WO2010103846A1 - 排ガス処理装置および排ガス処理方法 - Google Patents

排ガス処理装置および排ガス処理方法 Download PDF

Info

Publication number
WO2010103846A1
WO2010103846A1 PCT/JP2010/001765 JP2010001765W WO2010103846A1 WO 2010103846 A1 WO2010103846 A1 WO 2010103846A1 JP 2010001765 W JP2010001765 W JP 2010001765W WO 2010103846 A1 WO2010103846 A1 WO 2010103846A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
hydrogen
unit
monosilane
exhaust gas
Prior art date
Application number
PCT/JP2010/001765
Other languages
English (en)
French (fr)
Inventor
佐村健
大内太
朝野剛
岡部隆志
Original Assignee
新日本石油株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本石油株式会社 filed Critical 新日本石油株式会社
Publication of WO2010103846A1 publication Critical patent/WO2010103846A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/04Hydrides of silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/112Metals or metal compounds not provided for in B01D2253/104 or B01D2253/106
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/10Single element gases other than halogens
    • B01D2257/108Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/02Other waste gases
    • B01D2258/0216Other waste gases from CVD treatment or semi-conductor manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/30Capture or disposal of greenhouse gases of perfluorocarbons [PFC], hydrofluorocarbons [HFC] or sulfur hexafluoride [SF6]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an apparatus and method for treating exhaust gas containing hydrogen and silane gas discharged from a semiconductor manufacturing apparatus.
  • Exhaust gas discharged from semiconductor manufacturing equipment, particularly plasma CVD equipment for forming thin film silicon used in solar cells includes monosilane that requires detoxification, hydrogen that does not require detoxification, and fine particles (higher order Silane) is mixed.
  • exhaust gas discharged from a semiconductor manufacturing apparatus includes a small amount of monosilane that needs to be removed and a large amount of hydrogen that does not need to be removed. May be mixed. If an attempt is made to process a mixed gas containing a large amount of hydrogen with respect to a small amount of monosilane by using a detoxifying device in this way, there is a risk that the equipment required for the detoxification of monosilane, and consequently the exhaust gas processing device, will be increased in scale. There is. Further, when monosilane is removed by combustion, the consumption of LPG gas for combustion increases, and the energy efficiency of the entire system may be reduced.
  • the present invention has been made in view of these problems, and an object thereof is to provide a technique for simplifying an apparatus and a process for treating exhaust gas discharged from a semiconductor manufacturing apparatus.
  • the exhaust gas treatment apparatus is an exhaust gas treatment apparatus for treating a mixed gas discharged from a semiconductor manufacturing apparatus, and allows the mixed gas to pass therethrough and needs to be detoxified among plural kinds of gases contained in the mixed gas.
  • a separation unit that separates the first gas and the second gas that does not require detoxification by cryogenic separation, and a first gas processing unit that processes the first gas separated by the separation unit, And a second gas processing unit that processes the second gas separated by the separation unit.
  • the first gas that is discharged from the semiconductor manufacturing apparatus and that needs to be removed and the mixed gas that includes the second gas that does not need to be removed are separated by cryogenic separation,
  • the scale of the processing facility can be reduced, and the exhaust gas processing apparatus can be made compact.
  • the first gas processing unit may abate the first gas.
  • the water may include the first gas processing unit to purify the first gas.
  • the separation unit may separate monosilane as the first gas.
  • the second gas processing unit may dilute hydrogen as the second gas and discharge the hydrogen to the outside. Further, the second gas processing unit may purify hydrogen or various rare gases such as helium or argon as the second gas.
  • the exhaust gas treatment method is an exhaust gas treatment method for treating a mixed gas discharged from a semiconductor manufacturing apparatus, and includes a first gas that needs to be removed from a plurality of types of gases included in the mixed gas; A separation step for cryogenic separation from a second gas that does not require detoxification, a detoxification step for detoxification of the first gas separated from the mixed gas, and the first separation separated from the mixed gas And a discharge step of discharging the two gases to the outside.
  • FIG. 1 is a system diagram showing an outline of an exhaust gas treatment apparatus according to Embodiment 1.
  • FIG. It is the schematic which shows the specific structure of a isolation
  • 5 is a system diagram illustrating an outline of an exhaust gas treatment apparatus according to Embodiment 2.
  • FIG. 6 is a system diagram illustrating an outline of an exhaust gas treatment apparatus according to a third embodiment. It is a graph which shows the monosilane density
  • FIG. 10 is a system diagram illustrating an outline of an exhaust gas treatment apparatus according to a ninth embodiment.
  • an adsorbent or a mixed gas containing PFC perfluorocarbon
  • CHF 3 , SF 6 , NF 3 or the like as a gas that needs to be removed
  • a mixed gas containing nitrogen as a gas that does not need to be removed
  • the exhaust gas treatment apparatus of the present application can be applied by appropriately selecting treatment conditions.
  • PFC perfluorocarbon
  • Typical examples of PFC include CF 4 , C 2 F 6 , C 3 F 8 , and C 4 F 8 .
  • (Embodiment 1) 1 is a system diagram showing an outline of an exhaust gas treatment apparatus according to Embodiment 1.
  • FIG. 1 is a system diagram showing an outline of an exhaust gas treatment apparatus according to Embodiment 1.
  • the semiconductor manufacturing apparatus 20 is not particularly limited, and examples thereof include a plasma CVD apparatus for forming thin film silicon used for solar cells. More specifically, the solar cell manufactured by the semiconductor manufacturing apparatus 20 is made of silicon such as at least amorphous silicon (a-Si: H), microcrystalline silicon ( ⁇ c-Si: H), and polysilicon (poly-Si). It is comprised with the combination of the compound containing.
  • a-Si: H amorphous silicon
  • ⁇ c-Si: H microcrystalline silicon
  • poly-Si polysilicon
  • the mixed gas (exhaust gas) discharged from the semiconductor manufacturing apparatus 20 includes monosilane that requires detoxification, hydrogen, nitrogen, argon, and trace impurities that do not require detoxification.
  • the trace impurities include higher order silanes including a plurality of Si such as disilane and trisilane, PH 3 , and B 2 H 6 (each 0.001 to 1%).
  • the ratio of hydrogen to monosilane (hydrogen / monosilane) is 2 to 100.
  • the exhaust gas processing apparatus 10 processes the mixed gas discharged from the semiconductor manufacturing apparatus 20.
  • the exhaust gas treatment apparatus 10 includes a pump 12, a filter unit 30, a separation unit 40, a silane gas abatement unit 50, and a hydrogen gas exhaust unit 60.
  • the pump 12 sucks the mixed gas discharged from the semiconductor manufacturing apparatus 20 and sends it to the filter unit 30 together with nitrogen.
  • the type of pump used is not particularly limited, but a dry pump is often used in a semiconductor manufacturing apparatus.
  • a purge gas can be introduced into the dry pump for the purpose of maintaining airtightness, preventing unnecessary deposits, preventing corrosion inside the pump, and improving exhaust capability.
  • the purge gas is not particularly limited, but an inert gas such as nitrogen or argon is mainly used.
  • the amount of purge gas introduced is not particularly limited, but is generally about 10 to 50 NL / min per pump.
  • the filter unit 30 is a particulate trapping filter that selectively removes higher order silane.
  • the mixed gas discharged from the semiconductor manufacturing apparatus 20 passes through the filter unit 30. Thereby, higher silane is removed from the mixed gas.
  • Filters such as a spiral type, can be used.
  • the separation unit 40 cools the mixed gas to a low temperature and liquefies it, and uses the difference in temperature when monosilane and hydrogen contained in the mixed gas condense to deeply cool monosilane and hydrogen by distillation or partial condensation. To separate.
  • FIG. 2 is a schematic diagram illustrating a specific configuration of the separation unit 40. As illustrated in FIG. 2, the separation unit 40 includes heat exchange units 42 and 44 and a cryogenic separation device 46. The heat exchange part 42 may be omitted depending on circumstances.
  • the mixed gas introduced into the separation unit 40 is first supplied to the heat exchange unit 42.
  • the mixed gas In the heat exchanging section 42, the mixed gas is cooled to ⁇ 100 ° C. to ⁇ 130 ° C. by exchanging heat with a heat medium such as liquefied natural gas.
  • the heat medium is heated by exchanging heat with the mixed gas.
  • the heated heat medium is used in a manufacturing facility including a semiconductor manufacturing apparatus.
  • the mixed gas cooled by the heat exchange unit 42 is supplied to the heat exchange unit 44.
  • the mixed gas is further cooled to ⁇ 130 ° C. to ⁇ 160 ° C. by exchanging heat with monosilane (temperature ⁇ 160 ° C.) separated by the cryogenic separator 46 described later.
  • the mixed gas that has passed through the heat exchanging unit 44 and is further cooled is supplied to the cryogenic separator 46.
  • the introduced mixed gas is cooled by a cold heat source such as liquid nitrogen or liquefied natural gas, and compressed using a compressor or the like (temperature ⁇ 50 to ⁇ 200 ° C., pressure 0.5 to 30 atm).
  • a cold heat source such as liquid nitrogen or liquefied natural gas
  • hydrogen is taken out as a separation gas without being condensed.
  • the liquefied monosilane is introduced into a vaporizer and vaporized by heat absorption or heating with a heat medium such as steam.
  • Monosilane separated and cooled by the cryogenic separator 46 is supplied to the heat exchanging unit 44 and used as a cooling medium for cooling the mixed gas. Thereby, the thermal efficiency of the isolation
  • the silane gas abatement part 50 is provided with an introduction pipe for introducing nitrogen for diluting the monosilane gas as necessary prior to the detoxification.
  • the silane gas removing unit 50 removes monosilane (monosilane 2 vol% or less) that has been separated by the separating unit 40 and diluted with nitrogen. Examples of methods for excluding monosilane from the silane gas removing unit 50 include removal by combustion (combustion removal), removal by adsorbent (dry removal), and the like.
  • combustion detoxification combustible gas such as LPG gas is burned with a burner in the detoxification apparatus, and monosilane is burned. The combustion gas is exhausted after dust and the like are removed by a filter.
  • monosilane is detoxified by using a treatment agent mainly composed of copper oxide.
  • the hydrogen gas exhaust unit 60 simply uses the recovered hydrogen as a combustion treatment or fuel, or introduces nitrogen, air, or the like from the introduction pipe so that the monosilane concentration in the recovered gas is less than the allowable concentration (5 ppmv or less). Then, after dilution, it may be configured to be discharged to the outside. In this dilution, it is preferable from the viewpoint of safety to dilute the hydrogen concentration below the lower explosion limit (4 vol% or less). In order to reduce the concentration of monosilane in the recovered gas, a mechanism capable of selectively detoxifying monosilane may be added before dilution (not shown). Although it does not specifically limit as a detoxifying agent which selectively detoxifies, An oxidizing agent, adsorption agent, etc. are mentioned.
  • the mixed gas (containing monosilane and hydrogen) after removing the fine particles (higher order silane) is separated by using cryogenic separation, so that the monosilane that needs to be detoxified. Is separated from hydrogen which is not necessary for detoxification. Hydrogen is released into the atmosphere after dilution with nitrogen. Monosilane is detoxified at the monosilane detoxification section after nitrogen dilution. By treating only monosilane in the monosilane abatement part, the scale of the abatement equipment can be reduced, and the exhaust gas treatment apparatus can be made compact. In addition, when monosilane is detoxified by combustion, the consumption of LPG gas for fuel can be reduced.
  • FIG. 3 is a system diagram showing an outline of the exhaust gas treatment apparatus according to the second embodiment.
  • the exhaust gas treatment apparatus according to the second embodiment is common to the first embodiment in the following points. That is, the mixed gas discharged from the semiconductor manufacturing apparatus 20 is sent to the filter unit 30 by using the pump 12, and after removing higher-order silane by the filter unit 30, the mixed gas is converted into hydrogen and monosilane by using the separation unit 40. And to separate.
  • This embodiment is different from the first embodiment in that a silane gas purification unit 70 and a hydrogen gas purification unit 80 are provided.
  • the silane gas purification unit 70 purifies the monosilane separated by the separation unit 40 using an adsorbent.
  • An example of the adsorbent is zeolite.
  • Monosilane purified by the silane gas purification unit 70 can be reused as a raw material.
  • the monosilane purification unit 70 since the monosilane gas is separated by the separation unit 40, the monosilane purification unit 70 can have a simpler configuration than the case where the monosilane gas is directly purified from the mixed gas. Note that it is preferable that impurities such as PH 3 and B 2 H 6 contained in the mixed gas can also be separated by deep cold separation.
  • the hydrogen gas purification unit 80 purifies the hydrogen separated by the separation unit 40 using an adsorbent.
  • the adsorbent include copper oxide.
  • Hydrogen purified by the hydrogen gas purification unit 80 can be reused as a raw material.
  • high-purity hydrogen can be obtained by the hydrogen gas purification unit 80 having a simple configuration as compared with the case of directly purifying the hydrogen gas from the mixed gas. Can do.
  • the exhaust gas treatment apparatus is compact The monosilane and hydrogen contained in the exhaust gas can be reused while maintaining the temperature.
  • FIG. 4 is a system diagram showing an outline of the exhaust gas treatment apparatus according to the third embodiment.
  • the exhaust gas treatment apparatus according to Embodiment 3 is common to Embodiment 1 in the following points. That is, the mixed gas discharged from the semiconductor manufacturing apparatus 20 is sent to the filter unit 30 by using the pump 12, and after removing higher-order silane by the filter unit 30, the mixed gas is converted to hydrogen by using the cryogenic separator 46. Then, the separation gas is sent to the silane gas abatement part 50 and the hydrogen gas exhaust part 60.
  • a pump 12 that exhausts the mixed gas discharged from the semiconductor device 20 is disposed upstream of the cryogenic separator 46, and a compressor that compresses the mixed gas exhausted by the pump 12 and sends it to the subsequent stage.
  • a gas storage unit 32 that collects and stores the compressed mixed gas
  • a flow rate control unit 33 that controls the flow rate of the mixed gas supplied from the gas storage unit 32, and a constant flow rate controlled by the flow rate control unit 33.
  • Supply gas analyzer 34 for measuring the component gas concentration of the mixed gas hydrogen gas side gas analyzer 35 and silane gas side gas analyzer 36 for measuring the component gas concentration of the mixed gas sent from the cryogenic separator 46.
  • the compressor 31, the gas storage unit 32 and the above By providing the flow rate control unit 33, the flow rate of the mixed gas supplied to the cryogenic separation device 46 can be controlled to be constant.
  • a diaphragm compressor, a centrifugal compressor, an axial flow compressor, a reciprocating compressor, a twin screw compressor, a single screw compressor, a scroll compressor, a rotary compressor, etc. are mention
  • a diaphragm type compressor is more preferable.
  • the operating conditions of the compressor 31 are not particularly limited, but it is preferable to operate so that the temperature of the mixed gas after compression is 200 ° C. or less, which is the decomposition temperature of monosilane. That is, considering that the mixed gas discharged from the pump 12 is compressed from normal pressure, it is desirable to operate the compressor at a compression ratio of 4.4 or less.
  • the configuration of the compressor used in the compressor 31 is not particularly limited, but a configuration in which an inverter is provided to stably operate the compressor even when the flow rate of the mixed gas supplied to the compressor varies.
  • the gas storage unit 32 is sufficient when the flow rate and pressure of the mixed gas discharged from the semiconductor manufacturing apparatus 20 through the pump 12 are unstable or when exhaust gases from a plurality of semiconductor manufacturing apparatuses 20 are processed together.
  • the flow rate and pressure fluctuations of the mixed gas discharged from each semiconductor manufacturing apparatus 20 are averaged, and the mixed gas having a constant flow rate and pressure is circulated through the cryogenic separator 46 at all times. It is. Further, by devising the structure, it is possible to provide a function of removing fine particles contained in the mixed gas.
  • the size of the tank used for the gas storage unit 32 is not particularly limited. In the case of one semiconductor manufacturing apparatus, the maximum flow rate of the apparatus, and when processing a plurality of semiconductor manufacturing apparatuses collectively, It is desirable that the total flow rate of the gas supplied to the semiconductor manufacturing apparatus be equal to or greater than the total value.
  • exhaust gas is supplied from the compressor 31 to the gas storage unit 32 and accumulated in the gas storage unit 32 with the outlet valve of the gas storage unit 32 closed.
  • the flow rate control unit 33 is for controlling the flow rate of the mixed gas at a constant level. Although it does not specifically limit regarding the control method, What is not influenced by the pressure fluctuation of the mixed gas supplied to the flow volume control part 33 is desirable, For example, a mass flow controller etc. are mentioned.
  • the supply side gas analyzer 34, the hydrogen gas side gas An analysis unit 35 and a silane gas side gas analysis unit 36 can be installed.
  • the method is not particularly limited.
  • a flow meter can be used, and measurement of hydrogen concentration and / or monosilane concentration includes FT-IR equipped with a gas flow-type sample cell, online gas chromatograph, and the like.
  • the recovered monosilane is detoxified and exhausted by the silane gas processing unit 8, it is necessary to dilute the recovered monosilane to a predetermined concentration in accordance with the specifications of the detoxifying device. If there is data of the analysis unit 36, it is possible to prevent the dilution apparatus from being excessively diluted or insufficiently diluted to cause a malfunction in the abatement apparatus. Similarly, in the hydrogen gas processing unit, if there is data of the hydrogen gas side analysis unit 35, an appropriate flow rate of dilution gas can be selected without excessively diluting.
  • the silane gas side gas analysis unit 36 uses the silane gas side gas analysis unit 36 to collect trace impurities in the recovered monosilane in addition to the flow rate and monosilane concentration. By analyzing with a gas chromatograph or the like, it is possible to select an optimum purification process condition or to carry out a detoxification process without performing a purification process when there are too many impurities. At this time, it is preferable to install a valve for switching between the abatement part and the reuse line after the gas analysis part. The same applies to the case where the hydrogen gas purification unit 7a is provided with the hydrogen gas purification unit 7 to purify and reuse the hydrogen gas.
  • control is preferably executed using an arithmetic control unit (not shown) that takes in various measurement values and manages the control values.
  • chemical cleaning may be performed to remove deposits in the chamber due to film formation.
  • plasma treatment in order to remove the silicon thin film deposited in the chamber, plasma treatment is generally performed while introducing a gas such as NF 3 or F 2.
  • NF 3 or F 2 a gas such as NF 3 or F 2.
  • these gases are flammable, hydrogen or monosilane is used.
  • FIG. 4 when the switching valve 13 is installed after the pump 12 as shown in FIG. It is preferable to prevent the silane-based gas from entering the silane-based gas processing line. This switching valve may have its mechanism built in the pump itself.
  • the exhaust gas treatment apparatus according to Embodiment 1 and the exhaust gas treatment apparatus according to Embodiment 2 may be combined to purify either monosilane or hydrogen.
  • At least one of the separated monosilane and hydrogen may be configured to be purified as necessary by switching a valve or the like.
  • FIG. 5 is a graph showing the monosilane concentration (ppm) in hydrogen when the mixed gas containing monosilane and hydrogen is subjected to cryogenic separation using the cryogenic separator 46.
  • the hydrogen separated under conditions of a cooling temperature from 70 K ( ⁇ 200 ° C.) to 120 K ( ⁇ 150 ° C.) was measured using a Fourier transform infrared spectrophotometer (FT-IR). analyzed.
  • FT-IR Fourier transform infrared spectrophotometer
  • Example 1 Mixed gas: 99 mol% hydrogen, 1 mol% monosilane Pressure: 1 atmosphere (Example 2)
  • Example 3 Mixed gas: 98 mol% hydrogen, 2 mol% monosilane Pressure: 1 atmosphere (Example 4)
  • the concentration of monosilane contained in hydrogen separated by cryogenic separation under each condition is about 20000 ppm at most, and it was confirmed that high purity hydrogen was obtained. It can be seen that the purity of hydrogen is higher as the cooling temperature is lower and is higher as the pressure is higher.
  • FIG. 6 is a graph showing the monosilane concentration (ppm) in the mixed gas when the mixed gas containing monosilane, hydrogen and nitrogen supplied to the dry pump is subjected to deep cold separation using the deep cold separator 46. is there.
  • a Fourier transform infrared spectrophotometer FT-IR was used for the mixed gas separated under conditions of cooling temperatures from 70 K (-200 ° C.) to 130 K (-140 ° C.). And analyzed.
  • Example 5 Mixed gas: 49 mol% hydrogen, 1 mol% monosilane, 50 mol% nitrogen Pressure: 1 atmosphere (Example 6)
  • Example 6 Mixed gas: 49 mol% hydrogen, 1 mol% monosilane, 50 mol% nitrogen Pressure: 2 atmospheres (Example 7)
  • Example 74 Mixed gas: 74 mol% hydrogen, 1 mol% monosilane, 25 mol% nitrogen Pressure: 1 atmosphere (Example 8)
  • Example 8 Mixed gas: 49 mol% hydrogen, 1 mol% monosilane, 50 mol% nitrogen Pressure: 10 atm
  • the concentration of monosilane contained in the mixed gas separated by cryogenic separation under each condition is at most about 1%, and a high purity mixed gas not containing monosilane is obtained. It was confirmed that It can be seen that the purity of the mixed gas containing no monosilane is higher as the cooling temperature is lower and the purity is higher as the pressure is higher.
  • Example 9 As shown in FIG. 7, the exhaust gas treatment apparatus according to the above-described embodiment was connected to three PE-CVD apparatuses (81) for manufacturing a thin film silicon solar cell, which is one of the semiconductor manufacturing apparatuses 20.
  • the mixed gas discharged from the plurality of PE-CVD apparatuses 81 is sucked together with nitrogen introduced from the outside by a dry pump 82 corresponding to each apparatus, and sent to the compressor 85 through the filter 84.
  • a switching valve 83 is provided after the dry pump 82.
  • a compressor that can be operated at a compression ratio of 4 was selected as the compressor 85.
  • each dry pump 82 was flowed at a flow rate of 30 NL / min to increase the pressure in the airtight tank 86 (capacity: 5 m 3 ) to 2.5 MPaG. Thereafter, the pressure accumulating valve 87 was opened, gas supply to the mass flow controller 88 was started, and each PE-CVD apparatus was shifted by 4 minutes to start operation. Each PE-CVD operation was performed under the conditions shown in Table 1. The gas flow rate was controlled to 151.5 NL / min by the mass flow controller 88 and supplied to the cryogenic separator 91. The cryogenic separator 91 was cooled to ⁇ 170 ° C. by supplying liquid nitrogen.
  • the gas side back pressure valve 92a was adjusted so that the pressure became 2.0 MPaG.
  • the opening degree of the liquid side back pressure valve 92b was adjusted so that the liquid level of the cryogenic separator would be a constant value.
  • Table 2 shows the flow rate and composition of the exhaust gas before the compressor at this time.
  • the SiH 4 concentration in the separated gas on the separated gas side was 0.019 vol%, and the hydrogen recovery rate was 99.9%, which was constant regardless of fluctuations in the exhaust gas flow rate.
  • the gas analyzer 89a shown in FIG. 7 measures the flow rate, hydrogen concentration, and monosilane concentration of the exhaust gas from the PE-CVD apparatus 81.
  • the exhaust gas that has passed through the gas analyzer 89 a is cooled by the heat exchanger 90 with the outlet gas from the cryogenic separator 91 and then introduced into the cryogenic separator 91.
  • the introduced exhaust gas is cooled with liquid nitrogen in the cryogenic separator 91, and thereby separated into a gas containing hydrogen and a liquid containing monosilane.
  • the gas containing hydrogen is measured by the gas analyzer 89b for the flow rate, the hydrogen concentration and the monosilane concentration, and diluted with nitrogen so that the monosilane concentration is less than 5 ppmv and the hydrogen concentration is less than 4 vol% based on the measurement results.
  • the recovered monosilane-containing liquid is vaporized, and after the flow rate, hydrogen concentration and monosilane concentration are measured by the gas analyzer 89c, it is appropriately diluted with nitrogen based on the measurement results, and the combustion abatement apparatus. It is burned by 93 and detoxified.
  • the gas discharged by combustion by the combustion abatement device 93 is introduced into the bag filter 95 by the blower 94b, and after removing foreign matters such as powder generated during the combustion, it is released to the atmosphere by the blower 94c.
  • the present invention can be used in an apparatus for treating exhaust gas discharged from a semiconductor manufacturing apparatus.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Chemical Vapour Deposition (AREA)
  • Treating Waste Gases (AREA)
  • Silicon Compounds (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

 半導体製造装置20から排出された混合ガスをポンプ12を用いてフィルタ部30に送出し、フィルタ部30で高次シランを除去した後、深冷分離を利用した分離部40を用いて混合ガスを水素とモノシランとに分離する。分離されたモノシランは、シランガス除害部50により除害される。また、分離された水素は、水素ガス排気部60により大気に放出される。

Description

排ガス処理装置および排ガス処理方法
 本発明は、半導体製造装置から排出される水素およびシランガスを含有する排ガスを処理する装置および方法に関する。
 半導体製造装置、特に、太陽電池に用いられる薄膜シリコンを成膜するためのプラズマCVD装置から排出される排ガスには、除害の必要があるモノシラン、除害が不要な水素、および微粒子(高次シラン)が混在している。従来の排ガス処理装置では、微粒子をフィルタにより除去した後、残存したモノシランおよび水素を含む混合ガス(水素/モノシラン=2~100)に窒素を加えた後、除害装置を用いて処理が行われている。窒素の添加量は、粉体発生の観点からモノシラン濃度が2%以下になるように調節される。
特開昭62-134414号公報 特開平9-239239号公報
 ところで、半導体製造装置、例えば、太陽電池に用いられる薄膜シリコンを成膜するためのプラズマCVD装置から排出される排ガスには、除害の必要がある少量のモノシラン、除害が不要な大量の水素が混在している場合がある。このように少量のモノシランに対して大量の水素を含んでいる混合ガスを除害装置を用いて処理しようとすると、モノシランの除害に必要な設備、ひいては排ガス処理装置の大規模化を招くおそれがある。また、モノシランを燃焼により除害する場合には、燃焼用のLPGガスの消費量が多くなり、システム全体のエネルギー効率が低下するおそれもある。
 本発明はこうした課題に鑑みてなされたものであり、その目的は、半導体製造装置から排出される排ガスを処理する装置や工程を簡略化する技術の提供にある。
 本発明のある態様は、排ガス処理装置である。当該排ガス処理装置は、半導体製造装置から排出される混合ガスを処理する排ガス処理装置であって、前記混合ガスを通過させ、前記混合ガスに含まれている複数種のガスのうち除害の必要な第1のガスと、除害の必要のない第2のガスとを深冷分離により分離する分離部と、前記分離部によって分離された第1のガスを処理する第1のガス処理部と、前記分離部によって分離された第2のガスを処理する第2のガス処理部と、を備えることを特徴とする。
 この態様によれば、半導体製造装置から排出される、除害が必要な第1のガスと、除害の必要のない第2のガスを含む混合ガスを深冷分離により分離し、第1のガスと第2のガスとをそれぞれ処理することにより、処理設備の規模を小さくでき、ひいては排ガス処理装置をコンパクトにすることができる。
 上記態様の排ガス処理装置において、前記第1のガス処理部は、前記第1のガスを除害してもよい。また、水前記第1のガス処理部は、前記第1のガスを精製してもよい。また、分離部は、前記第1のガスとしてモノシランを分離してもよい。また、前記第2のガス処理部は、前記第2のガスとして水素を希釈して外部へ排出してもよい。また、第2のガス処理部は、前記第2のガスとして水素や各種希ガス、例えば、ヘリウム、アルゴンなどを精製してもよい。
 本発明の他の態様は、排ガス処理方法である。当該排ガス処理方法は、半導体製造装置から排出される混合ガスを処理する排ガス処理方法であって、前記混合ガスに含まれている複数種のガスのうち除害の必要な第1のガスと、除害の必要のない第2のガスとを深冷分離する分離工程と、前記混合ガスから分離された前記第1のガスを除害する除害工程と、 前記混合ガスから分離された前記第2のガスを外部に排出する排出工程と、を備えることを特徴とする。
 本発明によれば、半導体製造装置から排出される排ガスを処理する装置や工程を簡略化することができる。
実施の形態1に係る排ガス処理装置の概略を示す系統図である。 分離部の具体的な構成を示す概略図である。 実施の形態2に係る排ガス処理装置の概略を示す系統図である。 実施の形態3に係る排ガス処理装置の概略を示す系統図である。 深冷分離装置を用いて、モノシランおよび水素を含有する混合ガスを深冷分離したときの、水素中のモノシラン濃度(ppm)を示すグラフである。 深冷分離装置を用いて、モノシラン、水素および窒素を含有する混合ガスを深冷分離したときの、水素中のモノシラン濃度(ppm)を示すグラフである。 実施例9に係る排ガス処理装置の概略を示す系統図である。
 以下、本発明の実施の形態を図面を参照して説明する。なお、すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。以下では、除害の必要なガスとしてモノシラン、除害の必要のないガスとして水素を含む混合ガスに適した排ガス処理装置について説明するが、混合ガスの種類はこれに限られるものではない。例えば、除害の必要なガスとしてPFC(perfluorocarbon),CHF,SF,NFなどを含む混合ガスや、除害の必要のないガスとして窒素を含む混合ガスに対しても、吸着剤や処理条件を適宜選択することで本願の排ガス処理装置を適用できることはいうまでもない。なお、PFCとして代表的なものとしてはCF,C,C,Cが挙げられる。
 (実施の形態1)
 図1は、実施の形態1に係る排ガス処理装置の概略を示す系統図である。
 半導体製造装置20は、特に限定されないが、太陽電池に用いられる薄膜シリコンを成膜するためのプラズマCVD装置などが挙げられる。半導体製造装置20によって製造される太陽電池は、より具体的には、少なくともアモルファスシリコン(a-Si:H)と微結晶シリコン(μc-Si:H)とポリシリコン(poly-Si)などの珪素を含む化合物の組み合わせで構成される。
 半導体製造装置20から排出される混合ガス(排ガス)は、除害が必要なモノシラン、除害が不要な水素、窒素、アルゴンおよび微量不純物を含む。微量不純物として、ジシラン、トリシランなどのSiを複数含む高次シラン、PH、B(それぞれ0.001~1%)が挙げられる。本実施の形態では、水素とモノシランの比(水素/モノシラン)は、2~100である。
排ガス処理装置10は、半導体製造装置20から排出された混合ガスを処理する。排ガス処理装置10は、ポンプ12、フィルタ部30、分離部40、シランガス除害部50、および水素ガス排気部60を備える。
 ポンプ12は、半導体製造装置20から排出された混合ガスを吸引し、窒素とともにフィルタ部30に送出する。使用されるポンプの種類としては特に限定されないが、半導体製造装置にはドライポンプが一般的に使用されることが多い。ドライポンプには、気密性保持や不要な堆積物の防止、ポンプ内部の腐食防止、排気能力の向上などの目的でパージ用ガスを導入することができる。パージ用ガスとしては特に限定されないが、窒素やアルゴンなどの不活性ガスが主に使用される。また、パージ用ガスの導入量としても特に限定されないが、ポンプ1台につき10~50NL/min程度が一般的である。
 フィルタ部30は、高次シランを選択的に除去する微粒子捕捉フィルタである。半導体製造装置20から排出された混合ガスはフィルタ部30を通過する。これにより、混合ガスから高次シランが除去される。使用するフィルタとしては特に限定されないが、渦巻式などのフィルタが使用できる。
 分離部40は、混合ガスを低温に冷却して液化させ、混合ガスに含まれるモノシランおよび水素のそれぞれが凝縮する際の温度の違いを利用して蒸留あるいは部分凝縮によってモノシランと水素とを深冷分離する。
 図2は、分離部40の具体的な構成を示す概略図である。図2に示すように、分離部40は、熱交換部42、44および深冷分離装置46を有する。熱交換部42は場合によっては省略しても構わない。
 分離部40に導入された混合ガスは、まず熱交換部42に供給される。熱交換部42において、混合ガスは液化天然ガスなどの熱媒体と熱交換することにより-100℃~-130℃に冷却される。一方、熱媒体は、混合ガスと熱交換することにより加温される。加温された熱媒体は、半導体製造装置を含む製造設備で利用される。
 次に、熱交換部42により冷却された混合ガスは、熱交換部44に供給される。熱交換部44において、混合ガスは後述する深冷分離装置46で分離されたモノシラン(温度-160℃)と熱交換することにより、-130℃~-160℃にさらに冷却される。
 熱交換部44を通過し、さらに冷却された混合ガスは、深冷分離装置46に供給される。深冷分離装置46では、導入された混合ガスが液体窒素、液化天然ガスなどの冷熱源により冷却され、圧縮機等を用いて圧縮される(温度-50~-200℃、圧力0.5~30気圧)。混合ガスのうち、モノシランは全量が凝縮される。一方、水素は凝縮せずに分離ガスとして取り出される。液化したモノシランは、気化器に導入され、吸熱、またはスチームなどの熱媒体による加熱により気化される。深冷分離装置46により分離され、冷却されたモノシランは熱交換部44に供給され、混合ガスを冷却する冷熱媒体として用いられる。これにより、分離部40の熱効率を高めることができる。
 シランガス除害部50には、除害化に先立ち必要に応じてモノシランガスを希釈するための窒素を導入する導入管が設けられている。シランガス除害部50は、分離部40によって分離され、窒素で希釈されたモノシラン(モノシラン2vol%以下)を除害する。シランガス除害部50によるモノシランの除害除外の方式としては、燃焼による除害(燃焼除害)、吸着剤による除害(乾式除害)などが挙げられる。燃焼除害の場合には、除害装置内でLPGガスなどの可燃ガスをバーナーで燃焼させ、モノシランが燃焼処理される。燃焼ガスは、フィルタにより粉塵等が除去された後、排気される。乾式除害の場合には、たとえば、酸化銅を主成分とする処理剤を用いることによりモノシランが除害される。
 水素ガス排気部60は、単に回収した水素を燃焼処理や燃料として利用したり、回収ガス中のモノシラン濃度を許容濃度以下(5ppmv以下)になるように、導入管から、窒素や空気などを導入して希釈した後、外部に放出されるように構成してもよい。また、この希釈の際は、水素濃度を爆発下限界以下(4vol%以下)まで希釈する方が安全上好ましい。なお、回収ガス中のモノシラン濃度を低減するため、希釈する前に、選択的にモノシランを除害することができるような機構を付加してもよい(図示せず)。選択的に除害する除害剤としては特に限定されないが、酸化剤や吸着剤などが挙げられる。
 以上説明した排ガス処理装置10によれば、微粒子(高次シラン)を取り除いた後の混合ガス(モノシランおよび水素を含有)を、深冷分離を用いて分離することにより、除害の必要なモノシランと除害の不必要な水素とが分離される。水素は窒素希釈後、大気に放出される。また、モノシランは窒素希釈後、モノシラン除害部にて除害される。モノシランのみをモノシラン除害部で処理することにより、除害設備の規模を小さくでき、ひいては排ガス処理装置をコンパクトにすることができる。また、モノシランを燃焼により除害する場合、燃料用のLPGガスの消費量を少なくすることができる。
 (実施の形態2)
 図3は、実施の形態2に係る排ガス処理装置の概略を示す系統図である。実施の形態2に係る排ガス処理装置は、以下の点で実施の形態1と共通する。すなわち、半導体製造装置20から排出された混合ガスを、ポンプ12を用いてフィルタ部30に送出し、フィルタ部30で高次シランを除去した後、分離部40を用いて混合ガスを水素とモノシランとに分離する。
 本実施の形態では、シランガス精製部70および水素ガス精製部80を備える点で、実施の形態1と相違する。
 シランガス精製部70は、吸着剤を用いて分離部40により分離されたモノシランを精製する。吸着剤としては、ゼオライトが挙げられる。シランガス精製部70により精製されたモノシランは、原料として再利用が可能である。本実施の形態では、モノシランガスは分離部40で分離されているため、混合ガスからモノシランガスを直接精製する場合と比較してモノシラン精製部70をより簡便な構成にすることができる。なお、混合ガスに含まれるPH、Bなどの不純物も深冷分離により分離できることが好ましい。 
 水素ガス精製部80は、吸着剤を用いて分離部40により分離された水素を精製する。吸着剤としては、酸化銅が挙げられる。水素ガス精製部80により精製された水素は、原料として再利用が可能である。本実施の形態では、水素ガスは分離部40で分離されているため、混合ガスから水素ガスを直接精製する場合と比較して高純度の水素を簡易な構成の水素ガス精製部80により得ることができる。
 水素を再利用する場合、精製された水素の純度により下記のように用途を分けることができる。
純度99.99%以上の場合・・・水素ステーション、燃料電池用の燃料ガス、精製水素純度99.999%以上の場合・・・成膜原料
 本実施の形態によれば、排ガス処理装置をコンパクトに保ちつつ、排ガスに含まれるモノシランおよび水素を再利用することができる。
 (実施の形態3)
 図4は、実施の形態3に係る排ガス処理装置の概略を示す系統図である。実施の形態3に係る排ガス処理装置は、以下の点で実施の形態1と共通する。すなわち、半導体製造装置20から排出された混合ガスを、ポンプ12を用いてフィルタ部30に送出し、フィルタ部30で高次シランを除去した後、深冷分離装置46を用いて混合ガスを水素とモノシランとに分離し、その後、シランガス除害部50、および水素ガス排気部60に分離ガスを送出する。
 本実施の形態では、深冷分離装置46の前段に、半導体装置20から排出された前記混合ガスを排気するポンプ12と、前記ポンプ12により排気された混合ガスを圧縮して後段へ送る圧縮機31と、圧縮された混合ガスを集めて収容するガス収容部32と、ガス収容部32から供給される混合ガスの流量を制御する流量制御部33と、流量制御部33で一定流量に制御された混合ガスの成分ガス濃度を測定する供給側ガス分析部34と、深冷分離装置46から送出された混合ガスの成分ガス濃度を測定する水素ガス側ガス分析部35およびシランガス側ガス分析部36を備える点で、実施の形態1と相違する。
 半導体製造装置20の運転条件、特に流量や圧力が大きく変動する場合や、運転条件の異なる複数の半導体製造装置の排ガスをまとめて処理する場合などは、上記の圧縮機31、ガス収容部32および流量制御部33を備えることにより、深冷分離装置46に供給される混合ガスの流量を一定に制御することができる。
 圧縮機31としては、特に限定されないが、ダイヤフラム式圧縮機、遠心圧縮機、軸流圧縮機、レシプロ圧縮機、ツインスクリュー圧縮機、シングルスクリュー圧縮機、スクロール圧縮機、ロータリー圧縮機等があげられるが、中でもダイヤフラム式圧縮機がより好ましい。
 圧縮機31の運転条件としては、特に限定されないが、圧縮後の混合ガスの温度がモノシランの分解温度である200℃以下となるように運転するのが好ましい。つまり、ポンプ12から排出された混合ガスを常圧から圧縮すると考えると、圧縮比4.4以下で圧縮機を運転することが望ましい。
 圧縮機31に使用される圧縮機の構成に関しては、特に限定されないが、圧縮機に供給される混合ガスの流量が変動した場合でも圧縮機を安定して運転するために、インバーターを併設した構成、あるいは、圧縮機で一旦圧縮した混合ガスを再度圧縮機のサクション側に戻すスピルバック方式の構成を有することが好ましい。
 ガス収容部32は、半導体製造装置20からポンプ12を通して排出される混合ガスの流量や圧力が不安定な場合や、複数の半導体製造装置20からの排出ガスをまとめて処理する場合において、十分な容量のタンク等に集めることで、各々の半導体製造装置20から排出される混合ガスの流量、圧力変動を平均化し、深冷分離装置46に常に一定流量、圧力の混合ガスを流通させるためのものである。また、構造を工夫することで、混合ガスに含まれる微粒子を除去する機能を付与することも可能である。
 ガス収容部32に使用されるタンクのサイズは、特に限定されないが、1台の半導体製造装置の場合は、その装置の最大流量、複数台の半導体製造装置をまとめて処理する場合は、各々の半導体製造装置に供給するガスの最大流量の合計値以上にすることが望ましい。
 ガス収容部32に使用されるタンク内の圧力は、特に限定されないが、最大で1MPaGにすることが望ましい。
 また、装置の運転開始時には、ガス収容部32の出口バルブを閉じた状態で、排ガスを圧縮機31からガス収容部32に供給し、ガス収容部32に蓄圧することが好ましい。これにより、半導体製造装置20の排ガス流量が大きく変動した際にも、深冷分離装置46への供給流量を一定に保つための十分な圧力を維持することが可能になると共に、ガス収容部32に収容できるガス量を増加することができるため、ガス収容部32の容積を小さくすることができる。さらには、十分な圧力を蓄圧すれば、深冷分離装置46に供給する混合ガスのガス圧を高く設定できるため、高温でモノシランを液化することが出来るようになり、運転上も有利になる。
 流量制御部33は、混合ガスの流量を、一定に制御するためのものである。その制御方法に関して特に限定されないが、流量制御部33に供給される混合ガスの圧力変動の影響を受けないものが望ましく、例えば、マスフローコントローラーなどが挙げられる。
 深冷分離装置46に供給および排出される混合ガスの成分ガスの流量ならびに濃度、特に、ガス中の水素濃度および/またはモノシラン濃度を測定するために、供給側ガス分析部34、水素ガス側ガス分析部35およびシランガス側ガス分析部36、を設置することができる。これらのガス分析部では、少なくとも、混合ガスの流量ならびに混合ガス中の水素濃度および/またはモノシラン濃度を測定できれば、その方法は特に限定されないが、例えば、流量に関しては、乾式や湿式の一般的な流量計を使用することができ、また水素濃度および/またはモノシランの濃度の測定では、ガス流通式のサンプルセルを備えたFT-IRや、オンライン式のガスクロマトグラフ等が挙げられる。
 上述した分析部での流量や、水素濃度および/またはモノシラン濃度の測定結果を元に、深冷分離の条件、水素ガス処理部7での水素精製や希釈条件、シランガス処理部8でのモノシラン精製、希釈、除害条件などの運転条件に反映させることもできる。
 例えば、シランガス処理部8で、回収したモノシランを除害処理し、排気する場合、除害装置の仕様にあわせて、回収したモノシランを所定濃度まで希釈する必要があるが、その際、シランガス側ガス分析部36のデータがあれば、無駄に希釈しすぎたり、希釈不足で、除害装置に不具合を発生させたりといったことを防ぐことができる。また、水素ガス処理部でも同様に水素ガス側分析部35のデータがあれば、無駄に希釈しすぎることなく適切な希釈ガスの流量を選択することができる。
 また、シランガス処理部8に、シランガス精製部8aを設け、モノシランガスを精製処理し、再利用する場合は、シランガス側ガス分析部36で、流量、モノシラン濃度以外に、回収したモノシラン中の微量不純物をガスクロマトグラフなどにより分析することで、最適な精製処理の条件を選択したり、不純物が多すぎる場合などは、精製処理せず、除害処理にまわすといった選択も可能になる。この時にはガス分析部の後段に除害部と再利用のラインを切り替えるバルブを設置することが好ましい。また、水素ガス処理部7に水素ガス精製部7aを設け、水素ガスを精製処理し、再利用する場合も上記同様である。
 なお、上述の制御は、各種測定値を取り込んで、制御値を管理する演算制御部(図示せず)を用いて実行することが好ましい。
 また、半導体装置20では成膜によるチャンバー内の堆積物を除去するためにケミカルクリーニングが行われることがある。ケミカルクリーニングでは、チャンバーに堆積したシリコン薄膜を除去するためにNF3やF2などのガスを導入下でプラズマ処理することが一般的であるが、これらのガスは支燃性であるため、水素やモノシランのような可燃性ガスとの接触は避けなければならず、図4のようにポンプ12の後に切替バルブ13を設置し、ケミカルクリーニングの排ガスが出てくる際には、支燃系ガス処理系に切替えてシラン系ガスの処理ラインに混入することを防ぐことが好ましい。この切替バルブはポンプ自体にその機構が内蔵されていてもよい。
 本発明は、上述の各実施の形態に限定されるものではなく、当業者の知識に基づいて各種の設計変更等の変形を加えることも可能であり、そのような変形が加えられた実施の形態も本発明の範囲に含まれうるものである。
 たとえば、実施の形態1に係る排ガス処理装置と実施の形態2に係る排ガス処理装置とを組み合わせ、モノシランおよび水素のいずれか一方を精製する構成としてもよい。  
 また、分離されたモノシランおよび水素の少なくとも一方を、弁切り換えなどにより、必要に応じて精製できるような構成としてもよい。
 以下、本発明を実施例に基づいて具体的に説明するが、本発明はこれらの実施例のみに限定されるものではない。
(実施例1~4)
 図5は、深冷分離装置46を用いて、モノシランおよび水素を含有する混合ガスを深冷分離したときの、水素中のモノシラン濃度(ppm)を示すグラフである。以下に示す各実験例について、冷却温度を70K(-200℃)~120K(-150℃)まで条件を振って分離された水素について、フーリエ変換赤外分光光度計(FT-IR)を用いて分析した。
(実施例1)
混合ガス:水素99モル%、モノシラン1モル%
圧力:1気圧
(実施例2)
混合ガス:水素99モル%、モノシラン1モル%
圧力:2気圧
(実施例3)
混合ガス:水素98モル%、モノシラン2モル%
圧力:1気圧
(実施例4)
混合ガス:水素99モル%、モノシラン1モル%
圧力:10気圧
 図5に示すように、各条件において深冷分離により分離された水素に含まれるモノシランの濃度は多くても20000ppm程度であり、高純度の水素が得られることが確認された。水素の純度は、冷却温度が低いほど高く、また圧力が高いほど高純度であることがわかる。
(実施例5~8)
 図6は、深冷分離装置46を用いて、モノシラン、水素およびドライポンプに供給された窒素を含有する混合ガスを深冷分離したときの、混合ガス中のモノシラン濃度(ppm)を示すグラフである。以下に示す各実験例について、冷却温度を70K(-200℃)~130K(-140℃)まで条件を振って分離された混合ガスについて、フーリエ変換赤外分光光度計(FT-IR)を用いて分析した。
(実施例5)
混合ガス:水素49モル%、モノシラン1モル%、窒素50モル%
圧力:1気圧
(実施例6)
混合ガス:水素49モル%、モノシラン1モル%、窒素50モル%
圧力:2気圧
(実施例7)
混合ガス:水素74モル%、モノシラン1モル%、窒素25モル%
圧力:1気圧
(実施例8)
混合ガス:水素49モル%、モノシラン1モル%、窒素50モル%
圧力:10気圧
 図6に示すように、各条件において深冷分離により分離された混合ガスに含まれるモノシランの濃度は多くても1%程度であり、モノシランを含有しない高純度の混合ガスが得られることが確認された。モノシランを含まない混合ガスの純度は、冷却温度が低いほど高く、また圧力が高いほど高純度であることがわかる。
(実施例9)
 図7に示すように、上述の実施の形態に係る排ガス処理装置を半導体製造装置20の一つである薄膜シリコン太陽電池製造用PE-CVD装置(81)3台に接続した。複数のPE-CVD装置81から排出された混合ガスは、外部から導入された窒素とともにそれぞれの装置に対応したドライポンプ82で吸引し、フィルタ84を介し、圧縮機85に向けて送出する。なお、ドライポンプ82の後には切替バルブ83が設置されている。これにより、ケミカルクリーニングの排ガスが出てくる際には、支燃系ガス処理系に切替えることで、そのような排ガスがシラン系ガスの処理ラインに混入することが防止される。圧縮機85としては圧縮比4で運転できるものを選定した。蓄圧用バルブ87を閉止した状態で、それぞれのドライポンプ82のパージ窒素を30NL/minの流量で流して、気密タンク86(容量:5m)の圧力を2.5MPaGまで昇圧した。その後、蓄圧用バルブ87を開け、マスフローコントローラー88へのガス供給を開始すると共に、それぞれのPE-CVD装置を4分ずつずらして運転を開始した。それぞれのPE-CVDの運転は、表1に示すような条件で行った。マスフローコントローラー88でガス流量を151.5NL/minに制御して、深冷分離装置91に供給した。深冷分離装置91は液体窒素を供給して-170℃に冷却した。また、ガス側背圧弁92aは圧力が2.0MPaGになるように調整した。また、液側背圧弁92bは深冷分離装置の液面が一定値になるように開度を調整した。この時の圧縮機手前の排ガスの流量、組成を表2に示した。分離されたガス側の分離ガス中のSiH濃度は0.019vol%、水素回収率は99.9%であり、排ガス流量の変動によらず一定であった。
 なお、図7に示すガス分析装置89aは、PE-CVD装置81の排ガスの流量ならびに水素濃度およびモノシラン濃度を測定するものである。ガス分析装置89aを通過した排ガスは、熱交換機90で、深冷分離装置91からの出口ガスで冷却された後、深冷分離装置91に導入される。導入された排ガスは深冷分離装置91で、液体窒素で冷却されることで、水素を含むガスとモノシランを含む液とに分離される。水素を含むガスは、ガス分析装置89bで、流量ならびに水素濃度およびモノシラン濃度を測定され、その測定結果に基づいてモノシラン濃度5ppmv未満、水素濃度4vol%未満になるように窒素で希釈され、ブロア94aによって大気に放出される。また、回収されたモノシランを含む液は、気化された後、ガス分析装置89cで流量ならびに水素濃度およびモノシラン濃度が測定された後、その測定結果に基づいて適宜窒素で希釈され、燃焼除害装置93により燃焼され除害される。燃焼除害装置93により燃焼されて排出されるガスは、ブロア94bによりバグフィルタ95に導入され、燃焼の際に発生した粉体等の異物を除去後、ブロア94cによって大気に放出される。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 本発明は、半導体製造装置から排出される排ガスを処理する装置に利用することができる。
10 排ガス処理装置、12 ポンプ、13 切替バルブ、20 半導体製造装置、30 フィルタ部、31 圧縮機、32 ガス収容部、33 流量制御部、34 供給側ガス分析部、35 水素側ガス分析部、36 シラン側ガス分析部、40 分離部、42 熱交換部、44 熱交換部、46 深冷分離装置、50 シランガス除害部、60 水素ガス排気部、70 シランガス精製部、80 水素ガス精製部、81 PE-CVD装置、82 ドライポンプ、83 切替バルブ、 84 フィルタ、85 圧縮機、86 気密タンク、87 蓄圧用バルブ、88 マスフローコントローラー、89a、b、c ガス分析装置、90 熱交換器、91 深冷分離装置、92a ガス側背圧弁、92b 液側背圧弁、93 燃焼除害装置、94a、b、c ブロア、95 バグフィルター

Claims (8)

  1.  半導体製造装置から排出される混合ガスを処理する排ガス処理装置であって、
     前記混合ガスを通過させ、前記混合ガスに含まれている複数種のガスのうち除害の必要な第1のガスと、除害の必要のない第2のガスとを深冷分離により分離する分離部と、
     前記分離部によって分離された第1のガスを処理する第1のガス処理部と、
     前記分離部によって分離された第2のガスを処理する第2のガス処理部と、
     を備えることを特徴とする排ガス処理装置。
  2.  前記第1のガス処理部は、前記第1のガスを除害する請求項1に記載の排ガス処理装置。
  3.  前記第1のガス処理部は、前記第1のガスを精製する請求項1に記載の排ガス処理装置。
  4.  前記分離部は、前記第1のガスとしてモノシランを分離する請求項1乃至3のいずれか1項にに記載の排ガス処理装置。
  5.  前記第2のガス処理部は、前記第2のガスとして水素を希釈して外部へ排出することを特徴とする請求項1乃至4のいずれか1項にに記載の排ガス処理装置。
  6.  前記第2のガス処理部は、前記第2のガスとして水素を精製することを特徴とする請求項1乃至4のいずれか1項にに記載の排ガス処理装置。
  7.  前記分離部の前段に、半導体製造装置から排出された前記混合ガスを排気するポンプと、
     前記ポンプにより排気された混合ガスを圧縮して後段へ送る圧縮機と、
     圧縮された混合ガスを集めて収容するガス収容部と、
    ガス収容部から供給される混合ガスの流量を制御する流量制御部と、
    を備えることを特徴とする請求項1乃至6のいずれか1項に記載の排ガス処理装置。
  8.  半導体製造装置から排出される混合ガスを処理する排ガス処理方法であって、
     前記混合ガスに含まれている複数種のガスのうち除害の必要な第1のガスと、除害の必要のない第2のガスとを深冷分離する分離工程と、
     前記混合ガスから分離された前記第1のガスを除害する除害工程と、
     前記混合ガスから分離された前記第2のガスを外部に排出する排出工程と、
     を備えることを特徴とする排ガス処理方法。
PCT/JP2010/001765 2009-03-12 2010-03-11 排ガス処理装置および排ガス処理方法 WO2010103846A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-059500 2009-03-12
JP2009059500A JP2012106146A (ja) 2009-03-12 2009-03-12 排ガス処理装置および排ガス処理方法

Publications (1)

Publication Number Publication Date
WO2010103846A1 true WO2010103846A1 (ja) 2010-09-16

Family

ID=42728143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/001765 WO2010103846A1 (ja) 2009-03-12 2010-03-11 排ガス処理装置および排ガス処理方法

Country Status (2)

Country Link
JP (1) JP2012106146A (ja)
WO (1) WO2010103846A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011111403A1 (ja) * 2010-03-12 2011-09-15 Jx日鉱日石エネルギー株式会社 排ガス処理システム
JP2011189230A (ja) * 2010-03-12 2011-09-29 Jx Nippon Oil & Energy Corp 排ガス処理システム
JP2011189228A (ja) * 2010-03-12 2011-09-29 Jx Nippon Oil & Energy Corp 排ガス処理システム
JP2011189229A (ja) * 2010-03-12 2011-09-29 Jx Nippon Oil & Energy Corp 排ガス処理システム
CN103201576A (zh) * 2010-11-16 2013-07-10 普莱克斯技术有限公司 具有增强的制冷回收的用于过程流的低温冷却的系统和方法
CN114146526A (zh) * 2020-09-08 2022-03-08 铠侠股份有限公司 气体回收装置、半导体制造系统及气体回收方法
WO2023027927A1 (en) * 2021-08-23 2023-03-02 Lam Research Corporation Compact gas separator devices co-located on substrate processing systems

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6101958B2 (ja) * 2013-02-13 2017-03-29 日本パイオニクス株式会社 アンモニア及び水素の回収方法及び再利用方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07253272A (ja) * 1994-03-17 1995-10-03 Fujitsu Ltd ガス分離装置
JPH11191422A (ja) * 1997-12-26 1999-07-13 Sanyo Electric Co Ltd 固体高分子形燃料電池装置
JP2002001047A (ja) * 2000-06-21 2002-01-08 Seiko Epson Corp Pfc回収装置及びpfc回収方法
JP2005108805A (ja) * 2003-09-09 2005-04-21 Toyota Motor Corp 燃料電池システム
JP2005116255A (ja) * 2003-10-06 2005-04-28 Honda Motor Co Ltd 燃料電池の排出ガス処理装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07253272A (ja) * 1994-03-17 1995-10-03 Fujitsu Ltd ガス分離装置
JPH11191422A (ja) * 1997-12-26 1999-07-13 Sanyo Electric Co Ltd 固体高分子形燃料電池装置
JP2002001047A (ja) * 2000-06-21 2002-01-08 Seiko Epson Corp Pfc回収装置及びpfc回収方法
JP2005108805A (ja) * 2003-09-09 2005-04-21 Toyota Motor Corp 燃料電池システム
JP2005116255A (ja) * 2003-10-06 2005-04-28 Honda Motor Co Ltd 燃料電池の排出ガス処理装置

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011111403A1 (ja) * 2010-03-12 2011-09-15 Jx日鉱日石エネルギー株式会社 排ガス処理システム
JP2011189230A (ja) * 2010-03-12 2011-09-29 Jx Nippon Oil & Energy Corp 排ガス処理システム
JP2011189228A (ja) * 2010-03-12 2011-09-29 Jx Nippon Oil & Energy Corp 排ガス処理システム
JP2011189229A (ja) * 2010-03-12 2011-09-29 Jx Nippon Oil & Energy Corp 排ガス処理システム
US8591633B2 (en) 2010-03-12 2013-11-26 Jx Nippon Oil & Energy Corporation Exhaust gas treatment system
CN103201576A (zh) * 2010-11-16 2013-07-10 普莱克斯技术有限公司 具有增强的制冷回收的用于过程流的低温冷却的系统和方法
CN103201576B (zh) * 2010-11-16 2015-06-24 普莱克斯技术有限公司 具有增强的制冷回收的用于过程流的低温冷却的系统和方法
CN114146526A (zh) * 2020-09-08 2022-03-08 铠侠股份有限公司 气体回收装置、半导体制造系统及气体回收方法
WO2023027927A1 (en) * 2021-08-23 2023-03-02 Lam Research Corporation Compact gas separator devices co-located on substrate processing systems

Also Published As

Publication number Publication date
JP2012106146A (ja) 2012-06-07

Similar Documents

Publication Publication Date Title
WO2010103846A1 (ja) 排ガス処理装置および排ガス処理方法
WO2010103847A1 (ja) 排ガス処理装置および排ガス処理方法
JP4769350B2 (ja) 希ガスの回収方法及び装置
US9890044B2 (en) Method for recovering and purifying argon gas from silicon single crystal manufacturing apparatus and apparatus for recovering and purifying argon gas
WO2011111403A1 (ja) 排ガス処理システム
JP2011189229A (ja) 排ガス処理システム
JP2013517944A (ja) 不活性ガスの回収システム及び回収方法
JP7198676B2 (ja) 希ガス回収システムおよび希ガス回収方法
JP5144643B2 (ja) 雰囲気再循環方法及びシステム
JP2006516018A (ja) 処理炉の排ガスから水素を再生する装置及び方法
JP4430913B2 (ja) ガス供給方法及び装置
AU2010297102A1 (en) Method for purifying a gas stream including mercury
TW202308748A (zh) 用於從蝕刻室排出的氣體污染物流預處理並回收稀有氣體之新穎方法
WO2021094709A1 (en) Inert gas recovery from a semiconductor manufacturing tool
JP2012254421A (ja) シロキサン除去方法およびメタン回収方法
JP2761917B2 (ja) アルゴンの回収方法
JP2011189228A (ja) 排ガス処理システム
JP2003068595A (ja) 半導体製造設備
CN107265418B (zh) 三氟化氮的纯化装置及纯化方法
JP2011189230A (ja) 排ガス処理システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10750602

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16-12-2011 )

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 10750602

Country of ref document: EP

Kind code of ref document: A1