WO2010103952A1 - 立体画像投影装置 - Google Patents

立体画像投影装置 Download PDF

Info

Publication number
WO2010103952A1
WO2010103952A1 PCT/JP2010/053267 JP2010053267W WO2010103952A1 WO 2010103952 A1 WO2010103952 A1 WO 2010103952A1 JP 2010053267 W JP2010053267 W JP 2010053267W WO 2010103952 A1 WO2010103952 A1 WO 2010103952A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
light
hologram
projection image
projection
Prior art date
Application number
PCT/JP2010/053267
Other languages
English (en)
French (fr)
Inventor
井上 光輝
攀梅 林
堀米 秀嘉
Original Assignee
国立大学法人豊橋技術科学大学
有限会社ホーリーマイン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人豊橋技術科学大学, 有限会社ホーリーマイン filed Critical 国立大学法人豊橋技術科学大学
Priority to JP2011503774A priority Critical patent/JP5555824B2/ja
Priority to US13/255,375 priority patent/US20120062968A1/en
Priority to EP10750706.3A priority patent/EP2407813B1/en
Publication of WO2010103952A1 publication Critical patent/WO2010103952A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/50Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels
    • G02B30/56Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels by projecting aerial or floating images
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/26Processes or apparatus specially adapted to produce multiple sub- holograms or to obtain images from them, e.g. multicolour technique
    • G03H1/30Processes or apparatus specially adapted to produce multiple sub- holograms or to obtain images from them, e.g. multicolour technique discrete holograms only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/0093Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 with means for monitoring data relating to the user, e.g. head-tracking, eye-tracking
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0402Recording geometries or arrangements
    • G03H2001/0439Recording geometries or arrangements for recording Holographic Optical Element [HOE]
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0493Special holograms not otherwise provided for, e.g. conoscopic, referenceless holography
    • G03H2001/0497Dot matrix holograms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/26Processes or apparatus specially adapted to produce multiple sub- holograms or to obtain images from them, e.g. multicolour technique
    • G03H2001/2605Arrangement of the sub-holograms, e.g. partial overlapping
    • G03H2001/261Arrangement of the sub-holograms, e.g. partial overlapping in optical contact
    • G03H2001/2615Arrangement of the sub-holograms, e.g. partial overlapping in optical contact in physical contact, i.e. layered holograms

Definitions

  • the present invention relates to a stereoscopic image projection apparatus that projects a stereoscopic image by making image light having directivity incident from the outside.
  • the present invention has been made in view of such problems, and displays a stereoscopic image with high reproducibility according to a change in the position of an observer and easily realizes downsizing of the system.
  • the purpose is to provide.
  • the stereoscopic image projection apparatus of the present invention projects a holographic recording medium along a flat substrate, and projects the image light by causing directional image light to enter the holographic recording medium.
  • the hologram recording medium of the projection image generating unit includes: A hologram formed in such a manner that two laser beams as a reference beam and an object beam are simultaneously incident in a predetermined range including a position corresponding to a predetermined point while keeping the incident angles on the hologram recording medium substantially the same. Is recorded in advance.
  • the reference image and the object beam are incident on the projection image generation unit at substantially the same incident angle, so that the projection image generation unit follows the flat substrate including the predetermined point that is the center of rotation. Since a hologram is recorded in advance in a predetermined range, image light having directivity is incident on the projection image generation unit while rotating the projection image generation unit around the predetermined point. The projection direction of the image generated by the light passing through the hologram is spatially shifted continuously. As a result, a highly reproducible stereoscopic image can be displayed even when the position of the observer changes, and the system scale can be easily reduced. Furthermore, the temporal continuity of the image when rotating the projection image generation unit can be improved by recording a hologram in a form formed by making the reference light and the object light incident at the same incident angle. .
  • the recording medium of the projection image generator is driven to rotate around a position corresponding to a predetermined point, and at the same time, a plurality of holograms formed by the reference light and object light entering the predetermined range are multiplexed. Preferably, it is recorded in advance.
  • the image light can be transmitted through the plurality of holograms, and the spatial and temporal continuity of the projection image can be easily improved.
  • the hologram recording medium of the projection image generation unit is driven to rotate about a position corresponding to a predetermined point as a rotation center, and at the same time, the predetermined range is periodically divided into a range that is synchronized with the rotation angle by the rotation drive. It is also preferable that a plurality of holograms formed by entering the reference light and the object light are divided and recorded in advance. In this case, when rotating the projection image generation unit, the image light can be transmitted through the plurality of holograms, and the spatial and temporal continuity of the projection image can be easily improved. Furthermore, the configuration of the hologram recording medium can be simplified.
  • the hologram recording medium preferably includes a plurality of hologram sheet materials stacked on a substrate, and the plurality of holograms are recorded on the plurality of hologram sheet materials, respectively.
  • a hologram recording medium With such a hologram recording medium, the diffraction efficiency of image light that passes through each hologram can be improved, and a bright stereoscopic image with little image blur can be displayed to the observer.
  • the projection image generation unit is rotated by the drive unit and is directed to a predetermined range on the substrate at an angle corresponding to the incident angle of the reference light and the object light at the time of hologram recording with respect to the surface on the substrate. It is also preferable that image light is incident.
  • the incident direction of the image light with respect to the hologram recording medium substantially coincides with the incident direction of the reference light and the object light, so that the diffraction efficiency of the image light transmitted through each hologram can be improved, A bright stereoscopic image with little image blur with respect to the direction can be displayed.
  • a three-dimensional image with high reproducibility can be displayed according to a change in the position of the observer, and the system can be easily downsized.
  • FIG. 1 is a perspective view of a stereoscopic image projector 1 that is a preferred embodiment of the present invention.
  • FIG. 2 is a plan view and a side view of the projection image generating disk of FIG. 1.
  • It is a schematic block diagram of the hologram recording system used for recording of the hologram of FIG. It is a figure which shows the incident direction of the image light with respect to the projection image generation disc of FIG. 2, and the projection direction of an image. It is a figure which shows the incident direction of the image light with respect to the projection image generation disc of FIG. 2, and the projection direction of an image.
  • FIG. 3 is a graph showing a relationship between a measured value of diffraction efficiency in an image irradiation direction with respect to a rotation angle of the projection image generation disk of FIG.
  • It is a front view which shows the projection image of the stereo image by the stereo image projector of FIG. It is a top view of the disc for projection image generation concerning the modification of the present invention.
  • FIG. 1 is a perspective view of a stereoscopic image projection apparatus 1 which is a preferred embodiment of the present invention.
  • the stereoscopic image projecting apparatus 1 is an apparatus for projecting a stereoscopic image by transmitting image light having directivity incident from the outside, and includes a rotation driving unit 3 fixed on a pedestal 2 and a rotation driving unit. 3 is provided with a projection image generation disk (projection image generation unit) 4 supported by 3.
  • Rotation driving section 3 has an outer cylindrical portion 5 and the inner cylinder portion 6 of the center axis A 1 is arranged cheeks so as to be parallel to the installation surface 2a of the base 2, the inner cylindrical portion 6, the outer Attached so as to be rotatable along the inner surface of the cylindrical portion 5.
  • the rotation drive unit 3 by the supply of electric power from the outside, the rotary drive mechanism (not shown) for rotating around the inner cylinder portion 6 of the center axis A 1 at the desired angular velocity is built.
  • Such a rotational drive mechanism can be realized by an electric motor, a belt drive, a gear, and the like.
  • a rectangular opening 7 that is substantially perpendicular to the central axis A 1 is provided at the center inside the inner cylinder 6, and further, on the center axis A 1 inside the inner cylinder 6, A disc-shaped projection image generating disk 4 is supported so as to cover the opening 7.
  • the projection image forming disc 4, the central axis A 1 of the inner cylindrical portion 6 is arranged so as to penetrate the center of the surface in a direction perpendicular.
  • FIGS. 2A and 2B are a plan view and a side view, respectively, of the projection image generating disk 4.
  • the projection image generating disk 4 is composed of a three-layer hologram sheet having the same shape as the glass substrates 8a and 8b between two disk-shaped glass substrates 8a and 8b.
  • Hologram recording medium) 9a, 9b, 9c are laminated and joined. That is, the hologram sheets 9a, 9b, 9c are joined along the inner surfaces 10a, 10b of the glass substrates 8a, 8b.
  • a material for the hologram sheets 9a, 9b, 9c for example, a photopolymer is used.
  • the thicknesses of the glass substrates 8a and 8b and the hologram sheets 9a, 9b, and 9c are not limited to specific values, but are set to, for example, 1.2 mm and 0.003 to 0.4 mm, respectively.
  • the number of hologram sheets 9a, 9b, and 9c is not limited to three as long as the number is one or more. However, three layers are preferable in terms of spatial and temporal continuity and clarity of a reproduced image. .
  • circular holograms 11a, 11b, and 11c are recorded in advance in the center portions of the hologram sheets 9a, 9b, and 9c, respectively, by a forming method that will be described later.
  • the projection image generating disc 4 when the projection image generating disc 4 is set in the rotation driving unit 3, the projection image generating disc 4 is placed in the formation area of the holograms 11a, 11b, and 11c by the rotation driving of the rotation driving unit 3. as the rotation about the center point C 1 is located in, it is rotated along the surface of the glass substrate 8a.
  • FIG. 3 is a schematic configuration diagram of a hologram recording system 101 used for recording the holograms 11a, 11b, and 11c.
  • the laser beam L 1 in predetermined wavelength of 532nm and the like emitted from the laser light source 102, the laser beam L 1 is after passing through the shutter 103 rotates around the optical axis of the laser beam L 1 Transmits through the half-wave plate 104.
  • the laser beam L 1 whose polarization direction is changed to various angles are incident on the polarization beam splitter 105, parallel light L 3 of the parallel light L 2 and S-wave components of the P-wave component from the laser light L 1 , And divided into two optical paths that are substantially perpendicular to each other.
  • the parallel light L 3 is transmitted by the half-wave plate 109 that rotates about the optical axis of the parallel light L 3 and then reflected by the mirror 110, thereby changing the polarization direction.
  • the incident light is incident on the projection image generating disk 4 arranged at a predetermined position.
  • the mirror 110 is placed on an X-axis stage 106B that slides along a horizontal plane and a rotary stage 107B that rotates along a horizontal plane.
  • the parallel light L 3 incident on the projection image generating disk 4 is used as reference light for hologram recording
  • the parallel light L 2 is used as object light for hologram recording.
  • the projection image generating disk 4 in which only the hologram sheet 9a is bonded is installed in a state where it is attached to the rotation drive unit 3. Then, the center point C 1 of the projection image forming disc 4 is substantially positioned on the optical axis of the parallel light L 2, and the optical axis of the parallel light L 2 with respect to the surface of the glass substrate 8a is inclined as the angle theta 1
  • the X stage 106A and the rotary stage 107A are controlled.
  • the center point C 1 is approximately positioned on the optical axis of the parallel light L 3, and the optical axis of the parallel light L 3 to the surface of the glass substrate 8a is on the opposite side with respect to the parallel light L 2 X stage 106B and the rotary stage 107B is controlled so as to be approximately inclined at the same angle theta 1.
  • the inclination angle ⁇ 1 is set to 22.5 degrees.
  • the laser beam L 1 a predetermined strength (e.g., 2 mW ⁇ 7 mW) by opening the shutter 103 is emitted, the projection image forming disc 4 at a predetermined time (e.g., 20 seconds to 30 seconds) the parallel light L simultaneously enters the 2 and the parallel light L 3.
  • the hologram 11a is recorded at the center of the hologram sheet 9a.
  • the projection image generating disk 4 in a state where the hologram sheet 9b is laminated on the hologram sheet 9a is installed. Then, after rotating by 120 degrees by the rotary drive unit 3 a projection image forming disc 4 from the state at the time of hologram 11a recording, the parallel light L 2 and a predetermined time to the projection image forming disc 4 by opening the shutter 103 It is incident parallel light L 3 at the same time. In this way, the hologram 11b is recorded at the center of the hologram sheet 9b on the hologram sheet 9a.
  • the projection image generation disc 4 in a state where the hologram sheet 9c is laminated on the hologram sheets 9a and 9b is installed, and the projection image generation disc 4 is further rotated by 120 degrees, and then the shutter 103 is opened.
  • the hologram 11c is recorded at the center of the hologram sheet 9c on the hologram sheets 9a and 9b.
  • the three-layer holograms 11a, 11b, and 11c that are angle-multiplexed at an angular interval of 120 degrees are formed in the central portion of the projection image generating disk 4 and the hologram sheets 9a, 9b, the incident angle theta 1 to 9c are recorded while maintaining substantially the same with each other.
  • the same direction as the incident direction of the parallel light L 3 at the time of image light G 1 is recorded holograms 11a, i.e., from the angle theta 1 direction to the Z-axis along a YZ plane
  • the projection direction of the image is a direction inclined by an angle ⁇ 1 with respect to the Z axis along the YZ plane, corresponding to the incident direction of the parallel light L 2 when the hologram 11 a is recorded.
  • FIG. 6 is a graph showing measured values and theoretical values of diffraction efficiency with respect to the shift angle along the horizontal direction of the image irradiation direction when one hologram 11a is rotated.
  • a high diffraction efficiency of about 90% is maintained when the horizontal shift angle is in the range of ⁇ 10 degrees to +10 degrees.
  • the operation of the stereoscopic image projection apparatus 1 having the projection image generating disk 4 in which the three holograms 11a, 11b, and 11c are multiplexed and recorded at an angular interval of 120 degrees will be described. While the projection image generating disk 4 is rotated and rotated once, the states shown in FIGS. 5A, 4 and 5B appear once in order, and the irradiation direction of the image Are shifted in one direction. Further, while the projection image generating disk 4 is rotated once, the state rotated 180 degrees from the state shown in FIG. 4 also appears once.
  • the incident direction of the image light G 1 is made the same direction as the incident direction of the laser beam L 2 at the time of recording the hologram 11a, the projection direction of the image, the direction of incidence of the parallel light L 3 at the time of recording the hologram 11a and correspondingly, the angle theta 1 only a direction inclined with respect to the Z axis along a YZ plane, namely, the same direction as the direction shown in FIG. Therefore, while the projection image generating disk 4 is rotated once, the state rotated 180 degrees from the state shown in FIGS. 5A, 4 and 5B also appears once each. With respect to the hologram 11a, the irradiation direction of the image is shifted in one direction a total of two times.
  • the projection direction of the image is intermittently changed by the three holograms 11a, 11b, and 11c while the projection image generating disk 4 is rotated once. It can be seen that it is shifted and shifted a total of 6 times.
  • FIG. 7 is a graph showing the relationship between the measurement value of the diffraction efficiency in the image projection direction with respect to the rotation angle of the projection image generation disk 4. From this result, it can be seen that six images are continuously projected by three holograms 11a, 11b, and 11c during one rotation, and the diffraction efficiency at that time is also about 80% over a shift range of about 20 degrees each time. It can also be seen that is secured.
  • the stereoscopic image projector 1 having the above-described configuration receives image light G 1 having directivity from an external projector device 20 from a direction inclined by a predetermined angle ⁇ 1 with respect to the central axis A 1 of the inner cylinder portion 6. (See FIG. 8). Then, three holograms 11a, 11b, by incident image light G 1 in synchronization with the shift timing of an image by 11c, while changing the emission direction from the projection image forming disc 4 in one direction, the image Lights G 01 , G 02 , G 03 ,..., G 0n are projected in time series.
  • the image light G 1 is incident by continuously rotating the projection image generating disk 4, the image light G 01 , G 02 , G 03 ,..., G 0n can be repeatedly projected. As a result, a predetermined stereoscopic image can be raised on the front surface of the projection image generating disk 4.
  • the projector apparatus 20 is a device that can be continuously irradiated with the image light G 1 a moving image is reflected, for example, a projector having a built-in digital micromirror device manufactured by Texas Instruments is used .
  • the projection image generating disk 4 includes the center point C 1 that is the center of rotation by causing the reference light and the object light to be incident at substantially the same incident angle ⁇ 1.
  • the projection direction of the image generated by the image light passing through the holograms 11a, 11b, and 11c is spatially continuous. Shifted to.
  • the form of a hologram 11a formed with the reference light and the object light is incident at the same incident angle theta 1, 11b, an image projected direction between the projection image forming disc 4 rotated once by recording the 11c Since it can be shifted six times, the spatial and temporal continuity of the image when the projection image generating disk 4 is rotated can be improved.
  • the projection image generation disc 4 is rotated.
  • image light can be transmitted through the plurality of holograms 11a, 11b, and 11c, and the spatial and temporal continuity of the projected image can be easily improved.
  • the diffraction efficiency of the image light transmitted through the holograms 11a, 11b, and 11c can be improved, and a bright stereoscopic image with less image blur for the observer. Can be displayed.
  • each hologram 11 a. , 11b, 11c can improve the diffraction efficiency of image light, and a bright stereoscopic image with little image blur can be displayed in a predetermined direction.
  • the incident angles ⁇ 1 of the parallel light L 3 and the parallel light L 2 when recording the holograms 11a, 11b, and 11c are not necessarily set to be equal to each other, and may be different angles.
  • the holograms 11a, 11b, and 11c may be recorded in multiple recording without changing the angle of the projection image generating disk 4 during recording.
  • the incident angle ⁇ 1 10 degrees when recording the hologram 11a.
  • the incident angle ⁇ 1 when recording the hologram 11b is recorded as 8.352 degrees
  • the incident angle ⁇ 1 when recording the hologram 11c is recorded as 13.348 degrees.
  • to project the green light region of the image light G 1 as an image by the hologram 11a is projected red light area of the image light G 1 as an image by a hologram 11b, and the blue light region of the image light G 1 by the hologram 11c
  • the projection timing of the color image light by the projector device 20 and the rotation of the projection image generation disk 4 are synchronized so as to project as an image.
  • FIG. 9 shows the configuration of a projection image generation disk 204 according to a modification of the present invention.
  • the predetermined range around the center point C 1 of the projection image forming disc 204 shown in the figure three types of holograms 211a, 211b, 211c is recorded in advance are divided.
  • These holograms 211a, 211b, and 211c are formed in regions that are periodically divided so as to be evenly distributed over a predetermined range.
  • the holograms 211a, 211a, 211c, 211b and 211c are formed so as to be periodically arranged in this order.
  • the projection image generation disc 204 is rotated 120 degrees and the hologram 211b is recorded by the same method
  • the projection image generation disc 204 is further rotated 120 degrees and the hologram 211c is recorded by the same method.
  • the holograms 211a, 211b, and 211c in which the interference fringes are rotated by 120 degrees can be divided and generated.
  • the use of such a projection image forming disc 204 is projected green light region of the image light G 1 as an image by the hologram 211a, to project a red light area of the image light G 1 as an image by the hologram 211b, the hologram 211c blue light region of the image light G 1 to be projected as an image, to synchronize the timing of projecting the image light G 1 of each color light area of a color image by the projector apparatus 20 and the rotation of the projection image forming disc 204. That way, it is possible to shift in one direction while each hologram 211b, 211a, separates the light of each color component of the RGB image light G 1 is projected by 211c. As a result, it is possible to display a color stereoscopic image with little image blur and color blur to the observer. Furthermore, the configuration of the hologram recording medium can be simplified.
  • the hologram produced on the projection image generating disk 4 is not limited to the direct formation by the interference between the reference light and the object light, and the reference light and the object light are made incident at the same incident angle.
  • a hologram that reproduces the form of the interference fringes to be formed may be used.
  • a hologram formed by a diffraction grating having a high aspect ratio using a microfabrication process by an electron beam drawing apparatus or the like may be used.
  • a transmission type diffraction grating film for example, 1000 LPM sheet manufactured by Edmund Optics
  • a sine wave grating is formed at a predetermined grating frequency can be used.
  • the hologram produced on the projection image generating disk 4 is not limited to the transmission type, and a reflection type hologram may be used.
  • the projection image generating disc 4 As a material constituting the projection image generating disc 4, a resin material such as plastic may be used in addition to glass, or the projection image generating disc 4 may be composed of only a hologram recording material.
  • the present invention uses a stereoscopic image projection apparatus that projects a stereoscopic image by causing image light having directivity to enter from the outside, and displays a highly reproducible stereoscopic image according to a change in the position of an observer. Therefore, the system can be easily downsized.
  • SYMBOLS 1 Stereoscopic image projection apparatus, 3 ... Rotation drive part, 4,204 ... Projection image production

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Holo Graphy (AREA)

Abstract

 観察者の位置の変化に応じて再現性の高い立体画像を表示するとともに、システムの小型化を容易に実現することを目的とする。立体画像投影装置1は、ガラス基板8a,8bの内面10a,10bに沿ってホログラムシート9a,9b,9cが積層され、指向性を有する画像光をホログラムシート9a,9b,9cに入射させることにより画像光を投影する投影画像生成用ディスク4と、投影画像生成用ディスク4をガラス基板8a,8b上の面に沿って、中心点Cを回転中心として回転駆動する回転駆動部3とを備え、ホログラムシート9a,9b,9cには、中心点Cに対応する位置に、参照光及び物体光として2つのレーザ光L,Lをホログラムシート9a,9b,9cへの入射角θを略同一に保った状態で同時に入射させることにより形成される形態のホログラム11a,11b,11cが予め記録されている。

Description

立体画像投影装置
 本発明は、外部から指向性を有する画像光を入射させることにより立体画像を投影する立体画像投影装置に関するものである。
 従来から、リアリティの高い画像を表示させるために、空間に物体の3次元画像を表示させる画像表示システムが盛んに開発されている。このようなシステムの例としては、指向性画像の各画素を並べ替えることによって合成画像を生成して、その合成画像を液晶ディスプレイ及びレンチキュラーシートによって表示させることによって立体画像を生成する立体画像表示装置や、複数の画像生成手段によって生成された画像を反射機構を有する表示部に投影することによって立体画像を表示させる立体画像表示装置等が知られている(下記特許文献1及び下記特許文献2参照。)。
特開2007-17634号公報 特開平9-197581号公報
 しかしながら、上述した特許文献1に記載の装置では、ディスプレイ上に複数の指向性を有する画素が並べられているため、観察者の位置の変化に応じた立体画像を表示させようとすると立体画像の解像度が低下する傾向にある。また、特許文献2に記載の装置では、立体画像を観察する観察者の位置に応じて立体画像を再現するためには、予め多くの画像生成手段を準備する必要があるためシステム規模が大型化するという問題もあった。
 そこで、本発明はかかる課題に鑑みて為されたものであり、観察者の位置の変化に応じて再現性の高い立体画像を表示するとともに、システムの小型化を容易に実現する立体画像投影装置を提供することを目的とする。
 上記課題を解決するため、本発明の立体画像投影装置は、平板状の基板に沿ってホログラム記録媒体が形成され、指向性を有する画像光をホログラム記録媒体に入射させることにより画像光を投影するための投影画像生成部と、投影画像生成部を基板上の面に沿って、当該面上の所定点を回転中心として回転駆動する駆動部とを備え、投影画像生成部のホログラム記録媒体には、所定点に対応する位置を含む所定範囲に、参照光及び物体光として2つのレーザ光をホログラム記録媒体への入射角を略同一に保った状態で同時に入射させることにより形成される形態のホログラムが予め記録されていることを特徴とする。
 このような立体画像投影装置によれば、投影画像生成部には、参照光及び物体光を略同一の入射角で入射させることにより、回転中心である所定点を含む平板状の基板に沿った所定範囲に予めホログラムが記録されているので、その投影画像生成部をその所定点を中心として回転させながら、その投影画像生成部に向けて指向性を有する画像光が入射されることにより、画像光がホログラムを透過することにより生成される画像の投影方向が空間的に連続的にシフトされる。これにより、観察者の位置が変化しても再現性の高い立体画像を表示させることができるとともに、システム規模も容易に小型化することができる。さらに、参照光及び物体光を同一の入射角で入射させて形成される形態のホログラムを記録することで、投影画像生成部を回転させる際の画像の時間的な連続性を向上させることもできる。
 投影画像生成部の記録媒体は、所定点に対応する位置を回転中心として回転駆動されると同時に、所定範囲に参照光及び物体光が入射されることにより形成される形態の複数のホログラムが多重して予め記録されている、ことが好ましい。この場合、投影画像生成部を回転させる際に複数のホログラムに画像光を透過させることができ、投影画像の空間的および時間的な連続性を容易に向上させることができる。
 また、投影画像生成部のホログラム記録媒体は、所定点に対応する位置を回転中心として回転駆動されると同時に、所定範囲が周期的に分割された範囲に、回転駆動による回転角度に同期して参照光及び物体光が入射されることにより形成される形態の複数のホログラムが、分割されて予め記録されている、ことも好ましい。この場合、投影画像生成部を回転させる際に複数のホログラムに画像光を透過させることができ、投影画像の空間的および時間的な連続性を容易に向上させることができる。さらには、ホログラム記録媒体の構成を単純化することができる。
 また、ホログラム記録媒体は、基板上に積層された複数のホログラムシート材を含み、複数のホログラムは、それぞれ複数のホログラムシート材に記録されている、ことも好ましい。かかるホログラム記録媒体を有すれば、各ホログラムを透過する画像光の回折効率を向上させることができ、観察者に対して画像ぼけの少ない明るい立体画像を表示させることができる。
 さらに、投影画像生成部には、駆動部によって回転駆動されながら、基板上の所定範囲に向けて、基板上の面に対してホログラム記録時の参照光及び物体光の入射角に対応する角度で画像光が入射される、ことも好ましい。かかる構成を採れば、ホログラム記録媒体に対する画像光の入射方向と、参照光及び物体光の入射方向がほぼ一致するので、各ホログラムを透過する画像光の回折効率を向上させることができ、所定の方向に対して画像ぼけの少ない明るい立体画像を表示させることができる。
 本発明によれば、観察者の位置の変化に応じて再現性の高い立体画像を表示するとともに、システムの小型化を容易に実現することができる。
本発明の好適な一実施形態である立体画像投影装置1の斜視図である。 図1の投影画像生成用ディスクの平面図及び側面図である。 図2のホログラムの記録に用いられるホログラム記録システムの概略構成図である。 図2の投影画像生成用ディスクに対する画像光の入射方向、及び画像の投影方向を示す図である。 図2の投影画像生成用ディスクに対する画像光の入射方向、及び画像の投影方向を示す図である。 図2のホログラムを回転させた場合の画像照射方向の水平方向に沿ったシフト角に対する回折効率の実測値及び理論値を示すグラフである。 図2の投影画像生成用ディスクの回転角に対する画像照射方向の回折効率の測定値との関係を示すグラフである。 図1の立体画像投影装置による立体画像の投影イメージを示す正面図である。 本発明の変形例に係る投影画像生成用ディスクの平面図である。
 以下、図面に基づいて、本発明による立体画像投影装置の好適な実施形態について詳細に説明する。なお、図面の説明においては同一又は相当部分には同一符号を付し、重複する説明を省略する。
 図1は、本発明の好適な一実施形態である立体画像投影装置1の斜視図である。この立体画像投影装置1は、外部から入射された指向性を有する画像光を透過させて立体画像を投影するための装置であり、台座2上に固定された回転駆動部3と、回転駆動部3に支持された投影画像生成用ディスク(投影画像生成部)4とを備えている。
 回転駆動部3は、台座2の設置面2aに対して中心軸Aがほほ平行になるように配置された外筒部5及び内筒部6を有し、この内筒部6は、外筒部5の内面に沿って回転可能に取り付けられている。この回転駆動部3には、外部からの電力の供給により、内筒部6をその中心軸Aの周りを所望の角速度で回転させるための図示しない回転駆動機構が内蔵されている。このような回転駆動機構は、電気モータ、及びベルトドライブ、ギア等により実現することができる。
 また、内筒部6の内側の中心部には中心軸Aに対してほぼ垂直な矩形状の開口部7が設けられ、さらに、内筒部6の内側の中心軸A上には、その開口部7を覆うように円板状の投影画像生成用ディスク4が支持されている。この投影画像生成用ディスク4は、内筒部6の中心軸Aがその表面の中心を垂直な方向に貫くように配置されている。
 図2(a)及び(b)は、それぞれ、投影画像生成用ディスク4の平面図及び側面図である。同図に示すように、投影画像生成用ディスク4は、円板状の2つの光透過性のガラス基板8a,8bの間に、ガラス基板8a,8bと同一形状を有する3層のホログラムシート(ホログラム記録媒体)9a,9b,9cが積層されて接合された構造を有している。すなわち、ホログラムシート9a,9b,9cは、ガラス基板8a,8bの内面10a,10bに沿って接合されている。このホログラムシート9a,9b,9cの材料としては、例えばフォトポリマーが使用される。なお、ガラス基板8a,8b及び、ホログラムシート9a,9b,9cの厚さとしては、特定の値には限定されないが、例えば、それぞれ1.2mm及び0.003~0.4mmに設定される。また、ホログラムシート9a,9b,9cの層数も1層以上であれば3層には限定されないが、再生画像の空間的および時間的な連続性や明瞭性の点では3層が好適である。さらに、ホログラムシート9a,9b,9cの中心部には、それぞれ、後述する形成方法によって円形状のホログラム11a,11b,11cが予め記録されている。このような構成により、投影画像生成用ディスク4が回転駆動部3にセットされると、回転駆動部3の回転駆動により、投影画像生成用ディスク4は、ホログラム11a,11b,11cの形成エリア内に位置する中心点Cを回転中心として、ガラス基板8aの表面に沿って回転される。
 次に、投影画像生成用ディスク4のホログラム11a,11b,11cの記録方法について説明する。
 図3は、ホログラム11a,11b,11cの記録に用いられるホログラム記録システム101の概略構成図である。ホログラム記録システム101においては、レーザ光源102から532nm等の所定波長のレーザ光Lが出射され、そのレーザ光Lはシャッタ103を通過した後に、レーザ光Lの光軸を中心に回転する1/2波長板104を透過する。そして、偏光方向が様々な角度に変更されたレーザ光Lが偏光ビームスプリッタ105に入射することにより、レーザ光LからP波成分の平行光L及びS波成分の平行光Lが、互いにほぼ垂直な光路に向けて2分割される。
 このようにして生成された平行光Lは、水平面に沿ってスライドするX軸ステージ106A及び水平面に沿って回転する回転ステージ107A上に載置されたミラー108によって反射されることにより、所定位置に水平面に垂直になるように配置された投影画像生成用ディスク4に向けて、水平面に沿った所望の角度で入射される。これに対して、平行光Lは、平行光Lの光軸を中心に回転する1/2波長板109を透過した後に、ミラー110によって反射されることにより、偏光方向が変化された後に、所定位置に配置された投影画像生成用ディスク4に向けて入射される。このミラー110は、水平面に沿ってスライドするX軸ステージ106B及び水平面に沿って回転する回転ステージ107B上に載置されている。ここで、投影画像生成用ディスク4に入射する平行光Lは、ホログラム記録用の参照光として、平行光Lは、ホログラム記録用の物体光として利用される。
 このようなホログラム記録システム101によってホログラムを記録する際には、まず、ホログラムシート9aのみが接合された状態の投影画像生成用ディスク4を、回転駆動部3に取り付けた状態で設置する。そして、投影画像生成用ディスク4の中心点Cが平行光Lの光軸上にほぼ位置し、かつ、ガラス基板8aの表面に対して平行光Lの光軸が角度θほど傾くようにXステージ106A及び回転ステージ107Aが制御される。同様に、中心点Cが平行光Lの光軸上にほぼ位置し、かつ、ガラス基板8aの表面に対して平行光Lの光軸が、平行光Lに対して反対側にほぼ同一角度θで傾くようにXステージ106B及び回転ステージ107Bが制御される。例えば、この傾斜角度θは22.5度に設定される。この状態で、レーザ光Lを所定強度(例えば、2mW~7mW)で出射させてシャッタ103を開くことによって、投影画像生成用ディスク4に所定時間(例えば、20秒~30秒)平行光L及び平行光Lを同時に入射させる。このようにして、ホログラムシート9aの中心にホログラム11aが記録される。
 その後、ホログラムシート9aの上にホログラムシート9bを積層した状態の投影画像生成用ディスク4を設置する。そして、ホログラム11a記録時の状態から投影画像生成用ディスク4を回転駆動部3によって120度だけ回転させた後、シャッタ103を開くことによって投影画像生成用ディスク4に所定時間だけ平行光L及び平行光Lを同時に入射させる。このようにして、ホログラムシート9a上のホログラムシート9bの中心にホログラム11bが記録される。同様にして、ホログラムシート9a,9bの上にホログラムシート9cを積層した状態の投影画像生成用ディスク4を設置し、投影画像生成用ディスク4をさらに120度だけ回転させた後、シャッタ103を開くことによって、ホログラムシート9a,9b上のホログラムシート9cの中心にホログラム11cが記録される。以上の操作により、投影画像生成用ディスク4の中心部には、120度の角度間隔で角度多重された3層のホログラム11a,11b,11cが、参照光及び物体光のホログラムシート9a,9b,9cへの入射角θが互いにほぼ同一に保った状態で記録される。
 図4及び図5には、上述の方法で作製された投影画像生成用ディスク4のホログラム11aに外部から画像光Gを入射した場合に、投影画像生成用ディスク4の反対側に再生される画像の照射方向について示している。図4及び図5には、投影画像生成用ディスク4の中心軸に沿ってZ軸を、ガラス基板8aの表面に沿って水平方向及び垂直方向にX軸及びY軸を取っている。図4に示すように、画像光Gがホログラム11aを記録した際の平行光Lの入射方向と同一の方向から、すなわち、YZ平面に沿ってZ軸に対して角度θの方向から入射された場合は、画像の投影方向は、ホログラム11aを記録時の平行光Lの入射方向と対応して、YZ平面に沿ってZ軸に対して角度θだけ傾いた方向となる。
 一方、ホログラム11aをZ軸を中心に時計回りに回転させることを想定した場合における図4の状態に至る直前には、図5(a)に示すような状態になる。ここでは、画像の投影方向はYZ平面に沿った方向から+X軸方向にずれた方向になる。これに対して、図4に示す状態の直後には図5(b)に示すような状態になり、画像の投影方向はYZ平面に沿った方向から-X軸方向にずれた方向になる。これは、ホログラム11a上に形成される回折格子が回転して光の回折方向もその回折格子の回転に伴って変化するためである。
 このような現象を利用して、ホログラム11aをガラス基板8aの表面に沿って所定角度範囲で回転させながら画像光をその表面に対する入射角をθで入射させれば、生成される画像の照射方向を一方向にシフトさせることができる。図6は、1つのホログラム11aを回転させた場合の画像照射方向の水平方向に沿ったシフト角に対する回折効率の実測値及び理論値を示すグラフである。このように、水平方向のシフト角が-10度から+10度の範囲で約90%の高い回折効率が維持されている。
 次に、3つのホログラム11a,11b,11cが120度の角度間隔で多重記録された投影画像生成用ディスク4を有する立体画像投影装置1の動作について説明する。投影画像生成用ディスク4を回転駆動させて1回転させる間には、図5(a)、図4、及び図5(b)に示したような状態が順番に1回現れ、画像の照射方向が一方向にシフトされる。また、投影画像生成用ディスク4を1回転させる間には、図4に示した状態から180度回転した状態も1回現れる。この場合は、画像光Gの入射方向がホログラム11aの記録時のレーザ光Lの入射方向と同一の方向となり、画像の投影方向が、ホログラム11aを記録時の平行光Lの入射方向と対応して、YZ平面に沿ってZ軸に対して角度θだけ傾いた方向、すなわち、図4に示した方向と同じ方向となる。このことから、投影画像生成用ディスク4を1回転させる間に、図5(a)、図4、及び図5(b)に示したような状態から180度回転した状態も1回ずつ現れるので、ホログラム11aに関しては画像の照射方向が計2回一方向にシフトされる。さらに、3つのホログラム11a,11b,11cが多重されていることを考慮すると、投影画像生成用ディスク4を1回転させる間に、3つのホログラム11a,11b,11cによって断続的に画像の投影方向がシフトされ、合計で6回シフトされることがわかる。
 図7には、投影画像生成用ディスク4の回転角に対する画像投影方向の回折効率の測定値との関係を示すグラフである。この結果から、1回転させる間に3つのホログラム11a,11b,11cによって6回の画像が連続的に投影されることがわかり、その時の回折効率も各回で約20度のシフト範囲にわたって80%程度が確保されていることもわかる。
 上述した構成の立体画像投影装置1には、内筒部6の中心軸Aに対して所定角度θ傾いた方向から外部のプロジェクタ装置20から指向性を有する画像光Gが入射される(図8参照)。そうすると、3つのホログラム11a,11b,11cによる画像のシフトタイミングに同期させて画像光Gを入射させることにより、投影画像生成用ディスク4からの出射方向が一方向に沿って変化しながら、画像光G01,G02,G03,…,G0nが時系列に投影される。また、投影画像生成用ディスク4を連続して回転させて画像光Gを入射させれば、画像光G01,G02,G03,…,G0nを繰り返し投影することができる。その結果、投影画像生成用ディスク4の前面に所定の立体画像を浮かび上がらせることができる。
 ここで、プロジェクタ装置20としては、動画像が反映された画像光Gを連続的に照射することができるデバイスであり、例えば、テキサスインスツルメンツ社製のデジタルマイクロミラーデバイスを内蔵するプロジェクタが用いられる。
 以上説明した立体画像投影装置1によれば、投影画像生成用ディスク4には、参照光及び物体光を略同一の入射角θで入射させることにより、回転中心である中心点Cを含むガラス基板8a,8bの内面10a,10bに沿った所定範囲に予めホログラム11a,11b、11cが記録されているので、その投影画像生成用ディスク4をその中心点Cを中心として回転させながら、その投影画像生成用ディスク4に向けて指向性を有する画像光が入射されることにより、画像光がホログラム11a,11b,11cを透過することにより生成される画像の投影方向が空間的に連続的にシフトされる。これにより、観察者の位置が変化しても再現性の高い立体画像を表示させることができるとともに、システム規模も容易に小型化することができる。さらに、参照光及び物体光を同一の入射角θで入射させて形成される形態のホログラム11a,11b,11cを記録することで投影画像生成用ディスク4を1回転させる間に画像投影方向を6回シフトさせることができるので、投影画像生成用ディスク4を回転させる際の画像の空間的および時間的な連続性を向上させることもできる。
 また、投影画像生成用ディスク4の複数のホログラムシート9a,9b,9cには、それぞれ、複数のホログラム11a,11b,11cが多重して予め記録されているので、投影画像生成用ディスク4を回転させる際に複数のホログラム11a,11b,11cに画像光を透過させることができ、投影画像の空間的および時間的な連続性を容易に向上させることができる。また、ホログラムシート9a,9b,9cのそれぞれに記録することで各ホログラム11a,11b,11cを透過する画像光の回折効率を向上させることができ、観察者に対して画像ぼけの少ない明るい立体画像を表示させることができる。
 さらに、投影画像生成用ディスク4には、投影画像生成用ディスク4に対してホログラム記録時の参照光及び物体光の入射角に対応する角度θで画像光が入射されるので、各ホログラム11a,11b,11cを透過する画像光の回折効率を向上させることができ、所定の方向に対して画像ぼけの少ない明るい立体画像を表示させることができる。
 なお、本発明は、前述した実施形態に限定されるものではない。例えば、各ホログラム11a,11b,11cを記録する際の平行光L及び平行光Lの入射角度θは、必ずしも互いに等しく設定される必要はなく、異なる角度であってもよいし、各ホログラム11a,11b,11cは記録の際に投影画像生成用ディスク4の角度を変更しないで多重記録されていてもよい。例えば、カラーの立体画像を表示させるためのホログラムを記録する場合には、緑色光領域(532nm)のレーザ光Lのみを使用して、ホログラム11aを記録する際の入射角度θ=10度、ホログラム11bを記録する際の入射角度θ=8.352度、及びホログラム11cを記録する際の入射角度θ=13.348度として記録する。この場合は、ホログラム11aによって画像光Gの緑色光領域を画像として投影させ、ホログラム11bによって画像光Gの赤色光領域を画像として投影させ、ホログラム11cによって画像光Gの青色光領域を画像として投影させるように、プロジェクタ装置20によるカラー画像光の投影タイミングと投影画像生成用ディスク4の回転とを同期させる。そうすれば、それぞれのホログラム11b,11a,11cによって画像光GのRGBの各色成分の光を、入射角度θに沿って入射しても、同一の回折角で分離して投影させながら一方向にシフトさせることができる。その結果、観察者に対して画像ぼけや色滲みの少ないカラーの立体画像を表示させることができる。さらに、このように入射角度を異ならせてホログラムを記録する際には、投影画像生成用ディスク4を回転しないで固定したままで多重記録してもよい。
 また、投影画像生成用ディスク4の構成としては、複数層のホログラムシートを積層したものに限定されるものではなく、1層のホログラムシートに微細化された複数のホログラムを分割して記録されたものを用いてもよい。図9には、本発明の変形例に係る投影画像生成用ディスク204の構成を示している。同図に示す投影画像生成用ディスク204の中心点Cを中心とした所定範囲には、3種類のホログラム211a,211b,211cが分割されて予め記録されている。これらのホログラム211a,211b,211cは、互いに所定範囲上に均等に分布するように周期的に分割された領域に形成されており、例えば、六角形状の分割領域に一直線上に沿ってホログラム211a,211b,211cがこの順で周期的に並ぶように形成されている。
 図9のような投影画像生成用ディスク204の生成は、図3に示したホログラム記録システム101を用いて行われ、中心点Cを回転中心として回転駆動させながら、上記のように分割されたディスク204上の範囲にその回転駆動の角度に同期して平行光L及び平行光Lを同時入射させることによってホログラム211a,211b,211cが記録される。詳細には、投影画像生成用ディスク204の前面に所望の分割領域にのみレーザ光を透過させる光学マスクを配置した状態で、平行光L及び平行光Lを同時入射させることによってホログラム211aを記録する。その後、投影画像生成用ディスク204を120度回転させてから同一の方法でホログラム211bを記録した後に、投影画像生成用ディスク204をさらに120度回転させてから同一の方法でホログラム211cを記録する。このようにすれば、互いに120度干渉縞が回転されたホログラム211a,211b,211cを分割して生成することができる。
 このような投影画像生成用ディスク204を用いれば、ホログラム211aによって画像光Gの緑色光領域を画像として投影させ、ホログラム211bによって画像光Gの赤色光領域を画像として投影させ、ホログラム211cによって画像光Gの青色光領域を画像として投影させるように、プロジェクタ装置20によるカラー画像の各色光領域の画像光Gの投影タイミングと投影画像生成用ディスク204の回転とを同期させる。そうすれば、それぞれのホログラム211b,211a,211cによって画像光GのRGBの各色成分の光を分離して投影させながら一方向にシフトさせることができる。その結果、観察者に対して画像ぼけや色滲みの少ないカラーの立体画像を表示させることができる。さらには、ホログラム記録媒体の構成を単純化することができる。
 また、投影画像生成用ディスク4に作製されるホログラムとしては、参照光と物体光の干渉による直接的な形成に限定されるものではなく、参照光及び物体光を同一の入射角で入射させて形成される干渉縞の形態を再現したホログラムでも良く、例えば、電子線描画装置等による微細加工プロセスを用いたアスペクト比の高い回折格子で形成したホログラムを用いてもよい。このようなホログラムが形成されたシート材としては、正弦波格子が所定の格子周波数で形成された透過型回折格子フィルム(例えば、エドモンド・オプティクス社製1000LPMシート)を用いることができる。また、投影画像生成用ディスク4に作製されるホログラムとしては、透過型のものに限定されるものではなく、反射型ホログラムを用いてもよい。
 またさらに、投影画像生成用ディスク4を構成する材料としては、ガラス以外にもプラスチック等の樹脂材料を用いてもよいし、ホログラム記録材料のみで構成されていてもよい。
 本発明は、外部から指向性を有する画像光を入射させることにより立体画像を投影する立体画像投影装置を使用用途とし、観察者の位置の変化に応じて再現性の高い立体画像を表示するとともに、システムの小型化を容易に実現することのできるものである。
 1…立体画像投影装置、3…回転駆動部、4,204…投影画像生成用ディスク(投影画像生成部)、8a,8b…ガラス基板、9a,9b,9c…ホログラムシート(ホログラム記録媒体)、11a,11b,11c,211a,211b,211c…ホログラム、C…中心点、G…画像光、L…レーザ光(物体光)、L…平行光(参照光)、θ…入射角。

Claims (5)

  1.  平板状の基板に沿ってホログラム記録媒体が形成され、指向性を有する画像光を前記ホログラム記録媒体に入射させることにより前記画像光を投影するための投影画像生成部と、
     前記投影画像生成部を前記基板上の面に沿って、当該面上の所定点を回転中心として回転駆動する駆動部とを備え、
     前記投影画像生成部の前記ホログラム記録媒体には、前記所定点に対応する位置を含む所定範囲に、参照光及び物体光として2つのレーザ光を前記ホログラム記録媒体への入射角を略同一に保った状態で同時に入射させることにより形成される形態のホログラムが予め記録されている、
    ことを特徴とする立体画像投影装置。
  2.  前記投影画像生成部の前記ホログラム記録媒体は、前記所定点に対応する位置を回転中心として回転駆動されると同時に、前記所定範囲に前記参照光及び前記物体光が入射されることにより形成される形態の複数のホログラムが多重して予め記録されている、
    ことを特徴とする請求項1記載の立体画像投影装置。
  3.  前記投影画像生成部の前記ホログラム記録媒体は、前記所定点に対応する位置を回転中心として回転駆動されると同時に、前記所定範囲が周期的に分割された範囲に、前記回転駆動による回転角度に同期して前記参照光及び前記物体光が入射されることにより形成される形態の複数のホログラムが、分割されて予め記録されている、
    ことを特徴とする請求項1記載の立体画像投影装置。
  4.  前記ホログラム記録媒体は、前記基板上に積層された複数のホログラムシート材を含み、
     前記複数のホログラムは、それぞれ前記複数のホログラムシート材に記録されている、
    ことを特徴とする請求項2記載の立体画像投影装置。
  5.  前記投影画像生成部には、前記駆動部によって回転駆動されながら、前記基板上の前記所定範囲に向けて、前記基板上の面に対して前記ホログラム記録時の前記参照光及び物体光の前記入射角に対応する角度で前記画像光が入射される、
    ことを特徴とする請求項1~4のいずれか一項に記載の立体画像投影装置。
PCT/JP2010/053267 2009-03-09 2010-03-01 立体画像投影装置 WO2010103952A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011503774A JP5555824B2 (ja) 2009-03-09 2010-03-01 立体画像投影装置
US13/255,375 US20120062968A1 (en) 2009-03-09 2010-03-01 Three-dimensional image projection device
EP10750706.3A EP2407813B1 (en) 2009-03-09 2010-03-01 Three-dimensional image projection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-055473 2009-03-09
JP2009055473 2009-03-09

Publications (1)

Publication Number Publication Date
WO2010103952A1 true WO2010103952A1 (ja) 2010-09-16

Family

ID=42728242

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/053267 WO2010103952A1 (ja) 2009-03-09 2010-03-01 立体画像投影装置

Country Status (6)

Country Link
US (1) US20120062968A1 (ja)
EP (1) EP2407813B1 (ja)
JP (1) JP5555824B2 (ja)
KR (1) KR20110127719A (ja)
TW (1) TWI460524B (ja)
WO (1) WO2010103952A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102262301A (zh) * 2010-11-18 2011-11-30 宸鸿光电科技股份有限公司 全息立体影像投射装置及其在电子产品的应用和使用方法
CN217540598U (zh) * 2022-01-26 2022-10-04 广东时光生活科技有限公司 一种幻灯片投影灯

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09197581A (ja) 1996-01-19 1997-07-31 Hitachi Ltd 擬似立体画像表示装置
JP2007017634A (ja) 2005-07-06 2007-01-25 Ntt Docomo Inc 立体画像表示装置及び立体画像表示方法
JP2007219491A (ja) * 2005-12-13 2007-08-30 Dainippon Printing Co Ltd 画面切替型ホログラム作製方法及びその方法により作製された画面切替型ホログラム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6944110B2 (en) * 2001-11-26 2005-09-13 Digital Software Corporation Method and apparatus for providing optical network interface using optical memory storage
TW591351B (en) * 2002-09-13 2004-06-11 Univ Nat Central Device and method for manufacturing disc-shaped exhibitive hologram
US9001401B2 (en) * 2005-12-13 2015-04-07 Dai Nippon Printing Co., Ltd. Fabrication process of multi-image type hologram, and multi-image type hologram fabricated by that process
JP4207997B2 (ja) * 2006-07-21 2009-01-14 ソニー株式会社 複製ホログラム記録媒体の製造方法、複製用原盤の製造装置、複製ホログラム記録媒体の製造装置および複製用原盤
US7884984B2 (en) * 2007-04-05 2011-02-08 E. I. Du Pont De Nemours And Company Multicolor holographic replication by masking

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09197581A (ja) 1996-01-19 1997-07-31 Hitachi Ltd 擬似立体画像表示装置
JP2007017634A (ja) 2005-07-06 2007-01-25 Ntt Docomo Inc 立体画像表示装置及び立体画像表示方法
JP2007219491A (ja) * 2005-12-13 2007-08-30 Dainippon Printing Co Ltd 画面切替型ホログラム作製方法及びその方法により作製された画面切替型ホログラム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2407813A4

Also Published As

Publication number Publication date
TW201040654A (en) 2010-11-16
JPWO2010103952A1 (ja) 2012-09-13
KR20110127719A (ko) 2011-11-25
US20120062968A1 (en) 2012-03-15
EP2407813A4 (en) 2012-08-01
EP2407813B1 (en) 2013-08-21
JP5555824B2 (ja) 2014-07-23
EP2407813A1 (en) 2012-01-18
TWI460524B (zh) 2014-11-11

Similar Documents

Publication Publication Date Title
CN105116678B (zh) 投射装置和投射控制装置
JP5338988B2 (ja) 照明装置、投射装置および投射型映像表示装置
CN103080831B (zh) 投射型影像显示装置
JP5201580B2 (ja) ホログラム作成装置及びホログラムプリンタ
JP3187397U (ja) ホログラフィック再構成装置及び携帯型電気製品への応用
JP6212683B2 (ja) 立体画像投影装置、立体画像投影方法、及び立体画像投影システム
CN103890640B (zh) 投射装置
US11022868B2 (en) Projector with laser and phosphor
JP2011232746A (ja) フルカラーホログラムの画像合成装置及び光偏移補償装置
JP2002162599A (ja) 立体画像表示装置
EA002247B1 (ru) Способ и устройство для формирования голограммы
CN105425516A (zh) 投射型影像显示装置及其空间光调制器的照明方法
JP5555824B2 (ja) 立体画像投影装置
JP5564637B2 (ja) 立体画像投影装置
JP5462556B2 (ja) 三次元カラー表示装置及び三次元カラー映像表示方法
JP2018180201A (ja) ホログラム記録装置およびホログラム製造方法
CN117214987A (zh) 一种用于指向背光三维显示的全息光学元件的制备装置和制备方法
JPH06273690A (ja) ホログラムを用いたゲーム機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10750706

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2011503774

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117022550

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010750706

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13255375

Country of ref document: US