WO2010104237A1 - 에스아이알엔에이 다중 접합체 및 이의 제조방법 - Google Patents

에스아이알엔에이 다중 접합체 및 이의 제조방법 Download PDF

Info

Publication number
WO2010104237A1
WO2010104237A1 PCT/KR2009/002252 KR2009002252W WO2010104237A1 WO 2010104237 A1 WO2010104237 A1 WO 2010104237A1 KR 2009002252 W KR2009002252 W KR 2009002252W WO 2010104237 A1 WO2010104237 A1 WO 2010104237A1
Authority
WO
WIPO (PCT)
Prior art keywords
sirna
polymer
stranded
group
antisense
Prior art date
Application number
PCT/KR2009/002252
Other languages
English (en)
French (fr)
Inventor
박태관
목혜정
이수현
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to US12/514,306 priority Critical patent/US8580946B2/en
Priority to EP09731474.4A priority patent/EP2407539B1/en
Publication of WO2010104237A1 publication Critical patent/WO2010104237A1/ko
Priority to US14/048,951 priority patent/US9255269B2/en
Priority to US14/312,530 priority patent/US9644209B2/en
Priority to US15/483,528 priority patent/US20180080028A1/en
Priority to US16/040,795 priority patent/US10597659B2/en
Priority to US16/781,766 priority patent/US20200239892A1/en
Priority to US17/945,842 priority patent/US11859184B2/en
Priority to US18/509,130 priority patent/US20240150766A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1136Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against growth factors, growth regulators, cytokines, lymphokines or hormones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • C07H21/02Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with ribosyl as saccharide radical
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/111General methods applicable to biologically active non-coding nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/50Physical structure
    • C12N2310/51Physical structure in polymeric form, e.g. multimers, concatemers

Definitions

  • the present invention relates to a small interfering RNA (siRNA) multiple conjugate and a method for preparing the same, and more specifically, to a double-stranded sense / antisense siRNA monomer directly or through a crosslinking agent or a polymer. It relates to siRNA multiple conjugates linked through covalent bonds, and a method for preparing the same.
  • siRNA small interfering RNA
  • Small interfering RNA is a short double-stranded RNA strand consisting of 19 to 22 nucleic acids, which targets mRNAs of the same sequence as the sense strand and degrades the target gene.
  • siRNA small interfering RNA
  • siRNA can inhibit gene expression in an amount of about 10 times less than conventional antisense oligonucleotides, and is known to be able to inhibit only a target gene because of its superior gene selectivity.
  • siRNA has a disadvantage in that it is difficult to penetrate the cell membrane easily because it degrades in a short time due to low stability in vivo and exhibits anions, thereby lowering the efficiency of intracellular delivery.
  • siRNA In order to increase the delivery efficiency of siRNA, a method using a nano-sized ion complex through ion bonding of siRNA and various functional cationic polymers, lipids or cationic peptides is generally used.
  • siRNA has a molecular weight of about 15000 and a double stranded stiff structure, making it difficult to form a stable complex with a cationic gene carrier (Gary, DJ, Puri, N., and Won, YY ( 2007)
  • Polymer-based siRNA delivery perspectives on the fundamental and phenomenological distinctions from polymer-based DNA delivery.J Control Release 121 , 64-73).
  • siRNAs form stable complexes with gene carriers.
  • many studies have been conducted to increase the charge density of each ion as a method of increasing the stability of the ion conjugate between the anionic gene siRNA and the cationic gene transporter.
  • this method increases the efficiency of gene delivery, but also increases the non-specific cytotoxicity due to the strong cation of the gene carrier, making it difficult for clinical applications. Therefore, studies have been recently made to modify the siRNA itself, an anionic gene, to form a stable complex with a gene carrier that has been used.
  • the present inventors have studied a method for improving the stability and delivery efficiency of siRNA, and as a result, siRNA multiple conjugates in which double-stranded sense / antisense siRNA monomers are covalently bonded directly or through a crosslinking agent or a polymer are highly stable.
  • the present invention is completed by revealing that the gene transfer effect is excellent due to the excellent ionic binding ability with the cationic gene transporter and does not significantly induce an immune response compared to the existing siRNA, and thus can be useful for gene therapy. It was.
  • the present invention relates to a double-stranded sense / antisense small interfering RNA (siRNA) monomer directly or through a covalent bond via a crosslinking agent or a polymer.
  • siRNA small interfering RNA
  • X is a double stranded siRNA monomer
  • A may or may not be present and is a crosslinker or polymer
  • n is the number of double-stranded siRNA monomers
  • X is a double stranded siRNA monomer
  • x or x ' is a single stranded siRNA monomer
  • A may or may not be present and is a crosslinker or polymer
  • n is the number of double stranded siRNA monomers.
  • the present invention provides a method for producing a siRNA multiple conjugate having the above [formula I] or [formula II] prepared by covalently bonding a double-stranded sense / antisense siRNA monomer directly or via a crosslinking agent or a polymer. do.
  • the present invention is the siRNA multiple conjugate; And a cationic peptide selected from the group consisting of cationic peptides, cationic lipids and cationic polymers; It provides an ionic complex formed by the ionic interaction of the liver.
  • the present invention also provides a method for treating an anticancer or angiogenesis related disease comprising administering the ionic complex to a subject.
  • the present invention provides a use of the ionic complex in the manufacture of an anticancer agent or a therapeutic agent for angiogenesis-related diseases.
  • the present invention provides siRNA multiple conjugates having the following [formula I] or [formula II] wherein the double-stranded sense / antisense siRNA monomers are linked directly or via covalent linkages via crosslinking agents or polymers:
  • X is a double stranded siRNA monomer
  • A may or may not be present and is a crosslinker or polymer
  • n is the number of double-stranded siRNA monomers
  • X is a double stranded siRNA monomer
  • x or x ' is a single stranded siRNA monomer
  • A may or may not be present and is a crosslinker or polymer
  • n is the number of double stranded siRNA monomers.
  • the double-stranded sense / antisense siRNA monomer preferably has 15 to 50 nucleic acid bases, more preferably 15 to 29 nucleic acid bases, but is not limited thereto.
  • the number of the double-stranded sense / antisense siRNA monomer is preferably 1 to 150, more preferably 1 to 100, but is not limited thereto.
  • siRNA multiple conjugate of the present invention is preferably prepared by the following two methods, but is not limited thereto.
  • a single-stranded sense siRNA and an antisense siRNA each having a functional group introduced at the end are reacted with a crosslinking agent or a polymer to prepare a single-strand sense and an antisense siRNA dimer, and then each dimer is prepared. It can be prepared by complementary annealing in aqueous solution (see FIGS. 1B and 1D).
  • DTthio Dithio-bis-maleimidoethane
  • BM (PEG) 2 1,8-bis ()
  • PBS phosphate buffer
  • siRNA multiple conjugates can be prepared by linking double-stranded siRNA (complementary hydrogen-bonded) whose terminal is substituted with a functional group through a covalent bond via a crosslinking agent or a polymer (Fig. 1A and FIG. 1C).
  • the siRNA multiple conjugates are complementarily hydrogen-bonded siRNA having a sulfhydryl group introduced at both ends, and the hydrogen-bonded siRNA is conjugated by covalent bonding using an oxidation reaction using a crosslinking agent or DMSO. can do.
  • the oligo strand of siRNA during the siRNA multiple conjugate preparation is preferably selected from molecular weight 10,000 to 50,000, but is not limited thereto.
  • SiRNA usable in the present invention is not particularly limited as long as it is used for therapeutic or research purposes, for example, c-myc, c-myb, c-fos, c-jun, bcl-2 or VEGF, Any siRNA that may or may be used for gene therapy or research, such as VEGF-B, VEGF-C, VEGF-D, PIGF, may be employed.
  • the hydroxyl group (-OH) at the siRNA terminal may be substituted with a functional group of sulfhydryl group (-SH), carboxyl group (-COOH) or amine group (-NH 2 ).
  • substitution may be made through a 3 'end or a 5' end, and it is preferable to use a 3 'end substituted with a functional group in both sense and antisense, but is not limited thereto.
  • the polymer may be a nonionic hydrophilic polymer such as polyethylene glycol (PEG), polyvinylpyrolidone, polyoxazolin, or hydrophobic polymer such as PLGA or PLA.
  • PEG polyethylene glycol
  • polyvinylpyrolidone polyvinylpyrolidone
  • polyoxazolin polyoxazolin
  • hydrophobic polymer such as PLGA or PLA.
  • the crosslinking agent has a molecular weight of 100 to 10000, DTME (Dithio-bis-maleimidoethane), BM (PEG) 2 (1,8-Bis-maleimidodiethyleneglycol), maleimide, enhydroxysuccinimide (NHS, N-hydroxysuccinimide, vinylsulfone, iodoacetyl nitrophenyl azide, isocyanate, pyridyldisulfide, hydrazide or hydrociphenyl aza It is preferably an hydroxyphenyl azide, but is not limited thereto.
  • Non-degradable bonds such as amide bonds, covalent bonds such as urethane, acid-decomposable esters such as esters, hydrazones, acetals, covalent bonds such as disulfide bonds such as reducing agents, and dissociable bonds with external stimuli. Anything that does not degrade by stimulation can be used.
  • Any crosslinking agent which is not limited to the above crosslinking agent and is conventionally used for drug modification may be used.
  • the siRNA multiple conjugate may be further provided with a cell selective ligand which is preferably introduced at the end of the siRNA conjugate.
  • the ligands provided may be one or more selected from among cell specific antibodies, cell selective peptides, cell growth factors, folic acid, galactose, mannose, algidi, and transferrin. These ligands can be introduced at the ends of the conjugates, including disulfide bonds, through bonds such as amide bonds or ester bonds.
  • siRNA multiple conjugates of the present invention can form ionic complexes by ionic interactions with cationic gene carriers (cationic lipids, cationic polymers, cationic peptides, etc.).
  • cationic gene carriers cationic lipids, cationic polymers, cationic peptides, etc.
  • the cationic peptide may be a cationic fusogenic peptide (KALA), polylysine (polylysine), polyglutamic acid (polyglutamic acid) or protamine (portamine).
  • KALA preferably has a peptide sequence of WEAKLAKALAKALAKHLAKALAKALAACEA (SEQ ID NO: 1), but is not limited thereto.
  • the cationic lipid may be dioleyl phosphetidylethanolamine or cholesterol dioleyl phosphetidylcholine.
  • the cationic polymer may be polyethyleneimine, polyamine or polyvinylamine.
  • the present inventors prepared an ion complex by mixing a linear PEI, which is a gene carrier, and an siRNA, and then treated the cancer cells stably expressing GFP, followed by a fluorescence analyzer. GFP amount was measured using a fluorophotometer. As a result, it was found that the siRNA multiple conjugate of the present invention has superior gene transfer efficiency using a cationic gene delivery carrier, and thus has an excellent target gene inhibition effect as compared to the conventional siRNA (see FIG. 4).
  • the present inventors prepared the ion complex by mixing the siRNA multiple conjugate of the present invention with a linear PEI and siRNA gene to determine the binding force and stability with the cationic gene carrier, and then Atomic Force Microscopy AFM) was used to observe the shape and size. As a result, it was confirmed that the siRNA multiple conjugate of the present invention has superior binding strength with the cationic polymer as compared to the conventional siRNA, thereby making it possible to make small and uniform nanoparticles (see FIG. 5).
  • the inventors performed a gel retardation assay to determine the amount of cationic polymer bound to the siRNA multiple conjugate of the present invention. As a result, it was confirmed that the siRNA multiple conjugate of the present invention has a higher charge density than the conventional siRNA, thereby binding to a low concentration of cationic polymer to form an ionic complex (see FIG. 6).
  • the inventors of the present invention in order to determine the gene inhibition efficiency of the siRNA multiple conjugate of the present invention, a linear complex of the gene delivery system PEI and siRNA was prepared to prepare an ionic complex, and then treated with cancer cells to quantify the amount of VEGF using ELISA. . As a result, it was confirmed that the siRNA multiple conjugate of the present invention forms a stable and uniform ion complex with the cationic polymer as compared to the conventional siRNA, and has excellent gene transfer effect and can selectively inhibit the target gene (FIG. 7). Reference).
  • the present inventors separated the siRNA by size in a gel separation method in order to determine the gene inhibition efficiency according to the molecular weight of the siRNA multiple conjugate of the present invention, and then separated each siRNA mixed linear PEI and siRNA ion complex was prepared, and then treated to cancer cells to quantify the amount of VEGF using ELISA.
  • the molecular weight of the siRNA multiple conjugate of the present invention increases the charge density, it was confirmed that the gene transfer efficiency using the cationic polymer is increased (see Fig. 8).
  • the present inventors prepared the ionic complex by mixing the siRNA linear PEI, jet PEI, DOTAP and siRNA in order to determine the degree of immune response of the siRNA multiple conjugate of the present invention, human blood mononuclear cells After treatment with PBMC cells, the amount of Interferon alpha (INF- ⁇ ) was measured using ELISA. As a result, it was confirmed that the siRNA multiple conjugate of the present invention does not significantly induce the induction of INF- ⁇ compared to the conventional siRNA (see FIG. 9A).
  • the present inventors prepared the ionic complex by mixing the siRNA linear PEI and siRNA to determine the degree of immune response of the siRNA multiple conjugate of the present invention, and then injected intravenously into 7-week-old ICR mice Then, blood was collected from the heart of the mouse and the amount of siRNA in the blood was quantified by ELISA. As a result, it was confirmed that the siRNA multiple conjugate of the present invention does not significantly induce the induction of INF- ⁇ in comparison with the existing siRNA (see FIG. 9B).
  • the siRNA multiple conjugate of the present invention has a higher molecular weight, higher anion charge density, higher stability, and excellent ionic binding force with the cationic gene carrier, compared to the existing siRNA.
  • the siRNA multiple conjugate of the present invention has a high biocompatibility, since the multiple conjugate was prepared using only the siRNA as a therapeutic gene, and even after the multiple conjugate was prepared, the binding ability with the gene carrier was not affected without affecting the gene inhibitory function of the original siRNA. It can be seen that by increasing the efficiency of introduction into cells by showing a higher gene inhibition effect than the existing siRNA.
  • VEGF Vascular endothelial growth factor
  • VEGF receptor present on the surface of vascular endothelial cells and promotes the growth and migration of endothelial cells, thereby promoting the formation of new blood vessels.
  • a method of inhibiting the growth of cancer cells by inhibiting angiogenesis has attracted attention as one of new cancer treatment methods. Therefore, it can be seen that the siRNA multiple conjugate of the present invention can be usefully used for the treatment of cancer through the significant inhibition of VEGF.
  • the present invention provides a method for producing a siRNA multiple conjugate having the above [formula I] or [formula II] prepared by covalently bonding a double-stranded sense / antisense siRNA monomer directly or via a crosslinking agent or a polymer. do.
  • the oligo strand of siRNA is preferably selected between 10,000 and 50,000 molecular weight.
  • SiRNA usable in the present invention is not particularly limited as long as it is used for therapeutic or research purposes, for example, c-myc, c-myb, c-fos, c-jun, bcl-2 or VEGF, Any ES which is or may be used for gene therapy or research, such as VEGF-B, VEGF-C, VEGF-D, PIGF, can be adopted.
  • the covalent bonds are non-degradable amide bonds, urethane bonds, acid-decomposable ester bonds, hydrazone bonds, acetal bonds, reducing agent degradable disulfide bonds, biodegradable bonds, and It is preferably one of the covalent bonds selected from the group consisting of enzyme-degradable bonds, but is not limited thereto.
  • the functional group substituted in place of the hydroxyl group (-OH) which is the end of the single-stranded sense / antisense siRNA monomer is a sulfhydryl group (-SH), a carboxyl group (-COOH)
  • an amine group (-NH 2 ) is preferably any one functional group selected from the group consisting of, but is not limited thereto.
  • substitution may be made through a 3 'end or a 5' end, and it is preferable to use a 3 'end substituted with a functional group in both sense and antisense, but is not limited thereto.
  • the polymer used as a medium of the covalent bond is PEG, Pluronic, polyvinylpyrolidone and polyoxazolin in the group consisting of Any one or more nonionic hydrophilic polymer selected; Or poly-L-lactic acid, poly-glycolic acid, poly-D-lactic-co-glycolic acid, poly Poly-L-lactic-co-glycolic acid, poly-D, L-lactic-co-glycolic acid, poly-L-lactic-co-glycolic acid At least one biodegradable polyester-based polymer selected from the group consisting of polycaprolactone, poly-valerolactone, polyhydroxybutyrate and polyhydroxyvalerate Preferred but not limited to this.
  • the crosslinking agent has a molecular weight of 100 to 10000, DTME (Dithio-bis-maleimidoethane), BM (PEG) 2 (1,8-Bis-maleimidodiethyleneglycol), maleimide ( maleimide, N-hydroxysuccinimide (NHS, N-hydroxysuccinimide), vinylsulfone (vinylsulfone), iodoacetyl nitrophenyl azide, isocyanate, pyridyldisulfide , Hydrazide and hydroxyphenyl azide is preferably any one or more selected from the group consisting of, but is not limited thereto.
  • an additional cell selective ligand is further provided at the end of the siRNA multiple conjugate, but is not limited thereto.
  • the ligand further provided is a group consisting of cell specific antibodies, cell selective peptides, cell growth factors, folic acid, galactose, mannose, mannose, RGD, and transferrin. It is preferably one or more selected from but not limited thereto.
  • the method may further include activating a functional group possessed by the siRNA, but is not limited thereto.
  • Substances that activate the functional groups of the siRNA include 1-ethyl-3, 3-dimethylaminopropyl carbodiimide, imidazole, and N-hydrosuccinimide (N-hydroxysuccinimide), dichlorohexylcarbodiimide, N- ⁇ -maleimidopropionic acid, N- ⁇ -maleimidopropyllosil succinimide ester (N- ⁇ ) -maleimidopropyl succimimide ester) and N-succinimidylpyridyldithio propionate (N-Succinimidyl 3- (2-pyridyldithio) propionate) is preferably any one or more selected from the group consisting of, but not limited thereto.
  • the reaction for preparing the siRNA multiple conjugates of the present invention is not particularly limited, and can usually be performed at room temperature, and is preferably obtained by reacting for approximately 24 to 48 hours.
  • the addition ratio of each reactant required for the reaction is not particularly limited, and the length of the siRNA can be adjusted through the molar ratio (%) of the crosslinking agent and the siRNA.
  • the aqueous solution that complementarily binds is a phosphate buffer (PBS), Tris buffer or Hipes (HEPES) buffer, preferably a buffer solution having a salt concentration of 100 mM or more.
  • the present invention is the siRNA multiple conjugate; And a cationic peptide selected from the group consisting of cationic peptides, cationic lipids and cationic polymers; Provided are ionic complexes that can facilitate cell delivery formed by ionic interactions of the liver.
  • Ionic complexes may be formed using ionic bonds between the siRNA multiple conjugates according to the present invention and cationic gene carriers.
  • An ionic complex is a small aggregate formed by the interaction between an anionic gene and a polymer having a counter ion (for example, a cationic material), and preferably has a size of about 100 to 200 nm, but is not limited thereto.
  • the cationic peptide is not limited to the one selected from the group consisting of cationic fusogenic peptide (KALA), polylysine (polylysine), polyglutamic acid (polyglutamic acid) and protamine (portamine) Do not.
  • KALA cationic fusogenic peptide
  • polylysine polylysine
  • polyglutamic acid polyglutamic acid
  • protamine portamine
  • the cationic lipid is not limited to any one selected from dioleoyl phosphatidylethanolamine or cholesterol dioleyl phosphatidyl choline.
  • the cationic polymer is not limited to any one selected from the group consisting of polyethylenimine, polyamines and polyvinylamines.
  • the siRNA multipolymer of the present invention is diluted with a phosphate buffer solution or the like, and the cationic material is added thereto to stand at room temperature to form an ionic complex in an aqueous solution.
  • the present invention also provides a method for treating an anticancer or angiogenesis related disease comprising administering the ionic complex to a subject.
  • the present invention provides a use of the ionic complex in the manufacture of an anticancer agent or a therapeutic agent for angiogenesis-related diseases.
  • the term "individual” means all animals including humans, monkeys, dogs, goats, pigs, or rats having an angiogenesis-related disease or a disease in which symptoms of cancer may be improved by administering the ionic complex of the present invention.
  • administration means providing an individual with any of the ionic complexes of the present invention in any suitable manner.
  • treatment refers to any action that improves or advantageously alters the symptoms of angiogenesis-related diseases or cancers by administration of the ionic complexes of the present invention.
  • the cancer may include breast cancer, colorectal cancer, rectal cancer, non-small cell lung cancer, non-Hodgkins lymphoma (NHL), Renal cell cancer, prostate cancer, liver cancer, pancreatic cancer, soft-tissue sarcoma, kaposi's sarcoma, carcinoid carcinoma , Head and neck cancer (melanoma melanoma), ovarian cancer (ovarian cancer), mesothelioma (mesothelioma) and multiple myeloma (multiple myeloma) is preferably any one selected from the group but is not limited thereto.
  • the angiogenesis-related diseases include hemangioma, hemangiofibroma, arthritis, diabetic retinopathy, retinopathy of premature infants, neovascular glaucoma, corneal disease caused by neovascularization, degenerative plaques, degeneration of spots, pterygium, retinal degeneration, posterior capsular fibrosis, granules It is preferably one selected from the group consisting of sex conjunctivitis, psoriasis, capillary dilatation, purulent granulomas, seborrheic dermatitis and acne, but is not limited thereto.
  • the siRNA multiple conjugate of the present invention has excellent biocompatibility by preparing multiple conjugates using only siRNA, does not affect the gene inhibitory function of the original siRNA, and improves stability and binding ability with various gene carriers. It can be seen that it shows a higher gene inhibition effect.
  • siRNA showed a significant VEGF inhibitory effect as compared to the conventional siRNA. It was confirmed that the siRNA multiple conjugate of the present invention forms a stable and uniform ion complex with the cationic polymer, thereby having excellent gene transfer effect and selectively inhibiting the target gene.
  • the present invention can be used for a variety of gene therapy by including a variety of gene carriers, in particular can be useful for gene therapy of cancer or angiogenesis-related diseases.
  • the siRNA multiple conjugate preparation method of the present invention has a simple reaction and high efficiency, and the siRNA multiple conjugate prepared by the above method has a high anion charge density due to its molecular weight is several times higher than that of a conventional siRNA, and thus has a high anionic charge density. Excellent ionic binding power can significantly increase gene transfer efficiency.
  • FIG. 1 shows a schematic diagram of a method for producing a multi-conjugate of SL.
  • A is a double-stranded ESA, which has a functional group at both ends by complementary base bonds through hydrogen bonding, to a single-stranded sense II, and a single-stranded antisense RS, in which one end is substituted with the same functional group.
  • a TS conjugate is prepared through a covalent bond via a crosslinking agent or a polymer
  • (B) shows a single strand with a single-stranded sense AI fragment substituted with the same functional group at one end thereof.
  • NE is prepared by covalent bonds through covalent bonds or crosslinking agents, to prepare the two-weighted sense strands and antisense strands of RSAI, and each of them is complementarily bonded by using hydrogen bonds of the oligonucleotides themselves. It shows the case where the multiple conjugate of SIA.
  • FIG. 3 shows that both the sense and antisense were observed by electrophoresis after preparing the multiple conjugates of ESAIEN using double stranded ESAIENA substituted with sulfhydryl groups at the 3 ′ end.
  • (B) is prepared by dimerization of the ES strand of the sense strand and the antisense strand of which the 3 'end is substituted with a sulfhydryl group by using a crosslinking agent, and then complementarily combines the prepared dimer, After the preparation of the multi-conjugate of A, it was observed by electrophoresis, and (C) and (D) are those of the ES strand of the sense strand substituted with a sulfhydryl group and the ES strand of the antisense strand.
  • RNA Using a crosslinking agent that can be linked to a dissociative covalent disulfide bond (C) or a non-degradable covalent bond (D), respectively, the two-weight sense strand ESA and the antisense strand After the production of the RNA is shown to observe the prepared dimer by electrophoresis.
  • C dissociative covalent disulfide bond
  • D non-degradable covalent bond
  • FIG. 4 is an NP multiple of conjugated to the SA conjugate DNA of the GFP gene prepared by using the method of FIGS. 1A and 1B and the conventional ESAI using linear PEI, which is a cationic gene carrier, respectively.
  • the cancer cell line MDA-MB-435 which stably expresses GFP protein, was quantitatively analyzed for the degree of inhibition of GFP expression of cells.
  • FIG. 5 illustrates the preparation of the multiple conjugates of SAAI (produced by the method of FIG. 1B) and the existing SAAINA (Naked) at NP ratios 2 and 10 using linear PEI, which is a cationic gene carrier, respectively. After forming the ionic complex, the shape and size were observed by AFM (atomic force microscopy).
  • FIG. 6 shows ionic complexes of NPs using linear conjugated cationic gene transporters, respectively, of the prepared conjugates of ESAINA (produced by the method of FIG. 1B) and conventional ESAINA (Naked). After forming, the degree of formation of the ionic complex is shown by electrophoresis.
  • FIG. 7 illustrates the preparation of multi-siRNA linked by degradable covalent disulfide bonds or noncleavable covalent bonds using SIA to inhibit Vascular endothelial growth factor (VEGF) (FIG. After the production of the method of 1 B), it is shown that the comparison of the conventional SAI RNA (Naked) and gene inhibition efficiency.
  • linear PEI was used to compare the degree of gene inhibition efficiency according to the concentration (A) and NP ratio (B) of SIA, by quantifying the amount of VEGF protein through ELISA experiment.
  • C shows the result of quantifying each gene inhibition efficiency by comparing the amount of mRNA through RT-PCR.
  • Figure 8 shows that after the manufacture of the SAI-NA multiple conjugate (prepared by the method of Figure 1B), after separating each of the number according to the number of SL AI it was confirmed that the separation by electrophoresis , (B) shows the comparison of the degree of gene inhibition efficiency of each of the multiple conjugates of RS conjugated according to the number of ES RNA by comparing the amount of VEGF protein by ELISA experiment.
  • FIG. 9 shows an experiment confirming the degree of interferon-alpha (IFN-a) induction due to the prepared SAAI multiple conjugate (produced by the method of FIG. 1B).
  • A shows three cations of a multi-polymer ESAIEN that is linked to existing ESAIELA by peripheral blood mononuclear cells (PBMC) and cleavable or noncleavable.
  • PBMC peripheral blood mononuclear cells
  • Example 1 Preparation of a double stranded siRNA using a hydrogen bond for a sense strand siRNA and an antisense strand siRNA substituted with the same functional group at the end thereof, and then a siRNA was prepared by using a crosslinking agent.
  • the present inventors dissolve 100 nmol of sense or antisense strand siRNA 3 'end substituted with a sulfhydryl group in 260 ⁇ l of 1X phosphate buffer solution, and then left at 37 ° C. for 1 hour to prepare double stranded siRN. It was. To reduce the sulfhydryl groups at both ends of the prepared double-stranded siRN, 22 ⁇ l of 25X PBS buffer solution, 260 ⁇ l 2 M dithiothreitol solution, and 4 ⁇ l of 5 N NaOH solution were added to adjust pH. After giving, the reaction was allowed for about 12 hours.
  • the reaction After the reaction, the remaining DTT was removed through dialysis, the solution was concentrated to prepare a final concentration of 1 nmol / ⁇ L, and then 25X PBS buffer solution was added to the final 5X phosphate buffer solution, and the crosslinking agent DTME or BM ( PEG) 2 was added at a concentration equal to half the concentration of thiol group and reacted at room temperature for 24 hours.
  • a double-stranded siRNA multiple conjugate was prepared to remove and concentrate foreign substances such as a crosslinking agent remaining in the dialysis process to a final concentration of 1 to 2 ⁇ g / ⁇ l (see FIG. 1A).
  • the prepared siRNA was confirmed by electrophoresis (see FIG. 2).
  • multiple conjugates were prepared by covalent bonds via direct oxidation without double-stranded siRNA.
  • the double-stranded siRNA substituted with a thiol group at the 3 'end of the sense and antisense was treated with DTT in the same manner as above, followed by dialysis and concentration to prepare a final concentration of 1 nmol / ⁇ l.
  • DMSO dimethylsulfoxide
  • diamide diamide
  • the present inventors dissolve 100 nmol of the sense or antisense strand siRNA with 3 'terminal substituted by sulfhydryl group in tertiary distilled water treated with 260 ⁇ l of DEP (Diethyl pyrocarbonate), and then added 22 ⁇ l of 25X PBS buffer solution. 260 ⁇ l 2 M DTT (dithiothreitol) solution was added thereto, and 4 ⁇ l of 5 N NaOH solution was added to adjust the pH, followed by reaction for about 12 hours. After the reaction, the remaining DTT was removed through the dialysis process, and the solution was concentrated to prepare a sense or antisense strand siRNA at a concentration of 1 nmol / ⁇ L.
  • DEP Diethyl pyrocarbonate
  • Example 3 Preparation of a double stranded siRNA through hydrogen bonding of a sense strand siRNA and an antisense strand siRNA substituted with functional groups having different ends, and a siRNA conjugate prepared using a crosslinking agent
  • the present inventors prepared two types of sense strands and antisense strands each substituted with an amine group and a sulfhydryl group at the 3 'end, respectively.
  • 100 nmol of each sense or antisense strand was placed in 260 ⁇ l of phosphate buffer solution and left at 37 ° C. for 1 hour to prepare double stranded siRNA.
  • DTT treatment was performed to prepare single-stranded siRNAs substituted with sulfhydryl groups, followed by dialysis and concentration to prepare a final concentration of 1 nmol / ⁇ l.
  • a crosslinking agent sulfo-SMCC (sulfosuccinimidyl-4- [N-maleimidomethyl] -cyclohexane-1-car boxylate) was added and reacted for 24 hours to prepare a multiple conjugate siRNA. After the reaction, foreign substances such as crosslinking agents remaining in the dialysis process were removed and concentrated to prepare a final concentration of 1 to 2 ⁇ g / ⁇ l (see FIG. 1C).
  • sulfo-SMCC sulfosuccinimidyl-4- [N-maleimidomethyl] -cyclohexane-1-car boxylate
  • siRNA multiple conjugates are prepared through hydrogen bonding.
  • the present inventors connected the double-stranded siRNAs substituted with amine groups and sulfhydryl groups at the 3 'ends of sense and antisense, respectively, using sulfo-SMCC as a crosslinking agent.
  • sulfo-SMCC a crosslinking agent.
  • DTT was treated, followed by dialysis and concentration to prepare a final concentration of 1 nmol / ⁇ l.
  • the single-stranded siRNA whose terminal was substituted with an amine group was dissolved in DEPC treated distilled water and prepared at a concentration of 1 nmol / ⁇ l.
  • Sense or antisense dimer was prepared by adding sulfo-SMCC to the prepared solution of sense and antisense substituted with amine group and sulfhydryl group, respectively. Each of the prepared sense and antisense dimer was mixed with each other in phosphate buffer and left at 37 ° C. for 1 hour to prepare a double stranded siRNA multiple conjugate (see FIG. 1D).
  • siRNAs that inhibit the GFP gene were prepared by the method of FIG. 1A), which were linked by conventional siRNA and crosslinking agents, either by dissolving disulfide bonds or non-degradable covalent bonds.
  • PEI polyethyleneimine
  • the siRNA multiple conjugate prepared in the present invention was superior in gene transfer efficiency using a cationic gene delivery carrier, compared to the conventional siRNA, and had an excellent target gene inhibition effect (see FIG. 4).
  • the prepared siRNA multiple conjugate manufactured by the method of FIG. 1B
  • the representative gene carrier Linear PEI
  • Each siRNA was mixed with ionic complexes, and the shape and size were observed using AFM.
  • the siRNA multiple conjugate prepared in the present invention has superior binding force with the cationic polymer as compared to the conventional siRNA, thereby making it possible to make small and uniform nanoparticles (see FIG. 5).
  • the siRNA multiple conjugate prepared in the present invention compared to the conventional siRNA, has a high charge density, which can be combined with a low concentration of cationic polymer to form an ionic complex (see FIG. 6).
  • the inventors used siRNA that inhibits the VEGF gene to form an ionic complex using linear PEI using siRNA multiple conjugates (prepared in the method of FIG. 1B) linked to existing siRNAs by degradable disulfide bonds or non-degradable covalent bonds. After treating cancer cells with PC3 cells for 5 hours, the amount of VEGF secreted for 21 hours was quantified by ELISA. SiRNA concentrations (0, 18, 45, 90 nM) and NP ratio stars (0, 10, 15, 20), which is the ratio of amines in cationic transporters to phosphoric acid in nucleotides, were tested. In addition, in order to confirm whether to selectively reduce the amount of mRNA in the cell, after treating each ion complex to cancer cells for 5 hours, 18 hours later, RNA was isolated and the amount of VEGF mRNA in the cell was confirmed by PCR.
  • the siRNA multiple conjugate prepared in the present invention forms a stable and uniform ion complex with the cationic polymer as compared to the conventional siRNA, and has excellent gene transfer effect and selectively inhibits the target gene ( See FIG. 7).
  • the present inventors identified the VEGF siRNA multiple conjugate (prepared by the method of FIG. 1B) by electrophoresis after separation by siRNA size using a gel separation method after electrophoresis. After forming a complex with each linear PEI isolated, and treated 90 nM ESAIEL to PC3 cells, the inhibitory effect of the VEGF gene was confirmed.
  • the siRNA multiple conjugate prepared in the present invention the higher the molecular weight, the higher the charge density, it can be seen that the gene transfer efficiency using the cationic polymer is increased (see Fig. 8).
  • siRNA multiple conjugates In order to confirm the degree of immune response induction of siRNA multiple conjugates (manufactured by the method of FIG. 1B), the inventors isolated PBMC cells, which are monocytes, from human blood using Fisher lymphocyte speration medium. Using VEGF siRNA, siRNA multiple conjugates linked with disulfide bonds or non-degradable covalent bonds with existing siRNAs were used to create ion complexes using three types of cationic gene carriers, linear PEI, jet PEI, and DOTAP. Each siRNA complexes were treated with PBMC cells, which are human blood monocytes, for nM to 24 hours. ELISA was performed using the supernatant of cells to confirm the amount of secreted interferon alpha (INF- ⁇ ).
  • PBMC cells which are monocytes
  • siRNA multiple conjugate prepared in the present invention did not significantly induce INF- ⁇ as compared to the conventional siRNA.
  • siRNA multiple conjugates using disulfide bonds showed a similar degree of INF- ⁇ induction to conventional siRNA (see FIG. 9A).
  • siRNA multipolymers linked with 40 ⁇ l of existing siRNAs by disulfide bonds or non-degradable covalent bonds with linear PEI a cationic gene carrier Ionic complexes were formed and injected intravenously into 7 week old ICR mice. After 6 hours of treatment, blood was drawn from the heart of mice and the amount of siRNA in the blood was quantified by ELISA.
  • siRNA multiple conjugate prepared in the present invention did not significantly induce the induction of INF- ⁇ in comparison with the existing siRNA (see FIG. 9B).
  • the siRNA multiple conjugate of the present invention can be used in medicine fields such as gene therapy for improving gene transfer efficiency, and is expected to contribute to the industrial development of the country by enabling applications in various fields related thereto.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Wood Science & Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Endocrinology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

본 발명은 에스아이알엔에이(small interfering RNA; siRNA) 다중 접합체 및 이의 제조방법에 관한 것으로, 보다 상세하게는 이중가닥 센스/안티센스(sense/antisense) siRNA 단량체를 직접 또는 가교제나 고분자를 매개로 한 공유결합을 통해 연결시킨 (-X-A-)n의 구조식(여기서, X는 이중가닥 siRNA 단량체; A는 있거나 없을 수 있으며, 가교제 또는 고분자를 의미함; 및 n은 이중가닥 siRNA 단량체의 개수)을 가지는 siRNA 다중 접합체, 및 이의 제조방법에 관한 것이다. 본 발명의 siRNA 다중 접합체 제조방법은 그 반응이 간단하고 효율이 높으며, 상기의 방법으로 제조된 siRNA 다중 접합체는 기존 siRNA 비해 분자량이 수배 이상으로 크기 때문에 음이온 전하 밀도가 높아 양이온성 유전자 전달체와의 이온성 결합력이 우수하여 유전자 전달 효율을 현저히 높일 수 있다.

Description

에스아이알엔에이 다중 접합체 및 이의 제조방법
본 발명은 에스아이알엔에이(small interfering RNA; siRNA) 다중 접합체 및 이의 제조방법에 관한 것으로, 보다 상세하게는 이중가닥 센스/안티센스(sense/antisense) siRNA 단량체를 직접 또는 가교제나 고분자를 매개로 한 공유결합을 통해 연결시킨 siRNA 다중 접합체, 및 이의 제조방법에 관한 것이다.
에스아이알엔에이(small interfering RNA; siRNA)는 19 ~ 22개 정도의 핵산으로 구성된 짧은 이중 나선의 RNA가닥으로 센스 가닥과 염기서열이 동일한 유전자의 mRNA(messenger RNA)를 표적으로 삼아 표적 유전자를 분해하여 해당 유전자의 발현을 억제시키는 역할을 한다(Elbashir, S. M., Harborth, J., Lendeckel, W., Yalcin, A., Weber, K., and Tuschl, T. (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494-8).
siRNA는 기존의 안티센스 올리고뉴클레오티드에 비해 10배 정도 적은 양으로도 유전자 발현을 저해할 수 있으며, 유전자 선택성이 더욱 우수하여 표적 유전자만을 저해할 수 있는 것으로 알려져 있다. 그러나 siRNA는 생체내에서의 안정성이 낮아서 단시간내에 분해되고 음이온을 띄기 때문에 세포막을 쉽게 투과하기 어려워 세포내로의 전달 효율이 떨어지는 단점을 가지고 있다.
siRNA의 전달 효율을 높이기 위하여 siRNA와 다양한 기능성 양이온 고분자, 지질 또는 양이온 펩타이드의 이온 결합을 통한 나노 크기의 이온 복합체를 이용한 방법이 현재 일반적으로 많이 사용되고 있다. 그러나, 현재 사용되는 siRNA는 그 분자량이 ~ 15000 정도이고 이중 가닥으로 뻣뻣한 구조로 되어 있어 양이온성 유전자 전달체와 안정적인 복합체를 이루는데 어려움이 있다(Gary, D. J., Puri, N., and Won, Y. Y. (2007) Polymer-based siRNA delivery: perspectives on the fundamental and phenomenological distinctions from polymer-based DNA delivery. J Control Release 121, 64-73).
따라서 siRNA가 유전자 전달체와 안정적인 복합체를 형성하도록 하는 연구가 많이 진행되고 있다. 일반적으로 음이온성 유전자인 siRNA와 양이온성 유전자 전달체 사이의 이온 결합체의 안정성을 높이는 방법으로써 각각의 전하 밀도를 높이는 연구가 많이 진행되고 있다. 양이온성 고분자나 지질의 분자량을 늘리거나 강한 양이온을 띠는 그룹을 도입하여 음이온을 띠는 유전자와 강한 이온 결합을 시키고자 하는 방법이 있다. 그러나 이러한 방법은 유전자 전달 효율은 증가시키나 유전자 전달체의 강한 양이온으로 인해 비특이적인 세포 독성 또한 증가시켜 임상 적용에 어려움이 있다. 따라서 음이온성 유전자인 siRNA 자체를 변형시켜서 기존에 사용되고 있는 유전자 전달체와 안정적인 복합체를 이루도록 하는 연구도 최근에 진행되고 있다.
최근 보고에 따르면, siRNA의 분자량을 높이기 위해서 센스 가닥에 4 ~ 8개 가량의 여분의 뉴클레오티드(deoxythymine, deoxyadenine)를 첨가하여 이들이 서로 상보적 염기 결합에 의해서 siRNA가 서로 연결되도록 하는 방법도 있다고 한다(Bolcato-Bellemin, A. L., Bonnet, M. E., Creusat, G., Erbacher, P., and Behr, J. P. (2007) Sticky overhangs enhance siRNA-mediated gene silencing. Proc Natl Acad Sci U S A 104, 16050-5). 그러나 이 경우 4 ~ 8개의 뉴클레오티드 사이의 상보적 결합이 안정적이지 않아서 전기 영동을 통해서는 확인할 수 없다.
이에, 본 발명자들은 siRNA의 안정성 및 전달 효율을 높이기 위한 방법을 연구한 결과, 이중가닥 센스/안티센스(sense/antisense) siRNA 단량체를 직접 또는 가교제나 고분자를 매개로 공유결합시킨 siRNA 다중 접합체가 안정성이 우수하고, 양이온성 유전자 전달체와의 높은 이온성 결합력에 의해 유전자 전달 효과가 우수하며, 기존의 siRNA에 비해 면역 반응 유도를 크게 일으키지 않으므로, 유전자 치료에 유용하게 사용할 수 있음을 밝힘으로써 본 발명을 완성하였다.
본 발명의 목적은 기존의 siRNA에 비해 유전자 저해 효율이 높은 siRNA의 다중 접합체를 제공하는 것이다.
본 발명의 또 다른 목적은 음전하 밀도가 높아서 유전자 전달체와 안정적으로 결합하는 siRNA의 다중 접합체를 간단하고 높은 효율로 제조하는 방법을 제공하는 것이다.
상기 목적을 달성하기 위해,
본 발명은 이중가닥 센스/안티센스(sense/antisense) 에스아이알엔에이(small interfering RNA; siRNA) 단량체를 직접 또는 가교제나 고분자를 매개로 한 공유결합을 통해 연결시킨 하기 [구조식 Ⅰ] 또는 [구조식 Ⅱ]을 가지는 siRNA 다중 접합체를 제공한다:
[구조식 Ⅰ]
(-X-A-)n
(여기서,
X는 이중가닥 siRNA 단량체;
A는 있거나 없을 수 있으며, 가교제 또는 고분자임; 및
n은 이중가닥 siRNA 단량체의 개수),
[구조식 Ⅱ]
x-A-(X-A-)n-x'
(여기서,
X는 이중가닥 siRNA 단량체;
x 또는 x'는 단일가닥 siRNA 단량체;
A는 있거나 없을 수 있으며, 가교제 또는 고분자임; 및
n은 이중가닥 siRNA 단량체의 개수).
또한, 본 발명은 이중가닥 센스/안티센스 siRNA 단량체를 직접 또는 가교제나 고분자를 매개로 공유결합시키는 단계를 포함하여 제조된 상기 [구조식 Ⅰ] 또는 [구조식 Ⅱ]를 가지는 siRNA 다중 접합체의 제조방법을 제공한다.
또한, 본 발명은 상기 siRNA 다중 접합체; 및 양이온성 펩타이드, 양이온성 지질 및 양이온성 고분자로 이루어진 군에서 선택된 어느 하나의 양이온성 유전자 전달체; 간의 이온 상호작용(ionic interaction)에 의해 형성되는 이온 복합체를 제공한다.
또한, 본 발명은 상기 이온 복합체를 개체에 투여하는 단계를 포함하는 항암 또는 혈관신생 관련 질환의 치료방법을 제공한다.
아울러, 본 발명은 상기 이온 복합체를 항암제 또는 혈관신생 관련 질환 치료제의 제조에 이용하는 용도를 제공한다.
이하, 본 발명을 상세히 설명한다.
본 발명은 이중가닥 센스/안티센스(sense/antisense) siRNA 단량체를 직접 또는 가교제나 고분자를 매개로 한 공유결합을 통해 연결시킨 하기 [구조식 Ⅰ] 또는 [구조식 Ⅱ]를 가지는 siRNA 다중 접합체를 제공한다:
[구조식 1]
(-X-A-)n
(여기서,
X는 이중가닥 siRNA 단량체;
A는 있거나 없을 수 있으며, 가교제 또는 고분자임; 및
n은 이중가닥 siRNA 단량체의 개수),
[구조식 Ⅱ]
x-A-(X-A-)n-x'
(여기서,
X는 이중가닥 siRNA 단량체;
x 또는 x'는 단일가닥 siRNA 단량체;
A는 있거나 없을 수 있으며, 가교제 또는 고분자임; 및
n은 이중가닥 siRNA 단량체의 개수).
본 발명에 있어서, 상기 이중가닥 센스/안티센스 siRNA 단량체는 15 내지 50의 핵산 염기수를 가지는 것이 바람직하고, 15 내지 29의 핵산 염기수를 가지는 것이 더욱 바람직하나 이에 한정되지 않는다.
본 발명에 있어서, 상기 이중가닥 센스/안티센스 siRNA 단량체의 개수는 1 ~ 150개인 것이 바람직하고, 1 ~ 100개인 것이 더욱 바람직하나 이에 한정되지 않는다.
상기 본 발명의 siRNA 다중 접합체는 하기와 같은 두가지 방법으로 제조하는 것이 바람직하나 이에 한정되지 않는다:
1) 첫 번째 방법으로는, 말단에 관능기가 도입된 단일가닥의 센스 siRNA와 안티센스 siRNA 각각을 가교제 또는 고분자를 이용하여 반응시켜서 단일가닥의 센스와 안티센스 siRNA 2량체를 준비한 후, 각각의 2량체를 수용액상에서 상보적 결합(annealing)을 시킴으로써 제조할 수 있다(도 1B 및 도 1D 참조).
보다 상세하게는, 말단이 설프하이드릴기로 치환된 센스 가닥과 안티센스 가닥 siRNA 각각을 설프하이드릴기와 반응하는 가교제인 DTME(Dithio-bis-maleimidoethane) 또는 BM(PEG)2(1,8-bis(maleimido)diethylene glycol)를 이용하여 분해성 또는 비분해성 공유결합을 통해 2중량체를 제조한 다음, 상기 제조된 2중량체 각각을 동량으로 넣어 인산 완충용액(PBS) 상에서 수소 결합을 통한 상보적 결합을 하도록 섞어주어 siRNA의 다중 접합체를 제조할 수 있다.
2) 두 번째 방법으로는, 말단이 관능기로 치환되어 있는 이중가닥의 siRNA(상보적 수소 결합 되어진)를 가교제 또는 고분자를 매개로 한 공유결합을 통해 연결시켜서 siRNA 다중 접합체를 제조할 수 있다(도 1A 및 도 1C 참조).
보다 상세하게는, 양쪽 말단에 설프하이드릴기가 도입된 단일가닥의 siRNA를 상보적으로 수소 결합시키고, 상기 수소 결합된 것을 가교제 또는 DMSO를 사용하여 산화 반응을 이용한 공유결합을 통해 siRNA 다중 접합체를 제조할 수 있다.
상기 siRNA 다중 접합체 제조 중 siRNA의 올리고 가닥은 분자량 10,000에서 50,000 사이에서 선택되는 것이 바람직하나 이에 한정되지 않는다. 본 발명에서 사용가능한 siRNA는 치료용 또는 연구용으로 사용되어지고 있는 것인 한 특별히 한정되지는 않으며, 예를 들어 c-myc, c-myb, c-fos, c-jun, bcl-2 혹은 VEGF, VEGF-B, VEGF-C, VEGF-D, PIGF 등 유전자 치료 또는 연구를 위해 사용되어지거나 사용될 가능성이 있는 어떠한 siRNA 채택될 수 있다.
상기 siRNA 말단의 하이드록시기(-OH)는 설프하이드릴기(-SH), 카르복실기 (-COOH) 또는 아민기(-NH2)의 관능기로 치환될 수 있다.
상기 치환은 3' 말단 또는 5' 말단을 통해 이루어질 수 있으며, 센스와 안티센스 모두 3'말단이 관능기로 치환된 것을 사용하는 것이 바람직하나 이에 한정되지 않는다.
상기 고분자는 폴리에틸렌글리콜(polyethyleneglycol, PEG), 폴리비닐피롤리돈(polyvinylpyrolidone), 폴리옥사졸린(polyoxazolin) 등의 비이온성 친수성 고분자나 PLGA, PLA 등의 소수성 고분자가 사용될 수 있다.
상기 가교제는 분자량이 100 ~ 10000이 되는 것으로 DTME(Dithio-bis-maleimidoethane), BM(PEG)2(1,8-Bis-maleimidodiethyleneglycol), 말레이미드(maleimide), 엔하이드록시석신이미드(NHS, N-hydroxysuccinimide), 비닐설폰(vinylsulfone), 이오도아세틸 니트로페일아자이드(iodoacetyl, nitrophenyl azide), 아이소시아네이트(isocyanate), 피리딜다이설파이드(pyridyldisulfide), 하이드라자이드(hydrazide) 또는 하이드로시페닐 아자이드(hydroxyphenyl azide) 인 것이 바람직하나, 이에 한정되지 않는다.
상기 가교제 내에 비분해성 결합인 아마이드 결합, 우레탄 등의 공유결합, 산분해성 결합인 에스터, 하이드라존, 아세탈 등의 공유결합, 환원제 분해성인 이황화결합 등 외부 자극에 의해 분해될 있는 결합을 가진 것과 외부 자극에 의해 분해되지 않는 것을 모두 사용할 수 있다. 상기 가교제에 한정되지 않고 통상적으로 약물 변형에 사용되고 있는 모든 가교제가 사용될 수 있다.
상기 siRNA 다중 접합체는 바람직하게는 siRNA 접합체 말단에 도입되는 세포 선택적 리간드가 더 구비되어질 수 있다.
상기 구비되어지는 리간드는 세포특이적 항체, 세포 선택적 펩타이드, 세포성장인자, 엽산, 갈락토스, 만노스, 알지디, 트렌스페린 중 선택된 1종 이상이 될 수 있다. 이들 리간드는 이황화결합(disulfide bond)를 포함해 아마이드결합(amide bond)이나 에스테르결합(ester bond)등의 결합을 통해 상기 접합체의 말단에 도입될 수 있다.
본 발명의 siRNA 다중 접합체는 양이온성 유전자 전달체(양이온성 지질, 양이온성 고분자, 양이온성 펩타이드 등)와의 이온 상호작용에 의해 이온 복합체를 형성할 수 있다.
상기 양이온성 펩타이드는 KALA(cationic fusogenic peptide), 폴리라이신 (polylysine), 폴리글루타믹엑시드 (polyglutamic acid) 또는 프로타민 (portamine)일 수 있다. 상기 KALA는 WEAKLAKALAKALAKHLAKALAKALAACEA(서열번호: 1)의 펩타이드 서열을 가지는 것이 바람직하나 이에 한정되지 않는다.
상기 양이온성 지질은 다이올레일 포스페티딜에탄올아민 또는 콜레스테롤 다이올레일 포스페티딜콜린 일 수 있다.
상기 양이온성 고분자는 폴리에틸렌이민, 폴리아민 또는 폴리비닐아민일 수 있다.
본 발명자들은 본 발명의 siRNA 다중 접합체의 표적 유전자 저해 효능을 알아보기 위해, 유전자 전달체인 Linear PEI와 siRNA를 혼합하여 이온 복합체를 제조한 후, GFP를 안정적으로 발현하는 암세포에 처리한 다음, 형광 분석기(fluorophotometer)를 이용하여 GFP양을 측정하였다. 그 결과, 기존의 siRNA에 비하여 본 발명의 siRNA 다중 접합체가 양이온성 유전자 전달체를 이용한 유전자 전달 효율이 뛰어나 표적 유전자 저해 효능이 뛰어난 것을 알 수 있었다(도 4 참조).
또한, 본 발명자들은 본 발명의 siRNA 다중 접합체가 양이온성 유전자 전달체와의 결합력 및 안정성을 알아보기 위해, 유전자 전달체인 Linear PEI와 siRNA를 혼합하여 이온 복합체를 제조한 다음, 원자힘현미경(Atomic Force Microscopy; AFM)을 이용하여 모양과 크기를 관찰하였다. 그 결과, 기존의 siRNA에 비하여 본 발명의 siRNA 다중 접합체가 양이온성 고분자와 결합력이 우수하여 크기가 작고 균일한 나노 입자를 만들 수 있음을 확인하였다(도 5 참조).
또한, 본 발명자들은 본 발명의 siRNA 다중 접합체와 결합되는 양이온성 고분자의 양을 알아보기 위해, 겔 저해 분석(gel retardation assay)을 수행하였다. 그 결과, 기존의 siRNA에 비하여 본 발명의 siRNA 다중 접합체가 전하 밀도가 높아서 낮은 농도의 양이온성 고분자와도 결합하여 이온 복합체를 형성하는 것을 확인하였다(도 6 참조).
또한, 본 발명자들은 본 발명의 siRNA 다중 접합체의 유전자 저해 효율을 알아보기 위해, 유전자 전달체인 Linear PEI와 siRNA를 혼합하여 이온 복합체를 제조한 다음, 암세포에 처리하여 VEGF 양을 ELISA를 이용하여 정량하였다. 그 결과, 기존의 siRNA에 비하여 본 발명의 siRNA 다중 접합체가 양이온성 고분자와 안정적이고 균일한 이온 복합체를 형성하여, 유전자 전달 효과가 우수하고 표적 유전자를 선택적으로 저해시킬 수 있음을 확인하였다(도 7 참조).
또한, 본 발명자들은 본 발명의 siRNA 다중 접합체의 분자량에 따른 유전자 저해 효율을 알아보기 위해, 겔 분리방법으로 siRNA를 크기별로 분리한 후, 분리된 각각의 siRNA를 Linear PEI와 siRNA를 혼합하여 이온 복합체를 제조한 다음, 암세포에 처리하여 VEGF 양을 ELISA를 이용하여 정량하였다. 그 결과, 본 발명의 siRNA 다중 접합체가 분자량이 커질수록 전하 밀도가 높아져서, 양이온성 고분자를 이용한 유전자 전달 효율이 증가되는 것을 확인하였다(도 8 참조).
또한, 본 발명자들은 본 발명의 siRNA 다중 접합체의 면역반응 유도 정도를 알아보기 위해, 양이온성 유전자 전달체인 linear PEI, jet PEI, DOTAP와 siRNA를 혼합하여 이온 복합체를 제조한 후, 인간 혈액 단핵구세포인 PBMC 세포에 처리한 다음, ELISA를 이용하여 인터페론 알파(Interferon-α; INF-α)의 양을 측정하였다. 그 결과, 기존의 siRNA 비하여 본 발명의 siRNA 다중 접합체가 INF-α의 유도를 크게 유발하지 않음을 확인하였다(도 9A 참조).
또한, 본 발명자들은 본 발명의 siRNA 다중 접합체의 면역반응 유도 정도를 알아보기 위해, 양이온성 유전자 전달체인 linear PEI와 siRNA를 혼합하여 이온 복합체를 제조한 후, 7 주령된 ICR 마우스에 정맥주사로 주입한 다음, 마우스의 심장에서 혈액을 채취하여 ELISA를 통해 혈액내의 siRNA의 양을 정량하였다. 그 결과, 동물 모델 실험에서도 기존의 siRNA에 비해 본 발명의 siRNA 다중 접합체가 INF-α의 유도를 크게 유발하지 않음을 확인하였다(도 9B 참조).
따라서, 본 발명의 siRNA 다중 접합체는 기존 siRNA 비해 분자량이 크고 음이온 전하 밀도가 높으며, 안정성이 높고, 양이온성 유전자 전달체와의 이온성 결합력이 우수하여 유전자 전달 효율을 현저히 높은 것을 알 수 있다. 또한, 본 발명의 siRNA 다중 접합체는 치료 유전자인 siRNA만을 이용하여 다중 접합체가 제조되었으므로 생체 적합성이 뛰어나고, 다중 접합체를 제조한 후에도 본래의 siRNA의 유전자 저해 기능에는 영향을 미치지 않고 유전자 전달체와의 결합력은 증대시켜 세포내로의 도입 효율을 높임으로써 기존의 siRNA에 비해 높은 유전자 저해 효과를 보이는 것을 알 수 있다.
혈관 내피세포 성장인자(VEGF)는 혈관 내피세포(Vascular endothelial cell)의 표면에 존재하는 VEGF 수용체와 결합하여 내피세포의 성장, 이동을 촉진하여 새로운 혈관의 생성을 촉진하는 역할을 한다. 특히, 암세포의 성장이나 전이는 이러한 혈관의 신생과 밀접한 관계가 있기 때문에 혈관의 신생을 억제함으로써 암세포의 성장을 저해하는 방법이 새로운 암 치료방법의 하나로 주목을 받고 있다. 따라서, 본 발명의 siRNA 다중 접합체가 VEGF를 현저히 억제하는 것을 통해, 상기 siRNA 다중 접합체를 암 치료에 유용하게 사용될 수 있음을 알 수 있다.
또한, 본 발명은 이중가닥 센스/안티센스 siRNA 단량체를 직접 또는 가교제나 고분자를 매개로 공유결합시키는 단계를 포함하여 제조된 상기 [구조식 Ⅰ] 또는 [구조식 Ⅱ]를 가지는 siRNA 다중 접합체의 제조방법을 제공한다.
상기 siRNA 다중 접합체의 제조방법의 한가지 바람직한 양태로는
1) 말단이 동일한 관능기로 치환된 단일 가닥 센스/안티센스 siRNA 단량체(yx + x'y)를 상보적 수소 결합을 통해 yXy로 만드는 단계; 및
2) 상기 yXy를 가교제나 고분자를 매개로 공유결합시키는 단계를 포함할 수 있다(상기에서, X는 이중가닥 siRNA 단량체, x와 x'은 단일가닥 센스/안티센스 siRNA 단량체, y는 말단에 도입된 관능기이다.).
상기 siRNA 다중 접합체의 제조방법의 또 다른 바람직한 양태로는
1) 말단이 동일한 관능기로 치환된 단일가닥 센스/안티센스 siRNA 단량체 각각(yx 와 x'y)을 가교제나 고분자를 매개로 공유결합시켜 이중량체인 xyyx 와 x'yyx'로 만드는 단계; 및
2) 상기 이중량체인 xyyx 와 x'yyx'을 상보적 수소 결합시키는 단계를 포함할 수 있다(상기에서, X는 이중가닥 siRNA 단량체, x와 x'은 단일가닥 센스/안티센스 siRNA 단량체, y는 말단에 도입된 관능기이다.).
상기 siRNA 다중 접합체의 제조방법의 또 다른 바람직한 양태로는
1) 말단이 서로 다른 관능기로 치환된 단일가닥 센스/안티센스 siRNA 단량체(yx + x'z)를 상보적 수소 결합을 통해 yXz로 만드는 단계; 및
2) 상기 yXz를 가교제나 고분자를 매개로 공유결합시키는 단계를 포함할 수 있다(상기에서, X는 이중가닥 siRNA 단량체, x와 x'은 단일가닥 센스/안티센스 siRNA 단량체, y와 z는 말단에 도입된 관능기이다.).
상기 siRNA 다중 접합체의 제조방법의 또 다른 바람직한 양태로는
1) 말단이 서로 다른 관능기로 치환된 단일가닥 센스/안티센스 siRNA 단량체(yx 와 xz, x'y와 x'z) 각각을 가교제 혹은 고분자를 매개로 공유결합시켜 이중량체인 xyzx와 x'yzx'로 만드는 단계; 및
2) 상기 이중량체인 xyzx와 x'yzx'을 상보적 수소 결합시키는 단계를 포함할 수 있다(상기에서, X는 이중가닥 siRNA 단량체, x와 x'은 단일가닥 센스/안티센스 siRNA 단량체, y와 z는 말단에 도입된 관능기이다.).
본 발명의 siRNA 다중 접합체의 제조방법에 있어서, siRNA의 올리고 가닥은 바람직하게는 분자량 10,000에서 50,000 사이에서 선택되어진다. 본 발명에서 사용가능한 siRNA는 치료용 또는 연구용으로 사용되어지고 있는 것인 한 특별히 한정되지는 않으며, 예를 들어 c-myc, c-myb, c-fos, c-jun, bcl-2 혹은 VEGF, VEGF-B, VEGF-C, VEGF-D, PIGF 등 유전자 치료 또는 연구를 위해 사용되어지거나 사용될 가능성이 있는 어떠한 에스아이알엔에이도 채택되어질 수 있다.
본 발명의 siRNA 다중 접합체의 제조방법에 있어서, 상기 공유결합은 비분해성인 아마이드 결합, 우레탄 결합, 산분해성인 에스터 결합, 하이드라존 결합, 아세탈 결합, 환원제 분해성인 이황화 결합, 생분해성 결합, 및 효소 분해성 결합으로 이루어진 군에서 선택된 어느 하나의 공유결합인 것이 바람직하나 이에 한정되지 않는다.
본 발명의 siRNA 다중 접합체의 제조방법에 있어서, 상기 단일가닥 센스/안티센스 siRNA 단량체의 말단인 하이드록시기(-OH) 대신에 치환된 관능기는 설프하이드릴기(-SH), 카르복실기(-COOH) 및 아민기(-NH2)로 이루어진 군에서 선택된 어느 하나의 관능기인 것이 바람직하나 이에 한정되지 않는다.
상기 치환은 3' 말단 또는 5' 말단을 통해 이루어질 수 있으며, 센스와 안티센스 모두 3'말단이 관능기로 치환된 것을 사용하는 것이 바람직하나 이에 한정되지 않는다.
본 발명의 siRNA 다중 접합체의 제조방법에 있어서, 상기 공유 결합의 매개로 사용되는 고분자는 PEG, 플루로닉(Pluronic), 폴리비닐피롤리돈(polyvinylpyrolidone) 및 폴리옥사졸린(polyoxazolin)로 이루어진 군에서 선택된 어느 하나 이상의 비이온성 친수성 고분자; 또는 폴리-L-락트산(poly-L-lactic acid), 폴리-글리콜산(poly-glycolic acid), 폴리-D-락트산-co-글리콜산(poly-D-lactic-co-glycolic acid), 폴리-L-락트산-co-글리콜산(poly-L-lactic-co-glycolic acid), 폴리-D,L-락트산-co-글리콜산(poly-D,L-lactic-co-glycolic acid), 폴리-카프로락톤(polycaprolactone), 폴리-발레로락톤(polyvalerolactone), 폴리-하이드록시 부티레이트(polyhydroxybutyrate) 및 폴리-하이드록시 발러레이트(polyhydroxyvalerate)로 이루어진 군에서 선택된 어느 하나 이상의 생분해성 폴리에스테르계 고분자인 것이 바람직하나 이에 한정되지 않는다.
본 발명의 siRNA 다중 접합체의 제조방법에 있어서, 상기 가교제는 분자량이 100~10000이 되는 것으로 DTME(Dithio-bis-maleimidoethane), BM(PEG)2(1,8-Bis-maleimidodiethyleneglycol), 말레이미드(maleimide), 엔하이드록시석신이미드(NHS, N-hydroxysuccinimide), 비닐설폰(vinylsulfone), 이오도아세틸 니트로페일아자이드(iodoacetyl, nitrophenyl azide), 아이소시아네이트(isocyanate), 피리딜다이설파이드(pyridyldisulfide), 하이드라자이드(hydrazide) 및 하이드로시페닐 아자이드(hydroxyphenyl azide)로 이루어진 군에서 선택된 어느 하나 이상인 것이 바람직하나 이에 한정되지 않는다.
본 발명의 siRNA 다중 접합체의 제조방법에 있어서, 상기 siRNA 다중 접합체 말단에 세포 선택적 리간드가 추가적으로 더 구비되어지는 것이 바람직하나 이에 한정되지 않는다.
상기 더 구비되어지는 리간드는 세포특이적 항체, 세포 선택적 펩타이드, 세포성장인자, 엽산(folic acid), 갈락토스(galactose), 만노스(mannose), 알지디(RGD) 및 트렌스페린(transferrin)로 이루어진 군에서 선택된 어느 하나 이상인 것이 바람직하나 이에 한정되지 않는다.
본 발명의 siRNA 다중 접합체의 제조방법에 있어서, 상기 siRNA가 갖는 관능기를 활성화하는 단계를 추가적으로 더 포함할 수 있으나 이에 한정되지 않는다.
상기 siRNA가 갖는 관능기를 활성화시키는 물질은 1-에틸-3, 3-디메틸아미노프로필 카보디이미드(1-ethyl-3,3-dimethylaminopropyl carbodiimide), 이미다졸(imidazole), N-하이드로시숙신이미드(N-hydroxysuccinimide), 디클로로헥실카보디이미드(dichlorohexylcarbodiimide), N-β-말레이미도프로피오닉엑시드(N-β-Maleimidopropionic acid), N-β-말레이미도프로필로실 숙신이미드에스터(N-β-maleimidopropyl succimimide ester) 및 N-숙신이미딜피리딜다이싸이오 프로피오네이트(N-Succinimidyl 3-(2-pyridyldithio)propionate)로 이루어진 군에서 선택된 어느 하나 이상인 것이 바람직하나 이에 한정되지 않는다.
본 발명의 siRNA 다중 접합체의 제조 반응은 특별히 한정되는 것은 아니며, 통상적으로는 상온에서 수행이 가능하고, 대략 24 ~ 48 시간 동안 반응시켜 수득하는 것이 바람직하다. 상기 반응에 요구되는 각 반응물의 첨가비는 특별히 한정되지는 않으며, 가교제와 siRNA의 몰비(%)를 통해 siRNA의 길이를 조절할 수 있다.
본 발명에서 상보적 결합을 시켜주는 수용액은 인산 완충용액(PBS), 트리스(Tris) 완충 용액 또는 히피스(HEPES) 완충용액으로, 바람직하게는 염 농도 100 mM 이상인 완충 용액이 사용될 수 있다.
아울러, 본 발명은 상기 siRNA 다중 접합체; 및 양이온성 펩타이드, 양이온성 지질 및 양이온성 고분자로 이루어진 군에서 선택된 어느 하나의 양이온성 유전자 전달체; 간의 이온 상호작용(ionic interaction)에 의해 형성되는 세포 전달을 용이하게 할 수 있는 이온 복합체를 제공한다.
본 발명에 따른 상기 siRNA 다중 접합체와 양이온성 유전자 전달체간에 이온 결합을 이용하여 이온 복합체를 형성할 수 있다. 이온 복합체란, 음이온성 유전자와 이와 반대 이온을 지닌 고분자(예를 들어 양이온성 물질)간의 상호작용에 의해 형성되는 작은 집합체로서 100 ~ 200 nm 정도의 크기를 가지는 것이 바람직하나 이에 한정되지 않는다.
본 발명에 있어서, 상기 양이온성 펩타이드는 KALA(cationic fusogenic peptide), 폴리라이신(polylysine), 폴리글루타믹엑시드(polyglutamic acid) 및 프로타민(portamine)으로 이루어진 군에서 선택된 어느 하나인 것이 바람직한 이에 한정되지 않는다.
본 발명에 있어서, 상기 양이온성 지질은 다이올레일 포스페티딜에탄올아민(dioleoyl phosphatidylethanolamine) 또는 콜레스테롤 다이올레일 포스페티딜콜린(cholesterol dioleoyl phosphatidyl choline) 중에서 선택된 어느 하나인 것이 바람직한 이에 한정되지 않는다.
본 발명에 있어서, 상기 양이온성 고분자는 폴리에틸렌이민(polyethylenimine), 폴리아민(polyamines) 및 폴리비닐아민(polyvinylamine)로 이루어진 군에서 선택된 어느 하나인 것이 바람직한 이에 한정되지 않는다.
본 발명의 이온 복합체의 제조 과정은, 본 발명의 siRNA 다중 중합체를 인산완충용액 등에 희석한 후, 여기에 상기 양이온성 물질을 첨가하여 상온에서 방치하여 수용액 상에서 이온 복합체를 형성한다. 이때, 양이온성 물질의 첨가량은 사용되는 양이온성 물질의 양전하와 에스아이알엔에이의 음전하의 전하 비가 1:1 (+/- = 1/1) ~100:1까지 조절할 수 있다.
또한, 본 발명은 상기 이온 복합체를 개체에 투여하는 단계를 포함하는 항암 또는 혈관신생 관련 질환의 치료방법을 제공한다.
아울러, 본 발명은 상기 이온 복합체를 항암제 또는 혈관신생 관련 질환 치료제의 제조에 이용하는 용도를 제공한다.
상기 사용되는 용어 "개체"는 본 발명의 이온 복합체를 투여하여 혈관신생 관련 질환 또는 암의 증상이 호전될 수 있는 질환을 가진 인간, 원숭이, 개, 염소, 돼지 또는 쥐 등 모든 동물을 의미한다.
상기 사용되는 용어 "투여"는 임의의 적절한 방법으로 개체에게 소정의 본 발명의 이온 복합체를 제공하는 것을 의미한다.
상기 사용되는 용어 "치료"는 본 발명의 이온 복합체의 투여로 혈관신생 관련 질환 또는 암의 증상이 호전 또는 이롭게 변경되는 모든 행위를 의미한다.
상기 암은 유방암(breast cancer), 대장암(colorectal cancer), 직장암(rectal cancer), 비-소세포성 폐암(non-small cell lung cancer), 비-호지킨스 림프종(non-Hodgkins lymphoma; NHL), 신세포암(renal cell cancer), 전립선암(prostate cancer), 간암(liver cancer), 췌장암(pancreatic cancer), 연부조직육종(soft-tissue sarcoma), 카포시육종(kaposi's sarcoma), 유암종(carcinoid carcinoma), 두경부암(head and neck cancer), 흑색종 melanoma), 난소암(ovarian cancer), 중피암(mesothelioma) 및 다발성골수종(multiple myeloma)으로 구성된 군으로부터 선택된 어느 하나인 것이 바람직하나 이에 한정되지 않는다.
상기 혈관신생 관련 질환은 혈관종, 혈관섬유종, 관절염, 당뇨병성 망막증, 조숙아의 망막증, 신생혈관성 녹내장, 신생혈관에 의한 각막질환, 퇴화반, 반점의 변성, 익상편, 망막변성, 후수정체 섬유증식증, 과립성 결막염, 건선, 모세관 확장증, 화농성 육아종, 지루성 피부염 및 여드름으로 이루어지는 군으로부터 선택된 어느 하나인 것이 바람직하나 이에 한정되지 않는다.
본 발명의 siRNA 다중 접합체는 siRNA만을 이용하여 다중 접합체를 제조함으로써 생체 적합성이 뛰어나고, 본래의 siRNA의 유전자 저해 기능에는 영향을 미치지 않으며, 안정성 및 다양한 유전자 전달체와의 결합력이 증진되며, 기존의 siRNA에 비해 높은 유전자 저해 효과를 보이는 것을 알 수 있다.
본 발명에서는 siRNA 다중 접합체와 대표적인 유전자 전달체인 Linear PEI를 혼합한 이온 복합체를 암세포에 처리한 결과, 기존의 siRNA에 비하여 현저한 VEGF 억제 효능을 나타내는 것을 확인하였다. 이는, 본 발명의 siRNA 다중 접합체가 양이온성 고분자와 안정적이고 균일한 이온 복합체를 형성하여, 유전자 전달 효과가 우수하고 표적 유전자를 선택적으로 저해시킬 수 있음을 확인하였다.
따라서, 본 발명은 이온 복합체는 다양한 유전자 전달체를 포함시킴으로써 다양한 유전자 치료에 이용할 수 있으며, 특히 암 또는 혈관신생 관련 질환의 유전자 치료에 유용하게 사용할 수 있다.
본 발명의 siRNA 다중 접합체 제조방법은 그 반응이 간단하고 효율이 높으며, 상기의 방법으로 제조된 siRNA 다중 접합체는 기존 siRNA에 비해 분자량이 수배 이상으로 크기 때문에 음이온 전하 밀도가 높아 양이온성 유전자 전달체와의 이온성 결합력이 우수하여 유전자 전달 효율을 현저히 높일 수 있다.
도 1은 에스아이알엔에이의 다중 접합체 제조방법의 모식도를 나타낸 것이다. (A)는 한쪽 말단이 동일한 관능기로 치환된 단일가닥 센스 에스아이알엔에이와 단일가닥 안티센스 에스아이알엔에이를 수소 결합을 통한 상보적 염기 결합으로 양쪽 말단이 관능기가 도입된 이중가닥의 에스아이알엔에이를 만든 후, 가교제나 고분자를 매개로 한 공유결합을 통해 에스아이알엔에이 다중 접합체를 제조한 경우를 나타내며, (B)는 한쪽 말단이 동일한 관능기로 치환된 단일가닥 센스 에스아이알엔에이와 단일가닥 안티센스 에스아이알엔에이를 가교제나 고분자를 매개로 한 공유결합을 통해 2중량체의 센스 가닥과 안티센스 가닥의 에스아이알엔에이를 제조한 후, 각각을 올리고뉴클레오티드 자체의 수소 결합을 이용하여 상보적으로 결합시켜서 에스아이알엔에이의 다중 접합체를 제조한 경우를 나타내며, (C)는 한쪽 말단이 서로 다른 관능기로 치환된 단일가닥 센스 에스아이알엔에이와 단일가닥 안티센스 에스아이알엔에이를 수소 결합을 이용한 상보적 결합으로 양쪽 말단이 서로 다른 관능기로 치환된 이중가닥의 에스아이알엔에이를 만든 후, 공유결합이나 가교제를 매개로 한 공유결합을 통해 에스아이알엔에이의 다중 접합체를 제조한 경우를 나타내며, (D)는 한쪽 말단이 서로 다른 관능기로 치환된 단일가닥 센스 에스아이알엔에이와 단일가닥 안티센스 에스아이알엔에이를 공유결합 혹은 가교제를 매개로 한 공유결합을 통해 2중량체의 센스 가닥과 안티센스 가닥의 에스아이알엔에이를 제조한 후, 각각을 올리고뉴클레오티드 자체의 수소 결합을 이용하여 상보적으로 결합시켜서 에스아이알엔에이의 다중 접합체를 제조한 경우를 나타낸 것이다.
도 2는 센스와 안티센스 모두 3'말단이 설프하이드릴기로 치환된 센스 가닥 에스아이알엔에이와 안티센스 가닥 에스아이알엔에이를 수소 결합을 이용하여 이중가닥의 에스아이알엔에이를 준비 후, (A) 가교제인 DTME를 이용하여 또는 (B) 가교제인 BM(PEG)2를 이용하여 각각 에스아이아엔에이 다중 접합체 제조(도 1 A 방법으로) 후, 전기 영동을 통한 관찰결과를 나타낸다.
도 3의 (A)는 센스와 안티센스 모두 3'말단이 설프하이드릴기로 치환된 이중 가닥의 에스아이알엔에이를 이용하여 에스아이알엔에이의 다중 접합체를 제조한 후 전기 영동을 통해 관찰한 것을 나타내며, (B)는 3'말단이 설프하이드릴기로 치환된 센스 가닥과 안티센스 가닥의 에스아이알엔에이를 가교제를 사용하여 2중량체 제조한 후, 제조된 이중량체를 상보적으로 결합시켜서 에스아이알엔에이의 다중 접합체를 제조한 후 전기 영동을 통해 관찰한 것을 나타내며, (C) 및 (D)는 3'말단이 설프하이드릴기로 치환된 센스 가닥의 에스아이알엔에이와 안티센스 가닥의 에스아이알엔에이를 각각 분해성 공유결합인 이황화결합(C)나 비분해성 공유결합(D)로 연결할 수 있는 가교제를 사용하여 2중량체의 센스 가닥 에스아이알엔에이와 안티센스 가닥의 에스아이알엔에이를 제조한 후 전기 영동을 통해 제조된 2중량체를 관찰한 것을 나타낸 것이다.
도 4는 도 1 A 및 도 1 B의 방법을 이용하여 제조된 GFP 유전자에 대한 에스아이알엔에이 다중 접합체와 기존의 에스아이알엔에이를 각각 양이온성 유전자 전달체인 linear PEI를 이용하여 NP ratio 20에서 복합체를 형성한 후, GFP단백질을 안정적으로 발현하는 암세포주인 MDA-MB-435에 처리하여 세포의 GFP 발현을 저해하는 정도를 정량적으로 비교 분석한 것이다.
도 5는 제조된 에스아이알엔에이의 다중 접합체(도 1 B의 방법으로 제조된)와 기존의 에스아이알엔에이(Naked)를 각각 양이온성 유전자 전달체인 linear PEI를 사용하여 NP ratio 2와 10에서 이온 복합체를 형성한 후, 그 모양과 크기를 AFM(atomic force microscopy)를 통해 관찰한 것을 나타낸 것이다.
도 6은 제조된 에스아이알엔에이의 다중 접합체(도 1 B의 방법으로 제조된)와 기존의 에스아이알엔에이(Naked)를 각각 양이온성 유전자 전달체인 linear PEI를 사용하여 NP ratio별로 이온 복합체를 형성한 후, 전기 영동을 통하여 이온 복합체의 형성 정도를 비교한 것을 나타낸 것이다.
도 7은 VEGF(Vascular endothelial growth factor)를 저해하는 에스아이알엔에이를 이용하여 분해성 공유결합인 이황화결합(cleavable) 이나 비분해성 공유 결합(noncleavable)으로 연결된 다중 접합체(multi-siRNA)를 제조(도 1 B의 방법으로 제조된)한 후, 기존의 에스아이알엔에이(Naked)와 유전자 저해 효율을 비교한 것을 나타낸 것이다. 유전자 전달체로는 linear PEI를 사용하여 에스아이알엔에이의 농도별(A)과 NP ratio 별(B)로 유전자 저해 효율 정도를 ELISA 실험을 통해 VEGF 단백질의 양을 정량함으로써 비교한 것을 나타낸 것이다. (C)는 각각의 유전자 저해 효율 정도를 RT-PCR을 통해 mRNA양을 비교 함으로써 정량한 결과를 나타낸 것이다.
도 8의 (A)는 에스아이알엔에이 다중 접합체를 제조(도 1 B의 방법으로 제조된)한 후, 에스아이알엔에이 개수에 따라 각각을 분리한 후 전기 영동을 통해 분리된 것을 확인한 것을 나타내며, (B)는 에스아이알엔에이 개수에 따라 분리된 다중 접합체 에스아이알엔에이 각각의 유전자 저해 효율 정도를 ELISA 실험을 통해 VEGF 단백질의 양을 정량함으로써 비교한 것을 나타낸 것이다.
도 9는 제조된 에스아이알엔에이 다중 접합체(도 1 B의 방법으로 제조된)로 인한 인터페론-알파(IFN-a) 유도 정도를 확인한 실험을 나타낸 것이다. (A)는 혈액에서 분리된 단핵구 세포(PBMC, Peripheral Blood Mononuclear Cell)에 기존의 에스아이알엔에이와 이황화결합(cleavable)이나 공유결합(noncleavable)으로 연결된 다중 중합체 에스아이알엔에이를 세 가지의 양이온성 유전자 전달체인 Linear PEI, Jet-PEI, DOTAP을 사용하여 이온 복합체를 형성한 후 유전자 도입을 시킨 후 세포에서 방출된 인터페론-알파의 양을 ELISA를 통해 정량한 것을 나타내며, (B)는 기존의 에스아이알엔에이와 분해성 이황화결합(cleavable)이나 비분해성 공유결합(noncleavable)으로 연결된 다중 접합체 에스아이알엔에이를 양이온성 유전자 전달체인 Linear PEI와 이온 복합체를 형성한 후 ICR 마우스에 정맥 주사를 통해 주입한 뒤, 혈액에서 방출된 인터페론-알파의 양을 ELISA를 통해 정량한 것을 나타낸 것이다.
이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 한다.
이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 국한되지 않는다는 것은 당 업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
<실시예 1> 말단이 동일한 관능기로 치환된 센스 가닥 siRNA와 안티센스 가닥 siRNA를 수소 결합을 이용하여 이중 가닥의 siRNA를 준비 후, 가교제를 이용하여 siRNA이 다중 접합체의 제조
본 발명자들은 설프하이드릴기(sulfhydryl group)로 3' 말단이 치환된 센스 또는 안티센스 가닥 siRNA 100 nmol을 1X 인산 완충 용액 260 ㎕에 녹인 후, 37℃에서 1시간 동안 방치하여 이중가닥의 siRN를 준비하였다. 상기 준비된 이중가닥의 siRN의 양쪽 말단의 설프하이드릴기를 환원시키기 위해, 22 ㎕의 25X PBS 완충용액, 260 ㎕ 2 M DTT(dithiothreitol) 용액, 그리고 pH를 맞추기 위해 4 ㎕의 5 N NaOH 용액을 넣어준 뒤, 12시간 정도 반응시켜 주었다. 상기 반응이 끝나면 투석 과정을 통해서 남아 있는 DTT를 제거하고 용액을 농축시켜서 최종 1 nmol/㎕의 농도로 준비한 후, 최종 5X 인산 완충 용액이 되도록 25X PBS 완충용액을 넣어주고, 가교제인 DTME 또는 BM(PEG)2를 티올기의 농도의 절반이 되는 농도로 넣어준 뒤 24시간 동안 상온에서 반응시켰다. 상기 반응 후에는 투석 과정으로 통해 남아있는 가교제등의 이물질을 제거하고 농축시켜서 최종 1 ~ 2 ㎍/㎕의 농도가 되도록 이중 가닥의 siRNA 다중 접합체를 제조하였다(도 1A 참조). 상기 준비된 siRNA는 전기 영동을 통해 확인하였다(도 2 참조).
또한, 이중 가닥의 siRNA를 가교제를 사용하지 않고 직접 산화 작용을 매개로 한 공유결합을 통해 다중 접합체를 제조하였다. 센스와 안티센스의 3' 말단에 티올기(thiol group)로 치환된 이중가닥의 siRNA를 상기와 같은 방법으로 DTT를 처리한 후, 투석과 농축하여 최종 1 nmol/㎕의 농도로 준비하였다. 상기 준비된 용액에 DMSO(dimethylsulfoxide)와 디아마이드(diamide)를 넣어서 설프하이드릴을 산화시켜 이황화결합을 형성하도록 하였다. 만들어진 이중가닥의 siRNA 다중 접합체는 전기 영동을 통해서 확인하였다(도 3A 참조).
<실시예 2> 말단이 동일한 관능기로 치환된 센스 가닥 siRNA와 안티센스 가닥 siRNA를 가교제를 이용하여 각각 2중량체 제조 후 수소 결합을 이용하여 siRNA 다중 접합체의 제조
본 발명자들은 설프하이드릴기로 3' 말단이 치환된 센스 또는 안티센스 가닥 siRNA 100 nmol을 260 ㎕ DEPC(Diethyl pyrocarbonate)가 처리된 3차 증류수로 녹인 후, 22 ㎕의 25X PBS 완충용액을 넣어주었다. 여기에 260 ㎕ 2 M DTT(dithiothreitol) 용액을 넣고, pH를 맞추기 위해 4 ㎕의 5 N NaOH 용액을 넣어준 뒤, 12시간 정도 반응시켜 주었다. 반응이 끝나면 투석 과정을 통해서 남아 있는 DTT를 제거하고, 용액을 농축시켜서 최종 1 nmol/㎕의 농도로 센스 또는 안티센스 가닥 siRNA를 준비하였다. 상기 준비된 1 nmol/㎕의 농도로 센스 또는 안티센스 가닥 siRNA에 25 X PBS를 최종 5X PBS 용액이 되도록 넣어주고, 가교제인 DTME 또는 BM(PEG)2를 티올기의 농도의 절반이 되는 농도로 넣어준 뒤 24시간 동안 상온에서 반응시켰다. 상기 반응 후에는 투석 과정으로 통해 남아있는 가교제등의 이물질을 제거하고 농축시켜서 최종 1 ~ 2 ㎍/㎕의 농도가 되도록 2중량체의 센스 또는 안티센스 가닥 siRNA를 준비하였다(도 1B 참조). 상기 준비된 각각의 분해성 이황화 결합 또는 비분해성 공유결합으로 이루어진 2중량체(도 3C 참조)와 공유 결합으로 이루어진 2중량체(도 3D 참조)를 전기 영동을 통해 확인하였다. 준비된 동량의 센스와 안티센스 2중량체들을 인산 완충용액에서 37℃에서 1시간 동안 방치시켜 수소 결합을 통한 siRNA 다중 접합체를 제조한 후, 전기 영동을 통해 확인하였다(도 3B 참조).
<실시예 3> 말단이 서로 다른 관능기로 치환된 센스 가닥 siRNA와 안티센스 가닥 siRNA를 수소 결합을 통해 이중 가닥의 siRNA 제조 후, 가교제를 이용하여 siRNA 접합체 제조
본 발명자들은 3' 말단에 각각 아민기와 설프하이드릴기로 치환된 두 종류의 센스 가닥과 안티센스 가닥을 각각 준비하였다. 각각의 센스 또는 안티센스 가닥 100 nmol을 260 ㎕의 인산완충 용액에 넣고, 37℃에서 1시간 동안 방치시켜, 이중 가닥의 siRNA를 준비하였다. 말단이 설프하이드릴기로 치환된 단일 가닥의 siRNA를 준비하기 위해 DTT를 처리한 후, 투석과 농축을 하여 최종 1 nmol/㎕의 농도로 준비하였다. 상기 준비된 이중 가닥의 siRNA에 가교제인 sulfo-SMCC (sulfosuccinimidyl-4-[N-maleimidomethyl]-cyclohexane-1-car boxylate)를 넣고 24시간 동안 반응시켜 다중 접합체 siRNA를 준비하였다. 반응 후에는 투석 과정으로 통해 남아있는 가교제등의 이물질을 제거하고 농축시켜서 최종 1 ~ 2 ㎍/㎕의 농도가 되도록 준비하였다(도 1C 참조).
<실시예 4> 말단이 서로 다른 관능기로 치환된 센스 가닥 siRNA와 안티센스 가닥 siRNA를 가교제를 이용하여 2중량체의 센스 또는 안티센스 siRNA를 제조한 후, 수소 결합을 통해 siRNA 다중 접합체 제조
본 발명자들은 센스와 안티센스의 3' 말단에 각각 아민기와 설프하이드릴기로 치환된 이중가닥의 siRNA를 가교제인 sulfo-SMCC를 사용하여 서로 연결되도록 하였다. 말단이 설프하이드릴기로 치환된 단일 가닥 siRNA의 경우 DTT를 처리한 후, 투석과 농축하여 최종 1 nmol/㎕의 농도로 준비하였다. 말단이 아민기로 치환된 단일가닥 siRNA는 DEPC 처리된 증류수에 녹여서 1 nmol/㎕의 농도로 준비하였다. 아민기와 설프하이드릴기로 치환된 센스와 안티센스 각각을 준비된 용액에 sulfo-SMCC를 넣어서 센스 또는 안티센스 2중량체를 제조하였다. 상기 제조된 각각의 센스와 안티센스 2중량체는 인산 완충용액 상에서 서로 섞고 37℃에서 1시간 방치하여 이중가닥의 siRNA 다중 접합체를 제조하였다(도 1D 참조).
<실험예 1> GFP 발현양 측정 실험
본 발명자들은 GFP 유전자를 저해하는 siRNA를 이용하여, 기존의 siRNA, 및 가교제를 이용하여 분해성 이황화결합 또는 비분해성 공유결합으로 연결된 siRNA 다중 접합체(도 1A 방법으로 제조한 것)를 선형 폴리에틸렌이민[linear PEI(polyethyleneimine)]를 이용하여 이온 복합체를 만들어 암세포인 GFP를 안정적으로 발현하는 MDA-MB-435 세포에 5시간 동안 처리한 후, 48시간 후에 발현된 GFP양을 형광 분석기(fluorophotometer)를 이용하여 정량하였다.
상기 실험 결과, 기존의 siRNA에 비하여 본 발명에서 제조된 siRNA 다중 접합체가 양이온성 유전자 전달체를 이용한 유전자 전달 효율이 뛰어나 표적 유전자 저해 효능이 뛰어난 것을 알 수 있었다(도 4 참조).
<실험예 2> 양이온성 유전자 전달체와의 결합력 및 안정성 측정 실험
본 발명자들은 제조된 siRNA 다중 접합체(도 1B의 방법으로 제조된 것)가 기존의 siRNA와 비교하여 양이온성 유전자 전달체와 결합력이 강하고, 안정된 이온 복합체를 이루는지 확인하기 위해, 대표적 유전자 전달체인 Linear PEI와 각 siRNA를 섞어서 이온 복합체를 만든 뒤 AFM을 이용하여 그 모양과 크기를 관찰하였다.
상기 실험 결과, 기존의 siRNA에 비하여 본 발명에서 제조된 siRNA 다중 접합체가 양이온성 고분자와 결합력이 우수하여 크기가 작고 균일한 나노 입자를 만들 수 있음을 알 수 있었다(도 5 참조).
또한, 각각의 siRNA와 결합되는 양이온성 고분자의 양을 확인하기 위해 겔 저해 분석(gel retardation assay)를 수행하였다.
상기 실험 결과, 기존의 siRNA에 비하여 본 발명에서 제조된 siRNA 다중 접합체가 전하 밀도가 높아서 낮은 농도의 양이온성 고분자와도 결합하여 이온 복합체를 형성할 수 있음을 알 수 있었다(도 6 참조).
<실험예 3> VEGF 유전자를 이용한 유전자 저해 효율 측정 실험
본 발명자들은 VEGF 유전자를 저해하는 siRNA를 이용하여, 기존의 siRNA와 분해성 이황화결합 또는 비분해성 공유결합으로 연결된 siRNA 다중 접합체(도 1B의 방법으로 제조된 것)를 linear PEI를 이용하여 이온 복합체를 만들어 암세포인 PC3 세포에 5시간 동안 처리한 후, 21시간 동안 분비된 VEGF 양을 ELISA를 이용하여 정량하였다. siRNA의 농도별(0, 18, 45, 90 nM)과 뉴클리오티드 내의 인산에 대한 양이온성 전달체 내 아민의 비율인 NP ratio 별(0, 10, 15, 20)으로 실험하였다. 또한, 세포내의 mRNA 양을 선택적으로 줄이는지 확인하기 위해, 암세포에 각각의 이온 복합체를 5시간 처리한 후 18시간 후에 RNA를 분리하여 PCR을 통해 세포내의 VEGF mRNA 양을 확인하였다.
상기 실험 결과, 기존의 siRNA에 비하여 본 발명에서 제조된 siRNA 다중 접합체가 양이온성 고분자와 안정적이고 균일한 이온 복합체를 형성하여, 유전자 전달 효과가 우수하고 표적 유전자를 선택적으로 저해시키는 것을 알 수 있었다(도 7 참조).
<실험예 4> VEGF 유전자 저해 효율 측정 실험 결과
본 발명자들은 VEGF siRNA 다중 접합체(도 1B의 방법으로 제조된 것)를 전기 영동 후 젤 분리방법을 이용하여 siRNA 크기별로 분리를 한 후 전기 영동을 통해 확인하였다. 분리된 각각의 Linear PEI와 복합체를 형성하여 90 nM의 에스아이알엔에이들을 PC3 세포에 처리한 후, VEGF 유전자의 저해 효과를 확인하였다.
상기 실험 결과, 본 발명에서 제조된 siRNA 다중 접합체가 분자량이 커질수록 전하 밀도가 높아져서, 양이온성 고분자를 이용한 유전자 전달 효율이 증가됨을 알 수 있었다(도 8 참조).
<실험예 5> siRNA 다중 접합체의 면역반응 유도 정도 확인 실험
본 발명자들은 siRNA 다중 접합체(도 1B 방법으로 제조된 것)의 면역반응 유도 정도를 확인하기 위해, 인간 혈액으로부터 단핵구세포인 PBMC 세포를 Fisher lymphocyte speration medium을 이용하여 분리하였다. VEGF siRNA를 이용하여, 기존의 siRNA와 이황화 결합 또는 비분해성 공유 결합으로 연결된 siRNA 다중 접합체를 세 종류의 양이온성 유전자 전달체인 linear PEI, jet PEI, DOTAP을 이용하여 이온 복합체를 만들어, 최종 농도가 360 nM이 되도록 각각의 siRNA 복합체들을 인간 혈액 단핵구세포인 PBMC 세포에 24시간 동안 처리하였다. 분비된 인터페론 알파(Interferon-α; INF-α)의 양을 확인하기 위해 세포의 상층액을 이용하여 ELISA를 진행하였다.
상기 실험 결과, 기존의 siRNA 비하여 본 발명에서 제조된 siRNA 다중 접합체가 INF-α의 유도를 크게 일으키지 않음을 알 수 있었다. 특히, 이황화 결합을 이용한 siRNA 다중 접합체의 경우 기존의 siRNA와 유사한 정도의 INF-α 유도를 나타내었다(도 9A 참조).
또한, 제조된 siRNA 다중 접합체가 마우스에서 INF-α의 분비를 유도하는지 확인하기 위하여, 40 ㎕의 기존의 siRNA와 이황화 결합 또는 비분해성 공유 결합으로 연결된 siRNA 다중 중합체를 양이온성 유전자 전달체인 linear PEI와 이온 복합체를 형성하여 7 주령된 ICR 마우스에 정맥주사로 주입하였다. 6시간 동안 처리한 후에, 마우스의 심장에서 혈액을 채취하여 ELISA를 통해 혈액내의 siRNA의 양을 정량하였다.
상기 실험 결과, 동물 모델 실험에서도 기존의 siRNA에 비해 본 발명에서 제조된 siRNA 다중 접합체가 INF-α의 유도를 크게 일으키지 않음을 알 수 있었다(도 9B 참조).
본 발명의 siRNA 다중 접합체는 유전자 전달 효율을 높여 유전자 치료용 등의 의약분야에 이용이 가능하며, 이에 관련된 다양한 분야로의 응용을 가능케 하여 궁극적으로는 국가의 산업발전에 이바지 할 것으로 기대된다.

Claims (25)

  1. 이중가닥 센스/안티센스(sense/antisense) 에스아이알엔에이(small interfering RNA; siRNA) 단량체를 직접 또는 가교제나 고분자를 매개로 한 공유결합을 통해 연결시킨 하기 [구조식 Ⅰ] 또는 [구조식 Ⅱ]를 가지는 siRNA 다중 접합체:
    [구조식 Ⅰ]
    (-X-A-)n
    (여기서,
    X는 이중가닥 siRNA 단량체;
    A는 있거나 없을 수 있으며, 가교제 또는 고분자임; 및
    n은 이중가닥 siRNA 단량체의 개수),
    [구조식 Ⅱ]
    x-A-(X-A-)n-x'
    (여기서,
    X는 이중가닥 siRNA 단량체;
    x 또는 x'는 단일가닥 siRNA 단량체;
    A는 있거나 없을 수 있으며, 가교제 또는 고분자임; 및
    n은 이중가닥 siRNA 단량체의 개수).
  2. 제 1항에 있어서, 상기 이중가닥 센스/안티센스 siRNA 단량체는 15 내지 29의 핵산 염기수를 가지는 것을 특징으로 하는 siRNA 다중 접합체.
  3. 제 1항에 있어서, 상기 이중가닥 센스/안티센스 siRNA 단량체의 개수 n은 1 ~ 100인 것을 특징으로 하는 siRNA 다중 접합체.
  4. 이중가닥 센스/안티센스 siRNA 단량체를 직접 또는 가교제나 고분자를 매개로 공유결합시키는 단계를 포함하여 제조된 하기 [구조식 Ⅰ] 또는 [구조식 Ⅱ]를가지는 siRNA 다중 접합체의 제조방법:
    [구조식 Ⅰ]
    (-X-A-)n
    (여기서,
    X는 이중가닥 siRNA 단량체;
    A는 있거나 없을 수 있으며, 가교제 또는 고분자임; 및
    n은 이중가닥 siRNA 단량체의 개수),
    [구조식 Ⅱ]
    x-A-(X-A-)n-x'
    (여기서,
    X는 이중가닥 siRNA 단량체;
    x 또는 x'는 단일가닥 siRNA 단량체;
    A는 있거나 없을 수 있으며, 가교제 또는 고분자임; 및
    n은 이중가닥 siRNA 단량체의 개수).
  5. 제 4항에 있어서,
    1) 말단이 동일한 관능기로 치환된 단일가닥 센스/안티센스 siRNA 단량체(yx + x'y)를 상보적 수소 결합을 통해 yXy로 만드는 단계; 및
    2) 상기 yXy를 가교제나 고분자를 매개로 공유결합시키는 단계를 포함하는 것을 특징으로 하는 siRNA 다중 접합체의 제조방법:
    (여기서,
    X는 이중가닥 siRNA 단량체;
    x와 x'은 단일가닥 센스/안티센스 siRNA 단량체; 및
    y는 말단에 도입된 관능기).
  6. 제 4항에 있어서,
    1) 말단이 동일한 관능기로 치환된 단일가닥 센스/안티센스 siRNA 단량체 각각(yx 와 x'y)을 가교제나 고분자를 매개로 공유결합시켜 이중량체인 xyyx와 x'yyx'로 만드는 단계; 및
    2) 상기 이중량체인 xyyx와 x'yyx'을 상보적 수소 결합시키는 단계를 포함하는 것을 특징으로 하는 siRNA 다중 접합체의 제조방법:
    (여기서,
    X는 이중가닥 siRNA 단량체;
    x와 x'은 단일가닥 센스/안티센스 siRNA 단량체; 및
    y는 말단에 도입된 관능기).
  7. 제 4항에 있어서,
    1) 말단이 서로 다른 관능기로 치환된 단일가닥 센스/안티센스 siRNA 단량체(yx + x'z)를 상보적 수소 결합을 통해 yXz로 만드는 단계; 및
    2) 상기 yXz를 가교제나 고분자를 매개로 공유결합시키는 단계를 포함하는 것을 특징으로 하는 siRNA 다중 접합체의 제조방법:
    (여기서,
    X는 이중가닥 siRNA 단량체;
    x와 x'은 단일가닥 센스/안티센스 siRNA 단량체; 및
    y와 z는 말단에 도입된 관능기).
  8. 제 4항에 있어서,
    1) 말단이 서로 다른 관능기로 치환된 단일가닥 센스/안티센스 siRNA 단량체(yx 와 xz, x'y와 x'z) 각각을 가교제 또는 고분자를 매개로 공유결합시켜 이중량체인 xyzx와 x'yzx'로 만드는 단계; 및
    2) 상기 이중량체인 xyzx와 x'yzx'을 상보적 수소 결합시키는 단계를 포함하는 것을 특징으로 하는 siRNA 다중 접합체의 제조방법:
    (여기서,
    X는 이중가닥 siRNA 단량체;
    x와 x'은 단일가닥 센스/안티센스 siRNA 단량체; 및
    y와 z는 말단에 도입된 관능기).
  9. 제 4항 내지 제 8항 중에서 선택된 어느 한 항에 있어서, 상기 공유결합은 비분해성인 아마이드 결합, 우레탄 결합, 산분해성인 에스터 결합, 하이드라존 결합, 아세탈 결합, 환원제 분해성인 이황화 결합, 생분해성 결합, 및 효소 분해성 결합으로 이루어진 군에서 선택된 어느 하나인 것을 특징으로 하는 siRNA 다중 접합체의 제조방법.
  10. 제 5항 내지 제 8항 중에서 선택된 어느 한 항에 있어서, 상기 관능기는 설프하이드릴기(-SH), 카르복실기(-COOH) 및 아민기(-NH2)로 이루어진 군에서 선택된 어느 하나인 것을 특징으로 하는 siRNA 다중 접합체의 제조방법.
  11. 제 4항 내지 제 8항 중에서 선택된 어느 한 항에 있어서, 상기 단일가닥 센스/안티센스 siRNA 단량체는 3' 말단 또는 5' 말단이 모두 관능기로 치환되어, 제조된 것임을 특징으로 하는 siRNA 다중 접합체의 제조방법.
  12. 제 4항 내지 제 8항 중에서 선택된 어느 한 항에 있어서, 상기 고분자는 PEG, 플루로닉(Pluronic), 폴리비닐피롤리돈(polyvinylpyrolidone) 및 폴리옥사졸린(polyoxazolin)로 이루어진 군에서 선택된 어느 하나 이상의 비이온성 친수성 고분자; 또는 폴리-L-락트산(poly-L-lactic acid), 폴리-글리콜산 (poly-glycolic acid), 폴리-D-락트산-co-글리콜산(poly-D-lactic-co-glycolic acid), 폴리-L-락트산-co-글리콜산(poly-L-lactic-co-glycolic acid), 폴리-D,L-락트산-co-글리콜산(poly-D,L-lactic-co-glycolic acid), 폴리-카프로락톤(polycaprolactone), 폴리-발레로락톤(polyvalerolactone), 폴리-하이드록시 부티레이트(polyhydroxybutyrate) 및 폴리-하이드록시 발러레이트(polyhydroxyvalerate)로 이루어진 군에서 선택된 어느 하나 이상의 생분해성 폴리에스테르계 고분자인 것을 특징으로 하는 siRNA 다중 접합체의 제조방법.
  13. 제 4항 내지 제 8항 중에서 선택된 어느 한 항에 있어서, 상기 가교제는 분자량이 100 ~ 10000이 되는 것으로 DTME(Dithio-bis-maleimidoethane), BM(PEG)2(1,8-Bis-maleimidodiethyleneglycol), 말레이미드(maleimide), 엔하이드록시석신이미드(NHS, N-hydroxysuccinimide), 비닐설폰(vinylsulfone), 이오도아세틸 니트로페일아자이드(iodoacetyl, nitrophenyl azide), 아이소시아네이트(isocyanate), 피리딜다이설파이드(pyridyldisulfide), 하이드라자이드(hydrazide) 및 하이드로시페닐 아자이드(hydroxyphenyl azide)로 이루어진 군에서 선택된 어느 하나 이상인 것을 특징으로 하는 siRNA 다중 접합체의 제조방법.
  14. 제 4항 내지 제 8항 중에서 선택된 어느 한 항에 있어서, siRNA 다중 접합체말단에 세포 선택적 리간드가 추가적으로 구비되어지는 것을 특징으로 하는 siRNA 다중 접합체의 제조방법.
  15. 제 14항에 있어서, 상기 리간드는 세포특이적 항체, 세포 선택적 펩타이드, 세포성장인자, 엽산(folic acid), 갈락토스(galactose), 만노스(mannose), 알지디(RGD) 및 트렌스페린(transferrin)으로 이루어진 군에서 선택된 어느 하나 이상인 것을 특징으로 하는 siRNA 다중 접합체의 제조방법.
  16. 제 4항 내지 제 8항 중에서 선택된 어느 한 항에 있어서, 상기 관능기를 활성화하는 단계를 추가적으로 포함하는 것을 특징으로 하는 siRNA 다중 접합체의 제조방법.
  17. 제 16항에 있어서, 관능기를 활성화시키는 물질은 1-에틸-3, 3-디메틸아미노프로필 카보디이미드(1-ethyl-3,3-dimethylaminopropyl carbodiimide), 이미다졸(imidazole), N-하이드로시숙신이미드(N-hydroxysuccinimide), 디클로로헥실카보디이미드(dichlorohexylcarbodiimide), N-β-말레이미도프로피오닉엑시드(N-β-Maleimidopropionic acid), N-β-말레이미도프로필로실 숙신이미드에스터(N-β-maleimidopropyl succimimide ester) 및 N-숙신이미딜피리딜다이싸이오 프로피오네이트(N-Succinimidyl 3-(2-pyridyldithio)propionate)로 이루어진 군에서 선택된 어느 하나 이상인 것을 특징으로 하는 siRNA 다중 접합체의 제조방법.
  18. 제 1항의 siRNA 다중 접합체; 및 양이온성 펩타이드, 양이온성 지질 및 양이온성 고분자로 이루어진 군에서 선택된 어느 하나의 양이온성 유전자 전달체; 간의 이온 상호작용(ionic interaction)에 의해 형성되는 이온 복합체.
  19. 제 18항에 있어서, 상기 양이온성 펩타이드는 KALA(cationic fusogenic peptide), 폴리라이신(polylysine), 폴리글루타믹엑시드(polyglutamic acid) 및 프로타민(protamine)으로 이루어진 군에서 선택된 어느 하나인 것을 특징으로 하는 이온 복합체.
  20. 제 18항에 있어서, 상기 양이온성 지질은 다이올레일 포스페티딜에탄올아민(dioleoyl phosphatidylethanolamine) 또는 콜레스테롤 다이올레일 포스페티딜콜린(cholesterol dioleoyl phosphatidyl choline)인 것을 특징으로 하는 이온 복합체.
  21. 제 18항에 있어서, 상기 양이온성 고분자는 폴리에틸렌이민(polyethylenimine), 폴리아민(polyamines) 및 폴리비닐아민(polyvinylamine)로 이루어진 군에서 선택된 어느 하나인 것을 특징으로 하는 이온 복합체.
  22. 제 18항의 이온 복합체를 개체에 투여하는 단계를 포함하는 항암 치료방법.
  23. 제 18항의 이온 복합체를 개체에 투여하는 단계를 포함하는 혈관신생 관련 질환의 치료방법.
  24. 제 18항의 이온 복합체를 항암제의 제조에 이용하는 용도.
  25. 제 18항의 이온 복합체를 혈관신생 관련 질환 치료제의 제조에 이용하는 용도.
PCT/KR2009/002252 2009-03-13 2009-04-29 에스아이알엔에이 다중 접합체 및 이의 제조방법 WO2010104237A1 (ko)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US12/514,306 US8580946B2 (en) 2009-03-13 2009-04-29 Multi-conjugate of siRNA and preparing method thereof
EP09731474.4A EP2407539B1 (en) 2009-03-13 2009-04-29 MULTIMERIC siRNA AND PREPARATION METHOD THEREFOR
US14/048,951 US9255269B2 (en) 2009-03-13 2013-10-08 Multi-conjugate of siRNA and preparing method thereof
US14/312,530 US9644209B2 (en) 2009-03-13 2014-06-23 Multi-conjugate of siRNA and preparing method thereof
US15/483,528 US20180080028A1 (en) 2009-03-13 2017-04-10 Multi-conjugate of sirna and preparing method thereof
US16/040,795 US10597659B2 (en) 2009-03-13 2018-07-20 Multi-conjugate of SiRNA and preparing method thereof
US16/781,766 US20200239892A1 (en) 2009-03-13 2020-02-04 Multi-conjugate of sirna and preparing method thereof
US17/945,842 US11859184B2 (en) 2009-03-13 2022-09-15 Multi-conjugate of siRNA and preparing method thereof
US18/509,130 US20240150766A1 (en) 2009-03-13 2023-11-14 Multi-conjugate of sirna and preparing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020090021705A KR101141544B1 (ko) 2009-03-13 2009-03-13 에스아이알엔에이 다중 접합체 및 이의 제조방법
KR10-2009-0021705 2009-03-13

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/514,306 A-371-Of-International US8580946B2 (en) 2009-03-13 2009-04-29 Multi-conjugate of siRNA and preparing method thereof
US14/048,951 Continuation US9255269B2 (en) 2009-03-13 2013-10-08 Multi-conjugate of siRNA and preparing method thereof

Publications (1)

Publication Number Publication Date
WO2010104237A1 true WO2010104237A1 (ko) 2010-09-16

Family

ID=42728507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/002252 WO2010104237A1 (ko) 2009-03-13 2009-04-29 에스아이알엔에이 다중 접합체 및 이의 제조방법

Country Status (4)

Country Link
US (8) US8580946B2 (ko)
EP (2) EP2407539B1 (ko)
KR (1) KR101141544B1 (ko)
WO (1) WO2010104237A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2431378A2 (en) * 2009-05-14 2012-03-21 Korea Institute of Science and Technology Method for polymerizing a small oligonucleotide, and use of a high-molecular oligonucleotide prepared by the polymerization method

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101141544B1 (ko) 2009-03-13 2012-05-03 한국과학기술원 에스아이알엔에이 다중 접합체 및 이의 제조방법
KR101590586B1 (ko) * 2011-05-30 2016-02-01 성균관대학교산학협력단 표적 유전자 발현 억제 및 면역 반응을 동시에 유발하는 이중가닥의 긴 간섭 rna
US8709332B2 (en) 2011-07-20 2014-04-29 Nike, Inc. Thermoforming sheet loading apparatus and method
KR101495298B1 (ko) * 2013-02-20 2015-02-25 한국과학기술원 소간섭 리보핵산(siRNA)를 친수성 블록으로 갖는 양친매성 블록 공중합체 및 이를 포함하는 다중이온복합체
KR101629681B1 (ko) * 2013-06-24 2016-06-14 건국대학교 산학협력단 다중 리간드가 도입된 에스아이알엔에이 접합체
CN108026527B (zh) * 2015-06-15 2022-05-10 Mpeg La有限责任公司 确定的多偶联寡核苷酸
DE102015008536A1 (de) * 2015-07-02 2017-01-05 Rheinische Friedrich-Wilhelms-Universität Bonn Diskontinuierliche Oligonukleotid-Liganden
EP3408391A4 (en) * 2016-01-31 2019-08-28 University of Massachusetts BRANCHED OLIGONUCLEOTIDES
US11299733B2 (en) 2016-07-15 2022-04-12 University Of Massachusetts Process of delivering small RNAs to sperm
WO2018031933A2 (en) 2016-08-12 2018-02-15 University Of Massachusetts Conjugated oligonucleotides
CA3051480A1 (en) 2017-02-06 2018-08-09 Mpeg La, Llc Multimeric oligonucleotides having decreased kidney clearance
MX2021001590A (es) 2018-08-10 2021-07-02 Univ Massachusetts Oligonucleótidos modificados dirigidos a snp.
US20230287406A1 (en) * 2019-03-04 2023-09-14 Mpeg La, L.L.C. Multimeric oligonucleotides with enhanced bioactivity
BR112022002307A2 (pt) 2019-08-09 2022-06-28 Univ Massachusetts Oligonucleotídeos quimicamente modificados que têm como alvo snps
MX2022013475A (es) * 2020-04-30 2022-11-30 Mpeg La L L C Oligonucleotidos multimericos con cadenas divididas.
EP4153246A1 (en) * 2020-05-19 2023-03-29 Mpeg LA, L.l.c. Orthogonally linked multimeric oligonucleotides
JP2024523509A (ja) 2021-06-23 2024-06-28 ユニバーシティー オブ マサチューセッツ 子癇前症及び他の血管新生障害の治療のために最適化された抗flt1オリゴヌクレオチド化合物
WO2023185946A1 (zh) * 2022-03-30 2023-10-05 苏州瑞博生物技术股份有限公司 一种寡核苷酸缀合物、含有该寡核苷酸缀合物的组合物及制备方法和用途

Family Cites Families (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9207381D0 (en) 1992-04-03 1992-05-13 Ici Plc Synthesis of oligonucleotides
WO2004030634A2 (en) 2002-10-02 2004-04-15 Alnylam Pharmaceuticals Inc. Therapeutic compositions
EP2239329A1 (en) 2003-03-07 2010-10-13 Alnylam Pharmaceuticals, Inc. Therapeutic compositions
CA2488224A1 (en) 2003-04-03 2004-10-21 Alnylam Pharmaceuticals, Inc. Irna conjugates
US8969543B2 (en) * 2003-04-03 2015-03-03 Bioneer Corporation SiRNA-hydrophilic polymer conjugates for intracellular delivery of siRNA and method thereof
WO2004091515A2 (en) 2003-04-09 2004-10-28 Alnylam Pharmaceuticals, Inc. iRNA CONJUGATES
RU2394041C2 (ru) * 2003-04-13 2010-07-10 Энзон Фармасьютикалз, Инк. Полимерные олигонуклеотидные пролекарства
CA2522349A1 (en) 2003-04-17 2004-11-04 Alnylam Pharmaceuticals, Inc. Protected monomers
EP2669377A3 (en) 2003-04-17 2015-10-14 Alnylam Pharmaceuticals Inc. Modified iRNA agents
US7851615B2 (en) * 2003-04-17 2010-12-14 Alnylam Pharmaceuticals, Inc. Lipophilic conjugated iRNA agents
US20100170000A9 (en) * 2004-10-25 2010-07-01 Devgen Nv Rna constructs
US8106173B2 (en) 2006-04-07 2012-01-31 Idera Pharmaceuticals, Inc. Stabilized immune modulatory RNA (SIMRA) compounds for TLR7 and TLR8
AU2007345648A1 (en) * 2007-01-26 2008-08-07 City Of Hope Methods and compositions for the treatment of cancer or other diseases
WO2008109373A1 (en) * 2007-03-02 2008-09-12 Mdrna, Inc. Nucleic acid compounds for inhibiting erbb gene expression and uses thereof
US20080311040A1 (en) * 2007-03-06 2008-12-18 Flagship Ventures METHODS AND COMPOSITIONS FOR IMPROVED THERAPEUTIC EFFECTS WITH siRNA
JP5737937B2 (ja) 2007-07-09 2015-06-17 イデラ ファーマシューティカルズ インコーポレイテッドIdera Pharmaceuticals, Inc. 安定化免疫調節rna(simra)化合物
WO2009126933A2 (en) 2008-04-11 2009-10-15 Alnylam Pharmaceuticals, Inc. Site-specific delivery of nucleic acids by combining targeting ligands with endosomolytic components
EP2323695B1 (en) 2008-08-19 2018-12-05 Nektar Therapeutics Complexes of small-interfering nucleic acids
US8637194B2 (en) 2008-09-02 2014-01-28 Bio-Nano Power, Llc Bio-nano power cells and their uses
SG171914A1 (en) 2008-12-02 2011-07-28 Chiralgen Ltd Method for the synthesis of phosphorus atom modified nucleic acids
WO2010090762A1 (en) 2009-02-04 2010-08-12 Rxi Pharmaceuticals Corporation Rna duplexes with single stranded phosphorothioate nucleotide regions for additional functionality
KR101141544B1 (ko) 2009-03-13 2012-05-03 한국과학기술원 에스아이알엔에이 다중 접합체 및 이의 제조방법
US8431544B1 (en) 2009-08-27 2013-04-30 Idera Pharmaceuticals, Inc. Compositions for inhibiting gene expression and uses thereof
KR101678876B1 (ko) 2010-01-15 2016-11-23 한국과학기술원 복합 유전자를 표적하는 siRNA 다중 접합체 및 이의 제조방법
EP3023495B1 (en) 2010-02-24 2019-05-08 Arrowhead Pharmaceuticals, Inc. Compositions for targeted delivery of sirna
WO2011109380A1 (en) 2010-03-01 2011-09-09 The Children's Hospital Of Philadelphia Nucleic acids for targeting multiple regions of the hcv genome
DK2734208T3 (en) 2011-07-19 2017-06-19 Wave Life Sciences Ltd PROCEDURES FOR SYNTHESIS OF FUNCTIONALIZED NUCLEIC ACIDS
AU2012308320C1 (en) 2011-09-14 2018-08-23 Translate Bio Ma, Inc. Multimeric oligonucleotide compounds
KR101340290B1 (ko) 2011-09-14 2013-12-11 한국과학기술원 유전자 표적용 siRNA 하이드로젤 및 그 제조방법
EP2895200B1 (en) 2012-09-14 2019-11-06 Translate Bio MA, Inc. Multimeric oligonucleotide compounds
KR101629681B1 (ko) 2013-06-24 2016-06-14 건국대학교 산학협력단 다중 리간드가 도입된 에스아이알엔에이 접합체
EP2845607A1 (en) 2013-09-09 2015-03-11 University of Vienna Antisense oligonucleotides with improved pharmacokinetic properties
CN105814205B (zh) 2013-12-12 2019-11-19 阿尔尼拉姆医药品有限公司 补体成分iRNA组合物及其使用方法
WO2015113922A1 (en) 2014-01-30 2015-08-06 Roche Innovation Center Copenhagen A/S Poly oligomer compound with biocleavable conjugates
CN108026527B (zh) 2015-06-15 2022-05-10 Mpeg La有限责任公司 确定的多偶联寡核苷酸
EP3368671A1 (en) 2015-10-26 2018-09-05 Translate Bio Ma, Inc. Methods and compositions for increasing smn expression
IL294411A (en) 2016-01-05 2022-08-01 Omeros Corp masp-2 suppressors for use in suppressing fibrosis
CA3051480A1 (en) 2017-02-06 2018-08-09 Mpeg La, Llc Multimeric oligonucleotides having decreased kidney clearance
WO2019105421A1 (zh) 2017-11-30 2019-06-06 深圳市瀚海基因生物科技有限公司 核苷类似物、制备方法及应用
AU2020319911A1 (en) 2019-07-30 2022-02-24 Mpeg La, L.L.C. Subcutaneous delivery of multimeric oligonucleotides with enhanced bioactivity
EP4153246A1 (en) 2020-05-19 2023-03-29 Mpeg LA, L.l.c. Orthogonally linked multimeric oligonucleotides

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
BOLCATO-BELLEMIN, A. L. ET AL.: "Sticky overhangs enhance siRNA-mediated gene silencing.", PROC NATL ACAD SCI USA, vol. 104, 2007, pages 16050 - 16055, XP008143283 *
MOK, H. ET AL.: "Multimeric small interfering ribonucleic acid for highly efficient sequence-specific gene silencing", NATURE MATERIALS, vol. 9, pages 272 - 278, XP008143280 *
MOK, H. ET AL.: "Self-crosslinked and reducible fusogenic peptides for intracellular delivery of siRNA.", BIOPOLYMERS, vol. 89, 2008, pages 881 - 888, XP008143281 *
MOSCHOS, S.A. ET AL.: "Lung Delivery Studies Using siRNA Conjugated to TAT (48-60) and Penetratin Reveal Peptide Induced Reduction in Gene Expression and Induction of Innate Immunity", BIOCONJUG CHEM., vol. 18, no. 5, 2007, pages 1450 - 1459, XP002492909 *
MURATOVSKAA, A. ET AL.: "Conjugate for e.cient delivery of short interfering RNA (siRNA) into mammalian cells", FEBS LETTERS, vol. 558, 2004, pages 63 - 68, XP004488270 *
See also references of EP2407539A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2431378A2 (en) * 2009-05-14 2012-03-21 Korea Institute of Science and Technology Method for polymerizing a small oligonucleotide, and use of a high-molecular oligonucleotide prepared by the polymerization method
EP2431378A4 (en) * 2009-05-14 2013-09-25 Korea Inst Sci & Tech METHOD FOR POLYMERIZING A SMALL OLIGONUCLEOTIDE AND USE OF AN OLIGONUCLEOTIDE OF HIGH MOLECULAR WEIGHT IN THIS POLYMERIZATION PROCESS

Also Published As

Publication number Publication date
US20140309281A1 (en) 2014-10-16
US11859184B2 (en) 2024-01-02
EP2407539A1 (en) 2012-01-18
US9255269B2 (en) 2016-02-09
US20150197754A9 (en) 2015-07-16
US20140039038A1 (en) 2014-02-06
US20230070118A1 (en) 2023-03-09
US10597659B2 (en) 2020-03-24
EP3196306A1 (en) 2017-07-26
US20110044931A1 (en) 2011-02-24
EP2407539B1 (en) 2017-01-04
US9644209B2 (en) 2017-05-09
US20240150766A1 (en) 2024-05-09
KR20100103206A (ko) 2010-09-27
US20190185861A1 (en) 2019-06-20
KR101141544B1 (ko) 2012-05-03
US20200239892A1 (en) 2020-07-30
US8580946B2 (en) 2013-11-12
EP2407539A4 (en) 2012-08-15
US20180080028A1 (en) 2018-03-22

Similar Documents

Publication Publication Date Title
WO2010104237A1 (ko) 에스아이알엔에이 다중 접합체 및 이의 제조방법
US20190292538A1 (en) Single-chain circular rna and method of producing the same
CN108026527B (zh) 确定的多偶联寡核苷酸
US20180179526A1 (en) Method and Medicament For Inhibiting The Expression of A Given Gene
Leung et al. RNA interference: from gene silencing to gene-specific therapeutics
WO2013109057A1 (ko) 자성나노입자-samirna 복합체 및 그 제조방법
KR20110128345A (ko) 생물학적 활성 rna의 전달을 위한 조성물 및 방법
KR20110083919A (ko) 복합 유전자를 표적하는 siRNA 다중 접합체 및 이의 제조방법
WO2022005179A1 (ko) 혈액-뇌 장벽 침투 압타머 및 이의 이용
WO2016068617A1 (ko) 폴리올계 삼투압적 폴리디자일리톨 폴리머 유전자 전달체 및 이의 용도
WO2022131745A1 (ko) 펩티드 핵산 복합체를 유효성분으로 함유하는 교모세포종 예방 또는 치료용 조성물
WO2022131398A1 (ko) 유전자 발현 및 억제가 동시에 가능한 핵산 구조체
WO2018084562A1 (ko) 타겟분자를 선택적으로 포획하는 덱스트란 고분자 기반의 증폭된 핵산 압타머 나노구조체의 제조방법
WO2021125762A1 (ko) 혈뇌장벽 투과능을 가지는 펩티드 핵산 복합체를 유효성분으로 함유하는 치매 예방 또는 치료용 조성물
WO2021157809A1 (ko) 신규한 핵산 분자 전달용 조성물 및 그 용도
CN116829132A (zh) 胶束纳米粒子及其用途
WO2020235936A1 (ko) Pd-1의 발현을 억제하는 비대칭 sirna
JP4335012B2 (ja) 短い干渉RNA(shortinterferingRNA)による転写後抑制
CN111902423A (zh) 基于b7h受体的配体的抗肿瘤治疗剂
WO2023163563A1 (ko) 핵산 복합체를 포함하는 폐암 예방 또는 치료용 조성물
WO2022191567A1 (ko) Covid-19를 포함하는 호흡기 바이러스 감염증, 바이러스 감염에 의한 폐섬유증, 또는 호흡기 질환 예방 또는 치료를 위한 초음파 방식 연무식 흡입기를 이용한 이중가닥 올리고뉴클레오티드 구조체 투여용 조성물
KR101917287B1 (ko) 자가-조립식 리보뉴클레오단백질 나노입자
Arnold Bioconjugate Strategies for Antisense Therapeutic Delivery to Glioblastoma Stem Cells
WO2014051318A2 (ko) 전신 순환을 위한 짧은 간섭 rna 유전자 전달체

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 12514306

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2009731474

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009731474

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09731474

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE