을 감속시켜 상기 선택출력부(500)에 전달하게 되는 것이다.
상술한 바와 같이 본 발명의 제2실시예는 인력구동부(400) 내에 인력감속부(420)가 마련되어, 탑승자의 페달링 구동력이 감속된 후 상기 선택출력부(500)에 전달된 것에만 차이점이 있는 것으로, 제2실시예에 대한 구성 및 작용에 관한 중복되는 상세한 설명은 생략한다.
- 제3실시예
본 발명의 페달링 어시스트 변속기에 대한 제3실시예는 위에서 설명한 제1실시예와 모두 동일하며, 단지 상기 선택출력부(500)와 상기 허브쉘(200) 사이에 변속부(700) 및 변속제어부(800)가 추가로 마련된 것에 차이가 있다.
즉, 앞에서 설명한 실시예에 있어서는 전동력구동부(300) 내에 전동력감속부(320)를 두어 모터(310)의 회전력을 감속시켜 출력시키는 동시에, 인력구동부(400)에 있어서는 제1실시예의 인력가속부(410)를 두어 탑승자의 페달링 구동력을 가속시키거나 제2실시예의 인력감속부(420)를 두어 탑승자의 페달링 구동력을 감속시켜 출력시키는 것에 대해 설명하였다.
그러나 이는 미리 설계된 고정 변속비로 가속 또는 감속을 실시하는 것으로 제3실시예에 있어서는 허브쉘(200)의 외부에 별도로 마련된 변속레버(840)를 탑승자가 주행 여건에 따라 제어함에 따라 1차적으로 변속된 탑승자의 페달링 구동력이나 모터(310)에 의한 회전력을 2차적으로 변속시켜 출력시킬 수 있는 것이다.
도 3 내지 도 6에 도시한 바와 같이, 본 발명의 페달링 어시스트 변속기에 대한 제3실시예는, 상기 선택출력부(500)와 상기 허브쉘(200) 사이에는, 상기 전동력구동부(300) 또는 상기 인력구동부(400) 중 고속으로 회전하는 어느 하나의 출력을 선택적으로 전달받아 회전하는 변속 캐리어(710)와, 상기 변속 캐리어(710)에 자전 가능하게 지지되는 변속 유성기어(720)와, 상기 변속 유성기어(720)의 외주에 치합하여 상기 허브쉘(200)에 회전력을 전달하는 변속 링기어(730)와, 상기 변속 유성기어(720)의 내주에 치합하는 변속 태양기어(740)와, 상기 변속 캐리어(710)의 회전을 상기 변속 링기어(730)에 선택적으로 전달하는 클러치수단(750)으로 이루어진 변속부(700)와; 상기 변속 태양기어(740)의 회전을 선택적으로 구속하는 변속제어부(800)가 추가 구성되는 것이다.
우선, 변속 캐리어(710)의 일측(도면상 좌측)은 상기 전동력구동부(300)의 구동력을 상기 선택출력부(500a)를 통해 전달받을 수 있고, 그 타측(도면상 우측)은 상기 인력구동부(400)의 구동력을 상기 선택출력부(500b)를 통해 전달받을 수 있도록 되어 있다.
이에 따라, 상기 변속 캐리어(710)는 두 개의 선택출력부(500a)(500b) 중 고속으로 전달되는 구동력을 전달받아 회전하게 되며, 이 변속 캐리어(710)는 상기 고정축(100)의 외주 상에서 자유롭게 회전 가능한 것으로, 상기 변속 캐리어(710)에는 하나 이상의 변속 유성기어(720)가 회전 가능하게 지지된다.
이에 따라, 상기 변속 유성기어(720)는 상기 변속 캐리어(710) 상에서 자전 가능하며, 상기 변속 캐리어(710)의 회전에 따라 공전하게 된다.
그리고, 상기 변속 캐리어(710)의 외측에는 변속 링기어(730)가 마련되며, 이 변속 링기어(730)의 내주면에는 기어가 형성되어 있어 상기 변속 유성기어(720)의 외주와 치합하게 되며, 이 변속 링기어(730)는 다시 상기 허브쉘(200)에 연결되어 상기 변속 링기어(730)의 회전에 따라 허브쉘(200)을 통해 출력시키게 되는 것이다.
이때, 상기 변속 링기어(730)와 상기 허브쉘(200) 사이에는 출력폴(731)이 마련되며, 이 출력폴(731)은 사선방향으로 장착되어 상기 변속 링기어(730)로부터 상기 허브쉘(200)로 회전력을 전달할 수 있지만, 그 역방향인 상기 허브쉘(200)로부터 상기 변속 링기어(730)로 역입력 되는 회전력은 헛돌게 하는 역할을 수행한다.
또한, 상기 변속 캐리어(710)의 내측에는 변속 태양기어(740)가 마련되며, 이 변속 태양기어(740)는 상기 변속 유성기어(720)의 내주와 치합하게 되어, 이 변속 태양기어(740)의 구속여부, 즉 회전 가능 여부에 따라 상기 변속 유성기어(720)를 공회전 시키거나 또는 회전력을 전달할 수 있도록 하는 것이다.
이와 더불어, 상기 변속 캐리어(710)와 변속 링기어(730) 사이에는 클러치수단(750)이 더 부가되는데, 이 클러치수단(750)은 상기 변속 캐리어(710)로부터 직접 상기 변속 링기어(730)에 회전력을 전달하며, 만약 상기 변속 캐리어(710)로부터 변속 유성기어(720)를 통하여 상기 변속 링기어(730)에 더 빠른 회전속도가 전달될 경우에는 이 클러치수단(750)이 미끄러져 상기 변속 캐리어(710)로부터 상기 변속 링기어(730)에 직접 회전력을 전달하지는 못하게 된다.
즉, 상기 클러치수단(750)은 상기 변속 캐리어(710)로부터 변속 없이 직접 상기 변속 링기어(730)에 회전력을 전달하는 것이 가능하며, 만약 상기 변속 캐리어(710)로부터 변속 유성기어(720)를 통하여 상기 변속 링기어(730)에 더 빠른 회전속도가 전달될 경우에는 이 클러치수단(750)이 미끄러져 상기 변속 캐리어(710)로부터 상기 변속 링기어(730)에 직접 회전력을 전달하지는 못하게 되는 것으로, 통상의 원웨이클러치 등을 적용하는 것도 가능하다.
*다음으로, 변속제어부(800)는 상기 변속부(700)의 안쪽에 위치하여 탑승자의 변속레버(840) 조작에 따라 상기 변속부(700)의 변속을 제어하는 구성요소로, 상기 변속 유성기어(720)의 내주에 치합하는 변속 태양기어(740)의 회전을 선택적으로 구속함으로써, 상술한 변속 유성기어(720)가 공회전 하거나 혹은 회전력을 전달할 수 있도록 제어하게 된다.
특히 본 발명의 페달링 어시스트 변속기에 대한 제3실시예에 있어서, 상기 변속 유성기어(720)는 1단 또는 도시한 바와 같이 2단 이상의 다단 변속 유성기어(720)로 이루어지고, 상기 변속 태양기어(740)는 상기 다단 변속 유성기어(720)의 단수에 대응하여 한 개 또는 다수 개 마련되는 것이 바람직하다.
즉, 위에서 상술한 상기 변속 유성기어(720)가 오직 하나의 외경으로 성형된 1단의 변속 유성기어(720)인 경우 이 변속 유성기어(720)의 구속 여부에 따라 저속과 고속 오직 2단으로 변속이 이루어지게 되는데, 이 변속 유성기어(720)는 2단 또는 그 이상의 다단 변속 유성기어(720)이어도 좋다.
도시한 바와 같이 2단의 변속 유성기어(720)가 적용된 것을 예로 들면, 상기 변속 유성기어(720)가 큰 직경의 1단(720a)과 작은 직경의 2단(720b)으로 이루어져 있다고 가정하여 이하 설명한다.
이러한 경우, 상기 변속 유성기어(720)에 있어서 1단(720a)의 외주는 상기 변속 링기어(730)의 내주면에 형성된 기어에 치합하지만, 상기 2단(720b)의 외주는 별도의 구성요소와 치합하지 않게 된다.
그리고, 상기 변속 유성기어(720)의 내측에는 서로 다른 직경의 두 변속 태양기어(740)(이하 제1변속 태양기어(740a) 및 제2변속 태양기어(740b)라 한다)가 마련되어, 상기 제1변속 태양기어(740a)는 상기 변속 유성기어(720)의 1단(720a) 안쪽에서 치합하고, 상기 제2변속 태양기어(740b)는 상기 변속 유성기어(720)의 2단(720b) 안쪽에서 치합하게 되는 것이다.
이를 통해, 상기 제1변속 태양기어(740a)가 구속되었을 때의 상기 변속 유성기어(720)의 회전속도 보다, 상기 제2변속 태양기어(740b)가 구속되었을 때의 상기 변속 유성기어(720)의 회전속도가 더 빨라지게 되며, 결과적으로 더 빠른 회전이 출력되는 것이다.
다음으로, 상술한 변속부(700)의 변속을 제어하는 변속제어부(800)는 각각의 상기 변속 태양기어(740a)(740b) 내주면에 형성된 래칫톱니(741a)(741b)에 선택적으로 치합하는 폴(811)(812)과; 누름편(821a)(821b)이 형성되어 회전에 따라 상기 폴(811)(812)의 돌출을 각각 제어하는 폴 제어링(820)과; 상기 폴 제어링(820)에 연결되어 변속케이블(850)의 인출에 따라 회전하는 레버링(830)을 포함하는 것이 바람직하다.
즉, 상기 제1변속 태양기어(740a)와 제2변속 태양기어(740b)를 각각 제어하기 위한 폴(811)(812)(이하 제1폴(811) 및 제2폴(812)라 한다)이 마련되며, 이 제1폴(811) 및 제2폴(812)은 각각 폴 제어링(820)에 의해 제어되어 상기 제1변속 태양기어(740a) 및 제2변속 태양기어(740b)의 내주면에 각각 형성된 래칫톱니(741a)(741b)에 선택적으로 치합하게 된다.
이를 위해 상기 제1폴(811) 및 제2폴(812)은 상기 고정축(100)을 기준으로 축방향으로 연장되어 그 일측에는 상기 폴 제어링(820)에 의해 제어되는 제어부위와 그 타측에는 상기 래칫톱니(741a)(741b)에 치합하기 위한 치합부위가 구분되어 있다.
여기에서, 상기 제1폴(811) 및 제2폴(812)의 제어부위는 치합부위와 형상이 같지 않아도 되며, 제어부위와 치합부위를 제외한 부분에 있어서 모두 원형단면일 필요는 없다.
그리고, 상기 폴 제어링(820)의 내주면에는 상기 제1폴(811) 및 제2폴(812)을 각각 제어하기 누름편(821a)(821b)이 소정 구간 돌출 형성되어 있어, 상기 누름편(821a)(821b)이 돌출되어 있는 구간에서는 상기 제1폴(811) 또는 제2폴(812)이 제1변속 태양기어(740a) 또는 제2변속 태양기어(740b)의 래칫톱니(741a)(741b)에 치합하지 않으며, 상기 누름편(821a)(821b)이 없는 구간에서는 상기 제1폴(811) 및 제2폴(812)이 제1변속 태양기어(740a) 또는 제2변속 태양기어(740b)의 래칫톱니(741a)(741b)에 치합하여 해당하는 제1변속 태양기어(740a) 또는 제2변속 태양기어(740b)를 구속하게 된다.
또한, 상기 폴 제어링(820)에는 레버링(830)이 연결되며, 이 레버링(830)의 회전에 따라 상기 폴 제어링(820)이 일체로 회전하며, 상기 레버링(830)에는 사용자의 변속레버(840) 조작에 따라 인출되는 변속케이블(850)이 연결되어 있어, 상기 변속케이블(850)의 인출에 따라 상기 레버링(830)이 회전하게 되는 것이다.
상술한 바와 같은 변속부(700) 및 변속제어부(800)의 구성에 의해 전동력구동부(300) 또는 인력구동부(400)로부터의 구동력이 변속 캐리어(710)를 통해 클러치수단(750)이나 다단 변속 유성기어(720)에 의해 변속되어 변속 링기어(730)와 허브쉘(200)로 출력된다.
이때, 상기 클러치수단(750)은 상기 변속 유성기어(720)가 빠르게 회전할 때 상기 변속 링기어(730)가 더 빨리 회전하게 되므로 구동력이 전달 없이 겉돌게 된다.
또한, 상기 제1폴(811) 및 제2폴(812)이 둘 다 세워져 제1변속 태양기어(740a) 및 제2변속 태양기어(740b)가 둘 다 구속이 된다고 하여도 제2폴(812)에 의해 접속된 속도비의 차이 즉 변속 유성기어(720)에 있어서 1단(720a)과 2단(720b)에 의해 제1변속 태양기어(740a)가 제1폴(811)에 걸리지 않는 방향으로 회전되어 제1폴(811)의 기능을 무력화시킬 수 있게 되는 것이다.
이는 제2폴(812)만 세우나 제2폴(812)과 제1폴(811)을 모두 세우나 변속기가 고속 상태가 되어 동일한 효과가 된다.
그리고, 상기 제1폴(811) 및 제2폴(812)을 컨트롤하는 변속제어부(800)를 보다 상세히 살펴보면, 상기 제1폴(811) 및 제2폴(812)은 전술한 바와 같이 변속레버(840)에 연결되어 회전되는 폴 제어링(820)에 의해 컨트롤되나, 제1폴(811) 및 제2폴(812)이 제1변속 태양기어(740a) 및 제2변속 태양기어(740b)의 내주면에 형성된 래칫톱니(741a)(741b)에 강하게 걸려있는 상태에서 해제되지 않는 경우가 발생될 수 있어 이를 해결하기 위해 특별한 구성을 더 마련하였다.
즉, 상기 변속제어부(800)에는 상기 전동력구동부(300) 또는 상기 인력구동부(400)에 의해 주행 중인 상태에서도 쉽게 변속이 이루어지도록 하는 강제복귀수단(900)이 더 마련되는 것이 바람직하다.
기본적으로 변속제어부(800)는 변속레버(840)에 변속케이블(850)로 연결된 레버링(830)이 인력측 고정축(120) 상에 결합되어 일정한 각도로 회전을 하게 되고, 이 회전을 동축상의 폴 제어링(820)에 전가시켜 폴 제어링(820)이 일정각도 내에서 회전하면서 동축 상에 장착된 제1폴(811) 또는 제2폴(812)을 세우거나 눕히게 되는 것이다.
이는 폴(811)(812)을 폴 스프링(810)으로 탄력 있게 세워줌으로 폴 제어링(820)에 의해 폴(811)(812)이 눌리지 않으면 폴(811)(812)이 래칫톱니(741a)(741b)와 걸릴 수 있도록 탄성적으로 세워짐으로 가능하다.
즉, 예를 들어 폴 제어링(820)의 기본 위치는 제1폴(811) 및 제2폴(812)을 눌러 눕혀진 상태가 되고, 이를 레버링(830)이 일방향으로 회전하면서 폴 제어링(820)을 함께 회전시켜주어 제1폴(811)의 누름을 해제시킴으로써 세워주게 한다.
그리고 레버링(830)이 일방향으로 더 많이 회전되면서 폴 제어링(820)이 계속 회전하여 제1폴(811) 뿐만 아니라 제2폴(812)도 누름이 해제되어 세워주게 된다.
그리고 다시 저속으로 가거나 또는, 중속으로 한 단계 높이기 위해서는 레버링(830)이 리턴 되어야 하는데, 레버링(830)과, 폴 제어링(820)의 사이에 스프링 고정링(910)이 인력측 고정축(120)에 고정되게 결합되고, 이 고정링(910)의 양측으로 복귀스프링(921)(922)이 각각의 레버링(830)과 폴 제어링(820)으로 연결된다.
즉, 제1복귀스프링(921)은 레버링(830)을 리턴 시키고, 제2복귀스프링(922)은 폴 제어링(820)을 리턴 시키게 된다.
그러나 위와 같은 기본형태만으로 구성되면, 제1폴(811) 및 제2폴(812)이 제1변속 태양기어(740a) 및 제2변속 태양기어(740b)의 래칫톱니(741a)(741b)에 강하게 구속되어 있는 경우, 제2복귀스프링(922)의 탄성 복원력만으로는 제1폴(811)이나 제2폴(812)을 누를 수 없게 되어 변속에 지장을 주게 되는 문제가 발생될 수 있다.
즉, 본 발명은 전동력구동부(300)의 구동력뿐만 아니라 인력구동부(400)의 구동력도 변속부(700)에 전달되기 때문에 자전거가 평지 운행 중에 있더라도 제1폴(811) 및 제2폴(812)이 변속 태양기어(740a)(740b)의 래칫톱니(741a)(741b)에 강하게 파고들 수 있어 제1폴(811) 및 제2폴(812)을 큰 힘으로 눌러야만 해제될 수 있게 된다.
따라서, 제2복귀스프링(922)이 리턴 되는데도 불구하고, 폴 제어링(820)이 복귀되지 않을 경우 이를 강제적으로 복귀시키는 방안이 마련되는 것이다.
본 발명에 따른 강제복귀수단(900)은 폴 제어링(820)의 옆에 미끄럼링(930)을 배치하고, 이 미끄럼링(930)과 폴 제어링(820)의 외주면과 맞닿는 강제복귀폴(940)을 링기어(415)의 내측과 접속되도록 장착하여 달성된다.
즉, 상기 링기어(415)는 인력구동부(400)에 마련되어 탑승자의 페달링 구동력을 전달받은 스프라켓(411)에 의해서 회전하게 되는데, 이러한 회전력을 강제복귀폴(940)을 통해 폴 제어링(820)측으로 강제 전달시키게 되는 것이다.
이때, 폴 제어링(820)의 외주면상에는 강제복귀폴(940)이 구속되도록 래칫홈(825)이 형성되고, 미끄럼링(930)의 외주면상에는 강제복귀폴(940)이 구속되지 않는 완만하게 굴곡진 미끄럼홈(935)이 형성된다.
그리고 폴 제어링(820)에 결합되어 일체로 회전되는 회전링(950)의 걸림턱(957)과 미끄럼링(930)의 걸림턱(937)이 전달링(960)의 제1제어암(961)에 의해 일렬로 정렬 될 때 미끄럼홈(935)을 폴 제어링(820)의 래칫홈(825)보다 앞쪽으로 위치시켜 강제복귀폴(940)이 폴 제어링(820)의 래칫홈(825)에 구속되지 않고 미끄럼홈(935)에 미끄러지도록 설정한다.
따라서 정상적일 때에는 강제복귀폴(940)이 먼저 닿고 있는 미끄럼홈(935) 위에서 헛돌다가 제1폴(811) 및 제2폴(812)에 부하가 걸리는 경우에는 미끄럼링(930)이 유격홈(931)과 폴 제어링(820)에 연장편(822)의 공간만큼 회전하면서 미끄럼홈(935)이 폴 제어링(820)의 래칫홈(825)의 뒤쪽으로 위치하여 강제복귀폴(940)이 폴 제어링(820)에 구속됨으로써, 인력구동부(400)의 구동력이 폴 제어링(820)에 전달되어 제1폴(811) 및 제2폴(812)을 강제로 제어하게 되는 것이다.
그렇다면, 제1폴(811) 및 제2폴(812)에 부하가 걸려 복귀스프링(921)(922)의 복원력만으로 폴 제어링(820)이 작동되는 경우에 누름편(821a)(821b)으로 폴(811)(812)이 눕혀지지 않는 이상을 느끼는 순간에 이를 감지하여 폴 제어링(820)의 래칫홈(825)에 앞서 있는 미끄럼링(930)을 뒤쪽으로 회전시켜주는 구조를 살펴보아야 할 것이다.
폴 제어링(820)에는 일측면상에 제1폴(811)이나 제2폴(812)을 눌러주는 누름편(821a)(821b)이 형성되어 있고, 제1폴(811)을 선택적으로 눌러주는 누름편(821a)과 제2폴(812)을 선택적으로 눌러주는 누름편(821b)을 번갈아 형성하고 타측면상에는 돌출된 연장편(822)이 형성되어 있다.
그리고 미끄럼링(930)의 내측면상에는 연장편(822)이 일정한 회전상의 유격을 갖고 관통하도록 홈이 파진 유격홈(931)이 형성된다. 이때, 유격홈(931)은 연장편(822)의 폭 보다 더 넓게 형성된다.
또한, 유격홈(931)의 위치는 폴 제어링(820)이 제1폴(811)이나 제2폴(812)을 제어하기 위해 폴(811)(812)이 세워지도록 누름편(821a)(821b)이 폴(811)(812)에서 벗어나게 되는 회전 방향으로 맞닿았을 때에 미끄럼링(930)의 미끄럼홈(935)을 강제복귀폴(940)이 폴 제어링(820)의 래칫홈(825)에 구속되지 않도록 폴 제어링(820)의 래칫홈(825)보다 앞서 위치하게 한다.
또한, 연장편(822)의 끝부분에 삽입되어 실질적으로 폴 제어링(820)을 회전시켜주는 회전링(950)이 미끄럼링(930)의 옆에 구비되고, 회전링(950)의 옆에는 회전링(950)이 제2복귀스프링(922)으로 연결되어 있는 고정링(910)이 구비된다.
이때, 회전링(950), 고정링(910), 그리고 미끄럼링(930)과 내측 인력측 고정축(120) 사이에는 회전링(950) 및 미끄럼링(930)을 폴 제어링(820)이 제1폴(811)이나 제2폴(812)을 제어하기 위해 폴(811)(812)이 세워지도록 누름편(821a)(821b)이 폴(811)(812)에서 벗어나게 되는 회전 방향만으로 즉 일측방향으로만 회전시켜주는 전달링(960)이 장착된다.
바람직하게는 전달링(960)은 고정링(910)에 제1복귀스프링(921)으로 연결되어 있고, 전달링(960)의 양쪽에는 돌출된 제1제어암(961) 및 제2제어암(962)이 일체로 형성된다.
따라서 제1제어암(961)은 변속레버와 변속케이블(850)로 연결된 레버링(830)과 결합되어 회전을 하며, 제2제어암(962)은 회전링(950)내에 돌출된 걸림턱(957) 및 미끄럼링(930) 내에 돌출된 걸림턱(937)에 동시에 일방향만으로 맞닿도록 연장된다.
*오른쪽 축 베어링 지지대(970)는 인력측 고정축(120)에 고정되며 캐리어(412)와 베어링에 의해 결합되어 상기 캐리어(412)를 지지한다.
전술한 바와 같은 구성에 의한 폴 제어링(820)의 강제 복귀 작용을 살펴보자.
도 7 내지 도 11은 본 발명의 페달링 어시스트 변속기에 대한 제3실시예에 있어서 변속제어부 및 강제복귀수단의 작동예를 도시하는 횡단면도로서, 도 7은 고속 모드의 상태를 나타낸 도이고, 도 8 및 도 9는 도 7의 고속 모드에서 강제 복귀되는 모습을 나타낸 도이며, 그리고 도 10은 강제복귀후의 모습을 나타낸 중속 모드의 도이다.
도 11에 도시한 바와 같이 저속 모드의 상태에서 도 6 및 도 7에서 보는 바와 같이 탑승자가 변속레버(840)를 조작하여 변속케이블(850)을 당겼을 때 변속케이블(850)이 연결되어 있는 레버링(830)이 회전하며, 이 레버링(830)에 끼워 맞춤 결합되어 있는 전달링(960)이 회전되고, 전달링(960)의 회전은 다시 제2제어암(962)을 통해 회전링(950)과 미끄럼링(930)을 돌리게 된다.
이때, 전달링(960)이 도면상 반시계방향으로 회전하면서 제1복귀스프링(921)이 인장 되어 전달링(960)의 복원력이 발생되고, 또한, 회전링(950)이 회전하면서 제2복귀스프링(922)이 인장 되어 회전링(950)의 복원력이 발생된다.
이러한 회전링(950)의 회전은 회전링(950)과 끼워 맞춤으로 결합되어진 연장편(822)을 통해 폴 제어링(820)을 도면상 반시계방향으로 회전시켜 폴 제어링(820)의 일측에 형성되어진 누름편(821a)이 도 10에 도시한 바와 같이 제1폴(811)을 자유롭게 하여 1차적으로 제1폴(811)을 폴 스프링(810)의 탄성력에 의해 세워지도록 하여, 제1폴(811)이 제1변속 태양기어(740a)를 인력측 고정축(120)에 구속하므로 저속 모드에서 중속 모드로 변환된다.
변속레버(840)의 계속된 회전력이 전달되면, 저속에서 중속으로 변환되는 동작과 같은 형태로 폴 제어링(820)이 도면상 반시계방향으로 더 회전되면서 도 7에 도시한 바와 같이 제2폴(812)까지 세우게 되어 고속 모드로 전환된다.
이하에서는 고속 모드에서 중속 모드로 또는 중속 모드에서 저속 모드로 변환되는 과정은 유사하므로, 고속 모드에서 중속 모드로 변환되는 상태를 기준으로 기술한다.
도 6 및 도 10에서 보는 바와 같이 변속레버(840)를 고속 모드에서 중속 모드로 조작하게 되면 변속케이블(850)이 느슨해지며, 제1복귀스프링(921)의 복원력으로 전달링(960), 레버링(830) 및 변속레버(840)가 도면상 시계방향으로 회전하면서 복귀한다.
그리고 제2복귀스프링(922)의 복원력으로 회전링(950) 및 폴 제어링(820)이 복원되면서 누름편(821a)(821b)이 제1폴(811) 또는 제2폴(812)을 눌러 낮은 변속단으로 변속된다.
즉, 도 10에서 보는 것과 같은 상태이며, 이러한 상태가 중속 모드이다.
한편, 중속 모드에서 제1폴(811) 또는 고속 모드에서 제2폴(812)이 각각 제1변속 태양기어(740a) 또는 제2변속 태양기어(740b)에 부하가 걸린 상태로 구속되어 있으면, 제2복귀스프링(922)의 복귀력만으로는 폴 제어링(820)의 제1누름편(821a)이 제1폴(811)을 누르는 힘이 부족하여 원하는 낮은 변속단으로 변속제어가 안 된다.(도 8의 제2누름편(821b), 제2폴(812), 제2변속 태양기어(740b)의 래칫톱니(741b)의 상호 위치)
이와 같은 순간에 도 8 및 도 9에서 보는 것과 같이 전달링(960)의 제2제어암(962)이 중속 상태의 위치로 도면상 시계방향으로 회전 복귀하여 미끄럼링(930)의 걸림턱(937) 및 회전링(950)의 걸림턱(957)을 자유롭게 하고 제2복귀스프링(922)에 의해 제2누름편(821b)이 제2폴(812)의 누름부에 걸리기 전까지 복귀한다.
이때 만약 페달의 구동에 의해 자전거가 구동 중에 있다면 제2폴(812)의 걸림부가 제2변속 태양기어(740b)의 래칫톱니(741b)에 강하게 맞물려 있어 폴 제어링(820)의 제2누름편(821b)이 제2폴(812)을 누를 수 없어 더 이상의 폴 제어링(820)의 다음단계 복귀과정이 이루어지지 않지만, 미끄럼홈(935)을 폴 제어링(820)의 래칫홈(825)보다 앞서게 했던 미끄럼링(930)의 걸림턱(937)이 자유상태가 되어 미끄럼홈(935)은 유격홈(931)과 연장편(822)의 유격만큼, 즉 페달의 구동에 의해 회전하는 링기어(415)에 장착되어진 강제복귀폴(940)의 지속적인 마찰에 의해 더 회전하게 되어 폴 제어링(820)의 래칫홈(825)의 뒤에 위치하면서 폴 제어링(820)의 래칫홈(825)에 강제복귀폴(940)이 구속된다.
즉, 도 8에서 보는 것과 같이 전달링(960)이 복귀하여 제2제어암(962)이 회전링(950) 및 미끄럼링(930) 내의 걸림턱(957)(937)에서 떨어지게 되는데, 회전링(950)은 폴 제어링(820)의 연장편(822)에 끼워 맞춤 되어 있기 때문에 폴 제어링(820)과 함께 복귀되지 않게 된다.
그러나 도 9에서 보는 것과 같이 미끄럼링(930)은 폴 제어링(820)의 연장편(822)이 삽입되는 유격홈(931)이 더 넓게 형성되어 있기 때문에 연장편(822)의 폭과 유격홈(931)의 폭의 길이 차이만큼 복귀되게 된다.
즉, 미끄럼링(930)은 전달링(960)의 제2제어암(962)이 걸림턱(937)에 걸려 붙잡고 있었으므로 강제복귀폴(940)이 마찰을 일으키며 헛돌았으나, 제2제어암(962)이 없는 상태에서는 강제복귀폴(940)의 마찰력이 더 세므로 돌아가게 되는 것이다.
따라서 미끄럼링(930)이 복귀되면서 강제복귀폴(940)은 폴 제어링(820)의 래칫홈(825)에 접속되면서 페달의 구동력이 링기어(415)에 장착된 강제복귀폴(940)에 의해 폴 제어링(820)에 전달되어 폴 제어링(820)이 선택되어진 변속단까지 강제 회전되는 것이다.
그리고 강제복귀폴(940)은 도 10에서 보는 것과 같이 폴 제어링(820)을 강제 회전시키다가 다음 변속단에 위치하고 있던 제2제어암(962)에 의해 구속되어진 미끄럼링(930)을 만나면 다시 미끄럼홈(935)에 의해 헛돌게 되며 폴 제어링(820)은 미끄럼링(930)의 걸림턱(937)과 회전링(950)의 걸림턱(957)이 일렬로 정렬되어 제2제어암(962)에 의해 구속될 때까지 회전하게 된다.
이때 제2누름편(821b)의 경사면에서 제2폴(812)의 누름부가 벗어나 제2누름편(821b)에 내면으로 위치하여 폴 제어링(820)이 회전하는 데에 더 이상 부하가 없으므로 제2복귀스프링(922)의 복귀력에 의해 더 회전하게 되는 것이다.
이처럼 폴 제어링(820)의 래칫홈(825)과 강제복귀폴(940)이 접속된 상태에서 링기어(415)가 항상 회전하기 때문에 자동으로 강제 제어가 된다.
한편, 제1변속 태양기어(740a)의 타측과, 제2변속 태양기어(740b)의 일측에는 도 4에서 보는 바와 같이 각각 접촉지지부(742a)(742b)가 형성되어 있어, 축과 미끄럼 회전 접촉하여 위아래 또는 좌우로 덜그덕 거리지 않으면서 안정적으로 축에 지지되는 역할을 수행한다.
상기에서 설명한 변속기는 2단 변속 유성기어(720)를 적용하여 3속의 변속단을 가지고 있지만, 4속이나 2속 등 변속단을 늘리거나 줄이는 것으로 구성하거나, 같은 3속을 반복적으로 추가하거나, 단수가 다른 4속, 2속 등과 혼합하여 반복적으로 쉽게 추가할 수도 있음을 이해 할 수 있을 것이다.
따라서, 본 발명의 페달링 어시스트 변속기는 전동력구동부(300)에 전동력감속부(320)를 두어 모터(310)의 종류에 따라 적절한 감속을 실시하여 출력을 함으로써 원하는 토크를 얻을 수도 있고, 인력구동부(400)에 인력가속부(410) 혹은 인력감속부(420)를 두어 탑승자의 페달링 입력을 가속 또는 감속하는 것도 가능하다.
그리고, 상기 인력가속부(410)의 태양기어(414)나 상기 인력감속부(420)의 태양기어(424)와 고정축(100) 사이에 토크센서(600)를 두는 것이 가능하여, 인력구동부(400)를 통해 입력되는 탑승자의 페달링 구동력을 보다 정확하게 검출하는 것도 가능하다.
특히, 상술한 것과 같이 인력구동부(400) 또는 전동력구동부(300)로부터 출력되는 회전을 변속부(700) 및 변속제어부(800)를 통해 탑승자가 원하는 변속단으로 다시 한번 변속하는 것도 가능하여, 탑승자는 자전거의 주행 여건에 따라 적절한 변속을 수행하는 것도 가능하다.
마지막으로, 상기 변속제어부(800)에는 강제복귀수단(900)을 두어 낮은 변속단으로의 변속 시 변속이 원활하게 이루어지지 않는 것 또한 방지할 수 있는 것이다.
상술한 바와 같이 본 발명의 페달링 어시스트 변속기는 기본적으로 인력구동부(400)를 통해 입력되는 탑승자의 페달링 구동력을 검출하여 이를 통해 전동력구동부(300)의 모터(310) 회전속도를 제어함으로써, 인력구동부(400)를 통한 출력과 전동력구동부(300)를 통한 출력을 대략 50:50으로 제어하여 탑승자가 보다 적은 페달링 구동력으로도 손쉽게 자전거의 가속을 실시할 수 있다는 탁월한 이점을 지닌 발명인 것이다.
상기 실시예는 본 발명의 기술적 사상을 구체적으로 설명하기 위한 일례로서, 본 발명의 범위는 상기의 도면이나 실시예에 한정되지 않는다.

Claims (10)

  1. 차체프레임에 고정되는 고정축과;
    상기 고정축의 외주에 회전 가능하게 지지되어 종동력을 출력시키는 허브쉘과;
    모터의 회전으로 구동하는 전동력구동부와;
    탑승자의 페달링 구동력을 입력받아 구동하는 인력구동부와;
    상기 전동력구동부 및 인력구동부와 상기 허브쉘 사이에 마련되어 상기 전동력구동부와 상기 인력구동부 중 고속으로 회전하는 어느 하나의 출력을 선택적으로 상기 허브쉘에 전달하는 선택출력부와;
    외부로부터 상기 인력구동부에 입력되는 구동력을 검출하는 토크센서와;
    상기 토크센서로부터 검출된 구동력에 따라 상기 모터의 회전 속도를 제어하는 제어부로 구성되는 것을 특징으로 하는 페달링 어시스트 변속기.
  2. 제 1항에 있어서, 상기 전동력구동부에는,
    상기 모터의 회전축 외주에 치합하는 감속기어와;
    상기 감속기어의 외주에 치합하여 상기 선택출력부에 회전력을 전달하는 내기어로 이루어진 전동력감속부가 마련되는 것을 특징으로 하는 페달링 어시스트 변속기.
  3. 제 1항에 있어서, 상기 인력구동부에는,
    탑승자의 페달링 구동력을 입력받아 회전하는 스프라켓과;
    상기 스프라켓과 일체를 이루어 회전하는 캐리어와;
    상기 캐리어에 회전 가능하게 지지되는 유성기어와;
    상기 유성기어의 내주에 치합하는 태양기어와;
    상기 유성기어의 외주에 치합하는 동시에 그 외주가 상기 선택출력부에 회전력을 전달하는 링기어로 이루어진 인력가속부가 마련되는 것을 특징으로 하는 페달링 어시스트 변속기.
  4. 제 1항에 있어서, 상기 인력구동부에는,
    탑승자의 페달링 구동력을 입력받아 회전하는 스프라켓과;
    상기 스프라켓과 일체를 이루어 회전하는 링기어와;
    상기 링기어의 내주에 치합하는 유성기어와;
    상기 유성기어의 내주에 치합하는 태양기어와;
    상기 유성기어를 회전 가능하게 지지하는 동시에 상기 선택출력부에 회전력을 전달하는 캐리어로 이루어진 인력감속부가 마련되는 것을 특징으로 하는 페달링 어시스트 변속기.
  5. 제 3항 또는 제 4항에 있어서, 상기 태양기어와 상기 고정축 사이에 상기 토크센서가 위치하는 것을 특징으로 하는 페달링 어시스트 변속기.
  6. 제 3항 또는 제 4항에 있어서, 상기 선택출력부와 상기 허브쉘 사이에는, 상기 전동력구동부 또는 상기 인력구동부 중 고속으로 회전하는 어느 하나의 출력을 선택적으로 전달받아 회전하는 변속 캐리어와, 상기 변속 캐리어에 자전 가능하게 지지되는 변속 유성기어와, 상기 변속 유성기어의 외주에 치합하여 상기 허브쉘에 회전력을 전달하는 변속 링기어와, 상기 변속 유성기어의 내주에 치합하는 변속 태양기어와, 상기 변속 캐리어의 회전을 상기 변속 링기어에 선택적으로 전달하는 클러치수단으로 이루어진 변속부와;
    상기 변속 태양기어의 회전을 선택적으로 구속하는 변속제어부가 추가 구성되는 것을 특징으로 하는 페달링 어시스트 변속기.
  7. 제 6항에 있어서, 상기 변속 유성기어는 1단 또는 2단 이상의 다단 변속 유성기어로 이루어지고, 상기 변속 태양기어는 상기 다단 변속 유성기어의 단수에 대응하여 한 개 또는 다수 개 마련되는 것을 특징으로 하는 페달링 어시스트 변속기.
  8. 제 7항에 있어서, 상기 변속제어부는
    각각의 상기 변속 태양기어 내주면에 형성된 래칫톱니에 선택적으로 치합하는 폴과;
    누름편이 형성되어 회전에 따라 상기 폴의 돌출을 각각 제어하는 폴 제어링과;
    상기 폴 제어링에 연결되어 변속케이블의 인출에 따라 회전하는 레버링을 포함하는 것을 특징으로 하는 페달링 어시스트 변속기.
  9. 제 8항에 있어서, 상기 변속제어부에는 상기 전동력구동부 또는 상기 인력구동부에 의해 주행 중인 상태에서도 쉽게 변속이 이루어지도록 하는 강제복귀수단이 더 마련된 것을 특징으로 하는 페달링 어시스트 변속기.
  10. 제 9항에 있어서, 상기 강제복귀수단은,
    상기 폴 제어링의 옆에 미끄럼링을 배치하고, 이 미끄럼링과 폴 제어링의 외주면과 맞닿는 강제복귀폴을 링기어의 내측과 접속되도록 장착하여 달성되는 것을 특징으로 하는 페달링 어시스트 변속기.
PCT/KR2010/009145 2009-12-22 2010-12-21 페달링 어시스트 변속기 WO2011078546A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020090129064A KR101147995B1 (ko) 2009-12-22 2009-12-22 페달링 어시스트 변속기
KR10-2009-0129064 2009-12-22

Publications (2)

Publication Number Publication Date
WO2011078546A2 true WO2011078546A2 (ko) 2011-06-30
WO2011078546A3 WO2011078546A3 (ko) 2011-10-27

Family

ID=44196288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/009145 WO2011078546A2 (ko) 2009-12-22 2010-12-21 페달링 어시스트 변속기

Country Status (3)

Country Link
KR (1) KR101147995B1 (ko)
TW (1) TW201144140A (ko)
WO (1) WO2011078546A2 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111572696A (zh) * 2019-02-15 2020-08-25 什拉姆有限责任公司 自行车控制系统
CN114215911A (zh) * 2021-12-15 2022-03-22 珠海蓝图控制器科技有限公司 一种电子和机械双线控制换挡机构及其装置
US11738826B2 (en) 2019-02-15 2023-08-29 Sram, Llc Bicycle control system
US11964731B2 (en) 2019-02-15 2024-04-23 Sram, Llc Bicycle control system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101488507B1 (ko) * 2012-05-21 2015-02-02 씨스톤 테크놀로지스(주) 허브 구동장치
JP2016153286A (ja) * 2015-02-20 2016-08-25 武蔵精密工業株式会社 電動補助人力車両用ハブユニット

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990085031A (ko) * 1998-05-13 1999-12-06 이상수 허브에 모터와 감속기가 일체화된 자전거
KR100282222B1 (ko) * 1997-05-29 2001-02-15 다카노 야스아키 전동차량
JP2002154471A (ja) * 2000-11-22 2002-05-28 Sanyo Electric Co Ltd 電動自転車
JP2003166563A (ja) * 2001-11-28 2003-06-13 Sanyo Electric Co Ltd 補助動力付車両用駆動装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100282222B1 (ko) * 1997-05-29 2001-02-15 다카노 야스아키 전동차량
KR19990085031A (ko) * 1998-05-13 1999-12-06 이상수 허브에 모터와 감속기가 일체화된 자전거
JP2002154471A (ja) * 2000-11-22 2002-05-28 Sanyo Electric Co Ltd 電動自転車
JP2003166563A (ja) * 2001-11-28 2003-06-13 Sanyo Electric Co Ltd 補助動力付車両用駆動装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111572696A (zh) * 2019-02-15 2020-08-25 什拉姆有限责任公司 自行车控制系统
CN111572696B (zh) * 2019-02-15 2022-08-26 什拉姆有限责任公司 自行车控制系统
US11738826B2 (en) 2019-02-15 2023-08-29 Sram, Llc Bicycle control system
US11964731B2 (en) 2019-02-15 2024-04-23 Sram, Llc Bicycle control system
US11999442B2 (en) 2019-02-15 2024-06-04 Sram, Llc Bicycle control system
CN114215911A (zh) * 2021-12-15 2022-03-22 珠海蓝图控制器科技有限公司 一种电子和机械双线控制换挡机构及其装置
CN114215911B (zh) * 2021-12-15 2023-11-17 珠海蓝图运动科技股份有限公司 一种电子和机械双线控制换挡机构及其装置

Also Published As

Publication number Publication date
WO2011078546A3 (ko) 2011-10-27
KR20110072219A (ko) 2011-06-29
TW201144140A (en) 2011-12-16
KR101147995B1 (ko) 2012-05-24

Similar Documents

Publication Publication Date Title
WO2011078546A2 (ko) 페달링 어시스트 변속기
WO2014123312A1 (ko) 허브 내장형 다단 변속기
WO2011122787A2 (ko) 자전거용 변속장치
US8449421B2 (en) Transmission for motor and controlling device thereof
WO2018212595A1 (ko) 모터의 다단 변속기
WO2016108457A1 (ko) 고정변속단을 가지는 하이브리드 변속기
WO2010134732A2 (ko) 다단 자동 변속기
WO2009102156A2 (ko) 다중기어열을 갖는 유성기어를 이용한 동력 전달장치 및 그 이용방법
WO2010137881A2 (ko) 다단기어 변속장치
WO2014123320A1 (ko) 허브 내장형 다단 변속기
WO2013147347A1 (ko) 변속기
JP3604136B2 (ja) 自転車用内装変速装置
WO2012057410A1 (ko) 동력전달장치
WO2015046838A1 (ko) 오토바이용 후진장치
WO2017171292A1 (en) Door driving system and refrigerator including the same
WO2014025130A1 (ko) 다단 변속기
WO2012091442A2 (ko) 도로 경사면 변화에 따라 바퀴의 감속 또는 제동이 가능한 바퀴제어장치
WO2012011662A2 (ko) 무단변속장치
WO2012091439A2 (ko) 기계식 자동 변속기
WO2009088232A2 (ko) 유성기어세트 및 이를 이용한 동력 전달 장치
WO2019172582A1 (ko) 변속모터와 유성기어 메카니즘을 이용한 자전거용 변속장치
WO2015156592A1 (ko) 무단변속기
EP3374710A1 (en) Door driving system and refrigerator including the same
WO2011031113A2 (ko) 일측 고정형 변속기
WO2012060499A1 (ko) 무체인 자전거용 기어변속장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10839743

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10839743

Country of ref document: EP

Kind code of ref document: A2