WO2010104052A1 - 抗緑膿菌作用を有するヒト化PcrV抗体 - Google Patents
抗緑膿菌作用を有するヒト化PcrV抗体 Download PDFInfo
- Publication number
- WO2010104052A1 WO2010104052A1 PCT/JP2010/053828 JP2010053828W WO2010104052A1 WO 2010104052 A1 WO2010104052 A1 WO 2010104052A1 JP 2010053828 W JP2010053828 W JP 2010053828W WO 2010104052 A1 WO2010104052 A1 WO 2010104052A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- antibody
- seq
- pcrv
- amino acid
- acid sequence
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/12—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria
- C07K16/1203—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-negative bacteria
- C07K16/1214—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from bacteria from Gram-negative bacteria from Pseudomonadaceae (F)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/20—Immunoglobulins specific features characterized by taxonomic origin
- C07K2317/24—Immunoglobulins specific features characterized by taxonomic origin containing regions, domains or residues from different species, e.g. chimeric, humanized or veneered
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/70—Immunoglobulins specific features characterized by effect upon binding to a cell or to an antigen
- C07K2317/76—Antagonist effect on antigen, e.g. neutralization or inhibition of binding
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/90—Immunoglobulins specific features characterized by (pharmaco)kinetic aspects or by stability of the immunoglobulin
- C07K2317/92—Affinity (KD), association rate (Ka), dissociation rate (Kd) or EC50 value
Definitions
- the present invention relates to a humanized monoclonal antibody that recognizes PcrV or a part thereof. Specifically, the present invention relates to an antibody having a higher neutralizing activity (hereinafter also referred to as cytotoxicity inhibiting activity) than conventional anti-PcrV antibodies or a part thereof, and a pharmaceutical composition containing them.
- cytotoxicity inhibiting activity an antibody having a higher neutralizing activity (hereinafter also referred to as cytotoxicity inhibiting activity) than conventional anti-PcrV antibodies or a part thereof, and a pharmaceutical composition containing them.
- Pseudomonas aeruginosa is an obligately aerobic gram-negative bacilli that exists widely in nature. Although it is usually low in pathogenicity, it is a pathogenic bacterium that causes opportunistic infections that frequently occur in patients with various basic diseases such as cancer and diabetes, and in patients receiving immunosuppressive drugs. Often causes serious consequences, such as tract infections and sepsis. Pseudomonas aeruginosa infection is currently considered one of the most difficult to treat in the clinical setting. This is because Pseudomonas aeruginosa is not only less sensitive to existing antibiotics but also has a strong tendency to easily acquire resistance to various antibiotics and become intractable. Thus, for Pseudomonas aeruginosa, there is a limit in the response of developing new antibiotics one after another, and a treatment method that does not depend on antibiotics is eagerly desired.
- PcrV is a component protein of the type III exotoxin secretion system consisting of 294 residues (NCBI Accession No. AAC45935, SEQ ID NO: 1), and the operon sequence encoded is disclosed (Patent Document 1, Non-Patent Document 1). ).
- Non-Patent Document 2 Since control over PcrV may lead to therapeutic measures in Pseudomonas aeruginosa infection (Non-Patent Document 2), polyclonal antibodies (Non-Patent Documents 3 and 4) and monoclonal antibodies (Non-Patent Documents 3 and 4) having neutralizing activity Document 2, Non-Patent Documents 5 and 6) have been reported.
- humanization is difficult with polyclonal antibodies, and antigenicity is difficult to improve, making it difficult to use as a pharmaceutical composition.
- the problem to be solved by the present invention is to provide an effective means for treating infections, particularly infections caused by Pseudomonas aeruginosa.
- the present invention (1) A humanized monoclonal antibody against PcrV or a part thereof having at least one property selected from the following (A) to (D): (A) inhibits 50% or more of the cytotoxic activity against white blood cells of Pseudomonas aeruginosa at a concentration of 1 nM to 200 nM in vitro; (B) Inhibits 50% or more of the cytotoxic activity of Pseudomonas aeruginosa against myeloma cells at a concentration of 1 to 50 nM in vitro.
- the dissociation constant (Kd) with PcrV is 2 ⁇ 10 ⁇ 9 (M) or less, and (D) has an epitope from position 136 to position 233 of the amino acid sequence represented by SEQ ID NO: 1.
- a pharmaceutical composition comprising the antibody or a part thereof according to any one of (1) to (5) as an active ingredient, (7) a polynucleotide encoding the heavy chain variable region or the light chain variable region of the antibody according to any of (3) to (5) above, (8) an expression vector comprising the polynucleotide according to (7) above, (9) A method for treating Pseudomonas aeruginosa infection, comprising administering an effective amount of the antibody according to any one of (1) to (5) above or a part thereof to a patient in need of treatment, (10) Use of the antibody according to any one of (1) to (5) above or a part thereof for producing a therapeutic agent for Pseudomonas aeruginosa infection, and (11) Treatment of P
- the humanized monoclonal antibody of the present invention or a part thereof has a very excellent neutralizing activity against PcrV, it is useful as an agent for preventing or treating infection caused by Pseudomonas aeruginosa.
- FIG. 1 shows a displacement curve of biotin-labeled PcrV with unlabeled PcrV in PcrV antibodies (1F3, 2A4, 6F5, 7A7 and Mab166).
- FIG. 2 shows the affinity of PcrV antibodies (1F3, 2A4, 6F5, 7A7 and Mab166) by surface plasmon resonance analysis.
- FIG. 3 shows the results of a sandwich assay between PcrV antibodies (1F3, 2A4, 6F5, 7A7, Mab166) and Mab166.
- FIG. 4 shows the inhibitory effect of PcrV antibodies (1F3, 2A4, 6F5, 7A7 and Mab166) on the cytotoxic activity of Pseudomonas aeruginosa SR24 strain on U937 cells.
- FIG. 5 shows the inhibitory effect of PcrV antibodies (1F3, 2A4, 6F5, 7A7 and Mab166) on the cytotoxic activity of Pseudomonas aeruginosa SR24 strain on myeloma cells P3U1.
- FIG. 6 shows a substitution curve of biotin-labeled PcrV with unlabeled full-length PcrV and deletion mutation PcrV in PcrV antibodies (1F3, 2A4, 9D12, 12H9 and Mab166).
- FIG. 7 shows the reactivity of PcrV antibodies (1F3, 2A4, 9D12, 12H9 and Mab166) with full length PcrV and deletion mutant PcrV in Western blot.
- FIG. 6 shows a substitution curve of biotin-labeled PcrV with unlabeled full-length PcrV and deletion mutation PcrV in PcrV antibodies (1F3, 2A4, 9D12, 12H9 and Mab166).
- FIG. 8 shows the correlation between the antibody and full-length PcrV by suppressing the cytotoxicity inhibiting activity.
- FIG. 9 shows the correlation between the antibody and the deletion mutant PcrV by suppressing the cytotoxicity inhibiting activity.
- 1 shows the amino acid sequence of the variable region of the 1F3 antibody.
- the underlined portion indicates the CDR region.
- the amino acid sequence of the variable region of 2A4 antibody is shown.
- the underlined portion indicates the CDR region.
- the amino acid sequence alignment of the heavy chain variable region and the light chain variable region of mouse antibody Mae 1F3
- template humanized antibody Tempolate
- mutant humanized antibody Backmutation
- humanized antibody Humanized 1F3
- Mouse / human chimeric antibody heavy chain (H chimera), mouse / human chimeric antibody light chain (L chimera), template humanized antibody heavy chain (HT), template humanized antibody light chain (LT), mutant humanized antibody heavy chain ( HB) shows the affinity between the PcrV antigen and an antibody obtained by combining the mutant humanized antibody light chain (LB).
- Each antibody light chain (LT) is combined to show the affinity between the antibody and the PcrV antigen.
- the amino acid sequence of the variable region of the heavy chain of a humanized antibody is shown.
- the underlined portion indicates the CDR region.
- the amino acid sequence of the variable region of the light chain of a humanized antibody is shown.
- the underlined portion indicates the CDR region.
- a mouse / human chimeric antibody heavy chain (H chimera), a mouse / human chimeric antibody light chain (L chimera), a humanized antibody heavy chain (h1F3 H), a humanized antibody light chain (h1F3 L), and a combined antibody and a PcrV antigen The affinity of is shown.
- the inhibitory effects of humanized pcrV antibody, mouse pcrV antibody and Mab166 on the cytotoxic activity of Pseudomonas aeruginosa SR24 strain on U937 cells are shown.
- the inhibitory effects of humanized antibody, mouse antibody and Mab166 on the cytotoxic activity of Pseudomonas aeruginosa SR24 strain on myeloma cells are shown.
- the “monoclonal antibody” targeted by the present invention is a monoclonal antibody that specifically binds to the aforementioned PcrV. More specifically, (1) inhibits 50% or more of the cytotoxic activity against white blood cells of Pseudomonas aeruginosa at a concentration of 1 nM to 200 nM in vitro.
- a dissociation constant (Kd) with PcrV of 2 ⁇ 10 ⁇ 9 ( M) is (4) having an epitope at positions 136 to 233 of the amino acid sequence represented by SEQ ID NO: 1, which is a monoclonal antibody against PcrV having at least one property selected from
- the monoclonal antibody of the present invention has a strong cytotoxic inhibitory activity.
- the inhibitory activity of Pseudomonas aeruginosa has a 50% or higher inhibition at a concentration in the range of 1 to 200 nM, preferably 2 to 100 nM, more preferably 5 to 25 nM (medium Sum) activity.
- the inhibitory activity of inhibiting the cytotoxic activity of Pseudomonas aeruginosa by 50% or more at a concentration within the range of 1 to 50 nM, preferably 2 to 30 nM, more preferably 4 to 20 nM. have. These values are from Dara W. This greatly exceeds the activity value of Mab166 reported in Frank et al. (J. Infect. Disease, 2002, 186, 64).
- the monoclonal antibody of the present invention is characterized by having the epitope in the region from position 136 to position 233 in the full-length amino acid sequence of PcrV (SEQ ID NO: 1).
- the present inventors have found that an antibody recognizing this region has a stronger activity (cytotoxic inhibition activity) than an antibody recognizing other regions.
- An antibody that recognizes this region is useful for the treatment of infectious diseases because it has a strong cytotoxic inhibitory activity.
- Identification of the recognition epitope of the monoclonal antibody can be performed as follows. First, various partial structures of molecules recognized by monoclonal antibodies are prepared. In preparing the partial structure, a method for preparing various partial peptides of the molecule using a known oligopeptide synthesis technique, or a DNA sequence encoding the target partial peptide using a gene recombination technique as a suitable expression plasmid. There are methods for integration and production inside and outside the host such as Escherichia coli, but for the above purpose, it is common to use both in combination.
- the corresponding oligopeptides of the corresponding portion or variants of the peptides are synthesized in various ways using oligopeptide synthesis techniques well known to those skilled in the art, and the preventive or therapeutic agent of the present invention is contained as an active ingredient.
- the epitopes are limited by examining the binding properties of the monoclonal antibodies to those peptides, or by examining the competitive inhibitory activity of the peptides on the binding of the monoclonal antibody to the antigen.
- commercially available kits for example, SPOTs kit (Genosis Biotechnologies), a series of multipin peptide synthesis kits using the multipin synthesis method, etc.
- SPOTs kit Geneosis Biotechnologies
- Cytotoxicity inhibitory activity can be measured by the following procedure. First, a monoclonal antibody to be measured for cytotoxicity inhibitory activity is diluted to a suitable concentration by diluting with a 2-fold dilution series. Next, cells affected by the toxin of Pseudomonas aeruginosa (hereinafter referred to as target cells) are diluted with a cell culture medium or the like to prepare an appropriate number. Specifically, it is prepared in the range of 3 ⁇ 10 6 to 5 ⁇ 10 6 Cells / ml when using myeloma cells, and 1 ⁇ 10 6 to 3 ⁇ 10 6 Cells / ml when using white blood cells. It is desirable.
- Pseudomonas aeruginosa is also prepared so as to be 1 ⁇ 10 7 to 1 ⁇ 10 8 cfu / ml using a culture medium or the like. Then, in the presence of the monoclonal antibody described above, Pseudomonas aeruginosa and target cells are cultured under appropriate culture conditions in the same test tube and well (for example, in vitro conditions such as wells on a microplate).
- the culture conditions at this time may be general culture conditions that are favorable for growing cells and bacteria.
- the optimal conditions for the culture time are appropriately changed depending on the type of target cell. For example, about 1 to 3 hours are preferable when using myeloma cells, and about 1 to 3 hours when using white blood cells.
- a concentration that inhibits 50% of the control group (effective concentration) is calculated.
- concentration concentration that inhibits 50% of the control group (effective concentration) is calculated.
- Various methods have been established for determining whether a target cell is alive or not. After adding a color reagent, measurement of absorbance at an appropriate wavelength (for example, 400 to 500 nm) is useful (Reference: Nature). Medicine, 1999, vol. 5, pp. 392-395).
- the monoclonal antibody of the present invention has a high affinity for PcrV.
- the dissociation constant (Kd) used as an index representing the affinity of the monoclonal antibody for the antigen can be analyzed according to various methods. For example, using the Scatchard method using antigens labeled with various labeling agents, BiacoreX (manufactured by Amersham Pharmacia) or a similar kit, which is a commercially available measurement kit, the instruction manual and the experimental operation method attached to the kit Can be easily analyzed.
- the dissociation constant (Kd value) obtained using these methods is expressed in units of M (mol).
- the tested monoclonal antibody shows that the smaller the dissociation constant, the stronger the affinity.
- the dissociation constant (Kd) with PcrV is 2 ⁇ 10 ⁇ 9 (M) or less, preferably 1.5 ⁇ 10 ⁇ 9 (M) or less, more preferably 1.2 ⁇ 10 ⁇ 9 (M) or less.
- the immunoglobulin heavy chain variable region (V H ) includes CDR1, CDR2 and CDR3 which are complementarity determining regions.
- CDR1 has the amino acid sequence SFTSYWMH (sequence CDR2 has the amino acid sequence INPSNGRTNYNEKFNT (SEQ ID NO: 16)
- CDR3 has the amino acid sequence YGNYVVYYTMDY (SEQ ID NO: 17) and is a complementarity determining region in the immunoglobulin light chain variable region (V L ).
- CDR1 has the amino acid sequence SASSVSYME (SEQ ID NO: 18)
- CDR2 has the amino acid sequence TTSKLAS (SEQ ID NO: 19)
- CDR3 has the amino acid sequence HQWRNYPFT (SEQ ID NO: 2).
- the sequence of the CDR region is within a range in which the desired biological activity of the present invention (for example, affinity, cytotoxicity-inhibiting activity, etc.) is retained, one or more of the three CDRs can be used.
- a variant having three CDRs consisting of an amino acid sequence in which one or several amino acids are deleted, substituted or added in the CDR is also included in the present invention.
- a humanized monoclonal antibody having the characteristics described above can be mentioned.
- a humanized monoclonal antibody is obtained by transplanting a complementarity determining region (CDR) of a mammal other than a human, for example, a mouse antibody, into a CDR of a human antibody. Therefore, the framework region is derived from human.
- CDR complementarity determining region
- a suitable framework area for use is Kabat E.I. A.
- the FR amino acid of the variable region of the antibody may be substituted so that the CDR of the reshaped humanized antibody forms an appropriate antigen-binding site (Sato, K. et al., Cancer Res. 1993, 53, 851). In this case, the above steps may be performed again.
- a general method for producing a humanized monoclonal antibody is also known (see, for example, WO95 / 14041 and WO96 / 02576). Specifically, first, a DNA sequence encoding a variable region designed to link the CDR of a mouse antibody and the framework region (FR) of a human antibody has a portion that overlaps the terminal portion. It is synthesized by PCR method from several prepared oligonucleotides (see WO98 / 13388). The obtained DNA is ligated with DNA encoding the constant region of a human antibody and then incorporated into an expression vector. Alternatively, DNA encoding the variable region of the antibody may be incorporated into an expression vector containing DNA of the constant region of the antibody.
- the antibody gene is incorporated into an expression vector so as to be expressed under the control of an expression control region, for example, an enhancer / promoter.
- host cells can be transformed with this expression vector to express the antibody. Examples of host cells include vertebrate cells such as COS cells and CHO cells, prokaryotic cells, and yeast.
- the expression of the antibody gene may be carried out by co-transforming the host by separately incorporating the heavy chain (H chain) or light chain (L chain) of the antibody into an expression vector, or DNA encoding the H chain and L chain. May be incorporated into a single expression vector to transform the host (see WO94 / 11523).
- the desired transformant obtained above can be cultured according to a method well known to those skilled in the art, and by this culture, a humanized monoclonal antibody of PcrV is produced in or outside the transformant cells.
- a humanized monoclonal antibody of PcrV is produced in or outside the transformant cells.
- various commonly used media can be appropriately selected according to the host cells employed. For example, in the case of the COS cells, RPMI-1640 medium, Dulbecco's modified Eagle minimum essential medium (DMEM), etc. What added serum components, such as fetal bovine serum (FBS), to a culture medium as needed can be used.
- FBS fetal bovine serum
- the culture temperature for culturing the transformant may be any temperature as long as it does not significantly reduce the protein synthesis ability in the cells, but it is preferably cultured at 32-42 ° C, most preferably at 37 ° C. It is preferable. If necessary, the cells can be cultured in air containing 1 to 10% (v / v) carbon dioxide gas.
- the fraction containing the humanized monoclonal antibody of PcrV of the present invention produced inside or outside of the transformant as described above is obtained from various known separation procedures utilizing the physical and chemical properties of the protein. Can be separated and purified. Specific examples of such methods include treatment with conventional protein precipitants, ultrafiltration, molecular sieve chromatography (gel filtration), adsorption chromatography, ion exchange chromatography, affinity chromatography, high performance liquid chromatography (HPLC ), Etc., dialysis methods, and combinations thereof.
- variable region of the antibody optimized by grafting the entire CDR sequence determined to humanize the mouse monoclonal antibody (1F3) and a part of the FR sequence into a human antibody.
- the amino acid sequence of is shown in FIG. 15 (SEQ ID NO: 27) and FIG. 16 (SEQ ID NO: 28).
- This humanized antibody (h1F3) had the same strong cytotoxic inhibitory activity as compared with the mouse antibody (m1F3) produced by the hybridoma.
- humanization of antibodies it is usually difficult to perform humanization while maintaining the activity of the derived antibody, but in the present invention, a humanized antibody having an activity equivalent to that of the derived mouse antibody. Successfully acquired. Since humanized antibodies have reduced antigenicity in the human body, they are useful when administered to humans for therapeutic purposes.
- the constant region of a human antibody is used.
- Preferred constant regions of human antibodies include C ⁇ as the heavy chain.
- C ⁇ 1, C ⁇ 2, C ⁇ 3, and C ⁇ 4 can be used, and C ⁇ and C ⁇ can be used as the light chain.
- the C region of a human antibody may be modified in order to improve the stability of the antibody or its production.
- the human antibody used for humanization may be any isotype human antibody such as IgG, IgM, IgA, IgE, IgD, but in the present invention, IgG is preferably used, and IgG1 or IgG4 is more preferable.
- the humanized monoclonal antibody of the present invention may be a conjugated antibody conjugated with various molecules such as polyethylene glycol (PEG), radioactive substances, and toxins. Such a conjugated antibody can be obtained by chemically modifying the obtained antibody. Antibody modification methods have already been established in this field. These conjugated antibodies are also included in the humanized monoclonal antibody in the present invention.
- PEG polyethylene glycol
- humanized monoclonal antibody of the present invention may be fused with another protein at its N-terminus or C-terminus (Clinical Cancer Research, 2004, 10, 1274-1281). Those skilled in the art can appropriately select the protein to be fused.
- the humanized monoclonal antibody of the present invention may be an antibody with enhanced cytotoxic activity.
- antibodies with enhanced cytotoxic activity include antibodies lacking fucose, antibodies with bisecting N-acetylglucosamine (GlcNAc) added to sugar chains, and substitution of amino acids in the Fc region to accept Fcy. Examples thereof include antibodies whose binding activity with the body has been changed. These antibodies with enhanced activity can be prepared by methods known to those skilled in the art.
- the “part of the monoclonal antibody” is a part of the monoclonal antibody of the present invention described above, and means a region specifically binding to PcrV as in the case of the monoclonal antibody (hereinafter referred to as this).
- antibody fragments are also simply referred to as “antibody fragments”.
- Fab fragment of antigen binding
- F (ab ′) 2 single chain antibody
- Fab ′ single chain Fv
- scFv single chain Fv
- Disulfide stabilized antibodies disulfide stabilized Fv; hereinafter referred to as dsFv
- diabody dimerized V region fragments
- peptides containing CDRs etc.
- Fab is obtained by cleaving the upper peptide part of two disulfide bond (SS bond) ⁇ that crosses two H chains at the hinge region of IgG with the enzyme papain. It is an antibody fragment having an antigen-binding activity with a molecular weight of about 50,000, consisting of half and the entire L chain.
- the Fab used in the present invention can be obtained by treating the above monoclonal antibody of the present invention with papain.
- the Fab can also be produced by inserting a DNA encoding the Fab of the monoclonal antibody of the present invention into a cell expression vector and expressing the vector by introducing the vector into a cell.
- F (ab ′) 2 is composed of two Fab ′ regions obtained by decomposing the lower part of the two SS bonds in the hinge region of IgG with the enzyme pepsin and having a molecular weight of about It is an antibody fragment having an antigen binding activity of 100,000.
- F (ab ′) 2 used in the present invention can be obtained by treating the monoclonal antibody of the present invention with pepsin.
- F (ab ′) can also be expressed by inserting DNA encoding F (ab ′) 2 of the monoclonal antibody into an expression vector for cells and introducing the vector into Escherichia coli, yeast, or animal cells. 2 can be manufactured.
- Fab ′ is an antibody fragment having an antigen binding activity of about 50,000 molecular weight obtained by cleaving the SS bond between the hinges of F (ab ′) 2 .
- Fab ′ used in the present invention can be obtained by treating F (ab ′) 2 of the monoclonal antibody of the present invention with a reducing agent dithiothreitol.
- Fab ′ can also be produced by inserting a DNA encoding Fab ′ of the monoclonal antibody into an expression vector for cells and expressing the vector by introducing the vector into Escherichia coli, yeast, or animal cells.
- scFv is a VH-P-VL or VL-P-VH polypeptide in which one VH and one VL are linked using an appropriate peptide linker (hereinafter referred to as P) ⁇ , and has antigenic activity. It is an antibody fragment having The VH and VL contained in the scFv used in the present invention may be those of the above monoclonal antibody of the present invention.
- the scFv used in the present invention is expressed by obtaining cDNA encoding VH and VL from the hybridoma producing the monoclonal antibody of the present invention, constructing an scFv expression vector, and introducing it into Escherichia coli, yeast, or animal cells. Can be manufactured.
- DsFv refers to a polypeptide in which one amino acid residue in each of VH and VL is replaced with a cysteine residue, which are linked via an SS bond.
- the amino acid residue to be substituted with the cysteine residue can be selected based on the three-dimensional structure prediction of the antibody according to the method (Protein Engineering, 7, 697 (1994)) shown by Reiter et al.
- VH or VL contained in dsFv used in the present invention may be that of the monoclonal antibody of the present invention.
- dsFv used in the present invention
- cDNAs encoding VH and VL are obtained from the hybridoma producing the monoclonal antibody of the present invention and inserted into an appropriate expression vector to construct a dsFv expression vector.
- Yeast or animal cells can be introduced and expressed.
- Diabody is an antibody fragment in which scFv having the same or different antigen binding specificity forms a dimer, and has bivalent antigen binding activity against the same antigen or two types of specific antigen binding activities against different antigens. It is an antibody fragment.
- a divalent diabody that specifically reacts with the monoclonal antibody of the present invention obtains cDNA encoding the VH and VL of the monoclonal antibody of the present invention, and encodes scFv with a peptide linker of 3 to 10 residues. It can be produced by constructing DNA, inserting the DNA into an expression vector for cells, and introducing the expression vector into Escherichia coli, yeast, or animal cells to express diabody.
- the peptide containing CDR is configured to contain at least one region of CDR of VH or VL. Multiple CDRs can be linked directly or via a suitable peptide linker.
- the CDR-containing peptide used in the present invention is obtained by obtaining cDNA encoding the VH and VL of the monoclonal antibody of the present invention, constructing a DNA encoding the CDR, and inserting the DNA into an expression vector for animal cells.
- the vector can be produced by introducing the vector into Escherichia coli, yeast, or animal cells.
- a peptide containing CDR can also be produced by chemical synthesis methods such as Fmoc method (fluorenylmethyloxycarbonyl method) and tBoc method (t-butyloxycarbonyl method).
- the monoclonal antibody of the present invention or a part thereof may be a modified product as long as it can be suitably used in the present invention.
- the modified product an antibody bound to various molecules such as polyethylene glycol (PEG) can be used.
- PEG polyethylene glycol
- the modification made to the antibody may be a modification by introducing a chemical bond, or may be a modification made to the amino acid sequence of the antibody.
- These antibody modifications are also included in the monoclonal antibody of the present invention or a part thereof. In order to obtain such a modified antibody, it can be obtained by modifying the obtained antibody. These methods are already established in this field.
- the present invention provides a polynucleotide encoding the heavy chain variable region or light chain variable region of the humanized monoclonal antibody (h1F3) of the present invention.
- the polynucleotide of the present invention has the base sequence set forth in any of SEQ ID NOs: 29 and 30.
- a polynucleotide encoding an antibody that hybridizes with the polynucleotide under stringent conditions and has an activity equivalent to that of the antibody of the present invention is also within the scope of the present invention.
- the polynucleotide of the present invention is not particularly limited as long as it encodes the antibody of the present invention, and is a polymer composed of a plurality of nucleotides such as deoxyribonucleic acid (DNA) or ribonucleic acid (RNA). Non-natural bases may be included.
- the polynucleotide of the present invention can be used for producing an antibody by genetic engineering techniques. Moreover, it can also be used as a probe for screening an antibody having a function equivalent to that of the antibody of the present invention.
- a polynucleotide encoding the antibody of the present invention, or a part thereof, is used as a probe, and is hybridized with the polynucleotide under stringent conditions by a technique such as hybridization or gene amplification technique (eg, PCR), and DNA encoding an antibody having an activity equivalent to that of the antibody of the present invention can be obtained.
- a technique such as hybridization or gene amplification technique (eg, PCR)
- DNA encoding an antibody having an activity equivalent to that of the antibody of the present invention can be obtained.
- DNA is also included in the polynucleotide of the present invention.
- Hybridization techniques (Sambrook, J et al., Molecular Cloning 2nd ed., 9.47-9.58, Cold Spring Harbor Lab. Press, 1989) are techniques well known to those skilled in the art.
- Examples of hybridization conditions include low stringency conditions. Low stringent conditions are, for example, conditions of 42 ° C., 0.1 ⁇ SSC and 0.1% SDS in washing after hybridization, and preferably conditions of 50 ° C., 0.1 ⁇ SSC and 0.1% SDS. More preferable hybridization conditions include highly stringent conditions. Highly stringent conditions are, for example, conditions of 65 ° C., 5 ⁇ SSC and 0.1% SDS.
- Antibodies functionally equivalent to the antibodies of the present invention encoded by polynucleotides obtained by these hybridization techniques and gene amplification techniques usually have high homology in amino acid sequences with these antibodies.
- the antibody of the present invention includes an antibody functionally equivalent to the antibody of the present invention and having high homology with the amino acid sequence of the antibody.
- High homology generally refers to at least 50% identity, preferably 75% identity, more preferably 85% identity, more preferably 95% identity at the amino acid level. .
- Polypeptide homology was determined using the algorithm described in the literature (Wilbur, W. J. and Lipman, D. J. Proc. Natl. Acad. Sci. USA (1983) 80, 726-730). Just do it.
- the monoclonal antibody of the present invention or a part thereof is useful as a pharmaceutical composition. Therefore, the pharmaceutical composition containing the monoclonal antibody of the present invention and a part thereof can be systemically or locally administered orally or parenterally.
- parenteral administration for example, intravenous injection such as infusion, intramuscular injection, intraperitoneal injection, subcutaneous injection, intranasal administration, inhalation, etc. can be selected. It is known to damage epithelial cells and alveolar macrophages (T. Sawa et al., Nature Medicine, 1999, Vol. 5, page 392). Intranasal administration and inhalation are desirable.
- the pharmaceutical composition of the present invention is administered for the treatment of cystic fibrosis and infection patients caused by Pseudomonas aeruginosa.
- the effective dose is selected from the range of 0.01 mg to 100 mg per kg body weight at a time.
- a dose of 1-1000 mg, preferably 5-50 mg per patient can be selected.
- the pharmaceutical composition containing the monoclonal antibody of the present invention or a part thereof is not limited to these doses.
- the administration period can be appropriately selected depending on the age and symptoms of the patient.
- the pharmaceutical composition of the present invention may contain both pharmaceutically acceptable carriers and additives depending on the route of administration.
- Such carriers and additives include water, pharmaceutically acceptable organic solvents, collagen, polyvinyl alcohol, polyvinyl pyrrolidone, sodium alginate, water-soluble dextran, pectin, methyl cellulose, ethyl cellulose, casein, diglycerin, propylene glycol , Polyethylene glycol, petrolatum, human serum albumin (HSA), mannitol, sorbitol, lactose, surfactants acceptable as pharmaceutical additives, and the like.
- the additive to be used is selected appropriately or in combination from the above depending on the dosage form, but is not limited thereto.
- a method for producing a mouse monoclonal antibody against PcrV will be described with reference examples.
- Mab166 (Japanese Patent Application No. 2005-500250, etc.) was produced as a recombinant antibody.
- mRNA was extracted from a hybridoma producing an antibody whose subclass is IgG2a, and the constant regions of the H chain and L chain were cloned by RT-PCR.
- Each fragment amplified by PCR was inserted into a pcDNA3.1 (+) vector (manufactured by Invitrogen) at the NheI and NotI sites, and a multiple cloning site was incorporated so that the DNA fragment of the variable region could be inserted.
- the H chain and L chain gene sequences of the Mab166 variable region were each divided into four, and then the sense DNA and antisense DNA were synthesized and annealed.
- the annealed fragments were ligated by DNA ligase, and the H chain was cloned into the MfeI and Blp I regions, and the L chain was cloned into the EcoRV and BsiW I regions.
- the H chain and L chain vectors whose base sequences were confirmed were introduced into HEK239T cells using Lipofectamine 2000 (manufactured by Invitrogen). After 48 hours, the cell supernatant was recovered. Recombinant Mab166 was purified from the collected cell supernatant using a Protein-G (PIERCE) column. (Reference Example 2)
- the amplified PCR fragment was cloned into the pQE30 vector (GE Healthcare) at the Sph I and Hind III sites. After confirming the base sequence, this vector was introduced into E. coli JM109 to obtain recombinant E. coli (PcrV-JM109).
- PcrV-JM109 was cultured in 500 ml of LB / Ampicillin liquid medium at 37 ° C., and when OD600 reached 0.5, 200 ⁇ l of 0.1M IPTG was added to induce PcrV expression. Further, after culturing at 37 ° C.
- buffer A 25 mM Tris-HCl (pH 8.0), 0.5 M NaCl containing 0.5% lysozyme (manufactured by Sigma)
- 15 ml of 2 mM MgCl 2 was added and allowed to stand at 0 ° C. for 30 minutes, followed by sonication.
- a soluble fraction was obtained, passed through His-Bind Columns (manufactured by Novagen), and then eluted with buffer B (200 mM phosphate buffer (pH 7.4), 500 mM NaCl) containing 200 mM imidazole.
- the final elution fraction was dialyzed against 10 mM phosphate buffer (pH 7.4) to perform buffer replacement.
- Biotin labeling of antigen As described above, PcrV protein expressed and purified was reacted in a final concentration 10 mM mercaptoethylamine solution at 37 ° C for 150 minutes to reduce cysteine residues. To the reduced SH group, 20 times the molar amount of PEO-Maleimide activated biotin (manufactured by PIERCE) was added and reacted at 4 ° C. overnight, and then dialyzed to remove excess biotin.
- Spleen cells and mouse myeloma cells were fused with 50% polyethylene glycol 4000 and selected in a medium containing hypoxanthine, aminopterin, and thymidine.
- the immunoassay used for the screening is as follows. 200 ⁇ l of Tris buffer solution (50 mM Tris-HCl, pH 7.5) containing 2 ⁇ g of anti-mouse IgG antibody (manufactured by Shiba Goat) was added to each well of a 96-well microtiter plate (manufactured by NUNK) and fixed at 4 ° C. for 16 hours. did.
- the plate was washed 3 times with 300 ⁇ l of washing solution, and the enhancement reagent (1.39 g / l potassium phthalate, 19.3 mg / l Tri-n-octylphosphine oxide, 4.59 mg / l 2-naphthoyltrifluoracetone, 1.0 g / l 200 ⁇ l of 1 Triton-X100, 6.0 g / l acetic acid) was added, and the time-resolved fluorescence was measured.
- the enhancement reagent (1.39 g / l potassium phthalate, 19.3 mg / l Tri-n-octylphosphine oxide, 4.59 mg / l 2-naphthoyltrifluoracetone, 1.0 g / l 200 ⁇ l of 1 Triton-X100, 6.0 g / l acetic acid
- 1F3 was IgG2a
- 2A4 was IgG2b
- 6F5 was IgG2a
- 7A7 was IgG2a.
- Hybridomas producing the monoclonal antibodies 1F3 and 2A4 were obtained from the National Institute of Advanced Industrial Science and Technology, Patent Biology Depositary Center (1-1-1 Higashi 1-1-1, Tsukuba City, Ibaraki Prefecture) on January 15, 2009, respectively. It has been deposited internationally with receipt numbers FERM ABP-11805 and FERM ABP-11806. (Reference Example 3)
- Antibody binding activity A competitive immunoassay was performed to measure the binding activity of the antibodies (1F3, 2A4, 6F5, 7A7).
- 100 ⁇ l of Tris buffer (50 mM Tris-HCl, pH 7.5) containing 1.5 ⁇ g of anti-mouse Fc antibody (Jackson ImmunoResearch) was added to each well of a 96-well microtiter plate (Nunk) at 4 ° C. Fixed for 16 hours. These wells were washed twice with 300 ⁇ l of washing solution, and then 300 ⁇ l of a block ace (Dainippon Pharmaceutical Co., Ltd.) solution containing 10% sucrose was added and left at room temperature for 2 hours for blocking (anti-mouse IgG antibody). Solid phase plate).
- the affinity of Mab166 is 3.0 ⁇ 10 ⁇ 9
- 1F3 is 3.7 ⁇ 10 ⁇ 10
- 2A4 is 3.5 ⁇ 10 ⁇ 10
- 6F5 is 1.1 ⁇ 10 9.
- ⁇ 10 7A7 was 1.1 ⁇ 10 ⁇ 9
- both clones had higher affinity than Mab166 (FIG. 2) (Reference Example 4)
- m166 Availability of sandwich with Mab166
- the possibility of a sandwich assay between the antibody and Mab166 (hereinafter also referred to as m166) was examined.
- the biotin labeling of Mab166 was performed. 100 ⁇ g of Mab166 and 7.853 ⁇ g of NHS-PEO4 Biotin (manufactured by PIERCE) were mixed in 0.1 M PBS (pH 7.4) and reacted in ice for 2 hours. Then, in order to remove unreacted biotin from the reaction solution, gel chromatography (G2000SW column (manufactured by TOSHO)) was performed.
- G2000SW column manufactured by TOSHO
- Cytotoxicity inhibitory activity test 1F3, 2A4, 6F5, and 7A7 were subjected to a cytotoxicity inhibitory activity test. The method is as follows. First, 1F3, 2A4, 6F5, and 7A7 were diluted from 32 ⁇ g / ml in a 2-fold dilution series, and 10 ⁇ l was dispensed into each well of a 96-well microplate.
- the myeloma cell P3U1 (obtained from ATCC) was added to 5 ⁇ 10 6 Cells / ml or U937 (obtained from ATCC) cells, which were a type of white blood cell, to 1 ⁇ 10 6 Cells / ml, and the cell culture medium (sodium bicarbonate was added) And L-glutamine and phenol red-free RPMI 1640 (manufactured by Sigma)) and 100 ⁇ l of each was added to the 96-well microplate.
- the cell culture medium sodium bicarbonate was added
- L-glutamine and phenol red-free RPMI 1640 manufactured by Sigma
- a Pseudomonas aeruginosa SR24 strain cultured overnight in Cation-adjusted Mueller Hinton Broth (Difco) was added to the cell culture medium to 1 ⁇ 10 8 cfu / ml at 10 ⁇ l / well, and added at 37 ° C. and 3 hours at 5% C0 2 presence.
- WST-8 Koreana Chemical Co., Ltd.
- each 10 [mu] l in the case of using myeloma cells P3U1, 37 ° C., 3 hours at 5% C0 2 presence, in the case of U937 cells incubated for one hour did.
- the absorbance was measured at a wavelength of 450 nm.
- the cytotoxic inhibitory activity (IC50) of Mab166 was 213 nM or higher, whereas 1F3 was 5.3 nM, 2A4 was 20.7 nM, 6F5 was 12.7 nM, 7A7 is 14.7 nM.
- IC50 cytotoxic inhibitory activity
- Mab166 is 54 nM, whereas 1F3 is 4.0 nM, 2A4 is 16 nM, 6F5 is 7.3 nM, and 7A7 is 6.0 nM. It was.
- deletion mutation PcrV (136-233) was prepared by the following method. PCR was performed using the PcrV antigen protein expression plasmid pQE30-PcrV as a template and using the 5 ′ primer GCTCGAGGATCCCAAGGCCGCTGACCGC (SEQ ID NO: 5) and 3 ′ primer GTTAAGCTTCTCGAAGGGGTACTC (SEQ ID NO: 6), and the amplified fragment was BamHI and HindIII After restriction enzyme treatment, it was inserted into pET32b (manufactured by Novagen).
- this vector was introduced into Escherichia coli BL21-DE3 strain to obtain recombinant Escherichia coli (deletion mutant PcrV-BL21).
- This expression strain was pre-cultured in 2 ml of LB / Ampicillin liquid medium at 37 ° C. overnight. 2 mL of pre-culture solution was added to 500 ml of LB / Ampicillin liquid medium and cultured at 37 ° C. When OD600 reached 0.5, the culture solution was added and allowed to stand on ice for 30 minutes. IPTG was added to a final concentration of 0.75 mM, and the cells were cultured overnight at 15 ° C. and 160 rpm in a shaking incubator to induce the expression of PcrV.
- the culture was collected by centrifugation at 4 ° C., x5000 g, 30 min. The supernatant was removed, and 10 ml of Buffer X (25 mM Tris-HCl (pH 7.5), 150 mM NaCl, 2 mM MgCl2) containing 0.1% lysozyme (manufactured by Sigma) was added to the cells and suspended. After leaving it to stand for 1 hour, it was subjected to ultrasonic crushing treatment while cooling with ice.
- Buffer X 25 mM Tris-HCl (pH 7.5), 150 mM NaCl, 2 mM MgCl2) containing 0.1% lysozyme (manufactured by Sigma) was added to the cells and suspended. After leaving it to stand for 1 hour, it was subjected to ultrasonic crushing treatment while cooling with ice.
- the possible fraction was obtained by centrifugation, passed through a column packed with Ni-NTA agarose (Qiagen), and then eluted with Buffer Y (25 mM Tris-HCl (pH 7.5), 150 mM NaCl, 200 mM Imidazole). The final elution fraction was dialyzed against 10 mM phosphate buffer (pH 7.4) to perform buffer replacement.
- enhancement reagent (1.39 g / l potassium phthalate, 19.3 mg / l Tri-n-octylphosphine oxide, 4.59 mg / l 2-naphthoyltrifluoracetone, 1.0 g / l Triton- 200 ⁇ l of X100, 6.0 g / l acetic acid) was added, and the time-resolved fluorescence was measured (FIG. 6).
- the PcrV antibodies 1F3, 2A4, 9D12, 12H9, and m166 from KaloBios used as a reference example showed reactivity with the full length of PcrV (1-294).
- 1F3 and 2A4 showed reactivity against PcrV (136-233), but m166 and 9D12 and 12H9 without neutralizing activity showed no reactivity.
- a PcrV antibody solution diluted to 1 ⁇ g / ml was added to the membrane, reacted at 4 ° C. overnight, and then washed with washing solution B (10 mM phosphate buffer (pH 7.4), 0.05% Tween 20).
- washing solution B 10 mM phosphate buffer (pH 7.4), 0.05% Tween 20.
- a solution of anti-mouse IgG antibody (manufactured by GE Healthcare) labeled as a secondary antibody was added to the membrane, reacted for 2 hours at room temperature, the membrane was washed with washing solution B, and then ECL plus Western Blot Detection System (manufactured by GE Healthcare). Color was developed and photographed with LAS-1000 (FUJIFILM) (FIG. 7).
- PcrV neutralizing antibodies 1F3 and 2A4 reacted to both full-length PcrV and deletion mutant PcrV, while m166 and 6F5 and 7A7 with low neutralizing activity reacted only to full-length PcrV and to deletion mutant PcrV. Did not react.
- the epitope region of the PcrV neutralizing antibodies 1F3 and 2A4 was the region of amino acid residues 136-233, and m166, 6F5, and 7A7 did not have only the amino acid residues 136-233 as the epitope region. (Reference Example 7)
- the test concentration ranges of 1F3, 2A4, and m166 in this test were 1.56-6.25 nM, 6.25-25 nM, and 50-200 nM, respectively.
- 10 ⁇ l of full length PcrV protein and deletion mutant PcrV protein were added to a 96-well plate at a molar concentration of 30, 10, 3, 1, 0.3 times for each test concentration range, and left at room temperature for 30 minutes.
- myeloma cells U3P1 were prepared in 5 ⁇ 10 6 cells / ml using a cell culture medium (containing sodium bicarbonate, L-glutamine and phenol red-free RPMI 1640 (manufactured by Sigma)), and the 96 wells. 70 ⁇ l of each was added to the microplate.
- the antibodies (1F3 and 2A4) having an epitope at amino acid residues 136-233 have stronger cytotoxic inhibitory activity than the antibody (m166) having no epitope in that region. That is, the strength of cytotoxicity-inhibiting activity differs depending on the region recognized by the PcrV antibody, and the strongest cytotoxicity-inhibiting activity can be said to be an antibody having reactivity with the PcrV protein only in the amino acid residue 136-233 region. It was. (Reference Example 8)
- 1F3 was AGGGGCCCAGTGGATAGACCGATGGGCGCTGT (sequence number: 9)
- 2A4 was AGGGGCCCAGTGGATAGACTGATGGGGGGTGT (sequence number: 10).
- the amplified fragment was cloned using TOPO TA Cloning Kit (manufactured by Invitrogen), and the base sequence was analyzed using Applied Biosystems 3130 Genetic Analyzer (manufactured by Applied Biosystems).
- the analysis results of 1F3 are shown in FIG. 10, and 2A4 is shown in FIG.
- the complementarity determining region in the heavy chain variable region is SFTSYWMH (SEQ ID NO: 15) INPSNGRTNYNEKFNT (SEQ ID NO: 16) YGNYVVYYTMDY (SEQ ID NO: 17), and the complementarity determining region in the light chain variable region is SASSTSVSYME (SEQ ID NO: 18) TTSKLAS (SEQ ID NO: 19) HQWRNYPFT (SEQ ID NO: 20).
- the complementarity determining region in the heavy chain variable region of 2A4 is SITSDYAWN (SEQ ID NO: 21) YITYNGDTSYNPSLKS (SEQ ID NO: 22) SRNYYGAWFAY (SEQ ID NO: 23), and the complementarity determining region in the light chain variable region was KASQYVGGTTVA (SEQ ID NO: 24) RASTRHT (SEQ ID NO: 25) QQYCSSPLT (SEQ ID NO: 26).
- mice monoclonal antibody 1F3 Humanization of mouse monoclonal antibody 1F3 prepared as described above was prepared by transplanting the CDR of mouse antibody into a human germline acceptor sequence.
- IgBLAST http://www.ncbi.nlm.nih.gov/igblast/
- the J gene region was selected from IMGT (http://imgt.cines.fr/) for the homology with the mouse antibody DNA sequence.
- IMGT gene name; IGHV1-46 * 01 is the human reproductive gene having the highest homology to the J gene region as the human gene acceptor sequence-derived antibody gene sequence having the highest homology to the mouse antibody heavy chain V gene region. Since IMGT gene name; IGHJ6 * 01 was obtained as a system acceptor sequence-derived antibody gene sequence, this was used as a human framework sequence for heavy chain transplantation. Similarly, IMGT gene name; IGKV1-9 * 01 is the human reproductive system having the highest homology to the J gene region as the human reproductive acceptor sequence-derived antibody gene sequence having the highest homology to the mouse antibody light chain V gene region. Since IMGT gene name; IGKJ2 * 02 was obtained as an acceptor sequence-derived antibody gene sequence, this was used as a human framework sequence for light chain transplantation.
- the V gene region amino acid sequences of the mouse antibody heavy chain and light chain were searched by IgBLAST, and the most homologous heavy chain sequence was Gene name; J558.33, Gene name; IGKV4-80 * 01 was obtained as the light chain sequence with the highest homology.
- the amino acid sequence of the D gene region of the mouse antibody heavy chain was searched with IgBLAST, and Gene name; IGHD2-1 * 01 was obtained as the most homologous heavy chain sequence.
- the J gene region DNA sequences of mouse antibody heavy chain and light chain are searched by IMGT, and IMGT gene name; IGHJ4 * 01 is the most homologous heavy chain sequence, and IMGT gene is the most homologous light chain sequence.
- H71 and H94 were identified as different canonical side chains (http://www.bioinf.org.uk/abs/chothia.html) between the mouse antibody and the template humanized antibody.
- Vernier zone those located in Vernier zone (Foote et al., J. Mol. Biol., 224.487 (1992)) are H48, H67, H69, H71, H78, H93, H94, L46, L71.
- the annealed fragments were joined by DNA ligase, inserted into pcDNA3.1 (+) vector (Invitrogen) at the NheI and NotI sites, and a multicloning site was incorporated so that the DNA fragment of the variable region could be inserted. .
- the sense DNA and the antisense DNA were synthesized and subjected to an annealing reaction.
- the annealed fragments were joined by DNA ligase, and the heavy chain was cloned into the MfeI and BlpI regions, and the light chain was cloned into the EcoRV and BsiWI regions to confirm the DNA base sequence.
- a human / mouse chimeric 1F3 antibody was prepared as an indicator for antibody humanization.
- a human IgG4Pro constant region sequence is designed as a heavy chain constant region sequence in the heavy chain variable region of the mouse antibody, an expression plasmid is constructed by the method described below, and a mouse / human chimeric antibody heavy chain expression plasmid (FIG. 13; H chimera) is constructed. ).
- a DNA sequence in which a human Igkappa constant region sequence is joined to a light chain variable region of a mouse antibody as a light chain constant region sequence is designed, and an expression vector is constructed by the above-described method to obtain a mouse / human chimeric antibody light chain expression plasmid ( FIG. 13; L chimera).
- the KD value of the affinity analysis of the mouse / human chimeric antibody was 2.6 ⁇ 10 ⁇ 10 M.
- the KD value of the antibody of the template humanized antibody heavy chain and the template humanized antibody light chain is 2.2 ⁇ 10 ⁇ 7 M, and the KD value of the antibody of the template humanized antibody heavy chain and the variant humanized antibody light chain is It was 6.5 ⁇ 10 ⁇ 7 M, and it was confirmed that the affinity was greatly reduced.
- the KD values of the mutant humanized antibody heavy chain antibody and the template humanized antibody light chain antibody are 3.3 ⁇ 10 ⁇ 10 M, and the mutant humanized antibody heavy chain and the mutant humanized antibody light chain antibody The KD value was 3.4 ⁇ 10 ⁇ 10 M, indicating that the affinity close to that of the mouse / human chimeric antibody was maintained. From these results, it was determined that the mutant humanized antibody heavy chain is important for maintaining affinity, and that the light chain is the same regardless of whether the template humanized antibody light chain or the mutant humanized antibody light chain is used. Therefore, the template humanized antibody light chain close to the human germline sequence was selected for the light chain.
- the properties were evaluated by surface plasmon resonance analysis (FIG. 14).
- the KD value of the humanized antibody obtained by converting Val of H93 to Ala is 1.0 ⁇ 10 ⁇ 9 M
- the KD value of the humanized antibody obtained by converting Leu of H94 to Arg is 3.2 ⁇ 10 ⁇ 7 M
- the affinity was reduced, no significant decrease in affinity was observed in the humanized antibody in which other mutations were returned to the human germline sequence.
- H93 and H94 used mouse antibody-derived sequences, and H48, H67, H69, H71, and H78 confirmed humanized antibody sequences using human germline amino acid sequences (FIGS. 15 and 16). ).
- An antibody having this sequence was prepared according to the method of (3) below, and the affinity was confirmed by surface plasmon resonance analysis. As a result, it was confirmed that the affinity was equivalent to that of the mouse antibody (FIG. 17).
- m1F3 human antibody
- h1F3 humanized antibody
- m166 The cytotoxicity inhibition activity test of m1F3 (mouse antibody), h1F3 (humanized antibody) and m166 was performed.
- the method is as follows. First, m1F3, h1F3, and m166 were diluted with 200-fold dilution series from 200 nM, 200 nM, and 800 nM, respectively, and 10 ⁇ l was dispensed into each well of a 96-well microplate. Next, 5 ⁇ 10 6 cells / ml of myeloma cell U3P1 or 1 ⁇ 10 6 of U937 cell was used using cell culture medium (containing sodium bicarbonate, L-glutamine and phenol red-free RPMI 1640 (manufactured by Sigma)).
- cell culture medium containing sodium bicarbonate, L-glutamine and phenol red-free RPMI 1640 (manufactured by Sigma)
- the humanized monoclonal antibody of the present invention or a part thereof not only has a high affinity for PcrV but also has a strong inhibitory activity against the cytotoxic activity against eukaryotic cells of Pseudomonas aeruginosa (Pseudomonas aeruginosa). Indicated. Therefore, the pharmaceutical composition containing the monoclonal antibody or a part thereof is useful as a therapeutic agent for infectious diseases involving Pseudomonas aeruginosa, which is currently difficult to treat in the medical field.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Immunology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Molecular Biology (AREA)
- Genetics & Genomics (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Communicable Diseases (AREA)
- Animal Behavior & Ethology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oncology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Peptides Or Proteins (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
Description
(1)以下の(A)~(D)から選ばれる少なくとも1つの性質を有するPcrVに対するヒト化モノクローナル抗体またはその一部:
(A)インビトロにおいて1nMから200nMの濃度で、緑膿菌の白血球細胞に対する細胞傷害活性の50%以上を阻害する、
(B)インビトロにおいて1nMから50nMの濃度で、緑膿菌のミエローマ細胞に対する細胞傷害活性の50%以上を阻害する
(C)PcrVとの解離定数(Kd)が、2×10-9(M)以下である、及び
(D)配列番号1で示されるアミノ酸配列の136位から233位に、エピトープを有する、
(2)受託番号FERM ABP-11805として寄託されたハイブリドーマにより産生されるモノクローナル抗体の全ての相補性決定領域(CDR)のアミノ酸配列を有するヒト化モノクローナル抗体またはその一部、
(3)1)相補性決定領域に下記アミノ酸配列を含む重鎖可変領域; SFTSYWMH(配列番号15)、INPSNGRTNYNEKFNT(配列番号16)、YGNYVVYYTMDY(配列番号17)、および
2)相補性決定領域に下記アミノ酸配列を含む軽鎖可変領域;SASTSVSYME(配列番号18)、TTSKLAS(配列番号19)、 HQWRNYPFT(配列番号20)を有するPcrVに対するヒト化モノクローナル抗体またはその一部、
(4)1)相補性決定領域に下記アミノ酸配列を含む重鎖可変領域; SFTSYWMH(配列番号15)、INPSNGRTNYNEKFNT(配列番号16)、YGNYVVYYTMDY(配列番号17)あるいは、これらの3つのCDRのうちの1つ以上のCDRにおいて1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなる3つのCDR、および
2)相補性決定領域に下記アミノ酸配列を含む軽鎖可変領域;SASTSVSYME(配列番号18)、TTSKLAS(配列番号19)、 HQWRNYPFT(配列番号20)あるいは、これらの3つのCDRのうちの1つ以上のCDRにおいて1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなる3つのCDR
を有し、かつ以下の(A)~(D)から選ばれる少なくとも1つの性質を有するPcrVに対するヒト化モノクローナル抗体またはその一部:
(A)インビトロにおいて1nMから200nMの濃度で、緑膿菌の白血球細胞に対する細胞傷害活性の50%以上を阻害する、
(B)インビトロにおいて1nMから50nMの濃度で、緑膿菌のミエローマ細胞に対する細胞傷害活性の50%以上を阻害する、及び
(C)PcrVとの解離定数(Kd)が、2×10-9(M)以下
(D)配列番号1で示されるアミノ酸配列の136位から233位に、エピトープを有する、
(5)1)配列番号27のアミノ酸配列を有する重鎖可変領域;および
2)配列番号28のアミノ酸配列を有する軽鎖可変領域;を有するPcrVに対するヒト化モノクローナル抗体またはその一部、
(6)上記(1)~(5)のいずれかに記載の抗体又はその一部を有効成分として含む医薬組成物、
(7)上記(3)~(5)に記載の抗体の重鎖可変領域または軽鎖可変領域をコードするポリヌクレオチド、
(8)上記(7)に記載のポリヌクレオチドを含む発現ベクター、
(9)上記(1)~(5)のいずれかに記載の抗体又はその一部の有効量を治療の必要な患者へ投与することを含む緑膿菌感染症の治療法、
(10)緑膿菌感染症の治療薬を製造するための上記(1)~(5)のいずれかに記載の抗体又はその一部の使用、および
(11)緑膿菌感染症の治療のための上記(1)~(5)のいずれかに記載の抗体又はその一部を含む医薬組成物、
に関する。
(2)インビトロにおいて1nMから50nMの濃度で、緑膿菌のミエローマ細胞に対する細胞傷害活性の50%以上を阻害する、および
(3)PcrVとの解離定数(Kd)が、2×10-9(M)以下である、
から選ばれる少なくとも1つの性質を有するPcrVに対するモノクローナル抗体である、(4)配列番号1で示されるアミノ酸配列の136位から233位に、エピトープを有する。
に用いられるヒト抗体は、IgG、IgM、IgA、IgE、IgDなどいかなるアイソタイプのヒト抗体でもよいが、本発明においてはIgGを用いることが好ましく、さらにIgG1又はIgG4が好ましい。
ある。より好ましいハイブリダイゼーションの条件としては、高ストリンジェントな条件が挙げられる。高ストリンジェントな条件とは、例えば65℃、5×SSCおよび0.1%SDSの条件である。これらの条件において、温度を上げる程に高い相同性を有するポリヌクレオチドが効率的に得られることが期待できる。但し、ハイブリダイゼーションのストリンジェンシーに影響する要素としては温度や塩濃度など複数の要素が考えられ、当業者であればこれら要素を適宜選択することで同様のストリンジェンシーを実現することが可能である。
このような担体および添加物の例として、水、医薬的に許容される有機溶媒、コラーゲン、ポリビニルアルコール、ポリビニルピロリドン、アルギン酸ナトリウム、水溶性デキストラン、ペクチン、メチルセルロース、エチルセルロース、カゼイン、ジグリセリン、プロピレングリコール、ポリエチレングリコール、ワセリン、ヒト血清アルブミン(HSA)、マンニトール、ソルビトール、ラクトース、医薬添加物として許容される界面活性剤などが挙げられる。使用される添加物は、剤型に応じて上記の中から適宜あるいは組合せて選択されるが、これらに限定されるものではない。
以下に、参考例により、PcrVに対するマウスモノクローナル抗体の作製法について説明する。
(参考例1)
比較実験をするために、Mab166(特願2005-500250など)をリコンビナント抗体として作製した。
まずサブクラスがIgG2aである抗体を産生するハイブリドーマからmRNAを抽出し、H鎖およびL鎖の定常領域をRT-PCR法でクローニングした。PCRで増幅されたそれぞれの断片はpcDNA3.1(+)ベクター(インビトロジェン社製)にNheI、NotIサイトで挿入し、さらに可変領域部分のDNA断片を挿入できるようにマルチクローニングサイトを組み込んだ。
次にMab166可変領域部のH鎖およびL鎖の遺伝子配列をそれぞれ4分割した後、それらのセンスDNAとアンチセンスDNAを合成し、アニーリング反応した。アニーリング後の断片をDNAリガーゼによって結合させ、H鎖についてはMfeIとBlp I領域に、L鎖についてはEcoRVとBsiW I領域にクローニングを行った。
塩基配列が確認されたH鎖およびL鎖のベクターをLipofectamine2000(インビトロジェン社製)を用いて、HEK239T細胞へ導入し、48時間後、その細胞上清を回収した。回収された細胞上清からProtein-G(PIERCE社製)カラムでリコンビナントMab166を精製した。
(参考例2)
東海大より分与された緑膿菌株標準株PAO1の染色体DNAを抽出し、そのDNAを鋳型としてPCR法により、PcrVタンパク質をコードする遺伝子(配列番号:2)を増幅した。5’側プライマーに制限酵素Sph I認識部位を、3’側プライマーに制限酵素Hind III認識部位を設け(配列番号:3、4)、さらに発現ベクター挿入時に、ビオチン標識のためにヒスチジンタグと開始コドンの間にシステインが挿入されるように設計した。増幅されたPCR断片はSph IおよびHind III部位でpQE30ベクター(GEヘルスケア社製)へクローニングを行なった。塩基配列を確認後、大腸菌JM109へ本ベクターを導入し、組み換え大腸菌(PcrV-JM109)を得た。PcrV-JM109を500mlのLB/Ampicillin液体培地中に37℃で培養し、OD600が0.5になった時に0.1MのIPTGを200μl加え、PcrVの発現を誘導した。さらに、37℃で1.5時間培養後、菌体を遠心分離し、0.5%のリゾチーム(シグマ社製)を含む緩衝液A(25mM Tris-HCl(pH8.0)、0.5M NaCl、2mM MgCl2)を15 ml加え、0℃で30分間放置後、超音波処理を行った。遠心後、可溶性画分を得、His-Bind Columns(Novagen社製)に通した後、200mM イミダゾールを含む緩衝液B(20mM リン酸緩衝液(pH7.4)、500mM NaCl)で溶出した。最終的な溶出画分は10mMリン酸緩衝液(pH7.4)に対して透析することにより緩衝液置換を行った。
上記のように、発現・精製させたPcrVタンパク質を終濃度10mM メルカプトエチルアミン溶液中で37℃、150分反応させてシステイン残基を還元した。還元されたSH基にモル比で20倍量のPEO-Maleimide activated biotin(PIERCE社製)を添加し、4℃で終夜反応後、過剰なビオチンを除去するため、透析をおこなった。
抗原として精製したPcrV 20μgをフロイント完全アジュバントと共に4週齢Balb/c雌マウス7匹に腹腔内投与し、初回免疫とした。その後、14日後、35日後にPcrV 20μgをフロイント不完全アジュバントと共に投与し、追加免疫とした。さらに77日後にPcrV 20μgの腹腔投与とPcrV 10μgを尾静脈投与することで、最終免疫とした。
最終免疫の3日後に脾臓を摘出し、脾臓細胞を回収した。脾臓細胞とマウスミエローマ細胞(p3×63-Ag8.U1、東京腫瘤研究所)を50%のポリエチレングリコール4000を用いて融合させ、ヒポキサンチン、アミノプテリン、及びチミジンを含む培地で選択した。
細胞融合8日後に特異抗体産生細胞のスクリーニングを行った。スクリーニングに用いたイムノアッセイは以下の通りである。96穴マイクロタイタープレート(ヌンク社製)の各ウェルに2μgの抗マウスIgG抗体(シバヤギ社製)を含むトリス緩衝液(50mM Tris-HCl、pH7.5)を200μl加えて4℃で16時間固定した。これらのウェルを300μlの洗浄液(0.1% Tween20を含む生理食塩水)で2回洗浄した後、ブロックエース(大日本製薬社製)を300μl加えて室温で2時間放置して、ブロッキングを行った(抗マウスIgG抗体固相化プレート)。各ウェルを300μlの洗浄液で2回洗浄した後、50μlのハイブリドーマ培養上清を150μlの緩衝液C(0.9% 塩化ナトリウム、0.05% アジ化ナトリウム、0.5% ウシ血清アルブミン、0.01% Tween80、25μM Diethylenetriamine-N,N,N’,N‘’、N’ ’-pentaacetic acidを含む50mMトリス緩衝液、pH7.6)で希釈して各ウェルに添加し、4℃で終夜反応させた。300μlの洗浄液で3回洗浄後、10ngのEu-Labelled Streptavidin(PERKIN ELMER社製)と25ng ビオチン標識化PcrVを含む200μlの緩衝液Cを加え、室温1時間反応させた。反応後、300μlの洗浄液で3回洗浄を行い、増強試薬(1.39g/l フタル酸カリウム、19.3mg/l Tri-n-octylphosphine oxide、4.59mg/l 2-naphthoyltrifluoroacetone、1.0g/l Triton-X100、6.0g/l 酢酸)を200μl添加し、その時間分解蛍光を測定した。
(参考例3)
抗体(1F3、2A4、6F5、7A7)の結合活性を測定するために、競合イムノアッセイを行った。96穴マイクロタイタープレート(ヌンク社製)の各ウェルに1.5μgの抗マウスFc抗体(Jackson ImmunoReseach社製)を含むトリス緩衝液(50mM Tris-HCl、pH7.5)を100μl加えて4℃で16時間固定した。これらのウェルを300μlの洗浄液で2回洗浄した後、10%スクロースを含むブロックエース(大日本製薬社製)溶液を300μl加えて室温で2時間放置して、ブロッキングを行った(抗マウスIgG抗体固相化プレート)。各ウェルを300μlの洗浄液で2回洗浄した後、2ng/ウェルの各抗体および未標識のPcrVを500ng/ウェルから10倍の希釈系列で5段階添加した。その後、5ng/ウェルのビオチン化PcrVを添加し終夜反応させた。300μlの洗浄液で4回洗浄し、100/ウェルのEnhancement Solution(Wallac社製)を添加後、1分間の攪拌後、時間分解蛍光を測定した。その結果、Mab166と比較して、1F3、2A4、6F5、7A7はPcrVとの強い結合活性を示した(図1)。
(参考例4)
1F3、2A4、6F5、7A7はMab166とエピトープが異なることを証明するため、当該抗体とMab166(以下、m166とも記載する)とのサンドイッチ・アッセイの可否を検討した。
最初に、Mab166のビオチン標識を行った。100μgのMab166と7.853μgのNHS-PEO4 Biotin(PIERCE社製)を0.1M PBS(pH7.4)中で混合し、氷中で2時間反応させた。その後、反応溶液から未反応のビオチンを除去するため、ゲルクロマトグラフィー(G2000SWカラム(TOSHO社製))を行った。
(参考例5)
1F3、2A4、6F5、7A7について、細胞傷害阻害活性試験を行った。その方法は以下の通りである。
まず1F3、2A4、6F5、7A7を、32μg/mlから2倍希釈系列で希釈し、96ウェルマイクロプレートの各ウェルに10μlずつ分注した。次にミエローマ細胞P3U1(ATCCから入手)を5×106Cells/mlもしくは白血球細胞の一種であるU937(ATCCから入手)細胞を1×106Cells/mlに細胞培養用培地(炭酸水素ナトリウムを含み、L-グルタミン及びフェノール・レッド不含RPMI1640(Sigma社製))を用いて調製し、当該96ウェルマイクロプレートに各100μl添加した。さらにCation-adjusted Mueller Hinton Broth(Difco)で一晩培養したシュードモナス・アエルギノーザSR24株を細胞培養用培地を用いて1×108cfu/mlに調製した菌液を10μl/ウェルで添加し、37℃、5%C02存在下で3時間培養した。3時間経過後、WST-8(キシダ化学社製)を各10μl添加し、ミエローマ細胞P3U1を用いた場合は、37℃、5%C02存在下で3時間、U937細胞の場合は1時間培養した。培養終了後、450nmの波長で吸光度を測定した。
(参考例6)
欠失変異PcrV(136-233)は以下の方法で作製した。
PcrV抗原タンパク発現プラスミドであるpQE30―PcrVを鋳型とし、5’側プライマーGCTCGAGGATCCCAAGGCGCTGACCGC(配列番号5)、3’側プライマーGTTAAGCTTCTCGAAGGGGTACTC(配列番号6)を用いてPCRを行い、増幅したフラグメントをBamHI、HindIIIで制限酵素処理し、pET32b(Novagen社製)に挿入した。塩基配列を確認後、本ベクターを大腸菌BL21-DE3株に導入し組み換え大腸菌(欠失変異PcrV-BL21)を得た。この発現株を2mlのLB/Ampicillin液体培地で37℃、一昼夜前培養した。500mlのLB/Ampicillin液体培地中に2mLの前培養液を加えて37℃で培養し、OD600が0.5になった時に培養液を加えて氷上で30分間静置した。終濃度0.75mMとなるようにIPTGを加え、震盪培養機で15℃、160rpm、一昼夜培養してPcrVの発現を誘導した。培養液を4℃、x5000g、30minで遠心して集菌した。上清を除き、菌体に0.1%のリゾチーム(シグマ社製)を含むBuffer X(25mM Tris-HCl(pH7.5)、150mM NaCl、2mM MgCl2)を10 ml加えて懸濁し、氷上で1時間静置した後、氷冷しながら超音波破砕処理した。遠心により可能性画分を得、Ni-NTAアガロース(Qiagen)を充填したカラムに通した後、Buffer Y(25mM Tris-HCl(pH7.5)、150mM NaCl、200mM Imidazole)で溶出した。最終的な溶出画分は10mMリン酸緩衝液(pH7.4)に対して透析することにより緩衝液置換を行った。
96穴マイクロタイタープレート(ヌンク社製)の各ウェルに1.5μgの抗マウスIgG Fc抗体(Jackson ImmunoResearch社製)を含むトリス緩衝液(50mM Tris-HCl、pH7.5)を150μl加えて4℃で16時間固定した。これらのウェルを300μlの洗浄液(0.1% Tween20を含む生理食塩水)で2回洗浄した後、ブロッキング溶液(50mM Tris-HCl pH7.5、2%ブロックエース(大日本製薬社製)、10%スクロース)を300μl加えて室温で2時間放置して、各ウェルをブロッキングした(抗マウスIgG抗体固相化プレート)。各ウェルを300μlの洗浄液で1回洗浄した後、緩衝液C(0.9% 塩化ナトリウム、0.05% アジ化ナトリウム、0.5% ウシ血清アルブミン、0.01% Tween80、25μM Diethylenetriamine-N,N,N’ ,N’ ’, N’ ’-pentaacetic acidを含む50mMトリス緩衝液、pH7.6)で80ng/mlに希釈したPcrV抗体溶液を50μlずつ各ウェルに添加し、Buffer Cで200ng/mlに希釈したEu-Labelled Streptavidin(PERKIN ELMER社製)溶液を各ウェルに50μlずつ、DELFIA Asssay Bufferで各濃度に希釈した欠損変異PcrVタンパクを各ウェルに100μlずつ加え4℃で終夜反応させた。300μlの洗浄液で3回洗浄後、200μlの増強試薬(1.39g/l フタル酸カリウム、19.3mg/l Tri-n-octylphosphine oxide、4.59mg/l 2-naphthoyltrifluoroacetone、1.0g/l Triton-X100、6.0g/l 酢酸)を200μl添加し、その時間分解蛍光を測定した(図6)。
またウエスタンブロット法による結合解析も行なった。精製したリコンビナントPcrVタンパクをSDS-PAGEを行った後、PVDFメンブレンに転写した。転写されたメンブレンはブロックエース(大日本製薬製)溶液で室温、2時間、振盪しながらブロッキングした。1μg/mlに希釈したPcrV抗体溶液をメンブレンに加え、4℃で終夜反応させた後、洗浄液B(10mM リン酸緩衝液(pH7.4)、0.05% Tween20)で洗浄した。2次抗体として標識した抗マウスIgG抗体(GE Healthcare社製)溶液をメンブレンに加え、室温で2時間反応後、メンブレンを洗浄液Bで洗浄し、ECL plus Western Blot Detection System(GE Healthcare社製)で発色させ、LAS-1000(FUJIFILM)で撮影した(図7)。PcrV中和抗体1F3、2A4は全長PcrVおよび欠失変異PcrVの双方に対して反応したが、m166、及び中和活性の低い6F5、7A7は全長PcrVに対してのみ反応し、欠失変異PcrVには反応しなかった。
(参考例7)
全長PcrVタンパク質(配列番号1)および欠損変異PcrVタンパク質(配列番号1における136位-233位のアミノ酸配列を有する)を用いて,1F3、2A4、m166における細胞傷害阻害活性の抑制試験を行なった。その方法は以下の通りである。
まず1F3、2A4、m166をそれぞれ200nM、200nM、400nMから2倍希釈系列で希釈し、96ウェルマイクロプレートに10μlずつ分注した。本試験における1F3、2A4、m166の試験濃度域はそれぞれ1.56-6.25nM、6.25-25nM、50-200nMとした.各試験濃度域に対して全長PcrVタンパク質および欠損変異PcrVタンパク質を30、10、3、1、0.3倍モル濃度で96ウェルプレートに10μl添加し、30分室温で放置した.次にミエローマ細胞U3P1を5×106cells/mlに細胞培養用培地(炭酸水素ナトリウムを含み、L-グルタミン及びフェノール・レッド不含RPMI1640(Sigma社製))を用いて調製し、当該96ウェルマイクロプレートに各70μl添加した。さらにMueller Hinton Broth(Difco)で一晩培養した緑膿菌SR24株を細胞培養用培地を用いて1×108cfu/mlに調製した菌液を10μl添加し、37℃、5%C02存在下で3時間培養した。3時間経過後、WST-8(キシダ化学社製)を各10μl添加し、37℃、5%C02存在下で3時間培養した。培養終了後、450nmの波長で吸光度を測定した。
(参考例8)
樹立されたハイブリドーマ細胞から、RNeasy Mini Kit(QIAGEN社製)を用いて、RNAの抽出を行った。抽出したRNAを1μgから、5’RACE System for Rapid Amplification of cDNA Ends,Version 2.0(Invitrogen社製)を用いて、DNA断片の増幅を行った。その際、cDNA合成のために使用したプライマーは、1F3がTAGAGTCACCGAGGAGCCAGTTGT(配列番号:7)であり、2A4はTCCAGAGTTCCAAGTCACAGTCAC(配列番号:8)であった。また5’RACE法に用いたプライマーは、1F3がAGGGGCCAGTGGATAGACCGATGGGGCTGT(配列番号:9)であり、2A4がAGGGGCCAGTGGATAGACTGATGGGGGTGT(配列番号:10)であった。増幅された断片は、TOPO TA Cloning Kit(Invitrogen社製)でクローニングされ、Applied Biosystems 3130 Genetic Analyzer(Applied Biosystems社製)で塩基配列を解析した。1F3の解析結果を、図10に、2A4については図11に示した。可変領域のアミノ酸配列をKabatらにより作成された抗体のアミノ酸配列のデータベース([Sequence of Proteins of Immunological Interest」US Dept.Health and Human Services,1983)にあてはめて、相同性を調べた結果、1F3の重鎖可変領域における相補性決定領域は、SFTSYWMH(配列番号15)INPSNGRTNYNEKFNT(配列番号16)YGNYVVYYTMDY(配列番号17)であり、軽鎖可変領域における相補性決定領域は、SASTSVSYME(配列番号18)TTSKLAS(配列番号19)HQWRNYPFT(配列番号20)であった。同様にして調べた結果、2A4の重鎖可変領域における相補性決定領域は、SITSDYAWN(配列番号21)YITYNGDTSYNPSLKS(配列番号22)SRNYYGAWFAY(配列番号23)であり、軽鎖可変領域における相補性決定領域は、KASQYVGTTVA(配列番号24)RASTRHT(配列番号25)QQYCSSPLT(配列番号26)であった。
上記のように作製したマウスモノクローナル抗体1F3のヒト化については、マウス抗体のCDRをヒト生殖系アクセプター配列に移植することで作製した。
具体的には、マウス抗体重鎖、軽鎖それぞれのV遺伝子領域アミノ酸配列に最もホモロジーの高いヒト生殖系アクセプター配列をIgBLAST(http://www.ncbi.nlm.nih.gov/igblast/)で検索し、J遺伝子領域についてはマウス抗体DNA配列とホモロジーの高い配列をIMGT( http://imgt.cines.fr/)から選択した。
マウス抗体と鋳型ヒト化抗体とで異なるCanonical側鎖(http://www.bioinf.org.uk/abs/chothia.html)として、H71、H94が確認された。マウス抗体と鋳型ヒト化抗体とで異なる側鎖のうち、Vernier zone(Foote et al., J.Mol.Biol., 224.487(1992))に位置するのはH48,H67,H69,H71,H78,H93,H94,L46,L71であった。マウス抗体と鋳型ヒト化抗体とで異なるInterchain packing residueは確認されなかった。これらの結果を総合し、鋳型ヒト化抗体のH48,H67,H69,H71,H78,H93,H94,L9,L46,L71のアミノ酸側鎖をマウス抗体型の変異(Backmutation)を全て導入した変異型ヒト化抗体を設計した。設計した鋳型ヒト化抗体可変領域(図12;Template)、および変異型ヒト化抗体可変領域(図12;Backmutation)の重鎖の定常領域配列としてヒトIgG4Pro定常領域配列を、軽鎖の定常領域配列としてヒトIgkappa定常領域配列を接合したDNA配列を設計し、下記に記載の方法により、それぞれ鋳型ヒト化抗体重鎖発現プラスミド(図13;HT)、鋳型ヒト化抗体軽鎖発現プラスミド(図13;LT)、変異型ヒト化抗体重鎖発現プラスミド(図13;HB)、変異型ヒト化抗体軽鎖発現プラスミド(図13;LB)を構築した。
まずヒンジ部分のS-S結合が開裂するのを回避するため(Angal et al.,1993,Mol.Immunol.30(1):105-108およびSchuurman et al.,2001,Mol.Immunol.,38:1-8.)228番目のセリン配列をプロリンに変換し、IgG4の定常領域のDNAを4分割した後、それらのセンスDNAとアンチセンスDNAを合成し、アニーリング反応した。アニーリング後の断片をDNAリガーゼによって結合させ、pcDNA3.1(+)ベクター(インビトロジェン社製)にNheI、NotIサイトで挿入し、さらに可変領域部分のDNA断片を挿入できるようにマルチクローニングサイトを組み込んだ。
次にヒト化PcrV抗体の可変領域部の遺伝子配列を重鎖および軽鎖をそれぞれ4分割した後、それらのセンスDNAとアンチセンスDNAを合成し、アニーリング反応した。アニーリング後の断片をDNAリガーゼによって結合させ、重鎖についてはMfeIとBlpI領域に、軽鎖についてはEcoRVとBsiWI領域にクローニングを行い、DNA塩基配列を確認した。
上記の方法で作製された重鎖遺伝子と軽鎖遺伝子を、Lipofectamine2000(インビトロジェン社製)を用いて、HEK293F細胞へ導入し、72時間後、その細胞上清を回収した。回収された細胞上清からProtein-G(PIERCE社製)カラムでリコンビナント抗体を精製した。
まずm1F3、h1F3、m166をそれぞれ200nM、200nM、800nMから2倍希釈系列で希釈し、96ウェルマイクロプレートの各ウェルに10μlずつ分注した。次に細胞培養用培地(炭酸水素ナトリウムを含み、L-グルタミン及びフェノール・レッド不含RPMI1640(Sigma社製))を用いてミエローマ細胞U3P1を5×106Cells/mlもしくはU937細胞を1×106Cells/mlに調製し、当該96ウェルマイクロプレートに各70μl添加した。さらにCation-adjusted Mueller Hinton Broth(Difco)で一晩培養した緑膿菌SR24株を細胞培養用培地において1×108cfu/mlに調製し、10μl/ウェルで添加し、37℃、5%CO2存在下で3時間培養した。3時間経過後、WST-8(キシダ化学社製)を各10μl添加し、37℃、5%CO2存在下で1時間培養した。培養終了後、450nmの波長で吸光度を測定した。その結果、U937細胞を用いた場合(図18)、その細胞傷害活性(IC50)は、m166が98.4nMであるのに対して、m1F3は1.4nM、h1F3は1.5nMであり、ミエローマ細胞を用いた場合(図19)は、m166が85.4nMであるのに対して、1F3は1.5nM、h1F3は1.3nMであった。すなわち、m1F3とh1F3の細胞傷害阻害活性は同程度であり、m166よりも強い活性を示した。
Claims (8)
- 以下の(1)~(4)から選ばれる少なくとも1つの性質を有するPcrVに対するヒト化モノクローナル抗体またはその一部:
(1)インビトロにおいて1nMから200nMの濃度で、緑膿菌の白血球細胞に対する細胞傷害活性の50%以上を阻害する、
(2)インビトロにおいて1nMから50nMの濃度で、緑膿菌のミエローマ細胞に対する細胞傷害活性の50%以上を阻害する
(3)PcrVとの解離定数(Kd)が、2×10-9(M)以下である、及び
(4)配列番号1で示されるアミノ酸配列の136位から233位に、エピトープを有する。 - 受託番号FERM ABP-11805として寄託されたハイブリドーマにより産生されるモノクローナル抗体の全ての相補性決定領域(CDR)のアミノ酸配列を有するヒト化モノクローナル抗体またはその一部。
- 1)相補性決定領域に下記アミノ酸配列を含む重鎖可変領域; SFTSYWMH(配列番号15)、INPSNGRTNYNEKFNT(配列番号16)、YGNYVVYYTMDY(配列番号17)、および
2)相補性決定領域に下記アミノ酸配列を含む軽鎖可変領域;SASTSVSYME(配列番号18)、TTSKLAS(配列番号19)、 HQWRNYPFT(配列番号20)を有するPcrVに対するヒト化モノクローナル抗体またはその一部。 - 1)相補性決定領域に下記アミノ酸配列を含む重鎖可変領域; SFTSYWMH(配列番号15)、INPSNGRTNYNEKFNT(配列番号16)、YGNYVVYYTMDY(配列番号17)あるいは、これらの3つのCDRのうちの1つ以上のCDRにおいて1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなる3つのCDR、および
2)相補性決定領域に下記アミノ酸配列を含む軽鎖可変領域;SASTSVSYME(配列番号18)、TTSKLAS(配列番号19)、 HQWRNYPFT(配列番号20)あるいは、これらの3つのCDRのうちの1つ以上のCDRにおいて1若しくは数個のアミノ酸が欠失、置換若しくは付加されたアミノ酸配列からなる3つのCDRを有し、かつ以下の(1)~(4)から選ばれる少なくとも1つの性質を有するPcrVに対するヒト化モノクローナル抗体またはその一部:
(1)インビトロにおいて1nMから200nMの濃度で、緑膿菌の白血球細胞に対する細胞傷害活性の50%以上を阻害する、
(2)インビトロにおいて1nMから50nMの濃度で、緑膿菌のミエローマ細胞に対する細胞傷害活性の50%以上を阻害する、及び
(3)PcrVとの解離定数(Kd)が、2×10-9(M)以下
(4)配列番号1で示されるアミノ酸配列の136位から233位に、エピトープを有する。 - 1)配列番号27のアミノ酸配列を有する重鎖可変領域;および
2)配列番号28のアミノ酸配列を有する軽鎖可変領域;を有するPcrVに対するヒト化モノクローナル抗体またはその一部。 - 請求項1~5のいずれかに記載の抗体又はその一部を有効成分として含む医薬組成物。
- 請求項3~5に記載の抗体の重鎖可変領域または軽鎖可変領域をコードするポリヌクレオチド。
- 請求項7に記載のポリヌクレオチドを含む発現ベクター。
Priority Applications (16)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201080010648.7A CN102341496B (zh) | 2009-03-11 | 2010-03-09 | 具有抗绿脓杆菌作用的人源化PcrV抗体 |
ES10750805.3T ES2529734T7 (es) | 2009-03-11 | 2010-03-09 | Anticuerpo PcrV humanizado con actividad anti-pseudomonas |
EA201190163A EA021101B1 (ru) | 2009-03-11 | 2010-03-09 | ГУМАНИЗИРОВАННОЕ АНТИТЕЛО К PcrV, ОБЛАДАЮЩЕЕ АКТИВНОСТЬЮ ПРОТИВ ПСЕВДОМОНАС |
MX2011009100A MX2011009100A (es) | 2009-03-11 | 2010-03-09 | Anticuerpo humanizado pcrv que tiene actividad anti-pseudomonal. |
EP20100750805 EP2407537B3 (en) | 2009-03-11 | 2010-03-09 | Humanized pcrv antibody having anti-pseudomonal activity |
JP2011503817A JP5780595B2 (ja) | 2009-03-11 | 2010-03-09 | 抗緑膿菌作用を有するヒト化PcrV抗体 |
SG2011063401A SG174225A1 (en) | 2009-03-11 | 2010-03-09 | Humanized pcrv antibody having anti-pseudomonal activity |
PL10750805T PL2407537T6 (pl) | 2009-03-11 | 2010-03-09 | Humanizowane przeciwciało PcrV wykazujące aktywność przeciwko Pseudomonas |
AU2010222150A AU2010222150B2 (en) | 2009-03-11 | 2010-03-09 | Humanized PcrV antibody having anti-Pseudomonal activity |
DK10750805.3T DK2407537T6 (en) | 2009-03-11 | 2010-03-09 | PcrV HUMANIZED ANTIBODY WITH ACTIVITY ANTIPSEUDOMONAL |
US13/256,219 US20120093808A1 (en) | 2009-03-11 | 2010-03-09 | Humanized pcrv antibody having anti-pseudomonal activity |
CA2754900A CA2754900A1 (en) | 2009-03-11 | 2010-03-09 | Humanized pcrv antibody having anti-pseudomonal activity |
BRPI1008977A BRPI1008977A2 (pt) | 2009-03-11 | 2010-03-09 | anticorpo para pcrv humanizado que possui atividade anti-pseudomonal |
KR1020117021150A KR101686261B1 (ko) | 2009-03-11 | 2010-03-09 | 항녹농균 작용을 갖는 인간화 PcrV 항체 |
IL214959A IL214959A (en) | 2009-03-11 | 2011-09-04 | Cultured pcrv antibodies with anti-pseudomonal activity |
US13/734,872 US9085611B2 (en) | 2009-03-11 | 2013-01-04 | Humanized PcrV antibody having anti-pseudomonal activity |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009057929 | 2009-03-11 | ||
JP2009-057929 | 2009-03-11 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/256,219 A-371-Of-International US20120093808A1 (en) | 2009-03-11 | 2010-03-09 | Humanized pcrv antibody having anti-pseudomonal activity |
US13/734,872 Division US9085611B2 (en) | 2009-03-11 | 2013-01-04 | Humanized PcrV antibody having anti-pseudomonal activity |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010104052A1 true WO2010104052A1 (ja) | 2010-09-16 |
Family
ID=42728341
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2010/053828 WO2010104052A1 (ja) | 2009-03-11 | 2010-03-09 | 抗緑膿菌作用を有するヒト化PcrV抗体 |
Country Status (18)
Country | Link |
---|---|
US (2) | US20120093808A1 (ja) |
EP (1) | EP2407537B3 (ja) |
JP (1) | JP5780595B2 (ja) |
KR (1) | KR101686261B1 (ja) |
CN (2) | CN102341496B (ja) |
AU (1) | AU2010222150B2 (ja) |
BR (1) | BRPI1008977A2 (ja) |
CA (1) | CA2754900A1 (ja) |
DK (1) | DK2407537T6 (ja) |
EA (1) | EA021101B1 (ja) |
ES (1) | ES2529734T7 (ja) |
IL (1) | IL214959A (ja) |
MX (1) | MX2011009100A (ja) |
PL (1) | PL2407537T6 (ja) |
PT (1) | PT2407537E (ja) |
SG (2) | SG10201400520WA (ja) |
TW (1) | TWI489995B (ja) |
WO (1) | WO2010104052A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2248826A1 (en) * | 2008-01-10 | 2010-11-10 | Shionogi&Co., Ltd. | Antibody directed against pcrv |
US9085611B2 (en) | 2009-03-11 | 2015-07-21 | Shionogi & Co., Ltd. | Humanized PcrV antibody having anti-pseudomonal activity |
RU2687588C2 (ru) * | 2011-11-07 | 2019-05-15 | МЕДИММЬЮН ЭлЭлСи | Способы комбинированной терапии с применением молекул, связывающихся с psl и pcrv pseudomonas |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6494519B6 (ja) * | 2013-09-30 | 2019-07-31 | 第一三共株式会社 | 抗lps o11抗体 |
GB201518668D0 (en) * | 2015-10-21 | 2015-12-02 | Glaxosmithkline Biolog Sa | Immunogenic Comosition |
CN113966343A (zh) * | 2019-06-11 | 2022-01-21 | 瑞泽恩制药公司 | 结合PcrV的抗PcrV抗体、包含抗PcrV抗体的组合物及其使用方法 |
CN114072145B (zh) * | 2020-06-01 | 2024-06-11 | 北京三诺佳邑生物技术有限责任公司 | 特异性识别假单胞菌pcrv的抗体及其用途 |
CN118440191A (zh) * | 2024-05-11 | 2024-08-06 | 重庆原伦生物科技有限公司 | 一种抗铜绿假单胞菌PcrV抗体的制备及其应用 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005500250A (ja) * | 2001-01-26 | 2005-01-06 | エムシーダブリユー リサーチ フオンデーシヨン インコーポレーテツド | シュードモナスv抗原を用いる免疫化のための方法および組成物 |
JP2007533304A (ja) * | 2004-01-20 | 2007-11-22 | カロバイオズ インコーポレーティッド | 最低限必須な結合決定基を用いた抗体特異性の移入 |
WO2009073631A2 (en) * | 2007-11-30 | 2009-06-11 | Kalobios Pharmaceuticals, Inc. | Antibodies to the pcrv antigen of pseudomonas aeruginosa |
WO2009088032A1 (ja) * | 2008-01-10 | 2009-07-16 | Shionogi & Co., Ltd. | PcrVに対する抗体 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6551795B1 (en) | 1998-02-18 | 2003-04-22 | Genome Therapeutics Corporation | Nucleic acid and amino acid sequences relating to pseudomonas aeruginosa for diagnostics and therapeutics |
DE69930166T2 (de) | 1998-11-25 | 2006-12-14 | MCW Research Foundation, Inc., Milwaukee | Verfahren und zusammensetzungen für impfung mit dem pseudomonas aeruginosa v-antigen |
US20030228324A1 (en) | 1999-05-06 | 2003-12-11 | Malcolm Andrew J. | Peptide compositions and methods of producing and using same |
KR20070007265A (ko) | 2003-12-30 | 2007-01-15 | 쌘디스크 코포레이션 | 제어 데이터 관리를 구비한 비휘발성 메모리 및 방법 |
CN101454446A (zh) | 2006-03-30 | 2009-06-10 | 明治制果株式会社 | 绿脓杆菌的外膜蛋白pa0427 |
US20100330100A1 (en) | 2007-06-29 | 2010-12-30 | Meiji Seika Kaisha Ltd. | Pseudomonas aeruginosa-outer membrane protein pa4710 |
EA021101B1 (ru) | 2009-03-11 | 2015-04-30 | Шионоги Энд Ко., Лтд. | ГУМАНИЗИРОВАННОЕ АНТИТЕЛО К PcrV, ОБЛАДАЮЩЕЕ АКТИВНОСТЬЮ ПРОТИВ ПСЕВДОМОНАС |
-
2010
- 2010-03-09 EA EA201190163A patent/EA021101B1/ru not_active IP Right Cessation
- 2010-03-09 KR KR1020117021150A patent/KR101686261B1/ko active IP Right Grant
- 2010-03-09 CA CA2754900A patent/CA2754900A1/en not_active Abandoned
- 2010-03-09 CN CN201080010648.7A patent/CN102341496B/zh not_active Expired - Fee Related
- 2010-03-09 PT PT107508053T patent/PT2407537E/pt unknown
- 2010-03-09 PL PL10750805T patent/PL2407537T6/pl unknown
- 2010-03-09 ES ES10750805.3T patent/ES2529734T7/es active Active
- 2010-03-09 CN CN201410229979.XA patent/CN104119437A/zh active Pending
- 2010-03-09 MX MX2011009100A patent/MX2011009100A/es active IP Right Grant
- 2010-03-09 DK DK10750805.3T patent/DK2407537T6/en active
- 2010-03-09 JP JP2011503817A patent/JP5780595B2/ja active Active
- 2010-03-09 AU AU2010222150A patent/AU2010222150B2/en active Active
- 2010-03-09 EP EP20100750805 patent/EP2407537B3/en active Active
- 2010-03-09 SG SG10201400520WA patent/SG10201400520WA/en unknown
- 2010-03-09 SG SG2011063401A patent/SG174225A1/en unknown
- 2010-03-09 US US13/256,219 patent/US20120093808A1/en not_active Abandoned
- 2010-03-09 BR BRPI1008977A patent/BRPI1008977A2/pt not_active IP Right Cessation
- 2010-03-09 WO PCT/JP2010/053828 patent/WO2010104052A1/ja active Application Filing
- 2010-03-10 TW TW099106943A patent/TWI489995B/zh active
-
2011
- 2011-09-04 IL IL214959A patent/IL214959A/en not_active IP Right Cessation
-
2013
- 2013-01-04 US US13/734,872 patent/US9085611B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005500250A (ja) * | 2001-01-26 | 2005-01-06 | エムシーダブリユー リサーチ フオンデーシヨン インコーポレーテツド | シュードモナスv抗原を用いる免疫化のための方法および組成物 |
JP2007533304A (ja) * | 2004-01-20 | 2007-11-22 | カロバイオズ インコーポレーティッド | 最低限必須な結合決定基を用いた抗体特異性の移入 |
WO2009073631A2 (en) * | 2007-11-30 | 2009-06-11 | Kalobios Pharmaceuticals, Inc. | Antibodies to the pcrv antigen of pseudomonas aeruginosa |
WO2009088032A1 (ja) * | 2008-01-10 | 2009-07-16 | Shionogi & Co., Ltd. | PcrVに対する抗体 |
Non-Patent Citations (5)
Title |
---|
BAER M. ET AL.: "An Engineered Human Antibody Fab Fragment Specific for pseudomonas aeruginosa PcrV Antigen Has Potent Antibacterial Activity", INFECTION AND IMMUNITY, vol. 77, no. 3, March 2009 (2009-03-01), pages 1083 - 1090, XP002581947 * |
DATABASE DATABASE DDBJ/EMBL/GENBAN [online] 19 November 1997 (1997-11-19), YAHR T.L. ET AL.: "DEFINITION: Pseudomonas aeruginosa PcrG (pcrG), PcrV (pcrV), PcrH, PopB(popB) and PopD(popD) genes, complete cds", XP008164986, Database accession no. AFO10149 * |
FAURE K ET AL.: "Effects of monoclonal anti- PcrV antibody on Pseudomonas aeruginosa-induced acute lung injury in a rat model, J. Immune Based Ther.", VACCINES, vol. 1, no. 2, 2003, XP021008582 * |
See also references of EP2407537A4 * |
YAHR T.L. ET AL.: "Identification of type III secreted products of the Pseudomonas aeruginosa exoenzyme S regulon.", J. BACTERIOL., vol. 179, 1997, pages 7165 - 7168, XP000915058 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2248826A1 (en) * | 2008-01-10 | 2010-11-10 | Shionogi&Co., Ltd. | Antibody directed against pcrv |
EP2248826A4 (en) * | 2008-01-10 | 2011-03-02 | Shionogi & Co | ANTIBODIES DIRECTED AGAINST PCRV |
EP2599792A1 (en) * | 2008-01-10 | 2013-06-05 | Shionogi&Co., Ltd. | Antibody directed against PcrV |
US8501179B2 (en) | 2008-01-10 | 2013-08-06 | Shionogi & Co., Ltd. | Antibody against PcrV |
US9085611B2 (en) | 2009-03-11 | 2015-07-21 | Shionogi & Co., Ltd. | Humanized PcrV antibody having anti-pseudomonal activity |
RU2687588C2 (ru) * | 2011-11-07 | 2019-05-15 | МЕДИММЬЮН ЭлЭлСи | Способы комбинированной терапии с применением молекул, связывающихся с psl и pcrv pseudomonas |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5780595B2 (ja) | 抗緑膿菌作用を有するヒト化PcrV抗体 | |
US20200347130A1 (en) | CD96 Antibody, Antigen-Binding Fragment and Pharmaceutical use Thereof | |
JP4766716B2 (ja) | PcrVに対する抗体 | |
AU2019381219A1 (en) | Anti-CD73 antibody, antigen-binding fragment thereof and application thereof | |
WO2011107989A1 (en) | Improved therapeutic antibodies against flagellated pseudomonas aeruginosa | |
WO2014061783A1 (ja) | クロストリジウム・ディフィシルの毒素に特異的なヒト抗体もしくはその抗原結合性断片 | |
KR102709785B1 (ko) | Il-5 항체, 이의 항원 결합 단편 및 이의 의학적 적용 | |
TW202325739A (zh) | 新穎Nav1.7單株抗體 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 201080010648.7 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 10750805 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010222150 Country of ref document: AU |
|
WWE | Wipo information: entry into national phase |
Ref document number: 12011501705 Country of ref document: PH |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2011503817 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2011/009100 Country of ref document: MX |
|
ENP | Entry into the national phase |
Ref document number: 2010222150 Country of ref document: AU Date of ref document: 20100309 Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2754900 Country of ref document: CA Ref document number: 2010750805 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 20117021150 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 6474/CHENP/2011 Country of ref document: IN Ref document number: 201190163 Country of ref document: EA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13256219 Country of ref document: US |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: PI1008977 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: PI1008977 Country of ref document: BR Kind code of ref document: A2 Effective date: 20110909 |